xref: /freebsd/sys/netinet/tcp_input.c (revision 7660b554bc59a07be0431c17e0e33815818baa69)
1 /*
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
34  * $FreeBSD$
35  */
36 
37 #include "opt_ipfw.h"		/* for ipfw_fwd		*/
38 #include "opt_inet6.h"
39 #include "opt_ipsec.h"
40 #include "opt_mac.h"
41 #include "opt_tcpdebug.h"
42 #include "opt_tcp_input.h"
43 
44 #include <sys/param.h>
45 #include <sys/kernel.h>
46 #include <sys/mac.h>
47 #include <sys/malloc.h>
48 #include <sys/mbuf.h>
49 #include <sys/proc.h>		/* for proc0 declaration */
50 #include <sys/protosw.h>
51 #include <sys/signalvar.h>
52 #include <sys/socket.h>
53 #include <sys/socketvar.h>
54 #include <sys/sysctl.h>
55 #include <sys/syslog.h>
56 #include <sys/systm.h>
57 
58 #include <machine/cpu.h>	/* before tcp_seq.h, for tcp_random18() */
59 
60 #include <net/if.h>
61 #include <net/route.h>
62 
63 #include <netinet/in.h>
64 #include <netinet/in_pcb.h>
65 #include <netinet/in_systm.h>
66 #include <netinet/in_var.h>
67 #include <netinet/ip.h>
68 #include <netinet/ip_icmp.h>	/* for ICMP_BANDLIM		*/
69 #include <netinet/icmp_var.h>	/* for ICMP_BANDLIM		*/
70 #include <netinet/ip_var.h>
71 #include <netinet/ip6.h>
72 #include <netinet/icmp6.h>
73 #include <netinet6/in6_pcb.h>
74 #include <netinet6/ip6_var.h>
75 #include <netinet6/nd6.h>
76 #include <netinet/tcp.h>
77 #include <netinet/tcp_fsm.h>
78 #include <netinet/tcp_seq.h>
79 #include <netinet/tcp_timer.h>
80 #include <netinet/tcp_var.h>
81 #include <netinet6/tcp6_var.h>
82 #include <netinet/tcpip.h>
83 #ifdef TCPDEBUG
84 #include <netinet/tcp_debug.h>
85 #endif /* TCPDEBUG */
86 
87 #ifdef FAST_IPSEC
88 #include <netipsec/ipsec.h>
89 #include <netipsec/ipsec6.h>
90 #endif /*FAST_IPSEC*/
91 
92 #ifdef IPSEC
93 #include <netinet6/ipsec.h>
94 #include <netinet6/ipsec6.h>
95 #include <netkey/key.h>
96 #endif /*IPSEC*/
97 
98 #include <machine/in_cksum.h>
99 
100 MALLOC_DEFINE(M_TSEGQ, "tseg_qent", "TCP segment queue entry");
101 
102 static const int tcprexmtthresh = 3;
103 tcp_cc	tcp_ccgen;
104 
105 struct	tcpstat tcpstat;
106 SYSCTL_STRUCT(_net_inet_tcp, TCPCTL_STATS, stats, CTLFLAG_RW,
107     &tcpstat , tcpstat, "TCP statistics (struct tcpstat, netinet/tcp_var.h)");
108 
109 static int log_in_vain = 0;
110 SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_in_vain, CTLFLAG_RW,
111     &log_in_vain, 0, "Log all incoming TCP connections");
112 
113 static int blackhole = 0;
114 SYSCTL_INT(_net_inet_tcp, OID_AUTO, blackhole, CTLFLAG_RW,
115 	&blackhole, 0, "Do not send RST when dropping refused connections");
116 
117 int tcp_delack_enabled = 1;
118 SYSCTL_INT(_net_inet_tcp, OID_AUTO, delayed_ack, CTLFLAG_RW,
119     &tcp_delack_enabled, 0,
120     "Delay ACK to try and piggyback it onto a data packet");
121 
122 #ifdef TCP_DROP_SYNFIN
123 static int drop_synfin = 0;
124 SYSCTL_INT(_net_inet_tcp, OID_AUTO, drop_synfin, CTLFLAG_RW,
125     &drop_synfin, 0, "Drop TCP packets with SYN+FIN set");
126 #endif
127 
128 static int tcp_do_rfc3042 = 0;
129 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3042, CTLFLAG_RW,
130     &tcp_do_rfc3042, 0, "Enable RFC 3042 (Limited Transmit)");
131 
132 static int tcp_do_rfc3390 = 0;
133 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3390, CTLFLAG_RW,
134     &tcp_do_rfc3390, 0,
135     "Enable RFC 3390 (Increasing TCP's Initial Congestion Window)");
136 
137 struct inpcbhead tcb;
138 #define	tcb6	tcb  /* for KAME src sync over BSD*'s */
139 struct inpcbinfo tcbinfo;
140 struct mtx	*tcbinfo_mtx;
141 
142 static void	 tcp_dooptions(struct tcpopt *, u_char *, int, int);
143 static void	 tcp_pulloutofband(struct socket *,
144 		     struct tcphdr *, struct mbuf *, int);
145 static int	 tcp_reass(struct tcpcb *, struct tcphdr *, int *,
146 		     struct mbuf *);
147 static void	 tcp_xmit_timer(struct tcpcb *, int);
148 static void	 tcp_newreno_partial_ack(struct tcpcb *, struct tcphdr *);
149 static int	 tcp_timewait(struct tcptw *, struct tcpopt *,
150 		     struct tcphdr *, struct mbuf *, int);
151 
152 /* Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint. */
153 #ifdef INET6
154 #define ND6_HINT(tp) \
155 do { \
156 	if ((tp) && (tp)->t_inpcb && \
157 	    ((tp)->t_inpcb->inp_vflag & INP_IPV6) != 0 && \
158 	    (tp)->t_inpcb->in6p_route.ro_rt) \
159 		nd6_nud_hint((tp)->t_inpcb->in6p_route.ro_rt, NULL, 0); \
160 } while (0)
161 #else
162 #define ND6_HINT(tp)
163 #endif
164 
165 /*
166  * Indicate whether this ack should be delayed.  We can delay the ack if
167  *	- there is no delayed ack timer in progress and
168  *	- our last ack wasn't a 0-sized window.  We never want to delay
169  *	  the ack that opens up a 0-sized window and
170  *		- delayed acks are enabled or
171  *		- this is a half-synchronized T/TCP connection.
172  */
173 #define DELAY_ACK(tp)							\
174 	((!callout_active(tp->tt_delack) &&				\
175 	    (tp->t_flags & TF_RXWIN0SENT) == 0) &&			\
176 	    (tcp_delack_enabled || (tp->t_flags & TF_NEEDSYN)))
177 
178 static int
179 tcp_reass(tp, th, tlenp, m)
180 	register struct tcpcb *tp;
181 	register struct tcphdr *th;
182 	int *tlenp;
183 	struct mbuf *m;
184 {
185 	struct tseg_qent *q;
186 	struct tseg_qent *p = NULL;
187 	struct tseg_qent *nq;
188 	struct tseg_qent *te;
189 	struct socket *so = tp->t_inpcb->inp_socket;
190 	int flags;
191 
192 	/*
193 	 * Call with th==0 after become established to
194 	 * force pre-ESTABLISHED data up to user socket.
195 	 */
196 	if (th == 0)
197 		goto present;
198 
199 	/* Allocate a new queue entry. If we can't, just drop the pkt. XXX */
200 	MALLOC(te, struct tseg_qent *, sizeof (struct tseg_qent), M_TSEGQ,
201 	       M_NOWAIT);
202 	if (te == NULL) {
203 		tcpstat.tcps_rcvmemdrop++;
204 		m_freem(m);
205 		return (0);
206 	}
207 
208 	/*
209 	 * Find a segment which begins after this one does.
210 	 */
211 	LIST_FOREACH(q, &tp->t_segq, tqe_q) {
212 		if (SEQ_GT(q->tqe_th->th_seq, th->th_seq))
213 			break;
214 		p = q;
215 	}
216 
217 	/*
218 	 * If there is a preceding segment, it may provide some of
219 	 * our data already.  If so, drop the data from the incoming
220 	 * segment.  If it provides all of our data, drop us.
221 	 */
222 	if (p != NULL) {
223 		register int i;
224 		/* conversion to int (in i) handles seq wraparound */
225 		i = p->tqe_th->th_seq + p->tqe_len - th->th_seq;
226 		if (i > 0) {
227 			if (i >= *tlenp) {
228 				tcpstat.tcps_rcvduppack++;
229 				tcpstat.tcps_rcvdupbyte += *tlenp;
230 				m_freem(m);
231 				FREE(te, M_TSEGQ);
232 				/*
233 				 * Try to present any queued data
234 				 * at the left window edge to the user.
235 				 * This is needed after the 3-WHS
236 				 * completes.
237 				 */
238 				goto present;	/* ??? */
239 			}
240 			m_adj(m, i);
241 			*tlenp -= i;
242 			th->th_seq += i;
243 		}
244 	}
245 	tcpstat.tcps_rcvoopack++;
246 	tcpstat.tcps_rcvoobyte += *tlenp;
247 
248 	/*
249 	 * While we overlap succeeding segments trim them or,
250 	 * if they are completely covered, dequeue them.
251 	 */
252 	while (q) {
253 		register int i = (th->th_seq + *tlenp) - q->tqe_th->th_seq;
254 		if (i <= 0)
255 			break;
256 		if (i < q->tqe_len) {
257 			q->tqe_th->th_seq += i;
258 			q->tqe_len -= i;
259 			m_adj(q->tqe_m, i);
260 			break;
261 		}
262 
263 		nq = LIST_NEXT(q, tqe_q);
264 		LIST_REMOVE(q, tqe_q);
265 		m_freem(q->tqe_m);
266 		FREE(q, M_TSEGQ);
267 		q = nq;
268 	}
269 
270 	/* Insert the new segment queue entry into place. */
271 	te->tqe_m = m;
272 	te->tqe_th = th;
273 	te->tqe_len = *tlenp;
274 
275 	if (p == NULL) {
276 		LIST_INSERT_HEAD(&tp->t_segq, te, tqe_q);
277 	} else {
278 		LIST_INSERT_AFTER(p, te, tqe_q);
279 	}
280 
281 present:
282 	/*
283 	 * Present data to user, advancing rcv_nxt through
284 	 * completed sequence space.
285 	 */
286 	if (!TCPS_HAVEESTABLISHED(tp->t_state))
287 		return (0);
288 	q = LIST_FIRST(&tp->t_segq);
289 	if (!q || q->tqe_th->th_seq != tp->rcv_nxt)
290 		return (0);
291 	do {
292 		tp->rcv_nxt += q->tqe_len;
293 		flags = q->tqe_th->th_flags & TH_FIN;
294 		nq = LIST_NEXT(q, tqe_q);
295 		LIST_REMOVE(q, tqe_q);
296 		if (so->so_state & SS_CANTRCVMORE)
297 			m_freem(q->tqe_m);
298 		else
299 			sbappend(&so->so_rcv, q->tqe_m);
300 		FREE(q, M_TSEGQ);
301 		q = nq;
302 	} while (q && q->tqe_th->th_seq == tp->rcv_nxt);
303 	ND6_HINT(tp);
304 	sorwakeup(so);
305 	return (flags);
306 }
307 
308 /*
309  * TCP input routine, follows pages 65-76 of the
310  * protocol specification dated September, 1981 very closely.
311  */
312 #ifdef INET6
313 int
314 tcp6_input(mp, offp, proto)
315 	struct mbuf **mp;
316 	int *offp, proto;
317 {
318 	register struct mbuf *m = *mp;
319 	struct in6_ifaddr *ia6;
320 
321 	IP6_EXTHDR_CHECK(m, *offp, sizeof(struct tcphdr), IPPROTO_DONE);
322 
323 	/*
324 	 * draft-itojun-ipv6-tcp-to-anycast
325 	 * better place to put this in?
326 	 */
327 	ia6 = ip6_getdstifaddr(m);
328 	if (ia6 && (ia6->ia6_flags & IN6_IFF_ANYCAST)) {
329 		struct ip6_hdr *ip6;
330 
331 		ip6 = mtod(m, struct ip6_hdr *);
332 		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
333 			    (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
334 		return IPPROTO_DONE;
335 	}
336 
337 	tcp_input(m, *offp);
338 	return IPPROTO_DONE;
339 }
340 #endif
341 
342 void
343 tcp_input(m, off0)
344 	register struct mbuf *m;
345 	int off0;
346 {
347 	register struct tcphdr *th;
348 	register struct ip *ip = NULL;
349 	register struct ipovly *ipov;
350 	register struct inpcb *inp = NULL;
351 	u_char *optp = NULL;
352 	int optlen = 0;
353 	int len, tlen, off;
354 	int drop_hdrlen;
355 	register struct tcpcb *tp = 0;
356 	register int thflags;
357 	struct socket *so = 0;
358 	int todrop, acked, ourfinisacked, needoutput = 0;
359 	u_long tiwin;
360 	struct tcpopt to;		/* options in this segment */
361 	struct rmxp_tao *taop;		/* pointer to our TAO cache entry */
362 	struct rmxp_tao	tao_noncached;	/* in case there's no cached entry */
363 	int headlocked = 0;
364 	struct sockaddr_in *next_hop = NULL;
365 	int rstreason; /* For badport_bandlim accounting purposes */
366 
367 	struct ip6_hdr *ip6 = NULL;
368 #ifdef INET6
369 	int isipv6;
370 #else
371 	const int isipv6 = 0;
372 #endif
373 
374 #ifdef TCPDEBUG
375 	/*
376 	 * The size of tcp_saveipgen must be the size of the max ip header,
377 	 * now IPv6.
378 	 */
379 	u_char tcp_saveipgen[40];
380 	struct tcphdr tcp_savetcp;
381 	short ostate = 0;
382 #endif
383 
384 	/* Grab info from MT_TAG mbufs prepended to the chain. */
385 	for (;m && m->m_type == MT_TAG; m = m->m_next) {
386 		if (m->_m_tag_id == PACKET_TAG_IPFORWARD)
387 			next_hop = (struct sockaddr_in *)m->m_hdr.mh_data;
388 	}
389 #ifdef INET6
390 	isipv6 = (mtod(m, struct ip *)->ip_v == 6) ? 1 : 0;
391 #endif
392 	bzero((char *)&to, sizeof(to));
393 
394 	tcpstat.tcps_rcvtotal++;
395 
396 	if (isipv6) {
397 		/* IP6_EXTHDR_CHECK() is already done at tcp6_input() */
398 		ip6 = mtod(m, struct ip6_hdr *);
399 		tlen = sizeof(*ip6) + ntohs(ip6->ip6_plen) - off0;
400 		if (in6_cksum(m, IPPROTO_TCP, off0, tlen)) {
401 			tcpstat.tcps_rcvbadsum++;
402 			goto drop;
403 		}
404 		th = (struct tcphdr *)((caddr_t)ip6 + off0);
405 
406 		/*
407 		 * Be proactive about unspecified IPv6 address in source.
408 		 * As we use all-zero to indicate unbounded/unconnected pcb,
409 		 * unspecified IPv6 address can be used to confuse us.
410 		 *
411 		 * Note that packets with unspecified IPv6 destination is
412 		 * already dropped in ip6_input.
413 		 */
414 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
415 			/* XXX stat */
416 			goto drop;
417 		}
418 	} else {
419 		/*
420 		 * Get IP and TCP header together in first mbuf.
421 		 * Note: IP leaves IP header in first mbuf.
422 		 */
423 		if (off0 > sizeof (struct ip)) {
424 			ip_stripoptions(m, (struct mbuf *)0);
425 			off0 = sizeof(struct ip);
426 		}
427 		if (m->m_len < sizeof (struct tcpiphdr)) {
428 			if ((m = m_pullup(m, sizeof (struct tcpiphdr))) == 0) {
429 				tcpstat.tcps_rcvshort++;
430 				return;
431 			}
432 		}
433 		ip = mtod(m, struct ip *);
434 		ipov = (struct ipovly *)ip;
435 		th = (struct tcphdr *)((caddr_t)ip + off0);
436 		tlen = ip->ip_len;
437 
438 		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
439 			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
440 				th->th_sum = m->m_pkthdr.csum_data;
441 			else
442 				th->th_sum = in_pseudo(ip->ip_src.s_addr,
443 						ip->ip_dst.s_addr,
444 						htonl(m->m_pkthdr.csum_data +
445 							ip->ip_len +
446 							IPPROTO_TCP));
447 			th->th_sum ^= 0xffff;
448 #ifdef TCPDEBUG
449 			ipov->ih_len = (u_short)tlen;
450 			ipov->ih_len = htons(ipov->ih_len);
451 #endif
452 		} else {
453 			/*
454 			 * Checksum extended TCP header and data.
455 			 */
456 			len = sizeof (struct ip) + tlen;
457 			bzero(ipov->ih_x1, sizeof(ipov->ih_x1));
458 			ipov->ih_len = (u_short)tlen;
459 			ipov->ih_len = htons(ipov->ih_len);
460 			th->th_sum = in_cksum(m, len);
461 		}
462 		if (th->th_sum) {
463 			tcpstat.tcps_rcvbadsum++;
464 			goto drop;
465 		}
466 #ifdef INET6
467 		/* Re-initialization for later version check */
468 		ip->ip_v = IPVERSION;
469 #endif
470 	}
471 
472 	/*
473 	 * Check that TCP offset makes sense,
474 	 * pull out TCP options and adjust length.		XXX
475 	 */
476 	off = th->th_off << 2;
477 	if (off < sizeof (struct tcphdr) || off > tlen) {
478 		tcpstat.tcps_rcvbadoff++;
479 		goto drop;
480 	}
481 	tlen -= off;	/* tlen is used instead of ti->ti_len */
482 	if (off > sizeof (struct tcphdr)) {
483 		if (isipv6) {
484 			IP6_EXTHDR_CHECK(m, off0, off, );
485 			ip6 = mtod(m, struct ip6_hdr *);
486 			th = (struct tcphdr *)((caddr_t)ip6 + off0);
487 		} else {
488 			if (m->m_len < sizeof(struct ip) + off) {
489 				if ((m = m_pullup(m, sizeof (struct ip) + off))
490 						== 0) {
491 					tcpstat.tcps_rcvshort++;
492 					return;
493 				}
494 				ip = mtod(m, struct ip *);
495 				ipov = (struct ipovly *)ip;
496 				th = (struct tcphdr *)((caddr_t)ip + off0);
497 			}
498 		}
499 		optlen = off - sizeof (struct tcphdr);
500 		optp = (u_char *)(th + 1);
501 	}
502 	thflags = th->th_flags;
503 
504 #ifdef TCP_DROP_SYNFIN
505 	/*
506 	 * If the drop_synfin option is enabled, drop all packets with
507 	 * both the SYN and FIN bits set. This prevents e.g. nmap from
508 	 * identifying the TCP/IP stack.
509 	 *
510 	 * This is a violation of the TCP specification.
511 	 */
512 	if (drop_synfin && (thflags & (TH_SYN|TH_FIN)) == (TH_SYN|TH_FIN))
513 		goto drop;
514 #endif
515 
516 	/*
517 	 * Convert TCP protocol specific fields to host format.
518 	 */
519 	th->th_seq = ntohl(th->th_seq);
520 	th->th_ack = ntohl(th->th_ack);
521 	th->th_win = ntohs(th->th_win);
522 	th->th_urp = ntohs(th->th_urp);
523 
524 	/*
525 	 * Delay dropping TCP, IP headers, IPv6 ext headers, and TCP options,
526 	 * until after ip6_savecontrol() is called and before other functions
527 	 * which don't want those proto headers.
528 	 * Because ip6_savecontrol() is going to parse the mbuf to
529 	 * search for data to be passed up to user-land, it wants mbuf
530 	 * parameters to be unchanged.
531 	 * XXX: the call of ip6_savecontrol() has been obsoleted based on
532 	 * latest version of the advanced API (20020110).
533 	 */
534 	drop_hdrlen = off0 + off;
535 
536 	/*
537 	 * Locate pcb for segment.
538 	 */
539 	INP_INFO_WLOCK(&tcbinfo);
540 	headlocked = 1;
541 findpcb:
542 	/* IPFIREWALL_FORWARD section */
543 	if (next_hop != NULL && isipv6 == 0) {	/* IPv6 support is not yet */
544 		/*
545 		 * Transparently forwarded. Pretend to be the destination.
546 		 * already got one like this?
547 		 */
548 		inp = in_pcblookup_hash(&tcbinfo, ip->ip_src, th->th_sport,
549 					ip->ip_dst, th->th_dport,
550 					0, m->m_pkthdr.rcvif);
551 		if (!inp) {
552 			/* It's new.  Try find the ambushing socket. */
553 			inp = in_pcblookup_hash(&tcbinfo,
554 						ip->ip_src, th->th_sport,
555 						next_hop->sin_addr,
556 						next_hop->sin_port ?
557 						    ntohs(next_hop->sin_port) :
558 						    th->th_dport,
559 						1, m->m_pkthdr.rcvif);
560 		}
561 	} else {
562 		if (isipv6)
563 			inp = in6_pcblookup_hash(&tcbinfo,
564 						 &ip6->ip6_src, th->th_sport,
565 						 &ip6->ip6_dst, th->th_dport,
566 						 1, m->m_pkthdr.rcvif);
567 		else
568 			inp = in_pcblookup_hash(&tcbinfo,
569 						ip->ip_src, th->th_sport,
570 						ip->ip_dst, th->th_dport,
571 						1, m->m_pkthdr.rcvif);
572       }
573 
574 #ifdef IPSEC
575 	if (isipv6) {
576 		if (inp != NULL && ipsec6_in_reject_so(m, inp->inp_socket)) {
577 			ipsec6stat.in_polvio++;
578 			goto drop;
579 		}
580 	} else {
581 		if (inp != NULL && ipsec4_in_reject_so(m, inp->inp_socket)) {
582 			ipsecstat.in_polvio++;
583 			goto drop;
584 		}
585 	}
586 #endif
587 #ifdef FAST_IPSEC
588 	if (isipv6) {
589 		if (inp != NULL && ipsec6_in_reject(m, inp)) {
590 			goto drop;
591 		}
592 	} else
593 	if (inp != NULL && ipsec4_in_reject(m, inp)) {
594 		goto drop;
595 	}
596 #endif /*FAST_IPSEC*/
597 
598 	/*
599 	 * If the state is CLOSED (i.e., TCB does not exist) then
600 	 * all data in the incoming segment is discarded.
601 	 * If the TCB exists but is in CLOSED state, it is embryonic,
602 	 * but should either do a listen or a connect soon.
603 	 */
604 	if (inp == NULL) {
605 		if (log_in_vain) {
606 #ifdef INET6
607 			char dbuf[INET6_ADDRSTRLEN+2], sbuf[INET6_ADDRSTRLEN+2];
608 #else
609 			char dbuf[4*sizeof "123"], sbuf[4*sizeof "123"];
610 #endif
611 
612 			if (isipv6) {
613 				strcpy(dbuf, "[");
614 				strcpy(sbuf, "[");
615 				strcat(dbuf, ip6_sprintf(&ip6->ip6_dst));
616 				strcat(sbuf, ip6_sprintf(&ip6->ip6_src));
617 				strcat(dbuf, "]");
618 				strcat(sbuf, "]");
619 			} else {
620 				strcpy(dbuf, inet_ntoa(ip->ip_dst));
621 				strcpy(sbuf, inet_ntoa(ip->ip_src));
622 			}
623 			switch (log_in_vain) {
624 			case 1:
625 				if ((thflags & TH_SYN) == 0)
626 					break;
627 				/* FALLTHROUGH */
628 			case 2:
629 				log(LOG_INFO,
630 				    "Connection attempt to TCP %s:%d "
631 				    "from %s:%d flags:0x%02x\n",
632 				    dbuf, ntohs(th->th_dport), sbuf,
633 				    ntohs(th->th_sport), thflags);
634 				break;
635 			default:
636 				break;
637 			}
638 		}
639 		if (blackhole) {
640 			switch (blackhole) {
641 			case 1:
642 				if (thflags & TH_SYN)
643 					goto drop;
644 				break;
645 			case 2:
646 				goto drop;
647 			default:
648 				goto drop;
649 			}
650 		}
651 		rstreason = BANDLIM_RST_CLOSEDPORT;
652 		goto dropwithreset;
653 	}
654 	INP_LOCK(inp);
655 	if (inp->inp_vflag & INP_TIMEWAIT) {
656 		/*
657 		 * The only option of relevance is TOF_CC, and only if
658 		 * present in a SYN segment.  See tcp_timewait().
659 		 */
660 		if (thflags & TH_SYN)
661 			tcp_dooptions(&to, optp, optlen, 1);
662 		if (tcp_timewait((struct tcptw *)inp->inp_ppcb,
663 		    &to, th, m, tlen))
664 			goto findpcb;
665 		/*
666 		 * tcp_timewait unlocks inp.
667 		 */
668 		INP_INFO_WUNLOCK(&tcbinfo);
669 		return;
670 	}
671 	tp = intotcpcb(inp);
672 	if (tp == 0) {
673 		INP_UNLOCK(inp);
674 		rstreason = BANDLIM_RST_CLOSEDPORT;
675 		goto dropwithreset;
676 	}
677 	if (tp->t_state == TCPS_CLOSED)
678 		goto drop;
679 
680 	/* Unscale the window into a 32-bit value. */
681 	if ((thflags & TH_SYN) == 0)
682 		tiwin = th->th_win << tp->snd_scale;
683 	else
684 		tiwin = th->th_win;
685 
686 	so = inp->inp_socket;
687 #ifdef MAC
688 	if (mac_check_socket_deliver(so, m))
689 		goto drop;
690 #endif
691 #ifdef TCPDEBUG
692 	if (so->so_options & SO_DEBUG) {
693 		ostate = tp->t_state;
694 		if (isipv6)
695 			bcopy((char *)ip6, (char *)tcp_saveipgen, sizeof(*ip6));
696 		else
697 			bcopy((char *)ip, (char *)tcp_saveipgen, sizeof(*ip));
698 		tcp_savetcp = *th;
699 	}
700 #endif
701 	if (so->so_options & SO_ACCEPTCONN) {
702 		struct in_conninfo inc;
703 
704 #ifdef INET6
705 		inc.inc_isipv6 = isipv6;
706 #endif
707 		if (isipv6) {
708 			inc.inc6_faddr = ip6->ip6_src;
709 			inc.inc6_laddr = ip6->ip6_dst;
710 			inc.inc6_route.ro_rt = NULL;		/* XXX */
711 		} else {
712 			inc.inc_faddr = ip->ip_src;
713 			inc.inc_laddr = ip->ip_dst;
714 			inc.inc_route.ro_rt = NULL;		/* XXX */
715 		}
716 		inc.inc_fport = th->th_sport;
717 		inc.inc_lport = th->th_dport;
718 
719 	        /*
720 	         * If the state is LISTEN then ignore segment if it contains
721 		 * a RST.  If the segment contains an ACK then it is bad and
722 		 * send a RST.  If it does not contain a SYN then it is not
723 		 * interesting; drop it.
724 		 *
725 		 * If the state is SYN_RECEIVED (syncache) and seg contains
726 		 * an ACK, but not for our SYN/ACK, send a RST.  If the seg
727 		 * contains a RST, check the sequence number to see if it
728 		 * is a valid reset segment.
729 		 */
730 		if ((thflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
731 			if ((thflags & (TH_RST|TH_ACK|TH_SYN)) == TH_ACK) {
732 				if (!syncache_expand(&inc, th, &so, m)) {
733 					/*
734 					 * No syncache entry, or ACK was not
735 					 * for our SYN/ACK.  Send a RST.
736 					 */
737 					tcpstat.tcps_badsyn++;
738 					rstreason = BANDLIM_RST_OPENPORT;
739 					goto dropwithreset;
740 				}
741 				if (so == NULL) {
742 					/*
743 					 * Could not complete 3-way handshake,
744 					 * connection is being closed down, and
745 					 * syncache will free mbuf.
746 					 */
747 					INP_UNLOCK(inp);
748 					INP_INFO_WUNLOCK(&tcbinfo);
749 					return;
750 				}
751 				/*
752 				 * Socket is created in state SYN_RECEIVED.
753 				 * Continue processing segment.
754 				 */
755 				INP_UNLOCK(inp);
756 				inp = sotoinpcb(so);
757 				INP_LOCK(inp);
758 				tp = intotcpcb(inp);
759 				/*
760 				 * This is what would have happened in
761 				 * tcp_output() when the SYN,ACK was sent.
762 				 */
763 				tp->snd_up = tp->snd_una;
764 				tp->snd_max = tp->snd_nxt = tp->iss + 1;
765 				tp->last_ack_sent = tp->rcv_nxt;
766 				/*
767 				 * RFC1323: The window in SYN & SYN/ACK
768 				 * segments is never scaled.
769 				 */
770 				tp->snd_wnd = tiwin;	/* unscaled */
771 				goto after_listen;
772 			}
773 			if (thflags & TH_RST) {
774 				syncache_chkrst(&inc, th);
775 				goto drop;
776 			}
777 			if (thflags & TH_ACK) {
778 				syncache_badack(&inc);
779 				tcpstat.tcps_badsyn++;
780 				rstreason = BANDLIM_RST_OPENPORT;
781 				goto dropwithreset;
782 			}
783 			goto drop;
784 		}
785 
786 		/*
787 		 * Segment's flags are (SYN) or (SYN|FIN).
788 		 */
789 #ifdef INET6
790 		/*
791 		 * If deprecated address is forbidden,
792 		 * we do not accept SYN to deprecated interface
793 		 * address to prevent any new inbound connection from
794 		 * getting established.
795 		 * When we do not accept SYN, we send a TCP RST,
796 		 * with deprecated source address (instead of dropping
797 		 * it).  We compromise it as it is much better for peer
798 		 * to send a RST, and RST will be the final packet
799 		 * for the exchange.
800 		 *
801 		 * If we do not forbid deprecated addresses, we accept
802 		 * the SYN packet.  RFC2462 does not suggest dropping
803 		 * SYN in this case.
804 		 * If we decipher RFC2462 5.5.4, it says like this:
805 		 * 1. use of deprecated addr with existing
806 		 *    communication is okay - "SHOULD continue to be
807 		 *    used"
808 		 * 2. use of it with new communication:
809 		 *   (2a) "SHOULD NOT be used if alternate address
810 		 *        with sufficient scope is available"
811 		 *   (2b) nothing mentioned otherwise.
812 		 * Here we fall into (2b) case as we have no choice in
813 		 * our source address selection - we must obey the peer.
814 		 *
815 		 * The wording in RFC2462 is confusing, and there are
816 		 * multiple description text for deprecated address
817 		 * handling - worse, they are not exactly the same.
818 		 * I believe 5.5.4 is the best one, so we follow 5.5.4.
819 		 */
820 		if (isipv6 && !ip6_use_deprecated) {
821 			struct in6_ifaddr *ia6;
822 
823 			if ((ia6 = ip6_getdstifaddr(m)) &&
824 			    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
825 				INP_UNLOCK(inp);
826 				tp = NULL;
827 				rstreason = BANDLIM_RST_OPENPORT;
828 				goto dropwithreset;
829 			}
830 		}
831 #endif
832 		/*
833 		 * If it is from this socket, drop it, it must be forged.
834 		 * Don't bother responding if the destination was a broadcast.
835 		 */
836 		if (th->th_dport == th->th_sport) {
837 			if (isipv6) {
838 				if (IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst,
839 						       &ip6->ip6_src))
840 					goto drop;
841 			} else {
842 				if (ip->ip_dst.s_addr == ip->ip_src.s_addr)
843 					goto drop;
844 			}
845 		}
846 		/*
847 		 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
848 		 *
849 		 * Note that it is quite possible to receive unicast
850 		 * link-layer packets with a broadcast IP address. Use
851 		 * in_broadcast() to find them.
852 		 */
853 		if (m->m_flags & (M_BCAST|M_MCAST))
854 			goto drop;
855 		if (isipv6) {
856 			if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
857 			    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
858 				goto drop;
859 		} else {
860 			if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
861 			    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
862 			    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
863 			    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
864 				goto drop;
865 		}
866 		/*
867 		 * SYN appears to be valid; create compressed TCP state
868 		 * for syncache, or perform t/tcp connection.
869 		 */
870 		if (so->so_qlen <= so->so_qlimit) {
871 #ifdef TCPDEBUG
872 			if (so->so_options & SO_DEBUG)
873 				tcp_trace(TA_INPUT, ostate, tp,
874 				    (void *)tcp_saveipgen, &tcp_savetcp, 0);
875 #endif
876 			tcp_dooptions(&to, optp, optlen, 1);
877 			if (!syncache_add(&inc, &to, th, &so, m))
878 				goto drop;
879 			if (so == NULL) {
880 				/*
881 				 * Entry added to syncache, mbuf used to
882 				 * send SYN,ACK packet.
883 				 */
884 				KASSERT(headlocked, ("headlocked"));
885 				INP_UNLOCK(inp);
886 				INP_INFO_WUNLOCK(&tcbinfo);
887 				return;
888 			}
889 			/*
890 			 * Segment passed TAO tests.
891 			 */
892 			INP_UNLOCK(inp);
893 			inp = sotoinpcb(so);
894 			INP_LOCK(inp);
895 			tp = intotcpcb(inp);
896 			tp->snd_wnd = tiwin;
897 			tp->t_starttime = ticks;
898 			tp->t_state = TCPS_ESTABLISHED;
899 
900 			/*
901 			 * T/TCP logic:
902 			 * If there is a FIN or if there is data, then
903 			 * delay SYN,ACK(SYN) in the hope of piggy-backing
904 			 * it on a response segment.  Otherwise must send
905 			 * ACK now in case the other side is slow starting.
906 			 */
907 			if (thflags & TH_FIN || tlen != 0)
908 				tp->t_flags |= (TF_DELACK | TF_NEEDSYN);
909 			else
910 				tp->t_flags |= (TF_ACKNOW | TF_NEEDSYN);
911 			tcpstat.tcps_connects++;
912 			soisconnected(so);
913 			goto trimthenstep6;
914 		}
915 		goto drop;
916 	}
917 after_listen:
918 
919 /* XXX temp debugging */
920 	/* should not happen - syncache should pick up these connections */
921 	if (tp->t_state == TCPS_LISTEN)
922 		panic("tcp_input: TCPS_LISTEN");
923 
924 	/*
925 	 * Segment received on connection.
926 	 * Reset idle time and keep-alive timer.
927 	 */
928 	tp->t_rcvtime = ticks;
929 	if (TCPS_HAVEESTABLISHED(tp->t_state))
930 		callout_reset(tp->tt_keep, tcp_keepidle, tcp_timer_keep, tp);
931 
932 	/*
933 	 * Process options.
934 	 * XXX this is tradtitional behavior, may need to be cleaned up.
935 	 */
936 	tcp_dooptions(&to, optp, optlen, thflags & TH_SYN);
937 	if (thflags & TH_SYN) {
938 		if (to.to_flags & TOF_SCALE) {
939 			tp->t_flags |= TF_RCVD_SCALE;
940 			tp->requested_s_scale = to.to_requested_s_scale;
941 		}
942 		if (to.to_flags & TOF_TS) {
943 			tp->t_flags |= TF_RCVD_TSTMP;
944 			tp->ts_recent = to.to_tsval;
945 			tp->ts_recent_age = ticks;
946 		}
947 		if (to.to_flags & (TOF_CC|TOF_CCNEW))
948 			tp->t_flags |= TF_RCVD_CC;
949 		if (to.to_flags & TOF_MSS)
950 			tcp_mss(tp, to.to_mss);
951 	}
952 
953 	/*
954 	 * Header prediction: check for the two common cases
955 	 * of a uni-directional data xfer.  If the packet has
956 	 * no control flags, is in-sequence, the window didn't
957 	 * change and we're not retransmitting, it's a
958 	 * candidate.  If the length is zero and the ack moved
959 	 * forward, we're the sender side of the xfer.  Just
960 	 * free the data acked & wake any higher level process
961 	 * that was blocked waiting for space.  If the length
962 	 * is non-zero and the ack didn't move, we're the
963 	 * receiver side.  If we're getting packets in-order
964 	 * (the reassembly queue is empty), add the data to
965 	 * the socket buffer and note that we need a delayed ack.
966 	 * Make sure that the hidden state-flags are also off.
967 	 * Since we check for TCPS_ESTABLISHED above, it can only
968 	 * be TH_NEEDSYN.
969 	 */
970 	if (tp->t_state == TCPS_ESTABLISHED &&
971 	    (thflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
972 	    ((tp->t_flags & (TF_NEEDSYN|TF_NEEDFIN)) == 0) &&
973 	    ((to.to_flags & TOF_TS) == 0 ||
974 	     TSTMP_GEQ(to.to_tsval, tp->ts_recent)) &&
975 	    /*
976 	     * Using the CC option is compulsory if once started:
977 	     *   the segment is OK if no T/TCP was negotiated or
978 	     *   if the segment has a CC option equal to CCrecv
979 	     */
980 	    ((tp->t_flags & (TF_REQ_CC|TF_RCVD_CC)) != (TF_REQ_CC|TF_RCVD_CC) ||
981 	     ((to.to_flags & TOF_CC) != 0 && to.to_cc == tp->cc_recv)) &&
982 	    th->th_seq == tp->rcv_nxt &&
983 	    tiwin && tiwin == tp->snd_wnd &&
984 	    tp->snd_nxt == tp->snd_max) {
985 
986 		/*
987 		 * If last ACK falls within this segment's sequence numbers,
988 		 * record the timestamp.
989 		 * NOTE that the test is modified according to the latest
990 		 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
991 		 */
992 		if ((to.to_flags & TOF_TS) != 0 &&
993 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
994 			tp->ts_recent_age = ticks;
995 			tp->ts_recent = to.to_tsval;
996 		}
997 
998 		if (tlen == 0) {
999 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
1000 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
1001 			    tp->snd_cwnd >= tp->snd_wnd &&
1002 			    ((!tcp_do_newreno &&
1003 			      tp->t_dupacks < tcprexmtthresh) ||
1004 			     (tcp_do_newreno && !IN_FASTRECOVERY(tp)))) {
1005 				KASSERT(headlocked, ("headlocked"));
1006 				INP_INFO_WUNLOCK(&tcbinfo);
1007 				/*
1008 				 * this is a pure ack for outstanding data.
1009 				 */
1010 				++tcpstat.tcps_predack;
1011 				/*
1012 				 * "bad retransmit" recovery
1013 				 */
1014 				if (tp->t_rxtshift == 1 &&
1015 				    ticks < tp->t_badrxtwin) {
1016 					++tcpstat.tcps_sndrexmitbad;
1017 					tp->snd_cwnd = tp->snd_cwnd_prev;
1018 					tp->snd_ssthresh =
1019 					    tp->snd_ssthresh_prev;
1020 					tp->snd_recover = tp->snd_recover_prev;
1021 					if (tp->t_flags & TF_WASFRECOVERY)
1022 					    ENTER_FASTRECOVERY(tp);
1023 					tp->snd_nxt = tp->snd_max;
1024 					tp->t_badrxtwin = 0;
1025 				}
1026 
1027 				/*
1028 				 * Recalculate the transmit timer / rtt.
1029 				 *
1030 				 * Some boxes send broken timestamp replies
1031 				 * during the SYN+ACK phase, ignore
1032 				 * timestamps of 0 or we could calculate a
1033 				 * huge RTT and blow up the retransmit timer.
1034 				 */
1035 				if ((to.to_flags & TOF_TS) != 0 &&
1036 				    to.to_tsecr) {
1037 					tcp_xmit_timer(tp,
1038 					    ticks - to.to_tsecr + 1);
1039 				} else if (tp->t_rtttime &&
1040 					    SEQ_GT(th->th_ack, tp->t_rtseq)) {
1041 					tcp_xmit_timer(tp,
1042 							ticks - tp->t_rtttime);
1043 				}
1044 				tcp_xmit_bandwidth_limit(tp, th->th_ack);
1045 				acked = th->th_ack - tp->snd_una;
1046 				tcpstat.tcps_rcvackpack++;
1047 				tcpstat.tcps_rcvackbyte += acked;
1048 				sbdrop(&so->so_snd, acked);
1049 				if (SEQ_GT(tp->snd_una, tp->snd_recover) &&
1050 				    SEQ_LEQ(th->th_ack, tp->snd_recover))
1051 					tp->snd_recover = th->th_ack - 1;
1052 				tp->snd_una = th->th_ack;
1053 				/*
1054 				 * pull snd_wl2 up to prevent seq wrap relative
1055 				 * to th_ack.
1056 				 */
1057 				tp->snd_wl2 = th->th_ack;
1058 				tp->t_dupacks = 0;
1059 				m_freem(m);
1060 				ND6_HINT(tp); /* some progress has been done */
1061 
1062 				/*
1063 				 * If all outstanding data are acked, stop
1064 				 * retransmit timer, otherwise restart timer
1065 				 * using current (possibly backed-off) value.
1066 				 * If process is waiting for space,
1067 				 * wakeup/selwakeup/signal.  If data
1068 				 * are ready to send, let tcp_output
1069 				 * decide between more output or persist.
1070 
1071 #ifdef TCPDEBUG
1072 				if (so->so_options & SO_DEBUG)
1073 					tcp_trace(TA_INPUT, ostate, tp,
1074 					    (void *)tcp_saveipgen,
1075 					    &tcp_savetcp, 0);
1076 #endif
1077 				 */
1078 				if (tp->snd_una == tp->snd_max)
1079 					callout_stop(tp->tt_rexmt);
1080 				else if (!callout_active(tp->tt_persist))
1081 					callout_reset(tp->tt_rexmt,
1082 						      tp->t_rxtcur,
1083 						      tcp_timer_rexmt, tp);
1084 
1085 				sowwakeup(so);
1086 				if (so->so_snd.sb_cc)
1087 					(void) tcp_output(tp);
1088 				goto check_delack;
1089 			}
1090 		} else if (th->th_ack == tp->snd_una &&
1091 		    LIST_EMPTY(&tp->t_segq) &&
1092 		    tlen <= sbspace(&so->so_rcv)) {
1093 			KASSERT(headlocked, ("headlocked"));
1094 			INP_INFO_WUNLOCK(&tcbinfo);
1095 			/*
1096 			 * this is a pure, in-sequence data packet
1097 			 * with nothing on the reassembly queue and
1098 			 * we have enough buffer space to take it.
1099 			 */
1100 			++tcpstat.tcps_preddat;
1101 			tp->rcv_nxt += tlen;
1102 			/*
1103 			 * Pull snd_wl1 up to prevent seq wrap relative to
1104 			 * th_seq.
1105 			 */
1106 			tp->snd_wl1 = th->th_seq;
1107 			/*
1108 			 * Pull rcv_up up to prevent seq wrap relative to
1109 			 * rcv_nxt.
1110 			 */
1111 			tp->rcv_up = tp->rcv_nxt;
1112 			tcpstat.tcps_rcvpack++;
1113 			tcpstat.tcps_rcvbyte += tlen;
1114 			ND6_HINT(tp);	/* some progress has been done */
1115 			/*
1116 #ifdef TCPDEBUG
1117 			if (so->so_options & SO_DEBUG)
1118 				tcp_trace(TA_INPUT, ostate, tp,
1119 				    (void *)tcp_saveipgen, &tcp_savetcp, 0);
1120 #endif
1121 			 * Add data to socket buffer.
1122 			 */
1123 			if (so->so_state & SS_CANTRCVMORE) {
1124 				m_freem(m);
1125 			} else {
1126 				m_adj(m, drop_hdrlen);	/* delayed header drop */
1127 				sbappend(&so->so_rcv, m);
1128 			}
1129 			sorwakeup(so);
1130 			if (DELAY_ACK(tp)) {
1131 				tp->t_flags |= TF_DELACK;
1132 			} else {
1133 				tp->t_flags |= TF_ACKNOW;
1134 				tcp_output(tp);
1135 			}
1136 			goto check_delack;
1137 		}
1138 	}
1139 
1140 	/*
1141 	 * Calculate amount of space in receive window,
1142 	 * and then do TCP input processing.
1143 	 * Receive window is amount of space in rcv queue,
1144 	 * but not less than advertised window.
1145 	 */
1146 	{ int win;
1147 
1148 	win = sbspace(&so->so_rcv);
1149 	if (win < 0)
1150 		win = 0;
1151 	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1152 	}
1153 
1154 	switch (tp->t_state) {
1155 
1156 	/*
1157 	 * If the state is SYN_RECEIVED:
1158 	 *	if seg contains an ACK, but not for our SYN/ACK, send a RST.
1159 	 */
1160 	case TCPS_SYN_RECEIVED:
1161 		if ((thflags & TH_ACK) &&
1162 		    (SEQ_LEQ(th->th_ack, tp->snd_una) ||
1163 		     SEQ_GT(th->th_ack, tp->snd_max))) {
1164 				rstreason = BANDLIM_RST_OPENPORT;
1165 				goto dropwithreset;
1166 		}
1167 		break;
1168 
1169 	/*
1170 	 * If the state is SYN_SENT:
1171 	 *	if seg contains an ACK, but not for our SYN, drop the input.
1172 	 *	if seg contains a RST, then drop the connection.
1173 	 *	if seg does not contain SYN, then drop it.
1174 	 * Otherwise this is an acceptable SYN segment
1175 	 *	initialize tp->rcv_nxt and tp->irs
1176 	 *	if seg contains ack then advance tp->snd_una
1177 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1178 	 *	arrange for segment to be acked (eventually)
1179 	 *	continue processing rest of data/controls, beginning with URG
1180 	 */
1181 	case TCPS_SYN_SENT:
1182 		if ((taop = tcp_gettaocache(&inp->inp_inc)) == NULL) {
1183 			taop = &tao_noncached;
1184 			bzero(taop, sizeof(*taop));
1185 		}
1186 
1187 		if ((thflags & TH_ACK) &&
1188 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
1189 		     SEQ_GT(th->th_ack, tp->snd_max))) {
1190 			/*
1191 			 * If we have a cached CCsent for the remote host,
1192 			 * hence we haven't just crashed and restarted,
1193 			 * do not send a RST.  This may be a retransmission
1194 			 * from the other side after our earlier ACK was lost.
1195 			 * Our new SYN, when it arrives, will serve as the
1196 			 * needed ACK.
1197 			 */
1198 			if (taop->tao_ccsent != 0)
1199 				goto drop;
1200 			else {
1201 				rstreason = BANDLIM_UNLIMITED;
1202 				goto dropwithreset;
1203 			}
1204 		}
1205 		if (thflags & TH_RST) {
1206 			if (thflags & TH_ACK)
1207 				tp = tcp_drop(tp, ECONNREFUSED);
1208 			goto drop;
1209 		}
1210 		if ((thflags & TH_SYN) == 0)
1211 			goto drop;
1212 		tp->snd_wnd = th->th_win;	/* initial send window */
1213 		tp->cc_recv = to.to_cc;		/* foreign CC */
1214 
1215 		tp->irs = th->th_seq;
1216 		tcp_rcvseqinit(tp);
1217 		if (thflags & TH_ACK) {
1218 			/*
1219 			 * Our SYN was acked.  If segment contains CC.ECHO
1220 			 * option, check it to make sure this segment really
1221 			 * matches our SYN.  If not, just drop it as old
1222 			 * duplicate, but send an RST if we're still playing
1223 			 * by the old rules.  If no CC.ECHO option, make sure
1224 			 * we don't get fooled into using T/TCP.
1225 			 */
1226 			if (to.to_flags & TOF_CCECHO) {
1227 				if (tp->cc_send != to.to_ccecho) {
1228 					if (taop->tao_ccsent != 0)
1229 						goto drop;
1230 					else {
1231 						rstreason = BANDLIM_UNLIMITED;
1232 						goto dropwithreset;
1233 					}
1234 				}
1235 			} else
1236 				tp->t_flags &= ~TF_RCVD_CC;
1237 			tcpstat.tcps_connects++;
1238 			soisconnected(so);
1239 #ifdef MAC
1240 			mac_set_socket_peer_from_mbuf(m, so);
1241 #endif
1242 			/* Do window scaling on this connection? */
1243 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1244 				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1245 				tp->snd_scale = tp->requested_s_scale;
1246 				tp->rcv_scale = tp->request_r_scale;
1247 			}
1248 			/* Segment is acceptable, update cache if undefined. */
1249 			if (taop->tao_ccsent == 0)
1250 				taop->tao_ccsent = to.to_ccecho;
1251 
1252 			tp->rcv_adv += tp->rcv_wnd;
1253 			tp->snd_una++;		/* SYN is acked */
1254 			/*
1255 			 * If there's data, delay ACK; if there's also a FIN
1256 			 * ACKNOW will be turned on later.
1257 			 */
1258 			if (DELAY_ACK(tp) && tlen != 0)
1259                                 callout_reset(tp->tt_delack, tcp_delacktime,
1260                                     tcp_timer_delack, tp);
1261 			else
1262 				tp->t_flags |= TF_ACKNOW;
1263 			/*
1264 			 * Received <SYN,ACK> in SYN_SENT[*] state.
1265 			 * Transitions:
1266 			 *	SYN_SENT  --> ESTABLISHED
1267 			 *	SYN_SENT* --> FIN_WAIT_1
1268 			 */
1269 			tp->t_starttime = ticks;
1270 			if (tp->t_flags & TF_NEEDFIN) {
1271 				tp->t_state = TCPS_FIN_WAIT_1;
1272 				tp->t_flags &= ~TF_NEEDFIN;
1273 				thflags &= ~TH_SYN;
1274 			} else {
1275 				tp->t_state = TCPS_ESTABLISHED;
1276 				callout_reset(tp->tt_keep, tcp_keepidle,
1277 					      tcp_timer_keep, tp);
1278 			}
1279 		} else {
1280 			/*
1281 		 	 * Received initial SYN in SYN-SENT[*] state =>
1282 		 	 * simultaneous open.  If segment contains CC option
1283 		 	 * and there is a cached CC, apply TAO test.
1284 		 	 * If it succeeds, connection is * half-synchronized.
1285 		 	 * Otherwise, do 3-way handshake:
1286 		 	 *        SYN-SENT -> SYN-RECEIVED
1287 		 	 *        SYN-SENT* -> SYN-RECEIVED*
1288 		 	 * If there was no CC option, clear cached CC value.
1289 		 	 */
1290 			tp->t_flags |= TF_ACKNOW;
1291 			callout_stop(tp->tt_rexmt);
1292 			if (to.to_flags & TOF_CC) {
1293 				if (taop->tao_cc != 0 &&
1294 				    CC_GT(to.to_cc, taop->tao_cc)) {
1295 					/*
1296 					 * update cache and make transition:
1297 					 *        SYN-SENT -> ESTABLISHED*
1298 					 *        SYN-SENT* -> FIN-WAIT-1*
1299 					 */
1300 					taop->tao_cc = to.to_cc;
1301 					tp->t_starttime = ticks;
1302 					if (tp->t_flags & TF_NEEDFIN) {
1303 						tp->t_state = TCPS_FIN_WAIT_1;
1304 						tp->t_flags &= ~TF_NEEDFIN;
1305 					} else {
1306 						tp->t_state = TCPS_ESTABLISHED;
1307 						callout_reset(tp->tt_keep,
1308 							      tcp_keepidle,
1309 							      tcp_timer_keep,
1310 							      tp);
1311 					}
1312 					tp->t_flags |= TF_NEEDSYN;
1313 				} else
1314 					tp->t_state = TCPS_SYN_RECEIVED;
1315 			} else {
1316 				/* CC.NEW or no option => invalidate cache */
1317 				taop->tao_cc = 0;
1318 				tp->t_state = TCPS_SYN_RECEIVED;
1319 			}
1320 		}
1321 
1322 trimthenstep6:
1323 		/*
1324 		 * Advance th->th_seq to correspond to first data byte.
1325 		 * If data, trim to stay within window,
1326 		 * dropping FIN if necessary.
1327 		 */
1328 		th->th_seq++;
1329 		if (tlen > tp->rcv_wnd) {
1330 			todrop = tlen - tp->rcv_wnd;
1331 			m_adj(m, -todrop);
1332 			tlen = tp->rcv_wnd;
1333 			thflags &= ~TH_FIN;
1334 			tcpstat.tcps_rcvpackafterwin++;
1335 			tcpstat.tcps_rcvbyteafterwin += todrop;
1336 		}
1337 		tp->snd_wl1 = th->th_seq - 1;
1338 		tp->rcv_up = th->th_seq;
1339 		/*
1340 		 * Client side of transaction: already sent SYN and data.
1341 		 * If the remote host used T/TCP to validate the SYN,
1342 		 * our data will be ACK'd; if so, enter normal data segment
1343 		 * processing in the middle of step 5, ack processing.
1344 		 * Otherwise, goto step 6.
1345 		 */
1346  		if (thflags & TH_ACK)
1347 			goto process_ACK;
1348 
1349 		goto step6;
1350 
1351 	/*
1352 	 * If the state is LAST_ACK or CLOSING or TIME_WAIT:
1353 	 *	if segment contains a SYN and CC [not CC.NEW] option:
1354 	 *              if state == TIME_WAIT and connection duration > MSL,
1355 	 *                  drop packet and send RST;
1356 	 *
1357 	 *		if SEG.CC > CCrecv then is new SYN, and can implicitly
1358 	 *		    ack the FIN (and data) in retransmission queue.
1359 	 *                  Complete close and delete TCPCB.  Then reprocess
1360 	 *                  segment, hoping to find new TCPCB in LISTEN state;
1361 	 *
1362 	 *		else must be old SYN; drop it.
1363 	 *      else do normal processing.
1364 	 */
1365 	case TCPS_LAST_ACK:
1366 	case TCPS_CLOSING:
1367 	case TCPS_TIME_WAIT:
1368 		KASSERT(tp->t_state != TCPS_TIME_WAIT, ("timewait"));
1369 		if ((thflags & TH_SYN) &&
1370 		    (to.to_flags & TOF_CC) && tp->cc_recv != 0) {
1371 			if (tp->t_state == TCPS_TIME_WAIT &&
1372 					(ticks - tp->t_starttime) > tcp_msl) {
1373 				rstreason = BANDLIM_UNLIMITED;
1374 				goto dropwithreset;
1375 			}
1376 			if (CC_GT(to.to_cc, tp->cc_recv)) {
1377 				tp = tcp_close(tp);
1378 				goto findpcb;
1379 			}
1380 			else
1381 				goto drop;
1382 		}
1383  		break;  /* continue normal processing */
1384 	}
1385 
1386 	/*
1387 	 * States other than LISTEN or SYN_SENT.
1388 	 * First check the RST flag and sequence number since reset segments
1389 	 * are exempt from the timestamp and connection count tests.  This
1390 	 * fixes a bug introduced by the Stevens, vol. 2, p. 960 bugfix
1391 	 * below which allowed reset segments in half the sequence space
1392 	 * to fall though and be processed (which gives forged reset
1393 	 * segments with a random sequence number a 50 percent chance of
1394 	 * killing a connection).
1395 	 * Then check timestamp, if present.
1396 	 * Then check the connection count, if present.
1397 	 * Then check that at least some bytes of segment are within
1398 	 * receive window.  If segment begins before rcv_nxt,
1399 	 * drop leading data (and SYN); if nothing left, just ack.
1400 	 *
1401 	 *
1402 	 * If the RST bit is set, check the sequence number to see
1403 	 * if this is a valid reset segment.
1404 	 * RFC 793 page 37:
1405 	 *   In all states except SYN-SENT, all reset (RST) segments
1406 	 *   are validated by checking their SEQ-fields.  A reset is
1407 	 *   valid if its sequence number is in the window.
1408 	 * Note: this does not take into account delayed ACKs, so
1409 	 *   we should test against last_ack_sent instead of rcv_nxt.
1410 	 *   The sequence number in the reset segment is normally an
1411 	 *   echo of our outgoing acknowlegement numbers, but some hosts
1412 	 *   send a reset with the sequence number at the rightmost edge
1413 	 *   of our receive window, and we have to handle this case.
1414 	 * If we have multiple segments in flight, the intial reset
1415 	 * segment sequence numbers will be to the left of last_ack_sent,
1416 	 * but they will eventually catch up.
1417 	 * In any case, it never made sense to trim reset segments to
1418 	 * fit the receive window since RFC 1122 says:
1419 	 *   4.2.2.12  RST Segment: RFC-793 Section 3.4
1420 	 *
1421 	 *    A TCP SHOULD allow a received RST segment to include data.
1422 	 *
1423 	 *    DISCUSSION
1424 	 *         It has been suggested that a RST segment could contain
1425 	 *         ASCII text that encoded and explained the cause of the
1426 	 *         RST.  No standard has yet been established for such
1427 	 *         data.
1428 	 *
1429 	 * If the reset segment passes the sequence number test examine
1430 	 * the state:
1431 	 *    SYN_RECEIVED STATE:
1432 	 *	If passive open, return to LISTEN state.
1433 	 *	If active open, inform user that connection was refused.
1434 	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT_2, CLOSE_WAIT STATES:
1435 	 *	Inform user that connection was reset, and close tcb.
1436 	 *    CLOSING, LAST_ACK STATES:
1437 	 *	Close the tcb.
1438 	 *    TIME_WAIT STATE:
1439 	 *	Drop the segment - see Stevens, vol. 2, p. 964 and
1440 	 *      RFC 1337.
1441 	 */
1442 	if (thflags & TH_RST) {
1443 		if (SEQ_GEQ(th->th_seq, tp->last_ack_sent) &&
1444 		    SEQ_LT(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) {
1445 			switch (tp->t_state) {
1446 
1447 			case TCPS_SYN_RECEIVED:
1448 				so->so_error = ECONNREFUSED;
1449 				goto close;
1450 
1451 			case TCPS_ESTABLISHED:
1452 			case TCPS_FIN_WAIT_1:
1453 			case TCPS_FIN_WAIT_2:
1454 			case TCPS_CLOSE_WAIT:
1455 				so->so_error = ECONNRESET;
1456 			close:
1457 				tp->t_state = TCPS_CLOSED;
1458 				tcpstat.tcps_drops++;
1459 				tp = tcp_close(tp);
1460 				break;
1461 
1462 			case TCPS_CLOSING:
1463 			case TCPS_LAST_ACK:
1464 				tp = tcp_close(tp);
1465 				break;
1466 
1467 			case TCPS_TIME_WAIT:
1468 				KASSERT(tp->t_state != TCPS_TIME_WAIT,
1469 				    ("timewait"));
1470 				break;
1471 			}
1472 		}
1473 		goto drop;
1474 	}
1475 
1476 	/*
1477 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
1478 	 * and it's less than ts_recent, drop it.
1479 	 */
1480 	if ((to.to_flags & TOF_TS) != 0 && tp->ts_recent &&
1481 	    TSTMP_LT(to.to_tsval, tp->ts_recent)) {
1482 
1483 		/* Check to see if ts_recent is over 24 days old.  */
1484 		if ((int)(ticks - tp->ts_recent_age) > TCP_PAWS_IDLE) {
1485 			/*
1486 			 * Invalidate ts_recent.  If this segment updates
1487 			 * ts_recent, the age will be reset later and ts_recent
1488 			 * will get a valid value.  If it does not, setting
1489 			 * ts_recent to zero will at least satisfy the
1490 			 * requirement that zero be placed in the timestamp
1491 			 * echo reply when ts_recent isn't valid.  The
1492 			 * age isn't reset until we get a valid ts_recent
1493 			 * because we don't want out-of-order segments to be
1494 			 * dropped when ts_recent is old.
1495 			 */
1496 			tp->ts_recent = 0;
1497 		} else {
1498 			tcpstat.tcps_rcvduppack++;
1499 			tcpstat.tcps_rcvdupbyte += tlen;
1500 			tcpstat.tcps_pawsdrop++;
1501 			if (tlen)
1502 				goto dropafterack;
1503 			goto drop;
1504 		}
1505 	}
1506 
1507 	/*
1508 	 * T/TCP mechanism
1509 	 *   If T/TCP was negotiated and the segment doesn't have CC,
1510 	 *   or if its CC is wrong then drop the segment.
1511 	 *   RST segments do not have to comply with this.
1512 	 */
1513 	if ((tp->t_flags & (TF_REQ_CC|TF_RCVD_CC)) == (TF_REQ_CC|TF_RCVD_CC) &&
1514 	    ((to.to_flags & TOF_CC) == 0 || tp->cc_recv != to.to_cc))
1515  		goto dropafterack;
1516 
1517 	/*
1518 	 * In the SYN-RECEIVED state, validate that the packet belongs to
1519 	 * this connection before trimming the data to fit the receive
1520 	 * window.  Check the sequence number versus IRS since we know
1521 	 * the sequence numbers haven't wrapped.  This is a partial fix
1522 	 * for the "LAND" DoS attack.
1523 	 */
1524 	if (tp->t_state == TCPS_SYN_RECEIVED && SEQ_LT(th->th_seq, tp->irs)) {
1525 		rstreason = BANDLIM_RST_OPENPORT;
1526 		goto dropwithreset;
1527 	}
1528 
1529 	todrop = tp->rcv_nxt - th->th_seq;
1530 	if (todrop > 0) {
1531 		if (thflags & TH_SYN) {
1532 			thflags &= ~TH_SYN;
1533 			th->th_seq++;
1534 			if (th->th_urp > 1)
1535 				th->th_urp--;
1536 			else
1537 				thflags &= ~TH_URG;
1538 			todrop--;
1539 		}
1540 		/*
1541 		 * Following if statement from Stevens, vol. 2, p. 960.
1542 		 */
1543 		if (todrop > tlen
1544 		    || (todrop == tlen && (thflags & TH_FIN) == 0)) {
1545 			/*
1546 			 * Any valid FIN must be to the left of the window.
1547 			 * At this point the FIN must be a duplicate or out
1548 			 * of sequence; drop it.
1549 			 */
1550 			thflags &= ~TH_FIN;
1551 
1552 			/*
1553 			 * Send an ACK to resynchronize and drop any data.
1554 			 * But keep on processing for RST or ACK.
1555 			 */
1556 			tp->t_flags |= TF_ACKNOW;
1557 			todrop = tlen;
1558 			tcpstat.tcps_rcvduppack++;
1559 			tcpstat.tcps_rcvdupbyte += todrop;
1560 		} else {
1561 			tcpstat.tcps_rcvpartduppack++;
1562 			tcpstat.tcps_rcvpartdupbyte += todrop;
1563 		}
1564 		drop_hdrlen += todrop;	/* drop from the top afterwards */
1565 		th->th_seq += todrop;
1566 		tlen -= todrop;
1567 		if (th->th_urp > todrop)
1568 			th->th_urp -= todrop;
1569 		else {
1570 			thflags &= ~TH_URG;
1571 			th->th_urp = 0;
1572 		}
1573 	}
1574 
1575 	/*
1576 	 * If new data are received on a connection after the
1577 	 * user processes are gone, then RST the other end.
1578 	 */
1579 	if ((so->so_state & SS_NOFDREF) &&
1580 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
1581 		tp = tcp_close(tp);
1582 		tcpstat.tcps_rcvafterclose++;
1583 		rstreason = BANDLIM_UNLIMITED;
1584 		goto dropwithreset;
1585 	}
1586 
1587 	/*
1588 	 * If segment ends after window, drop trailing data
1589 	 * (and PUSH and FIN); if nothing left, just ACK.
1590 	 */
1591 	todrop = (th->th_seq+tlen) - (tp->rcv_nxt+tp->rcv_wnd);
1592 	if (todrop > 0) {
1593 		tcpstat.tcps_rcvpackafterwin++;
1594 		if (todrop >= tlen) {
1595 			tcpstat.tcps_rcvbyteafterwin += tlen;
1596 			/*
1597 			 * If a new connection request is received
1598 			 * while in TIME_WAIT, drop the old connection
1599 			 * and start over if the sequence numbers
1600 			 * are above the previous ones.
1601 			 */
1602 			KASSERT(tp->t_state != TCPS_TIME_WAIT, ("timewait"));
1603 			if (thflags & TH_SYN &&
1604 			    tp->t_state == TCPS_TIME_WAIT &&
1605 			    SEQ_GT(th->th_seq, tp->rcv_nxt)) {
1606 				tp = tcp_close(tp);
1607 				goto findpcb;
1608 			}
1609 			/*
1610 			 * If window is closed can only take segments at
1611 			 * window edge, and have to drop data and PUSH from
1612 			 * incoming segments.  Continue processing, but
1613 			 * remember to ack.  Otherwise, drop segment
1614 			 * and ack.
1615 			 */
1616 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
1617 				tp->t_flags |= TF_ACKNOW;
1618 				tcpstat.tcps_rcvwinprobe++;
1619 			} else
1620 				goto dropafterack;
1621 		} else
1622 			tcpstat.tcps_rcvbyteafterwin += todrop;
1623 		m_adj(m, -todrop);
1624 		tlen -= todrop;
1625 		thflags &= ~(TH_PUSH|TH_FIN);
1626 	}
1627 
1628 	/*
1629 	 * If last ACK falls within this segment's sequence numbers,
1630 	 * record its timestamp.
1631 	 * NOTE that the test is modified according to the latest
1632 	 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
1633 	 */
1634 	if ((to.to_flags & TOF_TS) != 0 &&
1635 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1636 		tp->ts_recent_age = ticks;
1637 		tp->ts_recent = to.to_tsval;
1638 	}
1639 
1640 	/*
1641 	 * If a SYN is in the window, then this is an
1642 	 * error and we send an RST and drop the connection.
1643 	 */
1644 	if (thflags & TH_SYN) {
1645 		tp = tcp_drop(tp, ECONNRESET);
1646 		rstreason = BANDLIM_UNLIMITED;
1647 		goto dropwithreset;
1648 	}
1649 
1650 	/*
1651 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN
1652 	 * flag is on (half-synchronized state), then queue data for
1653 	 * later processing; else drop segment and return.
1654 	 */
1655 	if ((thflags & TH_ACK) == 0) {
1656 		if (tp->t_state == TCPS_SYN_RECEIVED ||
1657 		    (tp->t_flags & TF_NEEDSYN))
1658 			goto step6;
1659 		else
1660 			goto drop;
1661 	}
1662 
1663 	/*
1664 	 * Ack processing.
1665 	 */
1666 	switch (tp->t_state) {
1667 
1668 	/*
1669 	 * In SYN_RECEIVED state, the ack ACKs our SYN, so enter
1670 	 * ESTABLISHED state and continue processing.
1671 	 * The ACK was checked above.
1672 	 */
1673 	case TCPS_SYN_RECEIVED:
1674 
1675 		tcpstat.tcps_connects++;
1676 		soisconnected(so);
1677 		/* Do window scaling? */
1678 		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1679 			(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1680 			tp->snd_scale = tp->requested_s_scale;
1681 			tp->rcv_scale = tp->request_r_scale;
1682 		}
1683 		/*
1684 		 * Upon successful completion of 3-way handshake,
1685 		 * update cache.CC if it was undefined, pass any queued
1686 		 * data to the user, and advance state appropriately.
1687 		 */
1688 		if ((taop = tcp_gettaocache(&inp->inp_inc)) != NULL &&
1689 		    taop->tao_cc == 0)
1690 			taop->tao_cc = tp->cc_recv;
1691 
1692 		/*
1693 		 * Make transitions:
1694 		 *      SYN-RECEIVED  -> ESTABLISHED
1695 		 *      SYN-RECEIVED* -> FIN-WAIT-1
1696 		 */
1697 		tp->t_starttime = ticks;
1698 		if (tp->t_flags & TF_NEEDFIN) {
1699 			tp->t_state = TCPS_FIN_WAIT_1;
1700 			tp->t_flags &= ~TF_NEEDFIN;
1701 		} else {
1702 			tp->t_state = TCPS_ESTABLISHED;
1703 			callout_reset(tp->tt_keep, tcp_keepidle,
1704 				      tcp_timer_keep, tp);
1705 		}
1706 		/*
1707 		 * If segment contains data or ACK, will call tcp_reass()
1708 		 * later; if not, do so now to pass queued data to user.
1709 		 */
1710 		if (tlen == 0 && (thflags & TH_FIN) == 0)
1711 			(void) tcp_reass(tp, (struct tcphdr *)0, 0,
1712 			    (struct mbuf *)0);
1713 		tp->snd_wl1 = th->th_seq - 1;
1714 		/* FALLTHROUGH */
1715 
1716 	/*
1717 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
1718 	 * ACKs.  If the ack is in the range
1719 	 *	tp->snd_una < th->th_ack <= tp->snd_max
1720 	 * then advance tp->snd_una to th->th_ack and drop
1721 	 * data from the retransmission queue.  If this ACK reflects
1722 	 * more up to date window information we update our window information.
1723 	 */
1724 	case TCPS_ESTABLISHED:
1725 	case TCPS_FIN_WAIT_1:
1726 	case TCPS_FIN_WAIT_2:
1727 	case TCPS_CLOSE_WAIT:
1728 	case TCPS_CLOSING:
1729 	case TCPS_LAST_ACK:
1730 	case TCPS_TIME_WAIT:
1731 		KASSERT(tp->t_state != TCPS_TIME_WAIT, ("timewait"));
1732 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
1733 			if (tlen == 0 && tiwin == tp->snd_wnd) {
1734 				tcpstat.tcps_rcvdupack++;
1735 				/*
1736 				 * If we have outstanding data (other than
1737 				 * a window probe), this is a completely
1738 				 * duplicate ack (ie, window info didn't
1739 				 * change), the ack is the biggest we've
1740 				 * seen and we've seen exactly our rexmt
1741 				 * threshhold of them, assume a packet
1742 				 * has been dropped and retransmit it.
1743 				 * Kludge snd_nxt & the congestion
1744 				 * window so we send only this one
1745 				 * packet.
1746 				 *
1747 				 * We know we're losing at the current
1748 				 * window size so do congestion avoidance
1749 				 * (set ssthresh to half the current window
1750 				 * and pull our congestion window back to
1751 				 * the new ssthresh).
1752 				 *
1753 				 * Dup acks mean that packets have left the
1754 				 * network (they're now cached at the receiver)
1755 				 * so bump cwnd by the amount in the receiver
1756 				 * to keep a constant cwnd packets in the
1757 				 * network.
1758 				 */
1759 				if (!callout_active(tp->tt_rexmt) ||
1760 				    th->th_ack != tp->snd_una)
1761 					tp->t_dupacks = 0;
1762 				else if (++tp->t_dupacks > tcprexmtthresh ||
1763 					 (tcp_do_newreno &&
1764 					  IN_FASTRECOVERY(tp))) {
1765 					tp->snd_cwnd += tp->t_maxseg;
1766 					(void) tcp_output(tp);
1767 					goto drop;
1768 				} else if (tp->t_dupacks == tcprexmtthresh) {
1769 					tcp_seq onxt = tp->snd_nxt;
1770 					u_int win;
1771 					if (tcp_do_newreno &&
1772 					    SEQ_LEQ(th->th_ack,
1773 					            tp->snd_recover)) {
1774 						tp->t_dupacks = 0;
1775 						break;
1776 					}
1777 					win = min(tp->snd_wnd, tp->snd_cwnd) /
1778 					    2 / tp->t_maxseg;
1779 					if (win < 2)
1780 						win = 2;
1781 					tp->snd_ssthresh = win * tp->t_maxseg;
1782 					ENTER_FASTRECOVERY(tp);
1783 					tp->snd_recover = tp->snd_max;
1784 					callout_stop(tp->tt_rexmt);
1785 					tp->t_rtttime = 0;
1786 					tp->snd_nxt = th->th_ack;
1787 					tp->snd_cwnd = tp->t_maxseg;
1788 					(void) tcp_output(tp);
1789 					KASSERT(tp->snd_limited <= 2,
1790 					    ("tp->snd_limited too big"));
1791 					tp->snd_cwnd = tp->snd_ssthresh +
1792 					     tp->t_maxseg *
1793 					     (tp->t_dupacks - tp->snd_limited);
1794 					if (SEQ_GT(onxt, tp->snd_nxt))
1795 						tp->snd_nxt = onxt;
1796 					goto drop;
1797 				} else if (tcp_do_rfc3042) {
1798 					u_long oldcwnd = tp->snd_cwnd;
1799 					tcp_seq oldsndmax = tp->snd_max;
1800 					u_int sent;
1801 					KASSERT(tp->t_dupacks == 1 ||
1802 					    tp->t_dupacks == 2,
1803 					    ("dupacks not 1 or 2"));
1804 					if (tp->t_dupacks == 1) {
1805 						tp->snd_limited = 0;
1806 						tp->snd_cwnd += tp->t_maxseg;
1807 					} else {
1808 						tp->snd_cwnd +=
1809 						    tp->t_maxseg * 2;
1810 					}
1811 					(void) tcp_output(tp);
1812 					sent = tp->snd_max - oldsndmax;
1813 					if (sent > tp->t_maxseg) {
1814 						KASSERT(tp->snd_limited == 0 &&
1815 						    tp->t_dupacks == 2,
1816 						    ("sent too much"));
1817 						tp->snd_limited = 2;
1818 					} else if (sent > 0)
1819 						++tp->snd_limited;
1820 					tp->snd_cwnd = oldcwnd;
1821 					goto drop;
1822 				}
1823 			} else
1824 				tp->t_dupacks = 0;
1825 			break;
1826 		}
1827 
1828 		KASSERT(SEQ_GT(th->th_ack, tp->snd_una), ("th_ack <= snd_una"));
1829 
1830 		/*
1831 		 * If the congestion window was inflated to account
1832 		 * for the other side's cached packets, retract it.
1833 		 */
1834 		if (tcp_do_newreno) {
1835 			if (IN_FASTRECOVERY(tp)) {
1836 				if (SEQ_LT(th->th_ack, tp->snd_recover)) {
1837 					tcp_newreno_partial_ack(tp, th);
1838 				} else {
1839 					/*
1840 					 * Window inflation should have left us
1841 					 * with approximately snd_ssthresh
1842 					 * outstanding data.
1843 					 * But in case we would be inclined to
1844 					 * send a burst, better to do it via
1845 					 * the slow start mechanism.
1846 					 */
1847 					if (SEQ_GT(th->th_ack +
1848 							tp->snd_ssthresh,
1849 						   tp->snd_max))
1850 						tp->snd_cwnd = tp->snd_max -
1851 								th->th_ack +
1852 								tp->t_maxseg;
1853 					else
1854 						tp->snd_cwnd = tp->snd_ssthresh;
1855 				}
1856 			}
1857                 } else {
1858                         if (tp->t_dupacks >= tcprexmtthresh &&
1859                             tp->snd_cwnd > tp->snd_ssthresh)
1860 				tp->snd_cwnd = tp->snd_ssthresh;
1861                 }
1862 		tp->t_dupacks = 0;
1863 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
1864 			tcpstat.tcps_rcvacktoomuch++;
1865 			goto dropafterack;
1866 		}
1867 		/*
1868 		 * If we reach this point, ACK is not a duplicate,
1869 		 *     i.e., it ACKs something we sent.
1870 		 */
1871 		if (tp->t_flags & TF_NEEDSYN) {
1872 			/*
1873 			 * T/TCP: Connection was half-synchronized, and our
1874 			 * SYN has been ACK'd (so connection is now fully
1875 			 * synchronized).  Go to non-starred state,
1876 			 * increment snd_una for ACK of SYN, and check if
1877 			 * we can do window scaling.
1878 			 */
1879 			tp->t_flags &= ~TF_NEEDSYN;
1880 			tp->snd_una++;
1881 			/* Do window scaling? */
1882 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1883 				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1884 				tp->snd_scale = tp->requested_s_scale;
1885 				tp->rcv_scale = tp->request_r_scale;
1886 			}
1887 		}
1888 
1889 process_ACK:
1890 		acked = th->th_ack - tp->snd_una;
1891 		tcpstat.tcps_rcvackpack++;
1892 		tcpstat.tcps_rcvackbyte += acked;
1893 
1894 		/*
1895 		 * If we just performed our first retransmit, and the ACK
1896 		 * arrives within our recovery window, then it was a mistake
1897 		 * to do the retransmit in the first place.  Recover our
1898 		 * original cwnd and ssthresh, and proceed to transmit where
1899 		 * we left off.
1900 		 */
1901 		if (tp->t_rxtshift == 1 && ticks < tp->t_badrxtwin) {
1902 			++tcpstat.tcps_sndrexmitbad;
1903 			tp->snd_cwnd = tp->snd_cwnd_prev;
1904 			tp->snd_ssthresh = tp->snd_ssthresh_prev;
1905 			tp->snd_recover = tp->snd_recover_prev;
1906 			if (tp->t_flags & TF_WASFRECOVERY)
1907 				ENTER_FASTRECOVERY(tp);
1908 			tp->snd_nxt = tp->snd_max;
1909 			tp->t_badrxtwin = 0;	/* XXX probably not required */
1910 		}
1911 
1912 		/*
1913 		 * If we have a timestamp reply, update smoothed
1914 		 * round trip time.  If no timestamp is present but
1915 		 * transmit timer is running and timed sequence
1916 		 * number was acked, update smoothed round trip time.
1917 		 * Since we now have an rtt measurement, cancel the
1918 		 * timer backoff (cf., Phil Karn's retransmit alg.).
1919 		 * Recompute the initial retransmit timer.
1920 		 *
1921 		 * Some boxes send broken timestamp replies
1922 		 * during the SYN+ACK phase, ignore
1923 		 * timestamps of 0 or we could calculate a
1924 		 * huge RTT and blow up the retransmit timer.
1925 		 */
1926 		if ((to.to_flags & TOF_TS) != 0 &&
1927 		    to.to_tsecr) {
1928 			tcp_xmit_timer(tp, ticks - to.to_tsecr + 1);
1929 		} else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq)) {
1930 			tcp_xmit_timer(tp, ticks - tp->t_rtttime);
1931 		}
1932 		tcp_xmit_bandwidth_limit(tp, th->th_ack);
1933 
1934 		/*
1935 		 * If all outstanding data is acked, stop retransmit
1936 		 * timer and remember to restart (more output or persist).
1937 		 * If there is more data to be acked, restart retransmit
1938 		 * timer, using current (possibly backed-off) value.
1939 		 */
1940 		if (th->th_ack == tp->snd_max) {
1941 			callout_stop(tp->tt_rexmt);
1942 			needoutput = 1;
1943 		} else if (!callout_active(tp->tt_persist))
1944 			callout_reset(tp->tt_rexmt, tp->t_rxtcur,
1945 				      tcp_timer_rexmt, tp);
1946 
1947 		/*
1948 		 * If no data (only SYN) was ACK'd,
1949 		 *    skip rest of ACK processing.
1950 		 */
1951 		if (acked == 0)
1952 			goto step6;
1953 
1954 		/*
1955 		 * When new data is acked, open the congestion window.
1956 		 * If the window gives us less than ssthresh packets
1957 		 * in flight, open exponentially (maxseg per packet).
1958 		 * Otherwise open linearly: maxseg per window
1959 		 * (maxseg^2 / cwnd per packet).
1960 		 */
1961 		if (!tcp_do_newreno || !IN_FASTRECOVERY(tp)) {
1962 			register u_int cw = tp->snd_cwnd;
1963 			register u_int incr = tp->t_maxseg;
1964 			if (cw > tp->snd_ssthresh)
1965 				incr = incr * incr / cw;
1966 			tp->snd_cwnd = min(cw+incr, TCP_MAXWIN<<tp->snd_scale);
1967 		}
1968 		if (acked > so->so_snd.sb_cc) {
1969 			tp->snd_wnd -= so->so_snd.sb_cc;
1970 			sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
1971 			ourfinisacked = 1;
1972 		} else {
1973 			sbdrop(&so->so_snd, acked);
1974 			tp->snd_wnd -= acked;
1975 			ourfinisacked = 0;
1976 		}
1977 		sowwakeup(so);
1978 		/* detect una wraparound */
1979 		if (tcp_do_newreno && !IN_FASTRECOVERY(tp) &&
1980 		    SEQ_GT(tp->snd_una, tp->snd_recover) &&
1981 		    SEQ_LEQ(th->th_ack, tp->snd_recover))
1982 			tp->snd_recover = th->th_ack - 1;
1983 		if (tcp_do_newreno && IN_FASTRECOVERY(tp) &&
1984 		    SEQ_GEQ(th->th_ack, tp->snd_recover))
1985 			EXIT_FASTRECOVERY(tp);
1986 		tp->snd_una = th->th_ack;
1987 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1988 			tp->snd_nxt = tp->snd_una;
1989 
1990 		switch (tp->t_state) {
1991 
1992 		/*
1993 		 * In FIN_WAIT_1 STATE in addition to the processing
1994 		 * for the ESTABLISHED state if our FIN is now acknowledged
1995 		 * then enter FIN_WAIT_2.
1996 		 */
1997 		case TCPS_FIN_WAIT_1:
1998 			if (ourfinisacked) {
1999 				/*
2000 				 * If we can't receive any more
2001 				 * data, then closing user can proceed.
2002 				 * Starting the timer is contrary to the
2003 				 * specification, but if we don't get a FIN
2004 				 * we'll hang forever.
2005 				 */
2006 		/* XXXjl
2007 		 * we should release the tp also, and use a
2008 		 * compressed state.
2009 		 */
2010 				if (so->so_state & SS_CANTRCVMORE) {
2011 					soisdisconnected(so);
2012 					callout_reset(tp->tt_2msl, tcp_maxidle,
2013 						      tcp_timer_2msl, tp);
2014 				}
2015 				tp->t_state = TCPS_FIN_WAIT_2;
2016 			}
2017 			break;
2018 
2019 	 	/*
2020 		 * In CLOSING STATE in addition to the processing for
2021 		 * the ESTABLISHED state if the ACK acknowledges our FIN
2022 		 * then enter the TIME-WAIT state, otherwise ignore
2023 		 * the segment.
2024 		 */
2025 		case TCPS_CLOSING:
2026 			if (ourfinisacked) {
2027 				KASSERT(headlocked, ("headlocked"));
2028 				tcp_twstart(tp);
2029 				INP_INFO_WUNLOCK(&tcbinfo);
2030 				m_freem(m);
2031 				return;
2032 			}
2033 			break;
2034 
2035 		/*
2036 		 * In LAST_ACK, we may still be waiting for data to drain
2037 		 * and/or to be acked, as well as for the ack of our FIN.
2038 		 * If our FIN is now acknowledged, delete the TCB,
2039 		 * enter the closed state and return.
2040 		 */
2041 		case TCPS_LAST_ACK:
2042 			if (ourfinisacked) {
2043 				tp = tcp_close(tp);
2044 				goto drop;
2045 			}
2046 			break;
2047 
2048 		/*
2049 		 * In TIME_WAIT state the only thing that should arrive
2050 		 * is a retransmission of the remote FIN.  Acknowledge
2051 		 * it and restart the finack timer.
2052 		 */
2053 		case TCPS_TIME_WAIT:
2054 			KASSERT(tp->t_state != TCPS_TIME_WAIT, ("timewait"));
2055 			callout_reset(tp->tt_2msl, 2 * tcp_msl,
2056 				      tcp_timer_2msl, tp);
2057 			goto dropafterack;
2058 		}
2059 	}
2060 
2061 step6:
2062 	/*
2063 	 * Update window information.
2064 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2065 	 */
2066 	if ((thflags & TH_ACK) &&
2067 	    (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2068 	    (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
2069 	     (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
2070 		/* keep track of pure window updates */
2071 		if (tlen == 0 &&
2072 		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2073 			tcpstat.tcps_rcvwinupd++;
2074 		tp->snd_wnd = tiwin;
2075 		tp->snd_wl1 = th->th_seq;
2076 		tp->snd_wl2 = th->th_ack;
2077 		if (tp->snd_wnd > tp->max_sndwnd)
2078 			tp->max_sndwnd = tp->snd_wnd;
2079 		needoutput = 1;
2080 	}
2081 
2082 	/*
2083 	 * Process segments with URG.
2084 	 */
2085 	if ((thflags & TH_URG) && th->th_urp &&
2086 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2087 		/*
2088 		 * This is a kludge, but if we receive and accept
2089 		 * random urgent pointers, we'll crash in
2090 		 * soreceive.  It's hard to imagine someone
2091 		 * actually wanting to send this much urgent data.
2092 		 */
2093 		if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2094 			th->th_urp = 0;			/* XXX */
2095 			thflags &= ~TH_URG;		/* XXX */
2096 			goto dodata;			/* XXX */
2097 		}
2098 		/*
2099 		 * If this segment advances the known urgent pointer,
2100 		 * then mark the data stream.  This should not happen
2101 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2102 		 * a FIN has been received from the remote side.
2103 		 * In these states we ignore the URG.
2104 		 *
2105 		 * According to RFC961 (Assigned Protocols),
2106 		 * the urgent pointer points to the last octet
2107 		 * of urgent data.  We continue, however,
2108 		 * to consider it to indicate the first octet
2109 		 * of data past the urgent section as the original
2110 		 * spec states (in one of two places).
2111 		 */
2112 		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2113 			tp->rcv_up = th->th_seq + th->th_urp;
2114 			so->so_oobmark = so->so_rcv.sb_cc +
2115 			    (tp->rcv_up - tp->rcv_nxt) - 1;
2116 			if (so->so_oobmark == 0)
2117 				so->so_state |= SS_RCVATMARK;
2118 			sohasoutofband(so);
2119 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2120 		}
2121 		/*
2122 		 * Remove out of band data so doesn't get presented to user.
2123 		 * This can happen independent of advancing the URG pointer,
2124 		 * but if two URG's are pending at once, some out-of-band
2125 		 * data may creep in... ick.
2126 		 */
2127 		if (th->th_urp <= (u_long)tlen &&
2128 		    !(so->so_options & SO_OOBINLINE)) {
2129 			/* hdr drop is delayed */
2130 			tcp_pulloutofband(so, th, m, drop_hdrlen);
2131 		}
2132 	} else {
2133 		/*
2134 		 * If no out of band data is expected,
2135 		 * pull receive urgent pointer along
2136 		 * with the receive window.
2137 		 */
2138 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2139 			tp->rcv_up = tp->rcv_nxt;
2140 	}
2141 dodata:							/* XXX */
2142 	KASSERT(headlocked, ("headlocked"));
2143 	/*
2144 	 * Process the segment text, merging it into the TCP sequencing queue,
2145 	 * and arranging for acknowledgment of receipt if necessary.
2146 	 * This process logically involves adjusting tp->rcv_wnd as data
2147 	 * is presented to the user (this happens in tcp_usrreq.c,
2148 	 * case PRU_RCVD).  If a FIN has already been received on this
2149 	 * connection then we just ignore the text.
2150 	 */
2151 	if ((tlen || (thflags & TH_FIN)) &&
2152 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2153 		m_adj(m, drop_hdrlen);	/* delayed header drop */
2154 		/*
2155 		 * Insert segment which includes th into TCP reassembly queue
2156 		 * with control block tp.  Set thflags to whether reassembly now
2157 		 * includes a segment with FIN.  This handles the common case
2158 		 * inline (segment is the next to be received on an established
2159 		 * connection, and the queue is empty), avoiding linkage into
2160 		 * and removal from the queue and repetition of various
2161 		 * conversions.
2162 		 * Set DELACK for segments received in order, but ack
2163 		 * immediately when segments are out of order (so
2164 		 * fast retransmit can work).
2165 		 */
2166 		if (th->th_seq == tp->rcv_nxt &&
2167 		    LIST_EMPTY(&tp->t_segq) &&
2168 		    TCPS_HAVEESTABLISHED(tp->t_state)) {
2169 			if (DELAY_ACK(tp))
2170 				tp->t_flags |= TF_DELACK;
2171 			else
2172 				tp->t_flags |= TF_ACKNOW;
2173 			tp->rcv_nxt += tlen;
2174 			thflags = th->th_flags & TH_FIN;
2175 			tcpstat.tcps_rcvpack++;
2176 			tcpstat.tcps_rcvbyte += tlen;
2177 			ND6_HINT(tp);
2178 			if (so->so_state & SS_CANTRCVMORE)
2179 				m_freem(m);
2180 			else
2181 				sbappend(&so->so_rcv, m);
2182 			sorwakeup(so);
2183 		} else {
2184 			thflags = tcp_reass(tp, th, &tlen, m);
2185 			tp->t_flags |= TF_ACKNOW;
2186 		}
2187 
2188 		/*
2189 		 * Note the amount of data that peer has sent into
2190 		 * our window, in order to estimate the sender's
2191 		 * buffer size.
2192 		 */
2193 		len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2194 	} else {
2195 		m_freem(m);
2196 		thflags &= ~TH_FIN;
2197 	}
2198 
2199 	/*
2200 	 * If FIN is received ACK the FIN and let the user know
2201 	 * that the connection is closing.
2202 	 */
2203 	if (thflags & TH_FIN) {
2204 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2205 			socantrcvmore(so);
2206 			/*
2207 			 * If connection is half-synchronized
2208 			 * (ie NEEDSYN flag on) then delay ACK,
2209 			 * so it may be piggybacked when SYN is sent.
2210 			 * Otherwise, since we received a FIN then no
2211 			 * more input can be expected, send ACK now.
2212 			 */
2213 			if (tp->t_flags & TF_NEEDSYN)
2214 				tp->t_flags |= TF_DELACK;
2215 			else
2216 				tp->t_flags |= TF_ACKNOW;
2217 			tp->rcv_nxt++;
2218 		}
2219 		switch (tp->t_state) {
2220 
2221 	 	/*
2222 		 * In SYN_RECEIVED and ESTABLISHED STATES
2223 		 * enter the CLOSE_WAIT state.
2224 		 */
2225 		case TCPS_SYN_RECEIVED:
2226 			tp->t_starttime = ticks;
2227 			/*FALLTHROUGH*/
2228 		case TCPS_ESTABLISHED:
2229 			tp->t_state = TCPS_CLOSE_WAIT;
2230 			break;
2231 
2232 	 	/*
2233 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2234 		 * enter the CLOSING state.
2235 		 */
2236 		case TCPS_FIN_WAIT_1:
2237 			tp->t_state = TCPS_CLOSING;
2238 			break;
2239 
2240 	 	/*
2241 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2242 		 * starting the time-wait timer, turning off the other
2243 		 * standard timers.
2244 		 */
2245 		case TCPS_FIN_WAIT_2:
2246 			KASSERT(headlocked == 1, ("headlocked should be 1"));
2247 			tcp_twstart(tp);
2248 			INP_INFO_WUNLOCK(&tcbinfo);
2249 			return;
2250 
2251 		/*
2252 		 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2253 		 */
2254 		case TCPS_TIME_WAIT:
2255 			KASSERT(tp->t_state != TCPS_TIME_WAIT, ("timewait"));
2256 			callout_reset(tp->tt_2msl, 2 * tcp_msl,
2257 				      tcp_timer_2msl, tp);
2258 			break;
2259 		}
2260 	}
2261 	INP_INFO_WUNLOCK(&tcbinfo);
2262 #ifdef TCPDEBUG
2263 	if (so->so_options & SO_DEBUG)
2264 		tcp_trace(TA_INPUT, ostate, tp, (void *)tcp_saveipgen,
2265 			  &tcp_savetcp, 0);
2266 #endif
2267 
2268 	/*
2269 	 * Return any desired output.
2270 	 */
2271 	if (needoutput || (tp->t_flags & TF_ACKNOW))
2272 		(void) tcp_output(tp);
2273 
2274 check_delack:
2275 	if (tp->t_flags & TF_DELACK) {
2276 		tp->t_flags &= ~TF_DELACK;
2277 		callout_reset(tp->tt_delack, tcp_delacktime,
2278 		    tcp_timer_delack, tp);
2279 	}
2280 	INP_UNLOCK(inp);
2281 	return;
2282 
2283 dropafterack:
2284 	/*
2285 	 * Generate an ACK dropping incoming segment if it occupies
2286 	 * sequence space, where the ACK reflects our state.
2287 	 *
2288 	 * We can now skip the test for the RST flag since all
2289 	 * paths to this code happen after packets containing
2290 	 * RST have been dropped.
2291 	 *
2292 	 * In the SYN-RECEIVED state, don't send an ACK unless the
2293 	 * segment we received passes the SYN-RECEIVED ACK test.
2294 	 * If it fails send a RST.  This breaks the loop in the
2295 	 * "LAND" DoS attack, and also prevents an ACK storm
2296 	 * between two listening ports that have been sent forged
2297 	 * SYN segments, each with the source address of the other.
2298 	 */
2299 	if (tp->t_state == TCPS_SYN_RECEIVED && (thflags & TH_ACK) &&
2300 	    (SEQ_GT(tp->snd_una, th->th_ack) ||
2301 	     SEQ_GT(th->th_ack, tp->snd_max)) ) {
2302 		rstreason = BANDLIM_RST_OPENPORT;
2303 		goto dropwithreset;
2304 	}
2305 #ifdef TCPDEBUG
2306 	if (so->so_options & SO_DEBUG)
2307 		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
2308 			  &tcp_savetcp, 0);
2309 #endif
2310 	KASSERT(headlocked, ("headlocked should be 1"));
2311 	INP_INFO_WUNLOCK(&tcbinfo);
2312 	m_freem(m);
2313 	tp->t_flags |= TF_ACKNOW;
2314 	(void) tcp_output(tp);
2315 	INP_UNLOCK(inp);
2316 	return;
2317 
2318 dropwithreset:
2319 	/*
2320 	 * Generate a RST, dropping incoming segment.
2321 	 * Make ACK acceptable to originator of segment.
2322 	 * Don't bother to respond if destination was broadcast/multicast.
2323 	 */
2324 	if ((thflags & TH_RST) || m->m_flags & (M_BCAST|M_MCAST))
2325 		goto drop;
2326 	if (isipv6) {
2327 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
2328 		    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
2329 			goto drop;
2330 	} else {
2331 		if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
2332 		    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
2333 	    	    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
2334 	    	    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
2335 			goto drop;
2336 	}
2337 	/* IPv6 anycast check is done at tcp6_input() */
2338 
2339 	/*
2340 	 * Perform bandwidth limiting.
2341 	 */
2342 	if (badport_bandlim(rstreason) < 0)
2343 		goto drop;
2344 
2345 #ifdef TCPDEBUG
2346 	if (tp == 0 || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
2347 		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
2348 			  &tcp_savetcp, 0);
2349 #endif
2350 
2351 	if (tp)
2352 		INP_UNLOCK(inp);
2353 
2354 	if (thflags & TH_ACK)
2355 		/* mtod() below is safe as long as hdr dropping is delayed */
2356 		tcp_respond(tp, mtod(m, void *), th, m, (tcp_seq)0, th->th_ack,
2357 			    TH_RST);
2358 	else {
2359 		if (thflags & TH_SYN)
2360 			tlen++;
2361 		/* mtod() below is safe as long as hdr dropping is delayed */
2362 		tcp_respond(tp, mtod(m, void *), th, m, th->th_seq+tlen,
2363 			    (tcp_seq)0, TH_RST|TH_ACK);
2364 	}
2365 	if (headlocked)
2366 		INP_INFO_WUNLOCK(&tcbinfo);
2367 	return;
2368 
2369 drop:
2370 	/*
2371 	 * Drop space held by incoming segment and return.
2372 	 */
2373 #ifdef TCPDEBUG
2374 	if (tp == 0 || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
2375 		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
2376 			  &tcp_savetcp, 0);
2377 #endif
2378 	if (tp)
2379 		INP_UNLOCK(inp);
2380 	m_freem(m);
2381 	if (headlocked)
2382 		INP_INFO_WUNLOCK(&tcbinfo);
2383 	return;
2384 }
2385 
2386 /*
2387  * Parse TCP options and place in tcpopt.
2388  */
2389 static void
2390 tcp_dooptions(to, cp, cnt, is_syn)
2391 	struct tcpopt *to;
2392 	u_char *cp;
2393 	int cnt;
2394 	int is_syn;
2395 {
2396 	int opt, optlen;
2397 
2398 	to->to_flags = 0;
2399 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
2400 		opt = cp[0];
2401 		if (opt == TCPOPT_EOL)
2402 			break;
2403 		if (opt == TCPOPT_NOP)
2404 			optlen = 1;
2405 		else {
2406 			if (cnt < 2)
2407 				break;
2408 			optlen = cp[1];
2409 			if (optlen < 2 || optlen > cnt)
2410 				break;
2411 		}
2412 		switch (opt) {
2413 		case TCPOPT_MAXSEG:
2414 			if (optlen != TCPOLEN_MAXSEG)
2415 				continue;
2416 			if (!is_syn)
2417 				continue;
2418 			to->to_flags |= TOF_MSS;
2419 			bcopy((char *)cp + 2,
2420 			    (char *)&to->to_mss, sizeof(to->to_mss));
2421 			to->to_mss = ntohs(to->to_mss);
2422 			break;
2423 		case TCPOPT_WINDOW:
2424 			if (optlen != TCPOLEN_WINDOW)
2425 				continue;
2426 			if (! is_syn)
2427 				continue;
2428 			to->to_flags |= TOF_SCALE;
2429 			to->to_requested_s_scale = min(cp[2], TCP_MAX_WINSHIFT);
2430 			break;
2431 		case TCPOPT_TIMESTAMP:
2432 			if (optlen != TCPOLEN_TIMESTAMP)
2433 				continue;
2434 			to->to_flags |= TOF_TS;
2435 			bcopy((char *)cp + 2,
2436 			    (char *)&to->to_tsval, sizeof(to->to_tsval));
2437 			to->to_tsval = ntohl(to->to_tsval);
2438 			bcopy((char *)cp + 6,
2439 			    (char *)&to->to_tsecr, sizeof(to->to_tsecr));
2440 			to->to_tsecr = ntohl(to->to_tsecr);
2441 			break;
2442 		case TCPOPT_CC:
2443 			if (optlen != TCPOLEN_CC)
2444 				continue;
2445 			to->to_flags |= TOF_CC;
2446 			bcopy((char *)cp + 2,
2447 			    (char *)&to->to_cc, sizeof(to->to_cc));
2448 			to->to_cc = ntohl(to->to_cc);
2449 			break;
2450 		case TCPOPT_CCNEW:
2451 			if (optlen != TCPOLEN_CC)
2452 				continue;
2453 			if (!is_syn)
2454 				continue;
2455 			to->to_flags |= TOF_CCNEW;
2456 			bcopy((char *)cp + 2,
2457 			    (char *)&to->to_cc, sizeof(to->to_cc));
2458 			to->to_cc = ntohl(to->to_cc);
2459 			break;
2460 		case TCPOPT_CCECHO:
2461 			if (optlen != TCPOLEN_CC)
2462 				continue;
2463 			if (!is_syn)
2464 				continue;
2465 			to->to_flags |= TOF_CCECHO;
2466 			bcopy((char *)cp + 2,
2467 			    (char *)&to->to_ccecho, sizeof(to->to_ccecho));
2468 			to->to_ccecho = ntohl(to->to_ccecho);
2469 			break;
2470 		default:
2471 			continue;
2472 		}
2473 	}
2474 }
2475 
2476 /*
2477  * Pull out of band byte out of a segment so
2478  * it doesn't appear in the user's data queue.
2479  * It is still reflected in the segment length for
2480  * sequencing purposes.
2481  */
2482 static void
2483 tcp_pulloutofband(so, th, m, off)
2484 	struct socket *so;
2485 	struct tcphdr *th;
2486 	register struct mbuf *m;
2487 	int off;		/* delayed to be droped hdrlen */
2488 {
2489 	int cnt = off + th->th_urp - 1;
2490 
2491 	while (cnt >= 0) {
2492 		if (m->m_len > cnt) {
2493 			char *cp = mtod(m, caddr_t) + cnt;
2494 			struct tcpcb *tp = sototcpcb(so);
2495 
2496 			tp->t_iobc = *cp;
2497 			tp->t_oobflags |= TCPOOB_HAVEDATA;
2498 			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
2499 			m->m_len--;
2500 			if (m->m_flags & M_PKTHDR)
2501 				m->m_pkthdr.len--;
2502 			return;
2503 		}
2504 		cnt -= m->m_len;
2505 		m = m->m_next;
2506 		if (m == 0)
2507 			break;
2508 	}
2509 	panic("tcp_pulloutofband");
2510 }
2511 
2512 /*
2513  * Collect new round-trip time estimate
2514  * and update averages and current timeout.
2515  */
2516 static void
2517 tcp_xmit_timer(tp, rtt)
2518 	register struct tcpcb *tp;
2519 	int rtt;
2520 {
2521 	register int delta;
2522 
2523 	tcpstat.tcps_rttupdated++;
2524 	tp->t_rttupdated++;
2525 	if (tp->t_srtt != 0) {
2526 		/*
2527 		 * srtt is stored as fixed point with 5 bits after the
2528 		 * binary point (i.e., scaled by 8).  The following magic
2529 		 * is equivalent to the smoothing algorithm in rfc793 with
2530 		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
2531 		 * point).  Adjust rtt to origin 0.
2532 		 */
2533 		delta = ((rtt - 1) << TCP_DELTA_SHIFT)
2534 			- (tp->t_srtt >> (TCP_RTT_SHIFT - TCP_DELTA_SHIFT));
2535 
2536 		if ((tp->t_srtt += delta) <= 0)
2537 			tp->t_srtt = 1;
2538 
2539 		/*
2540 		 * We accumulate a smoothed rtt variance (actually, a
2541 		 * smoothed mean difference), then set the retransmit
2542 		 * timer to smoothed rtt + 4 times the smoothed variance.
2543 		 * rttvar is stored as fixed point with 4 bits after the
2544 		 * binary point (scaled by 16).  The following is
2545 		 * equivalent to rfc793 smoothing with an alpha of .75
2546 		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
2547 		 * rfc793's wired-in beta.
2548 		 */
2549 		if (delta < 0)
2550 			delta = -delta;
2551 		delta -= tp->t_rttvar >> (TCP_RTTVAR_SHIFT - TCP_DELTA_SHIFT);
2552 		if ((tp->t_rttvar += delta) <= 0)
2553 			tp->t_rttvar = 1;
2554 		if (tp->t_rttbest > tp->t_srtt + tp->t_rttvar)
2555 		    tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
2556 	} else {
2557 		/*
2558 		 * No rtt measurement yet - use the unsmoothed rtt.
2559 		 * Set the variance to half the rtt (so our first
2560 		 * retransmit happens at 3*rtt).
2561 		 */
2562 		tp->t_srtt = rtt << TCP_RTT_SHIFT;
2563 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1);
2564 		tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
2565 	}
2566 	tp->t_rtttime = 0;
2567 	tp->t_rxtshift = 0;
2568 
2569 	/*
2570 	 * the retransmit should happen at rtt + 4 * rttvar.
2571 	 * Because of the way we do the smoothing, srtt and rttvar
2572 	 * will each average +1/2 tick of bias.  When we compute
2573 	 * the retransmit timer, we want 1/2 tick of rounding and
2574 	 * 1 extra tick because of +-1/2 tick uncertainty in the
2575 	 * firing of the timer.  The bias will give us exactly the
2576 	 * 1.5 tick we need.  But, because the bias is
2577 	 * statistical, we have to test that we don't drop below
2578 	 * the minimum feasible timer (which is 2 ticks).
2579 	 */
2580 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
2581 		      max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
2582 
2583 	/*
2584 	 * We received an ack for a packet that wasn't retransmitted;
2585 	 * it is probably safe to discard any error indications we've
2586 	 * received recently.  This isn't quite right, but close enough
2587 	 * for now (a route might have failed after we sent a segment,
2588 	 * and the return path might not be symmetrical).
2589 	 */
2590 	tp->t_softerror = 0;
2591 }
2592 
2593 /*
2594  * Determine a reasonable value for maxseg size.
2595  * If the route is known, check route for mtu.
2596  * If none, use an mss that can be handled on the outgoing
2597  * interface without forcing IP to fragment; if bigger than
2598  * an mbuf cluster (MCLBYTES), round down to nearest multiple of MCLBYTES
2599  * to utilize large mbufs.  If no route is found, route has no mtu,
2600  * or the destination isn't local, use a default, hopefully conservative
2601  * size (usually 512 or the default IP max size, but no more than the mtu
2602  * of the interface), as we can't discover anything about intervening
2603  * gateways or networks.  We also initialize the congestion/slow start
2604  * window to be a single segment if the destination isn't local.
2605  * While looking at the routing entry, we also initialize other path-dependent
2606  * parameters from pre-set or cached values in the routing entry.
2607  *
2608  * Also take into account the space needed for options that we
2609  * send regularly.  Make maxseg shorter by that amount to assure
2610  * that we can send maxseg amount of data even when the options
2611  * are present.  Store the upper limit of the length of options plus
2612  * data in maxopd.
2613  *
2614  * NOTE that this routine is only called when we process an incoming
2615  * segment, for outgoing segments only tcp_mssopt is called.
2616  *
2617  * In case of T/TCP, we call this routine during implicit connection
2618  * setup as well (offer = -1), to initialize maxseg from the cached
2619  * MSS of our peer.
2620  */
2621 void
2622 tcp_mss(tp, offer)
2623 	struct tcpcb *tp;
2624 	int offer;
2625 {
2626 	register struct rtentry *rt;
2627 	struct ifnet *ifp;
2628 	register int rtt, mss;
2629 	u_long bufsize;
2630 	struct inpcb *inp = tp->t_inpcb;
2631 	struct socket *so;
2632 	struct rmxp_tao *taop;
2633 	int origoffer = offer;
2634 #ifdef INET6
2635 	int isipv6 = ((inp->inp_vflag & INP_IPV6) != 0) ? 1 : 0;
2636 	size_t min_protoh = isipv6 ?
2637 			    sizeof (struct ip6_hdr) + sizeof (struct tcphdr) :
2638 			    sizeof (struct tcpiphdr);
2639 #else
2640 	const int isipv6 = 0;
2641 	const size_t min_protoh = sizeof (struct tcpiphdr);
2642 #endif
2643 
2644 	if (isipv6)
2645 		rt = tcp_rtlookup6(&inp->inp_inc);
2646 	else
2647 		rt = tcp_rtlookup(&inp->inp_inc);
2648 	if (rt == NULL) {
2649 		tp->t_maxopd = tp->t_maxseg =
2650 				isipv6 ? tcp_v6mssdflt : tcp_mssdflt;
2651 		return;
2652 	}
2653 	ifp = rt->rt_ifp;
2654 	so = inp->inp_socket;
2655 
2656 	taop = rmx_taop(rt->rt_rmx);
2657 	/*
2658 	 * Offer == -1 means that we didn't receive SYN yet,
2659 	 * use cached value in that case;
2660 	 */
2661 	if (offer == -1)
2662 		offer = taop->tao_mssopt;
2663 	/*
2664 	 * Offer == 0 means that there was no MSS on the SYN segment,
2665 	 * in this case we use tcp_mssdflt.
2666 	 */
2667 	if (offer == 0)
2668 		offer = isipv6 ? tcp_v6mssdflt : tcp_mssdflt;
2669 	else
2670 		/*
2671 		 * Sanity check: make sure that maxopd will be large
2672 		 * enough to allow some data on segments even is the
2673 		 * all the option space is used (40bytes).  Otherwise
2674 		 * funny things may happen in tcp_output.
2675 		 */
2676 		offer = max(offer, 64);
2677 	taop->tao_mssopt = offer;
2678 
2679 	/*
2680 	 * While we're here, check if there's an initial rtt
2681 	 * or rttvar.  Convert from the route-table units
2682 	 * to scaled multiples of the slow timeout timer.
2683 	 */
2684 	if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
2685 		/*
2686 		 * XXX the lock bit for RTT indicates that the value
2687 		 * is also a minimum value; this is subject to time.
2688 		 */
2689 		if (rt->rt_rmx.rmx_locks & RTV_RTT)
2690 			tp->t_rttmin = rtt / (RTM_RTTUNIT / hz);
2691 		tp->t_srtt = rtt / (RTM_RTTUNIT / (hz * TCP_RTT_SCALE));
2692 		tp->t_rttbest = tp->t_srtt + TCP_RTT_SCALE;
2693 		tcpstat.tcps_usedrtt++;
2694 		if (rt->rt_rmx.rmx_rttvar) {
2695 			tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
2696 			    (RTM_RTTUNIT / (hz * TCP_RTTVAR_SCALE));
2697 			tcpstat.tcps_usedrttvar++;
2698 		} else {
2699 			/* default variation is +- 1 rtt */
2700 			tp->t_rttvar =
2701 			    tp->t_srtt * TCP_RTTVAR_SCALE / TCP_RTT_SCALE;
2702 		}
2703 		TCPT_RANGESET(tp->t_rxtcur,
2704 			      ((tp->t_srtt >> 2) + tp->t_rttvar) >> 1,
2705 			      tp->t_rttmin, TCPTV_REXMTMAX);
2706 	}
2707 	/*
2708 	 * if there's an mtu associated with the route, use it
2709 	 * else, use the link mtu.
2710 	 */
2711 	if (rt->rt_rmx.rmx_mtu)
2712 		mss = rt->rt_rmx.rmx_mtu - min_protoh;
2713 	else {
2714 		if (isipv6) {
2715 			mss = nd_ifinfo[rt->rt_ifp->if_index].linkmtu -
2716 				min_protoh;
2717 			if (!in6_localaddr(&inp->in6p_faddr))
2718 				mss = min(mss, tcp_v6mssdflt);
2719 		} else {
2720 			mss = ifp->if_mtu - min_protoh;
2721 			if (!in_localaddr(inp->inp_faddr))
2722 				mss = min(mss, tcp_mssdflt);
2723 		}
2724 	}
2725 	mss = min(mss, offer);
2726 	/*
2727 	 * maxopd stores the maximum length of data AND options
2728 	 * in a segment; maxseg is the amount of data in a normal
2729 	 * segment.  We need to store this value (maxopd) apart
2730 	 * from maxseg, because now every segment carries options
2731 	 * and thus we normally have somewhat less data in segments.
2732 	 */
2733 	tp->t_maxopd = mss;
2734 
2735 	/*
2736 	 * In case of T/TCP, origoffer==-1 indicates, that no segments
2737 	 * were received yet.  In this case we just guess, otherwise
2738 	 * we do the same as before T/TCP.
2739 	 */
2740  	if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
2741 	    (origoffer == -1 ||
2742 	     (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP))
2743 		mss -= TCPOLEN_TSTAMP_APPA;
2744  	if ((tp->t_flags & (TF_REQ_CC|TF_NOOPT)) == TF_REQ_CC &&
2745 	    (origoffer == -1 ||
2746 	     (tp->t_flags & TF_RCVD_CC) == TF_RCVD_CC))
2747 		mss -= TCPOLEN_CC_APPA;
2748 
2749 #if	(MCLBYTES & (MCLBYTES - 1)) == 0
2750 		if (mss > MCLBYTES)
2751 			mss &= ~(MCLBYTES-1);
2752 #else
2753 		if (mss > MCLBYTES)
2754 			mss = mss / MCLBYTES * MCLBYTES;
2755 #endif
2756 	/*
2757 	 * If there's a pipesize, change the socket buffer
2758 	 * to that size.  Make the socket buffers an integral
2759 	 * number of mss units; if the mss is larger than
2760 	 * the socket buffer, decrease the mss.
2761 	 */
2762 #ifdef RTV_SPIPE
2763 	if ((bufsize = rt->rt_rmx.rmx_sendpipe) == 0)
2764 #endif
2765 		bufsize = so->so_snd.sb_hiwat;
2766 	if (bufsize < mss)
2767 		mss = bufsize;
2768 	else {
2769 		bufsize = roundup(bufsize, mss);
2770 		if (bufsize > sb_max)
2771 			bufsize = sb_max;
2772 		if (bufsize > so->so_snd.sb_hiwat)
2773 			(void)sbreserve(&so->so_snd, bufsize, so, NULL);
2774 	}
2775 	tp->t_maxseg = mss;
2776 
2777 #ifdef RTV_RPIPE
2778 	if ((bufsize = rt->rt_rmx.rmx_recvpipe) == 0)
2779 #endif
2780 		bufsize = so->so_rcv.sb_hiwat;
2781 	if (bufsize > mss) {
2782 		bufsize = roundup(bufsize, mss);
2783 		if (bufsize > sb_max)
2784 			bufsize = sb_max;
2785 		if (bufsize > so->so_rcv.sb_hiwat)
2786 			(void)sbreserve(&so->so_rcv, bufsize, so, NULL);
2787 	}
2788 
2789 	/*
2790 	 * Set the slow-start flight size depending on whether this
2791 	 * is a local network or not.
2792 	 */
2793 	if (tcp_do_rfc3390)
2794 		tp->snd_cwnd = min(4 * mss, max(2 * mss, 4380));
2795 	else if ((isipv6 && in6_localaddr(&inp->in6p_faddr)) ||
2796 	    (!isipv6 && in_localaddr(inp->inp_faddr)))
2797 		tp->snd_cwnd = mss * ss_fltsz_local;
2798 	else
2799 		tp->snd_cwnd = mss * ss_fltsz;
2800 
2801 	if (rt->rt_rmx.rmx_ssthresh) {
2802 		/*
2803 		 * There's some sort of gateway or interface
2804 		 * buffer limit on the path.  Use this to set
2805 		 * the slow start threshhold, but set the
2806 		 * threshold to no less than 2*mss.
2807 		 */
2808 		tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
2809 		tcpstat.tcps_usedssthresh++;
2810 	}
2811 }
2812 
2813 /*
2814  * Determine the MSS option to send on an outgoing SYN.
2815  */
2816 int
2817 tcp_mssopt(tp)
2818 	struct tcpcb *tp;
2819 {
2820 	struct rtentry *rt;
2821 #ifdef INET6
2822 	int isipv6 = ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) ? 1 : 0;
2823 	size_t min_protoh = isipv6 ?
2824 			    sizeof (struct ip6_hdr) + sizeof (struct tcphdr) :
2825 			    sizeof (struct tcpiphdr);
2826 #else
2827 	const int isipv6 = 0;
2828 	const size_t min_protoh = sizeof (struct tcpiphdr);
2829 #endif
2830 
2831 	if (isipv6)
2832 		rt = tcp_rtlookup6(&tp->t_inpcb->inp_inc);
2833 	else
2834 		rt = tcp_rtlookup(&tp->t_inpcb->inp_inc);
2835 	if (rt == NULL)
2836 		return (isipv6 ? tcp_v6mssdflt : tcp_mssdflt);
2837 
2838 	return (rt->rt_ifp->if_mtu - min_protoh);
2839 }
2840 
2841 
2842 /*
2843  * On a partial ack arrives, force the retransmission of the
2844  * next unacknowledged segment.  Do not clear tp->t_dupacks.
2845  * By setting snd_nxt to ti_ack, this forces retransmission timer to
2846  * be started again.
2847  */
2848 static void
2849 tcp_newreno_partial_ack(tp, th)
2850 	struct tcpcb *tp;
2851 	struct tcphdr *th;
2852 {
2853 	tcp_seq onxt = tp->snd_nxt;
2854 	u_long  ocwnd = tp->snd_cwnd;
2855 
2856 	callout_stop(tp->tt_rexmt);
2857 	tp->t_rtttime = 0;
2858 	tp->snd_nxt = th->th_ack;
2859 	/*
2860 	 * Set snd_cwnd to one segment beyond acknowledged offset.
2861 	 * (tp->snd_una has not yet been updated when this function is called.)
2862 	 */
2863 	tp->snd_cwnd = tp->t_maxseg + (th->th_ack - tp->snd_una);
2864 	tp->t_flags |= TF_ACKNOW;
2865 	(void) tcp_output(tp);
2866 	tp->snd_cwnd = ocwnd;
2867 	if (SEQ_GT(onxt, tp->snd_nxt))
2868 		tp->snd_nxt = onxt;
2869 	/*
2870 	 * Partial window deflation.  Relies on fact that tp->snd_una
2871 	 * not updated yet.
2872 	 */
2873 	tp->snd_cwnd -= (th->th_ack - tp->snd_una - tp->t_maxseg);
2874 }
2875 
2876 /*
2877  * Returns 1 if the TIME_WAIT state was killed and we should start over,
2878  * looking for a pcb in the listen state.  Returns 0 otherwise.
2879  */
2880 static int
2881 tcp_timewait(tw, to, th, m, tlen)
2882 	struct tcptw *tw;
2883 	struct tcpopt *to;
2884 	struct tcphdr *th;
2885 	struct mbuf *m;
2886 	int tlen;
2887 {
2888 	int thflags;
2889 	tcp_seq seq;
2890 #ifdef INET6
2891 	int isipv6 = (mtod(m, struct ip *)->ip_v == 6) ? 1 : 0;
2892 #else
2893 	const int isipv6 = 0;
2894 #endif
2895 
2896 	thflags = th->th_flags;
2897 
2898 	/*
2899 	 * NOTE: for FIN_WAIT_2 (to be added later),
2900 	 * must validate sequence number before accepting RST
2901 	 */
2902 
2903 	/*
2904 	 * If the segment contains RST:
2905 	 *	Drop the segment - see Stevens, vol. 2, p. 964 and
2906 	 *      RFC 1337.
2907 	 */
2908 	if (thflags & TH_RST)
2909 		goto drop;
2910 
2911 	/*
2912 	 * If segment contains a SYN and CC [not CC.NEW] option:
2913 	 * 	if connection duration > MSL, drop packet and send RST;
2914 	 *
2915 	 *	if SEG.CC > CCrecv then is new SYN.
2916 	 *	    Complete close and delete TCPCB.  Then reprocess
2917 	 *	    segment, hoping to find new TCPCB in LISTEN state;
2918 	 *
2919 	 *	else must be old SYN; drop it.
2920 	 * else do normal processing.
2921 	 */
2922 	if ((thflags & TH_SYN) && (to->to_flags & TOF_CC) && tw->cc_recv != 0) {
2923 		if ((ticks - tw->t_starttime) > tcp_msl)
2924 			goto reset;
2925 		if (CC_GT(to->to_cc, tw->cc_recv)) {
2926 			(void) tcp_twclose(tw, 0);
2927 			return (1);
2928 		}
2929 		goto drop;
2930 	}
2931 
2932 #if 0
2933 /* PAWS not needed at the moment */
2934 	/*
2935 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
2936 	 * and it's less than ts_recent, drop it.
2937 	 */
2938 	if ((to.to_flags & TOF_TS) != 0 && tp->ts_recent &&
2939 	    TSTMP_LT(to.to_tsval, tp->ts_recent)) {
2940 		if ((thflags & TH_ACK) == 0)
2941 			goto drop;
2942 		goto ack;
2943 	}
2944 	/*
2945 	 * ts_recent is never updated because we never accept new segments.
2946 	 */
2947 #endif
2948 
2949 	/*
2950 	 * If a new connection request is received
2951 	 * while in TIME_WAIT, drop the old connection
2952 	 * and start over if the sequence numbers
2953 	 * are above the previous ones.
2954 	 */
2955 	if ((thflags & TH_SYN) && SEQ_GT(th->th_seq, tw->rcv_nxt)) {
2956 		(void) tcp_twclose(tw, 0);
2957 		return (1);
2958 	}
2959 
2960 	/*
2961 	 * Drop the the segment if it does not contain an ACK.
2962 	 */
2963 	if ((thflags & TH_ACK) == 0)
2964 		goto drop;
2965 
2966 	/*
2967 	 * Reset the 2MSL timer if this is a duplicate FIN.
2968 	 */
2969 	if (thflags & TH_FIN) {
2970 		seq = th->th_seq + tlen + (thflags & TH_SYN ? 1 : 0);
2971 		if (seq + 1 == tw->rcv_nxt)
2972 			tcp_timer_2msl_reset(tw, 2 * tcp_msl);
2973 	}
2974 
2975 	/*
2976 	 * Acknowledge the segment if it has data or is not a duplicate ACK.
2977 	 */
2978 	if (thflags != TH_ACK || tlen != 0 ||
2979 	    th->th_seq != tw->rcv_nxt || th->th_ack != tw->snd_nxt)
2980 		tcp_twrespond(tw, NULL, m, TH_ACK);
2981 	goto drop;
2982 
2983 reset:
2984 	/*
2985 	 * Generate a RST, dropping incoming segment.
2986 	 * Make ACK acceptable to originator of segment.
2987 	 * Don't bother to respond if destination was broadcast/multicast.
2988 	 */
2989 	if (m->m_flags & (M_BCAST|M_MCAST))
2990 		goto drop;
2991 	if (isipv6) {
2992 		struct ip6_hdr *ip6;
2993 
2994 		/* IPv6 anycast check is done at tcp6_input() */
2995 		ip6 = mtod(m, struct ip6_hdr *);
2996 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
2997 		    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
2998 			goto drop;
2999 	} else {
3000 		struct ip *ip;
3001 
3002 		ip = mtod(m, struct ip *);
3003 		if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
3004 		    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
3005 		    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
3006 		    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
3007 			goto drop;
3008 	}
3009 	if (thflags & TH_ACK) {
3010 		tcp_respond(NULL,
3011 		    mtod(m, void *), th, m, 0, th->th_ack, TH_RST);
3012 	} else {
3013 		seq = th->th_seq + (thflags & TH_SYN ? 1 : 0);
3014 		tcp_respond(NULL,
3015 		    mtod(m, void *), th, m, seq, 0, TH_RST|TH_ACK);
3016 	}
3017 	INP_UNLOCK(tw->tw_inpcb);
3018 	return (0);
3019 
3020 drop:
3021 	INP_UNLOCK(tw->tw_inpcb);
3022 	m_freem(m);
3023 	return (0);
3024 }
3025