xref: /freebsd/sys/netinet/tcp_input.c (revision 71e8eac4fd89dedbcb4130379add151d3ed942fa)
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
3  *	The Regents of the University of California.  All rights reserved.
4  * Copyright (c) 2007-2008,2010
5  *	Swinburne University of Technology, Melbourne, Australia.
6  * Copyright (c) 2009-2010 Lawrence Stewart <lstewart@freebsd.org>
7  * Copyright (c) 2010 The FreeBSD Foundation
8  * Copyright (c) 2010-2011 Juniper Networks, Inc.
9  * All rights reserved.
10  *
11  * Portions of this software were developed at the Centre for Advanced Internet
12  * Architectures, Swinburne University of Technology, by Lawrence Stewart,
13  * James Healy and David Hayes, made possible in part by a grant from the Cisco
14  * University Research Program Fund at Community Foundation Silicon Valley.
15  *
16  * Portions of this software were developed at the Centre for Advanced
17  * Internet Architectures, Swinburne University of Technology, Melbourne,
18  * Australia by David Hayes under sponsorship from the FreeBSD Foundation.
19  *
20  * Portions of this software were developed by Robert N. M. Watson under
21  * contract to Juniper Networks, Inc.
22  *
23  * Redistribution and use in source and binary forms, with or without
24  * modification, are permitted provided that the following conditions
25  * are met:
26  * 1. Redistributions of source code must retain the above copyright
27  *    notice, this list of conditions and the following disclaimer.
28  * 2. Redistributions in binary form must reproduce the above copyright
29  *    notice, this list of conditions and the following disclaimer in the
30  *    documentation and/or other materials provided with the distribution.
31  * 4. Neither the name of the University nor the names of its contributors
32  *    may be used to endorse or promote products derived from this software
33  *    without specific prior written permission.
34  *
35  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
36  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
37  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
38  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
39  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
40  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
41  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
42  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
43  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
44  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
45  * SUCH DAMAGE.
46  *
47  *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
48  */
49 
50 #include <sys/cdefs.h>
51 __FBSDID("$FreeBSD$");
52 
53 #include "opt_ipfw.h"		/* for ipfw_fwd	*/
54 #include "opt_inet.h"
55 #include "opt_inet6.h"
56 #include "opt_ipsec.h"
57 #include "opt_tcpdebug.h"
58 
59 #include <sys/param.h>
60 #include <sys/kernel.h>
61 #include <sys/hhook.h>
62 #include <sys/malloc.h>
63 #include <sys/mbuf.h>
64 #include <sys/proc.h>		/* for proc0 declaration */
65 #include <sys/protosw.h>
66 #include <sys/sdt.h>
67 #include <sys/signalvar.h>
68 #include <sys/socket.h>
69 #include <sys/socketvar.h>
70 #include <sys/sysctl.h>
71 #include <sys/syslog.h>
72 #include <sys/systm.h>
73 
74 #include <machine/cpu.h>	/* before tcp_seq.h, for tcp_random18() */
75 
76 #include <vm/uma.h>
77 
78 #include <net/if.h>
79 #include <net/if_var.h>
80 #include <net/route.h>
81 #include <net/vnet.h>
82 
83 #define TCPSTATES		/* for logging */
84 
85 #include <netinet/cc.h>
86 #include <netinet/in.h>
87 #include <netinet/in_kdtrace.h>
88 #include <netinet/in_pcb.h>
89 #include <netinet/in_systm.h>
90 #include <netinet/in_var.h>
91 #include <netinet/ip.h>
92 #include <netinet/ip_icmp.h>	/* required for icmp_var.h */
93 #include <netinet/icmp_var.h>	/* for ICMP_BANDLIM */
94 #include <netinet/ip_var.h>
95 #include <netinet/ip_options.h>
96 #include <netinet/ip6.h>
97 #include <netinet/icmp6.h>
98 #include <netinet6/in6_pcb.h>
99 #include <netinet6/ip6_var.h>
100 #include <netinet6/nd6.h>
101 #ifdef TCP_RFC7413
102 #include <netinet/tcp_fastopen.h>
103 #endif
104 #include <netinet/tcp_fsm.h>
105 #include <netinet/tcp_seq.h>
106 #include <netinet/tcp_timer.h>
107 #include <netinet/tcp_var.h>
108 #include <netinet6/tcp6_var.h>
109 #include <netinet/tcpip.h>
110 #ifdef TCPPCAP
111 #include <netinet/tcp_pcap.h>
112 #endif
113 #include <netinet/tcp_syncache.h>
114 #ifdef TCPDEBUG
115 #include <netinet/tcp_debug.h>
116 #endif /* TCPDEBUG */
117 #ifdef TCP_OFFLOAD
118 #include <netinet/tcp_offload.h>
119 #endif
120 
121 #ifdef IPSEC
122 #include <netipsec/ipsec.h>
123 #include <netipsec/ipsec6.h>
124 #endif /*IPSEC*/
125 
126 #include <machine/in_cksum.h>
127 
128 #include <security/mac/mac_framework.h>
129 
130 const int tcprexmtthresh = 3;
131 
132 int tcp_log_in_vain = 0;
133 SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_in_vain, CTLFLAG_RW,
134     &tcp_log_in_vain, 0,
135     "Log all incoming TCP segments to closed ports");
136 
137 VNET_DEFINE(int, blackhole) = 0;
138 #define	V_blackhole		VNET(blackhole)
139 SYSCTL_INT(_net_inet_tcp, OID_AUTO, blackhole, CTLFLAG_VNET | CTLFLAG_RW,
140     &VNET_NAME(blackhole), 0,
141     "Do not send RST on segments to closed ports");
142 
143 VNET_DEFINE(int, tcp_delack_enabled) = 1;
144 SYSCTL_INT(_net_inet_tcp, OID_AUTO, delayed_ack, CTLFLAG_VNET | CTLFLAG_RW,
145     &VNET_NAME(tcp_delack_enabled), 0,
146     "Delay ACK to try and piggyback it onto a data packet");
147 
148 VNET_DEFINE(int, drop_synfin) = 0;
149 #define	V_drop_synfin		VNET(drop_synfin)
150 SYSCTL_INT(_net_inet_tcp, OID_AUTO, drop_synfin, CTLFLAG_VNET | CTLFLAG_RW,
151     &VNET_NAME(drop_synfin), 0,
152     "Drop TCP packets with SYN+FIN set");
153 
154 VNET_DEFINE(int, tcp_do_rfc6675_pipe) = 0;
155 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc6675_pipe, CTLFLAG_VNET | CTLFLAG_RW,
156     &VNET_NAME(tcp_do_rfc6675_pipe), 0,
157     "Use calculated pipe/in-flight bytes per RFC 6675");
158 
159 VNET_DEFINE(int, tcp_do_rfc3042) = 1;
160 #define	V_tcp_do_rfc3042	VNET(tcp_do_rfc3042)
161 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3042, CTLFLAG_VNET | CTLFLAG_RW,
162     &VNET_NAME(tcp_do_rfc3042), 0,
163     "Enable RFC 3042 (Limited Transmit)");
164 
165 VNET_DEFINE(int, tcp_do_rfc3390) = 1;
166 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3390, CTLFLAG_VNET | CTLFLAG_RW,
167     &VNET_NAME(tcp_do_rfc3390), 0,
168     "Enable RFC 3390 (Increasing TCP's Initial Congestion Window)");
169 
170 VNET_DEFINE(int, tcp_initcwnd_segments) = 10;
171 SYSCTL_INT(_net_inet_tcp, OID_AUTO, initcwnd_segments,
172     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(tcp_initcwnd_segments), 0,
173     "Slow-start flight size (initial congestion window) in number of segments");
174 
175 VNET_DEFINE(int, tcp_do_rfc3465) = 1;
176 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3465, CTLFLAG_VNET | CTLFLAG_RW,
177     &VNET_NAME(tcp_do_rfc3465), 0,
178     "Enable RFC 3465 (Appropriate Byte Counting)");
179 
180 VNET_DEFINE(int, tcp_abc_l_var) = 2;
181 SYSCTL_INT(_net_inet_tcp, OID_AUTO, abc_l_var, CTLFLAG_VNET | CTLFLAG_RW,
182     &VNET_NAME(tcp_abc_l_var), 2,
183     "Cap the max cwnd increment during slow-start to this number of segments");
184 
185 static SYSCTL_NODE(_net_inet_tcp, OID_AUTO, ecn, CTLFLAG_RW, 0, "TCP ECN");
186 
187 VNET_DEFINE(int, tcp_do_ecn) = 0;
188 SYSCTL_INT(_net_inet_tcp_ecn, OID_AUTO, enable, CTLFLAG_VNET | CTLFLAG_RW,
189     &VNET_NAME(tcp_do_ecn), 0,
190     "TCP ECN support");
191 
192 VNET_DEFINE(int, tcp_ecn_maxretries) = 1;
193 SYSCTL_INT(_net_inet_tcp_ecn, OID_AUTO, maxretries, CTLFLAG_VNET | CTLFLAG_RW,
194     &VNET_NAME(tcp_ecn_maxretries), 0,
195     "Max retries before giving up on ECN");
196 
197 VNET_DEFINE(int, tcp_insecure_syn) = 0;
198 #define	V_tcp_insecure_syn	VNET(tcp_insecure_syn)
199 SYSCTL_INT(_net_inet_tcp, OID_AUTO, insecure_syn, CTLFLAG_VNET | CTLFLAG_RW,
200     &VNET_NAME(tcp_insecure_syn), 0,
201     "Follow RFC793 instead of RFC5961 criteria for accepting SYN packets");
202 
203 VNET_DEFINE(int, tcp_insecure_rst) = 0;
204 #define	V_tcp_insecure_rst	VNET(tcp_insecure_rst)
205 SYSCTL_INT(_net_inet_tcp, OID_AUTO, insecure_rst, CTLFLAG_VNET | CTLFLAG_RW,
206     &VNET_NAME(tcp_insecure_rst), 0,
207     "Follow RFC793 instead of RFC5961 criteria for accepting RST packets");
208 
209 VNET_DEFINE(int, tcp_recvspace) = 1024*64;
210 #define	V_tcp_recvspace	VNET(tcp_recvspace)
211 SYSCTL_INT(_net_inet_tcp, TCPCTL_RECVSPACE, recvspace, CTLFLAG_VNET | CTLFLAG_RW,
212     &VNET_NAME(tcp_recvspace), 0, "Initial receive socket buffer size");
213 
214 VNET_DEFINE(int, tcp_do_autorcvbuf) = 1;
215 #define	V_tcp_do_autorcvbuf	VNET(tcp_do_autorcvbuf)
216 SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbuf_auto, CTLFLAG_VNET | CTLFLAG_RW,
217     &VNET_NAME(tcp_do_autorcvbuf), 0,
218     "Enable automatic receive buffer sizing");
219 
220 VNET_DEFINE(int, tcp_autorcvbuf_inc) = 16*1024;
221 #define	V_tcp_autorcvbuf_inc	VNET(tcp_autorcvbuf_inc)
222 SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbuf_inc, CTLFLAG_VNET | CTLFLAG_RW,
223     &VNET_NAME(tcp_autorcvbuf_inc), 0,
224     "Incrementor step size of automatic receive buffer");
225 
226 VNET_DEFINE(int, tcp_autorcvbuf_max) = 2*1024*1024;
227 #define	V_tcp_autorcvbuf_max	VNET(tcp_autorcvbuf_max)
228 SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbuf_max, CTLFLAG_VNET | CTLFLAG_RW,
229     &VNET_NAME(tcp_autorcvbuf_max), 0,
230     "Max size of automatic receive buffer");
231 
232 VNET_DEFINE(struct inpcbhead, tcb);
233 #define	tcb6	tcb  /* for KAME src sync over BSD*'s */
234 VNET_DEFINE(struct inpcbinfo, tcbinfo);
235 
236 /*
237  * TCP statistics are stored in an "array" of counter(9)s.
238  */
239 VNET_PCPUSTAT_DEFINE(struct tcpstat, tcpstat);
240 VNET_PCPUSTAT_SYSINIT(tcpstat);
241 SYSCTL_VNET_PCPUSTAT(_net_inet_tcp, TCPCTL_STATS, stats, struct tcpstat,
242     tcpstat, "TCP statistics (struct tcpstat, netinet/tcp_var.h)");
243 
244 #ifdef VIMAGE
245 VNET_PCPUSTAT_SYSUNINIT(tcpstat);
246 #endif /* VIMAGE */
247 /*
248  * Kernel module interface for updating tcpstat.  The argument is an index
249  * into tcpstat treated as an array.
250  */
251 void
252 kmod_tcpstat_inc(int statnum)
253 {
254 
255 	counter_u64_add(VNET(tcpstat)[statnum], 1);
256 }
257 
258 /*
259  * Wrapper for the TCP established input helper hook.
260  */
261 void
262 hhook_run_tcp_est_in(struct tcpcb *tp, struct tcphdr *th, struct tcpopt *to)
263 {
264 	struct tcp_hhook_data hhook_data;
265 
266 	if (V_tcp_hhh[HHOOK_TCP_EST_IN]->hhh_nhooks > 0) {
267 		hhook_data.tp = tp;
268 		hhook_data.th = th;
269 		hhook_data.to = to;
270 
271 		hhook_run_hooks(V_tcp_hhh[HHOOK_TCP_EST_IN], &hhook_data,
272 		    tp->osd);
273 	}
274 }
275 
276 /*
277  * CC wrapper hook functions
278  */
279 void
280 cc_ack_received(struct tcpcb *tp, struct tcphdr *th, uint16_t type)
281 {
282 	INP_WLOCK_ASSERT(tp->t_inpcb);
283 
284 	tp->ccv->bytes_this_ack = BYTES_THIS_ACK(tp, th);
285 	if (tp->snd_cwnd <= tp->snd_wnd)
286 		tp->ccv->flags |= CCF_CWND_LIMITED;
287 	else
288 		tp->ccv->flags &= ~CCF_CWND_LIMITED;
289 
290 	if (type == CC_ACK) {
291 		if (tp->snd_cwnd > tp->snd_ssthresh) {
292 			tp->t_bytes_acked += min(tp->ccv->bytes_this_ack,
293 			     V_tcp_abc_l_var * tp->t_maxseg);
294 			if (tp->t_bytes_acked >= tp->snd_cwnd) {
295 				tp->t_bytes_acked -= tp->snd_cwnd;
296 				tp->ccv->flags |= CCF_ABC_SENTAWND;
297 			}
298 		} else {
299 				tp->ccv->flags &= ~CCF_ABC_SENTAWND;
300 				tp->t_bytes_acked = 0;
301 		}
302 	}
303 
304 	if (CC_ALGO(tp)->ack_received != NULL) {
305 		/* XXXLAS: Find a way to live without this */
306 		tp->ccv->curack = th->th_ack;
307 		CC_ALGO(tp)->ack_received(tp->ccv, type);
308 	}
309 }
310 
311 void
312 cc_conn_init(struct tcpcb *tp)
313 {
314 	struct hc_metrics_lite metrics;
315 	struct inpcb *inp = tp->t_inpcb;
316 	int rtt;
317 
318 	INP_WLOCK_ASSERT(tp->t_inpcb);
319 
320 	tcp_hc_get(&inp->inp_inc, &metrics);
321 
322 	if (tp->t_srtt == 0 && (rtt = metrics.rmx_rtt)) {
323 		tp->t_srtt = rtt;
324 		tp->t_rttbest = tp->t_srtt + TCP_RTT_SCALE;
325 		TCPSTAT_INC(tcps_usedrtt);
326 		if (metrics.rmx_rttvar) {
327 			tp->t_rttvar = metrics.rmx_rttvar;
328 			TCPSTAT_INC(tcps_usedrttvar);
329 		} else {
330 			/* default variation is +- 1 rtt */
331 			tp->t_rttvar =
332 			    tp->t_srtt * TCP_RTTVAR_SCALE / TCP_RTT_SCALE;
333 		}
334 		TCPT_RANGESET(tp->t_rxtcur,
335 		    ((tp->t_srtt >> 2) + tp->t_rttvar) >> 1,
336 		    tp->t_rttmin, TCPTV_REXMTMAX);
337 	}
338 	if (metrics.rmx_ssthresh) {
339 		/*
340 		 * There's some sort of gateway or interface
341 		 * buffer limit on the path.  Use this to set
342 		 * the slow start threshhold, but set the
343 		 * threshold to no less than 2*mss.
344 		 */
345 		tp->snd_ssthresh = max(2 * tp->t_maxseg, metrics.rmx_ssthresh);
346 		TCPSTAT_INC(tcps_usedssthresh);
347 	}
348 
349 	/*
350 	 * Set the initial slow-start flight size.
351 	 *
352 	 * RFC5681 Section 3.1 specifies the default conservative values.
353 	 * RFC3390 specifies slightly more aggressive values.
354 	 * RFC6928 increases it to ten segments.
355 	 * Support for user specified value for initial flight size.
356 	 *
357 	 * If a SYN or SYN/ACK was lost and retransmitted, we have to
358 	 * reduce the initial CWND to one segment as congestion is likely
359 	 * requiring us to be cautious.
360 	 */
361 	if (tp->snd_cwnd == 1)
362 		tp->snd_cwnd = tp->t_maxseg;		/* SYN(-ACK) lost */
363 	else if (V_tcp_initcwnd_segments)
364 		tp->snd_cwnd = min(V_tcp_initcwnd_segments * tp->t_maxseg,
365 		    max(2 * tp->t_maxseg, V_tcp_initcwnd_segments * 1460));
366 	else if (V_tcp_do_rfc3390)
367 		tp->snd_cwnd = min(4 * tp->t_maxseg,
368 		    max(2 * tp->t_maxseg, 4380));
369 	else {
370 		/* Per RFC5681 Section 3.1 */
371 		if (tp->t_maxseg > 2190)
372 			tp->snd_cwnd = 2 * tp->t_maxseg;
373 		else if (tp->t_maxseg > 1095)
374 			tp->snd_cwnd = 3 * tp->t_maxseg;
375 		else
376 			tp->snd_cwnd = 4 * tp->t_maxseg;
377 	}
378 
379 	if (CC_ALGO(tp)->conn_init != NULL)
380 		CC_ALGO(tp)->conn_init(tp->ccv);
381 }
382 
383 void inline
384 cc_cong_signal(struct tcpcb *tp, struct tcphdr *th, uint32_t type)
385 {
386 	INP_WLOCK_ASSERT(tp->t_inpcb);
387 
388 	switch(type) {
389 	case CC_NDUPACK:
390 		if (!IN_FASTRECOVERY(tp->t_flags)) {
391 			tp->snd_recover = tp->snd_max;
392 			if (tp->t_flags & TF_ECN_PERMIT)
393 				tp->t_flags |= TF_ECN_SND_CWR;
394 		}
395 		break;
396 	case CC_ECN:
397 		if (!IN_CONGRECOVERY(tp->t_flags)) {
398 			TCPSTAT_INC(tcps_ecn_rcwnd);
399 			tp->snd_recover = tp->snd_max;
400 			if (tp->t_flags & TF_ECN_PERMIT)
401 				tp->t_flags |= TF_ECN_SND_CWR;
402 		}
403 		break;
404 	case CC_RTO:
405 		tp->t_dupacks = 0;
406 		tp->t_bytes_acked = 0;
407 		EXIT_RECOVERY(tp->t_flags);
408 		tp->snd_ssthresh = max(2, min(tp->snd_wnd, tp->snd_cwnd) / 2 /
409 		    tp->t_maxseg) * tp->t_maxseg;
410 		tp->snd_cwnd = tp->t_maxseg;
411 		break;
412 	case CC_RTO_ERR:
413 		TCPSTAT_INC(tcps_sndrexmitbad);
414 		/* RTO was unnecessary, so reset everything. */
415 		tp->snd_cwnd = tp->snd_cwnd_prev;
416 		tp->snd_ssthresh = tp->snd_ssthresh_prev;
417 		tp->snd_recover = tp->snd_recover_prev;
418 		if (tp->t_flags & TF_WASFRECOVERY)
419 			ENTER_FASTRECOVERY(tp->t_flags);
420 		if (tp->t_flags & TF_WASCRECOVERY)
421 			ENTER_CONGRECOVERY(tp->t_flags);
422 		tp->snd_nxt = tp->snd_max;
423 		tp->t_flags &= ~TF_PREVVALID;
424 		tp->t_badrxtwin = 0;
425 		break;
426 	}
427 
428 	if (CC_ALGO(tp)->cong_signal != NULL) {
429 		if (th != NULL)
430 			tp->ccv->curack = th->th_ack;
431 		CC_ALGO(tp)->cong_signal(tp->ccv, type);
432 	}
433 }
434 
435 void inline
436 cc_post_recovery(struct tcpcb *tp, struct tcphdr *th)
437 {
438 	INP_WLOCK_ASSERT(tp->t_inpcb);
439 
440 	/* XXXLAS: KASSERT that we're in recovery? */
441 
442 	if (CC_ALGO(tp)->post_recovery != NULL) {
443 		tp->ccv->curack = th->th_ack;
444 		CC_ALGO(tp)->post_recovery(tp->ccv);
445 	}
446 	/* XXXLAS: EXIT_RECOVERY ? */
447 	tp->t_bytes_acked = 0;
448 }
449 
450 #ifdef TCP_SIGNATURE
451 static inline int
452 tcp_signature_verify_input(struct mbuf *m, int off0, int tlen, int optlen,
453     struct tcpopt *to, struct tcphdr *th, u_int tcpbflag)
454 {
455 	int ret;
456 
457 	tcp_fields_to_net(th);
458 	ret = tcp_signature_verify(m, off0, tlen, optlen, to, th, tcpbflag);
459 	tcp_fields_to_host(th);
460 	return (ret);
461 }
462 #endif
463 
464 /*
465  * Indicate whether this ack should be delayed.  We can delay the ack if
466  * following conditions are met:
467  *	- There is no delayed ack timer in progress.
468  *	- Our last ack wasn't a 0-sized window. We never want to delay
469  *	  the ack that opens up a 0-sized window.
470  *	- LRO wasn't used for this segment. We make sure by checking that the
471  *	  segment size is not larger than the MSS.
472  *	- Delayed acks are enabled or this is a half-synchronized T/TCP
473  *	  connection.
474  */
475 #define DELAY_ACK(tp, tlen)						\
476 	((!tcp_timer_active(tp, TT_DELACK) &&				\
477 	    (tp->t_flags & TF_RXWIN0SENT) == 0) &&			\
478 	    (tlen <= tp->t_maxopd) &&					\
479 	    (V_tcp_delack_enabled || (tp->t_flags & TF_NEEDSYN)))
480 
481 static void inline
482 cc_ecnpkt_handler(struct tcpcb *tp, struct tcphdr *th, uint8_t iptos)
483 {
484 	INP_WLOCK_ASSERT(tp->t_inpcb);
485 
486 	if (CC_ALGO(tp)->ecnpkt_handler != NULL) {
487 		switch (iptos & IPTOS_ECN_MASK) {
488 		case IPTOS_ECN_CE:
489 		    tp->ccv->flags |= CCF_IPHDR_CE;
490 		    break;
491 		case IPTOS_ECN_ECT0:
492 		    tp->ccv->flags &= ~CCF_IPHDR_CE;
493 		    break;
494 		case IPTOS_ECN_ECT1:
495 		    tp->ccv->flags &= ~CCF_IPHDR_CE;
496 		    break;
497 		}
498 
499 		if (th->th_flags & TH_CWR)
500 			tp->ccv->flags |= CCF_TCPHDR_CWR;
501 		else
502 			tp->ccv->flags &= ~CCF_TCPHDR_CWR;
503 
504 		if (tp->t_flags & TF_DELACK)
505 			tp->ccv->flags |= CCF_DELACK;
506 		else
507 			tp->ccv->flags &= ~CCF_DELACK;
508 
509 		CC_ALGO(tp)->ecnpkt_handler(tp->ccv);
510 
511 		if (tp->ccv->flags & CCF_ACKNOW)
512 			tcp_timer_activate(tp, TT_DELACK, tcp_delacktime);
513 	}
514 }
515 
516 /*
517  * TCP input handling is split into multiple parts:
518  *   tcp6_input is a thin wrapper around tcp_input for the extended
519  *	ip6_protox[] call format in ip6_input
520  *   tcp_input handles primary segment validation, inpcb lookup and
521  *	SYN processing on listen sockets
522  *   tcp_do_segment processes the ACK and text of the segment for
523  *	establishing, established and closing connections
524  */
525 #ifdef INET6
526 int
527 tcp6_input(struct mbuf **mp, int *offp, int proto)
528 {
529 	struct mbuf *m = *mp;
530 	struct in6_ifaddr *ia6;
531 	struct ip6_hdr *ip6;
532 
533 	IP6_EXTHDR_CHECK(m, *offp, sizeof(struct tcphdr), IPPROTO_DONE);
534 
535 	/*
536 	 * draft-itojun-ipv6-tcp-to-anycast
537 	 * better place to put this in?
538 	 */
539 	ip6 = mtod(m, struct ip6_hdr *);
540 	ia6 = in6ifa_ifwithaddr(&ip6->ip6_dst, 0 /* XXX */);
541 	if (ia6 && (ia6->ia6_flags & IN6_IFF_ANYCAST)) {
542 		struct ip6_hdr *ip6;
543 
544 		ifa_free(&ia6->ia_ifa);
545 		ip6 = mtod(m, struct ip6_hdr *);
546 		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
547 			    (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
548 		return (IPPROTO_DONE);
549 	}
550 	if (ia6)
551 		ifa_free(&ia6->ia_ifa);
552 
553 	return (tcp_input(mp, offp, proto));
554 }
555 #endif /* INET6 */
556 
557 int
558 tcp_input(struct mbuf **mp, int *offp, int proto)
559 {
560 	struct mbuf *m = *mp;
561 	struct tcphdr *th = NULL;
562 	struct ip *ip = NULL;
563 	struct inpcb *inp = NULL;
564 	struct tcpcb *tp = NULL;
565 	struct socket *so = NULL;
566 	u_char *optp = NULL;
567 	int off0;
568 	int optlen = 0;
569 #ifdef INET
570 	int len;
571 #endif
572 	int tlen = 0, off;
573 	int drop_hdrlen;
574 	int thflags;
575 	int rstreason = 0;	/* For badport_bandlim accounting purposes */
576 #ifdef TCP_SIGNATURE
577 	uint8_t sig_checked = 0;
578 #endif
579 	uint8_t iptos = 0;
580 	struct m_tag *fwd_tag = NULL;
581 #ifdef INET6
582 	struct ip6_hdr *ip6 = NULL;
583 	int isipv6;
584 #else
585 	const void *ip6 = NULL;
586 #endif /* INET6 */
587 	struct tcpopt to;		/* options in this segment */
588 	char *s = NULL;			/* address and port logging */
589 	int ti_locked;
590 #ifdef TCPDEBUG
591 	/*
592 	 * The size of tcp_saveipgen must be the size of the max ip header,
593 	 * now IPv6.
594 	 */
595 	u_char tcp_saveipgen[IP6_HDR_LEN];
596 	struct tcphdr tcp_savetcp;
597 	short ostate = 0;
598 #endif
599 
600 #ifdef INET6
601 	isipv6 = (mtod(m, struct ip *)->ip_v == 6) ? 1 : 0;
602 #endif
603 
604 	off0 = *offp;
605 	m = *mp;
606 	*mp = NULL;
607 	to.to_flags = 0;
608 	TCPSTAT_INC(tcps_rcvtotal);
609 
610 #ifdef INET6
611 	if (isipv6) {
612 		/* IP6_EXTHDR_CHECK() is already done at tcp6_input(). */
613 
614 		if (m->m_len < (sizeof(*ip6) + sizeof(*th))) {
615 			m = m_pullup(m, sizeof(*ip6) + sizeof(*th));
616 			if (m == NULL) {
617 				TCPSTAT_INC(tcps_rcvshort);
618 				return (IPPROTO_DONE);
619 			}
620 		}
621 
622 		ip6 = mtod(m, struct ip6_hdr *);
623 		th = (struct tcphdr *)((caddr_t)ip6 + off0);
624 		tlen = sizeof(*ip6) + ntohs(ip6->ip6_plen) - off0;
625 		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID_IPV6) {
626 			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
627 				th->th_sum = m->m_pkthdr.csum_data;
628 			else
629 				th->th_sum = in6_cksum_pseudo(ip6, tlen,
630 				    IPPROTO_TCP, m->m_pkthdr.csum_data);
631 			th->th_sum ^= 0xffff;
632 		} else
633 			th->th_sum = in6_cksum(m, IPPROTO_TCP, off0, tlen);
634 		if (th->th_sum) {
635 			TCPSTAT_INC(tcps_rcvbadsum);
636 			goto drop;
637 		}
638 
639 		/*
640 		 * Be proactive about unspecified IPv6 address in source.
641 		 * As we use all-zero to indicate unbounded/unconnected pcb,
642 		 * unspecified IPv6 address can be used to confuse us.
643 		 *
644 		 * Note that packets with unspecified IPv6 destination is
645 		 * already dropped in ip6_input.
646 		 */
647 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
648 			/* XXX stat */
649 			goto drop;
650 		}
651 	}
652 #endif
653 #if defined(INET) && defined(INET6)
654 	else
655 #endif
656 #ifdef INET
657 	{
658 		/*
659 		 * Get IP and TCP header together in first mbuf.
660 		 * Note: IP leaves IP header in first mbuf.
661 		 */
662 		if (off0 > sizeof (struct ip)) {
663 			ip_stripoptions(m);
664 			off0 = sizeof(struct ip);
665 		}
666 		if (m->m_len < sizeof (struct tcpiphdr)) {
667 			if ((m = m_pullup(m, sizeof (struct tcpiphdr)))
668 			    == NULL) {
669 				TCPSTAT_INC(tcps_rcvshort);
670 				return (IPPROTO_DONE);
671 			}
672 		}
673 		ip = mtod(m, struct ip *);
674 		th = (struct tcphdr *)((caddr_t)ip + off0);
675 		tlen = ntohs(ip->ip_len) - off0;
676 
677 		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
678 			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
679 				th->th_sum = m->m_pkthdr.csum_data;
680 			else
681 				th->th_sum = in_pseudo(ip->ip_src.s_addr,
682 				    ip->ip_dst.s_addr,
683 				    htonl(m->m_pkthdr.csum_data + tlen +
684 				    IPPROTO_TCP));
685 			th->th_sum ^= 0xffff;
686 		} else {
687 			struct ipovly *ipov = (struct ipovly *)ip;
688 
689 			/*
690 			 * Checksum extended TCP header and data.
691 			 */
692 			len = off0 + tlen;
693 			bzero(ipov->ih_x1, sizeof(ipov->ih_x1));
694 			ipov->ih_len = htons(tlen);
695 			th->th_sum = in_cksum(m, len);
696 			/* Reset length for SDT probes. */
697 			ip->ip_len = htons(tlen + off0);
698 		}
699 
700 		if (th->th_sum) {
701 			TCPSTAT_INC(tcps_rcvbadsum);
702 			goto drop;
703 		}
704 		/* Re-initialization for later version check */
705 		ip->ip_v = IPVERSION;
706 	}
707 #endif /* INET */
708 
709 #ifdef INET6
710 	if (isipv6)
711 		iptos = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
712 #endif
713 #if defined(INET) && defined(INET6)
714 	else
715 #endif
716 #ifdef INET
717 		iptos = ip->ip_tos;
718 #endif
719 
720 	/*
721 	 * Check that TCP offset makes sense,
722 	 * pull out TCP options and adjust length.		XXX
723 	 */
724 	off = th->th_off << 2;
725 	if (off < sizeof (struct tcphdr) || off > tlen) {
726 		TCPSTAT_INC(tcps_rcvbadoff);
727 		goto drop;
728 	}
729 	tlen -= off;	/* tlen is used instead of ti->ti_len */
730 	if (off > sizeof (struct tcphdr)) {
731 #ifdef INET6
732 		if (isipv6) {
733 			IP6_EXTHDR_CHECK(m, off0, off, IPPROTO_DONE);
734 			ip6 = mtod(m, struct ip6_hdr *);
735 			th = (struct tcphdr *)((caddr_t)ip6 + off0);
736 		}
737 #endif
738 #if defined(INET) && defined(INET6)
739 		else
740 #endif
741 #ifdef INET
742 		{
743 			if (m->m_len < sizeof(struct ip) + off) {
744 				if ((m = m_pullup(m, sizeof (struct ip) + off))
745 				    == NULL) {
746 					TCPSTAT_INC(tcps_rcvshort);
747 					return (IPPROTO_DONE);
748 				}
749 				ip = mtod(m, struct ip *);
750 				th = (struct tcphdr *)((caddr_t)ip + off0);
751 			}
752 		}
753 #endif
754 		optlen = off - sizeof (struct tcphdr);
755 		optp = (u_char *)(th + 1);
756 	}
757 	thflags = th->th_flags;
758 
759 	/*
760 	 * Convert TCP protocol specific fields to host format.
761 	 */
762 	tcp_fields_to_host(th);
763 
764 	/*
765 	 * Delay dropping TCP, IP headers, IPv6 ext headers, and TCP options.
766 	 */
767 	drop_hdrlen = off0 + off;
768 
769 	/*
770 	 * Locate pcb for segment; if we're likely to add or remove a
771 	 * connection then first acquire pcbinfo lock.  There are three cases
772 	 * where we might discover later we need a write lock despite the
773 	 * flags: ACKs moving a connection out of the syncache, ACKs for a
774 	 * connection in TIMEWAIT and SYNs not targeting a listening socket.
775 	 */
776 	if ((thflags & (TH_FIN | TH_RST)) != 0) {
777 		INP_INFO_RLOCK(&V_tcbinfo);
778 		ti_locked = TI_RLOCKED;
779 	} else
780 		ti_locked = TI_UNLOCKED;
781 
782 	/*
783 	 * Grab info from PACKET_TAG_IPFORWARD tag prepended to the chain.
784 	 */
785         if (
786 #ifdef INET6
787 	    (isipv6 && (m->m_flags & M_IP6_NEXTHOP))
788 #ifdef INET
789 	    || (!isipv6 && (m->m_flags & M_IP_NEXTHOP))
790 #endif
791 #endif
792 #if defined(INET) && !defined(INET6)
793 	    (m->m_flags & M_IP_NEXTHOP)
794 #endif
795 	    )
796 		fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
797 
798 findpcb:
799 #ifdef INVARIANTS
800 	if (ti_locked == TI_RLOCKED) {
801 		INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
802 	} else {
803 		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
804 	}
805 #endif
806 #ifdef INET6
807 	if (isipv6 && fwd_tag != NULL) {
808 		struct sockaddr_in6 *next_hop6;
809 
810 		next_hop6 = (struct sockaddr_in6 *)(fwd_tag + 1);
811 		/*
812 		 * Transparently forwarded. Pretend to be the destination.
813 		 * Already got one like this?
814 		 */
815 		inp = in6_pcblookup_mbuf(&V_tcbinfo,
816 		    &ip6->ip6_src, th->th_sport, &ip6->ip6_dst, th->th_dport,
817 		    INPLOOKUP_WLOCKPCB, m->m_pkthdr.rcvif, m);
818 		if (!inp) {
819 			/*
820 			 * It's new.  Try to find the ambushing socket.
821 			 * Because we've rewritten the destination address,
822 			 * any hardware-generated hash is ignored.
823 			 */
824 			inp = in6_pcblookup(&V_tcbinfo, &ip6->ip6_src,
825 			    th->th_sport, &next_hop6->sin6_addr,
826 			    next_hop6->sin6_port ? ntohs(next_hop6->sin6_port) :
827 			    th->th_dport, INPLOOKUP_WILDCARD |
828 			    INPLOOKUP_WLOCKPCB, m->m_pkthdr.rcvif);
829 		}
830 	} else if (isipv6) {
831 		inp = in6_pcblookup_mbuf(&V_tcbinfo, &ip6->ip6_src,
832 		    th->th_sport, &ip6->ip6_dst, th->th_dport,
833 		    INPLOOKUP_WILDCARD | INPLOOKUP_WLOCKPCB,
834 		    m->m_pkthdr.rcvif, m);
835 	}
836 #endif /* INET6 */
837 #if defined(INET6) && defined(INET)
838 	else
839 #endif
840 #ifdef INET
841 	if (fwd_tag != NULL) {
842 		struct sockaddr_in *next_hop;
843 
844 		next_hop = (struct sockaddr_in *)(fwd_tag+1);
845 		/*
846 		 * Transparently forwarded. Pretend to be the destination.
847 		 * already got one like this?
848 		 */
849 		inp = in_pcblookup_mbuf(&V_tcbinfo, ip->ip_src, th->th_sport,
850 		    ip->ip_dst, th->th_dport, INPLOOKUP_WLOCKPCB,
851 		    m->m_pkthdr.rcvif, m);
852 		if (!inp) {
853 			/*
854 			 * It's new.  Try to find the ambushing socket.
855 			 * Because we've rewritten the destination address,
856 			 * any hardware-generated hash is ignored.
857 			 */
858 			inp = in_pcblookup(&V_tcbinfo, ip->ip_src,
859 			    th->th_sport, next_hop->sin_addr,
860 			    next_hop->sin_port ? ntohs(next_hop->sin_port) :
861 			    th->th_dport, INPLOOKUP_WILDCARD |
862 			    INPLOOKUP_WLOCKPCB, m->m_pkthdr.rcvif);
863 		}
864 	} else
865 		inp = in_pcblookup_mbuf(&V_tcbinfo, ip->ip_src,
866 		    th->th_sport, ip->ip_dst, th->th_dport,
867 		    INPLOOKUP_WILDCARD | INPLOOKUP_WLOCKPCB,
868 		    m->m_pkthdr.rcvif, m);
869 #endif /* INET */
870 
871 	/*
872 	 * If the INPCB does not exist then all data in the incoming
873 	 * segment is discarded and an appropriate RST is sent back.
874 	 * XXX MRT Send RST using which routing table?
875 	 */
876 	if (inp == NULL) {
877 		/*
878 		 * Log communication attempts to ports that are not
879 		 * in use.
880 		 */
881 		if ((tcp_log_in_vain == 1 && (thflags & TH_SYN)) ||
882 		    tcp_log_in_vain == 2) {
883 			if ((s = tcp_log_vain(NULL, th, (void *)ip, ip6)))
884 				log(LOG_INFO, "%s; %s: Connection attempt "
885 				    "to closed port\n", s, __func__);
886 		}
887 		/*
888 		 * When blackholing do not respond with a RST but
889 		 * completely ignore the segment and drop it.
890 		 */
891 		if ((V_blackhole == 1 && (thflags & TH_SYN)) ||
892 		    V_blackhole == 2)
893 			goto dropunlock;
894 
895 		rstreason = BANDLIM_RST_CLOSEDPORT;
896 		goto dropwithreset;
897 	}
898 	INP_WLOCK_ASSERT(inp);
899 	if ((inp->inp_flowtype == M_HASHTYPE_NONE) &&
900 	    (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) &&
901 	    ((inp->inp_socket == NULL) ||
902 	    (inp->inp_socket->so_options & SO_ACCEPTCONN) == 0)) {
903 		inp->inp_flowid = m->m_pkthdr.flowid;
904 		inp->inp_flowtype = M_HASHTYPE_GET(m);
905 	}
906 #ifdef IPSEC
907 #ifdef INET6
908 	if (isipv6 && ipsec6_in_reject(m, inp)) {
909 		goto dropunlock;
910 	} else
911 #endif /* INET6 */
912 	if (ipsec4_in_reject(m, inp) != 0) {
913 		goto dropunlock;
914 	}
915 #endif /* IPSEC */
916 
917 	/*
918 	 * Check the minimum TTL for socket.
919 	 */
920 	if (inp->inp_ip_minttl != 0) {
921 #ifdef INET6
922 		if (isipv6 && inp->inp_ip_minttl > ip6->ip6_hlim)
923 			goto dropunlock;
924 		else
925 #endif
926 		if (inp->inp_ip_minttl > ip->ip_ttl)
927 			goto dropunlock;
928 	}
929 
930 	/*
931 	 * A previous connection in TIMEWAIT state is supposed to catch stray
932 	 * or duplicate segments arriving late.  If this segment was a
933 	 * legitimate new connection attempt, the old INPCB gets removed and
934 	 * we can try again to find a listening socket.
935 	 *
936 	 * At this point, due to earlier optimism, we may hold only an inpcb
937 	 * lock, and not the inpcbinfo write lock.  If so, we need to try to
938 	 * acquire it, or if that fails, acquire a reference on the inpcb,
939 	 * drop all locks, acquire a global write lock, and then re-acquire
940 	 * the inpcb lock.  We may at that point discover that another thread
941 	 * has tried to free the inpcb, in which case we need to loop back
942 	 * and try to find a new inpcb to deliver to.
943 	 *
944 	 * XXXRW: It may be time to rethink timewait locking.
945 	 */
946 relocked:
947 	if (inp->inp_flags & INP_TIMEWAIT) {
948 		if (ti_locked == TI_UNLOCKED) {
949 			if (INP_INFO_TRY_RLOCK(&V_tcbinfo) == 0) {
950 				in_pcbref(inp);
951 				INP_WUNLOCK(inp);
952 				INP_INFO_RLOCK(&V_tcbinfo);
953 				ti_locked = TI_RLOCKED;
954 				INP_WLOCK(inp);
955 				if (in_pcbrele_wlocked(inp)) {
956 					inp = NULL;
957 					goto findpcb;
958 				}
959 			} else
960 				ti_locked = TI_RLOCKED;
961 		}
962 		INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
963 
964 		if (thflags & TH_SYN)
965 			tcp_dooptions(&to, optp, optlen, TO_SYN);
966 		/*
967 		 * NB: tcp_twcheck unlocks the INP and frees the mbuf.
968 		 */
969 		if (tcp_twcheck(inp, &to, th, m, tlen))
970 			goto findpcb;
971 		INP_INFO_RUNLOCK(&V_tcbinfo);
972 		return (IPPROTO_DONE);
973 	}
974 	/*
975 	 * The TCPCB may no longer exist if the connection is winding
976 	 * down or it is in the CLOSED state.  Either way we drop the
977 	 * segment and send an appropriate response.
978 	 */
979 	tp = intotcpcb(inp);
980 	if (tp == NULL || tp->t_state == TCPS_CLOSED) {
981 		rstreason = BANDLIM_RST_CLOSEDPORT;
982 		goto dropwithreset;
983 	}
984 
985 #ifdef TCP_OFFLOAD
986 	if (tp->t_flags & TF_TOE) {
987 		tcp_offload_input(tp, m);
988 		m = NULL;	/* consumed by the TOE driver */
989 		goto dropunlock;
990 	}
991 #endif
992 
993 	/*
994 	 * We've identified a valid inpcb, but it could be that we need an
995 	 * inpcbinfo write lock but don't hold it.  In this case, attempt to
996 	 * acquire using the same strategy as the TIMEWAIT case above.  If we
997 	 * relock, we have to jump back to 'relocked' as the connection might
998 	 * now be in TIMEWAIT.
999 	 */
1000 #ifdef INVARIANTS
1001 	if ((thflags & (TH_FIN | TH_RST)) != 0)
1002 		INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
1003 #endif
1004 	if (!((tp->t_state == TCPS_ESTABLISHED && (thflags & TH_SYN) == 0) ||
1005 	      (tp->t_state == TCPS_LISTEN && (thflags & TH_SYN) &&
1006 	       !(tp->t_flags & TF_FASTOPEN)))) {
1007 		if (ti_locked == TI_UNLOCKED) {
1008 			if (INP_INFO_TRY_RLOCK(&V_tcbinfo) == 0) {
1009 				in_pcbref(inp);
1010 				INP_WUNLOCK(inp);
1011 				INP_INFO_RLOCK(&V_tcbinfo);
1012 				ti_locked = TI_RLOCKED;
1013 				INP_WLOCK(inp);
1014 				if (in_pcbrele_wlocked(inp)) {
1015 					inp = NULL;
1016 					goto findpcb;
1017 				}
1018 				goto relocked;
1019 			} else
1020 				ti_locked = TI_RLOCKED;
1021 		}
1022 		INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
1023 	}
1024 
1025 #ifdef MAC
1026 	INP_WLOCK_ASSERT(inp);
1027 	if (mac_inpcb_check_deliver(inp, m))
1028 		goto dropunlock;
1029 #endif
1030 	so = inp->inp_socket;
1031 	KASSERT(so != NULL, ("%s: so == NULL", __func__));
1032 #ifdef TCPDEBUG
1033 	if (so->so_options & SO_DEBUG) {
1034 		ostate = tp->t_state;
1035 #ifdef INET6
1036 		if (isipv6) {
1037 			bcopy((char *)ip6, (char *)tcp_saveipgen, sizeof(*ip6));
1038 		} else
1039 #endif
1040 			bcopy((char *)ip, (char *)tcp_saveipgen, sizeof(*ip));
1041 		tcp_savetcp = *th;
1042 	}
1043 #endif /* TCPDEBUG */
1044 	/*
1045 	 * When the socket is accepting connections (the INPCB is in LISTEN
1046 	 * state) we look into the SYN cache if this is a new connection
1047 	 * attempt or the completion of a previous one.
1048 	 */
1049 	if (so->so_options & SO_ACCEPTCONN) {
1050 		struct in_conninfo inc;
1051 
1052 		KASSERT(tp->t_state == TCPS_LISTEN, ("%s: so accepting but "
1053 		    "tp not listening", __func__));
1054 		bzero(&inc, sizeof(inc));
1055 #ifdef INET6
1056 		if (isipv6) {
1057 			inc.inc_flags |= INC_ISIPV6;
1058 			inc.inc6_faddr = ip6->ip6_src;
1059 			inc.inc6_laddr = ip6->ip6_dst;
1060 		} else
1061 #endif
1062 		{
1063 			inc.inc_faddr = ip->ip_src;
1064 			inc.inc_laddr = ip->ip_dst;
1065 		}
1066 		inc.inc_fport = th->th_sport;
1067 		inc.inc_lport = th->th_dport;
1068 		inc.inc_fibnum = so->so_fibnum;
1069 
1070 		/*
1071 		 * Check for an existing connection attempt in syncache if
1072 		 * the flag is only ACK.  A successful lookup creates a new
1073 		 * socket appended to the listen queue in SYN_RECEIVED state.
1074 		 */
1075 		if ((thflags & (TH_RST|TH_ACK|TH_SYN)) == TH_ACK) {
1076 
1077 			INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
1078 			/*
1079 			 * Parse the TCP options here because
1080 			 * syncookies need access to the reflected
1081 			 * timestamp.
1082 			 */
1083 			tcp_dooptions(&to, optp, optlen, 0);
1084 			/*
1085 			 * NB: syncache_expand() doesn't unlock
1086 			 * inp and tcpinfo locks.
1087 			 */
1088 			if (!syncache_expand(&inc, &to, th, &so, m)) {
1089 				/*
1090 				 * No syncache entry or ACK was not
1091 				 * for our SYN/ACK.  Send a RST.
1092 				 * NB: syncache did its own logging
1093 				 * of the failure cause.
1094 				 */
1095 				rstreason = BANDLIM_RST_OPENPORT;
1096 				goto dropwithreset;
1097 			}
1098 #ifdef TCP_RFC7413
1099 new_tfo_socket:
1100 #endif
1101 			if (so == NULL) {
1102 				/*
1103 				 * We completed the 3-way handshake
1104 				 * but could not allocate a socket
1105 				 * either due to memory shortage,
1106 				 * listen queue length limits or
1107 				 * global socket limits.  Send RST
1108 				 * or wait and have the remote end
1109 				 * retransmit the ACK for another
1110 				 * try.
1111 				 */
1112 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1113 					log(LOG_DEBUG, "%s; %s: Listen socket: "
1114 					    "Socket allocation failed due to "
1115 					    "limits or memory shortage, %s\n",
1116 					    s, __func__,
1117 					    V_tcp_sc_rst_sock_fail ?
1118 					    "sending RST" : "try again");
1119 				if (V_tcp_sc_rst_sock_fail) {
1120 					rstreason = BANDLIM_UNLIMITED;
1121 					goto dropwithreset;
1122 				} else
1123 					goto dropunlock;
1124 			}
1125 			/*
1126 			 * Socket is created in state SYN_RECEIVED.
1127 			 * Unlock the listen socket, lock the newly
1128 			 * created socket and update the tp variable.
1129 			 */
1130 			INP_WUNLOCK(inp);	/* listen socket */
1131 			inp = sotoinpcb(so);
1132 			/*
1133 			 * New connection inpcb is already locked by
1134 			 * syncache_expand().
1135 			 */
1136 			INP_WLOCK_ASSERT(inp);
1137 			tp = intotcpcb(inp);
1138 			KASSERT(tp->t_state == TCPS_SYN_RECEIVED,
1139 			    ("%s: ", __func__));
1140 #ifdef TCP_SIGNATURE
1141 			if (sig_checked == 0)  {
1142 				tcp_dooptions(&to, optp, optlen,
1143 				    (thflags & TH_SYN) ? TO_SYN : 0);
1144 				if (!tcp_signature_verify_input(m, off0, tlen,
1145 				    optlen, &to, th, tp->t_flags)) {
1146 
1147 					/*
1148 					 * In SYN_SENT state if it receives an
1149 					 * RST, it is allowed for further
1150 					 * processing.
1151 					 */
1152 					if ((thflags & TH_RST) == 0 ||
1153 					    (tp->t_state == TCPS_SYN_SENT) == 0)
1154 						goto dropunlock;
1155 				}
1156 				sig_checked = 1;
1157 			}
1158 #endif
1159 
1160 			/*
1161 			 * Process the segment and the data it
1162 			 * contains.  tcp_do_segment() consumes
1163 			 * the mbuf chain and unlocks the inpcb.
1164 			 */
1165 			tp->t_fb->tfb_tcp_do_segment(m, th, so, tp, drop_hdrlen, tlen,
1166 			    iptos, ti_locked);
1167 			INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1168 			return (IPPROTO_DONE);
1169 		}
1170 		/*
1171 		 * Segment flag validation for new connection attempts:
1172 		 *
1173 		 * Our (SYN|ACK) response was rejected.
1174 		 * Check with syncache and remove entry to prevent
1175 		 * retransmits.
1176 		 *
1177 		 * NB: syncache_chkrst does its own logging of failure
1178 		 * causes.
1179 		 */
1180 		if (thflags & TH_RST) {
1181 			syncache_chkrst(&inc, th);
1182 			goto dropunlock;
1183 		}
1184 		/*
1185 		 * We can't do anything without SYN.
1186 		 */
1187 		if ((thflags & TH_SYN) == 0) {
1188 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1189 				log(LOG_DEBUG, "%s; %s: Listen socket: "
1190 				    "SYN is missing, segment ignored\n",
1191 				    s, __func__);
1192 			TCPSTAT_INC(tcps_badsyn);
1193 			goto dropunlock;
1194 		}
1195 		/*
1196 		 * (SYN|ACK) is bogus on a listen socket.
1197 		 */
1198 		if (thflags & TH_ACK) {
1199 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1200 				log(LOG_DEBUG, "%s; %s: Listen socket: "
1201 				    "SYN|ACK invalid, segment rejected\n",
1202 				    s, __func__);
1203 			syncache_badack(&inc);	/* XXX: Not needed! */
1204 			TCPSTAT_INC(tcps_badsyn);
1205 			rstreason = BANDLIM_RST_OPENPORT;
1206 			goto dropwithreset;
1207 		}
1208 		/*
1209 		 * If the drop_synfin option is enabled, drop all
1210 		 * segments with both the SYN and FIN bits set.
1211 		 * This prevents e.g. nmap from identifying the
1212 		 * TCP/IP stack.
1213 		 * XXX: Poor reasoning.  nmap has other methods
1214 		 * and is constantly refining its stack detection
1215 		 * strategies.
1216 		 * XXX: This is a violation of the TCP specification
1217 		 * and was used by RFC1644.
1218 		 */
1219 		if ((thflags & TH_FIN) && V_drop_synfin) {
1220 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1221 				log(LOG_DEBUG, "%s; %s: Listen socket: "
1222 				    "SYN|FIN segment ignored (based on "
1223 				    "sysctl setting)\n", s, __func__);
1224 			TCPSTAT_INC(tcps_badsyn);
1225 			goto dropunlock;
1226 		}
1227 		/*
1228 		 * Segment's flags are (SYN) or (SYN|FIN).
1229 		 *
1230 		 * TH_PUSH, TH_URG, TH_ECE, TH_CWR are ignored
1231 		 * as they do not affect the state of the TCP FSM.
1232 		 * The data pointed to by TH_URG and th_urp is ignored.
1233 		 */
1234 		KASSERT((thflags & (TH_RST|TH_ACK)) == 0,
1235 		    ("%s: Listen socket: TH_RST or TH_ACK set", __func__));
1236 		KASSERT(thflags & (TH_SYN),
1237 		    ("%s: Listen socket: TH_SYN not set", __func__));
1238 #ifdef INET6
1239 		/*
1240 		 * If deprecated address is forbidden,
1241 		 * we do not accept SYN to deprecated interface
1242 		 * address to prevent any new inbound connection from
1243 		 * getting established.
1244 		 * When we do not accept SYN, we send a TCP RST,
1245 		 * with deprecated source address (instead of dropping
1246 		 * it).  We compromise it as it is much better for peer
1247 		 * to send a RST, and RST will be the final packet
1248 		 * for the exchange.
1249 		 *
1250 		 * If we do not forbid deprecated addresses, we accept
1251 		 * the SYN packet.  RFC2462 does not suggest dropping
1252 		 * SYN in this case.
1253 		 * If we decipher RFC2462 5.5.4, it says like this:
1254 		 * 1. use of deprecated addr with existing
1255 		 *    communication is okay - "SHOULD continue to be
1256 		 *    used"
1257 		 * 2. use of it with new communication:
1258 		 *   (2a) "SHOULD NOT be used if alternate address
1259 		 *        with sufficient scope is available"
1260 		 *   (2b) nothing mentioned otherwise.
1261 		 * Here we fall into (2b) case as we have no choice in
1262 		 * our source address selection - we must obey the peer.
1263 		 *
1264 		 * The wording in RFC2462 is confusing, and there are
1265 		 * multiple description text for deprecated address
1266 		 * handling - worse, they are not exactly the same.
1267 		 * I believe 5.5.4 is the best one, so we follow 5.5.4.
1268 		 */
1269 		if (isipv6 && !V_ip6_use_deprecated) {
1270 			struct in6_ifaddr *ia6;
1271 
1272 			ia6 = in6ifa_ifwithaddr(&ip6->ip6_dst, 0 /* XXX */);
1273 			if (ia6 != NULL &&
1274 			    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
1275 				ifa_free(&ia6->ia_ifa);
1276 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1277 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1278 					"Connection attempt to deprecated "
1279 					"IPv6 address rejected\n",
1280 					s, __func__);
1281 				rstreason = BANDLIM_RST_OPENPORT;
1282 				goto dropwithreset;
1283 			}
1284 			if (ia6)
1285 				ifa_free(&ia6->ia_ifa);
1286 		}
1287 #endif /* INET6 */
1288 		/*
1289 		 * Basic sanity checks on incoming SYN requests:
1290 		 *   Don't respond if the destination is a link layer
1291 		 *	broadcast according to RFC1122 4.2.3.10, p. 104.
1292 		 *   If it is from this socket it must be forged.
1293 		 *   Don't respond if the source or destination is a
1294 		 *	global or subnet broad- or multicast address.
1295 		 *   Note that it is quite possible to receive unicast
1296 		 *	link-layer packets with a broadcast IP address. Use
1297 		 *	in_broadcast() to find them.
1298 		 */
1299 		if (m->m_flags & (M_BCAST|M_MCAST)) {
1300 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1301 			    log(LOG_DEBUG, "%s; %s: Listen socket: "
1302 				"Connection attempt from broad- or multicast "
1303 				"link layer address ignored\n", s, __func__);
1304 			goto dropunlock;
1305 		}
1306 #ifdef INET6
1307 		if (isipv6) {
1308 			if (th->th_dport == th->th_sport &&
1309 			    IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst, &ip6->ip6_src)) {
1310 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1311 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1312 					"Connection attempt to/from self "
1313 					"ignored\n", s, __func__);
1314 				goto dropunlock;
1315 			}
1316 			if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
1317 			    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
1318 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1319 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1320 					"Connection attempt from/to multicast "
1321 					"address ignored\n", s, __func__);
1322 				goto dropunlock;
1323 			}
1324 		}
1325 #endif
1326 #if defined(INET) && defined(INET6)
1327 		else
1328 #endif
1329 #ifdef INET
1330 		{
1331 			if (th->th_dport == th->th_sport &&
1332 			    ip->ip_dst.s_addr == ip->ip_src.s_addr) {
1333 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1334 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1335 					"Connection attempt from/to self "
1336 					"ignored\n", s, __func__);
1337 				goto dropunlock;
1338 			}
1339 			if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
1340 			    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
1341 			    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
1342 			    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif)) {
1343 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1344 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1345 					"Connection attempt from/to broad- "
1346 					"or multicast address ignored\n",
1347 					s, __func__);
1348 				goto dropunlock;
1349 			}
1350 		}
1351 #endif
1352 		/*
1353 		 * SYN appears to be valid.  Create compressed TCP state
1354 		 * for syncache.
1355 		 */
1356 #ifdef TCPDEBUG
1357 		if (so->so_options & SO_DEBUG)
1358 			tcp_trace(TA_INPUT, ostate, tp,
1359 			    (void *)tcp_saveipgen, &tcp_savetcp, 0);
1360 #endif
1361 		TCP_PROBE3(debug__input, tp, th, mtod(m, const char *));
1362 		tcp_dooptions(&to, optp, optlen, TO_SYN);
1363 #ifdef TCP_RFC7413
1364 		if (syncache_add(&inc, &to, th, inp, &so, m, NULL, NULL))
1365 			goto new_tfo_socket;
1366 #else
1367 		syncache_add(&inc, &to, th, inp, &so, m, NULL, NULL);
1368 #endif
1369 		/*
1370 		 * Entry added to syncache and mbuf consumed.
1371 		 * Only the listen socket is unlocked by syncache_add().
1372 		 */
1373 		if (ti_locked == TI_RLOCKED) {
1374 			INP_INFO_RUNLOCK(&V_tcbinfo);
1375 			ti_locked = TI_UNLOCKED;
1376 		}
1377 		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1378 		return (IPPROTO_DONE);
1379 	} else if (tp->t_state == TCPS_LISTEN) {
1380 		/*
1381 		 * When a listen socket is torn down the SO_ACCEPTCONN
1382 		 * flag is removed first while connections are drained
1383 		 * from the accept queue in a unlock/lock cycle of the
1384 		 * ACCEPT_LOCK, opening a race condition allowing a SYN
1385 		 * attempt go through unhandled.
1386 		 */
1387 		goto dropunlock;
1388 	}
1389 
1390 #ifdef TCP_SIGNATURE
1391 	if (sig_checked == 0)  {
1392 		tcp_dooptions(&to, optp, optlen,
1393 		    (thflags & TH_SYN) ? TO_SYN : 0);
1394 		if (!tcp_signature_verify_input(m, off0, tlen, optlen, &to,
1395 		    th, tp->t_flags)) {
1396 
1397 			/*
1398 			 * In SYN_SENT state if it receives an RST, it is
1399 			 * allowed for further processing.
1400 			 */
1401 			if ((thflags & TH_RST) == 0 ||
1402 			    (tp->t_state == TCPS_SYN_SENT) == 0)
1403 				goto dropunlock;
1404 		}
1405 		sig_checked = 1;
1406 	}
1407 #endif
1408 
1409 	TCP_PROBE5(receive, NULL, tp, mtod(m, const char *), tp, th);
1410 
1411 	/*
1412 	 * Segment belongs to a connection in SYN_SENT, ESTABLISHED or later
1413 	 * state.  tcp_do_segment() always consumes the mbuf chain, unlocks
1414 	 * the inpcb, and unlocks pcbinfo.
1415 	 */
1416 	tp->t_fb->tfb_tcp_do_segment(m, th, so, tp, drop_hdrlen, tlen, iptos, ti_locked);
1417 	INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1418 	return (IPPROTO_DONE);
1419 
1420 dropwithreset:
1421 	TCP_PROBE5(receive, NULL, tp, mtod(m, const char *), tp, th);
1422 
1423 	if (ti_locked == TI_RLOCKED) {
1424 		INP_INFO_RUNLOCK(&V_tcbinfo);
1425 		ti_locked = TI_UNLOCKED;
1426 	}
1427 #ifdef INVARIANTS
1428 	else {
1429 		KASSERT(ti_locked == TI_UNLOCKED, ("%s: dropwithreset "
1430 		    "ti_locked: %d", __func__, ti_locked));
1431 		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1432 	}
1433 #endif
1434 
1435 	if (inp != NULL) {
1436 		tcp_dropwithreset(m, th, tp, tlen, rstreason);
1437 		INP_WUNLOCK(inp);
1438 	} else
1439 		tcp_dropwithreset(m, th, NULL, tlen, rstreason);
1440 	m = NULL;	/* mbuf chain got consumed. */
1441 	goto drop;
1442 
1443 dropunlock:
1444 	if (m != NULL)
1445 		TCP_PROBE5(receive, NULL, tp, mtod(m, const char *), tp, th);
1446 
1447 	if (ti_locked == TI_RLOCKED) {
1448 		INP_INFO_RUNLOCK(&V_tcbinfo);
1449 		ti_locked = TI_UNLOCKED;
1450 	}
1451 #ifdef INVARIANTS
1452 	else {
1453 		KASSERT(ti_locked == TI_UNLOCKED, ("%s: dropunlock "
1454 		    "ti_locked: %d", __func__, ti_locked));
1455 		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1456 	}
1457 #endif
1458 
1459 	if (inp != NULL)
1460 		INP_WUNLOCK(inp);
1461 
1462 drop:
1463 	INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1464 	if (s != NULL)
1465 		free(s, M_TCPLOG);
1466 	if (m != NULL)
1467 		m_freem(m);
1468 	return (IPPROTO_DONE);
1469 }
1470 
1471 void
1472 tcp_do_segment(struct mbuf *m, struct tcphdr *th, struct socket *so,
1473     struct tcpcb *tp, int drop_hdrlen, int tlen, uint8_t iptos,
1474     int ti_locked)
1475 {
1476 	int thflags, acked, ourfinisacked, needoutput = 0, sack_changed;
1477 	int rstreason, todrop, win;
1478 	u_long tiwin;
1479 	char *s;
1480 	struct in_conninfo *inc;
1481 	struct mbuf *mfree;
1482 	struct tcpopt to;
1483 	int tfo_syn;
1484 
1485 #ifdef TCPDEBUG
1486 	/*
1487 	 * The size of tcp_saveipgen must be the size of the max ip header,
1488 	 * now IPv6.
1489 	 */
1490 	u_char tcp_saveipgen[IP6_HDR_LEN];
1491 	struct tcphdr tcp_savetcp;
1492 	short ostate = 0;
1493 #endif
1494 	thflags = th->th_flags;
1495 	inc = &tp->t_inpcb->inp_inc;
1496 	tp->sackhint.last_sack_ack = 0;
1497 	sack_changed = 0;
1498 
1499 	/*
1500 	 * If this is either a state-changing packet or current state isn't
1501 	 * established, we require a write lock on tcbinfo.  Otherwise, we
1502 	 * allow the tcbinfo to be in either alocked or unlocked, as the
1503 	 * caller may have unnecessarily acquired a write lock due to a race.
1504 	 */
1505 	if ((thflags & (TH_SYN | TH_FIN | TH_RST)) != 0 ||
1506 	    tp->t_state != TCPS_ESTABLISHED) {
1507 		KASSERT(ti_locked == TI_RLOCKED, ("%s ti_locked %d for "
1508 		    "SYN/FIN/RST/!EST", __func__, ti_locked));
1509 		INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
1510 	} else {
1511 #ifdef INVARIANTS
1512 		if (ti_locked == TI_RLOCKED)
1513 			INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
1514 		else {
1515 			KASSERT(ti_locked == TI_UNLOCKED, ("%s: EST "
1516 			    "ti_locked: %d", __func__, ti_locked));
1517 			INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1518 		}
1519 #endif
1520 	}
1521 	INP_WLOCK_ASSERT(tp->t_inpcb);
1522 	KASSERT(tp->t_state > TCPS_LISTEN, ("%s: TCPS_LISTEN",
1523 	    __func__));
1524 	KASSERT(tp->t_state != TCPS_TIME_WAIT, ("%s: TCPS_TIME_WAIT",
1525 	    __func__));
1526 
1527 #ifdef TCPPCAP
1528 	/* Save segment, if requested. */
1529 	tcp_pcap_add(th, m, &(tp->t_inpkts));
1530 #endif
1531 
1532 	/*
1533 	 * Segment received on connection.
1534 	 * Reset idle time and keep-alive timer.
1535 	 * XXX: This should be done after segment
1536 	 * validation to ignore broken/spoofed segs.
1537 	 */
1538 	tp->t_rcvtime = ticks;
1539 	if (TCPS_HAVEESTABLISHED(tp->t_state))
1540 		tcp_timer_activate(tp, TT_KEEP, TP_KEEPIDLE(tp));
1541 
1542 	/*
1543 	 * Scale up the window into a 32-bit value.
1544 	 * For the SYN_SENT state the scale is zero.
1545 	 */
1546 	tiwin = th->th_win << tp->snd_scale;
1547 
1548 	/*
1549 	 * TCP ECN processing.
1550 	 */
1551 	if (tp->t_flags & TF_ECN_PERMIT) {
1552 		if (thflags & TH_CWR)
1553 			tp->t_flags &= ~TF_ECN_SND_ECE;
1554 		switch (iptos & IPTOS_ECN_MASK) {
1555 		case IPTOS_ECN_CE:
1556 			tp->t_flags |= TF_ECN_SND_ECE;
1557 			TCPSTAT_INC(tcps_ecn_ce);
1558 			break;
1559 		case IPTOS_ECN_ECT0:
1560 			TCPSTAT_INC(tcps_ecn_ect0);
1561 			break;
1562 		case IPTOS_ECN_ECT1:
1563 			TCPSTAT_INC(tcps_ecn_ect1);
1564 			break;
1565 		}
1566 
1567 		/* Process a packet differently from RFC3168. */
1568 		cc_ecnpkt_handler(tp, th, iptos);
1569 
1570 		/* Congestion experienced. */
1571 		if (thflags & TH_ECE) {
1572 			cc_cong_signal(tp, th, CC_ECN);
1573 		}
1574 	}
1575 
1576 	/*
1577 	 * Parse options on any incoming segment.
1578 	 */
1579 	tcp_dooptions(&to, (u_char *)(th + 1),
1580 	    (th->th_off << 2) - sizeof(struct tcphdr),
1581 	    (thflags & TH_SYN) ? TO_SYN : 0);
1582 
1583 	/*
1584 	 * If echoed timestamp is later than the current time,
1585 	 * fall back to non RFC1323 RTT calculation.  Normalize
1586 	 * timestamp if syncookies were used when this connection
1587 	 * was established.
1588 	 */
1589 	if ((to.to_flags & TOF_TS) && (to.to_tsecr != 0)) {
1590 		to.to_tsecr -= tp->ts_offset;
1591 		if (TSTMP_GT(to.to_tsecr, tcp_ts_getticks()))
1592 			to.to_tsecr = 0;
1593 	}
1594 	/*
1595 	 * If timestamps were negotiated during SYN/ACK they should
1596 	 * appear on every segment during this session and vice versa.
1597 	 */
1598 	if ((tp->t_flags & TF_RCVD_TSTMP) && !(to.to_flags & TOF_TS)) {
1599 		if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1600 			log(LOG_DEBUG, "%s; %s: Timestamp missing, "
1601 			    "no action\n", s, __func__);
1602 			free(s, M_TCPLOG);
1603 		}
1604 	}
1605 	if (!(tp->t_flags & TF_RCVD_TSTMP) && (to.to_flags & TOF_TS)) {
1606 		if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1607 			log(LOG_DEBUG, "%s; %s: Timestamp not expected, "
1608 			    "no action\n", s, __func__);
1609 			free(s, M_TCPLOG);
1610 		}
1611 	}
1612 
1613 	/*
1614 	 * Process options only when we get SYN/ACK back. The SYN case
1615 	 * for incoming connections is handled in tcp_syncache.
1616 	 * According to RFC1323 the window field in a SYN (i.e., a <SYN>
1617 	 * or <SYN,ACK>) segment itself is never scaled.
1618 	 * XXX this is traditional behavior, may need to be cleaned up.
1619 	 */
1620 	if (tp->t_state == TCPS_SYN_SENT && (thflags & TH_SYN)) {
1621 		if ((to.to_flags & TOF_SCALE) &&
1622 		    (tp->t_flags & TF_REQ_SCALE)) {
1623 			tp->t_flags |= TF_RCVD_SCALE;
1624 			tp->snd_scale = to.to_wscale;
1625 		}
1626 		/*
1627 		 * Initial send window.  It will be updated with
1628 		 * the next incoming segment to the scaled value.
1629 		 */
1630 		tp->snd_wnd = th->th_win;
1631 		if (to.to_flags & TOF_TS) {
1632 			tp->t_flags |= TF_RCVD_TSTMP;
1633 			tp->ts_recent = to.to_tsval;
1634 			tp->ts_recent_age = tcp_ts_getticks();
1635 		}
1636 		if (to.to_flags & TOF_MSS)
1637 			tcp_mss(tp, to.to_mss);
1638 		if ((tp->t_flags & TF_SACK_PERMIT) &&
1639 		    (to.to_flags & TOF_SACKPERM) == 0)
1640 			tp->t_flags &= ~TF_SACK_PERMIT;
1641 	}
1642 
1643 	/*
1644 	 * Header prediction: check for the two common cases
1645 	 * of a uni-directional data xfer.  If the packet has
1646 	 * no control flags, is in-sequence, the window didn't
1647 	 * change and we're not retransmitting, it's a
1648 	 * candidate.  If the length is zero and the ack moved
1649 	 * forward, we're the sender side of the xfer.  Just
1650 	 * free the data acked & wake any higher level process
1651 	 * that was blocked waiting for space.  If the length
1652 	 * is non-zero and the ack didn't move, we're the
1653 	 * receiver side.  If we're getting packets in-order
1654 	 * (the reassembly queue is empty), add the data to
1655 	 * the socket buffer and note that we need a delayed ack.
1656 	 * Make sure that the hidden state-flags are also off.
1657 	 * Since we check for TCPS_ESTABLISHED first, it can only
1658 	 * be TH_NEEDSYN.
1659 	 */
1660 	if (tp->t_state == TCPS_ESTABLISHED &&
1661 	    th->th_seq == tp->rcv_nxt &&
1662 	    (thflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
1663 	    tp->snd_nxt == tp->snd_max &&
1664 	    tiwin && tiwin == tp->snd_wnd &&
1665 	    ((tp->t_flags & (TF_NEEDSYN|TF_NEEDFIN)) == 0) &&
1666 	    LIST_EMPTY(&tp->t_segq) &&
1667 	    ((to.to_flags & TOF_TS) == 0 ||
1668 	     TSTMP_GEQ(to.to_tsval, tp->ts_recent)) ) {
1669 
1670 		/*
1671 		 * If last ACK falls within this segment's sequence numbers,
1672 		 * record the timestamp.
1673 		 * NOTE that the test is modified according to the latest
1674 		 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
1675 		 */
1676 		if ((to.to_flags & TOF_TS) != 0 &&
1677 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1678 			tp->ts_recent_age = tcp_ts_getticks();
1679 			tp->ts_recent = to.to_tsval;
1680 		}
1681 
1682 		if (tlen == 0) {
1683 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
1684 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
1685 			    !IN_RECOVERY(tp->t_flags) &&
1686 			    (to.to_flags & TOF_SACK) == 0 &&
1687 			    TAILQ_EMPTY(&tp->snd_holes)) {
1688 				/*
1689 				 * This is a pure ack for outstanding data.
1690 				 */
1691 				if (ti_locked == TI_RLOCKED)
1692 					INP_INFO_RUNLOCK(&V_tcbinfo);
1693 				ti_locked = TI_UNLOCKED;
1694 
1695 				TCPSTAT_INC(tcps_predack);
1696 
1697 				/*
1698 				 * "bad retransmit" recovery.
1699 				 */
1700 				if (tp->t_rxtshift == 1 &&
1701 				    tp->t_flags & TF_PREVVALID &&
1702 				    (int)(ticks - tp->t_badrxtwin) < 0) {
1703 					cc_cong_signal(tp, th, CC_RTO_ERR);
1704 				}
1705 
1706 				/*
1707 				 * Recalculate the transmit timer / rtt.
1708 				 *
1709 				 * Some boxes send broken timestamp replies
1710 				 * during the SYN+ACK phase, ignore
1711 				 * timestamps of 0 or we could calculate a
1712 				 * huge RTT and blow up the retransmit timer.
1713 				 */
1714 				if ((to.to_flags & TOF_TS) != 0 &&
1715 				    to.to_tsecr) {
1716 					u_int t;
1717 
1718 					t = tcp_ts_getticks() - to.to_tsecr;
1719 					if (!tp->t_rttlow || tp->t_rttlow > t)
1720 						tp->t_rttlow = t;
1721 					tcp_xmit_timer(tp,
1722 					    TCP_TS_TO_TICKS(t) + 1);
1723 				} else if (tp->t_rtttime &&
1724 				    SEQ_GT(th->th_ack, tp->t_rtseq)) {
1725 					if (!tp->t_rttlow ||
1726 					    tp->t_rttlow > ticks - tp->t_rtttime)
1727 						tp->t_rttlow = ticks - tp->t_rtttime;
1728 					tcp_xmit_timer(tp,
1729 							ticks - tp->t_rtttime);
1730 				}
1731 				acked = BYTES_THIS_ACK(tp, th);
1732 
1733 				/* Run HHOOK_TCP_ESTABLISHED_IN helper hooks. */
1734 				hhook_run_tcp_est_in(tp, th, &to);
1735 
1736 				TCPSTAT_INC(tcps_rcvackpack);
1737 				TCPSTAT_ADD(tcps_rcvackbyte, acked);
1738 				sbdrop(&so->so_snd, acked);
1739 				if (SEQ_GT(tp->snd_una, tp->snd_recover) &&
1740 				    SEQ_LEQ(th->th_ack, tp->snd_recover))
1741 					tp->snd_recover = th->th_ack - 1;
1742 
1743 				/*
1744 				 * Let the congestion control algorithm update
1745 				 * congestion control related information. This
1746 				 * typically means increasing the congestion
1747 				 * window.
1748 				 */
1749 				cc_ack_received(tp, th, CC_ACK);
1750 
1751 				tp->snd_una = th->th_ack;
1752 				/*
1753 				 * Pull snd_wl2 up to prevent seq wrap relative
1754 				 * to th_ack.
1755 				 */
1756 				tp->snd_wl2 = th->th_ack;
1757 				tp->t_dupacks = 0;
1758 				m_freem(m);
1759 
1760 				/*
1761 				 * If all outstanding data are acked, stop
1762 				 * retransmit timer, otherwise restart timer
1763 				 * using current (possibly backed-off) value.
1764 				 * If process is waiting for space,
1765 				 * wakeup/selwakeup/signal.  If data
1766 				 * are ready to send, let tcp_output
1767 				 * decide between more output or persist.
1768 				 */
1769 #ifdef TCPDEBUG
1770 				if (so->so_options & SO_DEBUG)
1771 					tcp_trace(TA_INPUT, ostate, tp,
1772 					    (void *)tcp_saveipgen,
1773 					    &tcp_savetcp, 0);
1774 #endif
1775 				TCP_PROBE3(debug__input, tp, th,
1776 					mtod(m, const char *));
1777 				if (tp->snd_una == tp->snd_max)
1778 					tcp_timer_activate(tp, TT_REXMT, 0);
1779 				else if (!tcp_timer_active(tp, TT_PERSIST))
1780 					tcp_timer_activate(tp, TT_REXMT,
1781 						      tp->t_rxtcur);
1782 				sowwakeup(so);
1783 				if (sbavail(&so->so_snd))
1784 					(void) tp->t_fb->tfb_tcp_output(tp);
1785 				goto check_delack;
1786 			}
1787 		} else if (th->th_ack == tp->snd_una &&
1788 		    tlen <= sbspace(&so->so_rcv)) {
1789 			int newsize = 0;	/* automatic sockbuf scaling */
1790 
1791 			/*
1792 			 * This is a pure, in-sequence data packet with
1793 			 * nothing on the reassembly queue and we have enough
1794 			 * buffer space to take it.
1795 			 */
1796 			if (ti_locked == TI_RLOCKED)
1797 				INP_INFO_RUNLOCK(&V_tcbinfo);
1798 			ti_locked = TI_UNLOCKED;
1799 
1800 			/* Clean receiver SACK report if present */
1801 			if ((tp->t_flags & TF_SACK_PERMIT) && tp->rcv_numsacks)
1802 				tcp_clean_sackreport(tp);
1803 			TCPSTAT_INC(tcps_preddat);
1804 			tp->rcv_nxt += tlen;
1805 			/*
1806 			 * Pull snd_wl1 up to prevent seq wrap relative to
1807 			 * th_seq.
1808 			 */
1809 			tp->snd_wl1 = th->th_seq;
1810 			/*
1811 			 * Pull rcv_up up to prevent seq wrap relative to
1812 			 * rcv_nxt.
1813 			 */
1814 			tp->rcv_up = tp->rcv_nxt;
1815 			TCPSTAT_INC(tcps_rcvpack);
1816 			TCPSTAT_ADD(tcps_rcvbyte, tlen);
1817 #ifdef TCPDEBUG
1818 			if (so->so_options & SO_DEBUG)
1819 				tcp_trace(TA_INPUT, ostate, tp,
1820 				    (void *)tcp_saveipgen, &tcp_savetcp, 0);
1821 #endif
1822 			TCP_PROBE3(debug__input, tp, th, mtod(m, const char *));
1823 
1824 		/*
1825 		 * Automatic sizing of receive socket buffer.  Often the send
1826 		 * buffer size is not optimally adjusted to the actual network
1827 		 * conditions at hand (delay bandwidth product).  Setting the
1828 		 * buffer size too small limits throughput on links with high
1829 		 * bandwidth and high delay (eg. trans-continental/oceanic links).
1830 		 *
1831 		 * On the receive side the socket buffer memory is only rarely
1832 		 * used to any significant extent.  This allows us to be much
1833 		 * more aggressive in scaling the receive socket buffer.  For
1834 		 * the case that the buffer space is actually used to a large
1835 		 * extent and we run out of kernel memory we can simply drop
1836 		 * the new segments; TCP on the sender will just retransmit it
1837 		 * later.  Setting the buffer size too big may only consume too
1838 		 * much kernel memory if the application doesn't read() from
1839 		 * the socket or packet loss or reordering makes use of the
1840 		 * reassembly queue.
1841 		 *
1842 		 * The criteria to step up the receive buffer one notch are:
1843 		 *  1. Application has not set receive buffer size with
1844 		 *     SO_RCVBUF. Setting SO_RCVBUF clears SB_AUTOSIZE.
1845 		 *  2. the number of bytes received during the time it takes
1846 		 *     one timestamp to be reflected back to us (the RTT);
1847 		 *  3. received bytes per RTT is within seven eighth of the
1848 		 *     current socket buffer size;
1849 		 *  4. receive buffer size has not hit maximal automatic size;
1850 		 *
1851 		 * This algorithm does one step per RTT at most and only if
1852 		 * we receive a bulk stream w/o packet losses or reorderings.
1853 		 * Shrinking the buffer during idle times is not necessary as
1854 		 * it doesn't consume any memory when idle.
1855 		 *
1856 		 * TODO: Only step up if the application is actually serving
1857 		 * the buffer to better manage the socket buffer resources.
1858 		 */
1859 			if (V_tcp_do_autorcvbuf &&
1860 			    (to.to_flags & TOF_TS) &&
1861 			    to.to_tsecr &&
1862 			    (so->so_rcv.sb_flags & SB_AUTOSIZE)) {
1863 				if (TSTMP_GT(to.to_tsecr, tp->rfbuf_ts) &&
1864 				    to.to_tsecr - tp->rfbuf_ts < hz) {
1865 					if (tp->rfbuf_cnt >
1866 					    (so->so_rcv.sb_hiwat / 8 * 7) &&
1867 					    so->so_rcv.sb_hiwat <
1868 					    V_tcp_autorcvbuf_max) {
1869 						newsize =
1870 						    min(so->so_rcv.sb_hiwat +
1871 						    V_tcp_autorcvbuf_inc,
1872 						    V_tcp_autorcvbuf_max);
1873 					}
1874 					/* Start over with next RTT. */
1875 					tp->rfbuf_ts = 0;
1876 					tp->rfbuf_cnt = 0;
1877 				} else
1878 					tp->rfbuf_cnt += tlen;	/* add up */
1879 			}
1880 
1881 			/* Add data to socket buffer. */
1882 			SOCKBUF_LOCK(&so->so_rcv);
1883 			if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
1884 				m_freem(m);
1885 			} else {
1886 				/*
1887 				 * Set new socket buffer size.
1888 				 * Give up when limit is reached.
1889 				 */
1890 				if (newsize)
1891 					if (!sbreserve_locked(&so->so_rcv,
1892 					    newsize, so, NULL))
1893 						so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
1894 				m_adj(m, drop_hdrlen);	/* delayed header drop */
1895 				sbappendstream_locked(&so->so_rcv, m, 0);
1896 			}
1897 			/* NB: sorwakeup_locked() does an implicit unlock. */
1898 			sorwakeup_locked(so);
1899 			if (DELAY_ACK(tp, tlen)) {
1900 				tp->t_flags |= TF_DELACK;
1901 			} else {
1902 				tp->t_flags |= TF_ACKNOW;
1903 				tp->t_fb->tfb_tcp_output(tp);
1904 			}
1905 			goto check_delack;
1906 		}
1907 	}
1908 
1909 	/*
1910 	 * Calculate amount of space in receive window,
1911 	 * and then do TCP input processing.
1912 	 * Receive window is amount of space in rcv queue,
1913 	 * but not less than advertised window.
1914 	 */
1915 	win = sbspace(&so->so_rcv);
1916 	if (win < 0)
1917 		win = 0;
1918 	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1919 
1920 	/* Reset receive buffer auto scaling when not in bulk receive mode. */
1921 	tp->rfbuf_ts = 0;
1922 	tp->rfbuf_cnt = 0;
1923 
1924 	switch (tp->t_state) {
1925 
1926 	/*
1927 	 * If the state is SYN_RECEIVED:
1928 	 *	if seg contains an ACK, but not for our SYN/ACK, send a RST.
1929 	 */
1930 	case TCPS_SYN_RECEIVED:
1931 		if ((thflags & TH_ACK) &&
1932 		    (SEQ_LEQ(th->th_ack, tp->snd_una) ||
1933 		     SEQ_GT(th->th_ack, tp->snd_max))) {
1934 				rstreason = BANDLIM_RST_OPENPORT;
1935 				goto dropwithreset;
1936 		}
1937 #ifdef TCP_RFC7413
1938 		if (tp->t_flags & TF_FASTOPEN) {
1939 			/*
1940 			 * When a TFO connection is in SYN_RECEIVED, the
1941 			 * only valid packets are the initial SYN, a
1942 			 * retransmit/copy of the initial SYN (possibly with
1943 			 * a subset of the original data), a valid ACK, a
1944 			 * FIN, or a RST.
1945 			 */
1946 			if ((thflags & (TH_SYN|TH_ACK)) == (TH_SYN|TH_ACK)) {
1947 				rstreason = BANDLIM_RST_OPENPORT;
1948 				goto dropwithreset;
1949 			} else if (thflags & TH_SYN) {
1950 				/* non-initial SYN is ignored */
1951 				if ((tcp_timer_active(tp, TT_DELACK) ||
1952 				     tcp_timer_active(tp, TT_REXMT)))
1953 					goto drop;
1954 			} else if (!(thflags & (TH_ACK|TH_FIN|TH_RST))) {
1955 				goto drop;
1956 			}
1957 		}
1958 #endif
1959 		break;
1960 
1961 	/*
1962 	 * If the state is SYN_SENT:
1963 	 *	if seg contains an ACK, but not for our SYN, drop the input.
1964 	 *	if seg contains a RST, then drop the connection.
1965 	 *	if seg does not contain SYN, then drop it.
1966 	 * Otherwise this is an acceptable SYN segment
1967 	 *	initialize tp->rcv_nxt and tp->irs
1968 	 *	if seg contains ack then advance tp->snd_una
1969 	 *	if seg contains an ECE and ECN support is enabled, the stream
1970 	 *	    is ECN capable.
1971 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1972 	 *	arrange for segment to be acked (eventually)
1973 	 *	continue processing rest of data/controls, beginning with URG
1974 	 */
1975 	case TCPS_SYN_SENT:
1976 		if ((thflags & TH_ACK) &&
1977 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
1978 		     SEQ_GT(th->th_ack, tp->snd_max))) {
1979 			rstreason = BANDLIM_UNLIMITED;
1980 			goto dropwithreset;
1981 		}
1982 		if ((thflags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) {
1983 			TCP_PROBE5(connect__refused, NULL, tp,
1984 			    mtod(m, const char *), tp, th);
1985 			tp = tcp_drop(tp, ECONNREFUSED);
1986 		}
1987 		if (thflags & TH_RST)
1988 			goto drop;
1989 		if (!(thflags & TH_SYN))
1990 			goto drop;
1991 
1992 		tp->irs = th->th_seq;
1993 		tcp_rcvseqinit(tp);
1994 		if (thflags & TH_ACK) {
1995 			TCPSTAT_INC(tcps_connects);
1996 			soisconnected(so);
1997 #ifdef MAC
1998 			mac_socketpeer_set_from_mbuf(m, so);
1999 #endif
2000 			/* Do window scaling on this connection? */
2001 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2002 				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
2003 				tp->rcv_scale = tp->request_r_scale;
2004 			}
2005 			tp->rcv_adv += imin(tp->rcv_wnd,
2006 			    TCP_MAXWIN << tp->rcv_scale);
2007 			tp->snd_una++;		/* SYN is acked */
2008 			/*
2009 			 * If there's data, delay ACK; if there's also a FIN
2010 			 * ACKNOW will be turned on later.
2011 			 */
2012 			if (DELAY_ACK(tp, tlen) && tlen != 0)
2013 				tcp_timer_activate(tp, TT_DELACK,
2014 				    tcp_delacktime);
2015 			else
2016 				tp->t_flags |= TF_ACKNOW;
2017 
2018 			if ((thflags & TH_ECE) && V_tcp_do_ecn) {
2019 				tp->t_flags |= TF_ECN_PERMIT;
2020 				TCPSTAT_INC(tcps_ecn_shs);
2021 			}
2022 
2023 			/*
2024 			 * Received <SYN,ACK> in SYN_SENT[*] state.
2025 			 * Transitions:
2026 			 *	SYN_SENT  --> ESTABLISHED
2027 			 *	SYN_SENT* --> FIN_WAIT_1
2028 			 */
2029 			tp->t_starttime = ticks;
2030 			if (tp->t_flags & TF_NEEDFIN) {
2031 				tcp_state_change(tp, TCPS_FIN_WAIT_1);
2032 				tp->t_flags &= ~TF_NEEDFIN;
2033 				thflags &= ~TH_SYN;
2034 			} else {
2035 				tcp_state_change(tp, TCPS_ESTABLISHED);
2036 				TCP_PROBE5(connect__established, NULL, tp,
2037 				    mtod(m, const char *), tp, th);
2038 				cc_conn_init(tp);
2039 				tcp_timer_activate(tp, TT_KEEP,
2040 				    TP_KEEPIDLE(tp));
2041 			}
2042 		} else {
2043 			/*
2044 			 * Received initial SYN in SYN-SENT[*] state =>
2045 			 * simultaneous open.
2046 			 * If it succeeds, connection is * half-synchronized.
2047 			 * Otherwise, do 3-way handshake:
2048 			 *        SYN-SENT -> SYN-RECEIVED
2049 			 *        SYN-SENT* -> SYN-RECEIVED*
2050 			 */
2051 			tp->t_flags |= (TF_ACKNOW | TF_NEEDSYN);
2052 			tcp_timer_activate(tp, TT_REXMT, 0);
2053 			tcp_state_change(tp, TCPS_SYN_RECEIVED);
2054 		}
2055 
2056 		KASSERT(ti_locked == TI_RLOCKED, ("%s: trimthenstep6: "
2057 		    "ti_locked %d", __func__, ti_locked));
2058 		INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
2059 		INP_WLOCK_ASSERT(tp->t_inpcb);
2060 
2061 		/*
2062 		 * Advance th->th_seq to correspond to first data byte.
2063 		 * If data, trim to stay within window,
2064 		 * dropping FIN if necessary.
2065 		 */
2066 		th->th_seq++;
2067 		if (tlen > tp->rcv_wnd) {
2068 			todrop = tlen - tp->rcv_wnd;
2069 			m_adj(m, -todrop);
2070 			tlen = tp->rcv_wnd;
2071 			thflags &= ~TH_FIN;
2072 			TCPSTAT_INC(tcps_rcvpackafterwin);
2073 			TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop);
2074 		}
2075 		tp->snd_wl1 = th->th_seq - 1;
2076 		tp->rcv_up = th->th_seq;
2077 		/*
2078 		 * Client side of transaction: already sent SYN and data.
2079 		 * If the remote host used T/TCP to validate the SYN,
2080 		 * our data will be ACK'd; if so, enter normal data segment
2081 		 * processing in the middle of step 5, ack processing.
2082 		 * Otherwise, goto step 6.
2083 		 */
2084 		if (thflags & TH_ACK)
2085 			goto process_ACK;
2086 
2087 		goto step6;
2088 
2089 	/*
2090 	 * If the state is LAST_ACK or CLOSING or TIME_WAIT:
2091 	 *      do normal processing.
2092 	 *
2093 	 * NB: Leftover from RFC1644 T/TCP.  Cases to be reused later.
2094 	 */
2095 	case TCPS_LAST_ACK:
2096 	case TCPS_CLOSING:
2097 		break;  /* continue normal processing */
2098 	}
2099 
2100 	/*
2101 	 * States other than LISTEN or SYN_SENT.
2102 	 * First check the RST flag and sequence number since reset segments
2103 	 * are exempt from the timestamp and connection count tests.  This
2104 	 * fixes a bug introduced by the Stevens, vol. 2, p. 960 bugfix
2105 	 * below which allowed reset segments in half the sequence space
2106 	 * to fall though and be processed (which gives forged reset
2107 	 * segments with a random sequence number a 50 percent chance of
2108 	 * killing a connection).
2109 	 * Then check timestamp, if present.
2110 	 * Then check the connection count, if present.
2111 	 * Then check that at least some bytes of segment are within
2112 	 * receive window.  If segment begins before rcv_nxt,
2113 	 * drop leading data (and SYN); if nothing left, just ack.
2114 	 */
2115 	if (thflags & TH_RST) {
2116 		/*
2117 		 * RFC5961 Section 3.2
2118 		 *
2119 		 * - RST drops connection only if SEG.SEQ == RCV.NXT.
2120 		 * - If RST is in window, we send challenge ACK.
2121 		 *
2122 		 * Note: to take into account delayed ACKs, we should
2123 		 *   test against last_ack_sent instead of rcv_nxt.
2124 		 * Note 2: we handle special case of closed window, not
2125 		 *   covered by the RFC.
2126 		 */
2127 		if ((SEQ_GEQ(th->th_seq, tp->last_ack_sent) &&
2128 		    SEQ_LT(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) ||
2129 		    (tp->rcv_wnd == 0 && tp->last_ack_sent == th->th_seq)) {
2130 
2131 			INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
2132 			KASSERT(ti_locked == TI_RLOCKED,
2133 			    ("%s: TH_RST ti_locked %d, th %p tp %p",
2134 			    __func__, ti_locked, th, tp));
2135 			KASSERT(tp->t_state != TCPS_SYN_SENT,
2136 			    ("%s: TH_RST for TCPS_SYN_SENT th %p tp %p",
2137 			    __func__, th, tp));
2138 
2139 			if (V_tcp_insecure_rst ||
2140 			    tp->last_ack_sent == th->th_seq) {
2141 				TCPSTAT_INC(tcps_drops);
2142 				/* Drop the connection. */
2143 				switch (tp->t_state) {
2144 				case TCPS_SYN_RECEIVED:
2145 					so->so_error = ECONNREFUSED;
2146 					goto close;
2147 				case TCPS_ESTABLISHED:
2148 				case TCPS_FIN_WAIT_1:
2149 				case TCPS_FIN_WAIT_2:
2150 				case TCPS_CLOSE_WAIT:
2151 					so->so_error = ECONNRESET;
2152 				close:
2153 					tcp_state_change(tp, TCPS_CLOSED);
2154 					/* FALLTHROUGH */
2155 				default:
2156 					tp = tcp_close(tp);
2157 				}
2158 			} else {
2159 				TCPSTAT_INC(tcps_badrst);
2160 				/* Send challenge ACK. */
2161 				tcp_respond(tp, mtod(m, void *), th, m,
2162 				    tp->rcv_nxt, tp->snd_nxt, TH_ACK);
2163 				tp->last_ack_sent = tp->rcv_nxt;
2164 				m = NULL;
2165 			}
2166 		}
2167 		goto drop;
2168 	}
2169 
2170 	/*
2171 	 * RFC5961 Section 4.2
2172 	 * Send challenge ACK for any SYN in synchronized state.
2173 	 */
2174 	if ((thflags & TH_SYN) && tp->t_state != TCPS_SYN_SENT &&
2175 	    tp->t_state != TCPS_SYN_RECEIVED) {
2176 		KASSERT(ti_locked == TI_RLOCKED,
2177 		    ("tcp_do_segment: TH_SYN ti_locked %d", ti_locked));
2178 		INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
2179 
2180 		TCPSTAT_INC(tcps_badsyn);
2181 		if (V_tcp_insecure_syn &&
2182 		    SEQ_GEQ(th->th_seq, tp->last_ack_sent) &&
2183 		    SEQ_LT(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) {
2184 			tp = tcp_drop(tp, ECONNRESET);
2185 			rstreason = BANDLIM_UNLIMITED;
2186 		} else {
2187 			/* Send challenge ACK. */
2188 			tcp_respond(tp, mtod(m, void *), th, m, tp->rcv_nxt,
2189 			    tp->snd_nxt, TH_ACK);
2190 			tp->last_ack_sent = tp->rcv_nxt;
2191 			m = NULL;
2192 		}
2193 		goto drop;
2194 	}
2195 
2196 	/*
2197 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
2198 	 * and it's less than ts_recent, drop it.
2199 	 */
2200 	if ((to.to_flags & TOF_TS) != 0 && tp->ts_recent &&
2201 	    TSTMP_LT(to.to_tsval, tp->ts_recent)) {
2202 
2203 		/* Check to see if ts_recent is over 24 days old.  */
2204 		if (tcp_ts_getticks() - tp->ts_recent_age > TCP_PAWS_IDLE) {
2205 			/*
2206 			 * Invalidate ts_recent.  If this segment updates
2207 			 * ts_recent, the age will be reset later and ts_recent
2208 			 * will get a valid value.  If it does not, setting
2209 			 * ts_recent to zero will at least satisfy the
2210 			 * requirement that zero be placed in the timestamp
2211 			 * echo reply when ts_recent isn't valid.  The
2212 			 * age isn't reset until we get a valid ts_recent
2213 			 * because we don't want out-of-order segments to be
2214 			 * dropped when ts_recent is old.
2215 			 */
2216 			tp->ts_recent = 0;
2217 		} else {
2218 			TCPSTAT_INC(tcps_rcvduppack);
2219 			TCPSTAT_ADD(tcps_rcvdupbyte, tlen);
2220 			TCPSTAT_INC(tcps_pawsdrop);
2221 			if (tlen)
2222 				goto dropafterack;
2223 			goto drop;
2224 		}
2225 	}
2226 
2227 	/*
2228 	 * In the SYN-RECEIVED state, validate that the packet belongs to
2229 	 * this connection before trimming the data to fit the receive
2230 	 * window.  Check the sequence number versus IRS since we know
2231 	 * the sequence numbers haven't wrapped.  This is a partial fix
2232 	 * for the "LAND" DoS attack.
2233 	 */
2234 	if (tp->t_state == TCPS_SYN_RECEIVED && SEQ_LT(th->th_seq, tp->irs)) {
2235 		rstreason = BANDLIM_RST_OPENPORT;
2236 		goto dropwithreset;
2237 	}
2238 
2239 	todrop = tp->rcv_nxt - th->th_seq;
2240 	if (todrop > 0) {
2241 		if (thflags & TH_SYN) {
2242 			thflags &= ~TH_SYN;
2243 			th->th_seq++;
2244 			if (th->th_urp > 1)
2245 				th->th_urp--;
2246 			else
2247 				thflags &= ~TH_URG;
2248 			todrop--;
2249 		}
2250 		/*
2251 		 * Following if statement from Stevens, vol. 2, p. 960.
2252 		 */
2253 		if (todrop > tlen
2254 		    || (todrop == tlen && (thflags & TH_FIN) == 0)) {
2255 			/*
2256 			 * Any valid FIN must be to the left of the window.
2257 			 * At this point the FIN must be a duplicate or out
2258 			 * of sequence; drop it.
2259 			 */
2260 			thflags &= ~TH_FIN;
2261 
2262 			/*
2263 			 * Send an ACK to resynchronize and drop any data.
2264 			 * But keep on processing for RST or ACK.
2265 			 */
2266 			tp->t_flags |= TF_ACKNOW;
2267 			todrop = tlen;
2268 			TCPSTAT_INC(tcps_rcvduppack);
2269 			TCPSTAT_ADD(tcps_rcvdupbyte, todrop);
2270 		} else {
2271 			TCPSTAT_INC(tcps_rcvpartduppack);
2272 			TCPSTAT_ADD(tcps_rcvpartdupbyte, todrop);
2273 		}
2274 		drop_hdrlen += todrop;	/* drop from the top afterwards */
2275 		th->th_seq += todrop;
2276 		tlen -= todrop;
2277 		if (th->th_urp > todrop)
2278 			th->th_urp -= todrop;
2279 		else {
2280 			thflags &= ~TH_URG;
2281 			th->th_urp = 0;
2282 		}
2283 	}
2284 
2285 	/*
2286 	 * If new data are received on a connection after the
2287 	 * user processes are gone, then RST the other end.
2288 	 */
2289 	if ((so->so_state & SS_NOFDREF) &&
2290 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
2291 		KASSERT(ti_locked == TI_RLOCKED, ("%s: SS_NOFDEREF && "
2292 		    "CLOSE_WAIT && tlen ti_locked %d", __func__, ti_locked));
2293 		INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
2294 
2295 		if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
2296 			log(LOG_DEBUG, "%s; %s: %s: Received %d bytes of data "
2297 			    "after socket was closed, "
2298 			    "sending RST and removing tcpcb\n",
2299 			    s, __func__, tcpstates[tp->t_state], tlen);
2300 			free(s, M_TCPLOG);
2301 		}
2302 		tp = tcp_close(tp);
2303 		TCPSTAT_INC(tcps_rcvafterclose);
2304 		rstreason = BANDLIM_UNLIMITED;
2305 		goto dropwithreset;
2306 	}
2307 
2308 	/*
2309 	 * If segment ends after window, drop trailing data
2310 	 * (and PUSH and FIN); if nothing left, just ACK.
2311 	 */
2312 	todrop = (th->th_seq + tlen) - (tp->rcv_nxt + tp->rcv_wnd);
2313 	if (todrop > 0) {
2314 		TCPSTAT_INC(tcps_rcvpackafterwin);
2315 		if (todrop >= tlen) {
2316 			TCPSTAT_ADD(tcps_rcvbyteafterwin, tlen);
2317 			/*
2318 			 * If window is closed can only take segments at
2319 			 * window edge, and have to drop data and PUSH from
2320 			 * incoming segments.  Continue processing, but
2321 			 * remember to ack.  Otherwise, drop segment
2322 			 * and ack.
2323 			 */
2324 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
2325 				tp->t_flags |= TF_ACKNOW;
2326 				TCPSTAT_INC(tcps_rcvwinprobe);
2327 			} else
2328 				goto dropafterack;
2329 		} else
2330 			TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop);
2331 		m_adj(m, -todrop);
2332 		tlen -= todrop;
2333 		thflags &= ~(TH_PUSH|TH_FIN);
2334 	}
2335 
2336 	/*
2337 	 * If last ACK falls within this segment's sequence numbers,
2338 	 * record its timestamp.
2339 	 * NOTE:
2340 	 * 1) That the test incorporates suggestions from the latest
2341 	 *    proposal of the tcplw@cray.com list (Braden 1993/04/26).
2342 	 * 2) That updating only on newer timestamps interferes with
2343 	 *    our earlier PAWS tests, so this check should be solely
2344 	 *    predicated on the sequence space of this segment.
2345 	 * 3) That we modify the segment boundary check to be
2346 	 *        Last.ACK.Sent <= SEG.SEQ + SEG.Len
2347 	 *    instead of RFC1323's
2348 	 *        Last.ACK.Sent < SEG.SEQ + SEG.Len,
2349 	 *    This modified check allows us to overcome RFC1323's
2350 	 *    limitations as described in Stevens TCP/IP Illustrated
2351 	 *    Vol. 2 p.869. In such cases, we can still calculate the
2352 	 *    RTT correctly when RCV.NXT == Last.ACK.Sent.
2353 	 */
2354 	if ((to.to_flags & TOF_TS) != 0 &&
2355 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
2356 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
2357 		((thflags & (TH_SYN|TH_FIN)) != 0))) {
2358 		tp->ts_recent_age = tcp_ts_getticks();
2359 		tp->ts_recent = to.to_tsval;
2360 	}
2361 
2362 	/*
2363 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN
2364 	 * flag is on (half-synchronized state), then queue data for
2365 	 * later processing; else drop segment and return.
2366 	 */
2367 	if ((thflags & TH_ACK) == 0) {
2368 		if (tp->t_state == TCPS_SYN_RECEIVED ||
2369 		    (tp->t_flags & TF_NEEDSYN)) {
2370 #ifdef TCP_RFC7413
2371 			if (tp->t_state == TCPS_SYN_RECEIVED &&
2372 			    tp->t_flags & TF_FASTOPEN) {
2373 				tp->snd_wnd = tiwin;
2374 				cc_conn_init(tp);
2375 			}
2376 #endif
2377 			goto step6;
2378 		} else if (tp->t_flags & TF_ACKNOW)
2379 			goto dropafterack;
2380 		else
2381 			goto drop;
2382 	}
2383 
2384 	/*
2385 	 * Ack processing.
2386 	 */
2387 	switch (tp->t_state) {
2388 
2389 	/*
2390 	 * In SYN_RECEIVED state, the ack ACKs our SYN, so enter
2391 	 * ESTABLISHED state and continue processing.
2392 	 * The ACK was checked above.
2393 	 */
2394 	case TCPS_SYN_RECEIVED:
2395 
2396 		TCPSTAT_INC(tcps_connects);
2397 		soisconnected(so);
2398 		/* Do window scaling? */
2399 		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2400 			(TF_RCVD_SCALE|TF_REQ_SCALE)) {
2401 			tp->rcv_scale = tp->request_r_scale;
2402 			tp->snd_wnd = tiwin;
2403 		}
2404 		/*
2405 		 * Make transitions:
2406 		 *      SYN-RECEIVED  -> ESTABLISHED
2407 		 *      SYN-RECEIVED* -> FIN-WAIT-1
2408 		 */
2409 		tp->t_starttime = ticks;
2410 		if (tp->t_flags & TF_NEEDFIN) {
2411 			tcp_state_change(tp, TCPS_FIN_WAIT_1);
2412 			tp->t_flags &= ~TF_NEEDFIN;
2413 		} else {
2414 			tcp_state_change(tp, TCPS_ESTABLISHED);
2415 			TCP_PROBE5(accept__established, NULL, tp,
2416 			    mtod(m, const char *), tp, th);
2417 #ifdef TCP_RFC7413
2418 			if (tp->t_tfo_pending) {
2419 				tcp_fastopen_decrement_counter(tp->t_tfo_pending);
2420 				tp->t_tfo_pending = NULL;
2421 
2422 				/*
2423 				 * Account for the ACK of our SYN prior to
2424 				 * regular ACK processing below.
2425 				 */
2426 				tp->snd_una++;
2427 			}
2428 			/*
2429 			 * TFO connections call cc_conn_init() during SYN
2430 			 * processing.  Calling it again here for such
2431 			 * connections is not harmless as it would undo the
2432 			 * snd_cwnd reduction that occurs when a TFO SYN|ACK
2433 			 * is retransmitted.
2434 			 */
2435 			if (!(tp->t_flags & TF_FASTOPEN))
2436 #endif
2437 				cc_conn_init(tp);
2438 			tcp_timer_activate(tp, TT_KEEP, TP_KEEPIDLE(tp));
2439 		}
2440 		/*
2441 		 * If segment contains data or ACK, will call tcp_reass()
2442 		 * later; if not, do so now to pass queued data to user.
2443 		 */
2444 		if (tlen == 0 && (thflags & TH_FIN) == 0)
2445 			(void) tcp_reass(tp, (struct tcphdr *)0, 0,
2446 			    (struct mbuf *)0);
2447 		tp->snd_wl1 = th->th_seq - 1;
2448 		/* FALLTHROUGH */
2449 
2450 	/*
2451 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
2452 	 * ACKs.  If the ack is in the range
2453 	 *	tp->snd_una < th->th_ack <= tp->snd_max
2454 	 * then advance tp->snd_una to th->th_ack and drop
2455 	 * data from the retransmission queue.  If this ACK reflects
2456 	 * more up to date window information we update our window information.
2457 	 */
2458 	case TCPS_ESTABLISHED:
2459 	case TCPS_FIN_WAIT_1:
2460 	case TCPS_FIN_WAIT_2:
2461 	case TCPS_CLOSE_WAIT:
2462 	case TCPS_CLOSING:
2463 	case TCPS_LAST_ACK:
2464 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
2465 			TCPSTAT_INC(tcps_rcvacktoomuch);
2466 			goto dropafterack;
2467 		}
2468 		if ((tp->t_flags & TF_SACK_PERMIT) &&
2469 		    ((to.to_flags & TOF_SACK) ||
2470 		     !TAILQ_EMPTY(&tp->snd_holes)))
2471 			sack_changed = tcp_sack_doack(tp, &to, th->th_ack);
2472 		else
2473 			/*
2474 			 * Reset the value so that previous (valid) value
2475 			 * from the last ack with SACK doesn't get used.
2476 			 */
2477 			tp->sackhint.sacked_bytes = 0;
2478 
2479 		/* Run HHOOK_TCP_ESTABLISHED_IN helper hooks. */
2480 		hhook_run_tcp_est_in(tp, th, &to);
2481 
2482 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
2483 			if (tlen == 0 &&
2484 			    (tiwin == tp->snd_wnd ||
2485 			    (tp->t_flags & TF_SACK_PERMIT))) {
2486 				/*
2487 				 * If this is the first time we've seen a
2488 				 * FIN from the remote, this is not a
2489 				 * duplicate and it needs to be processed
2490 				 * normally.  This happens during a
2491 				 * simultaneous close.
2492 				 */
2493 				if ((thflags & TH_FIN) &&
2494 				    (TCPS_HAVERCVDFIN(tp->t_state) == 0)) {
2495 					tp->t_dupacks = 0;
2496 					break;
2497 				}
2498 				TCPSTAT_INC(tcps_rcvdupack);
2499 				/*
2500 				 * If we have outstanding data (other than
2501 				 * a window probe), this is a completely
2502 				 * duplicate ack (ie, window info didn't
2503 				 * change and FIN isn't set),
2504 				 * the ack is the biggest we've
2505 				 * seen and we've seen exactly our rexmt
2506 				 * threshhold of them, assume a packet
2507 				 * has been dropped and retransmit it.
2508 				 * Kludge snd_nxt & the congestion
2509 				 * window so we send only this one
2510 				 * packet.
2511 				 *
2512 				 * We know we're losing at the current
2513 				 * window size so do congestion avoidance
2514 				 * (set ssthresh to half the current window
2515 				 * and pull our congestion window back to
2516 				 * the new ssthresh).
2517 				 *
2518 				 * Dup acks mean that packets have left the
2519 				 * network (they're now cached at the receiver)
2520 				 * so bump cwnd by the amount in the receiver
2521 				 * to keep a constant cwnd packets in the
2522 				 * network.
2523 				 *
2524 				 * When using TCP ECN, notify the peer that
2525 				 * we reduced the cwnd.
2526 				 */
2527 				/*
2528 				 * Following 2 kinds of acks should not affect
2529 				 * dupack counting:
2530 				 * 1) Old acks
2531 				 * 2) Acks with SACK but without any new SACK
2532 				 * information in them. These could result from
2533 				 * any anomaly in the network like a switch
2534 				 * duplicating packets or a possible DoS attack.
2535 				 */
2536 				if (th->th_ack != tp->snd_una ||
2537 				    ((tp->t_flags & TF_SACK_PERMIT) &&
2538 				    !sack_changed))
2539 					break;
2540 				else if (!tcp_timer_active(tp, TT_REXMT))
2541 					tp->t_dupacks = 0;
2542 				else if (++tp->t_dupacks > tcprexmtthresh ||
2543 				     IN_FASTRECOVERY(tp->t_flags)) {
2544 					cc_ack_received(tp, th, CC_DUPACK);
2545 					if ((tp->t_flags & TF_SACK_PERMIT) &&
2546 					    IN_FASTRECOVERY(tp->t_flags)) {
2547 						int awnd;
2548 
2549 						/*
2550 						 * Compute the amount of data in flight first.
2551 						 * We can inject new data into the pipe iff
2552 						 * we have less than 1/2 the original window's
2553 						 * worth of data in flight.
2554 						 */
2555 						if (V_tcp_do_rfc6675_pipe)
2556 							awnd = tcp_compute_pipe(tp);
2557 						else
2558 							awnd = (tp->snd_nxt - tp->snd_fack) +
2559 								tp->sackhint.sack_bytes_rexmit;
2560 
2561 						if (awnd < tp->snd_ssthresh) {
2562 							tp->snd_cwnd += tp->t_maxseg;
2563 							if (tp->snd_cwnd > tp->snd_ssthresh)
2564 								tp->snd_cwnd = tp->snd_ssthresh;
2565 						}
2566 					} else
2567 						tp->snd_cwnd += tp->t_maxseg;
2568 					(void) tp->t_fb->tfb_tcp_output(tp);
2569 					goto drop;
2570 				} else if (tp->t_dupacks == tcprexmtthresh) {
2571 					tcp_seq onxt = tp->snd_nxt;
2572 
2573 					/*
2574 					 * If we're doing sack, check to
2575 					 * see if we're already in sack
2576 					 * recovery. If we're not doing sack,
2577 					 * check to see if we're in newreno
2578 					 * recovery.
2579 					 */
2580 					if (tp->t_flags & TF_SACK_PERMIT) {
2581 						if (IN_FASTRECOVERY(tp->t_flags)) {
2582 							tp->t_dupacks = 0;
2583 							break;
2584 						}
2585 					} else {
2586 						if (SEQ_LEQ(th->th_ack,
2587 						    tp->snd_recover)) {
2588 							tp->t_dupacks = 0;
2589 							break;
2590 						}
2591 					}
2592 					/* Congestion signal before ack. */
2593 					cc_cong_signal(tp, th, CC_NDUPACK);
2594 					cc_ack_received(tp, th, CC_DUPACK);
2595 					tcp_timer_activate(tp, TT_REXMT, 0);
2596 					tp->t_rtttime = 0;
2597 					if (tp->t_flags & TF_SACK_PERMIT) {
2598 						TCPSTAT_INC(
2599 						    tcps_sack_recovery_episode);
2600 						tp->sack_newdata = tp->snd_nxt;
2601 						tp->snd_cwnd = tp->t_maxseg;
2602 						(void) tp->t_fb->tfb_tcp_output(tp);
2603 						goto drop;
2604 					}
2605 					tp->snd_nxt = th->th_ack;
2606 					tp->snd_cwnd = tp->t_maxseg;
2607 					(void) tp->t_fb->tfb_tcp_output(tp);
2608 					KASSERT(tp->snd_limited <= 2,
2609 					    ("%s: tp->snd_limited too big",
2610 					    __func__));
2611 					tp->snd_cwnd = tp->snd_ssthresh +
2612 					     tp->t_maxseg *
2613 					     (tp->t_dupacks - tp->snd_limited);
2614 					if (SEQ_GT(onxt, tp->snd_nxt))
2615 						tp->snd_nxt = onxt;
2616 					goto drop;
2617 				} else if (V_tcp_do_rfc3042) {
2618 					/*
2619 					 * Process first and second duplicate
2620 					 * ACKs. Each indicates a segment
2621 					 * leaving the network, creating room
2622 					 * for more. Make sure we can send a
2623 					 * packet on reception of each duplicate
2624 					 * ACK by increasing snd_cwnd by one
2625 					 * segment. Restore the original
2626 					 * snd_cwnd after packet transmission.
2627 					 */
2628 					cc_ack_received(tp, th, CC_DUPACK);
2629 					u_long oldcwnd = tp->snd_cwnd;
2630 					tcp_seq oldsndmax = tp->snd_max;
2631 					u_int sent;
2632 					int avail;
2633 
2634 					KASSERT(tp->t_dupacks == 1 ||
2635 					    tp->t_dupacks == 2,
2636 					    ("%s: dupacks not 1 or 2",
2637 					    __func__));
2638 					if (tp->t_dupacks == 1)
2639 						tp->snd_limited = 0;
2640 					tp->snd_cwnd =
2641 					    (tp->snd_nxt - tp->snd_una) +
2642 					    (tp->t_dupacks - tp->snd_limited) *
2643 					    tp->t_maxseg;
2644 					/*
2645 					 * Only call tcp_output when there
2646 					 * is new data available to be sent.
2647 					 * Otherwise we would send pure ACKs.
2648 					 */
2649 					SOCKBUF_LOCK(&so->so_snd);
2650 					avail = sbavail(&so->so_snd) -
2651 					    (tp->snd_nxt - tp->snd_una);
2652 					SOCKBUF_UNLOCK(&so->so_snd);
2653 					if (avail > 0)
2654 						(void) tp->t_fb->tfb_tcp_output(tp);
2655 					sent = tp->snd_max - oldsndmax;
2656 					if (sent > tp->t_maxseg) {
2657 						KASSERT((tp->t_dupacks == 2 &&
2658 						    tp->snd_limited == 0) ||
2659 						   (sent == tp->t_maxseg + 1 &&
2660 						    tp->t_flags & TF_SENTFIN),
2661 						    ("%s: sent too much",
2662 						    __func__));
2663 						tp->snd_limited = 2;
2664 					} else if (sent > 0)
2665 						++tp->snd_limited;
2666 					tp->snd_cwnd = oldcwnd;
2667 					goto drop;
2668 				}
2669 			}
2670 			break;
2671 		} else {
2672 			/*
2673 			 * This ack is advancing the left edge, reset the
2674 			 * counter.
2675 			 */
2676 			tp->t_dupacks = 0;
2677 			/*
2678 			 * If this ack also has new SACK info, increment the
2679 			 * counter as per rfc6675.
2680 			 */
2681 			if ((tp->t_flags & TF_SACK_PERMIT) && sack_changed)
2682 				tp->t_dupacks++;
2683 		}
2684 
2685 		KASSERT(SEQ_GT(th->th_ack, tp->snd_una),
2686 		    ("%s: th_ack <= snd_una", __func__));
2687 
2688 		/*
2689 		 * If the congestion window was inflated to account
2690 		 * for the other side's cached packets, retract it.
2691 		 */
2692 		if (IN_FASTRECOVERY(tp->t_flags)) {
2693 			if (SEQ_LT(th->th_ack, tp->snd_recover)) {
2694 				if (tp->t_flags & TF_SACK_PERMIT)
2695 					tcp_sack_partialack(tp, th);
2696 				else
2697 					tcp_newreno_partial_ack(tp, th);
2698 			} else
2699 				cc_post_recovery(tp, th);
2700 		}
2701 		/*
2702 		 * If we reach this point, ACK is not a duplicate,
2703 		 *     i.e., it ACKs something we sent.
2704 		 */
2705 		if (tp->t_flags & TF_NEEDSYN) {
2706 			/*
2707 			 * T/TCP: Connection was half-synchronized, and our
2708 			 * SYN has been ACK'd (so connection is now fully
2709 			 * synchronized).  Go to non-starred state,
2710 			 * increment snd_una for ACK of SYN, and check if
2711 			 * we can do window scaling.
2712 			 */
2713 			tp->t_flags &= ~TF_NEEDSYN;
2714 			tp->snd_una++;
2715 			/* Do window scaling? */
2716 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2717 				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
2718 				tp->rcv_scale = tp->request_r_scale;
2719 				/* Send window already scaled. */
2720 			}
2721 		}
2722 
2723 process_ACK:
2724 		INP_WLOCK_ASSERT(tp->t_inpcb);
2725 
2726 		acked = BYTES_THIS_ACK(tp, th);
2727 		TCPSTAT_INC(tcps_rcvackpack);
2728 		TCPSTAT_ADD(tcps_rcvackbyte, acked);
2729 
2730 		/*
2731 		 * If we just performed our first retransmit, and the ACK
2732 		 * arrives within our recovery window, then it was a mistake
2733 		 * to do the retransmit in the first place.  Recover our
2734 		 * original cwnd and ssthresh, and proceed to transmit where
2735 		 * we left off.
2736 		 */
2737 		if (tp->t_rxtshift == 1 && tp->t_flags & TF_PREVVALID &&
2738 		    (int)(ticks - tp->t_badrxtwin) < 0)
2739 			cc_cong_signal(tp, th, CC_RTO_ERR);
2740 
2741 		/*
2742 		 * If we have a timestamp reply, update smoothed
2743 		 * round trip time.  If no timestamp is present but
2744 		 * transmit timer is running and timed sequence
2745 		 * number was acked, update smoothed round trip time.
2746 		 * Since we now have an rtt measurement, cancel the
2747 		 * timer backoff (cf., Phil Karn's retransmit alg.).
2748 		 * Recompute the initial retransmit timer.
2749 		 *
2750 		 * Some boxes send broken timestamp replies
2751 		 * during the SYN+ACK phase, ignore
2752 		 * timestamps of 0 or we could calculate a
2753 		 * huge RTT and blow up the retransmit timer.
2754 		 */
2755 		if ((to.to_flags & TOF_TS) != 0 && to.to_tsecr) {
2756 			u_int t;
2757 
2758 			t = tcp_ts_getticks() - to.to_tsecr;
2759 			if (!tp->t_rttlow || tp->t_rttlow > t)
2760 				tp->t_rttlow = t;
2761 			tcp_xmit_timer(tp, TCP_TS_TO_TICKS(t) + 1);
2762 		} else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq)) {
2763 			if (!tp->t_rttlow || tp->t_rttlow > ticks - tp->t_rtttime)
2764 				tp->t_rttlow = ticks - tp->t_rtttime;
2765 			tcp_xmit_timer(tp, ticks - tp->t_rtttime);
2766 		}
2767 
2768 		/*
2769 		 * If all outstanding data is acked, stop retransmit
2770 		 * timer and remember to restart (more output or persist).
2771 		 * If there is more data to be acked, restart retransmit
2772 		 * timer, using current (possibly backed-off) value.
2773 		 */
2774 		if (th->th_ack == tp->snd_max) {
2775 			tcp_timer_activate(tp, TT_REXMT, 0);
2776 			needoutput = 1;
2777 		} else if (!tcp_timer_active(tp, TT_PERSIST))
2778 			tcp_timer_activate(tp, TT_REXMT, tp->t_rxtcur);
2779 
2780 		/*
2781 		 * If no data (only SYN) was ACK'd,
2782 		 *    skip rest of ACK processing.
2783 		 */
2784 		if (acked == 0)
2785 			goto step6;
2786 
2787 		/*
2788 		 * Let the congestion control algorithm update congestion
2789 		 * control related information. This typically means increasing
2790 		 * the congestion window.
2791 		 */
2792 		cc_ack_received(tp, th, CC_ACK);
2793 
2794 		SOCKBUF_LOCK(&so->so_snd);
2795 		if (acked > sbavail(&so->so_snd)) {
2796 			tp->snd_wnd -= sbavail(&so->so_snd);
2797 			mfree = sbcut_locked(&so->so_snd,
2798 			    (int)sbavail(&so->so_snd));
2799 			ourfinisacked = 1;
2800 		} else {
2801 			mfree = sbcut_locked(&so->so_snd, acked);
2802 			tp->snd_wnd -= acked;
2803 			ourfinisacked = 0;
2804 		}
2805 		/* NB: sowwakeup_locked() does an implicit unlock. */
2806 		sowwakeup_locked(so);
2807 		m_freem(mfree);
2808 		/* Detect una wraparound. */
2809 		if (!IN_RECOVERY(tp->t_flags) &&
2810 		    SEQ_GT(tp->snd_una, tp->snd_recover) &&
2811 		    SEQ_LEQ(th->th_ack, tp->snd_recover))
2812 			tp->snd_recover = th->th_ack - 1;
2813 		/* XXXLAS: Can this be moved up into cc_post_recovery? */
2814 		if (IN_RECOVERY(tp->t_flags) &&
2815 		    SEQ_GEQ(th->th_ack, tp->snd_recover)) {
2816 			EXIT_RECOVERY(tp->t_flags);
2817 		}
2818 		tp->snd_una = th->th_ack;
2819 		if (tp->t_flags & TF_SACK_PERMIT) {
2820 			if (SEQ_GT(tp->snd_una, tp->snd_recover))
2821 				tp->snd_recover = tp->snd_una;
2822 		}
2823 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2824 			tp->snd_nxt = tp->snd_una;
2825 
2826 		switch (tp->t_state) {
2827 
2828 		/*
2829 		 * In FIN_WAIT_1 STATE in addition to the processing
2830 		 * for the ESTABLISHED state if our FIN is now acknowledged
2831 		 * then enter FIN_WAIT_2.
2832 		 */
2833 		case TCPS_FIN_WAIT_1:
2834 			if (ourfinisacked) {
2835 				/*
2836 				 * If we can't receive any more
2837 				 * data, then closing user can proceed.
2838 				 * Starting the timer is contrary to the
2839 				 * specification, but if we don't get a FIN
2840 				 * we'll hang forever.
2841 				 *
2842 				 * XXXjl:
2843 				 * we should release the tp also, and use a
2844 				 * compressed state.
2845 				 */
2846 				if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
2847 					soisdisconnected(so);
2848 					tcp_timer_activate(tp, TT_2MSL,
2849 					    (tcp_fast_finwait2_recycle ?
2850 					    tcp_finwait2_timeout :
2851 					    TP_MAXIDLE(tp)));
2852 				}
2853 				tcp_state_change(tp, TCPS_FIN_WAIT_2);
2854 			}
2855 			break;
2856 
2857 		/*
2858 		 * In CLOSING STATE in addition to the processing for
2859 		 * the ESTABLISHED state if the ACK acknowledges our FIN
2860 		 * then enter the TIME-WAIT state, otherwise ignore
2861 		 * the segment.
2862 		 */
2863 		case TCPS_CLOSING:
2864 			if (ourfinisacked) {
2865 				INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
2866 				tcp_twstart(tp);
2867 				INP_INFO_RUNLOCK(&V_tcbinfo);
2868 				m_freem(m);
2869 				return;
2870 			}
2871 			break;
2872 
2873 		/*
2874 		 * In LAST_ACK, we may still be waiting for data to drain
2875 		 * and/or to be acked, as well as for the ack of our FIN.
2876 		 * If our FIN is now acknowledged, delete the TCB,
2877 		 * enter the closed state and return.
2878 		 */
2879 		case TCPS_LAST_ACK:
2880 			if (ourfinisacked) {
2881 				INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
2882 				tp = tcp_close(tp);
2883 				goto drop;
2884 			}
2885 			break;
2886 		}
2887 	}
2888 
2889 step6:
2890 	INP_WLOCK_ASSERT(tp->t_inpcb);
2891 
2892 	/*
2893 	 * Update window information.
2894 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2895 	 */
2896 	if ((thflags & TH_ACK) &&
2897 	    (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2898 	    (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
2899 	     (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
2900 		/* keep track of pure window updates */
2901 		if (tlen == 0 &&
2902 		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2903 			TCPSTAT_INC(tcps_rcvwinupd);
2904 		tp->snd_wnd = tiwin;
2905 		tp->snd_wl1 = th->th_seq;
2906 		tp->snd_wl2 = th->th_ack;
2907 		if (tp->snd_wnd > tp->max_sndwnd)
2908 			tp->max_sndwnd = tp->snd_wnd;
2909 		needoutput = 1;
2910 	}
2911 
2912 	/*
2913 	 * Process segments with URG.
2914 	 */
2915 	if ((thflags & TH_URG) && th->th_urp &&
2916 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2917 		/*
2918 		 * This is a kludge, but if we receive and accept
2919 		 * random urgent pointers, we'll crash in
2920 		 * soreceive.  It's hard to imagine someone
2921 		 * actually wanting to send this much urgent data.
2922 		 */
2923 		SOCKBUF_LOCK(&so->so_rcv);
2924 		if (th->th_urp + sbavail(&so->so_rcv) > sb_max) {
2925 			th->th_urp = 0;			/* XXX */
2926 			thflags &= ~TH_URG;		/* XXX */
2927 			SOCKBUF_UNLOCK(&so->so_rcv);	/* XXX */
2928 			goto dodata;			/* XXX */
2929 		}
2930 		/*
2931 		 * If this segment advances the known urgent pointer,
2932 		 * then mark the data stream.  This should not happen
2933 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2934 		 * a FIN has been received from the remote side.
2935 		 * In these states we ignore the URG.
2936 		 *
2937 		 * According to RFC961 (Assigned Protocols),
2938 		 * the urgent pointer points to the last octet
2939 		 * of urgent data.  We continue, however,
2940 		 * to consider it to indicate the first octet
2941 		 * of data past the urgent section as the original
2942 		 * spec states (in one of two places).
2943 		 */
2944 		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2945 			tp->rcv_up = th->th_seq + th->th_urp;
2946 			so->so_oobmark = sbavail(&so->so_rcv) +
2947 			    (tp->rcv_up - tp->rcv_nxt) - 1;
2948 			if (so->so_oobmark == 0)
2949 				so->so_rcv.sb_state |= SBS_RCVATMARK;
2950 			sohasoutofband(so);
2951 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2952 		}
2953 		SOCKBUF_UNLOCK(&so->so_rcv);
2954 		/*
2955 		 * Remove out of band data so doesn't get presented to user.
2956 		 * This can happen independent of advancing the URG pointer,
2957 		 * but if two URG's are pending at once, some out-of-band
2958 		 * data may creep in... ick.
2959 		 */
2960 		if (th->th_urp <= (u_long)tlen &&
2961 		    !(so->so_options & SO_OOBINLINE)) {
2962 			/* hdr drop is delayed */
2963 			tcp_pulloutofband(so, th, m, drop_hdrlen);
2964 		}
2965 	} else {
2966 		/*
2967 		 * If no out of band data is expected,
2968 		 * pull receive urgent pointer along
2969 		 * with the receive window.
2970 		 */
2971 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2972 			tp->rcv_up = tp->rcv_nxt;
2973 	}
2974 dodata:							/* XXX */
2975 	INP_WLOCK_ASSERT(tp->t_inpcb);
2976 
2977 	/*
2978 	 * Process the segment text, merging it into the TCP sequencing queue,
2979 	 * and arranging for acknowledgment of receipt if necessary.
2980 	 * This process logically involves adjusting tp->rcv_wnd as data
2981 	 * is presented to the user (this happens in tcp_usrreq.c,
2982 	 * case PRU_RCVD).  If a FIN has already been received on this
2983 	 * connection then we just ignore the text.
2984 	 */
2985 	tfo_syn = ((tp->t_state == TCPS_SYN_RECEIVED) &&
2986 		   (tp->t_flags & TF_FASTOPEN));
2987 	if ((tlen || (thflags & TH_FIN) || tfo_syn) &&
2988 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2989 		tcp_seq save_start = th->th_seq;
2990 		m_adj(m, drop_hdrlen);	/* delayed header drop */
2991 		/*
2992 		 * Insert segment which includes th into TCP reassembly queue
2993 		 * with control block tp.  Set thflags to whether reassembly now
2994 		 * includes a segment with FIN.  This handles the common case
2995 		 * inline (segment is the next to be received on an established
2996 		 * connection, and the queue is empty), avoiding linkage into
2997 		 * and removal from the queue and repetition of various
2998 		 * conversions.
2999 		 * Set DELACK for segments received in order, but ack
3000 		 * immediately when segments are out of order (so
3001 		 * fast retransmit can work).
3002 		 */
3003 		if (th->th_seq == tp->rcv_nxt &&
3004 		    LIST_EMPTY(&tp->t_segq) &&
3005 		    (TCPS_HAVEESTABLISHED(tp->t_state) ||
3006 		     tfo_syn)) {
3007 			if (DELAY_ACK(tp, tlen) || tfo_syn)
3008 				tp->t_flags |= TF_DELACK;
3009 			else
3010 				tp->t_flags |= TF_ACKNOW;
3011 			tp->rcv_nxt += tlen;
3012 			thflags = th->th_flags & TH_FIN;
3013 			TCPSTAT_INC(tcps_rcvpack);
3014 			TCPSTAT_ADD(tcps_rcvbyte, tlen);
3015 			SOCKBUF_LOCK(&so->so_rcv);
3016 			if (so->so_rcv.sb_state & SBS_CANTRCVMORE)
3017 				m_freem(m);
3018 			else
3019 				sbappendstream_locked(&so->so_rcv, m, 0);
3020 			/* NB: sorwakeup_locked() does an implicit unlock. */
3021 			sorwakeup_locked(so);
3022 		} else {
3023 			/*
3024 			 * XXX: Due to the header drop above "th" is
3025 			 * theoretically invalid by now.  Fortunately
3026 			 * m_adj() doesn't actually frees any mbufs
3027 			 * when trimming from the head.
3028 			 */
3029 			thflags = tcp_reass(tp, th, &tlen, m);
3030 			tp->t_flags |= TF_ACKNOW;
3031 		}
3032 		if (tlen > 0 && (tp->t_flags & TF_SACK_PERMIT))
3033 			tcp_update_sack_list(tp, save_start, save_start + tlen);
3034 #if 0
3035 		/*
3036 		 * Note the amount of data that peer has sent into
3037 		 * our window, in order to estimate the sender's
3038 		 * buffer size.
3039 		 * XXX: Unused.
3040 		 */
3041 		if (SEQ_GT(tp->rcv_adv, tp->rcv_nxt))
3042 			len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
3043 		else
3044 			len = so->so_rcv.sb_hiwat;
3045 #endif
3046 	} else {
3047 		m_freem(m);
3048 		thflags &= ~TH_FIN;
3049 	}
3050 
3051 	/*
3052 	 * If FIN is received ACK the FIN and let the user know
3053 	 * that the connection is closing.
3054 	 */
3055 	if (thflags & TH_FIN) {
3056 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
3057 			socantrcvmore(so);
3058 			/*
3059 			 * If connection is half-synchronized
3060 			 * (ie NEEDSYN flag on) then delay ACK,
3061 			 * so it may be piggybacked when SYN is sent.
3062 			 * Otherwise, since we received a FIN then no
3063 			 * more input can be expected, send ACK now.
3064 			 */
3065 			if (tp->t_flags & TF_NEEDSYN)
3066 				tp->t_flags |= TF_DELACK;
3067 			else
3068 				tp->t_flags |= TF_ACKNOW;
3069 			tp->rcv_nxt++;
3070 		}
3071 		switch (tp->t_state) {
3072 
3073 		/*
3074 		 * In SYN_RECEIVED and ESTABLISHED STATES
3075 		 * enter the CLOSE_WAIT state.
3076 		 */
3077 		case TCPS_SYN_RECEIVED:
3078 			tp->t_starttime = ticks;
3079 			/* FALLTHROUGH */
3080 		case TCPS_ESTABLISHED:
3081 			tcp_state_change(tp, TCPS_CLOSE_WAIT);
3082 			break;
3083 
3084 		/*
3085 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
3086 		 * enter the CLOSING state.
3087 		 */
3088 		case TCPS_FIN_WAIT_1:
3089 			tcp_state_change(tp, TCPS_CLOSING);
3090 			break;
3091 
3092 		/*
3093 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
3094 		 * starting the time-wait timer, turning off the other
3095 		 * standard timers.
3096 		 */
3097 		case TCPS_FIN_WAIT_2:
3098 			INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
3099 			KASSERT(ti_locked == TI_RLOCKED, ("%s: dodata "
3100 			    "TCP_FIN_WAIT_2 ti_locked: %d", __func__,
3101 			    ti_locked));
3102 
3103 			tcp_twstart(tp);
3104 			INP_INFO_RUNLOCK(&V_tcbinfo);
3105 			return;
3106 		}
3107 	}
3108 	if (ti_locked == TI_RLOCKED)
3109 		INP_INFO_RUNLOCK(&V_tcbinfo);
3110 	ti_locked = TI_UNLOCKED;
3111 
3112 #ifdef TCPDEBUG
3113 	if (so->so_options & SO_DEBUG)
3114 		tcp_trace(TA_INPUT, ostate, tp, (void *)tcp_saveipgen,
3115 			  &tcp_savetcp, 0);
3116 #endif
3117 	TCP_PROBE3(debug__input, tp, th, mtod(m, const char *));
3118 
3119 	/*
3120 	 * Return any desired output.
3121 	 */
3122 	if (needoutput || (tp->t_flags & TF_ACKNOW))
3123 		(void) tp->t_fb->tfb_tcp_output(tp);
3124 
3125 check_delack:
3126 	KASSERT(ti_locked == TI_UNLOCKED, ("%s: check_delack ti_locked %d",
3127 	    __func__, ti_locked));
3128 	INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
3129 	INP_WLOCK_ASSERT(tp->t_inpcb);
3130 
3131 	if (tp->t_flags & TF_DELACK) {
3132 		tp->t_flags &= ~TF_DELACK;
3133 		tcp_timer_activate(tp, TT_DELACK, tcp_delacktime);
3134 	}
3135 	INP_WUNLOCK(tp->t_inpcb);
3136 	return;
3137 
3138 dropafterack:
3139 	/*
3140 	 * Generate an ACK dropping incoming segment if it occupies
3141 	 * sequence space, where the ACK reflects our state.
3142 	 *
3143 	 * We can now skip the test for the RST flag since all
3144 	 * paths to this code happen after packets containing
3145 	 * RST have been dropped.
3146 	 *
3147 	 * In the SYN-RECEIVED state, don't send an ACK unless the
3148 	 * segment we received passes the SYN-RECEIVED ACK test.
3149 	 * If it fails send a RST.  This breaks the loop in the
3150 	 * "LAND" DoS attack, and also prevents an ACK storm
3151 	 * between two listening ports that have been sent forged
3152 	 * SYN segments, each with the source address of the other.
3153 	 */
3154 	if (tp->t_state == TCPS_SYN_RECEIVED && (thflags & TH_ACK) &&
3155 	    (SEQ_GT(tp->snd_una, th->th_ack) ||
3156 	     SEQ_GT(th->th_ack, tp->snd_max)) ) {
3157 		rstreason = BANDLIM_RST_OPENPORT;
3158 		goto dropwithreset;
3159 	}
3160 #ifdef TCPDEBUG
3161 	if (so->so_options & SO_DEBUG)
3162 		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
3163 			  &tcp_savetcp, 0);
3164 #endif
3165 	TCP_PROBE3(debug__input, tp, th, mtod(m, const char *));
3166 	if (ti_locked == TI_RLOCKED)
3167 		INP_INFO_RUNLOCK(&V_tcbinfo);
3168 	ti_locked = TI_UNLOCKED;
3169 
3170 	tp->t_flags |= TF_ACKNOW;
3171 	(void) tp->t_fb->tfb_tcp_output(tp);
3172 	INP_WUNLOCK(tp->t_inpcb);
3173 	m_freem(m);
3174 	return;
3175 
3176 dropwithreset:
3177 	if (ti_locked == TI_RLOCKED)
3178 		INP_INFO_RUNLOCK(&V_tcbinfo);
3179 	ti_locked = TI_UNLOCKED;
3180 
3181 	if (tp != NULL) {
3182 		tcp_dropwithreset(m, th, tp, tlen, rstreason);
3183 		INP_WUNLOCK(tp->t_inpcb);
3184 	} else
3185 		tcp_dropwithreset(m, th, NULL, tlen, rstreason);
3186 	return;
3187 
3188 drop:
3189 	if (ti_locked == TI_RLOCKED) {
3190 		INP_INFO_RUNLOCK(&V_tcbinfo);
3191 		ti_locked = TI_UNLOCKED;
3192 	}
3193 #ifdef INVARIANTS
3194 	else
3195 		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
3196 #endif
3197 
3198 	/*
3199 	 * Drop space held by incoming segment and return.
3200 	 */
3201 #ifdef TCPDEBUG
3202 	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
3203 		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
3204 			  &tcp_savetcp, 0);
3205 #endif
3206 	TCP_PROBE3(debug__input, tp, th, mtod(m, const char *));
3207 	if (tp != NULL)
3208 		INP_WUNLOCK(tp->t_inpcb);
3209 	m_freem(m);
3210 }
3211 
3212 /*
3213  * Issue RST and make ACK acceptable to originator of segment.
3214  * The mbuf must still include the original packet header.
3215  * tp may be NULL.
3216  */
3217 void
3218 tcp_dropwithreset(struct mbuf *m, struct tcphdr *th, struct tcpcb *tp,
3219     int tlen, int rstreason)
3220 {
3221 #ifdef INET
3222 	struct ip *ip;
3223 #endif
3224 #ifdef INET6
3225 	struct ip6_hdr *ip6;
3226 #endif
3227 
3228 	if (tp != NULL) {
3229 		INP_WLOCK_ASSERT(tp->t_inpcb);
3230 	}
3231 
3232 	/* Don't bother if destination was broadcast/multicast. */
3233 	if ((th->th_flags & TH_RST) || m->m_flags & (M_BCAST|M_MCAST))
3234 		goto drop;
3235 #ifdef INET6
3236 	if (mtod(m, struct ip *)->ip_v == 6) {
3237 		ip6 = mtod(m, struct ip6_hdr *);
3238 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
3239 		    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
3240 			goto drop;
3241 		/* IPv6 anycast check is done at tcp6_input() */
3242 	}
3243 #endif
3244 #if defined(INET) && defined(INET6)
3245 	else
3246 #endif
3247 #ifdef INET
3248 	{
3249 		ip = mtod(m, struct ip *);
3250 		if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
3251 		    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
3252 		    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
3253 		    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
3254 			goto drop;
3255 	}
3256 #endif
3257 
3258 	/* Perform bandwidth limiting. */
3259 	if (badport_bandlim(rstreason) < 0)
3260 		goto drop;
3261 
3262 	/* tcp_respond consumes the mbuf chain. */
3263 	if (th->th_flags & TH_ACK) {
3264 		tcp_respond(tp, mtod(m, void *), th, m, (tcp_seq)0,
3265 		    th->th_ack, TH_RST);
3266 	} else {
3267 		if (th->th_flags & TH_SYN)
3268 			tlen++;
3269 		tcp_respond(tp, mtod(m, void *), th, m, th->th_seq+tlen,
3270 		    (tcp_seq)0, TH_RST|TH_ACK);
3271 	}
3272 	return;
3273 drop:
3274 	m_freem(m);
3275 }
3276 
3277 /*
3278  * Parse TCP options and place in tcpopt.
3279  */
3280 void
3281 tcp_dooptions(struct tcpopt *to, u_char *cp, int cnt, int flags)
3282 {
3283 	int opt, optlen;
3284 
3285 	to->to_flags = 0;
3286 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
3287 		opt = cp[0];
3288 		if (opt == TCPOPT_EOL)
3289 			break;
3290 		if (opt == TCPOPT_NOP)
3291 			optlen = 1;
3292 		else {
3293 			if (cnt < 2)
3294 				break;
3295 			optlen = cp[1];
3296 			if (optlen < 2 || optlen > cnt)
3297 				break;
3298 		}
3299 		switch (opt) {
3300 		case TCPOPT_MAXSEG:
3301 			if (optlen != TCPOLEN_MAXSEG)
3302 				continue;
3303 			if (!(flags & TO_SYN))
3304 				continue;
3305 			to->to_flags |= TOF_MSS;
3306 			bcopy((char *)cp + 2,
3307 			    (char *)&to->to_mss, sizeof(to->to_mss));
3308 			to->to_mss = ntohs(to->to_mss);
3309 			break;
3310 		case TCPOPT_WINDOW:
3311 			if (optlen != TCPOLEN_WINDOW)
3312 				continue;
3313 			if (!(flags & TO_SYN))
3314 				continue;
3315 			to->to_flags |= TOF_SCALE;
3316 			to->to_wscale = min(cp[2], TCP_MAX_WINSHIFT);
3317 			break;
3318 		case TCPOPT_TIMESTAMP:
3319 			if (optlen != TCPOLEN_TIMESTAMP)
3320 				continue;
3321 			to->to_flags |= TOF_TS;
3322 			bcopy((char *)cp + 2,
3323 			    (char *)&to->to_tsval, sizeof(to->to_tsval));
3324 			to->to_tsval = ntohl(to->to_tsval);
3325 			bcopy((char *)cp + 6,
3326 			    (char *)&to->to_tsecr, sizeof(to->to_tsecr));
3327 			to->to_tsecr = ntohl(to->to_tsecr);
3328 			break;
3329 #ifdef TCP_SIGNATURE
3330 		/*
3331 		 * XXX In order to reply to a host which has set the
3332 		 * TCP_SIGNATURE option in its initial SYN, we have to
3333 		 * record the fact that the option was observed here
3334 		 * for the syncache code to perform the correct response.
3335 		 */
3336 		case TCPOPT_SIGNATURE:
3337 			if (optlen != TCPOLEN_SIGNATURE)
3338 				continue;
3339 			to->to_flags |= TOF_SIGNATURE;
3340 			to->to_signature = cp + 2;
3341 			break;
3342 #endif
3343 		case TCPOPT_SACK_PERMITTED:
3344 			if (optlen != TCPOLEN_SACK_PERMITTED)
3345 				continue;
3346 			if (!(flags & TO_SYN))
3347 				continue;
3348 			if (!V_tcp_do_sack)
3349 				continue;
3350 			to->to_flags |= TOF_SACKPERM;
3351 			break;
3352 		case TCPOPT_SACK:
3353 			if (optlen <= 2 || (optlen - 2) % TCPOLEN_SACK != 0)
3354 				continue;
3355 			if (flags & TO_SYN)
3356 				continue;
3357 			to->to_flags |= TOF_SACK;
3358 			to->to_nsacks = (optlen - 2) / TCPOLEN_SACK;
3359 			to->to_sacks = cp + 2;
3360 			TCPSTAT_INC(tcps_sack_rcv_blocks);
3361 			break;
3362 #ifdef TCP_RFC7413
3363 		case TCPOPT_FAST_OPEN:
3364 			if ((optlen != TCPOLEN_FAST_OPEN_EMPTY) &&
3365 			    (optlen < TCPOLEN_FAST_OPEN_MIN) &&
3366 			    (optlen > TCPOLEN_FAST_OPEN_MAX))
3367 				continue;
3368 			if (!(flags & TO_SYN))
3369 				continue;
3370 			if (!V_tcp_fastopen_enabled)
3371 				continue;
3372 			to->to_flags |= TOF_FASTOPEN;
3373 			to->to_tfo_len = optlen - 2;
3374 			to->to_tfo_cookie = to->to_tfo_len ? cp + 2 : NULL;
3375 			break;
3376 #endif
3377 		default:
3378 			continue;
3379 		}
3380 	}
3381 }
3382 
3383 /*
3384  * Pull out of band byte out of a segment so
3385  * it doesn't appear in the user's data queue.
3386  * It is still reflected in the segment length for
3387  * sequencing purposes.
3388  */
3389 void
3390 tcp_pulloutofband(struct socket *so, struct tcphdr *th, struct mbuf *m,
3391     int off)
3392 {
3393 	int cnt = off + th->th_urp - 1;
3394 
3395 	while (cnt >= 0) {
3396 		if (m->m_len > cnt) {
3397 			char *cp = mtod(m, caddr_t) + cnt;
3398 			struct tcpcb *tp = sototcpcb(so);
3399 
3400 			INP_WLOCK_ASSERT(tp->t_inpcb);
3401 
3402 			tp->t_iobc = *cp;
3403 			tp->t_oobflags |= TCPOOB_HAVEDATA;
3404 			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
3405 			m->m_len--;
3406 			if (m->m_flags & M_PKTHDR)
3407 				m->m_pkthdr.len--;
3408 			return;
3409 		}
3410 		cnt -= m->m_len;
3411 		m = m->m_next;
3412 		if (m == NULL)
3413 			break;
3414 	}
3415 	panic("tcp_pulloutofband");
3416 }
3417 
3418 /*
3419  * Collect new round-trip time estimate
3420  * and update averages and current timeout.
3421  */
3422 void
3423 tcp_xmit_timer(struct tcpcb *tp, int rtt)
3424 {
3425 	int delta;
3426 
3427 	INP_WLOCK_ASSERT(tp->t_inpcb);
3428 
3429 	TCPSTAT_INC(tcps_rttupdated);
3430 	tp->t_rttupdated++;
3431 	if (tp->t_srtt != 0) {
3432 		/*
3433 		 * srtt is stored as fixed point with 5 bits after the
3434 		 * binary point (i.e., scaled by 8).  The following magic
3435 		 * is equivalent to the smoothing algorithm in rfc793 with
3436 		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
3437 		 * point).  Adjust rtt to origin 0.
3438 		 */
3439 		delta = ((rtt - 1) << TCP_DELTA_SHIFT)
3440 			- (tp->t_srtt >> (TCP_RTT_SHIFT - TCP_DELTA_SHIFT));
3441 
3442 		if ((tp->t_srtt += delta) <= 0)
3443 			tp->t_srtt = 1;
3444 
3445 		/*
3446 		 * We accumulate a smoothed rtt variance (actually, a
3447 		 * smoothed mean difference), then set the retransmit
3448 		 * timer to smoothed rtt + 4 times the smoothed variance.
3449 		 * rttvar is stored as fixed point with 4 bits after the
3450 		 * binary point (scaled by 16).  The following is
3451 		 * equivalent to rfc793 smoothing with an alpha of .75
3452 		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
3453 		 * rfc793's wired-in beta.
3454 		 */
3455 		if (delta < 0)
3456 			delta = -delta;
3457 		delta -= tp->t_rttvar >> (TCP_RTTVAR_SHIFT - TCP_DELTA_SHIFT);
3458 		if ((tp->t_rttvar += delta) <= 0)
3459 			tp->t_rttvar = 1;
3460 		if (tp->t_rttbest > tp->t_srtt + tp->t_rttvar)
3461 		    tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
3462 	} else {
3463 		/*
3464 		 * No rtt measurement yet - use the unsmoothed rtt.
3465 		 * Set the variance to half the rtt (so our first
3466 		 * retransmit happens at 3*rtt).
3467 		 */
3468 		tp->t_srtt = rtt << TCP_RTT_SHIFT;
3469 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1);
3470 		tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
3471 	}
3472 	tp->t_rtttime = 0;
3473 	tp->t_rxtshift = 0;
3474 
3475 	/*
3476 	 * the retransmit should happen at rtt + 4 * rttvar.
3477 	 * Because of the way we do the smoothing, srtt and rttvar
3478 	 * will each average +1/2 tick of bias.  When we compute
3479 	 * the retransmit timer, we want 1/2 tick of rounding and
3480 	 * 1 extra tick because of +-1/2 tick uncertainty in the
3481 	 * firing of the timer.  The bias will give us exactly the
3482 	 * 1.5 tick we need.  But, because the bias is
3483 	 * statistical, we have to test that we don't drop below
3484 	 * the minimum feasible timer (which is 2 ticks).
3485 	 */
3486 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
3487 		      max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
3488 
3489 	/*
3490 	 * We received an ack for a packet that wasn't retransmitted;
3491 	 * it is probably safe to discard any error indications we've
3492 	 * received recently.  This isn't quite right, but close enough
3493 	 * for now (a route might have failed after we sent a segment,
3494 	 * and the return path might not be symmetrical).
3495 	 */
3496 	tp->t_softerror = 0;
3497 }
3498 
3499 /*
3500  * Determine a reasonable value for maxseg size.
3501  * If the route is known, check route for mtu.
3502  * If none, use an mss that can be handled on the outgoing interface
3503  * without forcing IP to fragment.  If no route is found, route has no mtu,
3504  * or the destination isn't local, use a default, hopefully conservative
3505  * size (usually 512 or the default IP max size, but no more than the mtu
3506  * of the interface), as we can't discover anything about intervening
3507  * gateways or networks.  We also initialize the congestion/slow start
3508  * window to be a single segment if the destination isn't local.
3509  * While looking at the routing entry, we also initialize other path-dependent
3510  * parameters from pre-set or cached values in the routing entry.
3511  *
3512  * Also take into account the space needed for options that we
3513  * send regularly.  Make maxseg shorter by that amount to assure
3514  * that we can send maxseg amount of data even when the options
3515  * are present.  Store the upper limit of the length of options plus
3516  * data in maxopd.
3517  *
3518  * NOTE that this routine is only called when we process an incoming
3519  * segment, or an ICMP need fragmentation datagram. Outgoing SYN/ACK MSS
3520  * settings are handled in tcp_mssopt().
3521  */
3522 void
3523 tcp_mss_update(struct tcpcb *tp, int offer, int mtuoffer,
3524     struct hc_metrics_lite *metricptr, struct tcp_ifcap *cap)
3525 {
3526 	int mss = 0;
3527 	u_long maxmtu = 0;
3528 	struct inpcb *inp = tp->t_inpcb;
3529 	struct hc_metrics_lite metrics;
3530 	int origoffer;
3531 #ifdef INET6
3532 	int isipv6 = ((inp->inp_vflag & INP_IPV6) != 0) ? 1 : 0;
3533 	size_t min_protoh = isipv6 ?
3534 			    sizeof (struct ip6_hdr) + sizeof (struct tcphdr) :
3535 			    sizeof (struct tcpiphdr);
3536 #else
3537 	const size_t min_protoh = sizeof(struct tcpiphdr);
3538 #endif
3539 
3540 	INP_WLOCK_ASSERT(tp->t_inpcb);
3541 
3542 	if (mtuoffer != -1) {
3543 		KASSERT(offer == -1, ("%s: conflict", __func__));
3544 		offer = mtuoffer - min_protoh;
3545 	}
3546 	origoffer = offer;
3547 
3548 	/* Initialize. */
3549 #ifdef INET6
3550 	if (isipv6) {
3551 		maxmtu = tcp_maxmtu6(&inp->inp_inc, cap);
3552 		tp->t_maxopd = tp->t_maxseg = V_tcp_v6mssdflt;
3553 	}
3554 #endif
3555 #if defined(INET) && defined(INET6)
3556 	else
3557 #endif
3558 #ifdef INET
3559 	{
3560 		maxmtu = tcp_maxmtu(&inp->inp_inc, cap);
3561 		tp->t_maxopd = tp->t_maxseg = V_tcp_mssdflt;
3562 	}
3563 #endif
3564 
3565 	/*
3566 	 * No route to sender, stay with default mss and return.
3567 	 */
3568 	if (maxmtu == 0) {
3569 		/*
3570 		 * In case we return early we need to initialize metrics
3571 		 * to a defined state as tcp_hc_get() would do for us
3572 		 * if there was no cache hit.
3573 		 */
3574 		if (metricptr != NULL)
3575 			bzero(metricptr, sizeof(struct hc_metrics_lite));
3576 		return;
3577 	}
3578 
3579 	/* What have we got? */
3580 	switch (offer) {
3581 		case 0:
3582 			/*
3583 			 * Offer == 0 means that there was no MSS on the SYN
3584 			 * segment, in this case we use tcp_mssdflt as
3585 			 * already assigned to t_maxopd above.
3586 			 */
3587 			offer = tp->t_maxopd;
3588 			break;
3589 
3590 		case -1:
3591 			/*
3592 			 * Offer == -1 means that we didn't receive SYN yet.
3593 			 */
3594 			/* FALLTHROUGH */
3595 
3596 		default:
3597 			/*
3598 			 * Prevent DoS attack with too small MSS. Round up
3599 			 * to at least minmss.
3600 			 */
3601 			offer = max(offer, V_tcp_minmss);
3602 	}
3603 
3604 	/*
3605 	 * rmx information is now retrieved from tcp_hostcache.
3606 	 */
3607 	tcp_hc_get(&inp->inp_inc, &metrics);
3608 	if (metricptr != NULL)
3609 		bcopy(&metrics, metricptr, sizeof(struct hc_metrics_lite));
3610 
3611 	/*
3612 	 * If there's a discovered mtu in tcp hostcache, use it.
3613 	 * Else, use the link mtu.
3614 	 */
3615 	if (metrics.rmx_mtu)
3616 		mss = min(metrics.rmx_mtu, maxmtu) - min_protoh;
3617 	else {
3618 #ifdef INET6
3619 		if (isipv6) {
3620 			mss = maxmtu - min_protoh;
3621 			if (!V_path_mtu_discovery &&
3622 			    !in6_localaddr(&inp->in6p_faddr))
3623 				mss = min(mss, V_tcp_v6mssdflt);
3624 		}
3625 #endif
3626 #if defined(INET) && defined(INET6)
3627 		else
3628 #endif
3629 #ifdef INET
3630 		{
3631 			mss = maxmtu - min_protoh;
3632 			if (!V_path_mtu_discovery &&
3633 			    !in_localaddr(inp->inp_faddr))
3634 				mss = min(mss, V_tcp_mssdflt);
3635 		}
3636 #endif
3637 		/*
3638 		 * XXX - The above conditional (mss = maxmtu - min_protoh)
3639 		 * probably violates the TCP spec.
3640 		 * The problem is that, since we don't know the
3641 		 * other end's MSS, we are supposed to use a conservative
3642 		 * default.  But, if we do that, then MTU discovery will
3643 		 * never actually take place, because the conservative
3644 		 * default is much less than the MTUs typically seen
3645 		 * on the Internet today.  For the moment, we'll sweep
3646 		 * this under the carpet.
3647 		 *
3648 		 * The conservative default might not actually be a problem
3649 		 * if the only case this occurs is when sending an initial
3650 		 * SYN with options and data to a host we've never talked
3651 		 * to before.  Then, they will reply with an MSS value which
3652 		 * will get recorded and the new parameters should get
3653 		 * recomputed.  For Further Study.
3654 		 */
3655 	}
3656 	mss = min(mss, offer);
3657 
3658 	/*
3659 	 * Sanity check: make sure that maxopd will be large
3660 	 * enough to allow some data on segments even if the
3661 	 * all the option space is used (40bytes).  Otherwise
3662 	 * funny things may happen in tcp_output.
3663 	 */
3664 	mss = max(mss, 64);
3665 
3666 	/*
3667 	 * maxopd stores the maximum length of data AND options
3668 	 * in a segment; maxseg is the amount of data in a normal
3669 	 * segment.  We need to store this value (maxopd) apart
3670 	 * from maxseg, because now every segment carries options
3671 	 * and thus we normally have somewhat less data in segments.
3672 	 */
3673 	tp->t_maxopd = mss;
3674 
3675 	/*
3676 	 * origoffer==-1 indicates that no segments were received yet.
3677 	 * In this case we just guess.
3678 	 */
3679 	if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
3680 	    (origoffer == -1 ||
3681 	     (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP))
3682 		mss -= TCPOLEN_TSTAMP_APPA;
3683 
3684 	tp->t_maxseg = mss;
3685 }
3686 
3687 void
3688 tcp_mss(struct tcpcb *tp, int offer)
3689 {
3690 	int mss;
3691 	u_long bufsize;
3692 	struct inpcb *inp;
3693 	struct socket *so;
3694 	struct hc_metrics_lite metrics;
3695 	struct tcp_ifcap cap;
3696 
3697 	KASSERT(tp != NULL, ("%s: tp == NULL", __func__));
3698 
3699 	bzero(&cap, sizeof(cap));
3700 	tcp_mss_update(tp, offer, -1, &metrics, &cap);
3701 
3702 	mss = tp->t_maxseg;
3703 	inp = tp->t_inpcb;
3704 
3705 	/*
3706 	 * If there's a pipesize, change the socket buffer to that size,
3707 	 * don't change if sb_hiwat is different than default (then it
3708 	 * has been changed on purpose with setsockopt).
3709 	 * Make the socket buffers an integral number of mss units;
3710 	 * if the mss is larger than the socket buffer, decrease the mss.
3711 	 */
3712 	so = inp->inp_socket;
3713 	SOCKBUF_LOCK(&so->so_snd);
3714 	if ((so->so_snd.sb_hiwat == V_tcp_sendspace) && metrics.rmx_sendpipe)
3715 		bufsize = metrics.rmx_sendpipe;
3716 	else
3717 		bufsize = so->so_snd.sb_hiwat;
3718 	if (bufsize < mss)
3719 		mss = bufsize;
3720 	else {
3721 		bufsize = roundup(bufsize, mss);
3722 		if (bufsize > sb_max)
3723 			bufsize = sb_max;
3724 		if (bufsize > so->so_snd.sb_hiwat)
3725 			(void)sbreserve_locked(&so->so_snd, bufsize, so, NULL);
3726 	}
3727 	SOCKBUF_UNLOCK(&so->so_snd);
3728 	tp->t_maxseg = mss;
3729 
3730 	SOCKBUF_LOCK(&so->so_rcv);
3731 	if ((so->so_rcv.sb_hiwat == V_tcp_recvspace) && metrics.rmx_recvpipe)
3732 		bufsize = metrics.rmx_recvpipe;
3733 	else
3734 		bufsize = so->so_rcv.sb_hiwat;
3735 	if (bufsize > mss) {
3736 		bufsize = roundup(bufsize, mss);
3737 		if (bufsize > sb_max)
3738 			bufsize = sb_max;
3739 		if (bufsize > so->so_rcv.sb_hiwat)
3740 			(void)sbreserve_locked(&so->so_rcv, bufsize, so, NULL);
3741 	}
3742 	SOCKBUF_UNLOCK(&so->so_rcv);
3743 
3744 	/* Check the interface for TSO capabilities. */
3745 	if (cap.ifcap & CSUM_TSO) {
3746 		tp->t_flags |= TF_TSO;
3747 		tp->t_tsomax = cap.tsomax;
3748 		tp->t_tsomaxsegcount = cap.tsomaxsegcount;
3749 		tp->t_tsomaxsegsize = cap.tsomaxsegsize;
3750 	}
3751 }
3752 
3753 /*
3754  * Determine the MSS option to send on an outgoing SYN.
3755  */
3756 int
3757 tcp_mssopt(struct in_conninfo *inc)
3758 {
3759 	int mss = 0;
3760 	u_long maxmtu = 0;
3761 	u_long thcmtu = 0;
3762 	size_t min_protoh;
3763 
3764 	KASSERT(inc != NULL, ("tcp_mssopt with NULL in_conninfo pointer"));
3765 
3766 #ifdef INET6
3767 	if (inc->inc_flags & INC_ISIPV6) {
3768 		mss = V_tcp_v6mssdflt;
3769 		maxmtu = tcp_maxmtu6(inc, NULL);
3770 		min_protoh = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
3771 	}
3772 #endif
3773 #if defined(INET) && defined(INET6)
3774 	else
3775 #endif
3776 #ifdef INET
3777 	{
3778 		mss = V_tcp_mssdflt;
3779 		maxmtu = tcp_maxmtu(inc, NULL);
3780 		min_protoh = sizeof(struct tcpiphdr);
3781 	}
3782 #endif
3783 #if defined(INET6) || defined(INET)
3784 	thcmtu = tcp_hc_getmtu(inc); /* IPv4 and IPv6 */
3785 #endif
3786 
3787 	if (maxmtu && thcmtu)
3788 		mss = min(maxmtu, thcmtu) - min_protoh;
3789 	else if (maxmtu || thcmtu)
3790 		mss = max(maxmtu, thcmtu) - min_protoh;
3791 
3792 	return (mss);
3793 }
3794 
3795 
3796 /*
3797  * On a partial ack arrives, force the retransmission of the
3798  * next unacknowledged segment.  Do not clear tp->t_dupacks.
3799  * By setting snd_nxt to ti_ack, this forces retransmission timer to
3800  * be started again.
3801  */
3802 void
3803 tcp_newreno_partial_ack(struct tcpcb *tp, struct tcphdr *th)
3804 {
3805 	tcp_seq onxt = tp->snd_nxt;
3806 	u_long  ocwnd = tp->snd_cwnd;
3807 
3808 	INP_WLOCK_ASSERT(tp->t_inpcb);
3809 
3810 	tcp_timer_activate(tp, TT_REXMT, 0);
3811 	tp->t_rtttime = 0;
3812 	tp->snd_nxt = th->th_ack;
3813 	/*
3814 	 * Set snd_cwnd to one segment beyond acknowledged offset.
3815 	 * (tp->snd_una has not yet been updated when this function is called.)
3816 	 */
3817 	tp->snd_cwnd = tp->t_maxseg + BYTES_THIS_ACK(tp, th);
3818 	tp->t_flags |= TF_ACKNOW;
3819 	(void) tp->t_fb->tfb_tcp_output(tp);
3820 	tp->snd_cwnd = ocwnd;
3821 	if (SEQ_GT(onxt, tp->snd_nxt))
3822 		tp->snd_nxt = onxt;
3823 	/*
3824 	 * Partial window deflation.  Relies on fact that tp->snd_una
3825 	 * not updated yet.
3826 	 */
3827 	if (tp->snd_cwnd > BYTES_THIS_ACK(tp, th))
3828 		tp->snd_cwnd -= BYTES_THIS_ACK(tp, th);
3829 	else
3830 		tp->snd_cwnd = 0;
3831 	tp->snd_cwnd += tp->t_maxseg;
3832 }
3833 
3834 int
3835 tcp_compute_pipe(struct tcpcb *tp)
3836 {
3837 	return (tp->snd_max - tp->snd_una +
3838 		tp->sackhint.sack_bytes_rexmit -
3839 		tp->sackhint.sacked_bytes);
3840 }
3841