xref: /freebsd/sys/netinet/tcp_input.c (revision 70e0bbedef95258a4dadc996d641a9bebd3f107d)
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
3  *	The Regents of the University of California.  All rights reserved.
4  * Copyright (c) 2007-2008,2010
5  *	Swinburne University of Technology, Melbourne, Australia.
6  * Copyright (c) 2009-2010 Lawrence Stewart <lstewart@freebsd.org>
7  * Copyright (c) 2010 The FreeBSD Foundation
8  * Copyright (c) 2010-2011 Juniper Networks, Inc.
9  * All rights reserved.
10  *
11  * Portions of this software were developed at the Centre for Advanced Internet
12  * Architectures, Swinburne University of Technology, by Lawrence Stewart,
13  * James Healy and David Hayes, made possible in part by a grant from the Cisco
14  * University Research Program Fund at Community Foundation Silicon Valley.
15  *
16  * Portions of this software were developed at the Centre for Advanced
17  * Internet Architectures, Swinburne University of Technology, Melbourne,
18  * Australia by David Hayes under sponsorship from the FreeBSD Foundation.
19  *
20  * Portions of this software were developed by Robert N. M. Watson under
21  * contract to Juniper Networks, Inc.
22  *
23  * Redistribution and use in source and binary forms, with or without
24  * modification, are permitted provided that the following conditions
25  * are met:
26  * 1. Redistributions of source code must retain the above copyright
27  *    notice, this list of conditions and the following disclaimer.
28  * 2. Redistributions in binary form must reproduce the above copyright
29  *    notice, this list of conditions and the following disclaimer in the
30  *    documentation and/or other materials provided with the distribution.
31  * 4. Neither the name of the University nor the names of its contributors
32  *    may be used to endorse or promote products derived from this software
33  *    without specific prior written permission.
34  *
35  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
36  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
37  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
38  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
39  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
40  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
41  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
42  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
43  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
44  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
45  * SUCH DAMAGE.
46  *
47  *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
48  */
49 
50 #include <sys/cdefs.h>
51 __FBSDID("$FreeBSD$");
52 
53 #include "opt_ipfw.h"		/* for ipfw_fwd	*/
54 #include "opt_inet.h"
55 #include "opt_inet6.h"
56 #include "opt_ipsec.h"
57 #include "opt_tcpdebug.h"
58 
59 #include <sys/param.h>
60 #include <sys/kernel.h>
61 #include <sys/hhook.h>
62 #include <sys/malloc.h>
63 #include <sys/mbuf.h>
64 #include <sys/proc.h>		/* for proc0 declaration */
65 #include <sys/protosw.h>
66 #include <sys/signalvar.h>
67 #include <sys/socket.h>
68 #include <sys/socketvar.h>
69 #include <sys/sysctl.h>
70 #include <sys/syslog.h>
71 #include <sys/systm.h>
72 
73 #include <machine/cpu.h>	/* before tcp_seq.h, for tcp_random18() */
74 
75 #include <vm/uma.h>
76 
77 #include <net/if.h>
78 #include <net/route.h>
79 #include <net/vnet.h>
80 
81 #define TCPSTATES		/* for logging */
82 
83 #include <netinet/cc.h>
84 #include <netinet/in.h>
85 #include <netinet/in_pcb.h>
86 #include <netinet/in_systm.h>
87 #include <netinet/in_var.h>
88 #include <netinet/ip.h>
89 #include <netinet/ip_icmp.h>	/* required for icmp_var.h */
90 #include <netinet/icmp_var.h>	/* for ICMP_BANDLIM */
91 #include <netinet/ip_var.h>
92 #include <netinet/ip_options.h>
93 #include <netinet/ip6.h>
94 #include <netinet/icmp6.h>
95 #include <netinet6/in6_pcb.h>
96 #include <netinet6/ip6_var.h>
97 #include <netinet6/nd6.h>
98 #include <netinet/tcp_fsm.h>
99 #include <netinet/tcp_seq.h>
100 #include <netinet/tcp_timer.h>
101 #include <netinet/tcp_var.h>
102 #include <netinet6/tcp6_var.h>
103 #include <netinet/tcpip.h>
104 #include <netinet/tcp_syncache.h>
105 #ifdef TCPDEBUG
106 #include <netinet/tcp_debug.h>
107 #endif /* TCPDEBUG */
108 
109 #ifdef IPSEC
110 #include <netipsec/ipsec.h>
111 #include <netipsec/ipsec6.h>
112 #endif /*IPSEC*/
113 
114 #include <machine/in_cksum.h>
115 
116 #include <security/mac/mac_framework.h>
117 
118 const int tcprexmtthresh = 3;
119 
120 VNET_DEFINE(struct tcpstat, tcpstat);
121 SYSCTL_VNET_STRUCT(_net_inet_tcp, TCPCTL_STATS, stats, CTLFLAG_RW,
122     &VNET_NAME(tcpstat), tcpstat,
123     "TCP statistics (struct tcpstat, netinet/tcp_var.h)");
124 
125 int tcp_log_in_vain = 0;
126 SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_in_vain, CTLFLAG_RW,
127     &tcp_log_in_vain, 0,
128     "Log all incoming TCP segments to closed ports");
129 
130 VNET_DEFINE(int, blackhole) = 0;
131 #define	V_blackhole		VNET(blackhole)
132 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, blackhole, CTLFLAG_RW,
133     &VNET_NAME(blackhole), 0,
134     "Do not send RST on segments to closed ports");
135 
136 VNET_DEFINE(int, tcp_delack_enabled) = 1;
137 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, delayed_ack, CTLFLAG_RW,
138     &VNET_NAME(tcp_delack_enabled), 0,
139     "Delay ACK to try and piggyback it onto a data packet");
140 
141 VNET_DEFINE(int, drop_synfin) = 0;
142 #define	V_drop_synfin		VNET(drop_synfin)
143 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, drop_synfin, CTLFLAG_RW,
144     &VNET_NAME(drop_synfin), 0,
145     "Drop TCP packets with SYN+FIN set");
146 
147 VNET_DEFINE(int, tcp_do_rfc3042) = 1;
148 #define	V_tcp_do_rfc3042	VNET(tcp_do_rfc3042)
149 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, rfc3042, CTLFLAG_RW,
150     &VNET_NAME(tcp_do_rfc3042), 0,
151     "Enable RFC 3042 (Limited Transmit)");
152 
153 VNET_DEFINE(int, tcp_do_rfc3390) = 1;
154 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, rfc3390, CTLFLAG_RW,
155     &VNET_NAME(tcp_do_rfc3390), 0,
156     "Enable RFC 3390 (Increasing TCP's Initial Congestion Window)");
157 
158 VNET_DEFINE(int, tcp_do_rfc3465) = 1;
159 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, rfc3465, CTLFLAG_RW,
160     &VNET_NAME(tcp_do_rfc3465), 0,
161     "Enable RFC 3465 (Appropriate Byte Counting)");
162 
163 VNET_DEFINE(int, tcp_abc_l_var) = 2;
164 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, abc_l_var, CTLFLAG_RW,
165     &VNET_NAME(tcp_abc_l_var), 2,
166     "Cap the max cwnd increment during slow-start to this number of segments");
167 
168 static SYSCTL_NODE(_net_inet_tcp, OID_AUTO, ecn, CTLFLAG_RW, 0, "TCP ECN");
169 
170 VNET_DEFINE(int, tcp_do_ecn) = 0;
171 SYSCTL_VNET_INT(_net_inet_tcp_ecn, OID_AUTO, enable, CTLFLAG_RW,
172     &VNET_NAME(tcp_do_ecn), 0,
173     "TCP ECN support");
174 
175 VNET_DEFINE(int, tcp_ecn_maxretries) = 1;
176 SYSCTL_VNET_INT(_net_inet_tcp_ecn, OID_AUTO, maxretries, CTLFLAG_RW,
177     &VNET_NAME(tcp_ecn_maxretries), 0,
178     "Max retries before giving up on ECN");
179 
180 VNET_DEFINE(int, tcp_insecure_rst) = 0;
181 #define	V_tcp_insecure_rst	VNET(tcp_insecure_rst)
182 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, insecure_rst, CTLFLAG_RW,
183     &VNET_NAME(tcp_insecure_rst), 0,
184     "Follow the old (insecure) criteria for accepting RST packets");
185 
186 VNET_DEFINE(int, tcp_recvspace) = 1024*64;
187 #define	V_tcp_recvspace	VNET(tcp_recvspace)
188 SYSCTL_VNET_INT(_net_inet_tcp, TCPCTL_RECVSPACE, recvspace, CTLFLAG_RW,
189     &VNET_NAME(tcp_recvspace), 0, "Initial receive socket buffer size");
190 
191 VNET_DEFINE(int, tcp_do_autorcvbuf) = 1;
192 #define	V_tcp_do_autorcvbuf	VNET(tcp_do_autorcvbuf)
193 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, recvbuf_auto, CTLFLAG_RW,
194     &VNET_NAME(tcp_do_autorcvbuf), 0,
195     "Enable automatic receive buffer sizing");
196 
197 VNET_DEFINE(int, tcp_autorcvbuf_inc) = 16*1024;
198 #define	V_tcp_autorcvbuf_inc	VNET(tcp_autorcvbuf_inc)
199 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, recvbuf_inc, CTLFLAG_RW,
200     &VNET_NAME(tcp_autorcvbuf_inc), 0,
201     "Incrementor step size of automatic receive buffer");
202 
203 VNET_DEFINE(int, tcp_autorcvbuf_max) = 2*1024*1024;
204 #define	V_tcp_autorcvbuf_max	VNET(tcp_autorcvbuf_max)
205 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, recvbuf_max, CTLFLAG_RW,
206     &VNET_NAME(tcp_autorcvbuf_max), 0,
207     "Max size of automatic receive buffer");
208 
209 VNET_DEFINE(struct inpcbhead, tcb);
210 #define	tcb6	tcb  /* for KAME src sync over BSD*'s */
211 VNET_DEFINE(struct inpcbinfo, tcbinfo);
212 
213 static void	 tcp_dooptions(struct tcpopt *, u_char *, int, int);
214 static void	 tcp_do_segment(struct mbuf *, struct tcphdr *,
215 		     struct socket *, struct tcpcb *, int, int, uint8_t,
216 		     int);
217 static void	 tcp_dropwithreset(struct mbuf *, struct tcphdr *,
218 		     struct tcpcb *, int, int);
219 static void	 tcp_pulloutofband(struct socket *,
220 		     struct tcphdr *, struct mbuf *, int);
221 static void	 tcp_xmit_timer(struct tcpcb *, int);
222 static void	 tcp_newreno_partial_ack(struct tcpcb *, struct tcphdr *);
223 static void inline 	tcp_fields_to_host(struct tcphdr *);
224 #ifdef TCP_SIGNATURE
225 static void inline 	tcp_fields_to_net(struct tcphdr *);
226 static int inline	tcp_signature_verify_input(struct mbuf *, int, int,
227 			    int, struct tcpopt *, struct tcphdr *, u_int);
228 #endif
229 static void inline	cc_ack_received(struct tcpcb *tp, struct tcphdr *th,
230 			    uint16_t type);
231 static void inline	cc_conn_init(struct tcpcb *tp);
232 static void inline	cc_post_recovery(struct tcpcb *tp, struct tcphdr *th);
233 static void inline	hhook_run_tcp_est_in(struct tcpcb *tp,
234 			    struct tcphdr *th, struct tcpopt *to);
235 
236 /*
237  * Kernel module interface for updating tcpstat.  The argument is an index
238  * into tcpstat treated as an array of u_long.  While this encodes the
239  * general layout of tcpstat into the caller, it doesn't encode its location,
240  * so that future changes to add, for example, per-CPU stats support won't
241  * cause binary compatibility problems for kernel modules.
242  */
243 void
244 kmod_tcpstat_inc(int statnum)
245 {
246 
247 	(*((u_long *)&V_tcpstat + statnum))++;
248 }
249 
250 /*
251  * Wrapper for the TCP established input helper hook.
252  */
253 static void inline
254 hhook_run_tcp_est_in(struct tcpcb *tp, struct tcphdr *th, struct tcpopt *to)
255 {
256 	struct tcp_hhook_data hhook_data;
257 
258 	if (V_tcp_hhh[HHOOK_TCP_EST_IN]->hhh_nhooks > 0) {
259 		hhook_data.tp = tp;
260 		hhook_data.th = th;
261 		hhook_data.to = to;
262 
263 		hhook_run_hooks(V_tcp_hhh[HHOOK_TCP_EST_IN], &hhook_data,
264 		    tp->osd);
265 	}
266 }
267 
268 /*
269  * CC wrapper hook functions
270  */
271 static void inline
272 cc_ack_received(struct tcpcb *tp, struct tcphdr *th, uint16_t type)
273 {
274 	INP_WLOCK_ASSERT(tp->t_inpcb);
275 
276 	tp->ccv->bytes_this_ack = BYTES_THIS_ACK(tp, th);
277 	if (tp->snd_cwnd == min(tp->snd_cwnd, tp->snd_wnd))
278 		tp->ccv->flags |= CCF_CWND_LIMITED;
279 	else
280 		tp->ccv->flags &= ~CCF_CWND_LIMITED;
281 
282 	if (type == CC_ACK) {
283 		if (tp->snd_cwnd > tp->snd_ssthresh) {
284 			tp->t_bytes_acked += min(tp->ccv->bytes_this_ack,
285 			     V_tcp_abc_l_var * tp->t_maxseg);
286 			if (tp->t_bytes_acked >= tp->snd_cwnd) {
287 				tp->t_bytes_acked -= tp->snd_cwnd;
288 				tp->ccv->flags |= CCF_ABC_SENTAWND;
289 			}
290 		} else {
291 				tp->ccv->flags &= ~CCF_ABC_SENTAWND;
292 				tp->t_bytes_acked = 0;
293 		}
294 	}
295 
296 	if (CC_ALGO(tp)->ack_received != NULL) {
297 		/* XXXLAS: Find a way to live without this */
298 		tp->ccv->curack = th->th_ack;
299 		CC_ALGO(tp)->ack_received(tp->ccv, type);
300 	}
301 }
302 
303 static void inline
304 cc_conn_init(struct tcpcb *tp)
305 {
306 	struct hc_metrics_lite metrics;
307 	struct inpcb *inp = tp->t_inpcb;
308 	int rtt;
309 
310 	INP_WLOCK_ASSERT(tp->t_inpcb);
311 
312 	tcp_hc_get(&inp->inp_inc, &metrics);
313 
314 	if (tp->t_srtt == 0 && (rtt = metrics.rmx_rtt)) {
315 		tp->t_srtt = rtt;
316 		tp->t_rttbest = tp->t_srtt + TCP_RTT_SCALE;
317 		TCPSTAT_INC(tcps_usedrtt);
318 		if (metrics.rmx_rttvar) {
319 			tp->t_rttvar = metrics.rmx_rttvar;
320 			TCPSTAT_INC(tcps_usedrttvar);
321 		} else {
322 			/* default variation is +- 1 rtt */
323 			tp->t_rttvar =
324 			    tp->t_srtt * TCP_RTTVAR_SCALE / TCP_RTT_SCALE;
325 		}
326 		TCPT_RANGESET(tp->t_rxtcur,
327 		    ((tp->t_srtt >> 2) + tp->t_rttvar) >> 1,
328 		    tp->t_rttmin, TCPTV_REXMTMAX);
329 	}
330 	if (metrics.rmx_ssthresh) {
331 		/*
332 		 * There's some sort of gateway or interface
333 		 * buffer limit on the path.  Use this to set
334 		 * the slow start threshhold, but set the
335 		 * threshold to no less than 2*mss.
336 		 */
337 		tp->snd_ssthresh = max(2 * tp->t_maxseg, metrics.rmx_ssthresh);
338 		TCPSTAT_INC(tcps_usedssthresh);
339 	}
340 
341 	/*
342 	 * Set the initial slow-start flight size.
343 	 *
344 	 * RFC3390 says only do this if SYN or SYN/ACK didn't got lost.
345 	 * XXX: We currently check only in syncache_socket for that.
346 	 */
347 	if (V_tcp_do_rfc3390)
348 		tp->snd_cwnd = min(4 * tp->t_maxseg,
349 		    max(2 * tp->t_maxseg, 4380));
350 	else
351 		tp->snd_cwnd = tp->t_maxseg;
352 
353 	if (CC_ALGO(tp)->conn_init != NULL)
354 		CC_ALGO(tp)->conn_init(tp->ccv);
355 }
356 
357 void inline
358 cc_cong_signal(struct tcpcb *tp, struct tcphdr *th, uint32_t type)
359 {
360 	INP_WLOCK_ASSERT(tp->t_inpcb);
361 
362 	switch(type) {
363 	case CC_NDUPACK:
364 		if (!IN_FASTRECOVERY(tp->t_flags)) {
365 			tp->snd_recover = tp->snd_max;
366 			if (tp->t_flags & TF_ECN_PERMIT)
367 				tp->t_flags |= TF_ECN_SND_CWR;
368 		}
369 		break;
370 	case CC_ECN:
371 		if (!IN_CONGRECOVERY(tp->t_flags)) {
372 			TCPSTAT_INC(tcps_ecn_rcwnd);
373 			tp->snd_recover = tp->snd_max;
374 			if (tp->t_flags & TF_ECN_PERMIT)
375 				tp->t_flags |= TF_ECN_SND_CWR;
376 		}
377 		break;
378 	case CC_RTO:
379 		tp->t_dupacks = 0;
380 		tp->t_bytes_acked = 0;
381 		EXIT_RECOVERY(tp->t_flags);
382 		tp->snd_ssthresh = max(2, min(tp->snd_wnd, tp->snd_cwnd) / 2 /
383 		    tp->t_maxseg) * tp->t_maxseg;
384 		tp->snd_cwnd = tp->t_maxseg;
385 		break;
386 	case CC_RTO_ERR:
387 		TCPSTAT_INC(tcps_sndrexmitbad);
388 		/* RTO was unnecessary, so reset everything. */
389 		tp->snd_cwnd = tp->snd_cwnd_prev;
390 		tp->snd_ssthresh = tp->snd_ssthresh_prev;
391 		tp->snd_recover = tp->snd_recover_prev;
392 		if (tp->t_flags & TF_WASFRECOVERY)
393 			ENTER_FASTRECOVERY(tp->t_flags);
394 		if (tp->t_flags & TF_WASCRECOVERY)
395 			ENTER_CONGRECOVERY(tp->t_flags);
396 		tp->snd_nxt = tp->snd_max;
397 		tp->t_flags &= ~TF_PREVVALID;
398 		tp->t_badrxtwin = 0;
399 		break;
400 	}
401 
402 	if (CC_ALGO(tp)->cong_signal != NULL) {
403 		if (th != NULL)
404 			tp->ccv->curack = th->th_ack;
405 		CC_ALGO(tp)->cong_signal(tp->ccv, type);
406 	}
407 }
408 
409 static void inline
410 cc_post_recovery(struct tcpcb *tp, struct tcphdr *th)
411 {
412 	INP_WLOCK_ASSERT(tp->t_inpcb);
413 
414 	/* XXXLAS: KASSERT that we're in recovery? */
415 
416 	if (CC_ALGO(tp)->post_recovery != NULL) {
417 		tp->ccv->curack = th->th_ack;
418 		CC_ALGO(tp)->post_recovery(tp->ccv);
419 	}
420 	/* XXXLAS: EXIT_RECOVERY ? */
421 	tp->t_bytes_acked = 0;
422 }
423 
424 static inline void
425 tcp_fields_to_host(struct tcphdr *th)
426 {
427 
428 	th->th_seq = ntohl(th->th_seq);
429 	th->th_ack = ntohl(th->th_ack);
430 	th->th_win = ntohs(th->th_win);
431 	th->th_urp = ntohs(th->th_urp);
432 }
433 
434 #ifdef TCP_SIGNATURE
435 static inline void
436 tcp_fields_to_net(struct tcphdr *th)
437 {
438 
439 	th->th_seq = htonl(th->th_seq);
440 	th->th_ack = htonl(th->th_ack);
441 	th->th_win = htons(th->th_win);
442 	th->th_urp = htons(th->th_urp);
443 }
444 
445 static inline int
446 tcp_signature_verify_input(struct mbuf *m, int off0, int tlen, int optlen,
447     struct tcpopt *to, struct tcphdr *th, u_int tcpbflag)
448 {
449 	int ret;
450 
451 	tcp_fields_to_net(th);
452 	ret = tcp_signature_verify(m, off0, tlen, optlen, to, th, tcpbflag);
453 	tcp_fields_to_host(th);
454 	return (ret);
455 }
456 #endif
457 
458 /* Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint. */
459 #ifdef INET6
460 #define ND6_HINT(tp) \
461 do { \
462 	if ((tp) && (tp)->t_inpcb && \
463 	    ((tp)->t_inpcb->inp_vflag & INP_IPV6) != 0) \
464 		nd6_nud_hint(NULL, NULL, 0); \
465 } while (0)
466 #else
467 #define ND6_HINT(tp)
468 #endif
469 
470 /*
471  * Indicate whether this ack should be delayed.  We can delay the ack if
472  *	- there is no delayed ack timer in progress and
473  *	- our last ack wasn't a 0-sized window.  We never want to delay
474  *	  the ack that opens up a 0-sized window and
475  *		- delayed acks are enabled or
476  *		- this is a half-synchronized T/TCP connection.
477  */
478 #define DELAY_ACK(tp)							\
479 	((!tcp_timer_active(tp, TT_DELACK) &&				\
480 	    (tp->t_flags & TF_RXWIN0SENT) == 0) &&			\
481 	    (V_tcp_delack_enabled || (tp->t_flags & TF_NEEDSYN)))
482 
483 /*
484  * TCP input handling is split into multiple parts:
485  *   tcp6_input is a thin wrapper around tcp_input for the extended
486  *	ip6_protox[] call format in ip6_input
487  *   tcp_input handles primary segment validation, inpcb lookup and
488  *	SYN processing on listen sockets
489  *   tcp_do_segment processes the ACK and text of the segment for
490  *	establishing, established and closing connections
491  */
492 #ifdef INET6
493 int
494 tcp6_input(struct mbuf **mp, int *offp, int proto)
495 {
496 	struct mbuf *m = *mp;
497 	struct in6_ifaddr *ia6;
498 
499 	IP6_EXTHDR_CHECK(m, *offp, sizeof(struct tcphdr), IPPROTO_DONE);
500 
501 	/*
502 	 * draft-itojun-ipv6-tcp-to-anycast
503 	 * better place to put this in?
504 	 */
505 	ia6 = ip6_getdstifaddr(m);
506 	if (ia6 && (ia6->ia6_flags & IN6_IFF_ANYCAST)) {
507 		struct ip6_hdr *ip6;
508 
509 		ifa_free(&ia6->ia_ifa);
510 		ip6 = mtod(m, struct ip6_hdr *);
511 		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
512 			    (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
513 		return IPPROTO_DONE;
514 	}
515 
516 	tcp_input(m, *offp);
517 	return IPPROTO_DONE;
518 }
519 #endif /* INET6 */
520 
521 void
522 tcp_input(struct mbuf *m, int off0)
523 {
524 	struct tcphdr *th = NULL;
525 	struct ip *ip = NULL;
526 #ifdef INET
527 	struct ipovly *ipov;
528 #endif
529 	struct inpcb *inp = NULL;
530 	struct tcpcb *tp = NULL;
531 	struct socket *so = NULL;
532 	u_char *optp = NULL;
533 	int optlen = 0;
534 #ifdef INET
535 	int len;
536 #endif
537 	int tlen = 0, off;
538 	int drop_hdrlen;
539 	int thflags;
540 	int rstreason = 0;	/* For badport_bandlim accounting purposes */
541 #ifdef TCP_SIGNATURE
542 	uint8_t sig_checked = 0;
543 #endif
544 	uint8_t iptos = 0;
545 #ifdef IPFIREWALL_FORWARD
546 	struct m_tag *fwd_tag;
547 #endif
548 #ifdef INET6
549 	struct ip6_hdr *ip6 = NULL;
550 	int isipv6;
551 #else
552 	const void *ip6 = NULL;
553 #endif /* INET6 */
554 	struct tcpopt to;		/* options in this segment */
555 	char *s = NULL;			/* address and port logging */
556 	int ti_locked;
557 #define	TI_UNLOCKED	1
558 #define	TI_WLOCKED	2
559 
560 #ifdef TCPDEBUG
561 	/*
562 	 * The size of tcp_saveipgen must be the size of the max ip header,
563 	 * now IPv6.
564 	 */
565 	u_char tcp_saveipgen[IP6_HDR_LEN];
566 	struct tcphdr tcp_savetcp;
567 	short ostate = 0;
568 #endif
569 
570 #ifdef INET6
571 	isipv6 = (mtod(m, struct ip *)->ip_v == 6) ? 1 : 0;
572 #endif
573 
574 	to.to_flags = 0;
575 	TCPSTAT_INC(tcps_rcvtotal);
576 
577 #ifdef INET6
578 	if (isipv6) {
579 		/* IP6_EXTHDR_CHECK() is already done at tcp6_input(). */
580 		ip6 = mtod(m, struct ip6_hdr *);
581 		tlen = sizeof(*ip6) + ntohs(ip6->ip6_plen) - off0;
582 		if (in6_cksum(m, IPPROTO_TCP, off0, tlen)) {
583 			TCPSTAT_INC(tcps_rcvbadsum);
584 			goto drop;
585 		}
586 		th = (struct tcphdr *)((caddr_t)ip6 + off0);
587 
588 		/*
589 		 * Be proactive about unspecified IPv6 address in source.
590 		 * As we use all-zero to indicate unbounded/unconnected pcb,
591 		 * unspecified IPv6 address can be used to confuse us.
592 		 *
593 		 * Note that packets with unspecified IPv6 destination is
594 		 * already dropped in ip6_input.
595 		 */
596 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
597 			/* XXX stat */
598 			goto drop;
599 		}
600 	}
601 #endif
602 #if defined(INET) && defined(INET6)
603 	else
604 #endif
605 #ifdef INET
606 	{
607 		/*
608 		 * Get IP and TCP header together in first mbuf.
609 		 * Note: IP leaves IP header in first mbuf.
610 		 */
611 		if (off0 > sizeof (struct ip)) {
612 			ip_stripoptions(m, (struct mbuf *)0);
613 			off0 = sizeof(struct ip);
614 		}
615 		if (m->m_len < sizeof (struct tcpiphdr)) {
616 			if ((m = m_pullup(m, sizeof (struct tcpiphdr)))
617 			    == NULL) {
618 				TCPSTAT_INC(tcps_rcvshort);
619 				return;
620 			}
621 		}
622 		ip = mtod(m, struct ip *);
623 		ipov = (struct ipovly *)ip;
624 		th = (struct tcphdr *)((caddr_t)ip + off0);
625 		tlen = ip->ip_len;
626 
627 		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
628 			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
629 				th->th_sum = m->m_pkthdr.csum_data;
630 			else
631 				th->th_sum = in_pseudo(ip->ip_src.s_addr,
632 						ip->ip_dst.s_addr,
633 						htonl(m->m_pkthdr.csum_data +
634 							ip->ip_len +
635 							IPPROTO_TCP));
636 			th->th_sum ^= 0xffff;
637 #ifdef TCPDEBUG
638 			ipov->ih_len = (u_short)tlen;
639 			ipov->ih_len = htons(ipov->ih_len);
640 #endif
641 		} else {
642 			/*
643 			 * Checksum extended TCP header and data.
644 			 */
645 			len = sizeof (struct ip) + tlen;
646 			bzero(ipov->ih_x1, sizeof(ipov->ih_x1));
647 			ipov->ih_len = (u_short)tlen;
648 			ipov->ih_len = htons(ipov->ih_len);
649 			th->th_sum = in_cksum(m, len);
650 		}
651 		if (th->th_sum) {
652 			TCPSTAT_INC(tcps_rcvbadsum);
653 			goto drop;
654 		}
655 		/* Re-initialization for later version check */
656 		ip->ip_v = IPVERSION;
657 	}
658 #endif /* INET */
659 
660 #ifdef INET6
661 	if (isipv6)
662 		iptos = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
663 #endif
664 #if defined(INET) && defined(INET6)
665 	else
666 #endif
667 #ifdef INET
668 		iptos = ip->ip_tos;
669 #endif
670 
671 	/*
672 	 * Check that TCP offset makes sense,
673 	 * pull out TCP options and adjust length.		XXX
674 	 */
675 	off = th->th_off << 2;
676 	if (off < sizeof (struct tcphdr) || off > tlen) {
677 		TCPSTAT_INC(tcps_rcvbadoff);
678 		goto drop;
679 	}
680 	tlen -= off;	/* tlen is used instead of ti->ti_len */
681 	if (off > sizeof (struct tcphdr)) {
682 #ifdef INET6
683 		if (isipv6) {
684 			IP6_EXTHDR_CHECK(m, off0, off, );
685 			ip6 = mtod(m, struct ip6_hdr *);
686 			th = (struct tcphdr *)((caddr_t)ip6 + off0);
687 		}
688 #endif
689 #if defined(INET) && defined(INET6)
690 		else
691 #endif
692 #ifdef INET
693 		{
694 			if (m->m_len < sizeof(struct ip) + off) {
695 				if ((m = m_pullup(m, sizeof (struct ip) + off))
696 				    == NULL) {
697 					TCPSTAT_INC(tcps_rcvshort);
698 					return;
699 				}
700 				ip = mtod(m, struct ip *);
701 				ipov = (struct ipovly *)ip;
702 				th = (struct tcphdr *)((caddr_t)ip + off0);
703 			}
704 		}
705 #endif
706 		optlen = off - sizeof (struct tcphdr);
707 		optp = (u_char *)(th + 1);
708 	}
709 	thflags = th->th_flags;
710 
711 	/*
712 	 * Convert TCP protocol specific fields to host format.
713 	 */
714 	tcp_fields_to_host(th);
715 
716 	/*
717 	 * Delay dropping TCP, IP headers, IPv6 ext headers, and TCP options.
718 	 */
719 	drop_hdrlen = off0 + off;
720 
721 	/*
722 	 * Locate pcb for segment; if we're likely to add or remove a
723 	 * connection then first acquire pcbinfo lock.  There are two cases
724 	 * where we might discover later we need a write lock despite the
725 	 * flags: ACKs moving a connection out of the syncache, and ACKs for
726 	 * a connection in TIMEWAIT.
727 	 */
728 	if ((thflags & (TH_SYN | TH_FIN | TH_RST)) != 0) {
729 		INP_INFO_WLOCK(&V_tcbinfo);
730 		ti_locked = TI_WLOCKED;
731 	} else
732 		ti_locked = TI_UNLOCKED;
733 
734 findpcb:
735 #ifdef INVARIANTS
736 	if (ti_locked == TI_WLOCKED) {
737 		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
738 	} else {
739 		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
740 	}
741 #endif
742 
743 #ifdef IPFIREWALL_FORWARD
744 	/*
745 	 * Grab info from PACKET_TAG_IPFORWARD tag prepended to the chain.
746 	 */
747 	fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
748 #endif /* IPFIREWALL_FORWARD */
749 
750 #ifdef INET6
751 #ifdef IPFIREWALL_FORWARD
752 	if (isipv6 && fwd_tag != NULL) {
753 		struct sockaddr_in6 *next_hop6;
754 
755 		next_hop6 = (struct sockaddr_in6 *)(fwd_tag + 1);
756 		/*
757 		 * Transparently forwarded. Pretend to be the destination.
758 		 * Already got one like this?
759 		 */
760 		inp = in6_pcblookup_mbuf(&V_tcbinfo,
761 		    &ip6->ip6_src, th->th_sport, &ip6->ip6_dst, th->th_dport,
762 		    INPLOOKUP_WLOCKPCB, m->m_pkthdr.rcvif, m);
763 		if (!inp) {
764 			/*
765 			 * It's new.  Try to find the ambushing socket.
766 			 * Because we've rewritten the destination address,
767 			 * any hardware-generated hash is ignored.
768 			 */
769 			inp = in6_pcblookup(&V_tcbinfo, &ip6->ip6_src,
770 			    th->th_sport, &next_hop6->sin6_addr,
771 			    next_hop6->sin6_port ? ntohs(next_hop6->sin6_port) :
772 			    th->th_dport, INPLOOKUP_WILDCARD |
773 			    INPLOOKUP_WLOCKPCB, m->m_pkthdr.rcvif);
774 		}
775 		/* Remove the tag from the packet.  We don't need it anymore. */
776 		m_tag_delete(m, fwd_tag);
777 	} else
778 #endif /* IPFIREWALL_FORWARD */
779 	if (isipv6) {
780 		inp = in6_pcblookup_mbuf(&V_tcbinfo, &ip6->ip6_src,
781 		    th->th_sport, &ip6->ip6_dst, th->th_dport,
782 		    INPLOOKUP_WILDCARD | INPLOOKUP_WLOCKPCB,
783 		    m->m_pkthdr.rcvif, m);
784 	}
785 #endif /* INET6 */
786 #if defined(INET6) && defined(INET)
787 	else
788 #endif
789 #ifdef INET
790 #ifdef IPFIREWALL_FORWARD
791 	if (fwd_tag != NULL) {
792 		struct sockaddr_in *next_hop;
793 
794 		next_hop = (struct sockaddr_in *)(fwd_tag+1);
795 		/*
796 		 * Transparently forwarded. Pretend to be the destination.
797 		 * already got one like this?
798 		 */
799 		inp = in_pcblookup_mbuf(&V_tcbinfo, ip->ip_src, th->th_sport,
800 		    ip->ip_dst, th->th_dport, INPLOOKUP_WLOCKPCB,
801 		    m->m_pkthdr.rcvif, m);
802 		if (!inp) {
803 			/*
804 			 * It's new.  Try to find the ambushing socket.
805 			 * Because we've rewritten the destination address,
806 			 * any hardware-generated hash is ignored.
807 			 */
808 			inp = in_pcblookup(&V_tcbinfo, ip->ip_src,
809 			    th->th_sport, next_hop->sin_addr,
810 			    next_hop->sin_port ? ntohs(next_hop->sin_port) :
811 			    th->th_dport, INPLOOKUP_WILDCARD |
812 			    INPLOOKUP_WLOCKPCB, m->m_pkthdr.rcvif);
813 		}
814 		/* Remove the tag from the packet.  We don't need it anymore. */
815 		m_tag_delete(m, fwd_tag);
816 	} else
817 #endif /* IPFIREWALL_FORWARD */
818 		inp = in_pcblookup_mbuf(&V_tcbinfo, ip->ip_src,
819 		    th->th_sport, ip->ip_dst, th->th_dport,
820 		    INPLOOKUP_WILDCARD | INPLOOKUP_WLOCKPCB,
821 		    m->m_pkthdr.rcvif, m);
822 #endif /* INET */
823 
824 	/*
825 	 * If the INPCB does not exist then all data in the incoming
826 	 * segment is discarded and an appropriate RST is sent back.
827 	 * XXX MRT Send RST using which routing table?
828 	 */
829 	if (inp == NULL) {
830 		/*
831 		 * Log communication attempts to ports that are not
832 		 * in use.
833 		 */
834 		if ((tcp_log_in_vain == 1 && (thflags & TH_SYN)) ||
835 		    tcp_log_in_vain == 2) {
836 			if ((s = tcp_log_vain(NULL, th, (void *)ip, ip6)))
837 				log(LOG_INFO, "%s; %s: Connection attempt "
838 				    "to closed port\n", s, __func__);
839 		}
840 		/*
841 		 * When blackholing do not respond with a RST but
842 		 * completely ignore the segment and drop it.
843 		 */
844 		if ((V_blackhole == 1 && (thflags & TH_SYN)) ||
845 		    V_blackhole == 2)
846 			goto dropunlock;
847 
848 		rstreason = BANDLIM_RST_CLOSEDPORT;
849 		goto dropwithreset;
850 	}
851 	INP_WLOCK_ASSERT(inp);
852 	if (!(inp->inp_flags & INP_HW_FLOWID)
853 	    && (m->m_flags & M_FLOWID)
854 	    && ((inp->inp_socket == NULL)
855 		|| !(inp->inp_socket->so_options & SO_ACCEPTCONN))) {
856 		inp->inp_flags |= INP_HW_FLOWID;
857 		inp->inp_flags &= ~INP_SW_FLOWID;
858 		inp->inp_flowid = m->m_pkthdr.flowid;
859 	}
860 #ifdef IPSEC
861 #ifdef INET6
862 	if (isipv6 && ipsec6_in_reject(m, inp)) {
863 		V_ipsec6stat.in_polvio++;
864 		goto dropunlock;
865 	} else
866 #endif /* INET6 */
867 	if (ipsec4_in_reject(m, inp) != 0) {
868 		V_ipsec4stat.in_polvio++;
869 		goto dropunlock;
870 	}
871 #endif /* IPSEC */
872 
873 	/*
874 	 * Check the minimum TTL for socket.
875 	 */
876 	if (inp->inp_ip_minttl != 0) {
877 #ifdef INET6
878 		if (isipv6 && inp->inp_ip_minttl > ip6->ip6_hlim)
879 			goto dropunlock;
880 		else
881 #endif
882 		if (inp->inp_ip_minttl > ip->ip_ttl)
883 			goto dropunlock;
884 	}
885 
886 	/*
887 	 * A previous connection in TIMEWAIT state is supposed to catch stray
888 	 * or duplicate segments arriving late.  If this segment was a
889 	 * legitimate new connection attempt the old INPCB gets removed and
890 	 * we can try again to find a listening socket.
891 	 *
892 	 * At this point, due to earlier optimism, we may hold only an inpcb
893 	 * lock, and not the inpcbinfo write lock.  If so, we need to try to
894 	 * acquire it, or if that fails, acquire a reference on the inpcb,
895 	 * drop all locks, acquire a global write lock, and then re-acquire
896 	 * the inpcb lock.  We may at that point discover that another thread
897 	 * has tried to free the inpcb, in which case we need to loop back
898 	 * and try to find a new inpcb to deliver to.
899 	 *
900 	 * XXXRW: It may be time to rethink timewait locking.
901 	 */
902 relocked:
903 	if (inp->inp_flags & INP_TIMEWAIT) {
904 		if (ti_locked == TI_UNLOCKED) {
905 			if (INP_INFO_TRY_WLOCK(&V_tcbinfo) == 0) {
906 				in_pcbref(inp);
907 				INP_WUNLOCK(inp);
908 				INP_INFO_WLOCK(&V_tcbinfo);
909 				ti_locked = TI_WLOCKED;
910 				INP_WLOCK(inp);
911 				if (in_pcbrele_wlocked(inp)) {
912 					inp = NULL;
913 					goto findpcb;
914 				}
915 			} else
916 				ti_locked = TI_WLOCKED;
917 		}
918 		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
919 
920 		if (thflags & TH_SYN)
921 			tcp_dooptions(&to, optp, optlen, TO_SYN);
922 		/*
923 		 * NB: tcp_twcheck unlocks the INP and frees the mbuf.
924 		 */
925 		if (tcp_twcheck(inp, &to, th, m, tlen))
926 			goto findpcb;
927 		INP_INFO_WUNLOCK(&V_tcbinfo);
928 		return;
929 	}
930 	/*
931 	 * The TCPCB may no longer exist if the connection is winding
932 	 * down or it is in the CLOSED state.  Either way we drop the
933 	 * segment and send an appropriate response.
934 	 */
935 	tp = intotcpcb(inp);
936 	if (tp == NULL || tp->t_state == TCPS_CLOSED) {
937 		rstreason = BANDLIM_RST_CLOSEDPORT;
938 		goto dropwithreset;
939 	}
940 
941 	/*
942 	 * We've identified a valid inpcb, but it could be that we need an
943 	 * inpcbinfo write lock but don't hold it.  In this case, attempt to
944 	 * acquire using the same strategy as the TIMEWAIT case above.  If we
945 	 * relock, we have to jump back to 'relocked' as the connection might
946 	 * now be in TIMEWAIT.
947 	 */
948 #ifdef INVARIANTS
949 	if ((thflags & (TH_SYN | TH_FIN | TH_RST)) != 0)
950 		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
951 #endif
952 	if (tp->t_state != TCPS_ESTABLISHED) {
953 		if (ti_locked == TI_UNLOCKED) {
954 			if (INP_INFO_TRY_WLOCK(&V_tcbinfo) == 0) {
955 				in_pcbref(inp);
956 				INP_WUNLOCK(inp);
957 				INP_INFO_WLOCK(&V_tcbinfo);
958 				ti_locked = TI_WLOCKED;
959 				INP_WLOCK(inp);
960 				if (in_pcbrele_wlocked(inp)) {
961 					inp = NULL;
962 					goto findpcb;
963 				}
964 				goto relocked;
965 			} else
966 				ti_locked = TI_WLOCKED;
967 		}
968 		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
969 	}
970 
971 #ifdef MAC
972 	INP_WLOCK_ASSERT(inp);
973 	if (mac_inpcb_check_deliver(inp, m))
974 		goto dropunlock;
975 #endif
976 	so = inp->inp_socket;
977 	KASSERT(so != NULL, ("%s: so == NULL", __func__));
978 #ifdef TCPDEBUG
979 	if (so->so_options & SO_DEBUG) {
980 		ostate = tp->t_state;
981 #ifdef INET6
982 		if (isipv6) {
983 			bcopy((char *)ip6, (char *)tcp_saveipgen, sizeof(*ip6));
984 		} else
985 #endif
986 			bcopy((char *)ip, (char *)tcp_saveipgen, sizeof(*ip));
987 		tcp_savetcp = *th;
988 	}
989 #endif /* TCPDEBUG */
990 	/*
991 	 * When the socket is accepting connections (the INPCB is in LISTEN
992 	 * state) we look into the SYN cache if this is a new connection
993 	 * attempt or the completion of a previous one.  Because listen
994 	 * sockets are never in TCPS_ESTABLISHED, the V_tcbinfo lock will be
995 	 * held in this case.
996 	 */
997 	if (so->so_options & SO_ACCEPTCONN) {
998 		struct in_conninfo inc;
999 
1000 		KASSERT(tp->t_state == TCPS_LISTEN, ("%s: so accepting but "
1001 		    "tp not listening", __func__));
1002 		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1003 
1004 		bzero(&inc, sizeof(inc));
1005 #ifdef INET6
1006 		if (isipv6) {
1007 			inc.inc_flags |= INC_ISIPV6;
1008 			inc.inc6_faddr = ip6->ip6_src;
1009 			inc.inc6_laddr = ip6->ip6_dst;
1010 		} else
1011 #endif
1012 		{
1013 			inc.inc_faddr = ip->ip_src;
1014 			inc.inc_laddr = ip->ip_dst;
1015 		}
1016 		inc.inc_fport = th->th_sport;
1017 		inc.inc_lport = th->th_dport;
1018 		inc.inc_fibnum = so->so_fibnum;
1019 
1020 		/*
1021 		 * Check for an existing connection attempt in syncache if
1022 		 * the flag is only ACK.  A successful lookup creates a new
1023 		 * socket appended to the listen queue in SYN_RECEIVED state.
1024 		 */
1025 		if ((thflags & (TH_RST|TH_ACK|TH_SYN)) == TH_ACK) {
1026 			/*
1027 			 * Parse the TCP options here because
1028 			 * syncookies need access to the reflected
1029 			 * timestamp.
1030 			 */
1031 			tcp_dooptions(&to, optp, optlen, 0);
1032 			/*
1033 			 * NB: syncache_expand() doesn't unlock
1034 			 * inp and tcpinfo locks.
1035 			 */
1036 			if (!syncache_expand(&inc, &to, th, &so, m)) {
1037 				/*
1038 				 * No syncache entry or ACK was not
1039 				 * for our SYN/ACK.  Send a RST.
1040 				 * NB: syncache did its own logging
1041 				 * of the failure cause.
1042 				 */
1043 				rstreason = BANDLIM_RST_OPENPORT;
1044 				goto dropwithreset;
1045 			}
1046 			if (so == NULL) {
1047 				/*
1048 				 * We completed the 3-way handshake
1049 				 * but could not allocate a socket
1050 				 * either due to memory shortage,
1051 				 * listen queue length limits or
1052 				 * global socket limits.  Send RST
1053 				 * or wait and have the remote end
1054 				 * retransmit the ACK for another
1055 				 * try.
1056 				 */
1057 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1058 					log(LOG_DEBUG, "%s; %s: Listen socket: "
1059 					    "Socket allocation failed due to "
1060 					    "limits or memory shortage, %s\n",
1061 					    s, __func__,
1062 					    V_tcp_sc_rst_sock_fail ?
1063 					    "sending RST" : "try again");
1064 				if (V_tcp_sc_rst_sock_fail) {
1065 					rstreason = BANDLIM_UNLIMITED;
1066 					goto dropwithreset;
1067 				} else
1068 					goto dropunlock;
1069 			}
1070 			/*
1071 			 * Socket is created in state SYN_RECEIVED.
1072 			 * Unlock the listen socket, lock the newly
1073 			 * created socket and update the tp variable.
1074 			 */
1075 			INP_WUNLOCK(inp);	/* listen socket */
1076 			inp = sotoinpcb(so);
1077 			INP_WLOCK(inp);		/* new connection */
1078 			tp = intotcpcb(inp);
1079 			KASSERT(tp->t_state == TCPS_SYN_RECEIVED,
1080 			    ("%s: ", __func__));
1081 #ifdef TCP_SIGNATURE
1082 			if (sig_checked == 0)  {
1083 				tcp_dooptions(&to, optp, optlen,
1084 				    (thflags & TH_SYN) ? TO_SYN : 0);
1085 				if (!tcp_signature_verify_input(m, off0, tlen,
1086 				    optlen, &to, th, tp->t_flags)) {
1087 
1088 					/*
1089 					 * In SYN_SENT state if it receives an
1090 					 * RST, it is allowed for further
1091 					 * processing.
1092 					 */
1093 					if ((thflags & TH_RST) == 0 ||
1094 					    (tp->t_state == TCPS_SYN_SENT) == 0)
1095 						goto dropunlock;
1096 				}
1097 				sig_checked = 1;
1098 			}
1099 #endif
1100 
1101 			/*
1102 			 * Process the segment and the data it
1103 			 * contains.  tcp_do_segment() consumes
1104 			 * the mbuf chain and unlocks the inpcb.
1105 			 */
1106 			tcp_do_segment(m, th, so, tp, drop_hdrlen, tlen,
1107 			    iptos, ti_locked);
1108 			INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1109 			return;
1110 		}
1111 		/*
1112 		 * Segment flag validation for new connection attempts:
1113 		 *
1114 		 * Our (SYN|ACK) response was rejected.
1115 		 * Check with syncache and remove entry to prevent
1116 		 * retransmits.
1117 		 *
1118 		 * NB: syncache_chkrst does its own logging of failure
1119 		 * causes.
1120 		 */
1121 		if (thflags & TH_RST) {
1122 			syncache_chkrst(&inc, th);
1123 			goto dropunlock;
1124 		}
1125 		/*
1126 		 * We can't do anything without SYN.
1127 		 */
1128 		if ((thflags & TH_SYN) == 0) {
1129 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1130 				log(LOG_DEBUG, "%s; %s: Listen socket: "
1131 				    "SYN is missing, segment ignored\n",
1132 				    s, __func__);
1133 			TCPSTAT_INC(tcps_badsyn);
1134 			goto dropunlock;
1135 		}
1136 		/*
1137 		 * (SYN|ACK) is bogus on a listen socket.
1138 		 */
1139 		if (thflags & TH_ACK) {
1140 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1141 				log(LOG_DEBUG, "%s; %s: Listen socket: "
1142 				    "SYN|ACK invalid, segment rejected\n",
1143 				    s, __func__);
1144 			syncache_badack(&inc);	/* XXX: Not needed! */
1145 			TCPSTAT_INC(tcps_badsyn);
1146 			rstreason = BANDLIM_RST_OPENPORT;
1147 			goto dropwithreset;
1148 		}
1149 		/*
1150 		 * If the drop_synfin option is enabled, drop all
1151 		 * segments with both the SYN and FIN bits set.
1152 		 * This prevents e.g. nmap from identifying the
1153 		 * TCP/IP stack.
1154 		 * XXX: Poor reasoning.  nmap has other methods
1155 		 * and is constantly refining its stack detection
1156 		 * strategies.
1157 		 * XXX: This is a violation of the TCP specification
1158 		 * and was used by RFC1644.
1159 		 */
1160 		if ((thflags & TH_FIN) && V_drop_synfin) {
1161 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1162 				log(LOG_DEBUG, "%s; %s: Listen socket: "
1163 				    "SYN|FIN segment ignored (based on "
1164 				    "sysctl setting)\n", s, __func__);
1165 			TCPSTAT_INC(tcps_badsyn);
1166 			goto dropunlock;
1167 		}
1168 		/*
1169 		 * Segment's flags are (SYN) or (SYN|FIN).
1170 		 *
1171 		 * TH_PUSH, TH_URG, TH_ECE, TH_CWR are ignored
1172 		 * as they do not affect the state of the TCP FSM.
1173 		 * The data pointed to by TH_URG and th_urp is ignored.
1174 		 */
1175 		KASSERT((thflags & (TH_RST|TH_ACK)) == 0,
1176 		    ("%s: Listen socket: TH_RST or TH_ACK set", __func__));
1177 		KASSERT(thflags & (TH_SYN),
1178 		    ("%s: Listen socket: TH_SYN not set", __func__));
1179 #ifdef INET6
1180 		/*
1181 		 * If deprecated address is forbidden,
1182 		 * we do not accept SYN to deprecated interface
1183 		 * address to prevent any new inbound connection from
1184 		 * getting established.
1185 		 * When we do not accept SYN, we send a TCP RST,
1186 		 * with deprecated source address (instead of dropping
1187 		 * it).  We compromise it as it is much better for peer
1188 		 * to send a RST, and RST will be the final packet
1189 		 * for the exchange.
1190 		 *
1191 		 * If we do not forbid deprecated addresses, we accept
1192 		 * the SYN packet.  RFC2462 does not suggest dropping
1193 		 * SYN in this case.
1194 		 * If we decipher RFC2462 5.5.4, it says like this:
1195 		 * 1. use of deprecated addr with existing
1196 		 *    communication is okay - "SHOULD continue to be
1197 		 *    used"
1198 		 * 2. use of it with new communication:
1199 		 *   (2a) "SHOULD NOT be used if alternate address
1200 		 *        with sufficient scope is available"
1201 		 *   (2b) nothing mentioned otherwise.
1202 		 * Here we fall into (2b) case as we have no choice in
1203 		 * our source address selection - we must obey the peer.
1204 		 *
1205 		 * The wording in RFC2462 is confusing, and there are
1206 		 * multiple description text for deprecated address
1207 		 * handling - worse, they are not exactly the same.
1208 		 * I believe 5.5.4 is the best one, so we follow 5.5.4.
1209 		 */
1210 		if (isipv6 && !V_ip6_use_deprecated) {
1211 			struct in6_ifaddr *ia6;
1212 
1213 			ia6 = ip6_getdstifaddr(m);
1214 			if (ia6 != NULL &&
1215 			    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
1216 				ifa_free(&ia6->ia_ifa);
1217 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1218 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1219 					"Connection attempt to deprecated "
1220 					"IPv6 address rejected\n",
1221 					s, __func__);
1222 				rstreason = BANDLIM_RST_OPENPORT;
1223 				goto dropwithreset;
1224 			}
1225 			ifa_free(&ia6->ia_ifa);
1226 		}
1227 #endif /* INET6 */
1228 		/*
1229 		 * Basic sanity checks on incoming SYN requests:
1230 		 *   Don't respond if the destination is a link layer
1231 		 *	broadcast according to RFC1122 4.2.3.10, p. 104.
1232 		 *   If it is from this socket it must be forged.
1233 		 *   Don't respond if the source or destination is a
1234 		 *	global or subnet broad- or multicast address.
1235 		 *   Note that it is quite possible to receive unicast
1236 		 *	link-layer packets with a broadcast IP address. Use
1237 		 *	in_broadcast() to find them.
1238 		 */
1239 		if (m->m_flags & (M_BCAST|M_MCAST)) {
1240 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1241 			    log(LOG_DEBUG, "%s; %s: Listen socket: "
1242 				"Connection attempt from broad- or multicast "
1243 				"link layer address ignored\n", s, __func__);
1244 			goto dropunlock;
1245 		}
1246 #ifdef INET6
1247 		if (isipv6) {
1248 			if (th->th_dport == th->th_sport &&
1249 			    IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst, &ip6->ip6_src)) {
1250 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1251 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1252 					"Connection attempt to/from self "
1253 					"ignored\n", s, __func__);
1254 				goto dropunlock;
1255 			}
1256 			if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
1257 			    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
1258 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1259 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1260 					"Connection attempt from/to multicast "
1261 					"address ignored\n", s, __func__);
1262 				goto dropunlock;
1263 			}
1264 		}
1265 #endif
1266 #if defined(INET) && defined(INET6)
1267 		else
1268 #endif
1269 #ifdef INET
1270 		{
1271 			if (th->th_dport == th->th_sport &&
1272 			    ip->ip_dst.s_addr == ip->ip_src.s_addr) {
1273 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1274 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1275 					"Connection attempt from/to self "
1276 					"ignored\n", s, __func__);
1277 				goto dropunlock;
1278 			}
1279 			if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
1280 			    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
1281 			    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
1282 			    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif)) {
1283 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1284 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1285 					"Connection attempt from/to broad- "
1286 					"or multicast address ignored\n",
1287 					s, __func__);
1288 				goto dropunlock;
1289 			}
1290 		}
1291 #endif
1292 		/*
1293 		 * SYN appears to be valid.  Create compressed TCP state
1294 		 * for syncache.
1295 		 */
1296 #ifdef TCPDEBUG
1297 		if (so->so_options & SO_DEBUG)
1298 			tcp_trace(TA_INPUT, ostate, tp,
1299 			    (void *)tcp_saveipgen, &tcp_savetcp, 0);
1300 #endif
1301 		tcp_dooptions(&to, optp, optlen, TO_SYN);
1302 		syncache_add(&inc, &to, th, inp, &so, m);
1303 		/*
1304 		 * Entry added to syncache and mbuf consumed.
1305 		 * Everything already unlocked by syncache_add().
1306 		 */
1307 		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1308 		return;
1309 	}
1310 
1311 #ifdef TCP_SIGNATURE
1312 	if (sig_checked == 0)  {
1313 		tcp_dooptions(&to, optp, optlen,
1314 		    (thflags & TH_SYN) ? TO_SYN : 0);
1315 		if (!tcp_signature_verify_input(m, off0, tlen, optlen, &to,
1316 		    th, tp->t_flags)) {
1317 
1318 			/*
1319 			 * In SYN_SENT state if it receives an RST, it is
1320 			 * allowed for further processing.
1321 			 */
1322 			if ((thflags & TH_RST) == 0 ||
1323 			    (tp->t_state == TCPS_SYN_SENT) == 0)
1324 				goto dropunlock;
1325 		}
1326 		sig_checked = 1;
1327 	}
1328 #endif
1329 
1330 	/*
1331 	 * Segment belongs to a connection in SYN_SENT, ESTABLISHED or later
1332 	 * state.  tcp_do_segment() always consumes the mbuf chain, unlocks
1333 	 * the inpcb, and unlocks pcbinfo.
1334 	 */
1335 	tcp_do_segment(m, th, so, tp, drop_hdrlen, tlen, iptos, ti_locked);
1336 	INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1337 	return;
1338 
1339 dropwithreset:
1340 	if (ti_locked == TI_WLOCKED) {
1341 		INP_INFO_WUNLOCK(&V_tcbinfo);
1342 		ti_locked = TI_UNLOCKED;
1343 	}
1344 #ifdef INVARIANTS
1345 	else {
1346 		KASSERT(ti_locked == TI_UNLOCKED, ("%s: dropwithreset "
1347 		    "ti_locked: %d", __func__, ti_locked));
1348 		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1349 	}
1350 #endif
1351 
1352 	if (inp != NULL) {
1353 		tcp_dropwithreset(m, th, tp, tlen, rstreason);
1354 		INP_WUNLOCK(inp);
1355 	} else
1356 		tcp_dropwithreset(m, th, NULL, tlen, rstreason);
1357 	m = NULL;	/* mbuf chain got consumed. */
1358 	goto drop;
1359 
1360 dropunlock:
1361 	if (ti_locked == TI_WLOCKED) {
1362 		INP_INFO_WUNLOCK(&V_tcbinfo);
1363 		ti_locked = TI_UNLOCKED;
1364 	}
1365 #ifdef INVARIANTS
1366 	else {
1367 		KASSERT(ti_locked == TI_UNLOCKED, ("%s: dropunlock "
1368 		    "ti_locked: %d", __func__, ti_locked));
1369 		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1370 	}
1371 #endif
1372 
1373 	if (inp != NULL)
1374 		INP_WUNLOCK(inp);
1375 
1376 drop:
1377 	INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1378 	if (s != NULL)
1379 		free(s, M_TCPLOG);
1380 	if (m != NULL)
1381 		m_freem(m);
1382 }
1383 
1384 static void
1385 tcp_do_segment(struct mbuf *m, struct tcphdr *th, struct socket *so,
1386     struct tcpcb *tp, int drop_hdrlen, int tlen, uint8_t iptos,
1387     int ti_locked)
1388 {
1389 	int thflags, acked, ourfinisacked, needoutput = 0;
1390 	int rstreason, todrop, win;
1391 	u_long tiwin;
1392 	struct tcpopt to;
1393 
1394 #ifdef TCPDEBUG
1395 	/*
1396 	 * The size of tcp_saveipgen must be the size of the max ip header,
1397 	 * now IPv6.
1398 	 */
1399 	u_char tcp_saveipgen[IP6_HDR_LEN];
1400 	struct tcphdr tcp_savetcp;
1401 	short ostate = 0;
1402 #endif
1403 	thflags = th->th_flags;
1404 	tp->sackhint.last_sack_ack = 0;
1405 
1406 	/*
1407 	 * If this is either a state-changing packet or current state isn't
1408 	 * established, we require a write lock on tcbinfo.  Otherwise, we
1409 	 * allow either a read lock or a write lock, as we may have acquired
1410 	 * a write lock due to a race.
1411 	 *
1412 	 * Require a global write lock for SYN/FIN/RST segments or
1413 	 * non-established connections; otherwise accept either a read or
1414 	 * write lock, as we may have conservatively acquired a write lock in
1415 	 * certain cases in tcp_input() (is this still true?).  Currently we
1416 	 * will never enter with no lock, so we try to drop it quickly in the
1417 	 * common pure ack/pure data cases.
1418 	 */
1419 	if ((thflags & (TH_SYN | TH_FIN | TH_RST)) != 0 ||
1420 	    tp->t_state != TCPS_ESTABLISHED) {
1421 		KASSERT(ti_locked == TI_WLOCKED, ("%s ti_locked %d for "
1422 		    "SYN/FIN/RST/!EST", __func__, ti_locked));
1423 		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1424 	} else {
1425 #ifdef INVARIANTS
1426 		if (ti_locked == TI_WLOCKED)
1427 			INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1428 		else {
1429 			KASSERT(ti_locked == TI_UNLOCKED, ("%s: EST "
1430 			    "ti_locked: %d", __func__, ti_locked));
1431 			INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1432 		}
1433 #endif
1434 	}
1435 	INP_WLOCK_ASSERT(tp->t_inpcb);
1436 	KASSERT(tp->t_state > TCPS_LISTEN, ("%s: TCPS_LISTEN",
1437 	    __func__));
1438 	KASSERT(tp->t_state != TCPS_TIME_WAIT, ("%s: TCPS_TIME_WAIT",
1439 	    __func__));
1440 
1441 	/*
1442 	 * Segment received on connection.
1443 	 * Reset idle time and keep-alive timer.
1444 	 * XXX: This should be done after segment
1445 	 * validation to ignore broken/spoofed segs.
1446 	 */
1447 	tp->t_rcvtime = ticks;
1448 	if (TCPS_HAVEESTABLISHED(tp->t_state))
1449 		tcp_timer_activate(tp, TT_KEEP, tcp_keepidle);
1450 
1451 	/*
1452 	 * Unscale the window into a 32-bit value.
1453 	 * For the SYN_SENT state the scale is zero.
1454 	 */
1455 	tiwin = th->th_win << tp->snd_scale;
1456 
1457 	/*
1458 	 * TCP ECN processing.
1459 	 */
1460 	if (tp->t_flags & TF_ECN_PERMIT) {
1461 		if (thflags & TH_CWR)
1462 			tp->t_flags &= ~TF_ECN_SND_ECE;
1463 		switch (iptos & IPTOS_ECN_MASK) {
1464 		case IPTOS_ECN_CE:
1465 			tp->t_flags |= TF_ECN_SND_ECE;
1466 			TCPSTAT_INC(tcps_ecn_ce);
1467 			break;
1468 		case IPTOS_ECN_ECT0:
1469 			TCPSTAT_INC(tcps_ecn_ect0);
1470 			break;
1471 		case IPTOS_ECN_ECT1:
1472 			TCPSTAT_INC(tcps_ecn_ect1);
1473 			break;
1474 		}
1475 		/* Congestion experienced. */
1476 		if (thflags & TH_ECE) {
1477 			cc_cong_signal(tp, th, CC_ECN);
1478 		}
1479 	}
1480 
1481 	/*
1482 	 * Parse options on any incoming segment.
1483 	 */
1484 	tcp_dooptions(&to, (u_char *)(th + 1),
1485 	    (th->th_off << 2) - sizeof(struct tcphdr),
1486 	    (thflags & TH_SYN) ? TO_SYN : 0);
1487 
1488 	/*
1489 	 * If echoed timestamp is later than the current time,
1490 	 * fall back to non RFC1323 RTT calculation.  Normalize
1491 	 * timestamp if syncookies were used when this connection
1492 	 * was established.
1493 	 */
1494 	if ((to.to_flags & TOF_TS) && (to.to_tsecr != 0)) {
1495 		to.to_tsecr -= tp->ts_offset;
1496 		if (TSTMP_GT(to.to_tsecr, ticks))
1497 			to.to_tsecr = 0;
1498 	}
1499 
1500 	/*
1501 	 * Process options only when we get SYN/ACK back. The SYN case
1502 	 * for incoming connections is handled in tcp_syncache.
1503 	 * According to RFC1323 the window field in a SYN (i.e., a <SYN>
1504 	 * or <SYN,ACK>) segment itself is never scaled.
1505 	 * XXX this is traditional behavior, may need to be cleaned up.
1506 	 */
1507 	if (tp->t_state == TCPS_SYN_SENT && (thflags & TH_SYN)) {
1508 		if ((to.to_flags & TOF_SCALE) &&
1509 		    (tp->t_flags & TF_REQ_SCALE)) {
1510 			tp->t_flags |= TF_RCVD_SCALE;
1511 			tp->snd_scale = to.to_wscale;
1512 		}
1513 		/*
1514 		 * Initial send window.  It will be updated with
1515 		 * the next incoming segment to the scaled value.
1516 		 */
1517 		tp->snd_wnd = th->th_win;
1518 		if (to.to_flags & TOF_TS) {
1519 			tp->t_flags |= TF_RCVD_TSTMP;
1520 			tp->ts_recent = to.to_tsval;
1521 			tp->ts_recent_age = ticks;
1522 		}
1523 		if (to.to_flags & TOF_MSS)
1524 			tcp_mss(tp, to.to_mss);
1525 		if ((tp->t_flags & TF_SACK_PERMIT) &&
1526 		    (to.to_flags & TOF_SACKPERM) == 0)
1527 			tp->t_flags &= ~TF_SACK_PERMIT;
1528 	}
1529 
1530 	/*
1531 	 * Header prediction: check for the two common cases
1532 	 * of a uni-directional data xfer.  If the packet has
1533 	 * no control flags, is in-sequence, the window didn't
1534 	 * change and we're not retransmitting, it's a
1535 	 * candidate.  If the length is zero and the ack moved
1536 	 * forward, we're the sender side of the xfer.  Just
1537 	 * free the data acked & wake any higher level process
1538 	 * that was blocked waiting for space.  If the length
1539 	 * is non-zero and the ack didn't move, we're the
1540 	 * receiver side.  If we're getting packets in-order
1541 	 * (the reassembly queue is empty), add the data to
1542 	 * the socket buffer and note that we need a delayed ack.
1543 	 * Make sure that the hidden state-flags are also off.
1544 	 * Since we check for TCPS_ESTABLISHED first, it can only
1545 	 * be TH_NEEDSYN.
1546 	 */
1547 	if (tp->t_state == TCPS_ESTABLISHED &&
1548 	    th->th_seq == tp->rcv_nxt &&
1549 	    (thflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
1550 	    tp->snd_nxt == tp->snd_max &&
1551 	    tiwin && tiwin == tp->snd_wnd &&
1552 	    ((tp->t_flags & (TF_NEEDSYN|TF_NEEDFIN)) == 0) &&
1553 	    LIST_EMPTY(&tp->t_segq) &&
1554 	    ((to.to_flags & TOF_TS) == 0 ||
1555 	     TSTMP_GEQ(to.to_tsval, tp->ts_recent)) ) {
1556 
1557 		/*
1558 		 * If last ACK falls within this segment's sequence numbers,
1559 		 * record the timestamp.
1560 		 * NOTE that the test is modified according to the latest
1561 		 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
1562 		 */
1563 		if ((to.to_flags & TOF_TS) != 0 &&
1564 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1565 			tp->ts_recent_age = ticks;
1566 			tp->ts_recent = to.to_tsval;
1567 		}
1568 
1569 		if (tlen == 0) {
1570 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
1571 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
1572 			    !IN_RECOVERY(tp->t_flags) &&
1573 			    (to.to_flags & TOF_SACK) == 0 &&
1574 			    TAILQ_EMPTY(&tp->snd_holes)) {
1575 				/*
1576 				 * This is a pure ack for outstanding data.
1577 				 */
1578 				if (ti_locked == TI_WLOCKED)
1579 					INP_INFO_WUNLOCK(&V_tcbinfo);
1580 				ti_locked = TI_UNLOCKED;
1581 
1582 				TCPSTAT_INC(tcps_predack);
1583 
1584 				/*
1585 				 * "bad retransmit" recovery.
1586 				 */
1587 				if (tp->t_rxtshift == 1 &&
1588 				    tp->t_flags & TF_PREVVALID &&
1589 				    (int)(ticks - tp->t_badrxtwin) < 0) {
1590 					cc_cong_signal(tp, th, CC_RTO_ERR);
1591 				}
1592 
1593 				/*
1594 				 * Recalculate the transmit timer / rtt.
1595 				 *
1596 				 * Some boxes send broken timestamp replies
1597 				 * during the SYN+ACK phase, ignore
1598 				 * timestamps of 0 or we could calculate a
1599 				 * huge RTT and blow up the retransmit timer.
1600 				 */
1601 				if ((to.to_flags & TOF_TS) != 0 &&
1602 				    to.to_tsecr) {
1603 					if (!tp->t_rttlow ||
1604 					    tp->t_rttlow > ticks - to.to_tsecr)
1605 						tp->t_rttlow = ticks - to.to_tsecr;
1606 					tcp_xmit_timer(tp,
1607 					    ticks - to.to_tsecr + 1);
1608 				} else if (tp->t_rtttime &&
1609 				    SEQ_GT(th->th_ack, tp->t_rtseq)) {
1610 					if (!tp->t_rttlow ||
1611 					    tp->t_rttlow > ticks - tp->t_rtttime)
1612 						tp->t_rttlow = ticks - tp->t_rtttime;
1613 					tcp_xmit_timer(tp,
1614 							ticks - tp->t_rtttime);
1615 				}
1616 				acked = BYTES_THIS_ACK(tp, th);
1617 
1618 				/* Run HHOOK_TCP_ESTABLISHED_IN helper hooks. */
1619 				hhook_run_tcp_est_in(tp, th, &to);
1620 
1621 				TCPSTAT_INC(tcps_rcvackpack);
1622 				TCPSTAT_ADD(tcps_rcvackbyte, acked);
1623 				sbdrop(&so->so_snd, acked);
1624 				if (SEQ_GT(tp->snd_una, tp->snd_recover) &&
1625 				    SEQ_LEQ(th->th_ack, tp->snd_recover))
1626 					tp->snd_recover = th->th_ack - 1;
1627 
1628 				/*
1629 				 * Let the congestion control algorithm update
1630 				 * congestion control related information. This
1631 				 * typically means increasing the congestion
1632 				 * window.
1633 				 */
1634 				cc_ack_received(tp, th, CC_ACK);
1635 
1636 				tp->snd_una = th->th_ack;
1637 				/*
1638 				 * Pull snd_wl2 up to prevent seq wrap relative
1639 				 * to th_ack.
1640 				 */
1641 				tp->snd_wl2 = th->th_ack;
1642 				tp->t_dupacks = 0;
1643 				m_freem(m);
1644 				ND6_HINT(tp); /* Some progress has been made. */
1645 
1646 				/*
1647 				 * If all outstanding data are acked, stop
1648 				 * retransmit timer, otherwise restart timer
1649 				 * using current (possibly backed-off) value.
1650 				 * If process is waiting for space,
1651 				 * wakeup/selwakeup/signal.  If data
1652 				 * are ready to send, let tcp_output
1653 				 * decide between more output or persist.
1654 				 */
1655 #ifdef TCPDEBUG
1656 				if (so->so_options & SO_DEBUG)
1657 					tcp_trace(TA_INPUT, ostate, tp,
1658 					    (void *)tcp_saveipgen,
1659 					    &tcp_savetcp, 0);
1660 #endif
1661 				if (tp->snd_una == tp->snd_max)
1662 					tcp_timer_activate(tp, TT_REXMT, 0);
1663 				else if (!tcp_timer_active(tp, TT_PERSIST))
1664 					tcp_timer_activate(tp, TT_REXMT,
1665 						      tp->t_rxtcur);
1666 				sowwakeup(so);
1667 				if (so->so_snd.sb_cc)
1668 					(void) tcp_output(tp);
1669 				goto check_delack;
1670 			}
1671 		} else if (th->th_ack == tp->snd_una &&
1672 		    tlen <= sbspace(&so->so_rcv)) {
1673 			int newsize = 0;	/* automatic sockbuf scaling */
1674 
1675 			/*
1676 			 * This is a pure, in-sequence data packet with
1677 			 * nothing on the reassembly queue and we have enough
1678 			 * buffer space to take it.
1679 			 */
1680 			if (ti_locked == TI_WLOCKED)
1681 				INP_INFO_WUNLOCK(&V_tcbinfo);
1682 			ti_locked = TI_UNLOCKED;
1683 
1684 			/* Clean receiver SACK report if present */
1685 			if ((tp->t_flags & TF_SACK_PERMIT) && tp->rcv_numsacks)
1686 				tcp_clean_sackreport(tp);
1687 			TCPSTAT_INC(tcps_preddat);
1688 			tp->rcv_nxt += tlen;
1689 			/*
1690 			 * Pull snd_wl1 up to prevent seq wrap relative to
1691 			 * th_seq.
1692 			 */
1693 			tp->snd_wl1 = th->th_seq;
1694 			/*
1695 			 * Pull rcv_up up to prevent seq wrap relative to
1696 			 * rcv_nxt.
1697 			 */
1698 			tp->rcv_up = tp->rcv_nxt;
1699 			TCPSTAT_INC(tcps_rcvpack);
1700 			TCPSTAT_ADD(tcps_rcvbyte, tlen);
1701 			ND6_HINT(tp);	/* Some progress has been made */
1702 #ifdef TCPDEBUG
1703 			if (so->so_options & SO_DEBUG)
1704 				tcp_trace(TA_INPUT, ostate, tp,
1705 				    (void *)tcp_saveipgen, &tcp_savetcp, 0);
1706 #endif
1707 		/*
1708 		 * Automatic sizing of receive socket buffer.  Often the send
1709 		 * buffer size is not optimally adjusted to the actual network
1710 		 * conditions at hand (delay bandwidth product).  Setting the
1711 		 * buffer size too small limits throughput on links with high
1712 		 * bandwidth and high delay (eg. trans-continental/oceanic links).
1713 		 *
1714 		 * On the receive side the socket buffer memory is only rarely
1715 		 * used to any significant extent.  This allows us to be much
1716 		 * more aggressive in scaling the receive socket buffer.  For
1717 		 * the case that the buffer space is actually used to a large
1718 		 * extent and we run out of kernel memory we can simply drop
1719 		 * the new segments; TCP on the sender will just retransmit it
1720 		 * later.  Setting the buffer size too big may only consume too
1721 		 * much kernel memory if the application doesn't read() from
1722 		 * the socket or packet loss or reordering makes use of the
1723 		 * reassembly queue.
1724 		 *
1725 		 * The criteria to step up the receive buffer one notch are:
1726 		 *  1. the number of bytes received during the time it takes
1727 		 *     one timestamp to be reflected back to us (the RTT);
1728 		 *  2. received bytes per RTT is within seven eighth of the
1729 		 *     current socket buffer size;
1730 		 *  3. receive buffer size has not hit maximal automatic size;
1731 		 *
1732 		 * This algorithm does one step per RTT at most and only if
1733 		 * we receive a bulk stream w/o packet losses or reorderings.
1734 		 * Shrinking the buffer during idle times is not necessary as
1735 		 * it doesn't consume any memory when idle.
1736 		 *
1737 		 * TODO: Only step up if the application is actually serving
1738 		 * the buffer to better manage the socket buffer resources.
1739 		 */
1740 			if (V_tcp_do_autorcvbuf &&
1741 			    to.to_tsecr &&
1742 			    (so->so_rcv.sb_flags & SB_AUTOSIZE)) {
1743 				if (TSTMP_GT(to.to_tsecr, tp->rfbuf_ts) &&
1744 				    to.to_tsecr - tp->rfbuf_ts < hz) {
1745 					if (tp->rfbuf_cnt >
1746 					    (so->so_rcv.sb_hiwat / 8 * 7) &&
1747 					    so->so_rcv.sb_hiwat <
1748 					    V_tcp_autorcvbuf_max) {
1749 						newsize =
1750 						    min(so->so_rcv.sb_hiwat +
1751 						    V_tcp_autorcvbuf_inc,
1752 						    V_tcp_autorcvbuf_max);
1753 					}
1754 					/* Start over with next RTT. */
1755 					tp->rfbuf_ts = 0;
1756 					tp->rfbuf_cnt = 0;
1757 				} else
1758 					tp->rfbuf_cnt += tlen;	/* add up */
1759 			}
1760 
1761 			/* Add data to socket buffer. */
1762 			SOCKBUF_LOCK(&so->so_rcv);
1763 			if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
1764 				m_freem(m);
1765 			} else {
1766 				/*
1767 				 * Set new socket buffer size.
1768 				 * Give up when limit is reached.
1769 				 */
1770 				if (newsize)
1771 					if (!sbreserve_locked(&so->so_rcv,
1772 					    newsize, so, NULL))
1773 						so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
1774 				m_adj(m, drop_hdrlen);	/* delayed header drop */
1775 				sbappendstream_locked(&so->so_rcv, m);
1776 			}
1777 			/* NB: sorwakeup_locked() does an implicit unlock. */
1778 			sorwakeup_locked(so);
1779 			if (DELAY_ACK(tp)) {
1780 				tp->t_flags |= TF_DELACK;
1781 			} else {
1782 				tp->t_flags |= TF_ACKNOW;
1783 				tcp_output(tp);
1784 			}
1785 			goto check_delack;
1786 		}
1787 	}
1788 
1789 	/*
1790 	 * Calculate amount of space in receive window,
1791 	 * and then do TCP input processing.
1792 	 * Receive window is amount of space in rcv queue,
1793 	 * but not less than advertised window.
1794 	 */
1795 	win = sbspace(&so->so_rcv);
1796 	if (win < 0)
1797 		win = 0;
1798 	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1799 
1800 	/* Reset receive buffer auto scaling when not in bulk receive mode. */
1801 	tp->rfbuf_ts = 0;
1802 	tp->rfbuf_cnt = 0;
1803 
1804 	switch (tp->t_state) {
1805 
1806 	/*
1807 	 * If the state is SYN_RECEIVED:
1808 	 *	if seg contains an ACK, but not for our SYN/ACK, send a RST.
1809 	 */
1810 	case TCPS_SYN_RECEIVED:
1811 		if ((thflags & TH_ACK) &&
1812 		    (SEQ_LEQ(th->th_ack, tp->snd_una) ||
1813 		     SEQ_GT(th->th_ack, tp->snd_max))) {
1814 				rstreason = BANDLIM_RST_OPENPORT;
1815 				goto dropwithreset;
1816 		}
1817 		break;
1818 
1819 	/*
1820 	 * If the state is SYN_SENT:
1821 	 *	if seg contains an ACK, but not for our SYN, drop the input.
1822 	 *	if seg contains a RST, then drop the connection.
1823 	 *	if seg does not contain SYN, then drop it.
1824 	 * Otherwise this is an acceptable SYN segment
1825 	 *	initialize tp->rcv_nxt and tp->irs
1826 	 *	if seg contains ack then advance tp->snd_una
1827 	 *	if seg contains an ECE and ECN support is enabled, the stream
1828 	 *	    is ECN capable.
1829 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1830 	 *	arrange for segment to be acked (eventually)
1831 	 *	continue processing rest of data/controls, beginning with URG
1832 	 */
1833 	case TCPS_SYN_SENT:
1834 		if ((thflags & TH_ACK) &&
1835 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
1836 		     SEQ_GT(th->th_ack, tp->snd_max))) {
1837 			rstreason = BANDLIM_UNLIMITED;
1838 			goto dropwithreset;
1839 		}
1840 		if ((thflags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST))
1841 			tp = tcp_drop(tp, ECONNREFUSED);
1842 		if (thflags & TH_RST)
1843 			goto drop;
1844 		if (!(thflags & TH_SYN))
1845 			goto drop;
1846 
1847 		tp->irs = th->th_seq;
1848 		tcp_rcvseqinit(tp);
1849 		if (thflags & TH_ACK) {
1850 			TCPSTAT_INC(tcps_connects);
1851 			soisconnected(so);
1852 #ifdef MAC
1853 			mac_socketpeer_set_from_mbuf(m, so);
1854 #endif
1855 			/* Do window scaling on this connection? */
1856 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1857 				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1858 				tp->rcv_scale = tp->request_r_scale;
1859 			}
1860 			tp->rcv_adv += imin(tp->rcv_wnd,
1861 			    TCP_MAXWIN << tp->rcv_scale);
1862 			tp->snd_una++;		/* SYN is acked */
1863 			/*
1864 			 * If there's data, delay ACK; if there's also a FIN
1865 			 * ACKNOW will be turned on later.
1866 			 */
1867 			if (DELAY_ACK(tp) && tlen != 0)
1868 				tcp_timer_activate(tp, TT_DELACK,
1869 				    tcp_delacktime);
1870 			else
1871 				tp->t_flags |= TF_ACKNOW;
1872 
1873 			if ((thflags & TH_ECE) && V_tcp_do_ecn) {
1874 				tp->t_flags |= TF_ECN_PERMIT;
1875 				TCPSTAT_INC(tcps_ecn_shs);
1876 			}
1877 
1878 			/*
1879 			 * Received <SYN,ACK> in SYN_SENT[*] state.
1880 			 * Transitions:
1881 			 *	SYN_SENT  --> ESTABLISHED
1882 			 *	SYN_SENT* --> FIN_WAIT_1
1883 			 */
1884 			tp->t_starttime = ticks;
1885 			if (tp->t_flags & TF_NEEDFIN) {
1886 				tp->t_state = TCPS_FIN_WAIT_1;
1887 				tp->t_flags &= ~TF_NEEDFIN;
1888 				thflags &= ~TH_SYN;
1889 			} else {
1890 				tp->t_state = TCPS_ESTABLISHED;
1891 				cc_conn_init(tp);
1892 				tcp_timer_activate(tp, TT_KEEP, tcp_keepidle);
1893 			}
1894 		} else {
1895 			/*
1896 			 * Received initial SYN in SYN-SENT[*] state =>
1897 			 * simultaneous open.  If segment contains CC option
1898 			 * and there is a cached CC, apply TAO test.
1899 			 * If it succeeds, connection is * half-synchronized.
1900 			 * Otherwise, do 3-way handshake:
1901 			 *        SYN-SENT -> SYN-RECEIVED
1902 			 *        SYN-SENT* -> SYN-RECEIVED*
1903 			 * If there was no CC option, clear cached CC value.
1904 			 */
1905 			tp->t_flags |= (TF_ACKNOW | TF_NEEDSYN);
1906 			tcp_timer_activate(tp, TT_REXMT, 0);
1907 			tp->t_state = TCPS_SYN_RECEIVED;
1908 		}
1909 
1910 		KASSERT(ti_locked == TI_WLOCKED, ("%s: trimthenstep6: "
1911 		    "ti_locked %d", __func__, ti_locked));
1912 		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1913 		INP_WLOCK_ASSERT(tp->t_inpcb);
1914 
1915 		/*
1916 		 * Advance th->th_seq to correspond to first data byte.
1917 		 * If data, trim to stay within window,
1918 		 * dropping FIN if necessary.
1919 		 */
1920 		th->th_seq++;
1921 		if (tlen > tp->rcv_wnd) {
1922 			todrop = tlen - tp->rcv_wnd;
1923 			m_adj(m, -todrop);
1924 			tlen = tp->rcv_wnd;
1925 			thflags &= ~TH_FIN;
1926 			TCPSTAT_INC(tcps_rcvpackafterwin);
1927 			TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop);
1928 		}
1929 		tp->snd_wl1 = th->th_seq - 1;
1930 		tp->rcv_up = th->th_seq;
1931 		/*
1932 		 * Client side of transaction: already sent SYN and data.
1933 		 * If the remote host used T/TCP to validate the SYN,
1934 		 * our data will be ACK'd; if so, enter normal data segment
1935 		 * processing in the middle of step 5, ack processing.
1936 		 * Otherwise, goto step 6.
1937 		 */
1938 		if (thflags & TH_ACK)
1939 			goto process_ACK;
1940 
1941 		goto step6;
1942 
1943 	/*
1944 	 * If the state is LAST_ACK or CLOSING or TIME_WAIT:
1945 	 *      do normal processing.
1946 	 *
1947 	 * NB: Leftover from RFC1644 T/TCP.  Cases to be reused later.
1948 	 */
1949 	case TCPS_LAST_ACK:
1950 	case TCPS_CLOSING:
1951 		break;  /* continue normal processing */
1952 	}
1953 
1954 	/*
1955 	 * States other than LISTEN or SYN_SENT.
1956 	 * First check the RST flag and sequence number since reset segments
1957 	 * are exempt from the timestamp and connection count tests.  This
1958 	 * fixes a bug introduced by the Stevens, vol. 2, p. 960 bugfix
1959 	 * below which allowed reset segments in half the sequence space
1960 	 * to fall though and be processed (which gives forged reset
1961 	 * segments with a random sequence number a 50 percent chance of
1962 	 * killing a connection).
1963 	 * Then check timestamp, if present.
1964 	 * Then check the connection count, if present.
1965 	 * Then check that at least some bytes of segment are within
1966 	 * receive window.  If segment begins before rcv_nxt,
1967 	 * drop leading data (and SYN); if nothing left, just ack.
1968 	 *
1969 	 *
1970 	 * If the RST bit is set, check the sequence number to see
1971 	 * if this is a valid reset segment.
1972 	 * RFC 793 page 37:
1973 	 *   In all states except SYN-SENT, all reset (RST) segments
1974 	 *   are validated by checking their SEQ-fields.  A reset is
1975 	 *   valid if its sequence number is in the window.
1976 	 * Note: this does not take into account delayed ACKs, so
1977 	 *   we should test against last_ack_sent instead of rcv_nxt.
1978 	 *   The sequence number in the reset segment is normally an
1979 	 *   echo of our outgoing acknowlegement numbers, but some hosts
1980 	 *   send a reset with the sequence number at the rightmost edge
1981 	 *   of our receive window, and we have to handle this case.
1982 	 * Note 2: Paul Watson's paper "Slipping in the Window" has shown
1983 	 *   that brute force RST attacks are possible.  To combat this,
1984 	 *   we use a much stricter check while in the ESTABLISHED state,
1985 	 *   only accepting RSTs where the sequence number is equal to
1986 	 *   last_ack_sent.  In all other states (the states in which a
1987 	 *   RST is more likely), the more permissive check is used.
1988 	 * If we have multiple segments in flight, the initial reset
1989 	 * segment sequence numbers will be to the left of last_ack_sent,
1990 	 * but they will eventually catch up.
1991 	 * In any case, it never made sense to trim reset segments to
1992 	 * fit the receive window since RFC 1122 says:
1993 	 *   4.2.2.12  RST Segment: RFC-793 Section 3.4
1994 	 *
1995 	 *    A TCP SHOULD allow a received RST segment to include data.
1996 	 *
1997 	 *    DISCUSSION
1998 	 *         It has been suggested that a RST segment could contain
1999 	 *         ASCII text that encoded and explained the cause of the
2000 	 *         RST.  No standard has yet been established for such
2001 	 *         data.
2002 	 *
2003 	 * If the reset segment passes the sequence number test examine
2004 	 * the state:
2005 	 *    SYN_RECEIVED STATE:
2006 	 *	If passive open, return to LISTEN state.
2007 	 *	If active open, inform user that connection was refused.
2008 	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT_2, CLOSE_WAIT STATES:
2009 	 *	Inform user that connection was reset, and close tcb.
2010 	 *    CLOSING, LAST_ACK STATES:
2011 	 *	Close the tcb.
2012 	 *    TIME_WAIT STATE:
2013 	 *	Drop the segment - see Stevens, vol. 2, p. 964 and
2014 	 *      RFC 1337.
2015 	 */
2016 	if (thflags & TH_RST) {
2017 		if (SEQ_GEQ(th->th_seq, tp->last_ack_sent - 1) &&
2018 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) {
2019 			switch (tp->t_state) {
2020 
2021 			case TCPS_SYN_RECEIVED:
2022 				so->so_error = ECONNREFUSED;
2023 				goto close;
2024 
2025 			case TCPS_ESTABLISHED:
2026 				if (V_tcp_insecure_rst == 0 &&
2027 				    !(SEQ_GEQ(th->th_seq, tp->rcv_nxt - 1) &&
2028 				    SEQ_LEQ(th->th_seq, tp->rcv_nxt + 1)) &&
2029 				    !(SEQ_GEQ(th->th_seq, tp->last_ack_sent - 1) &&
2030 				    SEQ_LEQ(th->th_seq, tp->last_ack_sent + 1))) {
2031 					TCPSTAT_INC(tcps_badrst);
2032 					goto drop;
2033 				}
2034 				/* FALLTHROUGH */
2035 			case TCPS_FIN_WAIT_1:
2036 			case TCPS_FIN_WAIT_2:
2037 			case TCPS_CLOSE_WAIT:
2038 				so->so_error = ECONNRESET;
2039 			close:
2040 				KASSERT(ti_locked == TI_WLOCKED,
2041 				    ("tcp_do_segment: TH_RST 1 ti_locked %d",
2042 				    ti_locked));
2043 				INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2044 
2045 				tp->t_state = TCPS_CLOSED;
2046 				TCPSTAT_INC(tcps_drops);
2047 				tp = tcp_close(tp);
2048 				break;
2049 
2050 			case TCPS_CLOSING:
2051 			case TCPS_LAST_ACK:
2052 				KASSERT(ti_locked == TI_WLOCKED,
2053 				    ("tcp_do_segment: TH_RST 2 ti_locked %d",
2054 				    ti_locked));
2055 				INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2056 
2057 				tp = tcp_close(tp);
2058 				break;
2059 			}
2060 		}
2061 		goto drop;
2062 	}
2063 
2064 	/*
2065 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
2066 	 * and it's less than ts_recent, drop it.
2067 	 */
2068 	if ((to.to_flags & TOF_TS) != 0 && tp->ts_recent &&
2069 	    TSTMP_LT(to.to_tsval, tp->ts_recent)) {
2070 
2071 		/* Check to see if ts_recent is over 24 days old.  */
2072 		if (ticks - tp->ts_recent_age > TCP_PAWS_IDLE) {
2073 			/*
2074 			 * Invalidate ts_recent.  If this segment updates
2075 			 * ts_recent, the age will be reset later and ts_recent
2076 			 * will get a valid value.  If it does not, setting
2077 			 * ts_recent to zero will at least satisfy the
2078 			 * requirement that zero be placed in the timestamp
2079 			 * echo reply when ts_recent isn't valid.  The
2080 			 * age isn't reset until we get a valid ts_recent
2081 			 * because we don't want out-of-order segments to be
2082 			 * dropped when ts_recent is old.
2083 			 */
2084 			tp->ts_recent = 0;
2085 		} else {
2086 			TCPSTAT_INC(tcps_rcvduppack);
2087 			TCPSTAT_ADD(tcps_rcvdupbyte, tlen);
2088 			TCPSTAT_INC(tcps_pawsdrop);
2089 			if (tlen)
2090 				goto dropafterack;
2091 			goto drop;
2092 		}
2093 	}
2094 
2095 	/*
2096 	 * In the SYN-RECEIVED state, validate that the packet belongs to
2097 	 * this connection before trimming the data to fit the receive
2098 	 * window.  Check the sequence number versus IRS since we know
2099 	 * the sequence numbers haven't wrapped.  This is a partial fix
2100 	 * for the "LAND" DoS attack.
2101 	 */
2102 	if (tp->t_state == TCPS_SYN_RECEIVED && SEQ_LT(th->th_seq, tp->irs)) {
2103 		rstreason = BANDLIM_RST_OPENPORT;
2104 		goto dropwithreset;
2105 	}
2106 
2107 	todrop = tp->rcv_nxt - th->th_seq;
2108 	if (todrop > 0) {
2109 		/*
2110 		 * If this is a duplicate SYN for our current connection,
2111 		 * advance over it and pretend and it's not a SYN.
2112 		 */
2113 		if (thflags & TH_SYN && th->th_seq == tp->irs) {
2114 			thflags &= ~TH_SYN;
2115 			th->th_seq++;
2116 			if (th->th_urp > 1)
2117 				th->th_urp--;
2118 			else
2119 				thflags &= ~TH_URG;
2120 			todrop--;
2121 		}
2122 		/*
2123 		 * Following if statement from Stevens, vol. 2, p. 960.
2124 		 */
2125 		if (todrop > tlen
2126 		    || (todrop == tlen && (thflags & TH_FIN) == 0)) {
2127 			/*
2128 			 * Any valid FIN must be to the left of the window.
2129 			 * At this point the FIN must be a duplicate or out
2130 			 * of sequence; drop it.
2131 			 */
2132 			thflags &= ~TH_FIN;
2133 
2134 			/*
2135 			 * Send an ACK to resynchronize and drop any data.
2136 			 * But keep on processing for RST or ACK.
2137 			 */
2138 			tp->t_flags |= TF_ACKNOW;
2139 			todrop = tlen;
2140 			TCPSTAT_INC(tcps_rcvduppack);
2141 			TCPSTAT_ADD(tcps_rcvdupbyte, todrop);
2142 		} else {
2143 			TCPSTAT_INC(tcps_rcvpartduppack);
2144 			TCPSTAT_ADD(tcps_rcvpartdupbyte, todrop);
2145 		}
2146 		drop_hdrlen += todrop;	/* drop from the top afterwards */
2147 		th->th_seq += todrop;
2148 		tlen -= todrop;
2149 		if (th->th_urp > todrop)
2150 			th->th_urp -= todrop;
2151 		else {
2152 			thflags &= ~TH_URG;
2153 			th->th_urp = 0;
2154 		}
2155 	}
2156 
2157 	/*
2158 	 * If new data are received on a connection after the
2159 	 * user processes are gone, then RST the other end.
2160 	 */
2161 	if ((so->so_state & SS_NOFDREF) &&
2162 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
2163 		char *s;
2164 
2165 		KASSERT(ti_locked == TI_WLOCKED, ("%s: SS_NOFDEREF && "
2166 		    "CLOSE_WAIT && tlen ti_locked %d", __func__, ti_locked));
2167 		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2168 
2169 		if ((s = tcp_log_addrs(&tp->t_inpcb->inp_inc, th, NULL, NULL))) {
2170 			log(LOG_DEBUG, "%s; %s: %s: Received %d bytes of data after socket "
2171 			    "was closed, sending RST and removing tcpcb\n",
2172 			    s, __func__, tcpstates[tp->t_state], tlen);
2173 			free(s, M_TCPLOG);
2174 		}
2175 		tp = tcp_close(tp);
2176 		TCPSTAT_INC(tcps_rcvafterclose);
2177 		rstreason = BANDLIM_UNLIMITED;
2178 		goto dropwithreset;
2179 	}
2180 
2181 	/*
2182 	 * If segment ends after window, drop trailing data
2183 	 * (and PUSH and FIN); if nothing left, just ACK.
2184 	 */
2185 	todrop = (th->th_seq + tlen) - (tp->rcv_nxt + tp->rcv_wnd);
2186 	if (todrop > 0) {
2187 		TCPSTAT_INC(tcps_rcvpackafterwin);
2188 		if (todrop >= tlen) {
2189 			TCPSTAT_ADD(tcps_rcvbyteafterwin, tlen);
2190 			/*
2191 			 * If window is closed can only take segments at
2192 			 * window edge, and have to drop data and PUSH from
2193 			 * incoming segments.  Continue processing, but
2194 			 * remember to ack.  Otherwise, drop segment
2195 			 * and ack.
2196 			 */
2197 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
2198 				tp->t_flags |= TF_ACKNOW;
2199 				TCPSTAT_INC(tcps_rcvwinprobe);
2200 			} else
2201 				goto dropafterack;
2202 		} else
2203 			TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop);
2204 		m_adj(m, -todrop);
2205 		tlen -= todrop;
2206 		thflags &= ~(TH_PUSH|TH_FIN);
2207 	}
2208 
2209 	/*
2210 	 * If last ACK falls within this segment's sequence numbers,
2211 	 * record its timestamp.
2212 	 * NOTE:
2213 	 * 1) That the test incorporates suggestions from the latest
2214 	 *    proposal of the tcplw@cray.com list (Braden 1993/04/26).
2215 	 * 2) That updating only on newer timestamps interferes with
2216 	 *    our earlier PAWS tests, so this check should be solely
2217 	 *    predicated on the sequence space of this segment.
2218 	 * 3) That we modify the segment boundary check to be
2219 	 *        Last.ACK.Sent <= SEG.SEQ + SEG.Len
2220 	 *    instead of RFC1323's
2221 	 *        Last.ACK.Sent < SEG.SEQ + SEG.Len,
2222 	 *    This modified check allows us to overcome RFC1323's
2223 	 *    limitations as described in Stevens TCP/IP Illustrated
2224 	 *    Vol. 2 p.869. In such cases, we can still calculate the
2225 	 *    RTT correctly when RCV.NXT == Last.ACK.Sent.
2226 	 */
2227 	if ((to.to_flags & TOF_TS) != 0 &&
2228 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
2229 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
2230 		((thflags & (TH_SYN|TH_FIN)) != 0))) {
2231 		tp->ts_recent_age = ticks;
2232 		tp->ts_recent = to.to_tsval;
2233 	}
2234 
2235 	/*
2236 	 * If a SYN is in the window, then this is an
2237 	 * error and we send an RST and drop the connection.
2238 	 */
2239 	if (thflags & TH_SYN) {
2240 		KASSERT(ti_locked == TI_WLOCKED,
2241 		    ("tcp_do_segment: TH_SYN ti_locked %d", ti_locked));
2242 		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2243 
2244 		tp = tcp_drop(tp, ECONNRESET);
2245 		rstreason = BANDLIM_UNLIMITED;
2246 		goto drop;
2247 	}
2248 
2249 	/*
2250 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN
2251 	 * flag is on (half-synchronized state), then queue data for
2252 	 * later processing; else drop segment and return.
2253 	 */
2254 	if ((thflags & TH_ACK) == 0) {
2255 		if (tp->t_state == TCPS_SYN_RECEIVED ||
2256 		    (tp->t_flags & TF_NEEDSYN))
2257 			goto step6;
2258 		else if (tp->t_flags & TF_ACKNOW)
2259 			goto dropafterack;
2260 		else
2261 			goto drop;
2262 	}
2263 
2264 	/*
2265 	 * Ack processing.
2266 	 */
2267 	switch (tp->t_state) {
2268 
2269 	/*
2270 	 * In SYN_RECEIVED state, the ack ACKs our SYN, so enter
2271 	 * ESTABLISHED state and continue processing.
2272 	 * The ACK was checked above.
2273 	 */
2274 	case TCPS_SYN_RECEIVED:
2275 
2276 		TCPSTAT_INC(tcps_connects);
2277 		soisconnected(so);
2278 		/* Do window scaling? */
2279 		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2280 			(TF_RCVD_SCALE|TF_REQ_SCALE)) {
2281 			tp->rcv_scale = tp->request_r_scale;
2282 			tp->snd_wnd = tiwin;
2283 		}
2284 		/*
2285 		 * Make transitions:
2286 		 *      SYN-RECEIVED  -> ESTABLISHED
2287 		 *      SYN-RECEIVED* -> FIN-WAIT-1
2288 		 */
2289 		tp->t_starttime = ticks;
2290 		if (tp->t_flags & TF_NEEDFIN) {
2291 			tp->t_state = TCPS_FIN_WAIT_1;
2292 			tp->t_flags &= ~TF_NEEDFIN;
2293 		} else {
2294 			tp->t_state = TCPS_ESTABLISHED;
2295 			cc_conn_init(tp);
2296 			tcp_timer_activate(tp, TT_KEEP, tcp_keepidle);
2297 		}
2298 		/*
2299 		 * If segment contains data or ACK, will call tcp_reass()
2300 		 * later; if not, do so now to pass queued data to user.
2301 		 */
2302 		if (tlen == 0 && (thflags & TH_FIN) == 0)
2303 			(void) tcp_reass(tp, (struct tcphdr *)0, 0,
2304 			    (struct mbuf *)0);
2305 		tp->snd_wl1 = th->th_seq - 1;
2306 		/* FALLTHROUGH */
2307 
2308 	/*
2309 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
2310 	 * ACKs.  If the ack is in the range
2311 	 *	tp->snd_una < th->th_ack <= tp->snd_max
2312 	 * then advance tp->snd_una to th->th_ack and drop
2313 	 * data from the retransmission queue.  If this ACK reflects
2314 	 * more up to date window information we update our window information.
2315 	 */
2316 	case TCPS_ESTABLISHED:
2317 	case TCPS_FIN_WAIT_1:
2318 	case TCPS_FIN_WAIT_2:
2319 	case TCPS_CLOSE_WAIT:
2320 	case TCPS_CLOSING:
2321 	case TCPS_LAST_ACK:
2322 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
2323 			TCPSTAT_INC(tcps_rcvacktoomuch);
2324 			goto dropafterack;
2325 		}
2326 		if ((tp->t_flags & TF_SACK_PERMIT) &&
2327 		    ((to.to_flags & TOF_SACK) ||
2328 		     !TAILQ_EMPTY(&tp->snd_holes)))
2329 			tcp_sack_doack(tp, &to, th->th_ack);
2330 
2331 		/* Run HHOOK_TCP_ESTABLISHED_IN helper hooks. */
2332 		hhook_run_tcp_est_in(tp, th, &to);
2333 
2334 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
2335 			if (tlen == 0 && tiwin == tp->snd_wnd) {
2336 				TCPSTAT_INC(tcps_rcvdupack);
2337 				/*
2338 				 * If we have outstanding data (other than
2339 				 * a window probe), this is a completely
2340 				 * duplicate ack (ie, window info didn't
2341 				 * change), the ack is the biggest we've
2342 				 * seen and we've seen exactly our rexmt
2343 				 * threshhold of them, assume a packet
2344 				 * has been dropped and retransmit it.
2345 				 * Kludge snd_nxt & the congestion
2346 				 * window so we send only this one
2347 				 * packet.
2348 				 *
2349 				 * We know we're losing at the current
2350 				 * window size so do congestion avoidance
2351 				 * (set ssthresh to half the current window
2352 				 * and pull our congestion window back to
2353 				 * the new ssthresh).
2354 				 *
2355 				 * Dup acks mean that packets have left the
2356 				 * network (they're now cached at the receiver)
2357 				 * so bump cwnd by the amount in the receiver
2358 				 * to keep a constant cwnd packets in the
2359 				 * network.
2360 				 *
2361 				 * When using TCP ECN, notify the peer that
2362 				 * we reduced the cwnd.
2363 				 */
2364 				if (!tcp_timer_active(tp, TT_REXMT) ||
2365 				    th->th_ack != tp->snd_una)
2366 					tp->t_dupacks = 0;
2367 				else if (++tp->t_dupacks > tcprexmtthresh ||
2368 				     IN_FASTRECOVERY(tp->t_flags)) {
2369 					cc_ack_received(tp, th, CC_DUPACK);
2370 					if ((tp->t_flags & TF_SACK_PERMIT) &&
2371 					    IN_FASTRECOVERY(tp->t_flags)) {
2372 						int awnd;
2373 
2374 						/*
2375 						 * Compute the amount of data in flight first.
2376 						 * We can inject new data into the pipe iff
2377 						 * we have less than 1/2 the original window's
2378 						 * worth of data in flight.
2379 						 */
2380 						awnd = (tp->snd_nxt - tp->snd_fack) +
2381 							tp->sackhint.sack_bytes_rexmit;
2382 						if (awnd < tp->snd_ssthresh) {
2383 							tp->snd_cwnd += tp->t_maxseg;
2384 							if (tp->snd_cwnd > tp->snd_ssthresh)
2385 								tp->snd_cwnd = tp->snd_ssthresh;
2386 						}
2387 					} else
2388 						tp->snd_cwnd += tp->t_maxseg;
2389 					(void) tcp_output(tp);
2390 					goto drop;
2391 				} else if (tp->t_dupacks == tcprexmtthresh) {
2392 					tcp_seq onxt = tp->snd_nxt;
2393 
2394 					/*
2395 					 * If we're doing sack, check to
2396 					 * see if we're already in sack
2397 					 * recovery. If we're not doing sack,
2398 					 * check to see if we're in newreno
2399 					 * recovery.
2400 					 */
2401 					if (tp->t_flags & TF_SACK_PERMIT) {
2402 						if (IN_FASTRECOVERY(tp->t_flags)) {
2403 							tp->t_dupacks = 0;
2404 							break;
2405 						}
2406 					} else {
2407 						if (SEQ_LEQ(th->th_ack,
2408 						    tp->snd_recover)) {
2409 							tp->t_dupacks = 0;
2410 							break;
2411 						}
2412 					}
2413 					/* Congestion signal before ack. */
2414 					cc_cong_signal(tp, th, CC_NDUPACK);
2415 					cc_ack_received(tp, th, CC_DUPACK);
2416 					tcp_timer_activate(tp, TT_REXMT, 0);
2417 					tp->t_rtttime = 0;
2418 					if (tp->t_flags & TF_SACK_PERMIT) {
2419 						TCPSTAT_INC(
2420 						    tcps_sack_recovery_episode);
2421 						tp->sack_newdata = tp->snd_nxt;
2422 						tp->snd_cwnd = tp->t_maxseg;
2423 						(void) tcp_output(tp);
2424 						goto drop;
2425 					}
2426 					tp->snd_nxt = th->th_ack;
2427 					tp->snd_cwnd = tp->t_maxseg;
2428 					(void) tcp_output(tp);
2429 					KASSERT(tp->snd_limited <= 2,
2430 					    ("%s: tp->snd_limited too big",
2431 					    __func__));
2432 					tp->snd_cwnd = tp->snd_ssthresh +
2433 					     tp->t_maxseg *
2434 					     (tp->t_dupacks - tp->snd_limited);
2435 					if (SEQ_GT(onxt, tp->snd_nxt))
2436 						tp->snd_nxt = onxt;
2437 					goto drop;
2438 				} else if (V_tcp_do_rfc3042) {
2439 					cc_ack_received(tp, th, CC_DUPACK);
2440 					u_long oldcwnd = tp->snd_cwnd;
2441 					tcp_seq oldsndmax = tp->snd_max;
2442 					u_int sent;
2443 
2444 					KASSERT(tp->t_dupacks == 1 ||
2445 					    tp->t_dupacks == 2,
2446 					    ("%s: dupacks not 1 or 2",
2447 					    __func__));
2448 					if (tp->t_dupacks == 1)
2449 						tp->snd_limited = 0;
2450 					tp->snd_cwnd =
2451 					    (tp->snd_nxt - tp->snd_una) +
2452 					    (tp->t_dupacks - tp->snd_limited) *
2453 					    tp->t_maxseg;
2454 					(void) tcp_output(tp);
2455 					sent = tp->snd_max - oldsndmax;
2456 					if (sent > tp->t_maxseg) {
2457 						KASSERT((tp->t_dupacks == 2 &&
2458 						    tp->snd_limited == 0) ||
2459 						   (sent == tp->t_maxseg + 1 &&
2460 						    tp->t_flags & TF_SENTFIN),
2461 						    ("%s: sent too much",
2462 						    __func__));
2463 						tp->snd_limited = 2;
2464 					} else if (sent > 0)
2465 						++tp->snd_limited;
2466 					tp->snd_cwnd = oldcwnd;
2467 					goto drop;
2468 				}
2469 			} else
2470 				tp->t_dupacks = 0;
2471 			break;
2472 		}
2473 
2474 		KASSERT(SEQ_GT(th->th_ack, tp->snd_una),
2475 		    ("%s: th_ack <= snd_una", __func__));
2476 
2477 		/*
2478 		 * If the congestion window was inflated to account
2479 		 * for the other side's cached packets, retract it.
2480 		 */
2481 		if (IN_FASTRECOVERY(tp->t_flags)) {
2482 			if (SEQ_LT(th->th_ack, tp->snd_recover)) {
2483 				if (tp->t_flags & TF_SACK_PERMIT)
2484 					tcp_sack_partialack(tp, th);
2485 				else
2486 					tcp_newreno_partial_ack(tp, th);
2487 			} else
2488 				cc_post_recovery(tp, th);
2489 		}
2490 		tp->t_dupacks = 0;
2491 		/*
2492 		 * If we reach this point, ACK is not a duplicate,
2493 		 *     i.e., it ACKs something we sent.
2494 		 */
2495 		if (tp->t_flags & TF_NEEDSYN) {
2496 			/*
2497 			 * T/TCP: Connection was half-synchronized, and our
2498 			 * SYN has been ACK'd (so connection is now fully
2499 			 * synchronized).  Go to non-starred state,
2500 			 * increment snd_una for ACK of SYN, and check if
2501 			 * we can do window scaling.
2502 			 */
2503 			tp->t_flags &= ~TF_NEEDSYN;
2504 			tp->snd_una++;
2505 			/* Do window scaling? */
2506 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2507 				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
2508 				tp->rcv_scale = tp->request_r_scale;
2509 				/* Send window already scaled. */
2510 			}
2511 		}
2512 
2513 process_ACK:
2514 		INP_WLOCK_ASSERT(tp->t_inpcb);
2515 
2516 		acked = BYTES_THIS_ACK(tp, th);
2517 		TCPSTAT_INC(tcps_rcvackpack);
2518 		TCPSTAT_ADD(tcps_rcvackbyte, acked);
2519 
2520 		/*
2521 		 * If we just performed our first retransmit, and the ACK
2522 		 * arrives within our recovery window, then it was a mistake
2523 		 * to do the retransmit in the first place.  Recover our
2524 		 * original cwnd and ssthresh, and proceed to transmit where
2525 		 * we left off.
2526 		 */
2527 		if (tp->t_rxtshift == 1 && tp->t_flags & TF_PREVVALID &&
2528 		    (int)(ticks - tp->t_badrxtwin) < 0)
2529 			cc_cong_signal(tp, th, CC_RTO_ERR);
2530 
2531 		/*
2532 		 * If we have a timestamp reply, update smoothed
2533 		 * round trip time.  If no timestamp is present but
2534 		 * transmit timer is running and timed sequence
2535 		 * number was acked, update smoothed round trip time.
2536 		 * Since we now have an rtt measurement, cancel the
2537 		 * timer backoff (cf., Phil Karn's retransmit alg.).
2538 		 * Recompute the initial retransmit timer.
2539 		 *
2540 		 * Some boxes send broken timestamp replies
2541 		 * during the SYN+ACK phase, ignore
2542 		 * timestamps of 0 or we could calculate a
2543 		 * huge RTT and blow up the retransmit timer.
2544 		 */
2545 		if ((to.to_flags & TOF_TS) != 0 &&
2546 		    to.to_tsecr) {
2547 			if (!tp->t_rttlow || tp->t_rttlow > ticks - to.to_tsecr)
2548 				tp->t_rttlow = ticks - to.to_tsecr;
2549 			tcp_xmit_timer(tp, ticks - to.to_tsecr + 1);
2550 		} else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq)) {
2551 			if (!tp->t_rttlow || tp->t_rttlow > ticks - tp->t_rtttime)
2552 				tp->t_rttlow = ticks - tp->t_rtttime;
2553 			tcp_xmit_timer(tp, ticks - tp->t_rtttime);
2554 		}
2555 
2556 		/*
2557 		 * If all outstanding data is acked, stop retransmit
2558 		 * timer and remember to restart (more output or persist).
2559 		 * If there is more data to be acked, restart retransmit
2560 		 * timer, using current (possibly backed-off) value.
2561 		 */
2562 		if (th->th_ack == tp->snd_max) {
2563 			tcp_timer_activate(tp, TT_REXMT, 0);
2564 			needoutput = 1;
2565 		} else if (!tcp_timer_active(tp, TT_PERSIST))
2566 			tcp_timer_activate(tp, TT_REXMT, tp->t_rxtcur);
2567 
2568 		/*
2569 		 * If no data (only SYN) was ACK'd,
2570 		 *    skip rest of ACK processing.
2571 		 */
2572 		if (acked == 0)
2573 			goto step6;
2574 
2575 		/*
2576 		 * Let the congestion control algorithm update congestion
2577 		 * control related information. This typically means increasing
2578 		 * the congestion window.
2579 		 */
2580 		cc_ack_received(tp, th, CC_ACK);
2581 
2582 		SOCKBUF_LOCK(&so->so_snd);
2583 		if (acked > so->so_snd.sb_cc) {
2584 			tp->snd_wnd -= so->so_snd.sb_cc;
2585 			sbdrop_locked(&so->so_snd, (int)so->so_snd.sb_cc);
2586 			ourfinisacked = 1;
2587 		} else {
2588 			sbdrop_locked(&so->so_snd, acked);
2589 			tp->snd_wnd -= acked;
2590 			ourfinisacked = 0;
2591 		}
2592 		/* NB: sowwakeup_locked() does an implicit unlock. */
2593 		sowwakeup_locked(so);
2594 		/* Detect una wraparound. */
2595 		if (!IN_RECOVERY(tp->t_flags) &&
2596 		    SEQ_GT(tp->snd_una, tp->snd_recover) &&
2597 		    SEQ_LEQ(th->th_ack, tp->snd_recover))
2598 			tp->snd_recover = th->th_ack - 1;
2599 		/* XXXLAS: Can this be moved up into cc_post_recovery? */
2600 		if (IN_RECOVERY(tp->t_flags) &&
2601 		    SEQ_GEQ(th->th_ack, tp->snd_recover)) {
2602 			EXIT_RECOVERY(tp->t_flags);
2603 		}
2604 		tp->snd_una = th->th_ack;
2605 		if (tp->t_flags & TF_SACK_PERMIT) {
2606 			if (SEQ_GT(tp->snd_una, tp->snd_recover))
2607 				tp->snd_recover = tp->snd_una;
2608 		}
2609 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2610 			tp->snd_nxt = tp->snd_una;
2611 
2612 		switch (tp->t_state) {
2613 
2614 		/*
2615 		 * In FIN_WAIT_1 STATE in addition to the processing
2616 		 * for the ESTABLISHED state if our FIN is now acknowledged
2617 		 * then enter FIN_WAIT_2.
2618 		 */
2619 		case TCPS_FIN_WAIT_1:
2620 			if (ourfinisacked) {
2621 				/*
2622 				 * If we can't receive any more
2623 				 * data, then closing user can proceed.
2624 				 * Starting the timer is contrary to the
2625 				 * specification, but if we don't get a FIN
2626 				 * we'll hang forever.
2627 				 *
2628 				 * XXXjl:
2629 				 * we should release the tp also, and use a
2630 				 * compressed state.
2631 				 */
2632 				if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
2633 					int timeout;
2634 
2635 					soisdisconnected(so);
2636 					timeout = (tcp_fast_finwait2_recycle) ?
2637 						tcp_finwait2_timeout : tcp_maxidle;
2638 					tcp_timer_activate(tp, TT_2MSL, timeout);
2639 				}
2640 				tp->t_state = TCPS_FIN_WAIT_2;
2641 			}
2642 			break;
2643 
2644 		/*
2645 		 * In CLOSING STATE in addition to the processing for
2646 		 * the ESTABLISHED state if the ACK acknowledges our FIN
2647 		 * then enter the TIME-WAIT state, otherwise ignore
2648 		 * the segment.
2649 		 */
2650 		case TCPS_CLOSING:
2651 			if (ourfinisacked) {
2652 				INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2653 				tcp_twstart(tp);
2654 				INP_INFO_WUNLOCK(&V_tcbinfo);
2655 				m_freem(m);
2656 				return;
2657 			}
2658 			break;
2659 
2660 		/*
2661 		 * In LAST_ACK, we may still be waiting for data to drain
2662 		 * and/or to be acked, as well as for the ack of our FIN.
2663 		 * If our FIN is now acknowledged, delete the TCB,
2664 		 * enter the closed state and return.
2665 		 */
2666 		case TCPS_LAST_ACK:
2667 			if (ourfinisacked) {
2668 				INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2669 				tp = tcp_close(tp);
2670 				goto drop;
2671 			}
2672 			break;
2673 		}
2674 	}
2675 
2676 step6:
2677 	INP_WLOCK_ASSERT(tp->t_inpcb);
2678 
2679 	/*
2680 	 * Update window information.
2681 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2682 	 */
2683 	if ((thflags & TH_ACK) &&
2684 	    (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2685 	    (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
2686 	     (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
2687 		/* keep track of pure window updates */
2688 		if (tlen == 0 &&
2689 		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2690 			TCPSTAT_INC(tcps_rcvwinupd);
2691 		tp->snd_wnd = tiwin;
2692 		tp->snd_wl1 = th->th_seq;
2693 		tp->snd_wl2 = th->th_ack;
2694 		if (tp->snd_wnd > tp->max_sndwnd)
2695 			tp->max_sndwnd = tp->snd_wnd;
2696 		needoutput = 1;
2697 	}
2698 
2699 	/*
2700 	 * Process segments with URG.
2701 	 */
2702 	if ((thflags & TH_URG) && th->th_urp &&
2703 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2704 		/*
2705 		 * This is a kludge, but if we receive and accept
2706 		 * random urgent pointers, we'll crash in
2707 		 * soreceive.  It's hard to imagine someone
2708 		 * actually wanting to send this much urgent data.
2709 		 */
2710 		SOCKBUF_LOCK(&so->so_rcv);
2711 		if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2712 			th->th_urp = 0;			/* XXX */
2713 			thflags &= ~TH_URG;		/* XXX */
2714 			SOCKBUF_UNLOCK(&so->so_rcv);	/* XXX */
2715 			goto dodata;			/* XXX */
2716 		}
2717 		/*
2718 		 * If this segment advances the known urgent pointer,
2719 		 * then mark the data stream.  This should not happen
2720 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2721 		 * a FIN has been received from the remote side.
2722 		 * In these states we ignore the URG.
2723 		 *
2724 		 * According to RFC961 (Assigned Protocols),
2725 		 * the urgent pointer points to the last octet
2726 		 * of urgent data.  We continue, however,
2727 		 * to consider it to indicate the first octet
2728 		 * of data past the urgent section as the original
2729 		 * spec states (in one of two places).
2730 		 */
2731 		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2732 			tp->rcv_up = th->th_seq + th->th_urp;
2733 			so->so_oobmark = so->so_rcv.sb_cc +
2734 			    (tp->rcv_up - tp->rcv_nxt) - 1;
2735 			if (so->so_oobmark == 0)
2736 				so->so_rcv.sb_state |= SBS_RCVATMARK;
2737 			sohasoutofband(so);
2738 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2739 		}
2740 		SOCKBUF_UNLOCK(&so->so_rcv);
2741 		/*
2742 		 * Remove out of band data so doesn't get presented to user.
2743 		 * This can happen independent of advancing the URG pointer,
2744 		 * but if two URG's are pending at once, some out-of-band
2745 		 * data may creep in... ick.
2746 		 */
2747 		if (th->th_urp <= (u_long)tlen &&
2748 		    !(so->so_options & SO_OOBINLINE)) {
2749 			/* hdr drop is delayed */
2750 			tcp_pulloutofband(so, th, m, drop_hdrlen);
2751 		}
2752 	} else {
2753 		/*
2754 		 * If no out of band data is expected,
2755 		 * pull receive urgent pointer along
2756 		 * with the receive window.
2757 		 */
2758 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2759 			tp->rcv_up = tp->rcv_nxt;
2760 	}
2761 dodata:							/* XXX */
2762 	INP_WLOCK_ASSERT(tp->t_inpcb);
2763 
2764 	/*
2765 	 * Process the segment text, merging it into the TCP sequencing queue,
2766 	 * and arranging for acknowledgment of receipt if necessary.
2767 	 * This process logically involves adjusting tp->rcv_wnd as data
2768 	 * is presented to the user (this happens in tcp_usrreq.c,
2769 	 * case PRU_RCVD).  If a FIN has already been received on this
2770 	 * connection then we just ignore the text.
2771 	 */
2772 	if ((tlen || (thflags & TH_FIN)) &&
2773 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2774 		tcp_seq save_start = th->th_seq;
2775 		m_adj(m, drop_hdrlen);	/* delayed header drop */
2776 		/*
2777 		 * Insert segment which includes th into TCP reassembly queue
2778 		 * with control block tp.  Set thflags to whether reassembly now
2779 		 * includes a segment with FIN.  This handles the common case
2780 		 * inline (segment is the next to be received on an established
2781 		 * connection, and the queue is empty), avoiding linkage into
2782 		 * and removal from the queue and repetition of various
2783 		 * conversions.
2784 		 * Set DELACK for segments received in order, but ack
2785 		 * immediately when segments are out of order (so
2786 		 * fast retransmit can work).
2787 		 */
2788 		if (th->th_seq == tp->rcv_nxt &&
2789 		    LIST_EMPTY(&tp->t_segq) &&
2790 		    TCPS_HAVEESTABLISHED(tp->t_state)) {
2791 			if (DELAY_ACK(tp))
2792 				tp->t_flags |= TF_DELACK;
2793 			else
2794 				tp->t_flags |= TF_ACKNOW;
2795 			tp->rcv_nxt += tlen;
2796 			thflags = th->th_flags & TH_FIN;
2797 			TCPSTAT_INC(tcps_rcvpack);
2798 			TCPSTAT_ADD(tcps_rcvbyte, tlen);
2799 			ND6_HINT(tp);
2800 			SOCKBUF_LOCK(&so->so_rcv);
2801 			if (so->so_rcv.sb_state & SBS_CANTRCVMORE)
2802 				m_freem(m);
2803 			else
2804 				sbappendstream_locked(&so->so_rcv, m);
2805 			/* NB: sorwakeup_locked() does an implicit unlock. */
2806 			sorwakeup_locked(so);
2807 		} else {
2808 			/*
2809 			 * XXX: Due to the header drop above "th" is
2810 			 * theoretically invalid by now.  Fortunately
2811 			 * m_adj() doesn't actually frees any mbufs
2812 			 * when trimming from the head.
2813 			 */
2814 			thflags = tcp_reass(tp, th, &tlen, m);
2815 			tp->t_flags |= TF_ACKNOW;
2816 		}
2817 		if (tlen > 0 && (tp->t_flags & TF_SACK_PERMIT))
2818 			tcp_update_sack_list(tp, save_start, save_start + tlen);
2819 #if 0
2820 		/*
2821 		 * Note the amount of data that peer has sent into
2822 		 * our window, in order to estimate the sender's
2823 		 * buffer size.
2824 		 * XXX: Unused.
2825 		 */
2826 		if (SEQ_GT(tp->rcv_adv, tp->rcv_nxt))
2827 			len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2828 		else
2829 			len = so->so_rcv.sb_hiwat;
2830 #endif
2831 	} else {
2832 		m_freem(m);
2833 		thflags &= ~TH_FIN;
2834 	}
2835 
2836 	/*
2837 	 * If FIN is received ACK the FIN and let the user know
2838 	 * that the connection is closing.
2839 	 */
2840 	if (thflags & TH_FIN) {
2841 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2842 			socantrcvmore(so);
2843 			/*
2844 			 * If connection is half-synchronized
2845 			 * (ie NEEDSYN flag on) then delay ACK,
2846 			 * so it may be piggybacked when SYN is sent.
2847 			 * Otherwise, since we received a FIN then no
2848 			 * more input can be expected, send ACK now.
2849 			 */
2850 			if (tp->t_flags & TF_NEEDSYN)
2851 				tp->t_flags |= TF_DELACK;
2852 			else
2853 				tp->t_flags |= TF_ACKNOW;
2854 			tp->rcv_nxt++;
2855 		}
2856 		switch (tp->t_state) {
2857 
2858 		/*
2859 		 * In SYN_RECEIVED and ESTABLISHED STATES
2860 		 * enter the CLOSE_WAIT state.
2861 		 */
2862 		case TCPS_SYN_RECEIVED:
2863 			tp->t_starttime = ticks;
2864 			/* FALLTHROUGH */
2865 		case TCPS_ESTABLISHED:
2866 			tp->t_state = TCPS_CLOSE_WAIT;
2867 			break;
2868 
2869 		/*
2870 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2871 		 * enter the CLOSING state.
2872 		 */
2873 		case TCPS_FIN_WAIT_1:
2874 			tp->t_state = TCPS_CLOSING;
2875 			break;
2876 
2877 		/*
2878 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2879 		 * starting the time-wait timer, turning off the other
2880 		 * standard timers.
2881 		 */
2882 		case TCPS_FIN_WAIT_2:
2883 			INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2884 			KASSERT(ti_locked == TI_WLOCKED, ("%s: dodata "
2885 			    "TCP_FIN_WAIT_2 ti_locked: %d", __func__,
2886 			    ti_locked));
2887 
2888 			tcp_twstart(tp);
2889 			INP_INFO_WUNLOCK(&V_tcbinfo);
2890 			return;
2891 		}
2892 	}
2893 	if (ti_locked == TI_WLOCKED)
2894 		INP_INFO_WUNLOCK(&V_tcbinfo);
2895 	ti_locked = TI_UNLOCKED;
2896 
2897 #ifdef TCPDEBUG
2898 	if (so->so_options & SO_DEBUG)
2899 		tcp_trace(TA_INPUT, ostate, tp, (void *)tcp_saveipgen,
2900 			  &tcp_savetcp, 0);
2901 #endif
2902 
2903 	/*
2904 	 * Return any desired output.
2905 	 */
2906 	if (needoutput || (tp->t_flags & TF_ACKNOW))
2907 		(void) tcp_output(tp);
2908 
2909 check_delack:
2910 	KASSERT(ti_locked == TI_UNLOCKED, ("%s: check_delack ti_locked %d",
2911 	    __func__, ti_locked));
2912 	INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
2913 	INP_WLOCK_ASSERT(tp->t_inpcb);
2914 
2915 	if (tp->t_flags & TF_DELACK) {
2916 		tp->t_flags &= ~TF_DELACK;
2917 		tcp_timer_activate(tp, TT_DELACK, tcp_delacktime);
2918 	}
2919 	INP_WUNLOCK(tp->t_inpcb);
2920 	return;
2921 
2922 dropafterack:
2923 	/*
2924 	 * Generate an ACK dropping incoming segment if it occupies
2925 	 * sequence space, where the ACK reflects our state.
2926 	 *
2927 	 * We can now skip the test for the RST flag since all
2928 	 * paths to this code happen after packets containing
2929 	 * RST have been dropped.
2930 	 *
2931 	 * In the SYN-RECEIVED state, don't send an ACK unless the
2932 	 * segment we received passes the SYN-RECEIVED ACK test.
2933 	 * If it fails send a RST.  This breaks the loop in the
2934 	 * "LAND" DoS attack, and also prevents an ACK storm
2935 	 * between two listening ports that have been sent forged
2936 	 * SYN segments, each with the source address of the other.
2937 	 */
2938 	if (tp->t_state == TCPS_SYN_RECEIVED && (thflags & TH_ACK) &&
2939 	    (SEQ_GT(tp->snd_una, th->th_ack) ||
2940 	     SEQ_GT(th->th_ack, tp->snd_max)) ) {
2941 		rstreason = BANDLIM_RST_OPENPORT;
2942 		goto dropwithreset;
2943 	}
2944 #ifdef TCPDEBUG
2945 	if (so->so_options & SO_DEBUG)
2946 		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
2947 			  &tcp_savetcp, 0);
2948 #endif
2949 	if (ti_locked == TI_WLOCKED)
2950 		INP_INFO_WUNLOCK(&V_tcbinfo);
2951 	ti_locked = TI_UNLOCKED;
2952 
2953 	tp->t_flags |= TF_ACKNOW;
2954 	(void) tcp_output(tp);
2955 	INP_WUNLOCK(tp->t_inpcb);
2956 	m_freem(m);
2957 	return;
2958 
2959 dropwithreset:
2960 	if (ti_locked == TI_WLOCKED)
2961 		INP_INFO_WUNLOCK(&V_tcbinfo);
2962 	ti_locked = TI_UNLOCKED;
2963 
2964 	if (tp != NULL) {
2965 		tcp_dropwithreset(m, th, tp, tlen, rstreason);
2966 		INP_WUNLOCK(tp->t_inpcb);
2967 	} else
2968 		tcp_dropwithreset(m, th, NULL, tlen, rstreason);
2969 	return;
2970 
2971 drop:
2972 	if (ti_locked == TI_WLOCKED) {
2973 		INP_INFO_WUNLOCK(&V_tcbinfo);
2974 		ti_locked = TI_UNLOCKED;
2975 	}
2976 #ifdef INVARIANTS
2977 	else
2978 		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
2979 #endif
2980 
2981 	/*
2982 	 * Drop space held by incoming segment and return.
2983 	 */
2984 #ifdef TCPDEBUG
2985 	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
2986 		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
2987 			  &tcp_savetcp, 0);
2988 #endif
2989 	if (tp != NULL)
2990 		INP_WUNLOCK(tp->t_inpcb);
2991 	m_freem(m);
2992 }
2993 
2994 /*
2995  * Issue RST and make ACK acceptable to originator of segment.
2996  * The mbuf must still include the original packet header.
2997  * tp may be NULL.
2998  */
2999 static void
3000 tcp_dropwithreset(struct mbuf *m, struct tcphdr *th, struct tcpcb *tp,
3001     int tlen, int rstreason)
3002 {
3003 #ifdef INET
3004 	struct ip *ip;
3005 #endif
3006 #ifdef INET6
3007 	struct ip6_hdr *ip6;
3008 #endif
3009 
3010 	if (tp != NULL) {
3011 		INP_WLOCK_ASSERT(tp->t_inpcb);
3012 	}
3013 
3014 	/* Don't bother if destination was broadcast/multicast. */
3015 	if ((th->th_flags & TH_RST) || m->m_flags & (M_BCAST|M_MCAST))
3016 		goto drop;
3017 #ifdef INET6
3018 	if (mtod(m, struct ip *)->ip_v == 6) {
3019 		ip6 = mtod(m, struct ip6_hdr *);
3020 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
3021 		    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
3022 			goto drop;
3023 		/* IPv6 anycast check is done at tcp6_input() */
3024 	}
3025 #endif
3026 #if defined(INET) && defined(INET6)
3027 	else
3028 #endif
3029 #ifdef INET
3030 	{
3031 		ip = mtod(m, struct ip *);
3032 		if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
3033 		    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
3034 		    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
3035 		    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
3036 			goto drop;
3037 	}
3038 #endif
3039 
3040 	/* Perform bandwidth limiting. */
3041 	if (badport_bandlim(rstreason) < 0)
3042 		goto drop;
3043 
3044 	/* tcp_respond consumes the mbuf chain. */
3045 	if (th->th_flags & TH_ACK) {
3046 		tcp_respond(tp, mtod(m, void *), th, m, (tcp_seq)0,
3047 		    th->th_ack, TH_RST);
3048 	} else {
3049 		if (th->th_flags & TH_SYN)
3050 			tlen++;
3051 		tcp_respond(tp, mtod(m, void *), th, m, th->th_seq+tlen,
3052 		    (tcp_seq)0, TH_RST|TH_ACK);
3053 	}
3054 	return;
3055 drop:
3056 	m_freem(m);
3057 }
3058 
3059 /*
3060  * Parse TCP options and place in tcpopt.
3061  */
3062 static void
3063 tcp_dooptions(struct tcpopt *to, u_char *cp, int cnt, int flags)
3064 {
3065 	int opt, optlen;
3066 
3067 	to->to_flags = 0;
3068 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
3069 		opt = cp[0];
3070 		if (opt == TCPOPT_EOL)
3071 			break;
3072 		if (opt == TCPOPT_NOP)
3073 			optlen = 1;
3074 		else {
3075 			if (cnt < 2)
3076 				break;
3077 			optlen = cp[1];
3078 			if (optlen < 2 || optlen > cnt)
3079 				break;
3080 		}
3081 		switch (opt) {
3082 		case TCPOPT_MAXSEG:
3083 			if (optlen != TCPOLEN_MAXSEG)
3084 				continue;
3085 			if (!(flags & TO_SYN))
3086 				continue;
3087 			to->to_flags |= TOF_MSS;
3088 			bcopy((char *)cp + 2,
3089 			    (char *)&to->to_mss, sizeof(to->to_mss));
3090 			to->to_mss = ntohs(to->to_mss);
3091 			break;
3092 		case TCPOPT_WINDOW:
3093 			if (optlen != TCPOLEN_WINDOW)
3094 				continue;
3095 			if (!(flags & TO_SYN))
3096 				continue;
3097 			to->to_flags |= TOF_SCALE;
3098 			to->to_wscale = min(cp[2], TCP_MAX_WINSHIFT);
3099 			break;
3100 		case TCPOPT_TIMESTAMP:
3101 			if (optlen != TCPOLEN_TIMESTAMP)
3102 				continue;
3103 			to->to_flags |= TOF_TS;
3104 			bcopy((char *)cp + 2,
3105 			    (char *)&to->to_tsval, sizeof(to->to_tsval));
3106 			to->to_tsval = ntohl(to->to_tsval);
3107 			bcopy((char *)cp + 6,
3108 			    (char *)&to->to_tsecr, sizeof(to->to_tsecr));
3109 			to->to_tsecr = ntohl(to->to_tsecr);
3110 			break;
3111 #ifdef TCP_SIGNATURE
3112 		/*
3113 		 * XXX In order to reply to a host which has set the
3114 		 * TCP_SIGNATURE option in its initial SYN, we have to
3115 		 * record the fact that the option was observed here
3116 		 * for the syncache code to perform the correct response.
3117 		 */
3118 		case TCPOPT_SIGNATURE:
3119 			if (optlen != TCPOLEN_SIGNATURE)
3120 				continue;
3121 			to->to_flags |= TOF_SIGNATURE;
3122 			to->to_signature = cp + 2;
3123 			break;
3124 #endif
3125 		case TCPOPT_SACK_PERMITTED:
3126 			if (optlen != TCPOLEN_SACK_PERMITTED)
3127 				continue;
3128 			if (!(flags & TO_SYN))
3129 				continue;
3130 			if (!V_tcp_do_sack)
3131 				continue;
3132 			to->to_flags |= TOF_SACKPERM;
3133 			break;
3134 		case TCPOPT_SACK:
3135 			if (optlen <= 2 || (optlen - 2) % TCPOLEN_SACK != 0)
3136 				continue;
3137 			if (flags & TO_SYN)
3138 				continue;
3139 			to->to_flags |= TOF_SACK;
3140 			to->to_nsacks = (optlen - 2) / TCPOLEN_SACK;
3141 			to->to_sacks = cp + 2;
3142 			TCPSTAT_INC(tcps_sack_rcv_blocks);
3143 			break;
3144 		default:
3145 			continue;
3146 		}
3147 	}
3148 }
3149 
3150 /*
3151  * Pull out of band byte out of a segment so
3152  * it doesn't appear in the user's data queue.
3153  * It is still reflected in the segment length for
3154  * sequencing purposes.
3155  */
3156 static void
3157 tcp_pulloutofband(struct socket *so, struct tcphdr *th, struct mbuf *m,
3158     int off)
3159 {
3160 	int cnt = off + th->th_urp - 1;
3161 
3162 	while (cnt >= 0) {
3163 		if (m->m_len > cnt) {
3164 			char *cp = mtod(m, caddr_t) + cnt;
3165 			struct tcpcb *tp = sototcpcb(so);
3166 
3167 			INP_WLOCK_ASSERT(tp->t_inpcb);
3168 
3169 			tp->t_iobc = *cp;
3170 			tp->t_oobflags |= TCPOOB_HAVEDATA;
3171 			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
3172 			m->m_len--;
3173 			if (m->m_flags & M_PKTHDR)
3174 				m->m_pkthdr.len--;
3175 			return;
3176 		}
3177 		cnt -= m->m_len;
3178 		m = m->m_next;
3179 		if (m == NULL)
3180 			break;
3181 	}
3182 	panic("tcp_pulloutofband");
3183 }
3184 
3185 /*
3186  * Collect new round-trip time estimate
3187  * and update averages and current timeout.
3188  */
3189 static void
3190 tcp_xmit_timer(struct tcpcb *tp, int rtt)
3191 {
3192 	int delta;
3193 
3194 	INP_WLOCK_ASSERT(tp->t_inpcb);
3195 
3196 	TCPSTAT_INC(tcps_rttupdated);
3197 	tp->t_rttupdated++;
3198 	if (tp->t_srtt != 0) {
3199 		/*
3200 		 * srtt is stored as fixed point with 5 bits after the
3201 		 * binary point (i.e., scaled by 8).  The following magic
3202 		 * is equivalent to the smoothing algorithm in rfc793 with
3203 		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
3204 		 * point).  Adjust rtt to origin 0.
3205 		 */
3206 		delta = ((rtt - 1) << TCP_DELTA_SHIFT)
3207 			- (tp->t_srtt >> (TCP_RTT_SHIFT - TCP_DELTA_SHIFT));
3208 
3209 		if ((tp->t_srtt += delta) <= 0)
3210 			tp->t_srtt = 1;
3211 
3212 		/*
3213 		 * We accumulate a smoothed rtt variance (actually, a
3214 		 * smoothed mean difference), then set the retransmit
3215 		 * timer to smoothed rtt + 4 times the smoothed variance.
3216 		 * rttvar is stored as fixed point with 4 bits after the
3217 		 * binary point (scaled by 16).  The following is
3218 		 * equivalent to rfc793 smoothing with an alpha of .75
3219 		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
3220 		 * rfc793's wired-in beta.
3221 		 */
3222 		if (delta < 0)
3223 			delta = -delta;
3224 		delta -= tp->t_rttvar >> (TCP_RTTVAR_SHIFT - TCP_DELTA_SHIFT);
3225 		if ((tp->t_rttvar += delta) <= 0)
3226 			tp->t_rttvar = 1;
3227 		if (tp->t_rttbest > tp->t_srtt + tp->t_rttvar)
3228 		    tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
3229 	} else {
3230 		/*
3231 		 * No rtt measurement yet - use the unsmoothed rtt.
3232 		 * Set the variance to half the rtt (so our first
3233 		 * retransmit happens at 3*rtt).
3234 		 */
3235 		tp->t_srtt = rtt << TCP_RTT_SHIFT;
3236 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1);
3237 		tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
3238 	}
3239 	tp->t_rtttime = 0;
3240 	tp->t_rxtshift = 0;
3241 
3242 	/*
3243 	 * the retransmit should happen at rtt + 4 * rttvar.
3244 	 * Because of the way we do the smoothing, srtt and rttvar
3245 	 * will each average +1/2 tick of bias.  When we compute
3246 	 * the retransmit timer, we want 1/2 tick of rounding and
3247 	 * 1 extra tick because of +-1/2 tick uncertainty in the
3248 	 * firing of the timer.  The bias will give us exactly the
3249 	 * 1.5 tick we need.  But, because the bias is
3250 	 * statistical, we have to test that we don't drop below
3251 	 * the minimum feasible timer (which is 2 ticks).
3252 	 */
3253 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
3254 		      max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
3255 
3256 	/*
3257 	 * We received an ack for a packet that wasn't retransmitted;
3258 	 * it is probably safe to discard any error indications we've
3259 	 * received recently.  This isn't quite right, but close enough
3260 	 * for now (a route might have failed after we sent a segment,
3261 	 * and the return path might not be symmetrical).
3262 	 */
3263 	tp->t_softerror = 0;
3264 }
3265 
3266 /*
3267  * Determine a reasonable value for maxseg size.
3268  * If the route is known, check route for mtu.
3269  * If none, use an mss that can be handled on the outgoing
3270  * interface without forcing IP to fragment; if bigger than
3271  * an mbuf cluster (MCLBYTES), round down to nearest multiple of MCLBYTES
3272  * to utilize large mbufs.  If no route is found, route has no mtu,
3273  * or the destination isn't local, use a default, hopefully conservative
3274  * size (usually 512 or the default IP max size, but no more than the mtu
3275  * of the interface), as we can't discover anything about intervening
3276  * gateways or networks.  We also initialize the congestion/slow start
3277  * window to be a single segment if the destination isn't local.
3278  * While looking at the routing entry, we also initialize other path-dependent
3279  * parameters from pre-set or cached values in the routing entry.
3280  *
3281  * Also take into account the space needed for options that we
3282  * send regularly.  Make maxseg shorter by that amount to assure
3283  * that we can send maxseg amount of data even when the options
3284  * are present.  Store the upper limit of the length of options plus
3285  * data in maxopd.
3286  *
3287  * In case of T/TCP, we call this routine during implicit connection
3288  * setup as well (offer = -1), to initialize maxseg from the cached
3289  * MSS of our peer.
3290  *
3291  * NOTE that this routine is only called when we process an incoming
3292  * segment. Outgoing SYN/ACK MSS settings are handled in tcp_mssopt().
3293  */
3294 void
3295 tcp_mss_update(struct tcpcb *tp, int offer,
3296     struct hc_metrics_lite *metricptr, int *mtuflags)
3297 {
3298 	int mss = 0;
3299 	u_long maxmtu = 0;
3300 	struct inpcb *inp = tp->t_inpcb;
3301 	struct hc_metrics_lite metrics;
3302 	int origoffer = offer;
3303 #ifdef INET6
3304 	int isipv6 = ((inp->inp_vflag & INP_IPV6) != 0) ? 1 : 0;
3305 	size_t min_protoh = isipv6 ?
3306 			    sizeof (struct ip6_hdr) + sizeof (struct tcphdr) :
3307 			    sizeof (struct tcpiphdr);
3308 #else
3309 	const size_t min_protoh = sizeof(struct tcpiphdr);
3310 #endif
3311 
3312 	INP_WLOCK_ASSERT(tp->t_inpcb);
3313 
3314 	/* Initialize. */
3315 #ifdef INET6
3316 	if (isipv6) {
3317 		maxmtu = tcp_maxmtu6(&inp->inp_inc, mtuflags);
3318 		tp->t_maxopd = tp->t_maxseg = V_tcp_v6mssdflt;
3319 	}
3320 #endif
3321 #if defined(INET) && defined(INET6)
3322 	else
3323 #endif
3324 #ifdef INET
3325 	{
3326 		maxmtu = tcp_maxmtu(&inp->inp_inc, mtuflags);
3327 		tp->t_maxopd = tp->t_maxseg = V_tcp_mssdflt;
3328 	}
3329 #endif
3330 
3331 	/*
3332 	 * No route to sender, stay with default mss and return.
3333 	 */
3334 	if (maxmtu == 0) {
3335 		/*
3336 		 * In case we return early we need to initialize metrics
3337 		 * to a defined state as tcp_hc_get() would do for us
3338 		 * if there was no cache hit.
3339 		 */
3340 		if (metricptr != NULL)
3341 			bzero(metricptr, sizeof(struct hc_metrics_lite));
3342 		return;
3343 	}
3344 
3345 	/* What have we got? */
3346 	switch (offer) {
3347 		case 0:
3348 			/*
3349 			 * Offer == 0 means that there was no MSS on the SYN
3350 			 * segment, in this case we use tcp_mssdflt as
3351 			 * already assigned to t_maxopd above.
3352 			 */
3353 			offer = tp->t_maxopd;
3354 			break;
3355 
3356 		case -1:
3357 			/*
3358 			 * Offer == -1 means that we didn't receive SYN yet.
3359 			 */
3360 			/* FALLTHROUGH */
3361 
3362 		default:
3363 			/*
3364 			 * Prevent DoS attack with too small MSS. Round up
3365 			 * to at least minmss.
3366 			 */
3367 			offer = max(offer, V_tcp_minmss);
3368 	}
3369 
3370 	/*
3371 	 * rmx information is now retrieved from tcp_hostcache.
3372 	 */
3373 	tcp_hc_get(&inp->inp_inc, &metrics);
3374 	if (metricptr != NULL)
3375 		bcopy(&metrics, metricptr, sizeof(struct hc_metrics_lite));
3376 
3377 	/*
3378 	 * If there's a discovered mtu int tcp hostcache, use it
3379 	 * else, use the link mtu.
3380 	 */
3381 	if (metrics.rmx_mtu)
3382 		mss = min(metrics.rmx_mtu, maxmtu) - min_protoh;
3383 	else {
3384 #ifdef INET6
3385 		if (isipv6) {
3386 			mss = maxmtu - min_protoh;
3387 			if (!V_path_mtu_discovery &&
3388 			    !in6_localaddr(&inp->in6p_faddr))
3389 				mss = min(mss, V_tcp_v6mssdflt);
3390 		}
3391 #endif
3392 #if defined(INET) && defined(INET6)
3393 		else
3394 #endif
3395 #ifdef INET
3396 		{
3397 			mss = maxmtu - min_protoh;
3398 			if (!V_path_mtu_discovery &&
3399 			    !in_localaddr(inp->inp_faddr))
3400 				mss = min(mss, V_tcp_mssdflt);
3401 		}
3402 #endif
3403 		/*
3404 		 * XXX - The above conditional (mss = maxmtu - min_protoh)
3405 		 * probably violates the TCP spec.
3406 		 * The problem is that, since we don't know the
3407 		 * other end's MSS, we are supposed to use a conservative
3408 		 * default.  But, if we do that, then MTU discovery will
3409 		 * never actually take place, because the conservative
3410 		 * default is much less than the MTUs typically seen
3411 		 * on the Internet today.  For the moment, we'll sweep
3412 		 * this under the carpet.
3413 		 *
3414 		 * The conservative default might not actually be a problem
3415 		 * if the only case this occurs is when sending an initial
3416 		 * SYN with options and data to a host we've never talked
3417 		 * to before.  Then, they will reply with an MSS value which
3418 		 * will get recorded and the new parameters should get
3419 		 * recomputed.  For Further Study.
3420 		 */
3421 	}
3422 	mss = min(mss, offer);
3423 
3424 	/*
3425 	 * Sanity check: make sure that maxopd will be large
3426 	 * enough to allow some data on segments even if the
3427 	 * all the option space is used (40bytes).  Otherwise
3428 	 * funny things may happen in tcp_output.
3429 	 */
3430 	mss = max(mss, 64);
3431 
3432 	/*
3433 	 * maxopd stores the maximum length of data AND options
3434 	 * in a segment; maxseg is the amount of data in a normal
3435 	 * segment.  We need to store this value (maxopd) apart
3436 	 * from maxseg, because now every segment carries options
3437 	 * and thus we normally have somewhat less data in segments.
3438 	 */
3439 	tp->t_maxopd = mss;
3440 
3441 	/*
3442 	 * origoffer==-1 indicates that no segments were received yet.
3443 	 * In this case we just guess.
3444 	 */
3445 	if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
3446 	    (origoffer == -1 ||
3447 	     (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP))
3448 		mss -= TCPOLEN_TSTAMP_APPA;
3449 
3450 #if	(MCLBYTES & (MCLBYTES - 1)) == 0
3451 	if (mss > MCLBYTES)
3452 		mss &= ~(MCLBYTES-1);
3453 #else
3454 	if (mss > MCLBYTES)
3455 		mss = mss / MCLBYTES * MCLBYTES;
3456 #endif
3457 	tp->t_maxseg = mss;
3458 }
3459 
3460 void
3461 tcp_mss(struct tcpcb *tp, int offer)
3462 {
3463 	int mss;
3464 	u_long bufsize;
3465 	struct inpcb *inp;
3466 	struct socket *so;
3467 	struct hc_metrics_lite metrics;
3468 	int mtuflags = 0;
3469 
3470 	KASSERT(tp != NULL, ("%s: tp == NULL", __func__));
3471 
3472 	tcp_mss_update(tp, offer, &metrics, &mtuflags);
3473 
3474 	mss = tp->t_maxseg;
3475 	inp = tp->t_inpcb;
3476 
3477 	/*
3478 	 * If there's a pipesize, change the socket buffer to that size,
3479 	 * don't change if sb_hiwat is different than default (then it
3480 	 * has been changed on purpose with setsockopt).
3481 	 * Make the socket buffers an integral number of mss units;
3482 	 * if the mss is larger than the socket buffer, decrease the mss.
3483 	 */
3484 	so = inp->inp_socket;
3485 	SOCKBUF_LOCK(&so->so_snd);
3486 	if ((so->so_snd.sb_hiwat == V_tcp_sendspace) && metrics.rmx_sendpipe)
3487 		bufsize = metrics.rmx_sendpipe;
3488 	else
3489 		bufsize = so->so_snd.sb_hiwat;
3490 	if (bufsize < mss)
3491 		mss = bufsize;
3492 	else {
3493 		bufsize = roundup(bufsize, mss);
3494 		if (bufsize > sb_max)
3495 			bufsize = sb_max;
3496 		if (bufsize > so->so_snd.sb_hiwat)
3497 			(void)sbreserve_locked(&so->so_snd, bufsize, so, NULL);
3498 	}
3499 	SOCKBUF_UNLOCK(&so->so_snd);
3500 	tp->t_maxseg = mss;
3501 
3502 	SOCKBUF_LOCK(&so->so_rcv);
3503 	if ((so->so_rcv.sb_hiwat == V_tcp_recvspace) && metrics.rmx_recvpipe)
3504 		bufsize = metrics.rmx_recvpipe;
3505 	else
3506 		bufsize = so->so_rcv.sb_hiwat;
3507 	if (bufsize > mss) {
3508 		bufsize = roundup(bufsize, mss);
3509 		if (bufsize > sb_max)
3510 			bufsize = sb_max;
3511 		if (bufsize > so->so_rcv.sb_hiwat)
3512 			(void)sbreserve_locked(&so->so_rcv, bufsize, so, NULL);
3513 	}
3514 	SOCKBUF_UNLOCK(&so->so_rcv);
3515 
3516 	/* Check the interface for TSO capabilities. */
3517 	if (mtuflags & CSUM_TSO)
3518 		tp->t_flags |= TF_TSO;
3519 }
3520 
3521 /*
3522  * Determine the MSS option to send on an outgoing SYN.
3523  */
3524 int
3525 tcp_mssopt(struct in_conninfo *inc)
3526 {
3527 	int mss = 0;
3528 	u_long maxmtu = 0;
3529 	u_long thcmtu = 0;
3530 	size_t min_protoh;
3531 
3532 	KASSERT(inc != NULL, ("tcp_mssopt with NULL in_conninfo pointer"));
3533 
3534 #ifdef INET6
3535 	if (inc->inc_flags & INC_ISIPV6) {
3536 		mss = V_tcp_v6mssdflt;
3537 		maxmtu = tcp_maxmtu6(inc, NULL);
3538 		thcmtu = tcp_hc_getmtu(inc); /* IPv4 and IPv6 */
3539 		min_protoh = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
3540 	}
3541 #endif
3542 #if defined(INET) && defined(INET6)
3543 	else
3544 #endif
3545 #ifdef INET
3546 	{
3547 		mss = V_tcp_mssdflt;
3548 		maxmtu = tcp_maxmtu(inc, NULL);
3549 		thcmtu = tcp_hc_getmtu(inc); /* IPv4 and IPv6 */
3550 		min_protoh = sizeof(struct tcpiphdr);
3551 	}
3552 #endif
3553 	if (maxmtu && thcmtu)
3554 		mss = min(maxmtu, thcmtu) - min_protoh;
3555 	else if (maxmtu || thcmtu)
3556 		mss = max(maxmtu, thcmtu) - min_protoh;
3557 
3558 	return (mss);
3559 }
3560 
3561 
3562 /*
3563  * On a partial ack arrives, force the retransmission of the
3564  * next unacknowledged segment.  Do not clear tp->t_dupacks.
3565  * By setting snd_nxt to ti_ack, this forces retransmission timer to
3566  * be started again.
3567  */
3568 static void
3569 tcp_newreno_partial_ack(struct tcpcb *tp, struct tcphdr *th)
3570 {
3571 	tcp_seq onxt = tp->snd_nxt;
3572 	u_long  ocwnd = tp->snd_cwnd;
3573 
3574 	INP_WLOCK_ASSERT(tp->t_inpcb);
3575 
3576 	tcp_timer_activate(tp, TT_REXMT, 0);
3577 	tp->t_rtttime = 0;
3578 	tp->snd_nxt = th->th_ack;
3579 	/*
3580 	 * Set snd_cwnd to one segment beyond acknowledged offset.
3581 	 * (tp->snd_una has not yet been updated when this function is called.)
3582 	 */
3583 	tp->snd_cwnd = tp->t_maxseg + BYTES_THIS_ACK(tp, th);
3584 	tp->t_flags |= TF_ACKNOW;
3585 	(void) tcp_output(tp);
3586 	tp->snd_cwnd = ocwnd;
3587 	if (SEQ_GT(onxt, tp->snd_nxt))
3588 		tp->snd_nxt = onxt;
3589 	/*
3590 	 * Partial window deflation.  Relies on fact that tp->snd_una
3591 	 * not updated yet.
3592 	 */
3593 	if (tp->snd_cwnd > BYTES_THIS_ACK(tp, th))
3594 		tp->snd_cwnd -= BYTES_THIS_ACK(tp, th);
3595 	else
3596 		tp->snd_cwnd = 0;
3597 	tp->snd_cwnd += tp->t_maxseg;
3598 }
3599