xref: /freebsd/sys/netinet/tcp_input.c (revision 6990ffd8a95caaba6858ad44ff1b3157d1efba8f)
1 /*
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
34  * $FreeBSD$
35  */
36 
37 #include "opt_ipfw.h"		/* for ipfw_fwd		*/
38 #include "opt_inet6.h"
39 #include "opt_ipsec.h"
40 #include "opt_tcpdebug.h"
41 #include "opt_tcp_input.h"
42 
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/kernel.h>
46 #include <sys/sysctl.h>
47 #include <sys/malloc.h>
48 #include <sys/mbuf.h>
49 #include <sys/proc.h>		/* for proc0 declaration */
50 #include <sys/protosw.h>
51 #include <sys/socket.h>
52 #include <sys/socketvar.h>
53 #include <sys/syslog.h>
54 
55 #include <machine/cpu.h>	/* before tcp_seq.h, for tcp_random18() */
56 
57 #include <net/if.h>
58 #include <net/route.h>
59 
60 #include <netinet/in.h>
61 #include <netinet/in_systm.h>
62 #include <netinet/ip.h>
63 #include <netinet/ip_icmp.h>	/* for ICMP_BANDLIM		*/
64 #include <netinet/in_var.h>
65 #include <netinet/icmp_var.h>	/* for ICMP_BANDLIM		*/
66 #include <netinet/in_pcb.h>
67 #include <netinet/ip_var.h>
68 #ifdef INET6
69 #include <netinet/ip6.h>
70 #include <netinet/icmp6.h>
71 #include <netinet6/nd6.h>
72 #include <netinet6/ip6_var.h>
73 #include <netinet6/in6_pcb.h>
74 #endif
75 #include <netinet/tcp.h>
76 #include <netinet/tcp_fsm.h>
77 #include <netinet/tcp_seq.h>
78 #include <netinet/tcp_timer.h>
79 #include <netinet/tcp_var.h>
80 #ifdef INET6
81 #include <netinet6/tcp6_var.h>
82 #endif
83 #include <netinet/tcpip.h>
84 #ifdef TCPDEBUG
85 #include <netinet/tcp_debug.h>
86 
87 u_char tcp_saveipgen[40]; /* the size must be of max ip header, now IPv6 */
88 struct tcphdr tcp_savetcp;
89 #endif /* TCPDEBUG */
90 
91 #ifdef IPSEC
92 #include <netinet6/ipsec.h>
93 #ifdef INET6
94 #include <netinet6/ipsec6.h>
95 #endif
96 #include <netkey/key.h>
97 #endif /*IPSEC*/
98 
99 #include <machine/in_cksum.h>
100 
101 MALLOC_DEFINE(M_TSEGQ, "tseg_qent", "TCP segment queue entry");
102 
103 static int	tcprexmtthresh = 3;
104 tcp_cc	tcp_ccgen;
105 
106 struct	tcpstat tcpstat;
107 SYSCTL_STRUCT(_net_inet_tcp, TCPCTL_STATS, stats, CTLFLAG_RW,
108     &tcpstat , tcpstat, "TCP statistics (struct tcpstat, netinet/tcp_var.h)");
109 
110 static int log_in_vain = 0;
111 SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_in_vain, CTLFLAG_RW,
112     &log_in_vain, 0, "Log all incoming TCP connections");
113 
114 static int blackhole = 0;
115 SYSCTL_INT(_net_inet_tcp, OID_AUTO, blackhole, CTLFLAG_RW,
116 	&blackhole, 0, "Do not send RST when dropping refused connections");
117 
118 int tcp_delack_enabled = 1;
119 SYSCTL_INT(_net_inet_tcp, OID_AUTO, delayed_ack, CTLFLAG_RW,
120     &tcp_delack_enabled, 0,
121     "Delay ACK to try and piggyback it onto a data packet");
122 
123 int tcp_lq_overflow = 1;
124 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcp_lq_overflow, CTLFLAG_RW,
125     &tcp_lq_overflow, 0,
126     "Listen Queue Overflow");
127 
128 #ifdef TCP_DROP_SYNFIN
129 static int drop_synfin = 0;
130 SYSCTL_INT(_net_inet_tcp, OID_AUTO, drop_synfin, CTLFLAG_RW,
131     &drop_synfin, 0, "Drop TCP packets with SYN+FIN set");
132 #endif
133 
134 struct inpcbhead tcb;
135 #define	tcb6	tcb  /* for KAME src sync over BSD*'s */
136 struct inpcbinfo tcbinfo;
137 
138 static void	 tcp_dooptions __P((struct tcpcb *,
139 	    u_char *, int, struct tcphdr *, struct tcpopt *));
140 static void	 tcp_pulloutofband __P((struct socket *,
141 	    struct tcphdr *, struct mbuf *, int));
142 static int	 tcp_reass __P((struct tcpcb *, struct tcphdr *, int *,
143 				struct mbuf *));
144 static void	 tcp_xmit_timer __P((struct tcpcb *, int));
145 static int	 tcp_newreno __P((struct tcpcb *, struct tcphdr *));
146 
147 /* Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint. */
148 #ifdef INET6
149 #define ND6_HINT(tp) \
150 do { \
151 	if ((tp) && (tp)->t_inpcb && \
152 	    ((tp)->t_inpcb->inp_vflag & INP_IPV6) != 0 && \
153 	    (tp)->t_inpcb->in6p_route.ro_rt) \
154 		nd6_nud_hint((tp)->t_inpcb->in6p_route.ro_rt, NULL, 0); \
155 } while (0)
156 #else
157 #define ND6_HINT(tp)
158 #endif
159 
160 /*
161  * Indicate whether this ack should be delayed.
162  */
163 #define DELAY_ACK(tp) \
164 	(tcp_delack_enabled && !callout_pending(tp->tt_delack))
165 
166 static int
167 tcp_reass(tp, th, tlenp, m)
168 	register struct tcpcb *tp;
169 	register struct tcphdr *th;
170 	int *tlenp;
171 	struct mbuf *m;
172 {
173 	struct tseg_qent *q;
174 	struct tseg_qent *p = NULL;
175 	struct tseg_qent *nq;
176 	struct tseg_qent *te;
177 	struct socket *so = tp->t_inpcb->inp_socket;
178 	int flags;
179 
180 	/*
181 	 * Call with th==0 after become established to
182 	 * force pre-ESTABLISHED data up to user socket.
183 	 */
184 	if (th == 0)
185 		goto present;
186 
187 	/* Allocate a new queue entry. If we can't, just drop the pkt. XXX */
188 	MALLOC(te, struct tseg_qent *, sizeof (struct tseg_qent), M_TSEGQ,
189 	       M_NOWAIT);
190 	if (te == NULL) {
191 		tcpstat.tcps_rcvmemdrop++;
192 		m_freem(m);
193 		return (0);
194 	}
195 
196 	/*
197 	 * Find a segment which begins after this one does.
198 	 */
199 	LIST_FOREACH(q, &tp->t_segq, tqe_q) {
200 		if (SEQ_GT(q->tqe_th->th_seq, th->th_seq))
201 			break;
202 		p = q;
203 	}
204 
205 	/*
206 	 * If there is a preceding segment, it may provide some of
207 	 * our data already.  If so, drop the data from the incoming
208 	 * segment.  If it provides all of our data, drop us.
209 	 */
210 	if (p != NULL) {
211 		register int i;
212 		/* conversion to int (in i) handles seq wraparound */
213 		i = p->tqe_th->th_seq + p->tqe_len - th->th_seq;
214 		if (i > 0) {
215 			if (i >= *tlenp) {
216 				tcpstat.tcps_rcvduppack++;
217 				tcpstat.tcps_rcvdupbyte += *tlenp;
218 				m_freem(m);
219 				FREE(te, M_TSEGQ);
220 				/*
221 				 * Try to present any queued data
222 				 * at the left window edge to the user.
223 				 * This is needed after the 3-WHS
224 				 * completes.
225 				 */
226 				goto present;	/* ??? */
227 			}
228 			m_adj(m, i);
229 			*tlenp -= i;
230 			th->th_seq += i;
231 		}
232 	}
233 	tcpstat.tcps_rcvoopack++;
234 	tcpstat.tcps_rcvoobyte += *tlenp;
235 
236 	/*
237 	 * While we overlap succeeding segments trim them or,
238 	 * if they are completely covered, dequeue them.
239 	 */
240 	while (q) {
241 		register int i = (th->th_seq + *tlenp) - q->tqe_th->th_seq;
242 		if (i <= 0)
243 			break;
244 		if (i < q->tqe_len) {
245 			q->tqe_th->th_seq += i;
246 			q->tqe_len -= i;
247 			m_adj(q->tqe_m, i);
248 			break;
249 		}
250 
251 		nq = LIST_NEXT(q, tqe_q);
252 		LIST_REMOVE(q, tqe_q);
253 		m_freem(q->tqe_m);
254 		FREE(q, M_TSEGQ);
255 		q = nq;
256 	}
257 
258 	/* Insert the new segment queue entry into place. */
259 	te->tqe_m = m;
260 	te->tqe_th = th;
261 	te->tqe_len = *tlenp;
262 
263 	if (p == NULL) {
264 		LIST_INSERT_HEAD(&tp->t_segq, te, tqe_q);
265 	} else {
266 		LIST_INSERT_AFTER(p, te, tqe_q);
267 	}
268 
269 present:
270 	/*
271 	 * Present data to user, advancing rcv_nxt through
272 	 * completed sequence space.
273 	 */
274 	if (!TCPS_HAVEESTABLISHED(tp->t_state))
275 		return (0);
276 	q = LIST_FIRST(&tp->t_segq);
277 	if (!q || q->tqe_th->th_seq != tp->rcv_nxt)
278 		return (0);
279 	do {
280 		tp->rcv_nxt += q->tqe_len;
281 		flags = q->tqe_th->th_flags & TH_FIN;
282 		nq = LIST_NEXT(q, tqe_q);
283 		LIST_REMOVE(q, tqe_q);
284 		if (so->so_state & SS_CANTRCVMORE)
285 			m_freem(q->tqe_m);
286 		else
287 			sbappend(&so->so_rcv, q->tqe_m);
288 		FREE(q, M_TSEGQ);
289 		q = nq;
290 	} while (q && q->tqe_th->th_seq == tp->rcv_nxt);
291 	ND6_HINT(tp);
292 	sorwakeup(so);
293 	return (flags);
294 }
295 
296 /*
297  * TCP input routine, follows pages 65-76 of the
298  * protocol specification dated September, 1981 very closely.
299  */
300 #ifdef INET6
301 int
302 tcp6_input(mp, offp, proto)
303 	struct mbuf **mp;
304 	int *offp, proto;
305 {
306 	register struct mbuf *m = *mp;
307 	struct in6_ifaddr *ia6;
308 
309 	IP6_EXTHDR_CHECK(m, *offp, sizeof(struct tcphdr), IPPROTO_DONE);
310 
311 	/*
312 	 * draft-itojun-ipv6-tcp-to-anycast
313 	 * better place to put this in?
314 	 */
315 	ia6 = ip6_getdstifaddr(m);
316 	if (ia6 && (ia6->ia6_flags & IN6_IFF_ANYCAST)) {
317 		struct ip6_hdr *ip6;
318 
319 		ip6 = mtod(m, struct ip6_hdr *);
320 		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
321 			    (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
322 		return IPPROTO_DONE;
323 	}
324 
325 	tcp_input(m, *offp);
326 	return IPPROTO_DONE;
327 }
328 #endif
329 
330 void
331 tcp_input(m, off0)
332 	register struct mbuf *m;
333 	int off0;
334 {
335 	register struct tcphdr *th;
336 	register struct ip *ip = NULL;
337 	register struct ipovly *ipov;
338 	register struct inpcb *inp;
339 	u_char *optp = NULL;
340 	int optlen = 0;
341 	int len, tlen, off;
342 	int drop_hdrlen;
343 	register struct tcpcb *tp = 0;
344 	register int thflags;
345 	struct socket *so = 0;
346 	int todrop, acked, ourfinisacked, needoutput = 0;
347 	struct in_addr laddr;
348 #ifdef INET6
349 	struct in6_addr laddr6;
350 #endif
351 	int dropsocket = 0;
352 	int iss = 0;
353 	u_long tiwin;
354 	struct tcpopt to;		/* options in this segment */
355 	struct rmxp_tao *taop;		/* pointer to our TAO cache entry */
356 	struct rmxp_tao	tao_noncached;	/* in case there's no cached entry */
357 #ifdef TCPDEBUG
358 	short ostate = 0;
359 #endif
360 #ifdef INET6
361 	struct ip6_hdr *ip6 = NULL;
362 	int isipv6;
363 #endif /* INET6 */
364 	int rstreason; /* For badport_bandlim accounting purposes */
365 
366 #ifdef INET6
367 	isipv6 = (mtod(m, struct ip *)->ip_v == 6) ? 1 : 0;
368 #endif
369 	bzero((char *)&to, sizeof(to));
370 
371 	tcpstat.tcps_rcvtotal++;
372 
373 #ifdef INET6
374 	if (isipv6) {
375 		/* IP6_EXTHDR_CHECK() is already done at tcp6_input() */
376 		ip6 = mtod(m, struct ip6_hdr *);
377 		tlen = sizeof(*ip6) + ntohs(ip6->ip6_plen) - off0;
378 		if (in6_cksum(m, IPPROTO_TCP, off0, tlen)) {
379 			tcpstat.tcps_rcvbadsum++;
380 			goto drop;
381 		}
382 		th = (struct tcphdr *)((caddr_t)ip6 + off0);
383 
384 		/*
385 		 * Be proactive about unspecified IPv6 address in source.
386 		 * As we use all-zero to indicate unbounded/unconnected pcb,
387 		 * unspecified IPv6 address can be used to confuse us.
388 		 *
389 		 * Note that packets with unspecified IPv6 destination is
390 		 * already dropped in ip6_input.
391 		 */
392 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
393 			/* XXX stat */
394 			goto drop;
395 		}
396 	} else
397 #endif /* INET6 */
398       {
399 	/*
400 	 * Get IP and TCP header together in first mbuf.
401 	 * Note: IP leaves IP header in first mbuf.
402 	 */
403 	if (off0 > sizeof (struct ip)) {
404 		ip_stripoptions(m, (struct mbuf *)0);
405 		off0 = sizeof(struct ip);
406 	}
407 	if (m->m_len < sizeof (struct tcpiphdr)) {
408 		if ((m = m_pullup(m, sizeof (struct tcpiphdr))) == 0) {
409 			tcpstat.tcps_rcvshort++;
410 			return;
411 		}
412 	}
413 	ip = mtod(m, struct ip *);
414 	ipov = (struct ipovly *)ip;
415 	th = (struct tcphdr *)((caddr_t)ip + off0);
416 	tlen = ip->ip_len;
417 
418 	if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
419 		if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
420                 	th->th_sum = m->m_pkthdr.csum_data;
421 		else
422 	                th->th_sum = in_pseudo(ip->ip_src.s_addr,
423 			    ip->ip_dst.s_addr, htonl(m->m_pkthdr.csum_data +
424 			    ip->ip_len + IPPROTO_TCP));
425 		th->th_sum ^= 0xffff;
426 	} else {
427 		/*
428 		 * Checksum extended TCP header and data.
429 		 */
430 		len = sizeof (struct ip) + tlen;
431 		bzero(ipov->ih_x1, sizeof(ipov->ih_x1));
432 		ipov->ih_len = (u_short)tlen;
433 		HTONS(ipov->ih_len);
434 		th->th_sum = in_cksum(m, len);
435 	}
436 	if (th->th_sum) {
437 		tcpstat.tcps_rcvbadsum++;
438 		goto drop;
439 	}
440 #ifdef INET6
441 	/* Re-initialization for later version check */
442 	ip->ip_v = IPVERSION;
443 #endif
444       }
445 
446 	/*
447 	 * Check that TCP offset makes sense,
448 	 * pull out TCP options and adjust length.		XXX
449 	 */
450 	off = th->th_off << 2;
451 	if (off < sizeof (struct tcphdr) || off > tlen) {
452 		tcpstat.tcps_rcvbadoff++;
453 		goto drop;
454 	}
455 	tlen -= off;	/* tlen is used instead of ti->ti_len */
456 	if (off > sizeof (struct tcphdr)) {
457 #ifdef INET6
458 		if (isipv6) {
459 			IP6_EXTHDR_CHECK(m, off0, off, );
460 			ip6 = mtod(m, struct ip6_hdr *);
461 			th = (struct tcphdr *)((caddr_t)ip6 + off0);
462 		} else
463 #endif /* INET6 */
464 	      {
465 		if (m->m_len < sizeof(struct ip) + off) {
466 			if ((m = m_pullup(m, sizeof (struct ip) + off)) == 0) {
467 				tcpstat.tcps_rcvshort++;
468 				return;
469 			}
470 			ip = mtod(m, struct ip *);
471 			ipov = (struct ipovly *)ip;
472 			th = (struct tcphdr *)((caddr_t)ip + off0);
473 		}
474 	      }
475 		optlen = off - sizeof (struct tcphdr);
476 		optp = (u_char *)(th + 1);
477 	}
478 	thflags = th->th_flags;
479 
480 #ifdef TCP_DROP_SYNFIN
481 	/*
482 	 * If the drop_synfin option is enabled, drop all packets with
483 	 * both the SYN and FIN bits set. This prevents e.g. nmap from
484 	 * identifying the TCP/IP stack.
485 	 *
486 	 * This is a violation of the TCP specification.
487 	 */
488 	if (drop_synfin && (thflags & (TH_SYN|TH_FIN)) == (TH_SYN|TH_FIN))
489 		goto drop;
490 #endif
491 
492 	/*
493 	 * Convert TCP protocol specific fields to host format.
494 	 */
495 	NTOHL(th->th_seq);
496 	NTOHL(th->th_ack);
497 	NTOHS(th->th_win);
498 	NTOHS(th->th_urp);
499 
500 	/*
501 	 * Delay droping TCP, IP headers, IPv6 ext headers, and TCP options,
502 	 * until after ip6_savecontrol() is called and before other functions
503 	 * which don't want those proto headers.
504 	 * Because ip6_savecontrol() is going to parse the mbuf to
505 	 * search for data to be passed up to user-land, it wants mbuf
506 	 * parameters to be unchanged.
507 	 */
508 	drop_hdrlen = off0 + off;
509 
510 	/*
511 	 * Locate pcb for segment.
512 	 */
513 findpcb:
514 #ifdef IPFIREWALL_FORWARD
515 	if (ip_fw_fwd_addr != NULL
516 #ifdef INET6
517 	    && isipv6 == NULL /* IPv6 support is not yet */
518 #endif /* INET6 */
519 	    ) {
520 		/*
521 		 * Diverted. Pretend to be the destination.
522 		 * already got one like this?
523 		 */
524 		inp = in_pcblookup_hash(&tcbinfo, ip->ip_src, th->th_sport,
525 			ip->ip_dst, th->th_dport, 0, m->m_pkthdr.rcvif);
526 		if (!inp) {
527 			/*
528 			 * No, then it's new. Try find the ambushing socket
529 			 */
530 			if (!ip_fw_fwd_addr->sin_port) {
531 				inp = in_pcblookup_hash(&tcbinfo, ip->ip_src,
532 				    th->th_sport, ip_fw_fwd_addr->sin_addr,
533 				    th->th_dport, 1, m->m_pkthdr.rcvif);
534 			} else {
535 				inp = in_pcblookup_hash(&tcbinfo,
536 				    ip->ip_src, th->th_sport,
537 	    			    ip_fw_fwd_addr->sin_addr,
538 				    ntohs(ip_fw_fwd_addr->sin_port), 1,
539 				    m->m_pkthdr.rcvif);
540 			}
541 		}
542 		ip_fw_fwd_addr = NULL;
543 	} else
544 #endif	/* IPFIREWALL_FORWARD */
545       {
546 #ifdef INET6
547 	if (isipv6)
548 		inp = in6_pcblookup_hash(&tcbinfo, &ip6->ip6_src, th->th_sport,
549 					 &ip6->ip6_dst, th->th_dport, 1,
550 					 m->m_pkthdr.rcvif);
551 	else
552 #endif /* INET6 */
553 	inp = in_pcblookup_hash(&tcbinfo, ip->ip_src, th->th_sport,
554 	    ip->ip_dst, th->th_dport, 1, m->m_pkthdr.rcvif);
555       }
556 
557 #ifdef IPSEC
558 #ifdef INET6
559 	if (isipv6) {
560 		if (inp != NULL && ipsec6_in_reject_so(m, inp->inp_socket)) {
561 			ipsec6stat.in_polvio++;
562 			goto drop;
563 		}
564 	} else
565 #endif /* INET6 */
566 	if (inp != NULL && ipsec4_in_reject_so(m, inp->inp_socket)) {
567 		ipsecstat.in_polvio++;
568 		goto drop;
569 	}
570 #endif /*IPSEC*/
571 
572 	/*
573 	 * If the state is CLOSED (i.e., TCB does not exist) then
574 	 * all data in the incoming segment is discarded.
575 	 * If the TCB exists but is in CLOSED state, it is embryonic,
576 	 * but should either do a listen or a connect soon.
577 	 */
578 	if (inp == NULL) {
579 		if (log_in_vain) {
580 #ifdef INET6
581 			char dbuf[INET6_ADDRSTRLEN], sbuf[INET6_ADDRSTRLEN];
582 #else /* INET6 */
583 			char dbuf[4*sizeof "123"], sbuf[4*sizeof "123"];
584 #endif /* INET6 */
585 
586 #ifdef INET6
587 			if (isipv6) {
588 				strcpy(dbuf, ip6_sprintf(&ip6->ip6_dst));
589 				strcpy(sbuf, ip6_sprintf(&ip6->ip6_src));
590 			} else
591 #endif
592 		      {
593 			strcpy(dbuf, inet_ntoa(ip->ip_dst));
594 			strcpy(sbuf, inet_ntoa(ip->ip_src));
595 		      }
596 			switch (log_in_vain) {
597 			case 1:
598 				if(thflags & TH_SYN)
599 					log(LOG_INFO,
600 			    		"Connection attempt to TCP %s:%d from %s:%d\n",
601 			    		dbuf, ntohs(th->th_dport),
602 					sbuf,
603 					ntohs(th->th_sport));
604 				break;
605 			case 2:
606 				log(LOG_INFO,
607 			    	"Connection attempt to TCP %s:%d from %s:%d flags:0x%x\n",
608 			    	dbuf, ntohs(th->th_dport), sbuf,
609 			    	ntohs(th->th_sport), thflags);
610 				break;
611 			default:
612 				break;
613 			}
614 		}
615 		if (blackhole) {
616 			switch (blackhole) {
617 			case 1:
618 				if (thflags & TH_SYN)
619 					goto drop;
620 				break;
621 			case 2:
622 				goto drop;
623 			default:
624 				goto drop;
625 			}
626 		}
627 		rstreason = BANDLIM_RST_CLOSEDPORT;
628 		goto dropwithreset;
629 	}
630 	tp = intotcpcb(inp);
631 	if (tp == 0) {
632 		rstreason = BANDLIM_RST_CLOSEDPORT;
633 		goto dropwithreset;
634 	}
635 	if (tp->t_state == TCPS_CLOSED)
636 		goto drop;
637 
638 	/* Unscale the window into a 32-bit value. */
639 	if ((thflags & TH_SYN) == 0)
640 		tiwin = th->th_win << tp->snd_scale;
641 	else
642 		tiwin = th->th_win;
643 
644 	so = inp->inp_socket;
645 	if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
646 #ifdef TCPDEBUG
647 		if (so->so_options & SO_DEBUG) {
648 			ostate = tp->t_state;
649 #ifdef INET6
650 			if (isipv6)
651 				bcopy((char *)ip6, (char *)tcp_saveipgen,
652 				      sizeof(*ip6));
653 			else
654 #endif /* INET6 */
655 			bcopy((char *)ip, (char *)tcp_saveipgen, sizeof(*ip));
656 			tcp_savetcp = *th;
657 		}
658 #endif
659 		if (so->so_options & SO_ACCEPTCONN) {
660 			register struct tcpcb *tp0 = tp;
661 			struct socket *so2;
662 #ifdef IPSEC
663 			struct socket *oso;
664 #endif
665 #ifdef INET6
666 			struct inpcb *oinp = sotoinpcb(so);
667 #endif /* INET6 */
668 
669 #ifndef IPSEC
670 			/*
671 			 * Current IPsec implementation makes incorrect IPsec
672 			 * cache if this check is done here.
673 			 * So delay this until duplicated socket is created.
674 			 */
675 			if ((thflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
676 				/*
677 				 * Note: dropwithreset makes sure we don't
678 				 * send a RST in response to a RST.
679 				 */
680 				if (thflags & TH_ACK) {
681 					tcpstat.tcps_badsyn++;
682 					rstreason = BANDLIM_RST_OPENPORT;
683 					goto dropwithreset;
684 				}
685 				goto drop;
686 			}
687 #endif
688 
689 #ifdef INET6
690 			/*
691 			 * If deprecated address is forbidden,
692 			 * we do not accept SYN to deprecated interface
693 			 * address to prevent any new inbound connection from
694 			 * getting established.
695 			 * When we do not accept SYN, we send a TCP RST,
696 			 * with deprecated source address (instead of dropping
697 			 * it).  We compromise it as it is much better for peer
698 			 * to send a RST, and RST will be the final packet
699 			 * for the exchange.
700 			 *
701 			 * If we do not forbid deprecated addresses, we accept
702 			 * the SYN packet.  RFC2462 does not suggest dropping
703 			 * SYN in this case.
704 			 * If we decipher RFC2462 5.5.4, it says like this:
705 			 * 1. use of deprecated addr with existing
706 			 *    communication is okay - "SHOULD continue to be
707 			 *    used"
708 			 * 2. use of it with new communication:
709 			 *   (2a) "SHOULD NOT be used if alternate address
710 			 *        with sufficient scope is available"
711 			 *   (2b) nothing mentioned otherwise.
712 			 * Here we fall into (2b) case as we have no choice in
713 			 * our source address selection - we must obey the peer.
714 			 *
715 			 * The wording in RFC2462 is confusing, and there are
716 			 * multiple description text for deprecated address
717 			 * handling - worse, they are not exactly the same.
718 			 * I believe 5.5.4 is the best one, so we follow 5.5.4.
719 			 */
720 			if (isipv6 && !ip6_use_deprecated) {
721 				struct in6_ifaddr *ia6;
722 
723 				if ((ia6 = ip6_getdstifaddr(m)) &&
724 				    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
725 					tp = NULL;
726 					rstreason = BANDLIM_RST_OPENPORT;
727 					goto dropwithreset;
728 				}
729 			}
730 #endif
731 
732 			so2 = sonewconn(so, 0);
733 			if (so2 == 0) {
734 				/*
735 				 * If we were unable to create a new socket
736 				 * for this SYN, we call sodropablereq to
737 				 * see if there are any other sockets we
738 				 * can kick out of the listen queue.  If
739 				 * so, we'll silently drop the socket
740 				 * sodropablereq told us to drop and
741 				 * create a new one.
742 				 *
743 				 * If sodropablereq returns 0, we'll
744 				 * simply drop the incoming SYN, as we
745 				 * can not allocate a socket for it.
746 				 */
747 				tcpstat.tcps_listendrop++;
748 				so2 = sodropablereq(so);
749 				if (so2) {
750 					if (tcp_lq_overflow)
751 						sototcpcb(so2)->t_flags |=
752 						    TF_LQ_OVERFLOW;
753 					tcp_close(sototcpcb(so2));
754 					so2 = sonewconn(so, 0);
755 				}
756 				if (!so2)
757 					goto drop;
758 			}
759 #ifdef IPSEC
760 			oso = so;
761 #endif
762 			so = so2;
763 			/*
764 			 * This is ugly, but ....
765 			 *
766 			 * Mark socket as temporary until we're
767 			 * committed to keeping it.  The code at
768 			 * ``drop'' and ``dropwithreset'' check the
769 			 * flag dropsocket to see if the temporary
770 			 * socket created here should be discarded.
771 			 * We mark the socket as discardable until
772 			 * we're committed to it below in TCPS_LISTEN.
773 			 */
774 			dropsocket++;
775 			inp = (struct inpcb *)so->so_pcb;
776 #ifdef INET6
777 			if (isipv6)
778 				inp->in6p_laddr = ip6->ip6_dst;
779 			else {
780 				inp->inp_vflag &= ~INP_IPV6;
781 				inp->inp_vflag |= INP_IPV4;
782 #endif /* INET6 */
783 			inp->inp_laddr = ip->ip_dst;
784 #ifdef INET6
785 			}
786 #endif /* INET6 */
787 			inp->inp_lport = th->th_dport;
788 			if (in_pcbinshash(inp) != 0) {
789 				/*
790 				 * Undo the assignments above if we failed to
791 				 * put the PCB on the hash lists.
792 				 */
793 #ifdef INET6
794 				if (isipv6)
795 					inp->in6p_laddr = in6addr_any;
796 				else
797 #endif /* INET6 */
798 				inp->inp_laddr.s_addr = INADDR_ANY;
799 				inp->inp_lport = 0;
800 				goto drop;
801 			}
802 #ifdef IPSEC
803 			/*
804 			 * To avoid creating incorrectly cached IPsec
805 			 * association, this is need to be done here.
806 			 *
807 			 * Subject: (KAME-snap 748)
808 			 * From: Wayne Knowles <w.knowles@niwa.cri.nz>
809 			 * ftp://ftp.kame.net/pub/mail-list/snap-users/748
810 			 */
811 			if ((thflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
812 				/*
813 				 * Note: dropwithreset makes sure we don't
814 				 * send a RST in response to a RST.
815 				 */
816 				if (thflags & TH_ACK) {
817 					tcpstat.tcps_badsyn++;
818 					rstreason = BANDLIM_RST_OPENPORT;
819 					goto dropwithreset;
820 				}
821 				goto drop;
822 			}
823 #endif
824 #ifdef INET6
825 			if (isipv6) {
826   				/*
827  				 * Inherit socket options from the listening
828   				 * socket.
829  				 * Note that in6p_inputopts are not (even
830  				 * should not be) copied, since it stores
831 				 * previously received options and is used to
832  				 * detect if each new option is different than
833  				 * the previous one and hence should be passed
834  				 * to a user.
835  				 * If we copied in6p_inputopts, a user would
836  				 * not be able to receive options just after
837  				 * calling the accept system call.
838  				 */
839 				inp->inp_flags |=
840 					oinp->inp_flags & INP_CONTROLOPTS;
841  				if (oinp->in6p_outputopts)
842  					inp->in6p_outputopts =
843  						ip6_copypktopts(oinp->in6p_outputopts,
844  								M_NOWAIT);
845 			} else
846 #endif /* INET6 */
847 			inp->inp_options = ip_srcroute();
848 #ifdef IPSEC
849 			/* copy old policy into new socket's */
850 			if (ipsec_copy_policy(sotoinpcb(oso)->inp_sp,
851 			                      inp->inp_sp))
852 				printf("tcp_input: could not copy policy\n");
853 #endif
854 			tp = intotcpcb(inp);
855 			tp->t_state = TCPS_LISTEN;
856 			tp->t_flags |= tp0->t_flags & (TF_NOPUSH|TF_NOOPT);
857 
858 			/* Compute proper scaling value from buffer space */
859 			while (tp->request_r_scale < TCP_MAX_WINSHIFT &&
860 			   TCP_MAXWIN << tp->request_r_scale <
861 			   so->so_rcv.sb_hiwat)
862 				tp->request_r_scale++;
863 		}
864 	}
865 
866 	/*
867 	 * Segment received on connection.
868 	 * Reset idle time and keep-alive timer.
869 	 */
870 	tp->t_rcvtime = ticks;
871 	if (TCPS_HAVEESTABLISHED(tp->t_state))
872 		callout_reset(tp->tt_keep, tcp_keepidle, tcp_timer_keep, tp);
873 
874 	/*
875 	 * Process options if not in LISTEN state,
876 	 * else do it below (after getting remote address).
877 	 */
878 	if (tp->t_state != TCPS_LISTEN)
879 		tcp_dooptions(tp, optp, optlen, th, &to);
880 
881 	/*
882 	 * Header prediction: check for the two common cases
883 	 * of a uni-directional data xfer.  If the packet has
884 	 * no control flags, is in-sequence, the window didn't
885 	 * change and we're not retransmitting, it's a
886 	 * candidate.  If the length is zero and the ack moved
887 	 * forward, we're the sender side of the xfer.  Just
888 	 * free the data acked & wake any higher level process
889 	 * that was blocked waiting for space.  If the length
890 	 * is non-zero and the ack didn't move, we're the
891 	 * receiver side.  If we're getting packets in-order
892 	 * (the reassembly queue is empty), add the data to
893 	 * the socket buffer and note that we need a delayed ack.
894 	 * Make sure that the hidden state-flags are also off.
895 	 * Since we check for TCPS_ESTABLISHED above, it can only
896 	 * be TH_NEEDSYN.
897 	 */
898 	if (tp->t_state == TCPS_ESTABLISHED &&
899 	    (thflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
900 	    ((tp->t_flags & (TF_NEEDSYN|TF_NEEDFIN)) == 0) &&
901 	    ((to.to_flag & TOF_TS) == 0 ||
902 	     TSTMP_GEQ(to.to_tsval, tp->ts_recent)) &&
903 	    /*
904 	     * Using the CC option is compulsory if once started:
905 	     *   the segment is OK if no T/TCP was negotiated or
906 	     *   if the segment has a CC option equal to CCrecv
907 	     */
908 	    ((tp->t_flags & (TF_REQ_CC|TF_RCVD_CC)) != (TF_REQ_CC|TF_RCVD_CC) ||
909 	     ((to.to_flag & TOF_CC) != 0 && to.to_cc == tp->cc_recv)) &&
910 	    th->th_seq == tp->rcv_nxt &&
911 	    tiwin && tiwin == tp->snd_wnd &&
912 	    tp->snd_nxt == tp->snd_max) {
913 
914 		/*
915 		 * If last ACK falls within this segment's sequence numbers,
916 		 * record the timestamp.
917 		 * NOTE that the test is modified according to the latest
918 		 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
919 		 */
920 		if ((to.to_flag & TOF_TS) != 0 &&
921 		   SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
922 			tp->ts_recent_age = ticks;
923 			tp->ts_recent = to.to_tsval;
924 		}
925 
926 		if (tlen == 0) {
927 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
928 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
929 			    tp->snd_cwnd >= tp->snd_wnd &&
930 			    tp->t_dupacks < tcprexmtthresh) {
931 				/*
932 				 * this is a pure ack for outstanding data.
933 				 */
934 				++tcpstat.tcps_predack;
935 				/*
936 				 * "bad retransmit" recovery
937 				 */
938 				if (tp->t_rxtshift == 1 &&
939 				    ticks < tp->t_badrxtwin) {
940 					tp->snd_cwnd = tp->snd_cwnd_prev;
941 					tp->snd_ssthresh =
942 					    tp->snd_ssthresh_prev;
943 					tp->snd_nxt = tp->snd_max;
944 					tp->t_badrxtwin = 0;
945 				}
946 				if ((to.to_flag & TOF_TS) != 0)
947 					tcp_xmit_timer(tp,
948 					    ticks - to.to_tsecr + 1);
949 				else if (tp->t_rtttime &&
950 					    SEQ_GT(th->th_ack, tp->t_rtseq))
951 					tcp_xmit_timer(tp, ticks - tp->t_rtttime);
952 				acked = th->th_ack - tp->snd_una;
953 				tcpstat.tcps_rcvackpack++;
954 				tcpstat.tcps_rcvackbyte += acked;
955 				sbdrop(&so->so_snd, acked);
956 				tp->snd_una = th->th_ack;
957 				m_freem(m);
958 				ND6_HINT(tp); /* some progress has been done */
959 
960 				/*
961 				 * If all outstanding data are acked, stop
962 				 * retransmit timer, otherwise restart timer
963 				 * using current (possibly backed-off) value.
964 				 * If process is waiting for space,
965 				 * wakeup/selwakeup/signal.  If data
966 				 * are ready to send, let tcp_output
967 				 * decide between more output or persist.
968 				 */
969 				if (tp->snd_una == tp->snd_max)
970 					callout_stop(tp->tt_rexmt);
971 				else if (!callout_active(tp->tt_persist))
972 					callout_reset(tp->tt_rexmt,
973 						      tp->t_rxtcur,
974 						      tcp_timer_rexmt, tp);
975 
976 				sowwakeup(so);
977 				if (so->so_snd.sb_cc)
978 					(void) tcp_output(tp);
979 				return;
980 			}
981 		} else if (th->th_ack == tp->snd_una &&
982 		    LIST_EMPTY(&tp->t_segq) &&
983 		    tlen <= sbspace(&so->so_rcv)) {
984 			/*
985 			 * this is a pure, in-sequence data packet
986 			 * with nothing on the reassembly queue and
987 			 * we have enough buffer space to take it.
988 			 */
989 			++tcpstat.tcps_preddat;
990 			tp->rcv_nxt += tlen;
991 			tcpstat.tcps_rcvpack++;
992 			tcpstat.tcps_rcvbyte += tlen;
993 			ND6_HINT(tp);	/* some progress has been done */
994 			/*
995 			 * Add data to socket buffer.
996 			 */
997 			m_adj(m, drop_hdrlen);	/* delayed header drop */
998 			sbappend(&so->so_rcv, m);
999 			sorwakeup(so);
1000 			if (DELAY_ACK(tp)) {
1001 	                        callout_reset(tp->tt_delack, tcp_delacktime,
1002 	                            tcp_timer_delack, tp);
1003 			} else {
1004 				tp->t_flags |= TF_ACKNOW;
1005 				tcp_output(tp);
1006 			}
1007 			return;
1008 		}
1009 	}
1010 
1011 	/*
1012 	 * Calculate amount of space in receive window,
1013 	 * and then do TCP input processing.
1014 	 * Receive window is amount of space in rcv queue,
1015 	 * but not less than advertised window.
1016 	 */
1017 	{ int win;
1018 
1019 	win = sbspace(&so->so_rcv);
1020 	if (win < 0)
1021 		win = 0;
1022 	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1023 	}
1024 
1025 	switch (tp->t_state) {
1026 
1027 	/*
1028 	 * If the state is LISTEN then ignore segment if it contains an RST.
1029 	 * If the segment contains an ACK then it is bad and send a RST.
1030 	 * If it does not contain a SYN then it is not interesting; drop it.
1031 	 * If it is from this socket, drop it, it must be forged.
1032 	 * Don't bother responding if the destination was a broadcast.
1033 	 * Otherwise initialize tp->rcv_nxt, and tp->irs, select an initial
1034 	 * tp->iss, and send a segment:
1035 	 *     <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
1036 	 * Also initialize tp->snd_nxt to tp->iss+1 and tp->snd_una to tp->iss.
1037 	 * Fill in remote peer address fields if not previously specified.
1038 	 * Enter SYN_RECEIVED state, and process any other fields of this
1039 	 * segment in this state.
1040 	 */
1041 	case TCPS_LISTEN: {
1042 		register struct sockaddr_in *sin;
1043 #ifdef INET6
1044 		register struct sockaddr_in6 *sin6;
1045 #endif
1046 
1047 		if (thflags & TH_RST)
1048 			goto drop;
1049 		if (thflags & TH_ACK) {
1050 			rstreason = BANDLIM_RST_OPENPORT;
1051 			goto dropwithreset;
1052 		}
1053 		if ((thflags & TH_SYN) == 0)
1054 			goto drop;
1055 		if (th->th_dport == th->th_sport) {
1056 #ifdef INET6
1057 			if (isipv6) {
1058 				if (IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst,
1059 						       &ip6->ip6_src))
1060 					goto drop;
1061 			} else
1062 #endif /* INET6 */
1063 			if (ip->ip_dst.s_addr == ip->ip_src.s_addr)
1064 				goto drop;
1065 		}
1066 		/*
1067 		 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
1068 		 * in_broadcast() should never return true on a received
1069 		 * packet with M_BCAST not set.
1070  		 *
1071  		 * Packets with a multicast source address should also
1072  		 * be discarded.
1073 		 */
1074 		if (m->m_flags & (M_BCAST|M_MCAST))
1075 			goto drop;
1076 #ifdef INET6
1077 		if (isipv6) {
1078 			if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
1079 			    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
1080 				goto drop;
1081 		} else
1082 #endif
1083 		if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
1084 		    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
1085 		    ip->ip_src.s_addr == htonl(INADDR_BROADCAST))
1086 			goto drop;
1087 #ifdef INET6
1088 		if (isipv6) {
1089 			MALLOC(sin6, struct sockaddr_in6 *, sizeof *sin6,
1090 			       M_SONAME, M_NOWAIT | M_ZERO);
1091 			if (sin6 == NULL)
1092 				goto drop;
1093 			sin6->sin6_family = AF_INET6;
1094 			sin6->sin6_len = sizeof(*sin6);
1095 			sin6->sin6_addr = ip6->ip6_src;
1096 			sin6->sin6_port = th->th_sport;
1097 			laddr6 = inp->in6p_laddr;
1098 			if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr))
1099 				inp->in6p_laddr = ip6->ip6_dst;
1100 			if (in6_pcbconnect(inp, (struct sockaddr *)sin6,
1101 					   thread0)) {
1102 				inp->in6p_laddr = laddr6;
1103 				FREE(sin6, M_SONAME);
1104 				goto drop;
1105 			}
1106 			FREE(sin6, M_SONAME);
1107 		} else
1108 #endif
1109 	      {
1110 		MALLOC(sin, struct sockaddr_in *, sizeof *sin, M_SONAME,
1111 		       M_NOWAIT);
1112 		if (sin == NULL)
1113 			goto drop;
1114 		sin->sin_family = AF_INET;
1115 		sin->sin_len = sizeof(*sin);
1116 		sin->sin_addr = ip->ip_src;
1117 		sin->sin_port = th->th_sport;
1118 		bzero((caddr_t)sin->sin_zero, sizeof(sin->sin_zero));
1119 		laddr = inp->inp_laddr;
1120 		if (inp->inp_laddr.s_addr == INADDR_ANY)
1121 			inp->inp_laddr = ip->ip_dst;
1122 		if (in_pcbconnect(inp, (struct sockaddr *)sin, thread0)) {
1123 			inp->inp_laddr = laddr;
1124 			FREE(sin, M_SONAME);
1125 			goto drop;
1126 		}
1127 		FREE(sin, M_SONAME);
1128 	      }
1129 		if ((taop = tcp_gettaocache(inp)) == NULL) {
1130 			taop = &tao_noncached;
1131 			bzero(taop, sizeof(*taop));
1132 		}
1133 		tcp_dooptions(tp, optp, optlen, th, &to);
1134 		if (iss)
1135 			tp->iss = iss;
1136 		else {
1137 			tp->iss = tcp_new_isn(tp);
1138  		}
1139 		tp->irs = th->th_seq;
1140 		tcp_sendseqinit(tp);
1141 		tcp_rcvseqinit(tp);
1142 		tp->snd_recover = tp->snd_una;
1143 		/*
1144 		 * Initialization of the tcpcb for transaction;
1145 		 *   set SND.WND = SEG.WND,
1146 		 *   initialize CCsend and CCrecv.
1147 		 */
1148 		tp->snd_wnd = tiwin;	/* initial send-window */
1149 		tp->cc_send = CC_INC(tcp_ccgen);
1150 		tp->cc_recv = to.to_cc;
1151 		/*
1152 		 * Perform TAO test on incoming CC (SEG.CC) option, if any.
1153 		 * - compare SEG.CC against cached CC from the same host,
1154 		 *	if any.
1155 		 * - if SEG.CC > chached value, SYN must be new and is accepted
1156 		 *	immediately: save new CC in the cache, mark the socket
1157 		 *	connected, enter ESTABLISHED state, turn on flag to
1158 		 *	send a SYN in the next segment.
1159 		 *	A virtual advertised window is set in rcv_adv to
1160 		 *	initialize SWS prevention.  Then enter normal segment
1161 		 *	processing: drop SYN, process data and FIN.
1162 		 * - otherwise do a normal 3-way handshake.
1163 		 */
1164 		if ((to.to_flag & TOF_CC) != 0) {
1165 		    if (((tp->t_flags & TF_NOPUSH) != 0) &&
1166 			taop->tao_cc != 0 && CC_GT(to.to_cc, taop->tao_cc)) {
1167 
1168 			taop->tao_cc = to.to_cc;
1169 			tp->t_starttime = ticks;
1170 			tp->t_state = TCPS_ESTABLISHED;
1171 
1172 			/*
1173 			 * If there is a FIN, or if there is data and the
1174 			 * connection is local, then delay SYN,ACK(SYN) in
1175 			 * the hope of piggy-backing it on a response
1176 			 * segment.  Otherwise must send ACK now in case
1177 			 * the other side is slow starting.
1178 			 */
1179 			if (DELAY_ACK(tp) && ((thflags & TH_FIN) ||
1180 			    (tlen != 0 &&
1181 #ifdef INET6
1182 			      ((isipv6 && in6_localaddr(&inp->in6p_faddr))
1183 			      ||
1184 			      (!isipv6 &&
1185 #endif
1186 			    in_localaddr(inp->inp_faddr)
1187 #ifdef INET6
1188 			       ))
1189 #endif
1190 			     ))) {
1191                                 callout_reset(tp->tt_delack, tcp_delacktime,
1192                                     tcp_timer_delack, tp);
1193 				tp->t_flags |= TF_NEEDSYN;
1194 			} else
1195 				tp->t_flags |= (TF_ACKNOW | TF_NEEDSYN);
1196 
1197 			/*
1198 			 * Limit the `virtual advertised window' to TCP_MAXWIN
1199 			 * here.  Even if we requested window scaling, it will
1200 			 * become effective only later when our SYN is acked.
1201 			 */
1202 			tp->rcv_adv += min(tp->rcv_wnd, TCP_MAXWIN);
1203 			tcpstat.tcps_connects++;
1204 			soisconnected(so);
1205 			callout_reset(tp->tt_keep, tcp_keepinit,
1206 				      tcp_timer_keep, tp);
1207 			dropsocket = 0;		/* committed to socket */
1208 			tcpstat.tcps_accepts++;
1209 			goto trimthenstep6;
1210 		    }
1211 		/* else do standard 3-way handshake */
1212 		} else {
1213 		    /*
1214 		     * No CC option, but maybe CC.NEW:
1215 		     *   invalidate cached value.
1216 		     */
1217 		     taop->tao_cc = 0;
1218 		}
1219 		/*
1220 		 * TAO test failed or there was no CC option,
1221 		 *    do a standard 3-way handshake.
1222 		 */
1223 		tp->t_flags |= TF_ACKNOW;
1224 		tp->t_state = TCPS_SYN_RECEIVED;
1225 		callout_reset(tp->tt_keep, tcp_keepinit, tcp_timer_keep, tp);
1226 		dropsocket = 0;		/* committed to socket */
1227 		tcpstat.tcps_accepts++;
1228 		goto trimthenstep6;
1229 		}
1230 
1231 	/*
1232 	 * If the state is SYN_RECEIVED:
1233 	 *	if seg contains an ACK, but not for our SYN/ACK, send a RST.
1234 	 */
1235 	case TCPS_SYN_RECEIVED:
1236 		if ((thflags & TH_ACK) &&
1237 		    (SEQ_LEQ(th->th_ack, tp->snd_una) ||
1238 		     SEQ_GT(th->th_ack, tp->snd_max))) {
1239 				rstreason = BANDLIM_RST_OPENPORT;
1240 				goto dropwithreset;
1241 		}
1242 		break;
1243 
1244 	/*
1245 	 * If the state is SYN_SENT:
1246 	 *	if seg contains an ACK, but not for our SYN, drop the input.
1247 	 *	if seg contains a RST, then drop the connection.
1248 	 *	if seg does not contain SYN, then drop it.
1249 	 * Otherwise this is an acceptable SYN segment
1250 	 *	initialize tp->rcv_nxt and tp->irs
1251 	 *	if seg contains ack then advance tp->snd_una
1252 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1253 	 *	arrange for segment to be acked (eventually)
1254 	 *	continue processing rest of data/controls, beginning with URG
1255 	 */
1256 	case TCPS_SYN_SENT:
1257 		if ((taop = tcp_gettaocache(inp)) == NULL) {
1258 			taop = &tao_noncached;
1259 			bzero(taop, sizeof(*taop));
1260 		}
1261 
1262 		if ((thflags & TH_ACK) &&
1263 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
1264 		     SEQ_GT(th->th_ack, tp->snd_max))) {
1265 			/*
1266 			 * If we have a cached CCsent for the remote host,
1267 			 * hence we haven't just crashed and restarted,
1268 			 * do not send a RST.  This may be a retransmission
1269 			 * from the other side after our earlier ACK was lost.
1270 			 * Our new SYN, when it arrives, will serve as the
1271 			 * needed ACK.
1272 			 */
1273 			if (taop->tao_ccsent != 0)
1274 				goto drop;
1275 			else {
1276 				rstreason = BANDLIM_UNLIMITED;
1277 				goto dropwithreset;
1278 			}
1279 		}
1280 		if (thflags & TH_RST) {
1281 			if (thflags & TH_ACK)
1282 				tp = tcp_drop(tp, ECONNREFUSED);
1283 			goto drop;
1284 		}
1285 		if ((thflags & TH_SYN) == 0)
1286 			goto drop;
1287 		tp->snd_wnd = th->th_win;	/* initial send window */
1288 		tp->cc_recv = to.to_cc;		/* foreign CC */
1289 
1290 		tp->irs = th->th_seq;
1291 		tcp_rcvseqinit(tp);
1292 		if (thflags & TH_ACK) {
1293 			/*
1294 			 * Our SYN was acked.  If segment contains CC.ECHO
1295 			 * option, check it to make sure this segment really
1296 			 * matches our SYN.  If not, just drop it as old
1297 			 * duplicate, but send an RST if we're still playing
1298 			 * by the old rules.  If no CC.ECHO option, make sure
1299 			 * we don't get fooled into using T/TCP.
1300 			 */
1301 			if (to.to_flag & TOF_CCECHO) {
1302 				if (tp->cc_send != to.to_ccecho) {
1303 					if (taop->tao_ccsent != 0)
1304 						goto drop;
1305 					else {
1306 						rstreason = BANDLIM_UNLIMITED;
1307 						goto dropwithreset;
1308 					}
1309 				}
1310 			} else
1311 				tp->t_flags &= ~TF_RCVD_CC;
1312 			tcpstat.tcps_connects++;
1313 			soisconnected(so);
1314 			/* Do window scaling on this connection? */
1315 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1316 				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1317 				tp->snd_scale = tp->requested_s_scale;
1318 				tp->rcv_scale = tp->request_r_scale;
1319 			}
1320 			/* Segment is acceptable, update cache if undefined. */
1321 			if (taop->tao_ccsent == 0)
1322 				taop->tao_ccsent = to.to_ccecho;
1323 
1324 			tp->rcv_adv += tp->rcv_wnd;
1325 			tp->snd_una++;		/* SYN is acked */
1326 			/*
1327 			 * If there's data, delay ACK; if there's also a FIN
1328 			 * ACKNOW will be turned on later.
1329 			 */
1330 			if (DELAY_ACK(tp) && tlen != 0)
1331                                 callout_reset(tp->tt_delack, tcp_delacktime,
1332                                     tcp_timer_delack, tp);
1333 			else
1334 				tp->t_flags |= TF_ACKNOW;
1335 			/*
1336 			 * Received <SYN,ACK> in SYN_SENT[*] state.
1337 			 * Transitions:
1338 			 *	SYN_SENT  --> ESTABLISHED
1339 			 *	SYN_SENT* --> FIN_WAIT_1
1340 			 */
1341 			tp->t_starttime = ticks;
1342 			if (tp->t_flags & TF_NEEDFIN) {
1343 				tp->t_state = TCPS_FIN_WAIT_1;
1344 				tp->t_flags &= ~TF_NEEDFIN;
1345 				thflags &= ~TH_SYN;
1346 			} else {
1347 				tp->t_state = TCPS_ESTABLISHED;
1348 				callout_reset(tp->tt_keep, tcp_keepidle,
1349 					      tcp_timer_keep, tp);
1350 			}
1351 		} else {
1352 		/*
1353 		 *  Received initial SYN in SYN-SENT[*] state => simul-
1354 		 *  taneous open.  If segment contains CC option and there is
1355 		 *  a cached CC, apply TAO test; if it succeeds, connection is
1356 		 *  half-synchronized.  Otherwise, do 3-way handshake:
1357 		 *        SYN-SENT -> SYN-RECEIVED
1358 		 *        SYN-SENT* -> SYN-RECEIVED*
1359 		 *  If there was no CC option, clear cached CC value.
1360 		 */
1361 			tp->t_flags |= TF_ACKNOW;
1362 			callout_stop(tp->tt_rexmt);
1363 			if (to.to_flag & TOF_CC) {
1364 				if (taop->tao_cc != 0 &&
1365 				    CC_GT(to.to_cc, taop->tao_cc)) {
1366 					/*
1367 					 * update cache and make transition:
1368 					 *        SYN-SENT -> ESTABLISHED*
1369 					 *        SYN-SENT* -> FIN-WAIT-1*
1370 					 */
1371 					taop->tao_cc = to.to_cc;
1372 					tp->t_starttime = ticks;
1373 					if (tp->t_flags & TF_NEEDFIN) {
1374 						tp->t_state = TCPS_FIN_WAIT_1;
1375 						tp->t_flags &= ~TF_NEEDFIN;
1376 					} else {
1377 						tp->t_state = TCPS_ESTABLISHED;
1378 						callout_reset(tp->tt_keep,
1379 							      tcp_keepidle,
1380 							      tcp_timer_keep,
1381 							      tp);
1382 					}
1383 					tp->t_flags |= TF_NEEDSYN;
1384 				} else
1385 					tp->t_state = TCPS_SYN_RECEIVED;
1386 			} else {
1387 				/* CC.NEW or no option => invalidate cache */
1388 				taop->tao_cc = 0;
1389 				tp->t_state = TCPS_SYN_RECEIVED;
1390 			}
1391 		}
1392 
1393 trimthenstep6:
1394 		/*
1395 		 * Advance th->th_seq to correspond to first data byte.
1396 		 * If data, trim to stay within window,
1397 		 * dropping FIN if necessary.
1398 		 */
1399 		th->th_seq++;
1400 		if (tlen > tp->rcv_wnd) {
1401 			todrop = tlen - tp->rcv_wnd;
1402 			m_adj(m, -todrop);
1403 			tlen = tp->rcv_wnd;
1404 			thflags &= ~TH_FIN;
1405 			tcpstat.tcps_rcvpackafterwin++;
1406 			tcpstat.tcps_rcvbyteafterwin += todrop;
1407 		}
1408 		tp->snd_wl1 = th->th_seq - 1;
1409 		tp->rcv_up = th->th_seq;
1410 		/*
1411 		 *  Client side of transaction: already sent SYN and data.
1412 		 *  If the remote host used T/TCP to validate the SYN,
1413 		 *  our data will be ACK'd; if so, enter normal data segment
1414 		 *  processing in the middle of step 5, ack processing.
1415 		 *  Otherwise, goto step 6.
1416 		 */
1417  		if (thflags & TH_ACK)
1418 			goto process_ACK;
1419 		goto step6;
1420 	/*
1421 	 * If the state is LAST_ACK or CLOSING or TIME_WAIT:
1422 	 *	if segment contains a SYN and CC [not CC.NEW] option:
1423 	 *              if state == TIME_WAIT and connection duration > MSL,
1424 	 *                  drop packet and send RST;
1425 	 *
1426 	 *		if SEG.CC > CCrecv then is new SYN, and can implicitly
1427 	 *		    ack the FIN (and data) in retransmission queue.
1428 	 *                  Complete close and delete TCPCB.  Then reprocess
1429 	 *                  segment, hoping to find new TCPCB in LISTEN state;
1430 	 *
1431 	 *		else must be old SYN; drop it.
1432 	 *      else do normal processing.
1433 	 */
1434 	case TCPS_LAST_ACK:
1435 	case TCPS_CLOSING:
1436 	case TCPS_TIME_WAIT:
1437 		if ((thflags & TH_SYN) &&
1438 		    (to.to_flag & TOF_CC) && tp->cc_recv != 0) {
1439 			if (tp->t_state == TCPS_TIME_WAIT &&
1440 					(ticks - tp->t_starttime) > tcp_msl) {
1441 				rstreason = BANDLIM_UNLIMITED;
1442 				goto dropwithreset;
1443 			}
1444 			if (CC_GT(to.to_cc, tp->cc_recv)) {
1445 				tp = tcp_close(tp);
1446 				goto findpcb;
1447 			}
1448 			else
1449 				goto drop;
1450 		}
1451  		break;  /* continue normal processing */
1452 	}
1453 
1454 	/*
1455 	 * States other than LISTEN or SYN_SENT.
1456 	 * First check the RST flag and sequence number since reset segments
1457 	 * are exempt from the timestamp and connection count tests.  This
1458 	 * fixes a bug introduced by the Stevens, vol. 2, p. 960 bugfix
1459 	 * below which allowed reset segments in half the sequence space
1460 	 * to fall though and be processed (which gives forged reset
1461 	 * segments with a random sequence number a 50 percent chance of
1462 	 * killing a connection).
1463 	 * Then check timestamp, if present.
1464 	 * Then check the connection count, if present.
1465 	 * Then check that at least some bytes of segment are within
1466 	 * receive window.  If segment begins before rcv_nxt,
1467 	 * drop leading data (and SYN); if nothing left, just ack.
1468 	 *
1469 	 *
1470 	 * If the RST bit is set, check the sequence number to see
1471 	 * if this is a valid reset segment.
1472 	 * RFC 793 page 37:
1473 	 *   In all states except SYN-SENT, all reset (RST) segments
1474 	 *   are validated by checking their SEQ-fields.  A reset is
1475 	 *   valid if its sequence number is in the window.
1476 	 * Note: this does not take into account delayed ACKs, so
1477 	 *   we should test against last_ack_sent instead of rcv_nxt.
1478 	 *   The sequence number in the reset segment is normally an
1479 	 *   echo of our outgoing acknowlegement numbers, but some hosts
1480 	 *   send a reset with the sequence number at the rightmost edge
1481 	 *   of our receive window, and we have to handle this case.
1482 	 * If we have multiple segments in flight, the intial reset
1483 	 * segment sequence numbers will be to the left of last_ack_sent,
1484 	 * but they will eventually catch up.
1485 	 * In any case, it never made sense to trim reset segments to
1486 	 * fit the receive window since RFC 1122 says:
1487 	 *   4.2.2.12  RST Segment: RFC-793 Section 3.4
1488 	 *
1489 	 *    A TCP SHOULD allow a received RST segment to include data.
1490 	 *
1491 	 *    DISCUSSION
1492 	 *         It has been suggested that a RST segment could contain
1493 	 *         ASCII text that encoded and explained the cause of the
1494 	 *         RST.  No standard has yet been established for such
1495 	 *         data.
1496 	 *
1497 	 * If the reset segment passes the sequence number test examine
1498 	 * the state:
1499 	 *    SYN_RECEIVED STATE:
1500 	 *	If passive open, return to LISTEN state.
1501 	 *	If active open, inform user that connection was refused.
1502 	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT_2, CLOSE_WAIT STATES:
1503 	 *	Inform user that connection was reset, and close tcb.
1504 	 *    CLOSING, LAST_ACK STATES:
1505 	 *	Close the tcb.
1506 	 *    TIME_WAIT STATE:
1507 	 *	Drop the segment - see Stevens, vol. 2, p. 964 and
1508 	 *      RFC 1337.
1509 	 */
1510 	if (thflags & TH_RST) {
1511 		if (SEQ_GEQ(th->th_seq, tp->last_ack_sent) &&
1512 		    SEQ_LT(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) {
1513 			switch (tp->t_state) {
1514 
1515 			case TCPS_SYN_RECEIVED:
1516 				so->so_error = ECONNREFUSED;
1517 				goto close;
1518 
1519 			case TCPS_ESTABLISHED:
1520 			case TCPS_FIN_WAIT_1:
1521 			case TCPS_FIN_WAIT_2:
1522 			case TCPS_CLOSE_WAIT:
1523 				so->so_error = ECONNRESET;
1524 			close:
1525 				tp->t_state = TCPS_CLOSED;
1526 				tcpstat.tcps_drops++;
1527 				tp = tcp_close(tp);
1528 				break;
1529 
1530 			case TCPS_CLOSING:
1531 			case TCPS_LAST_ACK:
1532 				tp = tcp_close(tp);
1533 				break;
1534 
1535 			case TCPS_TIME_WAIT:
1536 				break;
1537 			}
1538 		}
1539 		goto drop;
1540 	}
1541 
1542 	/*
1543 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
1544 	 * and it's less than ts_recent, drop it.
1545 	 */
1546 	if ((to.to_flag & TOF_TS) != 0 && tp->ts_recent &&
1547 	    TSTMP_LT(to.to_tsval, tp->ts_recent)) {
1548 
1549 		/* Check to see if ts_recent is over 24 days old.  */
1550 		if ((int)(ticks - tp->ts_recent_age) > TCP_PAWS_IDLE) {
1551 			/*
1552 			 * Invalidate ts_recent.  If this segment updates
1553 			 * ts_recent, the age will be reset later and ts_recent
1554 			 * will get a valid value.  If it does not, setting
1555 			 * ts_recent to zero will at least satisfy the
1556 			 * requirement that zero be placed in the timestamp
1557 			 * echo reply when ts_recent isn't valid.  The
1558 			 * age isn't reset until we get a valid ts_recent
1559 			 * because we don't want out-of-order segments to be
1560 			 * dropped when ts_recent is old.
1561 			 */
1562 			tp->ts_recent = 0;
1563 		} else {
1564 			tcpstat.tcps_rcvduppack++;
1565 			tcpstat.tcps_rcvdupbyte += tlen;
1566 			tcpstat.tcps_pawsdrop++;
1567 			goto dropafterack;
1568 		}
1569 	}
1570 
1571 	/*
1572 	 * T/TCP mechanism
1573 	 *   If T/TCP was negotiated and the segment doesn't have CC,
1574 	 *   or if its CC is wrong then drop the segment.
1575 	 *   RST segments do not have to comply with this.
1576 	 */
1577 	if ((tp->t_flags & (TF_REQ_CC|TF_RCVD_CC)) == (TF_REQ_CC|TF_RCVD_CC) &&
1578 	    ((to.to_flag & TOF_CC) == 0 || tp->cc_recv != to.to_cc))
1579  		goto dropafterack;
1580 
1581 	/*
1582 	 * In the SYN-RECEIVED state, validate that the packet belongs to
1583 	 * this connection before trimming the data to fit the receive
1584 	 * window.  Check the sequence number versus IRS since we know
1585 	 * the sequence numbers haven't wrapped.  This is a partial fix
1586 	 * for the "LAND" DoS attack.
1587 	 */
1588 	if (tp->t_state == TCPS_SYN_RECEIVED && SEQ_LT(th->th_seq, tp->irs)) {
1589 		rstreason = BANDLIM_RST_OPENPORT;
1590 		goto dropwithreset;
1591 	}
1592 
1593 	todrop = tp->rcv_nxt - th->th_seq;
1594 	if (todrop > 0) {
1595 		if (thflags & TH_SYN) {
1596 			thflags &= ~TH_SYN;
1597 			th->th_seq++;
1598 			if (th->th_urp > 1)
1599 				th->th_urp--;
1600 			else
1601 				thflags &= ~TH_URG;
1602 			todrop--;
1603 		}
1604 		/*
1605 		 * Following if statement from Stevens, vol. 2, p. 960.
1606 		 */
1607 		if (todrop > tlen
1608 		    || (todrop == tlen && (thflags & TH_FIN) == 0)) {
1609 			/*
1610 			 * Any valid FIN must be to the left of the window.
1611 			 * At this point the FIN must be a duplicate or out
1612 			 * of sequence; drop it.
1613 			 */
1614 			thflags &= ~TH_FIN;
1615 
1616 			/*
1617 			 * Send an ACK to resynchronize and drop any data.
1618 			 * But keep on processing for RST or ACK.
1619 			 */
1620 			tp->t_flags |= TF_ACKNOW;
1621 			todrop = tlen;
1622 			tcpstat.tcps_rcvduppack++;
1623 			tcpstat.tcps_rcvdupbyte += todrop;
1624 		} else {
1625 			tcpstat.tcps_rcvpartduppack++;
1626 			tcpstat.tcps_rcvpartdupbyte += todrop;
1627 		}
1628 		drop_hdrlen += todrop;	/* drop from the top afterwards */
1629 		th->th_seq += todrop;
1630 		tlen -= todrop;
1631 		if (th->th_urp > todrop)
1632 			th->th_urp -= todrop;
1633 		else {
1634 			thflags &= ~TH_URG;
1635 			th->th_urp = 0;
1636 		}
1637 	}
1638 
1639 	/*
1640 	 * If new data are received on a connection after the
1641 	 * user processes are gone, then RST the other end.
1642 	 */
1643 	if ((so->so_state & SS_NOFDREF) &&
1644 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
1645 		tp = tcp_close(tp);
1646 		tcpstat.tcps_rcvafterclose++;
1647 		rstreason = BANDLIM_UNLIMITED;
1648 		goto dropwithreset;
1649 	}
1650 
1651 	/*
1652 	 * If segment ends after window, drop trailing data
1653 	 * (and PUSH and FIN); if nothing left, just ACK.
1654 	 */
1655 	todrop = (th->th_seq+tlen) - (tp->rcv_nxt+tp->rcv_wnd);
1656 	if (todrop > 0) {
1657 		tcpstat.tcps_rcvpackafterwin++;
1658 		if (todrop >= tlen) {
1659 			tcpstat.tcps_rcvbyteafterwin += tlen;
1660 			/*
1661 			 * If a new connection request is received
1662 			 * while in TIME_WAIT, drop the old connection
1663 			 * and start over if the sequence numbers
1664 			 * are above the previous ones.
1665 			 */
1666 			if (thflags & TH_SYN &&
1667 			    tp->t_state == TCPS_TIME_WAIT &&
1668 			    SEQ_GT(th->th_seq, tp->rcv_nxt)) {
1669 				iss = tcp_new_isn(tp);
1670 				tp = tcp_close(tp);
1671 				goto findpcb;
1672 			}
1673 			/*
1674 			 * If window is closed can only take segments at
1675 			 * window edge, and have to drop data and PUSH from
1676 			 * incoming segments.  Continue processing, but
1677 			 * remember to ack.  Otherwise, drop segment
1678 			 * and ack.
1679 			 */
1680 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
1681 				tp->t_flags |= TF_ACKNOW;
1682 				tcpstat.tcps_rcvwinprobe++;
1683 			} else
1684 				goto dropafterack;
1685 		} else
1686 			tcpstat.tcps_rcvbyteafterwin += todrop;
1687 		m_adj(m, -todrop);
1688 		tlen -= todrop;
1689 		thflags &= ~(TH_PUSH|TH_FIN);
1690 	}
1691 
1692 	/*
1693 	 * If last ACK falls within this segment's sequence numbers,
1694 	 * record its timestamp.
1695 	 * NOTE that the test is modified according to the latest
1696 	 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
1697 	 */
1698 	if ((to.to_flag & TOF_TS) != 0 &&
1699 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1700 		tp->ts_recent_age = ticks;
1701 		tp->ts_recent = to.to_tsval;
1702 	}
1703 
1704 	/*
1705 	 * If a SYN is in the window, then this is an
1706 	 * error and we send an RST and drop the connection.
1707 	 */
1708 	if (thflags & TH_SYN) {
1709 		tp = tcp_drop(tp, ECONNRESET);
1710 		rstreason = BANDLIM_UNLIMITED;
1711 		goto dropwithreset;
1712 	}
1713 
1714 	/*
1715 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN
1716 	 * flag is on (half-synchronized state), then queue data for
1717 	 * later processing; else drop segment and return.
1718 	 */
1719 	if ((thflags & TH_ACK) == 0) {
1720 		if (tp->t_state == TCPS_SYN_RECEIVED ||
1721 		    (tp->t_flags & TF_NEEDSYN))
1722 			goto step6;
1723 		else
1724 			goto drop;
1725 	}
1726 
1727 	/*
1728 	 * Ack processing.
1729 	 */
1730 	switch (tp->t_state) {
1731 
1732 	/*
1733 	 * In SYN_RECEIVED state, the ack ACKs our SYN, so enter
1734 	 * ESTABLISHED state and continue processing.
1735 	 * The ACK was checked above.
1736 	 */
1737 	case TCPS_SYN_RECEIVED:
1738 
1739 		tcpstat.tcps_connects++;
1740 		soisconnected(so);
1741 		/* Do window scaling? */
1742 		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1743 			(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1744 			tp->snd_scale = tp->requested_s_scale;
1745 			tp->rcv_scale = tp->request_r_scale;
1746 		}
1747 		/*
1748 		 * Upon successful completion of 3-way handshake,
1749 		 * update cache.CC if it was undefined, pass any queued
1750 		 * data to the user, and advance state appropriately.
1751 		 */
1752 		if ((taop = tcp_gettaocache(inp)) != NULL &&
1753 		    taop->tao_cc == 0)
1754 			taop->tao_cc = tp->cc_recv;
1755 
1756 		/*
1757 		 * Make transitions:
1758 		 *      SYN-RECEIVED  -> ESTABLISHED
1759 		 *      SYN-RECEIVED* -> FIN-WAIT-1
1760 		 */
1761 		tp->t_starttime = ticks;
1762 		if (tp->t_flags & TF_NEEDFIN) {
1763 			tp->t_state = TCPS_FIN_WAIT_1;
1764 			tp->t_flags &= ~TF_NEEDFIN;
1765 		} else {
1766 			tp->t_state = TCPS_ESTABLISHED;
1767 			callout_reset(tp->tt_keep, tcp_keepidle,
1768 				      tcp_timer_keep, tp);
1769 		}
1770 		/*
1771 		 * If segment contains data or ACK, will call tcp_reass()
1772 		 * later; if not, do so now to pass queued data to user.
1773 		 */
1774 		if (tlen == 0 && (thflags & TH_FIN) == 0)
1775 			(void) tcp_reass(tp, (struct tcphdr *)0, 0,
1776 			    (struct mbuf *)0);
1777 		tp->snd_wl1 = th->th_seq - 1;
1778 		/* fall into ... */
1779 
1780 	/*
1781 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
1782 	 * ACKs.  If the ack is in the range
1783 	 *	tp->snd_una < th->th_ack <= tp->snd_max
1784 	 * then advance tp->snd_una to th->th_ack and drop
1785 	 * data from the retransmission queue.  If this ACK reflects
1786 	 * more up to date window information we update our window information.
1787 	 */
1788 	case TCPS_ESTABLISHED:
1789 	case TCPS_FIN_WAIT_1:
1790 	case TCPS_FIN_WAIT_2:
1791 	case TCPS_CLOSE_WAIT:
1792 	case TCPS_CLOSING:
1793 	case TCPS_LAST_ACK:
1794 	case TCPS_TIME_WAIT:
1795 
1796 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
1797 			if (tlen == 0 && tiwin == tp->snd_wnd) {
1798 				tcpstat.tcps_rcvdupack++;
1799 				/*
1800 				 * If we have outstanding data (other than
1801 				 * a window probe), this is a completely
1802 				 * duplicate ack (ie, window info didn't
1803 				 * change), the ack is the biggest we've
1804 				 * seen and we've seen exactly our rexmt
1805 				 * threshhold of them, assume a packet
1806 				 * has been dropped and retransmit it.
1807 				 * Kludge snd_nxt & the congestion
1808 				 * window so we send only this one
1809 				 * packet.
1810 				 *
1811 				 * We know we're losing at the current
1812 				 * window size so do congestion avoidance
1813 				 * (set ssthresh to half the current window
1814 				 * and pull our congestion window back to
1815 				 * the new ssthresh).
1816 				 *
1817 				 * Dup acks mean that packets have left the
1818 				 * network (they're now cached at the receiver)
1819 				 * so bump cwnd by the amount in the receiver
1820 				 * to keep a constant cwnd packets in the
1821 				 * network.
1822 				 */
1823 				if (!callout_active(tp->tt_rexmt) ||
1824 				    th->th_ack != tp->snd_una)
1825 					tp->t_dupacks = 0;
1826 				else if (++tp->t_dupacks == tcprexmtthresh) {
1827 					tcp_seq onxt = tp->snd_nxt;
1828 					u_int win =
1829 					    min(tp->snd_wnd, tp->snd_cwnd) / 2 /
1830 						tp->t_maxseg;
1831 					if (tcp_do_newreno && SEQ_LT(th->th_ack,
1832 					    tp->snd_recover)) {
1833 						/* False retransmit, should not
1834 						 * cut window
1835 						 */
1836 						tp->snd_cwnd += tp->t_maxseg;
1837 						tp->t_dupacks = 0;
1838 						(void) tcp_output(tp);
1839 						goto drop;
1840 					}
1841 					if (win < 2)
1842 						win = 2;
1843 					tp->snd_ssthresh = win * tp->t_maxseg;
1844 					tp->snd_recover = tp->snd_max;
1845 					callout_stop(tp->tt_rexmt);
1846 					tp->t_rtttime = 0;
1847 					tp->snd_nxt = th->th_ack;
1848 					tp->snd_cwnd = tp->t_maxseg;
1849 					(void) tcp_output(tp);
1850 					tp->snd_cwnd = tp->snd_ssthresh +
1851 					       tp->t_maxseg * tp->t_dupacks;
1852 					if (SEQ_GT(onxt, tp->snd_nxt))
1853 						tp->snd_nxt = onxt;
1854 					goto drop;
1855 				} else if (tp->t_dupacks > tcprexmtthresh) {
1856 					tp->snd_cwnd += tp->t_maxseg;
1857 					(void) tcp_output(tp);
1858 					goto drop;
1859 				}
1860 			} else
1861 				tp->t_dupacks = 0;
1862 			break;
1863 		}
1864 		/*
1865 		 * If the congestion window was inflated to account
1866 		 * for the other side's cached packets, retract it.
1867 		 */
1868 		if (tcp_do_newreno == 0) {
1869                         if (tp->t_dupacks >= tcprexmtthresh &&
1870                                 tp->snd_cwnd > tp->snd_ssthresh)
1871                                 tp->snd_cwnd = tp->snd_ssthresh;
1872                         tp->t_dupacks = 0;
1873                 } else if (tp->t_dupacks >= tcprexmtthresh &&
1874 		    !tcp_newreno(tp, th)) {
1875                         /*
1876                          * Window inflation should have left us with approx.
1877                          * snd_ssthresh outstanding data.  But in case we
1878                          * would be inclined to send a burst, better to do
1879                          * it via the slow start mechanism.
1880                          */
1881 			if (SEQ_GT(th->th_ack + tp->snd_ssthresh, tp->snd_max))
1882                                 tp->snd_cwnd =
1883 				    tp->snd_max - th->th_ack + tp->t_maxseg;
1884 			else
1885                         	tp->snd_cwnd = tp->snd_ssthresh;
1886                         tp->t_dupacks = 0;
1887                 }
1888 		if (tp->t_dupacks < tcprexmtthresh)
1889 			tp->t_dupacks = 0;
1890 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
1891 			tcpstat.tcps_rcvacktoomuch++;
1892 			goto dropafterack;
1893 		}
1894 		/*
1895 		 *  If we reach this point, ACK is not a duplicate,
1896 		 *     i.e., it ACKs something we sent.
1897 		 */
1898 		if (tp->t_flags & TF_NEEDSYN) {
1899 			/*
1900 			 * T/TCP: Connection was half-synchronized, and our
1901 			 * SYN has been ACK'd (so connection is now fully
1902 			 * synchronized).  Go to non-starred state,
1903 			 * increment snd_una for ACK of SYN, and check if
1904 			 * we can do window scaling.
1905 			 */
1906 			tp->t_flags &= ~TF_NEEDSYN;
1907 			tp->snd_una++;
1908 			/* Do window scaling? */
1909 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1910 				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1911 				tp->snd_scale = tp->requested_s_scale;
1912 				tp->rcv_scale = tp->request_r_scale;
1913 			}
1914 		}
1915 
1916 process_ACK:
1917 		acked = th->th_ack - tp->snd_una;
1918 		tcpstat.tcps_rcvackpack++;
1919 		tcpstat.tcps_rcvackbyte += acked;
1920 
1921 		/*
1922 		 * If we just performed our first retransmit, and the ACK
1923 		 * arrives within our recovery window, then it was a mistake
1924 		 * to do the retransmit in the first place.  Recover our
1925 		 * original cwnd and ssthresh, and proceed to transmit where
1926 		 * we left off.
1927 		 */
1928 		if (tp->t_rxtshift == 1 && ticks < tp->t_badrxtwin) {
1929 			tp->snd_cwnd = tp->snd_cwnd_prev;
1930 			tp->snd_ssthresh = tp->snd_ssthresh_prev;
1931 			tp->snd_nxt = tp->snd_max;
1932 			tp->t_badrxtwin = 0;	/* XXX probably not required */
1933 		}
1934 
1935 		/*
1936 		 * If we have a timestamp reply, update smoothed
1937 		 * round trip time.  If no timestamp is present but
1938 		 * transmit timer is running and timed sequence
1939 		 * number was acked, update smoothed round trip time.
1940 		 * Since we now have an rtt measurement, cancel the
1941 		 * timer backoff (cf., Phil Karn's retransmit alg.).
1942 		 * Recompute the initial retransmit timer.
1943 		 */
1944 		if (to.to_flag & TOF_TS)
1945 			tcp_xmit_timer(tp, ticks - to.to_tsecr + 1);
1946 		else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
1947 			tcp_xmit_timer(tp, ticks - tp->t_rtttime);
1948 
1949 		/*
1950 		 * If all outstanding data is acked, stop retransmit
1951 		 * timer and remember to restart (more output or persist).
1952 		 * If there is more data to be acked, restart retransmit
1953 		 * timer, using current (possibly backed-off) value.
1954 		 */
1955 		if (th->th_ack == tp->snd_max) {
1956 			callout_stop(tp->tt_rexmt);
1957 			needoutput = 1;
1958 		} else if (!callout_active(tp->tt_persist))
1959 			callout_reset(tp->tt_rexmt, tp->t_rxtcur,
1960 				      tcp_timer_rexmt, tp);
1961 
1962 		/*
1963 		 * If no data (only SYN) was ACK'd,
1964 		 *    skip rest of ACK processing.
1965 		 */
1966 		if (acked == 0)
1967 			goto step6;
1968 
1969 		/*
1970 		 * When new data is acked, open the congestion window.
1971 		 * If the window gives us less than ssthresh packets
1972 		 * in flight, open exponentially (maxseg per packet).
1973 		 * Otherwise open linearly: maxseg per window
1974 		 * (maxseg^2 / cwnd per packet).
1975 		 */
1976 		{
1977 		register u_int cw = tp->snd_cwnd;
1978 		register u_int incr = tp->t_maxseg;
1979 
1980 		if (cw > tp->snd_ssthresh)
1981 			incr = incr * incr / cw;
1982 		/*
1983 		 * If t_dupacks != 0 here, it indicates that we are still
1984 		 * in NewReno fast recovery mode, so we leave the congestion
1985 		 * window alone.
1986 		 */
1987 		if (tcp_do_newreno == 0 || tp->t_dupacks == 0)
1988 			tp->snd_cwnd = min(cw + incr,TCP_MAXWIN<<tp->snd_scale);
1989 		}
1990 		if (acked > so->so_snd.sb_cc) {
1991 			tp->snd_wnd -= so->so_snd.sb_cc;
1992 			sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
1993 			ourfinisacked = 1;
1994 		} else {
1995 			sbdrop(&so->so_snd, acked);
1996 			tp->snd_wnd -= acked;
1997 			ourfinisacked = 0;
1998 		}
1999 		sowwakeup(so);
2000 		tp->snd_una = th->th_ack;
2001 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2002 			tp->snd_nxt = tp->snd_una;
2003 
2004 		switch (tp->t_state) {
2005 
2006 		/*
2007 		 * In FIN_WAIT_1 STATE in addition to the processing
2008 		 * for the ESTABLISHED state if our FIN is now acknowledged
2009 		 * then enter FIN_WAIT_2.
2010 		 */
2011 		case TCPS_FIN_WAIT_1:
2012 			if (ourfinisacked) {
2013 				/*
2014 				 * If we can't receive any more
2015 				 * data, then closing user can proceed.
2016 				 * Starting the timer is contrary to the
2017 				 * specification, but if we don't get a FIN
2018 				 * we'll hang forever.
2019 				 */
2020 				if (so->so_state & SS_CANTRCVMORE) {
2021 					soisdisconnected(so);
2022 					callout_reset(tp->tt_2msl, tcp_maxidle,
2023 						      tcp_timer_2msl, tp);
2024 				}
2025 				tp->t_state = TCPS_FIN_WAIT_2;
2026 			}
2027 			break;
2028 
2029 	 	/*
2030 		 * In CLOSING STATE in addition to the processing for
2031 		 * the ESTABLISHED state if the ACK acknowledges our FIN
2032 		 * then enter the TIME-WAIT state, otherwise ignore
2033 		 * the segment.
2034 		 */
2035 		case TCPS_CLOSING:
2036 			if (ourfinisacked) {
2037 				tp->t_state = TCPS_TIME_WAIT;
2038 				tcp_canceltimers(tp);
2039 				/* Shorten TIME_WAIT [RFC-1644, p.28] */
2040 				if (tp->cc_recv != 0 &&
2041 				    (ticks - tp->t_starttime) < tcp_msl)
2042 					callout_reset(tp->tt_2msl,
2043 						      tp->t_rxtcur *
2044 						      TCPTV_TWTRUNC,
2045 						      tcp_timer_2msl, tp);
2046 				else
2047 					callout_reset(tp->tt_2msl, 2 * tcp_msl,
2048 						      tcp_timer_2msl, tp);
2049 				soisdisconnected(so);
2050 			}
2051 			break;
2052 
2053 		/*
2054 		 * In LAST_ACK, we may still be waiting for data to drain
2055 		 * and/or to be acked, as well as for the ack of our FIN.
2056 		 * If our FIN is now acknowledged, delete the TCB,
2057 		 * enter the closed state and return.
2058 		 */
2059 		case TCPS_LAST_ACK:
2060 			if (ourfinisacked) {
2061 				tp = tcp_close(tp);
2062 				goto drop;
2063 			}
2064 			break;
2065 
2066 		/*
2067 		 * In TIME_WAIT state the only thing that should arrive
2068 		 * is a retransmission of the remote FIN.  Acknowledge
2069 		 * it and restart the finack timer.
2070 		 */
2071 		case TCPS_TIME_WAIT:
2072 			callout_reset(tp->tt_2msl, 2 * tcp_msl,
2073 				      tcp_timer_2msl, tp);
2074 			goto dropafterack;
2075 		}
2076 	}
2077 
2078 step6:
2079 	/*
2080 	 * Update window information.
2081 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2082 	 */
2083 	if ((thflags & TH_ACK) &&
2084 	    (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2085 	    (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
2086 	     (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
2087 		/* keep track of pure window updates */
2088 		if (tlen == 0 &&
2089 		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2090 			tcpstat.tcps_rcvwinupd++;
2091 		tp->snd_wnd = tiwin;
2092 		tp->snd_wl1 = th->th_seq;
2093 		tp->snd_wl2 = th->th_ack;
2094 		if (tp->snd_wnd > tp->max_sndwnd)
2095 			tp->max_sndwnd = tp->snd_wnd;
2096 		needoutput = 1;
2097 	}
2098 
2099 	/*
2100 	 * Process segments with URG.
2101 	 */
2102 	if ((thflags & TH_URG) && th->th_urp &&
2103 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2104 		/*
2105 		 * This is a kludge, but if we receive and accept
2106 		 * random urgent pointers, we'll crash in
2107 		 * soreceive.  It's hard to imagine someone
2108 		 * actually wanting to send this much urgent data.
2109 		 */
2110 		if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2111 			th->th_urp = 0;			/* XXX */
2112 			thflags &= ~TH_URG;		/* XXX */
2113 			goto dodata;			/* XXX */
2114 		}
2115 		/*
2116 		 * If this segment advances the known urgent pointer,
2117 		 * then mark the data stream.  This should not happen
2118 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2119 		 * a FIN has been received from the remote side.
2120 		 * In these states we ignore the URG.
2121 		 *
2122 		 * According to RFC961 (Assigned Protocols),
2123 		 * the urgent pointer points to the last octet
2124 		 * of urgent data.  We continue, however,
2125 		 * to consider it to indicate the first octet
2126 		 * of data past the urgent section as the original
2127 		 * spec states (in one of two places).
2128 		 */
2129 		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2130 			tp->rcv_up = th->th_seq + th->th_urp;
2131 			so->so_oobmark = so->so_rcv.sb_cc +
2132 			    (tp->rcv_up - tp->rcv_nxt) - 1;
2133 			if (so->so_oobmark == 0)
2134 				so->so_state |= SS_RCVATMARK;
2135 			sohasoutofband(so);
2136 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2137 		}
2138 		/*
2139 		 * Remove out of band data so doesn't get presented to user.
2140 		 * This can happen independent of advancing the URG pointer,
2141 		 * but if two URG's are pending at once, some out-of-band
2142 		 * data may creep in... ick.
2143 		 */
2144 		if (th->th_urp <= (u_long)tlen
2145 #ifdef SO_OOBINLINE
2146 		     && (so->so_options & SO_OOBINLINE) == 0
2147 #endif
2148 		     )
2149 			tcp_pulloutofband(so, th, m,
2150 				drop_hdrlen);	/* hdr drop is delayed */
2151 	} else
2152 		/*
2153 		 * If no out of band data is expected,
2154 		 * pull receive urgent pointer along
2155 		 * with the receive window.
2156 		 */
2157 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2158 			tp->rcv_up = tp->rcv_nxt;
2159 dodata:							/* XXX */
2160 
2161 	/*
2162 	 * Process the segment text, merging it into the TCP sequencing queue,
2163 	 * and arranging for acknowledgment of receipt if necessary.
2164 	 * This process logically involves adjusting tp->rcv_wnd as data
2165 	 * is presented to the user (this happens in tcp_usrreq.c,
2166 	 * case PRU_RCVD).  If a FIN has already been received on this
2167 	 * connection then we just ignore the text.
2168 	 */
2169 	if ((tlen || (thflags&TH_FIN)) &&
2170 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2171 		m_adj(m, drop_hdrlen);	/* delayed header drop */
2172 		/*
2173 		 * Insert segment which inludes th into reassembly queue of tcp with
2174 		 * control block tp.  Return TH_FIN if reassembly now includes
2175 		 * a segment with FIN.  This handle the common case inline (segment
2176 		 * is the next to be received on an established connection, and the
2177 		 * queue is empty), avoiding linkage into and removal from the queue
2178 		 * and repetition of various conversions.
2179 		 * Set DELACK for segments received in order, but ack immediately
2180 		 * when segments are out of order (so fast retransmit can work).
2181 		 */
2182 		if (th->th_seq == tp->rcv_nxt &&
2183 		    LIST_EMPTY(&tp->t_segq) &&
2184 		    TCPS_HAVEESTABLISHED(tp->t_state)) {
2185 			if (DELAY_ACK(tp))
2186 				callout_reset(tp->tt_delack, tcp_delacktime,
2187 				    tcp_timer_delack, tp);
2188 			else
2189 				tp->t_flags |= TF_ACKNOW;
2190 			tp->rcv_nxt += tlen;
2191 			thflags = th->th_flags & TH_FIN;
2192 			tcpstat.tcps_rcvpack++;
2193 			tcpstat.tcps_rcvbyte += tlen;
2194 			ND6_HINT(tp);
2195 			sbappend(&so->so_rcv, m);
2196 			sorwakeup(so);
2197 		} else {
2198 			thflags = tcp_reass(tp, th, &tlen, m);
2199 			tp->t_flags |= TF_ACKNOW;
2200 		}
2201 
2202 		/*
2203 		 * Note the amount of data that peer has sent into
2204 		 * our window, in order to estimate the sender's
2205 		 * buffer size.
2206 		 */
2207 		len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2208 	} else {
2209 		m_freem(m);
2210 		thflags &= ~TH_FIN;
2211 	}
2212 
2213 	/*
2214 	 * If FIN is received ACK the FIN and let the user know
2215 	 * that the connection is closing.
2216 	 */
2217 	if (thflags & TH_FIN) {
2218 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2219 			socantrcvmore(so);
2220 			/*
2221 			 *  If connection is half-synchronized
2222 			 *  (ie NEEDSYN flag on) then delay ACK,
2223 			 *  so it may be piggybacked when SYN is sent.
2224 			 *  Otherwise, since we received a FIN then no
2225 			 *  more input can be expected, send ACK now.
2226 			 */
2227 			if (DELAY_ACK(tp) && (tp->t_flags & TF_NEEDSYN))
2228                                 callout_reset(tp->tt_delack, tcp_delacktime,
2229                                     tcp_timer_delack, tp);
2230 			else
2231 				tp->t_flags |= TF_ACKNOW;
2232 			tp->rcv_nxt++;
2233 		}
2234 		switch (tp->t_state) {
2235 
2236 	 	/*
2237 		 * In SYN_RECEIVED and ESTABLISHED STATES
2238 		 * enter the CLOSE_WAIT state.
2239 		 */
2240 		case TCPS_SYN_RECEIVED:
2241 			tp->t_starttime = ticks;
2242 			/*FALLTHROUGH*/
2243 		case TCPS_ESTABLISHED:
2244 			tp->t_state = TCPS_CLOSE_WAIT;
2245 			break;
2246 
2247 	 	/*
2248 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2249 		 * enter the CLOSING state.
2250 		 */
2251 		case TCPS_FIN_WAIT_1:
2252 			tp->t_state = TCPS_CLOSING;
2253 			break;
2254 
2255 	 	/*
2256 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2257 		 * starting the time-wait timer, turning off the other
2258 		 * standard timers.
2259 		 */
2260 		case TCPS_FIN_WAIT_2:
2261 			tp->t_state = TCPS_TIME_WAIT;
2262 			tcp_canceltimers(tp);
2263 			/* Shorten TIME_WAIT [RFC-1644, p.28] */
2264 			if (tp->cc_recv != 0 &&
2265 			    (ticks - tp->t_starttime) < tcp_msl) {
2266 				callout_reset(tp->tt_2msl,
2267 					      tp->t_rxtcur * TCPTV_TWTRUNC,
2268 					      tcp_timer_2msl, tp);
2269 				/* For transaction client, force ACK now. */
2270 				tp->t_flags |= TF_ACKNOW;
2271 			}
2272 			else
2273 				callout_reset(tp->tt_2msl, 2 * tcp_msl,
2274 					      tcp_timer_2msl, tp);
2275 			soisdisconnected(so);
2276 			break;
2277 
2278 		/*
2279 		 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2280 		 */
2281 		case TCPS_TIME_WAIT:
2282 			callout_reset(tp->tt_2msl, 2 * tcp_msl,
2283 				      tcp_timer_2msl, tp);
2284 			break;
2285 		}
2286 	}
2287 #ifdef TCPDEBUG
2288 	if (so->so_options & SO_DEBUG)
2289 		tcp_trace(TA_INPUT, ostate, tp, (void *)tcp_saveipgen,
2290 			  &tcp_savetcp, 0);
2291 #endif
2292 
2293 	/*
2294 	 * Return any desired output.
2295 	 */
2296 	if (needoutput || (tp->t_flags & TF_ACKNOW))
2297 		(void) tcp_output(tp);
2298 	return;
2299 
2300 dropafterack:
2301 	/*
2302 	 * Generate an ACK dropping incoming segment if it occupies
2303 	 * sequence space, where the ACK reflects our state.
2304 	 *
2305 	 * We can now skip the test for the RST flag since all
2306 	 * paths to this code happen after packets containing
2307 	 * RST have been dropped.
2308 	 *
2309 	 * In the SYN-RECEIVED state, don't send an ACK unless the
2310 	 * segment we received passes the SYN-RECEIVED ACK test.
2311 	 * If it fails send a RST.  This breaks the loop in the
2312 	 * "LAND" DoS attack, and also prevents an ACK storm
2313 	 * between two listening ports that have been sent forged
2314 	 * SYN segments, each with the source address of the other.
2315 	 */
2316 	if (tp->t_state == TCPS_SYN_RECEIVED && (thflags & TH_ACK) &&
2317 	    (SEQ_GT(tp->snd_una, th->th_ack) ||
2318 	     SEQ_GT(th->th_ack, tp->snd_max)) ) {
2319 		rstreason = BANDLIM_RST_OPENPORT;
2320 		goto dropwithreset;
2321 	}
2322 #ifdef TCPDEBUG
2323 	if (so->so_options & SO_DEBUG)
2324 		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
2325 			  &tcp_savetcp, 0);
2326 #endif
2327 	m_freem(m);
2328 	tp->t_flags |= TF_ACKNOW;
2329 	(void) tcp_output(tp);
2330 	return;
2331 
2332 dropwithreset:
2333 	/*
2334 	 * Generate a RST, dropping incoming segment.
2335 	 * Make ACK acceptable to originator of segment.
2336 	 * Don't bother to respond if destination was broadcast/multicast.
2337 	 */
2338 	if ((thflags & TH_RST) || m->m_flags & (M_BCAST|M_MCAST))
2339 		goto drop;
2340 #ifdef INET6
2341 	if (isipv6) {
2342 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
2343 		    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
2344 			goto drop;
2345 	} else
2346 #endif /* INET6 */
2347 	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
2348 	    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
2349 	    ip->ip_src.s_addr == htonl(INADDR_BROADCAST))
2350 		goto drop;
2351 	/* IPv6 anycast check is done at tcp6_input() */
2352 
2353 	/*
2354 	 * Perform bandwidth limiting.
2355 	 */
2356 	if (badport_bandlim(rstreason) < 0)
2357 		goto drop;
2358 
2359 #ifdef TCPDEBUG
2360 	if (tp == 0 || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
2361 		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
2362 			  &tcp_savetcp, 0);
2363 #endif
2364 	if (thflags & TH_ACK)
2365 		/* mtod() below is safe as long as hdr dropping is delayed */
2366 		tcp_respond(tp, mtod(m, void *), th, m, (tcp_seq)0, th->th_ack,
2367 			    TH_RST);
2368 	else {
2369 		if (thflags & TH_SYN)
2370 			tlen++;
2371 		/* mtod() below is safe as long as hdr dropping is delayed */
2372 		tcp_respond(tp, mtod(m, void *), th, m, th->th_seq+tlen,
2373 			    (tcp_seq)0, TH_RST|TH_ACK);
2374 	}
2375 	/* destroy temporarily created socket */
2376 	if (dropsocket)
2377 		(void) soabort(so);
2378 	return;
2379 
2380 drop:
2381 	/*
2382 	 * Drop space held by incoming segment and return.
2383 	 */
2384 #ifdef TCPDEBUG
2385 	if (tp == 0 || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
2386 		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
2387 			  &tcp_savetcp, 0);
2388 #endif
2389 	m_freem(m);
2390 	/* destroy temporarily created socket */
2391 	if (dropsocket)
2392 		(void) soabort(so);
2393 	return;
2394 }
2395 
2396 static void
2397 tcp_dooptions(tp, cp, cnt, th, to)
2398 	struct tcpcb *tp;
2399 	u_char *cp;
2400 	int cnt;
2401 	struct tcphdr *th;
2402 	struct tcpopt *to;
2403 {
2404 	u_short mss = 0;
2405 	int opt, optlen;
2406 
2407 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
2408 		opt = cp[0];
2409 		if (opt == TCPOPT_EOL)
2410 			break;
2411 		if (opt == TCPOPT_NOP)
2412 			optlen = 1;
2413 		else {
2414 			if (cnt < 2)
2415 				break;
2416 			optlen = cp[1];
2417 			if (optlen < 2 || optlen > cnt)
2418 				break;
2419 		}
2420 		switch (opt) {
2421 
2422 		default:
2423 			continue;
2424 
2425 		case TCPOPT_MAXSEG:
2426 			if (optlen != TCPOLEN_MAXSEG)
2427 				continue;
2428 			if (!(th->th_flags & TH_SYN))
2429 				continue;
2430 			bcopy((char *) cp + 2, (char *) &mss, sizeof(mss));
2431 			NTOHS(mss);
2432 			break;
2433 
2434 		case TCPOPT_WINDOW:
2435 			if (optlen != TCPOLEN_WINDOW)
2436 				continue;
2437 			if (!(th->th_flags & TH_SYN))
2438 				continue;
2439 			tp->t_flags |= TF_RCVD_SCALE;
2440 			tp->requested_s_scale = min(cp[2], TCP_MAX_WINSHIFT);
2441 			break;
2442 
2443 		case TCPOPT_TIMESTAMP:
2444 			if (optlen != TCPOLEN_TIMESTAMP)
2445 				continue;
2446 			to->to_flag |= TOF_TS;
2447 			bcopy((char *)cp + 2,
2448 			    (char *)&to->to_tsval, sizeof(to->to_tsval));
2449 			NTOHL(to->to_tsval);
2450 			bcopy((char *)cp + 6,
2451 			    (char *)&to->to_tsecr, sizeof(to->to_tsecr));
2452 			NTOHL(to->to_tsecr);
2453 
2454 			/*
2455 			 * A timestamp received in a SYN makes
2456 			 * it ok to send timestamp requests and replies.
2457 			 */
2458 			if (th->th_flags & TH_SYN) {
2459 				tp->t_flags |= TF_RCVD_TSTMP;
2460 				tp->ts_recent = to->to_tsval;
2461 				tp->ts_recent_age = ticks;
2462 			}
2463 			break;
2464 		case TCPOPT_CC:
2465 			if (optlen != TCPOLEN_CC)
2466 				continue;
2467 			to->to_flag |= TOF_CC;
2468 			bcopy((char *)cp + 2,
2469 			    (char *)&to->to_cc, sizeof(to->to_cc));
2470 			NTOHL(to->to_cc);
2471 			/*
2472 			 * A CC or CC.new option received in a SYN makes
2473 			 * it ok to send CC in subsequent segments.
2474 			 */
2475 			if (th->th_flags & TH_SYN)
2476 				tp->t_flags |= TF_RCVD_CC;
2477 			break;
2478 		case TCPOPT_CCNEW:
2479 			if (optlen != TCPOLEN_CC)
2480 				continue;
2481 			if (!(th->th_flags & TH_SYN))
2482 				continue;
2483 			to->to_flag |= TOF_CCNEW;
2484 			bcopy((char *)cp + 2,
2485 			    (char *)&to->to_cc, sizeof(to->to_cc));
2486 			NTOHL(to->to_cc);
2487 			/*
2488 			 * A CC or CC.new option received in a SYN makes
2489 			 * it ok to send CC in subsequent segments.
2490 			 */
2491 			tp->t_flags |= TF_RCVD_CC;
2492 			break;
2493 		case TCPOPT_CCECHO:
2494 			if (optlen != TCPOLEN_CC)
2495 				continue;
2496 			if (!(th->th_flags & TH_SYN))
2497 				continue;
2498 			to->to_flag |= TOF_CCECHO;
2499 			bcopy((char *)cp + 2,
2500 			    (char *)&to->to_ccecho, sizeof(to->to_ccecho));
2501 			NTOHL(to->to_ccecho);
2502 			break;
2503 		}
2504 	}
2505 	if (th->th_flags & TH_SYN)
2506 		tcp_mss(tp, mss);	/* sets t_maxseg */
2507 }
2508 
2509 /*
2510  * Pull out of band byte out of a segment so
2511  * it doesn't appear in the user's data queue.
2512  * It is still reflected in the segment length for
2513  * sequencing purposes.
2514  */
2515 static void
2516 tcp_pulloutofband(so, th, m, off)
2517 	struct socket *so;
2518 	struct tcphdr *th;
2519 	register struct mbuf *m;
2520 	int off;		/* delayed to be droped hdrlen */
2521 {
2522 	int cnt = off + th->th_urp - 1;
2523 
2524 	while (cnt >= 0) {
2525 		if (m->m_len > cnt) {
2526 			char *cp = mtod(m, caddr_t) + cnt;
2527 			struct tcpcb *tp = sototcpcb(so);
2528 
2529 			tp->t_iobc = *cp;
2530 			tp->t_oobflags |= TCPOOB_HAVEDATA;
2531 			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
2532 			m->m_len--;
2533 			if (m->m_flags & M_PKTHDR)
2534 				m->m_pkthdr.len--;
2535 			return;
2536 		}
2537 		cnt -= m->m_len;
2538 		m = m->m_next;
2539 		if (m == 0)
2540 			break;
2541 	}
2542 	panic("tcp_pulloutofband");
2543 }
2544 
2545 /*
2546  * Collect new round-trip time estimate
2547  * and update averages and current timeout.
2548  */
2549 static void
2550 tcp_xmit_timer(tp, rtt)
2551 	register struct tcpcb *tp;
2552 	int rtt;
2553 {
2554 	register int delta;
2555 
2556 	tcpstat.tcps_rttupdated++;
2557 	tp->t_rttupdated++;
2558 	if (tp->t_srtt != 0) {
2559 		/*
2560 		 * srtt is stored as fixed point with 5 bits after the
2561 		 * binary point (i.e., scaled by 8).  The following magic
2562 		 * is equivalent to the smoothing algorithm in rfc793 with
2563 		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
2564 		 * point).  Adjust rtt to origin 0.
2565 		 */
2566 		delta = ((rtt - 1) << TCP_DELTA_SHIFT)
2567 			- (tp->t_srtt >> (TCP_RTT_SHIFT - TCP_DELTA_SHIFT));
2568 
2569 		if ((tp->t_srtt += delta) <= 0)
2570 			tp->t_srtt = 1;
2571 
2572 		/*
2573 		 * We accumulate a smoothed rtt variance (actually, a
2574 		 * smoothed mean difference), then set the retransmit
2575 		 * timer to smoothed rtt + 4 times the smoothed variance.
2576 		 * rttvar is stored as fixed point with 4 bits after the
2577 		 * binary point (scaled by 16).  The following is
2578 		 * equivalent to rfc793 smoothing with an alpha of .75
2579 		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
2580 		 * rfc793's wired-in beta.
2581 		 */
2582 		if (delta < 0)
2583 			delta = -delta;
2584 		delta -= tp->t_rttvar >> (TCP_RTTVAR_SHIFT - TCP_DELTA_SHIFT);
2585 		if ((tp->t_rttvar += delta) <= 0)
2586 			tp->t_rttvar = 1;
2587 	} else {
2588 		/*
2589 		 * No rtt measurement yet - use the unsmoothed rtt.
2590 		 * Set the variance to half the rtt (so our first
2591 		 * retransmit happens at 3*rtt).
2592 		 */
2593 		tp->t_srtt = rtt << TCP_RTT_SHIFT;
2594 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1);
2595 	}
2596 	tp->t_rtttime = 0;
2597 	tp->t_rxtshift = 0;
2598 
2599 	/*
2600 	 * the retransmit should happen at rtt + 4 * rttvar.
2601 	 * Because of the way we do the smoothing, srtt and rttvar
2602 	 * will each average +1/2 tick of bias.  When we compute
2603 	 * the retransmit timer, we want 1/2 tick of rounding and
2604 	 * 1 extra tick because of +-1/2 tick uncertainty in the
2605 	 * firing of the timer.  The bias will give us exactly the
2606 	 * 1.5 tick we need.  But, because the bias is
2607 	 * statistical, we have to test that we don't drop below
2608 	 * the minimum feasible timer (which is 2 ticks).
2609 	 */
2610 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
2611 		      max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
2612 
2613 	/*
2614 	 * We received an ack for a packet that wasn't retransmitted;
2615 	 * it is probably safe to discard any error indications we've
2616 	 * received recently.  This isn't quite right, but close enough
2617 	 * for now (a route might have failed after we sent a segment,
2618 	 * and the return path might not be symmetrical).
2619 	 */
2620 	tp->t_softerror = 0;
2621 }
2622 
2623 /*
2624  * Determine a reasonable value for maxseg size.
2625  * If the route is known, check route for mtu.
2626  * If none, use an mss that can be handled on the outgoing
2627  * interface without forcing IP to fragment; if bigger than
2628  * an mbuf cluster (MCLBYTES), round down to nearest multiple of MCLBYTES
2629  * to utilize large mbufs.  If no route is found, route has no mtu,
2630  * or the destination isn't local, use a default, hopefully conservative
2631  * size (usually 512 or the default IP max size, but no more than the mtu
2632  * of the interface), as we can't discover anything about intervening
2633  * gateways or networks.  We also initialize the congestion/slow start
2634  * window to be a single segment if the destination isn't local.
2635  * While looking at the routing entry, we also initialize other path-dependent
2636  * parameters from pre-set or cached values in the routing entry.
2637  *
2638  * Also take into account the space needed for options that we
2639  * send regularly.  Make maxseg shorter by that amount to assure
2640  * that we can send maxseg amount of data even when the options
2641  * are present.  Store the upper limit of the length of options plus
2642  * data in maxopd.
2643  *
2644  * NOTE that this routine is only called when we process an incoming
2645  * segment, for outgoing segments only tcp_mssopt is called.
2646  *
2647  * In case of T/TCP, we call this routine during implicit connection
2648  * setup as well (offer = -1), to initialize maxseg from the cached
2649  * MSS of our peer.
2650  */
2651 void
2652 tcp_mss(tp, offer)
2653 	struct tcpcb *tp;
2654 	int offer;
2655 {
2656 	register struct rtentry *rt;
2657 	struct ifnet *ifp;
2658 	register int rtt, mss;
2659 	u_long bufsize;
2660 	struct inpcb *inp;
2661 	struct socket *so;
2662 	struct rmxp_tao *taop;
2663 	int origoffer = offer;
2664 #ifdef INET6
2665 	int isipv6;
2666 	int min_protoh;
2667 #endif
2668 
2669 	inp = tp->t_inpcb;
2670 #ifdef INET6
2671 	isipv6 = ((inp->inp_vflag & INP_IPV6) != 0) ? 1 : 0;
2672 	min_protoh = isipv6 ? sizeof (struct ip6_hdr) + sizeof (struct tcphdr)
2673 			    : sizeof (struct tcpiphdr);
2674 #else
2675 #define min_protoh  (sizeof (struct tcpiphdr))
2676 #endif
2677 #ifdef INET6
2678 	if (isipv6)
2679 		rt = tcp_rtlookup6(inp);
2680 	else
2681 #endif
2682 	rt = tcp_rtlookup(inp);
2683 	if (rt == NULL) {
2684 		tp->t_maxopd = tp->t_maxseg =
2685 #ifdef INET6
2686 		isipv6 ? tcp_v6mssdflt :
2687 #endif /* INET6 */
2688 		tcp_mssdflt;
2689 		return;
2690 	}
2691 	ifp = rt->rt_ifp;
2692 	so = inp->inp_socket;
2693 
2694 	taop = rmx_taop(rt->rt_rmx);
2695 	/*
2696 	 * Offer == -1 means that we didn't receive SYN yet,
2697 	 * use cached value in that case;
2698 	 */
2699 	if (offer == -1)
2700 		offer = taop->tao_mssopt;
2701 	/*
2702 	 * Offer == 0 means that there was no MSS on the SYN segment,
2703 	 * in this case we use tcp_mssdflt.
2704 	 */
2705 	if (offer == 0)
2706 		offer =
2707 #ifdef INET6
2708 			isipv6 ? tcp_v6mssdflt :
2709 #endif /* INET6 */
2710 			tcp_mssdflt;
2711 	else
2712 		/*
2713 		 * Sanity check: make sure that maxopd will be large
2714 		 * enough to allow some data on segments even is the
2715 		 * all the option space is used (40bytes).  Otherwise
2716 		 * funny things may happen in tcp_output.
2717 		 */
2718 		offer = max(offer, 64);
2719 	taop->tao_mssopt = offer;
2720 
2721 	/*
2722 	 * While we're here, check if there's an initial rtt
2723 	 * or rttvar.  Convert from the route-table units
2724 	 * to scaled multiples of the slow timeout timer.
2725 	 */
2726 	if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
2727 		/*
2728 		 * XXX the lock bit for RTT indicates that the value
2729 		 * is also a minimum value; this is subject to time.
2730 		 */
2731 		if (rt->rt_rmx.rmx_locks & RTV_RTT)
2732 			tp->t_rttmin = rtt / (RTM_RTTUNIT / hz);
2733 		tp->t_srtt = rtt / (RTM_RTTUNIT / (hz * TCP_RTT_SCALE));
2734 		tcpstat.tcps_usedrtt++;
2735 		if (rt->rt_rmx.rmx_rttvar) {
2736 			tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
2737 			    (RTM_RTTUNIT / (hz * TCP_RTTVAR_SCALE));
2738 			tcpstat.tcps_usedrttvar++;
2739 		} else {
2740 			/* default variation is +- 1 rtt */
2741 			tp->t_rttvar =
2742 			    tp->t_srtt * TCP_RTTVAR_SCALE / TCP_RTT_SCALE;
2743 		}
2744 		TCPT_RANGESET(tp->t_rxtcur,
2745 			      ((tp->t_srtt >> 2) + tp->t_rttvar) >> 1,
2746 			      tp->t_rttmin, TCPTV_REXMTMAX);
2747 	}
2748 	/*
2749 	 * if there's an mtu associated with the route, use it
2750 	 * else, use the link mtu.
2751 	 */
2752 	if (rt->rt_rmx.rmx_mtu)
2753 		mss = rt->rt_rmx.rmx_mtu - min_protoh;
2754 	else
2755 	{
2756 		mss =
2757 #ifdef INET6
2758 			(isipv6 ? nd_ifinfo[rt->rt_ifp->if_index].linkmtu :
2759 #endif
2760 			 ifp->if_mtu
2761 #ifdef INET6
2762 			 )
2763 #endif
2764 			- min_protoh;
2765 #ifdef INET6
2766 		if (isipv6) {
2767 			if (!in6_localaddr(&inp->in6p_faddr))
2768 				mss = min(mss, tcp_v6mssdflt);
2769 		} else
2770 #endif
2771 		if (!in_localaddr(inp->inp_faddr))
2772 			mss = min(mss, tcp_mssdflt);
2773 	}
2774 	mss = min(mss, offer);
2775 	/*
2776 	 * maxopd stores the maximum length of data AND options
2777 	 * in a segment; maxseg is the amount of data in a normal
2778 	 * segment.  We need to store this value (maxopd) apart
2779 	 * from maxseg, because now every segment carries options
2780 	 * and thus we normally have somewhat less data in segments.
2781 	 */
2782 	tp->t_maxopd = mss;
2783 
2784 	/*
2785 	 * In case of T/TCP, origoffer==-1 indicates, that no segments
2786 	 * were received yet.  In this case we just guess, otherwise
2787 	 * we do the same as before T/TCP.
2788 	 */
2789  	if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
2790 	    (origoffer == -1 ||
2791 	     (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP))
2792 		mss -= TCPOLEN_TSTAMP_APPA;
2793  	if ((tp->t_flags & (TF_REQ_CC|TF_NOOPT)) == TF_REQ_CC &&
2794 	    (origoffer == -1 ||
2795 	     (tp->t_flags & TF_RCVD_CC) == TF_RCVD_CC))
2796 		mss -= TCPOLEN_CC_APPA;
2797 
2798 #if	(MCLBYTES & (MCLBYTES - 1)) == 0
2799 		if (mss > MCLBYTES)
2800 			mss &= ~(MCLBYTES-1);
2801 #else
2802 		if (mss > MCLBYTES)
2803 			mss = mss / MCLBYTES * MCLBYTES;
2804 #endif
2805 	/*
2806 	 * If there's a pipesize, change the socket buffer
2807 	 * to that size.  Make the socket buffers an integral
2808 	 * number of mss units; if the mss is larger than
2809 	 * the socket buffer, decrease the mss.
2810 	 */
2811 #ifdef RTV_SPIPE
2812 	if ((bufsize = rt->rt_rmx.rmx_sendpipe) == 0)
2813 #endif
2814 		bufsize = so->so_snd.sb_hiwat;
2815 	if (bufsize < mss)
2816 		mss = bufsize;
2817 	else {
2818 		bufsize = roundup(bufsize, mss);
2819 		if (bufsize > sb_max)
2820 			bufsize = sb_max;
2821 		(void)sbreserve(&so->so_snd, bufsize, so, NULL);
2822 	}
2823 	tp->t_maxseg = mss;
2824 
2825 #ifdef RTV_RPIPE
2826 	if ((bufsize = rt->rt_rmx.rmx_recvpipe) == 0)
2827 #endif
2828 		bufsize = so->so_rcv.sb_hiwat;
2829 	if (bufsize > mss) {
2830 		bufsize = roundup(bufsize, mss);
2831 		if (bufsize > sb_max)
2832 			bufsize = sb_max;
2833 		(void)sbreserve(&so->so_rcv, bufsize, so, NULL);
2834 	}
2835 
2836 	/*
2837 	 * Set the slow-start flight size depending on whether this
2838 	 * is a local network or not.
2839 	 */
2840 	if (
2841 #ifdef INET6
2842 	    (isipv6 && in6_localaddr(&inp->in6p_faddr)) ||
2843 	    (!isipv6 &&
2844 #endif
2845 	     in_localaddr(inp->inp_faddr)
2846 #ifdef INET6
2847 	     )
2848 #endif
2849 	    )
2850 		tp->snd_cwnd = mss * ss_fltsz_local;
2851 	else
2852 		tp->snd_cwnd = mss * ss_fltsz;
2853 
2854 	if (rt->rt_rmx.rmx_ssthresh) {
2855 		/*
2856 		 * There's some sort of gateway or interface
2857 		 * buffer limit on the path.  Use this to set
2858 		 * the slow start threshhold, but set the
2859 		 * threshold to no less than 2*mss.
2860 		 */
2861 		tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
2862 		tcpstat.tcps_usedssthresh++;
2863 	}
2864 }
2865 
2866 /*
2867  * Determine the MSS option to send on an outgoing SYN.
2868  */
2869 int
2870 tcp_mssopt(tp)
2871 	struct tcpcb *tp;
2872 {
2873 	struct rtentry *rt;
2874 #ifdef INET6
2875 	int isipv6;
2876 	int min_protoh;
2877 #endif
2878 
2879 #ifdef INET6
2880 	isipv6 = ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) ? 1 : 0;
2881 	min_protoh = isipv6 ? sizeof (struct ip6_hdr) + sizeof (struct tcphdr)
2882 			    : sizeof (struct tcpiphdr);
2883 #else
2884 #define min_protoh  (sizeof (struct tcpiphdr))
2885 #endif
2886 #ifdef INET6
2887 	if (isipv6)
2888 		rt = tcp_rtlookup6(tp->t_inpcb);
2889 	else
2890 #endif /* INET6 */
2891 	rt = tcp_rtlookup(tp->t_inpcb);
2892 	if (rt == NULL)
2893 		return
2894 #ifdef INET6
2895 			isipv6 ? tcp_v6mssdflt :
2896 #endif /* INET6 */
2897 			tcp_mssdflt;
2898 
2899 	return rt->rt_ifp->if_mtu - min_protoh;
2900 }
2901 
2902 
2903 /*
2904  * Checks for partial ack.  If partial ack arrives, force the retransmission
2905  * of the next unacknowledged segment, do not clear tp->t_dupacks, and return
2906  * 1.  By setting snd_nxt to ti_ack, this forces retransmission timer to
2907  * be started again.  If the ack advances at least to tp->snd_recover, return 0.
2908  */
2909 static int
2910 tcp_newreno(tp, th)
2911 	struct tcpcb *tp;
2912 	struct tcphdr *th;
2913 {
2914 	if (SEQ_LT(th->th_ack, tp->snd_recover)) {
2915 		tcp_seq onxt = tp->snd_nxt;
2916 		u_long  ocwnd = tp->snd_cwnd;
2917 
2918 		callout_stop(tp->tt_rexmt);
2919 		tp->t_rtttime = 0;
2920 		tp->snd_nxt = th->th_ack;
2921 		/*
2922 		 * Set snd_cwnd to one segment beyond acknowledged offset
2923 		 * (tp->snd_una has not yet been updated when this function
2924 		 *  is called)
2925 		 */
2926 		tp->snd_cwnd = tp->t_maxseg + (th->th_ack - tp->snd_una);
2927 		(void) tcp_output(tp);
2928 		tp->snd_cwnd = ocwnd;
2929 		if (SEQ_GT(onxt, tp->snd_nxt))
2930 			tp->snd_nxt = onxt;
2931 		/*
2932 		 * Partial window deflation.  Relies on fact that tp->snd_una
2933 		 * not updated yet.
2934 		 */
2935 		tp->snd_cwnd -= (th->th_ack - tp->snd_una - tp->t_maxseg);
2936 		return (1);
2937 	}
2938 	return (0);
2939 }
2940