xref: /freebsd/sys/netinet/tcp_input.c (revision 640235e2c2ba32947f7c59d168437ffa1280f1e6)
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
3  *	The Regents of the University of California.  All rights reserved.
4  * Copyright (c) 2007-2008,2010
5  *	Swinburne University of Technology, Melbourne, Australia.
6  * Copyright (c) 2009-2010 Lawrence Stewart <lstewart@freebsd.org>
7  * Copyright (c) 2010 The FreeBSD Foundation
8  * Copyright (c) 2010-2011 Juniper Networks, Inc.
9  * All rights reserved.
10  *
11  * Portions of this software were developed at the Centre for Advanced Internet
12  * Architectures, Swinburne University of Technology, by Lawrence Stewart,
13  * James Healy and David Hayes, made possible in part by a grant from the Cisco
14  * University Research Program Fund at Community Foundation Silicon Valley.
15  *
16  * Portions of this software were developed at the Centre for Advanced
17  * Internet Architectures, Swinburne University of Technology, Melbourne,
18  * Australia by David Hayes under sponsorship from the FreeBSD Foundation.
19  *
20  * Portions of this software were developed by Robert N. M. Watson under
21  * contract to Juniper Networks, Inc.
22  *
23  * Redistribution and use in source and binary forms, with or without
24  * modification, are permitted provided that the following conditions
25  * are met:
26  * 1. Redistributions of source code must retain the above copyright
27  *    notice, this list of conditions and the following disclaimer.
28  * 2. Redistributions in binary form must reproduce the above copyright
29  *    notice, this list of conditions and the following disclaimer in the
30  *    documentation and/or other materials provided with the distribution.
31  * 4. Neither the name of the University nor the names of its contributors
32  *    may be used to endorse or promote products derived from this software
33  *    without specific prior written permission.
34  *
35  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
36  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
37  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
38  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
39  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
40  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
41  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
42  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
43  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
44  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
45  * SUCH DAMAGE.
46  *
47  *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
48  */
49 
50 #include <sys/cdefs.h>
51 __FBSDID("$FreeBSD$");
52 
53 #include "opt_inet.h"
54 #include "opt_inet6.h"
55 #include "opt_ipsec.h"
56 #include "opt_tcpdebug.h"
57 
58 #include <sys/param.h>
59 #include <sys/kernel.h>
60 #include <sys/hhook.h>
61 #include <sys/malloc.h>
62 #include <sys/mbuf.h>
63 #include <sys/proc.h>		/* for proc0 declaration */
64 #include <sys/protosw.h>
65 #include <sys/sdt.h>
66 #include <sys/signalvar.h>
67 #include <sys/socket.h>
68 #include <sys/socketvar.h>
69 #include <sys/sysctl.h>
70 #include <sys/syslog.h>
71 #include <sys/systm.h>
72 
73 #include <machine/cpu.h>	/* before tcp_seq.h, for tcp_random18() */
74 
75 #include <vm/uma.h>
76 
77 #include <net/if.h>
78 #include <net/if_var.h>
79 #include <net/route.h>
80 #include <net/vnet.h>
81 
82 #define TCPSTATES		/* for logging */
83 
84 #include <netinet/in.h>
85 #include <netinet/in_kdtrace.h>
86 #include <netinet/in_pcb.h>
87 #include <netinet/in_systm.h>
88 #include <netinet/ip.h>
89 #include <netinet/ip_icmp.h>	/* required for icmp_var.h */
90 #include <netinet/icmp_var.h>	/* for ICMP_BANDLIM */
91 #include <netinet/ip_var.h>
92 #include <netinet/ip_options.h>
93 #include <netinet/ip6.h>
94 #include <netinet/icmp6.h>
95 #include <netinet6/in6_pcb.h>
96 #include <netinet6/in6_var.h>
97 #include <netinet6/ip6_var.h>
98 #include <netinet6/nd6.h>
99 #ifdef TCP_RFC7413
100 #include <netinet/tcp_fastopen.h>
101 #endif
102 #include <netinet/tcp.h>
103 #include <netinet/tcp_fsm.h>
104 #include <netinet/tcp_seq.h>
105 #include <netinet/tcp_timer.h>
106 #include <netinet/tcp_var.h>
107 #include <netinet6/tcp6_var.h>
108 #include <netinet/tcpip.h>
109 #include <netinet/cc/cc.h>
110 #ifdef TCPPCAP
111 #include <netinet/tcp_pcap.h>
112 #endif
113 #include <netinet/tcp_syncache.h>
114 #ifdef TCPDEBUG
115 #include <netinet/tcp_debug.h>
116 #endif /* TCPDEBUG */
117 #ifdef TCP_OFFLOAD
118 #include <netinet/tcp_offload.h>
119 #endif
120 
121 #ifdef IPSEC
122 #include <netipsec/ipsec.h>
123 #include <netipsec/ipsec6.h>
124 #endif /*IPSEC*/
125 
126 #include <machine/in_cksum.h>
127 
128 #include <security/mac/mac_framework.h>
129 
130 const int tcprexmtthresh = 3;
131 
132 int tcp_log_in_vain = 0;
133 SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_in_vain, CTLFLAG_RW,
134     &tcp_log_in_vain, 0,
135     "Log all incoming TCP segments to closed ports");
136 
137 VNET_DEFINE(int, blackhole) = 0;
138 #define	V_blackhole		VNET(blackhole)
139 SYSCTL_INT(_net_inet_tcp, OID_AUTO, blackhole, CTLFLAG_VNET | CTLFLAG_RW,
140     &VNET_NAME(blackhole), 0,
141     "Do not send RST on segments to closed ports");
142 
143 VNET_DEFINE(int, tcp_delack_enabled) = 1;
144 SYSCTL_INT(_net_inet_tcp, OID_AUTO, delayed_ack, CTLFLAG_VNET | CTLFLAG_RW,
145     &VNET_NAME(tcp_delack_enabled), 0,
146     "Delay ACK to try and piggyback it onto a data packet");
147 
148 VNET_DEFINE(int, drop_synfin) = 0;
149 #define	V_drop_synfin		VNET(drop_synfin)
150 SYSCTL_INT(_net_inet_tcp, OID_AUTO, drop_synfin, CTLFLAG_VNET | CTLFLAG_RW,
151     &VNET_NAME(drop_synfin), 0,
152     "Drop TCP packets with SYN+FIN set");
153 
154 VNET_DEFINE(int, tcp_do_rfc6675_pipe) = 0;
155 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc6675_pipe, CTLFLAG_VNET | CTLFLAG_RW,
156     &VNET_NAME(tcp_do_rfc6675_pipe), 0,
157     "Use calculated pipe/in-flight bytes per RFC 6675");
158 
159 VNET_DEFINE(int, tcp_do_rfc3042) = 1;
160 #define	V_tcp_do_rfc3042	VNET(tcp_do_rfc3042)
161 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3042, CTLFLAG_VNET | CTLFLAG_RW,
162     &VNET_NAME(tcp_do_rfc3042), 0,
163     "Enable RFC 3042 (Limited Transmit)");
164 
165 VNET_DEFINE(int, tcp_do_rfc3390) = 1;
166 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3390, CTLFLAG_VNET | CTLFLAG_RW,
167     &VNET_NAME(tcp_do_rfc3390), 0,
168     "Enable RFC 3390 (Increasing TCP's Initial Congestion Window)");
169 
170 VNET_DEFINE(int, tcp_initcwnd_segments) = 10;
171 SYSCTL_INT(_net_inet_tcp, OID_AUTO, initcwnd_segments,
172     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(tcp_initcwnd_segments), 0,
173     "Slow-start flight size (initial congestion window) in number of segments");
174 
175 VNET_DEFINE(int, tcp_do_rfc3465) = 1;
176 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3465, CTLFLAG_VNET | CTLFLAG_RW,
177     &VNET_NAME(tcp_do_rfc3465), 0,
178     "Enable RFC 3465 (Appropriate Byte Counting)");
179 
180 VNET_DEFINE(int, tcp_abc_l_var) = 2;
181 SYSCTL_INT(_net_inet_tcp, OID_AUTO, abc_l_var, CTLFLAG_VNET | CTLFLAG_RW,
182     &VNET_NAME(tcp_abc_l_var), 2,
183     "Cap the max cwnd increment during slow-start to this number of segments");
184 
185 static SYSCTL_NODE(_net_inet_tcp, OID_AUTO, ecn, CTLFLAG_RW, 0, "TCP ECN");
186 
187 VNET_DEFINE(int, tcp_do_ecn) = 2;
188 SYSCTL_INT(_net_inet_tcp_ecn, OID_AUTO, enable, CTLFLAG_VNET | CTLFLAG_RW,
189     &VNET_NAME(tcp_do_ecn), 0,
190     "TCP ECN support");
191 
192 VNET_DEFINE(int, tcp_ecn_maxretries) = 1;
193 SYSCTL_INT(_net_inet_tcp_ecn, OID_AUTO, maxretries, CTLFLAG_VNET | CTLFLAG_RW,
194     &VNET_NAME(tcp_ecn_maxretries), 0,
195     "Max retries before giving up on ECN");
196 
197 VNET_DEFINE(int, tcp_insecure_syn) = 0;
198 #define	V_tcp_insecure_syn	VNET(tcp_insecure_syn)
199 SYSCTL_INT(_net_inet_tcp, OID_AUTO, insecure_syn, CTLFLAG_VNET | CTLFLAG_RW,
200     &VNET_NAME(tcp_insecure_syn), 0,
201     "Follow RFC793 instead of RFC5961 criteria for accepting SYN packets");
202 
203 VNET_DEFINE(int, tcp_insecure_rst) = 0;
204 #define	V_tcp_insecure_rst	VNET(tcp_insecure_rst)
205 SYSCTL_INT(_net_inet_tcp, OID_AUTO, insecure_rst, CTLFLAG_VNET | CTLFLAG_RW,
206     &VNET_NAME(tcp_insecure_rst), 0,
207     "Follow RFC793 instead of RFC5961 criteria for accepting RST packets");
208 
209 VNET_DEFINE(int, tcp_recvspace) = 1024*64;
210 #define	V_tcp_recvspace	VNET(tcp_recvspace)
211 SYSCTL_INT(_net_inet_tcp, TCPCTL_RECVSPACE, recvspace, CTLFLAG_VNET | CTLFLAG_RW,
212     &VNET_NAME(tcp_recvspace), 0, "Initial receive socket buffer size");
213 
214 VNET_DEFINE(int, tcp_do_autorcvbuf) = 1;
215 #define	V_tcp_do_autorcvbuf	VNET(tcp_do_autorcvbuf)
216 SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbuf_auto, CTLFLAG_VNET | CTLFLAG_RW,
217     &VNET_NAME(tcp_do_autorcvbuf), 0,
218     "Enable automatic receive buffer sizing");
219 
220 VNET_DEFINE(int, tcp_autorcvbuf_inc) = 16*1024;
221 #define	V_tcp_autorcvbuf_inc	VNET(tcp_autorcvbuf_inc)
222 SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbuf_inc, CTLFLAG_VNET | CTLFLAG_RW,
223     &VNET_NAME(tcp_autorcvbuf_inc), 0,
224     "Incrementor step size of automatic receive buffer");
225 
226 VNET_DEFINE(int, tcp_autorcvbuf_max) = 2*1024*1024;
227 #define	V_tcp_autorcvbuf_max	VNET(tcp_autorcvbuf_max)
228 SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbuf_max, CTLFLAG_VNET | CTLFLAG_RW,
229     &VNET_NAME(tcp_autorcvbuf_max), 0,
230     "Max size of automatic receive buffer");
231 
232 VNET_DEFINE(struct inpcbhead, tcb);
233 #define	tcb6	tcb  /* for KAME src sync over BSD*'s */
234 VNET_DEFINE(struct inpcbinfo, tcbinfo);
235 
236 /*
237  * TCP statistics are stored in an array of counter(9)s, which size matches
238  * size of struct tcpstat.  TCP running connection count is a regular array.
239  */
240 VNET_PCPUSTAT_DEFINE(struct tcpstat, tcpstat);
241 SYSCTL_VNET_PCPUSTAT(_net_inet_tcp, TCPCTL_STATS, stats, struct tcpstat,
242     tcpstat, "TCP statistics (struct tcpstat, netinet/tcp_var.h)");
243 VNET_DEFINE(counter_u64_t, tcps_states[TCP_NSTATES]);
244 SYSCTL_COUNTER_U64_ARRAY(_net_inet_tcp, TCPCTL_STATES, states, CTLFLAG_RD |
245     CTLFLAG_VNET, &VNET_NAME(tcps_states)[0], TCP_NSTATES,
246     "TCP connection counts by TCP state");
247 
248 static void
249 tcp_vnet_init(const void *unused)
250 {
251 
252 	COUNTER_ARRAY_ALLOC(V_tcps_states, TCP_NSTATES, M_WAITOK);
253 	VNET_PCPUSTAT_ALLOC(tcpstat, M_WAITOK);
254 }
255 VNET_SYSINIT(tcp_vnet_init, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_ANY,
256     tcp_vnet_init, NULL);
257 
258 #ifdef VIMAGE
259 static void
260 tcp_vnet_uninit(const void *unused)
261 {
262 
263 	COUNTER_ARRAY_FREE(V_tcps_states, TCP_NSTATES);
264 	VNET_PCPUSTAT_FREE(tcpstat);
265 }
266 VNET_SYSUNINIT(tcp_vnet_uninit, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_ANY,
267     tcp_vnet_uninit, NULL);
268 #endif /* VIMAGE */
269 
270 /*
271  * Kernel module interface for updating tcpstat.  The argument is an index
272  * into tcpstat treated as an array.
273  */
274 void
275 kmod_tcpstat_inc(int statnum)
276 {
277 
278 	counter_u64_add(VNET(tcpstat)[statnum], 1);
279 }
280 
281 /*
282  * Wrapper for the TCP established input helper hook.
283  */
284 void
285 hhook_run_tcp_est_in(struct tcpcb *tp, struct tcphdr *th, struct tcpopt *to)
286 {
287 	struct tcp_hhook_data hhook_data;
288 
289 	if (V_tcp_hhh[HHOOK_TCP_EST_IN]->hhh_nhooks > 0) {
290 		hhook_data.tp = tp;
291 		hhook_data.th = th;
292 		hhook_data.to = to;
293 
294 		hhook_run_hooks(V_tcp_hhh[HHOOK_TCP_EST_IN], &hhook_data,
295 		    tp->osd);
296 	}
297 }
298 
299 /*
300  * CC wrapper hook functions
301  */
302 void
303 cc_ack_received(struct tcpcb *tp, struct tcphdr *th, uint16_t type)
304 {
305 	INP_WLOCK_ASSERT(tp->t_inpcb);
306 
307 	tp->ccv->bytes_this_ack = BYTES_THIS_ACK(tp, th);
308 	if (tp->snd_cwnd <= tp->snd_wnd)
309 		tp->ccv->flags |= CCF_CWND_LIMITED;
310 	else
311 		tp->ccv->flags &= ~CCF_CWND_LIMITED;
312 
313 	if (type == CC_ACK) {
314 		if (tp->snd_cwnd > tp->snd_ssthresh) {
315 			tp->t_bytes_acked += min(tp->ccv->bytes_this_ack,
316 			     V_tcp_abc_l_var * tcp_maxseg(tp));
317 			if (tp->t_bytes_acked >= tp->snd_cwnd) {
318 				tp->t_bytes_acked -= tp->snd_cwnd;
319 				tp->ccv->flags |= CCF_ABC_SENTAWND;
320 			}
321 		} else {
322 				tp->ccv->flags &= ~CCF_ABC_SENTAWND;
323 				tp->t_bytes_acked = 0;
324 		}
325 	}
326 
327 	if (CC_ALGO(tp)->ack_received != NULL) {
328 		/* XXXLAS: Find a way to live without this */
329 		tp->ccv->curack = th->th_ack;
330 		CC_ALGO(tp)->ack_received(tp->ccv, type);
331 	}
332 }
333 
334 void
335 cc_conn_init(struct tcpcb *tp)
336 {
337 	struct hc_metrics_lite metrics;
338 	struct inpcb *inp = tp->t_inpcb;
339 	u_int maxseg;
340 	int rtt;
341 
342 	INP_WLOCK_ASSERT(tp->t_inpcb);
343 
344 	tcp_hc_get(&inp->inp_inc, &metrics);
345 	maxseg = tcp_maxseg(tp);
346 
347 	if (tp->t_srtt == 0 && (rtt = metrics.rmx_rtt)) {
348 		tp->t_srtt = rtt;
349 		tp->t_rttbest = tp->t_srtt + TCP_RTT_SCALE;
350 		TCPSTAT_INC(tcps_usedrtt);
351 		if (metrics.rmx_rttvar) {
352 			tp->t_rttvar = metrics.rmx_rttvar;
353 			TCPSTAT_INC(tcps_usedrttvar);
354 		} else {
355 			/* default variation is +- 1 rtt */
356 			tp->t_rttvar =
357 			    tp->t_srtt * TCP_RTTVAR_SCALE / TCP_RTT_SCALE;
358 		}
359 		TCPT_RANGESET(tp->t_rxtcur,
360 		    ((tp->t_srtt >> 2) + tp->t_rttvar) >> 1,
361 		    tp->t_rttmin, TCPTV_REXMTMAX);
362 	}
363 	if (metrics.rmx_ssthresh) {
364 		/*
365 		 * There's some sort of gateway or interface
366 		 * buffer limit on the path.  Use this to set
367 		 * the slow start threshold, but set the
368 		 * threshold to no less than 2*mss.
369 		 */
370 		tp->snd_ssthresh = max(2 * maxseg, metrics.rmx_ssthresh);
371 		TCPSTAT_INC(tcps_usedssthresh);
372 	}
373 
374 	/*
375 	 * Set the initial slow-start flight size.
376 	 *
377 	 * RFC5681 Section 3.1 specifies the default conservative values.
378 	 * RFC3390 specifies slightly more aggressive values.
379 	 * RFC6928 increases it to ten segments.
380 	 * Support for user specified value for initial flight size.
381 	 *
382 	 * If a SYN or SYN/ACK was lost and retransmitted, we have to
383 	 * reduce the initial CWND to one segment as congestion is likely
384 	 * requiring us to be cautious.
385 	 */
386 	if (tp->snd_cwnd == 1)
387 		tp->snd_cwnd = maxseg;		/* SYN(-ACK) lost */
388 	else if (V_tcp_initcwnd_segments)
389 		tp->snd_cwnd = min(V_tcp_initcwnd_segments * maxseg,
390 		    max(2 * maxseg, V_tcp_initcwnd_segments * 1460));
391 	else if (V_tcp_do_rfc3390)
392 		tp->snd_cwnd = min(4 * maxseg, max(2 * maxseg, 4380));
393 	else {
394 		/* Per RFC5681 Section 3.1 */
395 		if (maxseg > 2190)
396 			tp->snd_cwnd = 2 * maxseg;
397 		else if (maxseg > 1095)
398 			tp->snd_cwnd = 3 * maxseg;
399 		else
400 			tp->snd_cwnd = 4 * maxseg;
401 	}
402 
403 	if (CC_ALGO(tp)->conn_init != NULL)
404 		CC_ALGO(tp)->conn_init(tp->ccv);
405 }
406 
407 void inline
408 cc_cong_signal(struct tcpcb *tp, struct tcphdr *th, uint32_t type)
409 {
410 	u_int maxseg;
411 
412 	INP_WLOCK_ASSERT(tp->t_inpcb);
413 
414 	switch(type) {
415 	case CC_NDUPACK:
416 		if (!IN_FASTRECOVERY(tp->t_flags)) {
417 			tp->snd_recover = tp->snd_max;
418 			if (tp->t_flags & TF_ECN_PERMIT)
419 				tp->t_flags |= TF_ECN_SND_CWR;
420 		}
421 		break;
422 	case CC_ECN:
423 		if (!IN_CONGRECOVERY(tp->t_flags)) {
424 			TCPSTAT_INC(tcps_ecn_rcwnd);
425 			tp->snd_recover = tp->snd_max;
426 			if (tp->t_flags & TF_ECN_PERMIT)
427 				tp->t_flags |= TF_ECN_SND_CWR;
428 		}
429 		break;
430 	case CC_RTO:
431 		maxseg = tcp_maxseg(tp);
432 		tp->t_dupacks = 0;
433 		tp->t_bytes_acked = 0;
434 		EXIT_RECOVERY(tp->t_flags);
435 		tp->snd_ssthresh = max(2, min(tp->snd_wnd, tp->snd_cwnd) / 2 /
436 		    maxseg) * maxseg;
437 		tp->snd_cwnd = maxseg;
438 		break;
439 	case CC_RTO_ERR:
440 		TCPSTAT_INC(tcps_sndrexmitbad);
441 		/* RTO was unnecessary, so reset everything. */
442 		tp->snd_cwnd = tp->snd_cwnd_prev;
443 		tp->snd_ssthresh = tp->snd_ssthresh_prev;
444 		tp->snd_recover = tp->snd_recover_prev;
445 		if (tp->t_flags & TF_WASFRECOVERY)
446 			ENTER_FASTRECOVERY(tp->t_flags);
447 		if (tp->t_flags & TF_WASCRECOVERY)
448 			ENTER_CONGRECOVERY(tp->t_flags);
449 		tp->snd_nxt = tp->snd_max;
450 		tp->t_flags &= ~TF_PREVVALID;
451 		tp->t_badrxtwin = 0;
452 		break;
453 	}
454 
455 	if (CC_ALGO(tp)->cong_signal != NULL) {
456 		if (th != NULL)
457 			tp->ccv->curack = th->th_ack;
458 		CC_ALGO(tp)->cong_signal(tp->ccv, type);
459 	}
460 }
461 
462 void inline
463 cc_post_recovery(struct tcpcb *tp, struct tcphdr *th)
464 {
465 	INP_WLOCK_ASSERT(tp->t_inpcb);
466 
467 	/* XXXLAS: KASSERT that we're in recovery? */
468 
469 	if (CC_ALGO(tp)->post_recovery != NULL) {
470 		tp->ccv->curack = th->th_ack;
471 		CC_ALGO(tp)->post_recovery(tp->ccv);
472 	}
473 	/* XXXLAS: EXIT_RECOVERY ? */
474 	tp->t_bytes_acked = 0;
475 }
476 
477 #ifdef TCP_SIGNATURE
478 static inline int
479 tcp_signature_verify_input(struct mbuf *m, int off0, int tlen, int optlen,
480     struct tcpopt *to, struct tcphdr *th, u_int tcpbflag)
481 {
482 	int ret;
483 
484 	tcp_fields_to_net(th);
485 	ret = tcp_signature_verify(m, off0, tlen, optlen, to, th, tcpbflag);
486 	tcp_fields_to_host(th);
487 	return (ret);
488 }
489 #endif
490 
491 /*
492  * Indicate whether this ack should be delayed.  We can delay the ack if
493  * following conditions are met:
494  *	- There is no delayed ack timer in progress.
495  *	- Our last ack wasn't a 0-sized window. We never want to delay
496  *	  the ack that opens up a 0-sized window.
497  *	- LRO wasn't used for this segment. We make sure by checking that the
498  *	  segment size is not larger than the MSS.
499  */
500 #define DELAY_ACK(tp, tlen)						\
501 	((!tcp_timer_active(tp, TT_DELACK) &&				\
502 	    (tp->t_flags & TF_RXWIN0SENT) == 0) &&			\
503 	    (tlen <= tp->t_maxseg) &&					\
504 	    (V_tcp_delack_enabled || (tp->t_flags & TF_NEEDSYN)))
505 
506 static void inline
507 cc_ecnpkt_handler(struct tcpcb *tp, struct tcphdr *th, uint8_t iptos)
508 {
509 	INP_WLOCK_ASSERT(tp->t_inpcb);
510 
511 	if (CC_ALGO(tp)->ecnpkt_handler != NULL) {
512 		switch (iptos & IPTOS_ECN_MASK) {
513 		case IPTOS_ECN_CE:
514 		    tp->ccv->flags |= CCF_IPHDR_CE;
515 		    break;
516 		case IPTOS_ECN_ECT0:
517 		    tp->ccv->flags &= ~CCF_IPHDR_CE;
518 		    break;
519 		case IPTOS_ECN_ECT1:
520 		    tp->ccv->flags &= ~CCF_IPHDR_CE;
521 		    break;
522 		}
523 
524 		if (th->th_flags & TH_CWR)
525 			tp->ccv->flags |= CCF_TCPHDR_CWR;
526 		else
527 			tp->ccv->flags &= ~CCF_TCPHDR_CWR;
528 
529 		if (tp->t_flags & TF_DELACK)
530 			tp->ccv->flags |= CCF_DELACK;
531 		else
532 			tp->ccv->flags &= ~CCF_DELACK;
533 
534 		CC_ALGO(tp)->ecnpkt_handler(tp->ccv);
535 
536 		if (tp->ccv->flags & CCF_ACKNOW)
537 			tcp_timer_activate(tp, TT_DELACK, tcp_delacktime);
538 	}
539 }
540 
541 /*
542  * TCP input handling is split into multiple parts:
543  *   tcp6_input is a thin wrapper around tcp_input for the extended
544  *	ip6_protox[] call format in ip6_input
545  *   tcp_input handles primary segment validation, inpcb lookup and
546  *	SYN processing on listen sockets
547  *   tcp_do_segment processes the ACK and text of the segment for
548  *	establishing, established and closing connections
549  */
550 #ifdef INET6
551 int
552 tcp6_input(struct mbuf **mp, int *offp, int proto)
553 {
554 	struct mbuf *m = *mp;
555 	struct in6_ifaddr *ia6;
556 	struct ip6_hdr *ip6;
557 
558 	IP6_EXTHDR_CHECK(m, *offp, sizeof(struct tcphdr), IPPROTO_DONE);
559 
560 	/*
561 	 * draft-itojun-ipv6-tcp-to-anycast
562 	 * better place to put this in?
563 	 */
564 	ip6 = mtod(m, struct ip6_hdr *);
565 	ia6 = in6ifa_ifwithaddr(&ip6->ip6_dst, 0 /* XXX */);
566 	if (ia6 && (ia6->ia6_flags & IN6_IFF_ANYCAST)) {
567 		struct ip6_hdr *ip6;
568 
569 		ifa_free(&ia6->ia_ifa);
570 		ip6 = mtod(m, struct ip6_hdr *);
571 		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
572 			    (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
573 		return (IPPROTO_DONE);
574 	}
575 	if (ia6)
576 		ifa_free(&ia6->ia_ifa);
577 
578 	return (tcp_input(mp, offp, proto));
579 }
580 #endif /* INET6 */
581 
582 int
583 tcp_input(struct mbuf **mp, int *offp, int proto)
584 {
585 	struct mbuf *m = *mp;
586 	struct tcphdr *th = NULL;
587 	struct ip *ip = NULL;
588 	struct inpcb *inp = NULL;
589 	struct tcpcb *tp = NULL;
590 	struct socket *so = NULL;
591 	u_char *optp = NULL;
592 	int off0;
593 	int optlen = 0;
594 #ifdef INET
595 	int len;
596 #endif
597 	int tlen = 0, off;
598 	int drop_hdrlen;
599 	int thflags;
600 	int rstreason = 0;	/* For badport_bandlim accounting purposes */
601 #ifdef TCP_SIGNATURE
602 	uint8_t sig_checked = 0;
603 #endif
604 	uint8_t iptos = 0;
605 	struct m_tag *fwd_tag = NULL;
606 #ifdef INET6
607 	struct ip6_hdr *ip6 = NULL;
608 	int isipv6;
609 #else
610 	const void *ip6 = NULL;
611 #endif /* INET6 */
612 	struct tcpopt to;		/* options in this segment */
613 	char *s = NULL;			/* address and port logging */
614 	int ti_locked;
615 #ifdef TCPDEBUG
616 	/*
617 	 * The size of tcp_saveipgen must be the size of the max ip header,
618 	 * now IPv6.
619 	 */
620 	u_char tcp_saveipgen[IP6_HDR_LEN];
621 	struct tcphdr tcp_savetcp;
622 	short ostate = 0;
623 #endif
624 
625 #ifdef INET6
626 	isipv6 = (mtod(m, struct ip *)->ip_v == 6) ? 1 : 0;
627 #endif
628 
629 	off0 = *offp;
630 	m = *mp;
631 	*mp = NULL;
632 	to.to_flags = 0;
633 	TCPSTAT_INC(tcps_rcvtotal);
634 
635 #ifdef INET6
636 	if (isipv6) {
637 		/* IP6_EXTHDR_CHECK() is already done at tcp6_input(). */
638 
639 		if (m->m_len < (sizeof(*ip6) + sizeof(*th))) {
640 			m = m_pullup(m, sizeof(*ip6) + sizeof(*th));
641 			if (m == NULL) {
642 				TCPSTAT_INC(tcps_rcvshort);
643 				return (IPPROTO_DONE);
644 			}
645 		}
646 
647 		ip6 = mtod(m, struct ip6_hdr *);
648 		th = (struct tcphdr *)((caddr_t)ip6 + off0);
649 		tlen = sizeof(*ip6) + ntohs(ip6->ip6_plen) - off0;
650 		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID_IPV6) {
651 			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
652 				th->th_sum = m->m_pkthdr.csum_data;
653 			else
654 				th->th_sum = in6_cksum_pseudo(ip6, tlen,
655 				    IPPROTO_TCP, m->m_pkthdr.csum_data);
656 			th->th_sum ^= 0xffff;
657 		} else
658 			th->th_sum = in6_cksum(m, IPPROTO_TCP, off0, tlen);
659 		if (th->th_sum) {
660 			TCPSTAT_INC(tcps_rcvbadsum);
661 			goto drop;
662 		}
663 
664 		/*
665 		 * Be proactive about unspecified IPv6 address in source.
666 		 * As we use all-zero to indicate unbounded/unconnected pcb,
667 		 * unspecified IPv6 address can be used to confuse us.
668 		 *
669 		 * Note that packets with unspecified IPv6 destination is
670 		 * already dropped in ip6_input.
671 		 */
672 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
673 			/* XXX stat */
674 			goto drop;
675 		}
676 	}
677 #endif
678 #if defined(INET) && defined(INET6)
679 	else
680 #endif
681 #ifdef INET
682 	{
683 		/*
684 		 * Get IP and TCP header together in first mbuf.
685 		 * Note: IP leaves IP header in first mbuf.
686 		 */
687 		if (off0 > sizeof (struct ip)) {
688 			ip_stripoptions(m);
689 			off0 = sizeof(struct ip);
690 		}
691 		if (m->m_len < sizeof (struct tcpiphdr)) {
692 			if ((m = m_pullup(m, sizeof (struct tcpiphdr)))
693 			    == NULL) {
694 				TCPSTAT_INC(tcps_rcvshort);
695 				return (IPPROTO_DONE);
696 			}
697 		}
698 		ip = mtod(m, struct ip *);
699 		th = (struct tcphdr *)((caddr_t)ip + off0);
700 		tlen = ntohs(ip->ip_len) - off0;
701 
702 		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
703 			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
704 				th->th_sum = m->m_pkthdr.csum_data;
705 			else
706 				th->th_sum = in_pseudo(ip->ip_src.s_addr,
707 				    ip->ip_dst.s_addr,
708 				    htonl(m->m_pkthdr.csum_data + tlen +
709 				    IPPROTO_TCP));
710 			th->th_sum ^= 0xffff;
711 		} else {
712 			struct ipovly *ipov = (struct ipovly *)ip;
713 
714 			/*
715 			 * Checksum extended TCP header and data.
716 			 */
717 			len = off0 + tlen;
718 			bzero(ipov->ih_x1, sizeof(ipov->ih_x1));
719 			ipov->ih_len = htons(tlen);
720 			th->th_sum = in_cksum(m, len);
721 			/* Reset length for SDT probes. */
722 			ip->ip_len = htons(tlen + off0);
723 		}
724 
725 		if (th->th_sum) {
726 			TCPSTAT_INC(tcps_rcvbadsum);
727 			goto drop;
728 		}
729 		/* Re-initialization for later version check */
730 		ip->ip_v = IPVERSION;
731 	}
732 #endif /* INET */
733 
734 #ifdef INET6
735 	if (isipv6)
736 		iptos = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
737 #endif
738 #if defined(INET) && defined(INET6)
739 	else
740 #endif
741 #ifdef INET
742 		iptos = ip->ip_tos;
743 #endif
744 
745 	/*
746 	 * Check that TCP offset makes sense,
747 	 * pull out TCP options and adjust length.		XXX
748 	 */
749 	off = th->th_off << 2;
750 	if (off < sizeof (struct tcphdr) || off > tlen) {
751 		TCPSTAT_INC(tcps_rcvbadoff);
752 		goto drop;
753 	}
754 	tlen -= off;	/* tlen is used instead of ti->ti_len */
755 	if (off > sizeof (struct tcphdr)) {
756 #ifdef INET6
757 		if (isipv6) {
758 			IP6_EXTHDR_CHECK(m, off0, off, IPPROTO_DONE);
759 			ip6 = mtod(m, struct ip6_hdr *);
760 			th = (struct tcphdr *)((caddr_t)ip6 + off0);
761 		}
762 #endif
763 #if defined(INET) && defined(INET6)
764 		else
765 #endif
766 #ifdef INET
767 		{
768 			if (m->m_len < sizeof(struct ip) + off) {
769 				if ((m = m_pullup(m, sizeof (struct ip) + off))
770 				    == NULL) {
771 					TCPSTAT_INC(tcps_rcvshort);
772 					return (IPPROTO_DONE);
773 				}
774 				ip = mtod(m, struct ip *);
775 				th = (struct tcphdr *)((caddr_t)ip + off0);
776 			}
777 		}
778 #endif
779 		optlen = off - sizeof (struct tcphdr);
780 		optp = (u_char *)(th + 1);
781 	}
782 	thflags = th->th_flags;
783 
784 	/*
785 	 * Convert TCP protocol specific fields to host format.
786 	 */
787 	tcp_fields_to_host(th);
788 
789 	/*
790 	 * Delay dropping TCP, IP headers, IPv6 ext headers, and TCP options.
791 	 */
792 	drop_hdrlen = off0 + off;
793 
794 	/*
795 	 * Locate pcb for segment; if we're likely to add or remove a
796 	 * connection then first acquire pcbinfo lock.  There are three cases
797 	 * where we might discover later we need a write lock despite the
798 	 * flags: ACKs moving a connection out of the syncache, ACKs for a
799 	 * connection in TIMEWAIT and SYNs not targeting a listening socket.
800 	 */
801 	if ((thflags & (TH_FIN | TH_RST)) != 0) {
802 		INP_INFO_RLOCK(&V_tcbinfo);
803 		ti_locked = TI_RLOCKED;
804 	} else
805 		ti_locked = TI_UNLOCKED;
806 
807 	/*
808 	 * Grab info from PACKET_TAG_IPFORWARD tag prepended to the chain.
809 	 */
810         if (
811 #ifdef INET6
812 	    (isipv6 && (m->m_flags & M_IP6_NEXTHOP))
813 #ifdef INET
814 	    || (!isipv6 && (m->m_flags & M_IP_NEXTHOP))
815 #endif
816 #endif
817 #if defined(INET) && !defined(INET6)
818 	    (m->m_flags & M_IP_NEXTHOP)
819 #endif
820 	    )
821 		fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
822 
823 findpcb:
824 #ifdef INVARIANTS
825 	if (ti_locked == TI_RLOCKED) {
826 		INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
827 	} else {
828 		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
829 	}
830 #endif
831 #ifdef INET6
832 	if (isipv6 && fwd_tag != NULL) {
833 		struct sockaddr_in6 *next_hop6;
834 
835 		next_hop6 = (struct sockaddr_in6 *)(fwd_tag + 1);
836 		/*
837 		 * Transparently forwarded. Pretend to be the destination.
838 		 * Already got one like this?
839 		 */
840 		inp = in6_pcblookup_mbuf(&V_tcbinfo,
841 		    &ip6->ip6_src, th->th_sport, &ip6->ip6_dst, th->th_dport,
842 		    INPLOOKUP_WLOCKPCB, m->m_pkthdr.rcvif, m);
843 		if (!inp) {
844 			/*
845 			 * It's new.  Try to find the ambushing socket.
846 			 * Because we've rewritten the destination address,
847 			 * any hardware-generated hash is ignored.
848 			 */
849 			inp = in6_pcblookup(&V_tcbinfo, &ip6->ip6_src,
850 			    th->th_sport, &next_hop6->sin6_addr,
851 			    next_hop6->sin6_port ? ntohs(next_hop6->sin6_port) :
852 			    th->th_dport, INPLOOKUP_WILDCARD |
853 			    INPLOOKUP_WLOCKPCB, m->m_pkthdr.rcvif);
854 		}
855 	} else if (isipv6) {
856 		inp = in6_pcblookup_mbuf(&V_tcbinfo, &ip6->ip6_src,
857 		    th->th_sport, &ip6->ip6_dst, th->th_dport,
858 		    INPLOOKUP_WILDCARD | INPLOOKUP_WLOCKPCB,
859 		    m->m_pkthdr.rcvif, m);
860 	}
861 #endif /* INET6 */
862 #if defined(INET6) && defined(INET)
863 	else
864 #endif
865 #ifdef INET
866 	if (fwd_tag != NULL) {
867 		struct sockaddr_in *next_hop;
868 
869 		next_hop = (struct sockaddr_in *)(fwd_tag+1);
870 		/*
871 		 * Transparently forwarded. Pretend to be the destination.
872 		 * already got one like this?
873 		 */
874 		inp = in_pcblookup_mbuf(&V_tcbinfo, ip->ip_src, th->th_sport,
875 		    ip->ip_dst, th->th_dport, INPLOOKUP_WLOCKPCB,
876 		    m->m_pkthdr.rcvif, m);
877 		if (!inp) {
878 			/*
879 			 * It's new.  Try to find the ambushing socket.
880 			 * Because we've rewritten the destination address,
881 			 * any hardware-generated hash is ignored.
882 			 */
883 			inp = in_pcblookup(&V_tcbinfo, ip->ip_src,
884 			    th->th_sport, next_hop->sin_addr,
885 			    next_hop->sin_port ? ntohs(next_hop->sin_port) :
886 			    th->th_dport, INPLOOKUP_WILDCARD |
887 			    INPLOOKUP_WLOCKPCB, m->m_pkthdr.rcvif);
888 		}
889 	} else
890 		inp = in_pcblookup_mbuf(&V_tcbinfo, ip->ip_src,
891 		    th->th_sport, ip->ip_dst, th->th_dport,
892 		    INPLOOKUP_WILDCARD | INPLOOKUP_WLOCKPCB,
893 		    m->m_pkthdr.rcvif, m);
894 #endif /* INET */
895 
896 	/*
897 	 * If the INPCB does not exist then all data in the incoming
898 	 * segment is discarded and an appropriate RST is sent back.
899 	 * XXX MRT Send RST using which routing table?
900 	 */
901 	if (inp == NULL) {
902 		/*
903 		 * Log communication attempts to ports that are not
904 		 * in use.
905 		 */
906 		if ((tcp_log_in_vain == 1 && (thflags & TH_SYN)) ||
907 		    tcp_log_in_vain == 2) {
908 			if ((s = tcp_log_vain(NULL, th, (void *)ip, ip6)))
909 				log(LOG_INFO, "%s; %s: Connection attempt "
910 				    "to closed port\n", s, __func__);
911 		}
912 		/*
913 		 * When blackholing do not respond with a RST but
914 		 * completely ignore the segment and drop it.
915 		 */
916 		if ((V_blackhole == 1 && (thflags & TH_SYN)) ||
917 		    V_blackhole == 2)
918 			goto dropunlock;
919 
920 		rstreason = BANDLIM_RST_CLOSEDPORT;
921 		goto dropwithreset;
922 	}
923 	INP_WLOCK_ASSERT(inp);
924 	if ((inp->inp_flowtype == M_HASHTYPE_NONE) &&
925 	    (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) &&
926 	    ((inp->inp_socket == NULL) ||
927 	    (inp->inp_socket->so_options & SO_ACCEPTCONN) == 0)) {
928 		inp->inp_flowid = m->m_pkthdr.flowid;
929 		inp->inp_flowtype = M_HASHTYPE_GET(m);
930 	}
931 #ifdef IPSEC
932 #ifdef INET6
933 	if (isipv6 && ipsec6_in_reject(m, inp)) {
934 		goto dropunlock;
935 	} else
936 #endif /* INET6 */
937 	if (ipsec4_in_reject(m, inp) != 0) {
938 		goto dropunlock;
939 	}
940 #endif /* IPSEC */
941 
942 	/*
943 	 * Check the minimum TTL for socket.
944 	 */
945 	if (inp->inp_ip_minttl != 0) {
946 #ifdef INET6
947 		if (isipv6) {
948 			if (inp->inp_ip_minttl > ip6->ip6_hlim)
949 				goto dropunlock;
950 		} else
951 #endif
952 		if (inp->inp_ip_minttl > ip->ip_ttl)
953 			goto dropunlock;
954 	}
955 
956 	/*
957 	 * A previous connection in TIMEWAIT state is supposed to catch stray
958 	 * or duplicate segments arriving late.  If this segment was a
959 	 * legitimate new connection attempt, the old INPCB gets removed and
960 	 * we can try again to find a listening socket.
961 	 *
962 	 * At this point, due to earlier optimism, we may hold only an inpcb
963 	 * lock, and not the inpcbinfo write lock.  If so, we need to try to
964 	 * acquire it, or if that fails, acquire a reference on the inpcb,
965 	 * drop all locks, acquire a global write lock, and then re-acquire
966 	 * the inpcb lock.  We may at that point discover that another thread
967 	 * has tried to free the inpcb, in which case we need to loop back
968 	 * and try to find a new inpcb to deliver to.
969 	 *
970 	 * XXXRW: It may be time to rethink timewait locking.
971 	 */
972 relocked:
973 	if (inp->inp_flags & INP_TIMEWAIT) {
974 		if (ti_locked == TI_UNLOCKED) {
975 			if (INP_INFO_TRY_RLOCK(&V_tcbinfo) == 0) {
976 				in_pcbref(inp);
977 				INP_WUNLOCK(inp);
978 				INP_INFO_RLOCK(&V_tcbinfo);
979 				ti_locked = TI_RLOCKED;
980 				INP_WLOCK(inp);
981 				if (in_pcbrele_wlocked(inp)) {
982 					inp = NULL;
983 					goto findpcb;
984 				}
985 			} else
986 				ti_locked = TI_RLOCKED;
987 		}
988 		INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
989 
990 		if (thflags & TH_SYN)
991 			tcp_dooptions(&to, optp, optlen, TO_SYN);
992 		/*
993 		 * NB: tcp_twcheck unlocks the INP and frees the mbuf.
994 		 */
995 		if (tcp_twcheck(inp, &to, th, m, tlen))
996 			goto findpcb;
997 		INP_INFO_RUNLOCK(&V_tcbinfo);
998 		return (IPPROTO_DONE);
999 	}
1000 	/*
1001 	 * The TCPCB may no longer exist if the connection is winding
1002 	 * down or it is in the CLOSED state.  Either way we drop the
1003 	 * segment and send an appropriate response.
1004 	 */
1005 	tp = intotcpcb(inp);
1006 	if (tp == NULL || tp->t_state == TCPS_CLOSED) {
1007 		rstreason = BANDLIM_RST_CLOSEDPORT;
1008 		goto dropwithreset;
1009 	}
1010 
1011 #ifdef TCP_OFFLOAD
1012 	if (tp->t_flags & TF_TOE) {
1013 		tcp_offload_input(tp, m);
1014 		m = NULL;	/* consumed by the TOE driver */
1015 		goto dropunlock;
1016 	}
1017 #endif
1018 
1019 	/*
1020 	 * We've identified a valid inpcb, but it could be that we need an
1021 	 * inpcbinfo write lock but don't hold it.  In this case, attempt to
1022 	 * acquire using the same strategy as the TIMEWAIT case above.  If we
1023 	 * relock, we have to jump back to 'relocked' as the connection might
1024 	 * now be in TIMEWAIT.
1025 	 */
1026 #ifdef INVARIANTS
1027 	if ((thflags & (TH_FIN | TH_RST)) != 0)
1028 		INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
1029 #endif
1030 	if (!((tp->t_state == TCPS_ESTABLISHED && (thflags & TH_SYN) == 0) ||
1031 	      (tp->t_state == TCPS_LISTEN && (thflags & TH_SYN) &&
1032 	       !(tp->t_flags & TF_FASTOPEN)))) {
1033 		if (ti_locked == TI_UNLOCKED) {
1034 			if (INP_INFO_TRY_RLOCK(&V_tcbinfo) == 0) {
1035 				in_pcbref(inp);
1036 				INP_WUNLOCK(inp);
1037 				INP_INFO_RLOCK(&V_tcbinfo);
1038 				ti_locked = TI_RLOCKED;
1039 				INP_WLOCK(inp);
1040 				if (in_pcbrele_wlocked(inp)) {
1041 					inp = NULL;
1042 					goto findpcb;
1043 				}
1044 				goto relocked;
1045 			} else
1046 				ti_locked = TI_RLOCKED;
1047 		}
1048 		INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
1049 	}
1050 
1051 #ifdef MAC
1052 	INP_WLOCK_ASSERT(inp);
1053 	if (mac_inpcb_check_deliver(inp, m))
1054 		goto dropunlock;
1055 #endif
1056 	so = inp->inp_socket;
1057 	KASSERT(so != NULL, ("%s: so == NULL", __func__));
1058 #ifdef TCPDEBUG
1059 	if (so->so_options & SO_DEBUG) {
1060 		ostate = tp->t_state;
1061 #ifdef INET6
1062 		if (isipv6) {
1063 			bcopy((char *)ip6, (char *)tcp_saveipgen, sizeof(*ip6));
1064 		} else
1065 #endif
1066 			bcopy((char *)ip, (char *)tcp_saveipgen, sizeof(*ip));
1067 		tcp_savetcp = *th;
1068 	}
1069 #endif /* TCPDEBUG */
1070 	/*
1071 	 * When the socket is accepting connections (the INPCB is in LISTEN
1072 	 * state) we look into the SYN cache if this is a new connection
1073 	 * attempt or the completion of a previous one.
1074 	 */
1075 	if (so->so_options & SO_ACCEPTCONN) {
1076 		struct in_conninfo inc;
1077 
1078 		KASSERT(tp->t_state == TCPS_LISTEN, ("%s: so accepting but "
1079 		    "tp not listening", __func__));
1080 		bzero(&inc, sizeof(inc));
1081 #ifdef INET6
1082 		if (isipv6) {
1083 			inc.inc_flags |= INC_ISIPV6;
1084 			inc.inc6_faddr = ip6->ip6_src;
1085 			inc.inc6_laddr = ip6->ip6_dst;
1086 		} else
1087 #endif
1088 		{
1089 			inc.inc_faddr = ip->ip_src;
1090 			inc.inc_laddr = ip->ip_dst;
1091 		}
1092 		inc.inc_fport = th->th_sport;
1093 		inc.inc_lport = th->th_dport;
1094 		inc.inc_fibnum = so->so_fibnum;
1095 
1096 		/*
1097 		 * Check for an existing connection attempt in syncache if
1098 		 * the flag is only ACK.  A successful lookup creates a new
1099 		 * socket appended to the listen queue in SYN_RECEIVED state.
1100 		 */
1101 		if ((thflags & (TH_RST|TH_ACK|TH_SYN)) == TH_ACK) {
1102 
1103 			INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
1104 			/*
1105 			 * Parse the TCP options here because
1106 			 * syncookies need access to the reflected
1107 			 * timestamp.
1108 			 */
1109 			tcp_dooptions(&to, optp, optlen, 0);
1110 			/*
1111 			 * NB: syncache_expand() doesn't unlock
1112 			 * inp and tcpinfo locks.
1113 			 */
1114 			if (!syncache_expand(&inc, &to, th, &so, m)) {
1115 				/*
1116 				 * No syncache entry or ACK was not
1117 				 * for our SYN/ACK.  Send a RST.
1118 				 * NB: syncache did its own logging
1119 				 * of the failure cause.
1120 				 */
1121 				rstreason = BANDLIM_RST_OPENPORT;
1122 				goto dropwithreset;
1123 			}
1124 #ifdef TCP_RFC7413
1125 new_tfo_socket:
1126 #endif
1127 			if (so == NULL) {
1128 				/*
1129 				 * We completed the 3-way handshake
1130 				 * but could not allocate a socket
1131 				 * either due to memory shortage,
1132 				 * listen queue length limits or
1133 				 * global socket limits.  Send RST
1134 				 * or wait and have the remote end
1135 				 * retransmit the ACK for another
1136 				 * try.
1137 				 */
1138 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1139 					log(LOG_DEBUG, "%s; %s: Listen socket: "
1140 					    "Socket allocation failed due to "
1141 					    "limits or memory shortage, %s\n",
1142 					    s, __func__,
1143 					    V_tcp_sc_rst_sock_fail ?
1144 					    "sending RST" : "try again");
1145 				if (V_tcp_sc_rst_sock_fail) {
1146 					rstreason = BANDLIM_UNLIMITED;
1147 					goto dropwithreset;
1148 				} else
1149 					goto dropunlock;
1150 			}
1151 			/*
1152 			 * Socket is created in state SYN_RECEIVED.
1153 			 * Unlock the listen socket, lock the newly
1154 			 * created socket and update the tp variable.
1155 			 */
1156 			INP_WUNLOCK(inp);	/* listen socket */
1157 			inp = sotoinpcb(so);
1158 			/*
1159 			 * New connection inpcb is already locked by
1160 			 * syncache_expand().
1161 			 */
1162 			INP_WLOCK_ASSERT(inp);
1163 			tp = intotcpcb(inp);
1164 			KASSERT(tp->t_state == TCPS_SYN_RECEIVED,
1165 			    ("%s: ", __func__));
1166 #ifdef TCP_SIGNATURE
1167 			if (sig_checked == 0)  {
1168 				tcp_dooptions(&to, optp, optlen,
1169 				    (thflags & TH_SYN) ? TO_SYN : 0);
1170 				if (!tcp_signature_verify_input(m, off0, tlen,
1171 				    optlen, &to, th, tp->t_flags)) {
1172 
1173 					/*
1174 					 * In SYN_SENT state if it receives an
1175 					 * RST, it is allowed for further
1176 					 * processing.
1177 					 */
1178 					if ((thflags & TH_RST) == 0 ||
1179 					    (tp->t_state == TCPS_SYN_SENT) == 0)
1180 						goto dropunlock;
1181 				}
1182 				sig_checked = 1;
1183 			}
1184 #endif
1185 
1186 			/*
1187 			 * Process the segment and the data it
1188 			 * contains.  tcp_do_segment() consumes
1189 			 * the mbuf chain and unlocks the inpcb.
1190 			 */
1191 			tp->t_fb->tfb_tcp_do_segment(m, th, so, tp, drop_hdrlen, tlen,
1192 			    iptos, ti_locked);
1193 			INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1194 			return (IPPROTO_DONE);
1195 		}
1196 		/*
1197 		 * Segment flag validation for new connection attempts:
1198 		 *
1199 		 * Our (SYN|ACK) response was rejected.
1200 		 * Check with syncache and remove entry to prevent
1201 		 * retransmits.
1202 		 *
1203 		 * NB: syncache_chkrst does its own logging of failure
1204 		 * causes.
1205 		 */
1206 		if (thflags & TH_RST) {
1207 			syncache_chkrst(&inc, th);
1208 			goto dropunlock;
1209 		}
1210 		/*
1211 		 * We can't do anything without SYN.
1212 		 */
1213 		if ((thflags & TH_SYN) == 0) {
1214 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1215 				log(LOG_DEBUG, "%s; %s: Listen socket: "
1216 				    "SYN is missing, segment ignored\n",
1217 				    s, __func__);
1218 			TCPSTAT_INC(tcps_badsyn);
1219 			goto dropunlock;
1220 		}
1221 		/*
1222 		 * (SYN|ACK) is bogus on a listen socket.
1223 		 */
1224 		if (thflags & TH_ACK) {
1225 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1226 				log(LOG_DEBUG, "%s; %s: Listen socket: "
1227 				    "SYN|ACK invalid, segment rejected\n",
1228 				    s, __func__);
1229 			syncache_badack(&inc);	/* XXX: Not needed! */
1230 			TCPSTAT_INC(tcps_badsyn);
1231 			rstreason = BANDLIM_RST_OPENPORT;
1232 			goto dropwithreset;
1233 		}
1234 		/*
1235 		 * If the drop_synfin option is enabled, drop all
1236 		 * segments with both the SYN and FIN bits set.
1237 		 * This prevents e.g. nmap from identifying the
1238 		 * TCP/IP stack.
1239 		 * XXX: Poor reasoning.  nmap has other methods
1240 		 * and is constantly refining its stack detection
1241 		 * strategies.
1242 		 * XXX: This is a violation of the TCP specification
1243 		 * and was used by RFC1644.
1244 		 */
1245 		if ((thflags & TH_FIN) && V_drop_synfin) {
1246 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1247 				log(LOG_DEBUG, "%s; %s: Listen socket: "
1248 				    "SYN|FIN segment ignored (based on "
1249 				    "sysctl setting)\n", s, __func__);
1250 			TCPSTAT_INC(tcps_badsyn);
1251 			goto dropunlock;
1252 		}
1253 		/*
1254 		 * Segment's flags are (SYN) or (SYN|FIN).
1255 		 *
1256 		 * TH_PUSH, TH_URG, TH_ECE, TH_CWR are ignored
1257 		 * as they do not affect the state of the TCP FSM.
1258 		 * The data pointed to by TH_URG and th_urp is ignored.
1259 		 */
1260 		KASSERT((thflags & (TH_RST|TH_ACK)) == 0,
1261 		    ("%s: Listen socket: TH_RST or TH_ACK set", __func__));
1262 		KASSERT(thflags & (TH_SYN),
1263 		    ("%s: Listen socket: TH_SYN not set", __func__));
1264 #ifdef INET6
1265 		/*
1266 		 * If deprecated address is forbidden,
1267 		 * we do not accept SYN to deprecated interface
1268 		 * address to prevent any new inbound connection from
1269 		 * getting established.
1270 		 * When we do not accept SYN, we send a TCP RST,
1271 		 * with deprecated source address (instead of dropping
1272 		 * it).  We compromise it as it is much better for peer
1273 		 * to send a RST, and RST will be the final packet
1274 		 * for the exchange.
1275 		 *
1276 		 * If we do not forbid deprecated addresses, we accept
1277 		 * the SYN packet.  RFC2462 does not suggest dropping
1278 		 * SYN in this case.
1279 		 * If we decipher RFC2462 5.5.4, it says like this:
1280 		 * 1. use of deprecated addr with existing
1281 		 *    communication is okay - "SHOULD continue to be
1282 		 *    used"
1283 		 * 2. use of it with new communication:
1284 		 *   (2a) "SHOULD NOT be used if alternate address
1285 		 *        with sufficient scope is available"
1286 		 *   (2b) nothing mentioned otherwise.
1287 		 * Here we fall into (2b) case as we have no choice in
1288 		 * our source address selection - we must obey the peer.
1289 		 *
1290 		 * The wording in RFC2462 is confusing, and there are
1291 		 * multiple description text for deprecated address
1292 		 * handling - worse, they are not exactly the same.
1293 		 * I believe 5.5.4 is the best one, so we follow 5.5.4.
1294 		 */
1295 		if (isipv6 && !V_ip6_use_deprecated) {
1296 			struct in6_ifaddr *ia6;
1297 
1298 			ia6 = in6ifa_ifwithaddr(&ip6->ip6_dst, 0 /* XXX */);
1299 			if (ia6 != NULL &&
1300 			    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
1301 				ifa_free(&ia6->ia_ifa);
1302 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1303 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1304 					"Connection attempt to deprecated "
1305 					"IPv6 address rejected\n",
1306 					s, __func__);
1307 				rstreason = BANDLIM_RST_OPENPORT;
1308 				goto dropwithreset;
1309 			}
1310 			if (ia6)
1311 				ifa_free(&ia6->ia_ifa);
1312 		}
1313 #endif /* INET6 */
1314 		/*
1315 		 * Basic sanity checks on incoming SYN requests:
1316 		 *   Don't respond if the destination is a link layer
1317 		 *	broadcast according to RFC1122 4.2.3.10, p. 104.
1318 		 *   If it is from this socket it must be forged.
1319 		 *   Don't respond if the source or destination is a
1320 		 *	global or subnet broad- or multicast address.
1321 		 *   Note that it is quite possible to receive unicast
1322 		 *	link-layer packets with a broadcast IP address. Use
1323 		 *	in_broadcast() to find them.
1324 		 */
1325 		if (m->m_flags & (M_BCAST|M_MCAST)) {
1326 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1327 			    log(LOG_DEBUG, "%s; %s: Listen socket: "
1328 				"Connection attempt from broad- or multicast "
1329 				"link layer address ignored\n", s, __func__);
1330 			goto dropunlock;
1331 		}
1332 #ifdef INET6
1333 		if (isipv6) {
1334 			if (th->th_dport == th->th_sport &&
1335 			    IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst, &ip6->ip6_src)) {
1336 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1337 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1338 					"Connection attempt to/from self "
1339 					"ignored\n", s, __func__);
1340 				goto dropunlock;
1341 			}
1342 			if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
1343 			    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
1344 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1345 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1346 					"Connection attempt from/to multicast "
1347 					"address ignored\n", s, __func__);
1348 				goto dropunlock;
1349 			}
1350 		}
1351 #endif
1352 #if defined(INET) && defined(INET6)
1353 		else
1354 #endif
1355 #ifdef INET
1356 		{
1357 			if (th->th_dport == th->th_sport &&
1358 			    ip->ip_dst.s_addr == ip->ip_src.s_addr) {
1359 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1360 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1361 					"Connection attempt from/to self "
1362 					"ignored\n", s, __func__);
1363 				goto dropunlock;
1364 			}
1365 			if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
1366 			    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
1367 			    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
1368 			    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif)) {
1369 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1370 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1371 					"Connection attempt from/to broad- "
1372 					"or multicast address ignored\n",
1373 					s, __func__);
1374 				goto dropunlock;
1375 			}
1376 		}
1377 #endif
1378 		/*
1379 		 * SYN appears to be valid.  Create compressed TCP state
1380 		 * for syncache.
1381 		 */
1382 #ifdef TCPDEBUG
1383 		if (so->so_options & SO_DEBUG)
1384 			tcp_trace(TA_INPUT, ostate, tp,
1385 			    (void *)tcp_saveipgen, &tcp_savetcp, 0);
1386 #endif
1387 		TCP_PROBE3(debug__input, tp, th, mtod(m, const char *));
1388 		tcp_dooptions(&to, optp, optlen, TO_SYN);
1389 #ifdef TCP_RFC7413
1390 		if (syncache_add(&inc, &to, th, inp, &so, m, NULL, NULL))
1391 			goto new_tfo_socket;
1392 #else
1393 		syncache_add(&inc, &to, th, inp, &so, m, NULL, NULL);
1394 #endif
1395 		/*
1396 		 * Entry added to syncache and mbuf consumed.
1397 		 * Only the listen socket is unlocked by syncache_add().
1398 		 */
1399 		if (ti_locked == TI_RLOCKED) {
1400 			INP_INFO_RUNLOCK(&V_tcbinfo);
1401 			ti_locked = TI_UNLOCKED;
1402 		}
1403 		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1404 		return (IPPROTO_DONE);
1405 	} else if (tp->t_state == TCPS_LISTEN) {
1406 		/*
1407 		 * When a listen socket is torn down the SO_ACCEPTCONN
1408 		 * flag is removed first while connections are drained
1409 		 * from the accept queue in a unlock/lock cycle of the
1410 		 * ACCEPT_LOCK, opening a race condition allowing a SYN
1411 		 * attempt go through unhandled.
1412 		 */
1413 		goto dropunlock;
1414 	}
1415 
1416 #ifdef TCP_SIGNATURE
1417 	if (sig_checked == 0)  {
1418 		tcp_dooptions(&to, optp, optlen,
1419 		    (thflags & TH_SYN) ? TO_SYN : 0);
1420 		if (!tcp_signature_verify_input(m, off0, tlen, optlen, &to,
1421 		    th, tp->t_flags)) {
1422 
1423 			/*
1424 			 * In SYN_SENT state if it receives an RST, it is
1425 			 * allowed for further processing.
1426 			 */
1427 			if ((thflags & TH_RST) == 0 ||
1428 			    (tp->t_state == TCPS_SYN_SENT) == 0)
1429 				goto dropunlock;
1430 		}
1431 		sig_checked = 1;
1432 	}
1433 #endif
1434 
1435 	TCP_PROBE5(receive, NULL, tp, mtod(m, const char *), tp, th);
1436 
1437 	/*
1438 	 * Segment belongs to a connection in SYN_SENT, ESTABLISHED or later
1439 	 * state.  tcp_do_segment() always consumes the mbuf chain, unlocks
1440 	 * the inpcb, and unlocks pcbinfo.
1441 	 */
1442 	tp->t_fb->tfb_tcp_do_segment(m, th, so, tp, drop_hdrlen, tlen, iptos, ti_locked);
1443 	INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1444 	return (IPPROTO_DONE);
1445 
1446 dropwithreset:
1447 	TCP_PROBE5(receive, NULL, tp, mtod(m, const char *), tp, th);
1448 
1449 	if (ti_locked == TI_RLOCKED) {
1450 		INP_INFO_RUNLOCK(&V_tcbinfo);
1451 		ti_locked = TI_UNLOCKED;
1452 	}
1453 #ifdef INVARIANTS
1454 	else {
1455 		KASSERT(ti_locked == TI_UNLOCKED, ("%s: dropwithreset "
1456 		    "ti_locked: %d", __func__, ti_locked));
1457 		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1458 	}
1459 #endif
1460 
1461 	if (inp != NULL) {
1462 		tcp_dropwithreset(m, th, tp, tlen, rstreason);
1463 		INP_WUNLOCK(inp);
1464 	} else
1465 		tcp_dropwithreset(m, th, NULL, tlen, rstreason);
1466 	m = NULL;	/* mbuf chain got consumed. */
1467 	goto drop;
1468 
1469 dropunlock:
1470 	if (m != NULL)
1471 		TCP_PROBE5(receive, NULL, tp, mtod(m, const char *), tp, th);
1472 
1473 	if (ti_locked == TI_RLOCKED) {
1474 		INP_INFO_RUNLOCK(&V_tcbinfo);
1475 		ti_locked = TI_UNLOCKED;
1476 	}
1477 #ifdef INVARIANTS
1478 	else {
1479 		KASSERT(ti_locked == TI_UNLOCKED, ("%s: dropunlock "
1480 		    "ti_locked: %d", __func__, ti_locked));
1481 		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1482 	}
1483 #endif
1484 
1485 	if (inp != NULL)
1486 		INP_WUNLOCK(inp);
1487 
1488 drop:
1489 	INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1490 	if (s != NULL)
1491 		free(s, M_TCPLOG);
1492 	if (m != NULL)
1493 		m_freem(m);
1494 	return (IPPROTO_DONE);
1495 }
1496 
1497 void
1498 tcp_do_segment(struct mbuf *m, struct tcphdr *th, struct socket *so,
1499     struct tcpcb *tp, int drop_hdrlen, int tlen, uint8_t iptos,
1500     int ti_locked)
1501 {
1502 	int thflags, acked, ourfinisacked, needoutput = 0, sack_changed;
1503 	int rstreason, todrop, win;
1504 	u_long tiwin;
1505 	char *s;
1506 	struct in_conninfo *inc;
1507 	struct mbuf *mfree;
1508 	struct tcpopt to;
1509 	int tfo_syn;
1510 
1511 #ifdef TCPDEBUG
1512 	/*
1513 	 * The size of tcp_saveipgen must be the size of the max ip header,
1514 	 * now IPv6.
1515 	 */
1516 	u_char tcp_saveipgen[IP6_HDR_LEN];
1517 	struct tcphdr tcp_savetcp;
1518 	short ostate = 0;
1519 #endif
1520 	thflags = th->th_flags;
1521 	inc = &tp->t_inpcb->inp_inc;
1522 	tp->sackhint.last_sack_ack = 0;
1523 	sack_changed = 0;
1524 
1525 	/*
1526 	 * If this is either a state-changing packet or current state isn't
1527 	 * established, we require a write lock on tcbinfo.  Otherwise, we
1528 	 * allow the tcbinfo to be in either alocked or unlocked, as the
1529 	 * caller may have unnecessarily acquired a write lock due to a race.
1530 	 */
1531 	if ((thflags & (TH_SYN | TH_FIN | TH_RST)) != 0 ||
1532 	    tp->t_state != TCPS_ESTABLISHED) {
1533 		KASSERT(ti_locked == TI_RLOCKED, ("%s ti_locked %d for "
1534 		    "SYN/FIN/RST/!EST", __func__, ti_locked));
1535 		INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
1536 	} else {
1537 #ifdef INVARIANTS
1538 		if (ti_locked == TI_RLOCKED)
1539 			INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
1540 		else {
1541 			KASSERT(ti_locked == TI_UNLOCKED, ("%s: EST "
1542 			    "ti_locked: %d", __func__, ti_locked));
1543 			INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1544 		}
1545 #endif
1546 	}
1547 	INP_WLOCK_ASSERT(tp->t_inpcb);
1548 	KASSERT(tp->t_state > TCPS_LISTEN, ("%s: TCPS_LISTEN",
1549 	    __func__));
1550 	KASSERT(tp->t_state != TCPS_TIME_WAIT, ("%s: TCPS_TIME_WAIT",
1551 	    __func__));
1552 
1553 #ifdef TCPPCAP
1554 	/* Save segment, if requested. */
1555 	tcp_pcap_add(th, m, &(tp->t_inpkts));
1556 #endif
1557 
1558 	/*
1559 	 * Segment received on connection.
1560 	 * Reset idle time and keep-alive timer.
1561 	 * XXX: This should be done after segment
1562 	 * validation to ignore broken/spoofed segs.
1563 	 */
1564 	tp->t_rcvtime = ticks;
1565 	if (TCPS_HAVEESTABLISHED(tp->t_state))
1566 		tcp_timer_activate(tp, TT_KEEP, TP_KEEPIDLE(tp));
1567 
1568 	/*
1569 	 * Scale up the window into a 32-bit value.
1570 	 * For the SYN_SENT state the scale is zero.
1571 	 */
1572 	tiwin = th->th_win << tp->snd_scale;
1573 
1574 	/*
1575 	 * TCP ECN processing.
1576 	 */
1577 	if (tp->t_flags & TF_ECN_PERMIT) {
1578 		if (thflags & TH_CWR)
1579 			tp->t_flags &= ~TF_ECN_SND_ECE;
1580 		switch (iptos & IPTOS_ECN_MASK) {
1581 		case IPTOS_ECN_CE:
1582 			tp->t_flags |= TF_ECN_SND_ECE;
1583 			TCPSTAT_INC(tcps_ecn_ce);
1584 			break;
1585 		case IPTOS_ECN_ECT0:
1586 			TCPSTAT_INC(tcps_ecn_ect0);
1587 			break;
1588 		case IPTOS_ECN_ECT1:
1589 			TCPSTAT_INC(tcps_ecn_ect1);
1590 			break;
1591 		}
1592 
1593 		/* Process a packet differently from RFC3168. */
1594 		cc_ecnpkt_handler(tp, th, iptos);
1595 
1596 		/* Congestion experienced. */
1597 		if (thflags & TH_ECE) {
1598 			cc_cong_signal(tp, th, CC_ECN);
1599 		}
1600 	}
1601 
1602 	/*
1603 	 * Parse options on any incoming segment.
1604 	 */
1605 	tcp_dooptions(&to, (u_char *)(th + 1),
1606 	    (th->th_off << 2) - sizeof(struct tcphdr),
1607 	    (thflags & TH_SYN) ? TO_SYN : 0);
1608 
1609 	/*
1610 	 * If echoed timestamp is later than the current time,
1611 	 * fall back to non RFC1323 RTT calculation.  Normalize
1612 	 * timestamp if syncookies were used when this connection
1613 	 * was established.
1614 	 */
1615 	if ((to.to_flags & TOF_TS) && (to.to_tsecr != 0)) {
1616 		to.to_tsecr -= tp->ts_offset;
1617 		if (TSTMP_GT(to.to_tsecr, tcp_ts_getticks()))
1618 			to.to_tsecr = 0;
1619 	}
1620 	/*
1621 	 * If timestamps were negotiated during SYN/ACK they should
1622 	 * appear on every segment during this session and vice versa.
1623 	 */
1624 	if ((tp->t_flags & TF_RCVD_TSTMP) && !(to.to_flags & TOF_TS)) {
1625 		if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1626 			log(LOG_DEBUG, "%s; %s: Timestamp missing, "
1627 			    "no action\n", s, __func__);
1628 			free(s, M_TCPLOG);
1629 		}
1630 	}
1631 	if (!(tp->t_flags & TF_RCVD_TSTMP) && (to.to_flags & TOF_TS)) {
1632 		if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1633 			log(LOG_DEBUG, "%s; %s: Timestamp not expected, "
1634 			    "no action\n", s, __func__);
1635 			free(s, M_TCPLOG);
1636 		}
1637 	}
1638 
1639 	/*
1640 	 * Process options only when we get SYN/ACK back. The SYN case
1641 	 * for incoming connections is handled in tcp_syncache.
1642 	 * According to RFC1323 the window field in a SYN (i.e., a <SYN>
1643 	 * or <SYN,ACK>) segment itself is never scaled.
1644 	 * XXX this is traditional behavior, may need to be cleaned up.
1645 	 */
1646 	if (tp->t_state == TCPS_SYN_SENT && (thflags & TH_SYN)) {
1647 		if ((to.to_flags & TOF_SCALE) &&
1648 		    (tp->t_flags & TF_REQ_SCALE)) {
1649 			tp->t_flags |= TF_RCVD_SCALE;
1650 			tp->snd_scale = to.to_wscale;
1651 		}
1652 		/*
1653 		 * Initial send window.  It will be updated with
1654 		 * the next incoming segment to the scaled value.
1655 		 */
1656 		tp->snd_wnd = th->th_win;
1657 		if (to.to_flags & TOF_TS) {
1658 			tp->t_flags |= TF_RCVD_TSTMP;
1659 			tp->ts_recent = to.to_tsval;
1660 			tp->ts_recent_age = tcp_ts_getticks();
1661 		}
1662 		if (to.to_flags & TOF_MSS)
1663 			tcp_mss(tp, to.to_mss);
1664 		if ((tp->t_flags & TF_SACK_PERMIT) &&
1665 		    (to.to_flags & TOF_SACKPERM) == 0)
1666 			tp->t_flags &= ~TF_SACK_PERMIT;
1667 	}
1668 
1669 	/*
1670 	 * Header prediction: check for the two common cases
1671 	 * of a uni-directional data xfer.  If the packet has
1672 	 * no control flags, is in-sequence, the window didn't
1673 	 * change and we're not retransmitting, it's a
1674 	 * candidate.  If the length is zero and the ack moved
1675 	 * forward, we're the sender side of the xfer.  Just
1676 	 * free the data acked & wake any higher level process
1677 	 * that was blocked waiting for space.  If the length
1678 	 * is non-zero and the ack didn't move, we're the
1679 	 * receiver side.  If we're getting packets in-order
1680 	 * (the reassembly queue is empty), add the data to
1681 	 * the socket buffer and note that we need a delayed ack.
1682 	 * Make sure that the hidden state-flags are also off.
1683 	 * Since we check for TCPS_ESTABLISHED first, it can only
1684 	 * be TH_NEEDSYN.
1685 	 */
1686 	if (tp->t_state == TCPS_ESTABLISHED &&
1687 	    th->th_seq == tp->rcv_nxt &&
1688 	    (thflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
1689 	    tp->snd_nxt == tp->snd_max &&
1690 	    tiwin && tiwin == tp->snd_wnd &&
1691 	    ((tp->t_flags & (TF_NEEDSYN|TF_NEEDFIN)) == 0) &&
1692 	    LIST_EMPTY(&tp->t_segq) &&
1693 	    ((to.to_flags & TOF_TS) == 0 ||
1694 	     TSTMP_GEQ(to.to_tsval, tp->ts_recent)) ) {
1695 
1696 		/*
1697 		 * If last ACK falls within this segment's sequence numbers,
1698 		 * record the timestamp.
1699 		 * NOTE that the test is modified according to the latest
1700 		 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
1701 		 */
1702 		if ((to.to_flags & TOF_TS) != 0 &&
1703 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1704 			tp->ts_recent_age = tcp_ts_getticks();
1705 			tp->ts_recent = to.to_tsval;
1706 		}
1707 
1708 		if (tlen == 0) {
1709 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
1710 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
1711 			    !IN_RECOVERY(tp->t_flags) &&
1712 			    (to.to_flags & TOF_SACK) == 0 &&
1713 			    TAILQ_EMPTY(&tp->snd_holes)) {
1714 				/*
1715 				 * This is a pure ack for outstanding data.
1716 				 */
1717 				if (ti_locked == TI_RLOCKED)
1718 					INP_INFO_RUNLOCK(&V_tcbinfo);
1719 				ti_locked = TI_UNLOCKED;
1720 
1721 				TCPSTAT_INC(tcps_predack);
1722 
1723 				/*
1724 				 * "bad retransmit" recovery.
1725 				 */
1726 				if (tp->t_rxtshift == 1 &&
1727 				    tp->t_flags & TF_PREVVALID &&
1728 				    (int)(ticks - tp->t_badrxtwin) < 0) {
1729 					cc_cong_signal(tp, th, CC_RTO_ERR);
1730 				}
1731 
1732 				/*
1733 				 * Recalculate the transmit timer / rtt.
1734 				 *
1735 				 * Some boxes send broken timestamp replies
1736 				 * during the SYN+ACK phase, ignore
1737 				 * timestamps of 0 or we could calculate a
1738 				 * huge RTT and blow up the retransmit timer.
1739 				 */
1740 				if ((to.to_flags & TOF_TS) != 0 &&
1741 				    to.to_tsecr) {
1742 					u_int t;
1743 
1744 					t = tcp_ts_getticks() - to.to_tsecr;
1745 					if (!tp->t_rttlow || tp->t_rttlow > t)
1746 						tp->t_rttlow = t;
1747 					tcp_xmit_timer(tp,
1748 					    TCP_TS_TO_TICKS(t) + 1);
1749 				} else if (tp->t_rtttime &&
1750 				    SEQ_GT(th->th_ack, tp->t_rtseq)) {
1751 					if (!tp->t_rttlow ||
1752 					    tp->t_rttlow > ticks - tp->t_rtttime)
1753 						tp->t_rttlow = ticks - tp->t_rtttime;
1754 					tcp_xmit_timer(tp,
1755 							ticks - tp->t_rtttime);
1756 				}
1757 				acked = BYTES_THIS_ACK(tp, th);
1758 
1759 				/* Run HHOOK_TCP_ESTABLISHED_IN helper hooks. */
1760 				hhook_run_tcp_est_in(tp, th, &to);
1761 
1762 				TCPSTAT_INC(tcps_rcvackpack);
1763 				TCPSTAT_ADD(tcps_rcvackbyte, acked);
1764 				sbdrop(&so->so_snd, acked);
1765 				if (SEQ_GT(tp->snd_una, tp->snd_recover) &&
1766 				    SEQ_LEQ(th->th_ack, tp->snd_recover))
1767 					tp->snd_recover = th->th_ack - 1;
1768 
1769 				/*
1770 				 * Let the congestion control algorithm update
1771 				 * congestion control related information. This
1772 				 * typically means increasing the congestion
1773 				 * window.
1774 				 */
1775 				cc_ack_received(tp, th, CC_ACK);
1776 
1777 				tp->snd_una = th->th_ack;
1778 				/*
1779 				 * Pull snd_wl2 up to prevent seq wrap relative
1780 				 * to th_ack.
1781 				 */
1782 				tp->snd_wl2 = th->th_ack;
1783 				tp->t_dupacks = 0;
1784 				m_freem(m);
1785 
1786 				/*
1787 				 * If all outstanding data are acked, stop
1788 				 * retransmit timer, otherwise restart timer
1789 				 * using current (possibly backed-off) value.
1790 				 * If process is waiting for space,
1791 				 * wakeup/selwakeup/signal.  If data
1792 				 * are ready to send, let tcp_output
1793 				 * decide between more output or persist.
1794 				 */
1795 #ifdef TCPDEBUG
1796 				if (so->so_options & SO_DEBUG)
1797 					tcp_trace(TA_INPUT, ostate, tp,
1798 					    (void *)tcp_saveipgen,
1799 					    &tcp_savetcp, 0);
1800 #endif
1801 				TCP_PROBE3(debug__input, tp, th,
1802 					mtod(m, const char *));
1803 				if (tp->snd_una == tp->snd_max)
1804 					tcp_timer_activate(tp, TT_REXMT, 0);
1805 				else if (!tcp_timer_active(tp, TT_PERSIST))
1806 					tcp_timer_activate(tp, TT_REXMT,
1807 						      tp->t_rxtcur);
1808 				sowwakeup(so);
1809 				if (sbavail(&so->so_snd))
1810 					(void) tp->t_fb->tfb_tcp_output(tp);
1811 				goto check_delack;
1812 			}
1813 		} else if (th->th_ack == tp->snd_una &&
1814 		    tlen <= sbspace(&so->so_rcv)) {
1815 			int newsize = 0;	/* automatic sockbuf scaling */
1816 
1817 			/*
1818 			 * This is a pure, in-sequence data packet with
1819 			 * nothing on the reassembly queue and we have enough
1820 			 * buffer space to take it.
1821 			 */
1822 			if (ti_locked == TI_RLOCKED)
1823 				INP_INFO_RUNLOCK(&V_tcbinfo);
1824 			ti_locked = TI_UNLOCKED;
1825 
1826 			/* Clean receiver SACK report if present */
1827 			if ((tp->t_flags & TF_SACK_PERMIT) && tp->rcv_numsacks)
1828 				tcp_clean_sackreport(tp);
1829 			TCPSTAT_INC(tcps_preddat);
1830 			tp->rcv_nxt += tlen;
1831 			/*
1832 			 * Pull snd_wl1 up to prevent seq wrap relative to
1833 			 * th_seq.
1834 			 */
1835 			tp->snd_wl1 = th->th_seq;
1836 			/*
1837 			 * Pull rcv_up up to prevent seq wrap relative to
1838 			 * rcv_nxt.
1839 			 */
1840 			tp->rcv_up = tp->rcv_nxt;
1841 			TCPSTAT_INC(tcps_rcvpack);
1842 			TCPSTAT_ADD(tcps_rcvbyte, tlen);
1843 #ifdef TCPDEBUG
1844 			if (so->so_options & SO_DEBUG)
1845 				tcp_trace(TA_INPUT, ostate, tp,
1846 				    (void *)tcp_saveipgen, &tcp_savetcp, 0);
1847 #endif
1848 			TCP_PROBE3(debug__input, tp, th, mtod(m, const char *));
1849 
1850 		/*
1851 		 * Automatic sizing of receive socket buffer.  Often the send
1852 		 * buffer size is not optimally adjusted to the actual network
1853 		 * conditions at hand (delay bandwidth product).  Setting the
1854 		 * buffer size too small limits throughput on links with high
1855 		 * bandwidth and high delay (eg. trans-continental/oceanic links).
1856 		 *
1857 		 * On the receive side the socket buffer memory is only rarely
1858 		 * used to any significant extent.  This allows us to be much
1859 		 * more aggressive in scaling the receive socket buffer.  For
1860 		 * the case that the buffer space is actually used to a large
1861 		 * extent and we run out of kernel memory we can simply drop
1862 		 * the new segments; TCP on the sender will just retransmit it
1863 		 * later.  Setting the buffer size too big may only consume too
1864 		 * much kernel memory if the application doesn't read() from
1865 		 * the socket or packet loss or reordering makes use of the
1866 		 * reassembly queue.
1867 		 *
1868 		 * The criteria to step up the receive buffer one notch are:
1869 		 *  1. Application has not set receive buffer size with
1870 		 *     SO_RCVBUF. Setting SO_RCVBUF clears SB_AUTOSIZE.
1871 		 *  2. the number of bytes received during the time it takes
1872 		 *     one timestamp to be reflected back to us (the RTT);
1873 		 *  3. received bytes per RTT is within seven eighth of the
1874 		 *     current socket buffer size;
1875 		 *  4. receive buffer size has not hit maximal automatic size;
1876 		 *
1877 		 * This algorithm does one step per RTT at most and only if
1878 		 * we receive a bulk stream w/o packet losses or reorderings.
1879 		 * Shrinking the buffer during idle times is not necessary as
1880 		 * it doesn't consume any memory when idle.
1881 		 *
1882 		 * TODO: Only step up if the application is actually serving
1883 		 * the buffer to better manage the socket buffer resources.
1884 		 */
1885 			if (V_tcp_do_autorcvbuf &&
1886 			    (to.to_flags & TOF_TS) &&
1887 			    to.to_tsecr &&
1888 			    (so->so_rcv.sb_flags & SB_AUTOSIZE)) {
1889 				if (TSTMP_GT(to.to_tsecr, tp->rfbuf_ts) &&
1890 				    to.to_tsecr - tp->rfbuf_ts < hz) {
1891 					if (tp->rfbuf_cnt >
1892 					    (so->so_rcv.sb_hiwat / 8 * 7) &&
1893 					    so->so_rcv.sb_hiwat <
1894 					    V_tcp_autorcvbuf_max) {
1895 						newsize =
1896 						    min(so->so_rcv.sb_hiwat +
1897 						    V_tcp_autorcvbuf_inc,
1898 						    V_tcp_autorcvbuf_max);
1899 					}
1900 					/* Start over with next RTT. */
1901 					tp->rfbuf_ts = 0;
1902 					tp->rfbuf_cnt = 0;
1903 				} else
1904 					tp->rfbuf_cnt += tlen;	/* add up */
1905 			}
1906 
1907 			/* Add data to socket buffer. */
1908 			SOCKBUF_LOCK(&so->so_rcv);
1909 			if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
1910 				m_freem(m);
1911 			} else {
1912 				/*
1913 				 * Set new socket buffer size.
1914 				 * Give up when limit is reached.
1915 				 */
1916 				if (newsize)
1917 					if (!sbreserve_locked(&so->so_rcv,
1918 					    newsize, so, NULL))
1919 						so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
1920 				m_adj(m, drop_hdrlen);	/* delayed header drop */
1921 				sbappendstream_locked(&so->so_rcv, m, 0);
1922 			}
1923 			/* NB: sorwakeup_locked() does an implicit unlock. */
1924 			sorwakeup_locked(so);
1925 			if (DELAY_ACK(tp, tlen)) {
1926 				tp->t_flags |= TF_DELACK;
1927 			} else {
1928 				tp->t_flags |= TF_ACKNOW;
1929 				tp->t_fb->tfb_tcp_output(tp);
1930 			}
1931 			goto check_delack;
1932 		}
1933 	}
1934 
1935 	/*
1936 	 * Calculate amount of space in receive window,
1937 	 * and then do TCP input processing.
1938 	 * Receive window is amount of space in rcv queue,
1939 	 * but not less than advertised window.
1940 	 */
1941 	win = sbspace(&so->so_rcv);
1942 	if (win < 0)
1943 		win = 0;
1944 	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1945 
1946 	/* Reset receive buffer auto scaling when not in bulk receive mode. */
1947 	tp->rfbuf_ts = 0;
1948 	tp->rfbuf_cnt = 0;
1949 
1950 	switch (tp->t_state) {
1951 
1952 	/*
1953 	 * If the state is SYN_RECEIVED:
1954 	 *	if seg contains an ACK, but not for our SYN/ACK, send a RST.
1955 	 */
1956 	case TCPS_SYN_RECEIVED:
1957 		if ((thflags & TH_ACK) &&
1958 		    (SEQ_LEQ(th->th_ack, tp->snd_una) ||
1959 		     SEQ_GT(th->th_ack, tp->snd_max))) {
1960 				rstreason = BANDLIM_RST_OPENPORT;
1961 				goto dropwithreset;
1962 		}
1963 #ifdef TCP_RFC7413
1964 		if (tp->t_flags & TF_FASTOPEN) {
1965 			/*
1966 			 * When a TFO connection is in SYN_RECEIVED, the
1967 			 * only valid packets are the initial SYN, a
1968 			 * retransmit/copy of the initial SYN (possibly with
1969 			 * a subset of the original data), a valid ACK, a
1970 			 * FIN, or a RST.
1971 			 */
1972 			if ((thflags & (TH_SYN|TH_ACK)) == (TH_SYN|TH_ACK)) {
1973 				rstreason = BANDLIM_RST_OPENPORT;
1974 				goto dropwithreset;
1975 			} else if (thflags & TH_SYN) {
1976 				/* non-initial SYN is ignored */
1977 				if ((tcp_timer_active(tp, TT_DELACK) ||
1978 				     tcp_timer_active(tp, TT_REXMT)))
1979 					goto drop;
1980 			} else if (!(thflags & (TH_ACK|TH_FIN|TH_RST))) {
1981 				goto drop;
1982 			}
1983 		}
1984 #endif
1985 		break;
1986 
1987 	/*
1988 	 * If the state is SYN_SENT:
1989 	 *	if seg contains an ACK, but not for our SYN, drop the input.
1990 	 *	if seg contains a RST, then drop the connection.
1991 	 *	if seg does not contain SYN, then drop it.
1992 	 * Otherwise this is an acceptable SYN segment
1993 	 *	initialize tp->rcv_nxt and tp->irs
1994 	 *	if seg contains ack then advance tp->snd_una
1995 	 *	if seg contains an ECE and ECN support is enabled, the stream
1996 	 *	    is ECN capable.
1997 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1998 	 *	arrange for segment to be acked (eventually)
1999 	 *	continue processing rest of data/controls, beginning with URG
2000 	 */
2001 	case TCPS_SYN_SENT:
2002 		if ((thflags & TH_ACK) &&
2003 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
2004 		     SEQ_GT(th->th_ack, tp->snd_max))) {
2005 			rstreason = BANDLIM_UNLIMITED;
2006 			goto dropwithreset;
2007 		}
2008 		if ((thflags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) {
2009 			TCP_PROBE5(connect__refused, NULL, tp,
2010 			    mtod(m, const char *), tp, th);
2011 			tp = tcp_drop(tp, ECONNREFUSED);
2012 		}
2013 		if (thflags & TH_RST)
2014 			goto drop;
2015 		if (!(thflags & TH_SYN))
2016 			goto drop;
2017 
2018 		tp->irs = th->th_seq;
2019 		tcp_rcvseqinit(tp);
2020 		if (thflags & TH_ACK) {
2021 			TCPSTAT_INC(tcps_connects);
2022 			soisconnected(so);
2023 #ifdef MAC
2024 			mac_socketpeer_set_from_mbuf(m, so);
2025 #endif
2026 			/* Do window scaling on this connection? */
2027 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2028 				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
2029 				tp->rcv_scale = tp->request_r_scale;
2030 			}
2031 			tp->rcv_adv += imin(tp->rcv_wnd,
2032 			    TCP_MAXWIN << tp->rcv_scale);
2033 			tp->snd_una++;		/* SYN is acked */
2034 			/*
2035 			 * If there's data, delay ACK; if there's also a FIN
2036 			 * ACKNOW will be turned on later.
2037 			 */
2038 			if (DELAY_ACK(tp, tlen) && tlen != 0)
2039 				tcp_timer_activate(tp, TT_DELACK,
2040 				    tcp_delacktime);
2041 			else
2042 				tp->t_flags |= TF_ACKNOW;
2043 
2044 			if ((thflags & TH_ECE) && V_tcp_do_ecn) {
2045 				tp->t_flags |= TF_ECN_PERMIT;
2046 				TCPSTAT_INC(tcps_ecn_shs);
2047 			}
2048 
2049 			/*
2050 			 * Received <SYN,ACK> in SYN_SENT[*] state.
2051 			 * Transitions:
2052 			 *	SYN_SENT  --> ESTABLISHED
2053 			 *	SYN_SENT* --> FIN_WAIT_1
2054 			 */
2055 			tp->t_starttime = ticks;
2056 			if (tp->t_flags & TF_NEEDFIN) {
2057 				tcp_state_change(tp, TCPS_FIN_WAIT_1);
2058 				tp->t_flags &= ~TF_NEEDFIN;
2059 				thflags &= ~TH_SYN;
2060 			} else {
2061 				tcp_state_change(tp, TCPS_ESTABLISHED);
2062 				TCP_PROBE5(connect__established, NULL, tp,
2063 				    mtod(m, const char *), tp, th);
2064 				cc_conn_init(tp);
2065 				tcp_timer_activate(tp, TT_KEEP,
2066 				    TP_KEEPIDLE(tp));
2067 			}
2068 		} else {
2069 			/*
2070 			 * Received initial SYN in SYN-SENT[*] state =>
2071 			 * simultaneous open.
2072 			 * If it succeeds, connection is * half-synchronized.
2073 			 * Otherwise, do 3-way handshake:
2074 			 *        SYN-SENT -> SYN-RECEIVED
2075 			 *        SYN-SENT* -> SYN-RECEIVED*
2076 			 */
2077 			tp->t_flags |= (TF_ACKNOW | TF_NEEDSYN);
2078 			tcp_timer_activate(tp, TT_REXMT, 0);
2079 			tcp_state_change(tp, TCPS_SYN_RECEIVED);
2080 		}
2081 
2082 		KASSERT(ti_locked == TI_RLOCKED, ("%s: trimthenstep6: "
2083 		    "ti_locked %d", __func__, ti_locked));
2084 		INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
2085 		INP_WLOCK_ASSERT(tp->t_inpcb);
2086 
2087 		/*
2088 		 * Advance th->th_seq to correspond to first data byte.
2089 		 * If data, trim to stay within window,
2090 		 * dropping FIN if necessary.
2091 		 */
2092 		th->th_seq++;
2093 		if (tlen > tp->rcv_wnd) {
2094 			todrop = tlen - tp->rcv_wnd;
2095 			m_adj(m, -todrop);
2096 			tlen = tp->rcv_wnd;
2097 			thflags &= ~TH_FIN;
2098 			TCPSTAT_INC(tcps_rcvpackafterwin);
2099 			TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop);
2100 		}
2101 		tp->snd_wl1 = th->th_seq - 1;
2102 		tp->rcv_up = th->th_seq;
2103 		/*
2104 		 * Client side of transaction: already sent SYN and data.
2105 		 * If the remote host used T/TCP to validate the SYN,
2106 		 * our data will be ACK'd; if so, enter normal data segment
2107 		 * processing in the middle of step 5, ack processing.
2108 		 * Otherwise, goto step 6.
2109 		 */
2110 		if (thflags & TH_ACK)
2111 			goto process_ACK;
2112 
2113 		goto step6;
2114 
2115 	/*
2116 	 * If the state is LAST_ACK or CLOSING or TIME_WAIT:
2117 	 *      do normal processing.
2118 	 *
2119 	 * NB: Leftover from RFC1644 T/TCP.  Cases to be reused later.
2120 	 */
2121 	case TCPS_LAST_ACK:
2122 	case TCPS_CLOSING:
2123 		break;  /* continue normal processing */
2124 	}
2125 
2126 	/*
2127 	 * States other than LISTEN or SYN_SENT.
2128 	 * First check the RST flag and sequence number since reset segments
2129 	 * are exempt from the timestamp and connection count tests.  This
2130 	 * fixes a bug introduced by the Stevens, vol. 2, p. 960 bugfix
2131 	 * below which allowed reset segments in half the sequence space
2132 	 * to fall though and be processed (which gives forged reset
2133 	 * segments with a random sequence number a 50 percent chance of
2134 	 * killing a connection).
2135 	 * Then check timestamp, if present.
2136 	 * Then check the connection count, if present.
2137 	 * Then check that at least some bytes of segment are within
2138 	 * receive window.  If segment begins before rcv_nxt,
2139 	 * drop leading data (and SYN); if nothing left, just ack.
2140 	 */
2141 	if (thflags & TH_RST) {
2142 		/*
2143 		 * RFC5961 Section 3.2
2144 		 *
2145 		 * - RST drops connection only if SEG.SEQ == RCV.NXT.
2146 		 * - If RST is in window, we send challenge ACK.
2147 		 *
2148 		 * Note: to take into account delayed ACKs, we should
2149 		 *   test against last_ack_sent instead of rcv_nxt.
2150 		 * Note 2: we handle special case of closed window, not
2151 		 *   covered by the RFC.
2152 		 */
2153 		if ((SEQ_GEQ(th->th_seq, tp->last_ack_sent) &&
2154 		    SEQ_LT(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) ||
2155 		    (tp->rcv_wnd == 0 && tp->last_ack_sent == th->th_seq)) {
2156 
2157 			INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
2158 			KASSERT(ti_locked == TI_RLOCKED,
2159 			    ("%s: TH_RST ti_locked %d, th %p tp %p",
2160 			    __func__, ti_locked, th, tp));
2161 			KASSERT(tp->t_state != TCPS_SYN_SENT,
2162 			    ("%s: TH_RST for TCPS_SYN_SENT th %p tp %p",
2163 			    __func__, th, tp));
2164 
2165 			if (V_tcp_insecure_rst ||
2166 			    tp->last_ack_sent == th->th_seq) {
2167 				TCPSTAT_INC(tcps_drops);
2168 				/* Drop the connection. */
2169 				switch (tp->t_state) {
2170 				case TCPS_SYN_RECEIVED:
2171 					so->so_error = ECONNREFUSED;
2172 					goto close;
2173 				case TCPS_ESTABLISHED:
2174 				case TCPS_FIN_WAIT_1:
2175 				case TCPS_FIN_WAIT_2:
2176 				case TCPS_CLOSE_WAIT:
2177 					so->so_error = ECONNRESET;
2178 				close:
2179 					tcp_state_change(tp, TCPS_CLOSED);
2180 					/* FALLTHROUGH */
2181 				default:
2182 					tp = tcp_close(tp);
2183 				}
2184 			} else {
2185 				TCPSTAT_INC(tcps_badrst);
2186 				/* Send challenge ACK. */
2187 				tcp_respond(tp, mtod(m, void *), th, m,
2188 				    tp->rcv_nxt, tp->snd_nxt, TH_ACK);
2189 				tp->last_ack_sent = tp->rcv_nxt;
2190 				m = NULL;
2191 			}
2192 		}
2193 		goto drop;
2194 	}
2195 
2196 	/*
2197 	 * RFC5961 Section 4.2
2198 	 * Send challenge ACK for any SYN in synchronized state.
2199 	 */
2200 	if ((thflags & TH_SYN) && tp->t_state != TCPS_SYN_SENT &&
2201 	    tp->t_state != TCPS_SYN_RECEIVED) {
2202 		KASSERT(ti_locked == TI_RLOCKED,
2203 		    ("tcp_do_segment: TH_SYN ti_locked %d", ti_locked));
2204 		INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
2205 
2206 		TCPSTAT_INC(tcps_badsyn);
2207 		if (V_tcp_insecure_syn &&
2208 		    SEQ_GEQ(th->th_seq, tp->last_ack_sent) &&
2209 		    SEQ_LT(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) {
2210 			tp = tcp_drop(tp, ECONNRESET);
2211 			rstreason = BANDLIM_UNLIMITED;
2212 		} else {
2213 			/* Send challenge ACK. */
2214 			tcp_respond(tp, mtod(m, void *), th, m, tp->rcv_nxt,
2215 			    tp->snd_nxt, TH_ACK);
2216 			tp->last_ack_sent = tp->rcv_nxt;
2217 			m = NULL;
2218 		}
2219 		goto drop;
2220 	}
2221 
2222 	/*
2223 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
2224 	 * and it's less than ts_recent, drop it.
2225 	 */
2226 	if ((to.to_flags & TOF_TS) != 0 && tp->ts_recent &&
2227 	    TSTMP_LT(to.to_tsval, tp->ts_recent)) {
2228 
2229 		/* Check to see if ts_recent is over 24 days old.  */
2230 		if (tcp_ts_getticks() - tp->ts_recent_age > TCP_PAWS_IDLE) {
2231 			/*
2232 			 * Invalidate ts_recent.  If this segment updates
2233 			 * ts_recent, the age will be reset later and ts_recent
2234 			 * will get a valid value.  If it does not, setting
2235 			 * ts_recent to zero will at least satisfy the
2236 			 * requirement that zero be placed in the timestamp
2237 			 * echo reply when ts_recent isn't valid.  The
2238 			 * age isn't reset until we get a valid ts_recent
2239 			 * because we don't want out-of-order segments to be
2240 			 * dropped when ts_recent is old.
2241 			 */
2242 			tp->ts_recent = 0;
2243 		} else {
2244 			TCPSTAT_INC(tcps_rcvduppack);
2245 			TCPSTAT_ADD(tcps_rcvdupbyte, tlen);
2246 			TCPSTAT_INC(tcps_pawsdrop);
2247 			if (tlen)
2248 				goto dropafterack;
2249 			goto drop;
2250 		}
2251 	}
2252 
2253 	/*
2254 	 * In the SYN-RECEIVED state, validate that the packet belongs to
2255 	 * this connection before trimming the data to fit the receive
2256 	 * window.  Check the sequence number versus IRS since we know
2257 	 * the sequence numbers haven't wrapped.  This is a partial fix
2258 	 * for the "LAND" DoS attack.
2259 	 */
2260 	if (tp->t_state == TCPS_SYN_RECEIVED && SEQ_LT(th->th_seq, tp->irs)) {
2261 		rstreason = BANDLIM_RST_OPENPORT;
2262 		goto dropwithreset;
2263 	}
2264 
2265 	todrop = tp->rcv_nxt - th->th_seq;
2266 	if (todrop > 0) {
2267 		if (thflags & TH_SYN) {
2268 			thflags &= ~TH_SYN;
2269 			th->th_seq++;
2270 			if (th->th_urp > 1)
2271 				th->th_urp--;
2272 			else
2273 				thflags &= ~TH_URG;
2274 			todrop--;
2275 		}
2276 		/*
2277 		 * Following if statement from Stevens, vol. 2, p. 960.
2278 		 */
2279 		if (todrop > tlen
2280 		    || (todrop == tlen && (thflags & TH_FIN) == 0)) {
2281 			/*
2282 			 * Any valid FIN must be to the left of the window.
2283 			 * At this point the FIN must be a duplicate or out
2284 			 * of sequence; drop it.
2285 			 */
2286 			thflags &= ~TH_FIN;
2287 
2288 			/*
2289 			 * Send an ACK to resynchronize and drop any data.
2290 			 * But keep on processing for RST or ACK.
2291 			 */
2292 			tp->t_flags |= TF_ACKNOW;
2293 			todrop = tlen;
2294 			TCPSTAT_INC(tcps_rcvduppack);
2295 			TCPSTAT_ADD(tcps_rcvdupbyte, todrop);
2296 		} else {
2297 			TCPSTAT_INC(tcps_rcvpartduppack);
2298 			TCPSTAT_ADD(tcps_rcvpartdupbyte, todrop);
2299 		}
2300 		drop_hdrlen += todrop;	/* drop from the top afterwards */
2301 		th->th_seq += todrop;
2302 		tlen -= todrop;
2303 		if (th->th_urp > todrop)
2304 			th->th_urp -= todrop;
2305 		else {
2306 			thflags &= ~TH_URG;
2307 			th->th_urp = 0;
2308 		}
2309 	}
2310 
2311 	/*
2312 	 * If new data are received on a connection after the
2313 	 * user processes are gone, then RST the other end.
2314 	 */
2315 	if ((so->so_state & SS_NOFDREF) &&
2316 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
2317 		KASSERT(ti_locked == TI_RLOCKED, ("%s: SS_NOFDEREF && "
2318 		    "CLOSE_WAIT && tlen ti_locked %d", __func__, ti_locked));
2319 		INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
2320 
2321 		if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
2322 			log(LOG_DEBUG, "%s; %s: %s: Received %d bytes of data "
2323 			    "after socket was closed, "
2324 			    "sending RST and removing tcpcb\n",
2325 			    s, __func__, tcpstates[tp->t_state], tlen);
2326 			free(s, M_TCPLOG);
2327 		}
2328 		tp = tcp_close(tp);
2329 		TCPSTAT_INC(tcps_rcvafterclose);
2330 		rstreason = BANDLIM_UNLIMITED;
2331 		goto dropwithreset;
2332 	}
2333 
2334 	/*
2335 	 * If segment ends after window, drop trailing data
2336 	 * (and PUSH and FIN); if nothing left, just ACK.
2337 	 */
2338 	todrop = (th->th_seq + tlen) - (tp->rcv_nxt + tp->rcv_wnd);
2339 	if (todrop > 0) {
2340 		TCPSTAT_INC(tcps_rcvpackafterwin);
2341 		if (todrop >= tlen) {
2342 			TCPSTAT_ADD(tcps_rcvbyteafterwin, tlen);
2343 			/*
2344 			 * If window is closed can only take segments at
2345 			 * window edge, and have to drop data and PUSH from
2346 			 * incoming segments.  Continue processing, but
2347 			 * remember to ack.  Otherwise, drop segment
2348 			 * and ack.
2349 			 */
2350 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
2351 				tp->t_flags |= TF_ACKNOW;
2352 				TCPSTAT_INC(tcps_rcvwinprobe);
2353 			} else
2354 				goto dropafterack;
2355 		} else
2356 			TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop);
2357 		m_adj(m, -todrop);
2358 		tlen -= todrop;
2359 		thflags &= ~(TH_PUSH|TH_FIN);
2360 	}
2361 
2362 	/*
2363 	 * If last ACK falls within this segment's sequence numbers,
2364 	 * record its timestamp.
2365 	 * NOTE:
2366 	 * 1) That the test incorporates suggestions from the latest
2367 	 *    proposal of the tcplw@cray.com list (Braden 1993/04/26).
2368 	 * 2) That updating only on newer timestamps interferes with
2369 	 *    our earlier PAWS tests, so this check should be solely
2370 	 *    predicated on the sequence space of this segment.
2371 	 * 3) That we modify the segment boundary check to be
2372 	 *        Last.ACK.Sent <= SEG.SEQ + SEG.Len
2373 	 *    instead of RFC1323's
2374 	 *        Last.ACK.Sent < SEG.SEQ + SEG.Len,
2375 	 *    This modified check allows us to overcome RFC1323's
2376 	 *    limitations as described in Stevens TCP/IP Illustrated
2377 	 *    Vol. 2 p.869. In such cases, we can still calculate the
2378 	 *    RTT correctly when RCV.NXT == Last.ACK.Sent.
2379 	 */
2380 	if ((to.to_flags & TOF_TS) != 0 &&
2381 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
2382 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
2383 		((thflags & (TH_SYN|TH_FIN)) != 0))) {
2384 		tp->ts_recent_age = tcp_ts_getticks();
2385 		tp->ts_recent = to.to_tsval;
2386 	}
2387 
2388 	/*
2389 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN
2390 	 * flag is on (half-synchronized state), then queue data for
2391 	 * later processing; else drop segment and return.
2392 	 */
2393 	if ((thflags & TH_ACK) == 0) {
2394 		if (tp->t_state == TCPS_SYN_RECEIVED ||
2395 		    (tp->t_flags & TF_NEEDSYN)) {
2396 #ifdef TCP_RFC7413
2397 			if (tp->t_state == TCPS_SYN_RECEIVED &&
2398 			    tp->t_flags & TF_FASTOPEN) {
2399 				tp->snd_wnd = tiwin;
2400 				cc_conn_init(tp);
2401 			}
2402 #endif
2403 			goto step6;
2404 		} else if (tp->t_flags & TF_ACKNOW)
2405 			goto dropafterack;
2406 		else
2407 			goto drop;
2408 	}
2409 
2410 	/*
2411 	 * Ack processing.
2412 	 */
2413 	switch (tp->t_state) {
2414 
2415 	/*
2416 	 * In SYN_RECEIVED state, the ack ACKs our SYN, so enter
2417 	 * ESTABLISHED state and continue processing.
2418 	 * The ACK was checked above.
2419 	 */
2420 	case TCPS_SYN_RECEIVED:
2421 
2422 		TCPSTAT_INC(tcps_connects);
2423 		soisconnected(so);
2424 		/* Do window scaling? */
2425 		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2426 			(TF_RCVD_SCALE|TF_REQ_SCALE)) {
2427 			tp->rcv_scale = tp->request_r_scale;
2428 			tp->snd_wnd = tiwin;
2429 		}
2430 		/*
2431 		 * Make transitions:
2432 		 *      SYN-RECEIVED  -> ESTABLISHED
2433 		 *      SYN-RECEIVED* -> FIN-WAIT-1
2434 		 */
2435 		tp->t_starttime = ticks;
2436 		if (tp->t_flags & TF_NEEDFIN) {
2437 			tcp_state_change(tp, TCPS_FIN_WAIT_1);
2438 			tp->t_flags &= ~TF_NEEDFIN;
2439 		} else {
2440 			tcp_state_change(tp, TCPS_ESTABLISHED);
2441 			TCP_PROBE5(accept__established, NULL, tp,
2442 			    mtod(m, const char *), tp, th);
2443 #ifdef TCP_RFC7413
2444 			if (tp->t_tfo_pending) {
2445 				tcp_fastopen_decrement_counter(tp->t_tfo_pending);
2446 				tp->t_tfo_pending = NULL;
2447 
2448 				/*
2449 				 * Account for the ACK of our SYN prior to
2450 				 * regular ACK processing below.
2451 				 */
2452 				tp->snd_una++;
2453 			}
2454 			/*
2455 			 * TFO connections call cc_conn_init() during SYN
2456 			 * processing.  Calling it again here for such
2457 			 * connections is not harmless as it would undo the
2458 			 * snd_cwnd reduction that occurs when a TFO SYN|ACK
2459 			 * is retransmitted.
2460 			 */
2461 			if (!(tp->t_flags & TF_FASTOPEN))
2462 #endif
2463 				cc_conn_init(tp);
2464 			tcp_timer_activate(tp, TT_KEEP, TP_KEEPIDLE(tp));
2465 		}
2466 		/*
2467 		 * If segment contains data or ACK, will call tcp_reass()
2468 		 * later; if not, do so now to pass queued data to user.
2469 		 */
2470 		if (tlen == 0 && (thflags & TH_FIN) == 0)
2471 			(void) tcp_reass(tp, (struct tcphdr *)0, 0,
2472 			    (struct mbuf *)0);
2473 		tp->snd_wl1 = th->th_seq - 1;
2474 		/* FALLTHROUGH */
2475 
2476 	/*
2477 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
2478 	 * ACKs.  If the ack is in the range
2479 	 *	tp->snd_una < th->th_ack <= tp->snd_max
2480 	 * then advance tp->snd_una to th->th_ack and drop
2481 	 * data from the retransmission queue.  If this ACK reflects
2482 	 * more up to date window information we update our window information.
2483 	 */
2484 	case TCPS_ESTABLISHED:
2485 	case TCPS_FIN_WAIT_1:
2486 	case TCPS_FIN_WAIT_2:
2487 	case TCPS_CLOSE_WAIT:
2488 	case TCPS_CLOSING:
2489 	case TCPS_LAST_ACK:
2490 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
2491 			TCPSTAT_INC(tcps_rcvacktoomuch);
2492 			goto dropafterack;
2493 		}
2494 		if ((tp->t_flags & TF_SACK_PERMIT) &&
2495 		    ((to.to_flags & TOF_SACK) ||
2496 		     !TAILQ_EMPTY(&tp->snd_holes)))
2497 			sack_changed = tcp_sack_doack(tp, &to, th->th_ack);
2498 		else
2499 			/*
2500 			 * Reset the value so that previous (valid) value
2501 			 * from the last ack with SACK doesn't get used.
2502 			 */
2503 			tp->sackhint.sacked_bytes = 0;
2504 
2505 		/* Run HHOOK_TCP_ESTABLISHED_IN helper hooks. */
2506 		hhook_run_tcp_est_in(tp, th, &to);
2507 
2508 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
2509 			u_int maxseg;
2510 
2511 			maxseg = tcp_maxseg(tp);
2512 			if (tlen == 0 &&
2513 			    (tiwin == tp->snd_wnd ||
2514 			    (tp->t_flags & TF_SACK_PERMIT))) {
2515 				/*
2516 				 * If this is the first time we've seen a
2517 				 * FIN from the remote, this is not a
2518 				 * duplicate and it needs to be processed
2519 				 * normally.  This happens during a
2520 				 * simultaneous close.
2521 				 */
2522 				if ((thflags & TH_FIN) &&
2523 				    (TCPS_HAVERCVDFIN(tp->t_state) == 0)) {
2524 					tp->t_dupacks = 0;
2525 					break;
2526 				}
2527 				TCPSTAT_INC(tcps_rcvdupack);
2528 				/*
2529 				 * If we have outstanding data (other than
2530 				 * a window probe), this is a completely
2531 				 * duplicate ack (ie, window info didn't
2532 				 * change and FIN isn't set),
2533 				 * the ack is the biggest we've
2534 				 * seen and we've seen exactly our rexmt
2535 				 * threshold of them, assume a packet
2536 				 * has been dropped and retransmit it.
2537 				 * Kludge snd_nxt & the congestion
2538 				 * window so we send only this one
2539 				 * packet.
2540 				 *
2541 				 * We know we're losing at the current
2542 				 * window size so do congestion avoidance
2543 				 * (set ssthresh to half the current window
2544 				 * and pull our congestion window back to
2545 				 * the new ssthresh).
2546 				 *
2547 				 * Dup acks mean that packets have left the
2548 				 * network (they're now cached at the receiver)
2549 				 * so bump cwnd by the amount in the receiver
2550 				 * to keep a constant cwnd packets in the
2551 				 * network.
2552 				 *
2553 				 * When using TCP ECN, notify the peer that
2554 				 * we reduced the cwnd.
2555 				 */
2556 				/*
2557 				 * Following 2 kinds of acks should not affect
2558 				 * dupack counting:
2559 				 * 1) Old acks
2560 				 * 2) Acks with SACK but without any new SACK
2561 				 * information in them. These could result from
2562 				 * any anomaly in the network like a switch
2563 				 * duplicating packets or a possible DoS attack.
2564 				 */
2565 				if (th->th_ack != tp->snd_una ||
2566 				    ((tp->t_flags & TF_SACK_PERMIT) &&
2567 				    !sack_changed))
2568 					break;
2569 				else if (!tcp_timer_active(tp, TT_REXMT))
2570 					tp->t_dupacks = 0;
2571 				else if (++tp->t_dupacks > tcprexmtthresh ||
2572 				     IN_FASTRECOVERY(tp->t_flags)) {
2573 					cc_ack_received(tp, th, CC_DUPACK);
2574 					if ((tp->t_flags & TF_SACK_PERMIT) &&
2575 					    IN_FASTRECOVERY(tp->t_flags)) {
2576 						int awnd;
2577 
2578 						/*
2579 						 * Compute the amount of data in flight first.
2580 						 * We can inject new data into the pipe iff
2581 						 * we have less than 1/2 the original window's
2582 						 * worth of data in flight.
2583 						 */
2584 						if (V_tcp_do_rfc6675_pipe)
2585 							awnd = tcp_compute_pipe(tp);
2586 						else
2587 							awnd = (tp->snd_nxt - tp->snd_fack) +
2588 								tp->sackhint.sack_bytes_rexmit;
2589 
2590 						if (awnd < tp->snd_ssthresh) {
2591 							tp->snd_cwnd += maxseg;
2592 							if (tp->snd_cwnd > tp->snd_ssthresh)
2593 								tp->snd_cwnd = tp->snd_ssthresh;
2594 						}
2595 					} else
2596 						tp->snd_cwnd += maxseg;
2597 					(void) tp->t_fb->tfb_tcp_output(tp);
2598 					goto drop;
2599 				} else if (tp->t_dupacks == tcprexmtthresh) {
2600 					tcp_seq onxt = tp->snd_nxt;
2601 
2602 					/*
2603 					 * If we're doing sack, check to
2604 					 * see if we're already in sack
2605 					 * recovery. If we're not doing sack,
2606 					 * check to see if we're in newreno
2607 					 * recovery.
2608 					 */
2609 					if (tp->t_flags & TF_SACK_PERMIT) {
2610 						if (IN_FASTRECOVERY(tp->t_flags)) {
2611 							tp->t_dupacks = 0;
2612 							break;
2613 						}
2614 					} else {
2615 						if (SEQ_LEQ(th->th_ack,
2616 						    tp->snd_recover)) {
2617 							tp->t_dupacks = 0;
2618 							break;
2619 						}
2620 					}
2621 					/* Congestion signal before ack. */
2622 					cc_cong_signal(tp, th, CC_NDUPACK);
2623 					cc_ack_received(tp, th, CC_DUPACK);
2624 					tcp_timer_activate(tp, TT_REXMT, 0);
2625 					tp->t_rtttime = 0;
2626 					if (tp->t_flags & TF_SACK_PERMIT) {
2627 						TCPSTAT_INC(
2628 						    tcps_sack_recovery_episode);
2629 						tp->sack_newdata = tp->snd_nxt;
2630 						tp->snd_cwnd = maxseg;
2631 						(void) tp->t_fb->tfb_tcp_output(tp);
2632 						goto drop;
2633 					}
2634 					tp->snd_nxt = th->th_ack;
2635 					tp->snd_cwnd = maxseg;
2636 					(void) tp->t_fb->tfb_tcp_output(tp);
2637 					KASSERT(tp->snd_limited <= 2,
2638 					    ("%s: tp->snd_limited too big",
2639 					    __func__));
2640 					tp->snd_cwnd = tp->snd_ssthresh +
2641 					     maxseg *
2642 					     (tp->t_dupacks - tp->snd_limited);
2643 					if (SEQ_GT(onxt, tp->snd_nxt))
2644 						tp->snd_nxt = onxt;
2645 					goto drop;
2646 				} else if (V_tcp_do_rfc3042) {
2647 					/*
2648 					 * Process first and second duplicate
2649 					 * ACKs. Each indicates a segment
2650 					 * leaving the network, creating room
2651 					 * for more. Make sure we can send a
2652 					 * packet on reception of each duplicate
2653 					 * ACK by increasing snd_cwnd by one
2654 					 * segment. Restore the original
2655 					 * snd_cwnd after packet transmission.
2656 					 */
2657 					cc_ack_received(tp, th, CC_DUPACK);
2658 					u_long oldcwnd = tp->snd_cwnd;
2659 					tcp_seq oldsndmax = tp->snd_max;
2660 					u_int sent;
2661 					int avail;
2662 
2663 					KASSERT(tp->t_dupacks == 1 ||
2664 					    tp->t_dupacks == 2,
2665 					    ("%s: dupacks not 1 or 2",
2666 					    __func__));
2667 					if (tp->t_dupacks == 1)
2668 						tp->snd_limited = 0;
2669 					tp->snd_cwnd =
2670 					    (tp->snd_nxt - tp->snd_una) +
2671 					    (tp->t_dupacks - tp->snd_limited) *
2672 					    maxseg;
2673 					/*
2674 					 * Only call tcp_output when there
2675 					 * is new data available to be sent.
2676 					 * Otherwise we would send pure ACKs.
2677 					 */
2678 					SOCKBUF_LOCK(&so->so_snd);
2679 					avail = sbavail(&so->so_snd) -
2680 					    (tp->snd_nxt - tp->snd_una);
2681 					SOCKBUF_UNLOCK(&so->so_snd);
2682 					if (avail > 0)
2683 						(void) tp->t_fb->tfb_tcp_output(tp);
2684 					sent = tp->snd_max - oldsndmax;
2685 					if (sent > maxseg) {
2686 						KASSERT((tp->t_dupacks == 2 &&
2687 						    tp->snd_limited == 0) ||
2688 						   (sent == maxseg + 1 &&
2689 						    tp->t_flags & TF_SENTFIN),
2690 						    ("%s: sent too much",
2691 						    __func__));
2692 						tp->snd_limited = 2;
2693 					} else if (sent > 0)
2694 						++tp->snd_limited;
2695 					tp->snd_cwnd = oldcwnd;
2696 					goto drop;
2697 				}
2698 			}
2699 			break;
2700 		} else {
2701 			/*
2702 			 * This ack is advancing the left edge, reset the
2703 			 * counter.
2704 			 */
2705 			tp->t_dupacks = 0;
2706 			/*
2707 			 * If this ack also has new SACK info, increment the
2708 			 * counter as per rfc6675.
2709 			 */
2710 			if ((tp->t_flags & TF_SACK_PERMIT) && sack_changed)
2711 				tp->t_dupacks++;
2712 		}
2713 
2714 		KASSERT(SEQ_GT(th->th_ack, tp->snd_una),
2715 		    ("%s: th_ack <= snd_una", __func__));
2716 
2717 		/*
2718 		 * If the congestion window was inflated to account
2719 		 * for the other side's cached packets, retract it.
2720 		 */
2721 		if (IN_FASTRECOVERY(tp->t_flags)) {
2722 			if (SEQ_LT(th->th_ack, tp->snd_recover)) {
2723 				if (tp->t_flags & TF_SACK_PERMIT)
2724 					tcp_sack_partialack(tp, th);
2725 				else
2726 					tcp_newreno_partial_ack(tp, th);
2727 			} else
2728 				cc_post_recovery(tp, th);
2729 		}
2730 		/*
2731 		 * If we reach this point, ACK is not a duplicate,
2732 		 *     i.e., it ACKs something we sent.
2733 		 */
2734 		if (tp->t_flags & TF_NEEDSYN) {
2735 			/*
2736 			 * T/TCP: Connection was half-synchronized, and our
2737 			 * SYN has been ACK'd (so connection is now fully
2738 			 * synchronized).  Go to non-starred state,
2739 			 * increment snd_una for ACK of SYN, and check if
2740 			 * we can do window scaling.
2741 			 */
2742 			tp->t_flags &= ~TF_NEEDSYN;
2743 			tp->snd_una++;
2744 			/* Do window scaling? */
2745 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2746 				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
2747 				tp->rcv_scale = tp->request_r_scale;
2748 				/* Send window already scaled. */
2749 			}
2750 		}
2751 
2752 process_ACK:
2753 		INP_WLOCK_ASSERT(tp->t_inpcb);
2754 
2755 		acked = BYTES_THIS_ACK(tp, th);
2756 		KASSERT(acked >= 0, ("%s: acked unexepectedly negative "
2757 		    "(tp->snd_una=%u, th->th_ack=%u, tp=%p, m=%p)", __func__,
2758 		    tp->snd_una, th->th_ack, tp, m));
2759 		TCPSTAT_INC(tcps_rcvackpack);
2760 		TCPSTAT_ADD(tcps_rcvackbyte, acked);
2761 
2762 		/*
2763 		 * If we just performed our first retransmit, and the ACK
2764 		 * arrives within our recovery window, then it was a mistake
2765 		 * to do the retransmit in the first place.  Recover our
2766 		 * original cwnd and ssthresh, and proceed to transmit where
2767 		 * we left off.
2768 		 */
2769 		if (tp->t_rxtshift == 1 && tp->t_flags & TF_PREVVALID &&
2770 		    (int)(ticks - tp->t_badrxtwin) < 0)
2771 			cc_cong_signal(tp, th, CC_RTO_ERR);
2772 
2773 		/*
2774 		 * If we have a timestamp reply, update smoothed
2775 		 * round trip time.  If no timestamp is present but
2776 		 * transmit timer is running and timed sequence
2777 		 * number was acked, update smoothed round trip time.
2778 		 * Since we now have an rtt measurement, cancel the
2779 		 * timer backoff (cf., Phil Karn's retransmit alg.).
2780 		 * Recompute the initial retransmit timer.
2781 		 *
2782 		 * Some boxes send broken timestamp replies
2783 		 * during the SYN+ACK phase, ignore
2784 		 * timestamps of 0 or we could calculate a
2785 		 * huge RTT and blow up the retransmit timer.
2786 		 */
2787 		if ((to.to_flags & TOF_TS) != 0 && to.to_tsecr) {
2788 			u_int t;
2789 
2790 			t = tcp_ts_getticks() - to.to_tsecr;
2791 			if (!tp->t_rttlow || tp->t_rttlow > t)
2792 				tp->t_rttlow = t;
2793 			tcp_xmit_timer(tp, TCP_TS_TO_TICKS(t) + 1);
2794 		} else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq)) {
2795 			if (!tp->t_rttlow || tp->t_rttlow > ticks - tp->t_rtttime)
2796 				tp->t_rttlow = ticks - tp->t_rtttime;
2797 			tcp_xmit_timer(tp, ticks - tp->t_rtttime);
2798 		}
2799 
2800 		/*
2801 		 * If all outstanding data is acked, stop retransmit
2802 		 * timer and remember to restart (more output or persist).
2803 		 * If there is more data to be acked, restart retransmit
2804 		 * timer, using current (possibly backed-off) value.
2805 		 */
2806 		if (th->th_ack == tp->snd_max) {
2807 			tcp_timer_activate(tp, TT_REXMT, 0);
2808 			needoutput = 1;
2809 		} else if (!tcp_timer_active(tp, TT_PERSIST))
2810 			tcp_timer_activate(tp, TT_REXMT, tp->t_rxtcur);
2811 
2812 		/*
2813 		 * If no data (only SYN) was ACK'd,
2814 		 *    skip rest of ACK processing.
2815 		 */
2816 		if (acked == 0)
2817 			goto step6;
2818 
2819 		/*
2820 		 * Let the congestion control algorithm update congestion
2821 		 * control related information. This typically means increasing
2822 		 * the congestion window.
2823 		 */
2824 		cc_ack_received(tp, th, CC_ACK);
2825 
2826 		SOCKBUF_LOCK(&so->so_snd);
2827 		if (acked > sbavail(&so->so_snd)) {
2828 			if (tp->snd_wnd >= sbavail(&so->so_snd))
2829 				tp->snd_wnd -= sbavail(&so->so_snd);
2830 			else
2831 				tp->snd_wnd = 0;
2832 			mfree = sbcut_locked(&so->so_snd,
2833 			    (int)sbavail(&so->so_snd));
2834 			ourfinisacked = 1;
2835 		} else {
2836 			mfree = sbcut_locked(&so->so_snd, acked);
2837 			if (tp->snd_wnd >= (u_long) acked)
2838 				tp->snd_wnd -= acked;
2839 			else
2840 				tp->snd_wnd = 0;
2841 			ourfinisacked = 0;
2842 		}
2843 		/* NB: sowwakeup_locked() does an implicit unlock. */
2844 		sowwakeup_locked(so);
2845 		m_freem(mfree);
2846 		/* Detect una wraparound. */
2847 		if (!IN_RECOVERY(tp->t_flags) &&
2848 		    SEQ_GT(tp->snd_una, tp->snd_recover) &&
2849 		    SEQ_LEQ(th->th_ack, tp->snd_recover))
2850 			tp->snd_recover = th->th_ack - 1;
2851 		/* XXXLAS: Can this be moved up into cc_post_recovery? */
2852 		if (IN_RECOVERY(tp->t_flags) &&
2853 		    SEQ_GEQ(th->th_ack, tp->snd_recover)) {
2854 			EXIT_RECOVERY(tp->t_flags);
2855 		}
2856 		tp->snd_una = th->th_ack;
2857 		if (tp->t_flags & TF_SACK_PERMIT) {
2858 			if (SEQ_GT(tp->snd_una, tp->snd_recover))
2859 				tp->snd_recover = tp->snd_una;
2860 		}
2861 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2862 			tp->snd_nxt = tp->snd_una;
2863 
2864 		switch (tp->t_state) {
2865 
2866 		/*
2867 		 * In FIN_WAIT_1 STATE in addition to the processing
2868 		 * for the ESTABLISHED state if our FIN is now acknowledged
2869 		 * then enter FIN_WAIT_2.
2870 		 */
2871 		case TCPS_FIN_WAIT_1:
2872 			if (ourfinisacked) {
2873 				/*
2874 				 * If we can't receive any more
2875 				 * data, then closing user can proceed.
2876 				 * Starting the timer is contrary to the
2877 				 * specification, but if we don't get a FIN
2878 				 * we'll hang forever.
2879 				 *
2880 				 * XXXjl:
2881 				 * we should release the tp also, and use a
2882 				 * compressed state.
2883 				 */
2884 				if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
2885 					soisdisconnected(so);
2886 					tcp_timer_activate(tp, TT_2MSL,
2887 					    (tcp_fast_finwait2_recycle ?
2888 					    tcp_finwait2_timeout :
2889 					    TP_MAXIDLE(tp)));
2890 				}
2891 				tcp_state_change(tp, TCPS_FIN_WAIT_2);
2892 			}
2893 			break;
2894 
2895 		/*
2896 		 * In CLOSING STATE in addition to the processing for
2897 		 * the ESTABLISHED state if the ACK acknowledges our FIN
2898 		 * then enter the TIME-WAIT state, otherwise ignore
2899 		 * the segment.
2900 		 */
2901 		case TCPS_CLOSING:
2902 			if (ourfinisacked) {
2903 				INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
2904 				tcp_twstart(tp);
2905 				INP_INFO_RUNLOCK(&V_tcbinfo);
2906 				m_freem(m);
2907 				return;
2908 			}
2909 			break;
2910 
2911 		/*
2912 		 * In LAST_ACK, we may still be waiting for data to drain
2913 		 * and/or to be acked, as well as for the ack of our FIN.
2914 		 * If our FIN is now acknowledged, delete the TCB,
2915 		 * enter the closed state and return.
2916 		 */
2917 		case TCPS_LAST_ACK:
2918 			if (ourfinisacked) {
2919 				INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
2920 				tp = tcp_close(tp);
2921 				goto drop;
2922 			}
2923 			break;
2924 		}
2925 	}
2926 
2927 step6:
2928 	INP_WLOCK_ASSERT(tp->t_inpcb);
2929 
2930 	/*
2931 	 * Update window information.
2932 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2933 	 */
2934 	if ((thflags & TH_ACK) &&
2935 	    (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2936 	    (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
2937 	     (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
2938 		/* keep track of pure window updates */
2939 		if (tlen == 0 &&
2940 		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2941 			TCPSTAT_INC(tcps_rcvwinupd);
2942 		tp->snd_wnd = tiwin;
2943 		tp->snd_wl1 = th->th_seq;
2944 		tp->snd_wl2 = th->th_ack;
2945 		if (tp->snd_wnd > tp->max_sndwnd)
2946 			tp->max_sndwnd = tp->snd_wnd;
2947 		needoutput = 1;
2948 	}
2949 
2950 	/*
2951 	 * Process segments with URG.
2952 	 */
2953 	if ((thflags & TH_URG) && th->th_urp &&
2954 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2955 		/*
2956 		 * This is a kludge, but if we receive and accept
2957 		 * random urgent pointers, we'll crash in
2958 		 * soreceive.  It's hard to imagine someone
2959 		 * actually wanting to send this much urgent data.
2960 		 */
2961 		SOCKBUF_LOCK(&so->so_rcv);
2962 		if (th->th_urp + sbavail(&so->so_rcv) > sb_max) {
2963 			th->th_urp = 0;			/* XXX */
2964 			thflags &= ~TH_URG;		/* XXX */
2965 			SOCKBUF_UNLOCK(&so->so_rcv);	/* XXX */
2966 			goto dodata;			/* XXX */
2967 		}
2968 		/*
2969 		 * If this segment advances the known urgent pointer,
2970 		 * then mark the data stream.  This should not happen
2971 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2972 		 * a FIN has been received from the remote side.
2973 		 * In these states we ignore the URG.
2974 		 *
2975 		 * According to RFC961 (Assigned Protocols),
2976 		 * the urgent pointer points to the last octet
2977 		 * of urgent data.  We continue, however,
2978 		 * to consider it to indicate the first octet
2979 		 * of data past the urgent section as the original
2980 		 * spec states (in one of two places).
2981 		 */
2982 		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2983 			tp->rcv_up = th->th_seq + th->th_urp;
2984 			so->so_oobmark = sbavail(&so->so_rcv) +
2985 			    (tp->rcv_up - tp->rcv_nxt) - 1;
2986 			if (so->so_oobmark == 0)
2987 				so->so_rcv.sb_state |= SBS_RCVATMARK;
2988 			sohasoutofband(so);
2989 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2990 		}
2991 		SOCKBUF_UNLOCK(&so->so_rcv);
2992 		/*
2993 		 * Remove out of band data so doesn't get presented to user.
2994 		 * This can happen independent of advancing the URG pointer,
2995 		 * but if two URG's are pending at once, some out-of-band
2996 		 * data may creep in... ick.
2997 		 */
2998 		if (th->th_urp <= (u_long)tlen &&
2999 		    !(so->so_options & SO_OOBINLINE)) {
3000 			/* hdr drop is delayed */
3001 			tcp_pulloutofband(so, th, m, drop_hdrlen);
3002 		}
3003 	} else {
3004 		/*
3005 		 * If no out of band data is expected,
3006 		 * pull receive urgent pointer along
3007 		 * with the receive window.
3008 		 */
3009 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
3010 			tp->rcv_up = tp->rcv_nxt;
3011 	}
3012 dodata:							/* XXX */
3013 	INP_WLOCK_ASSERT(tp->t_inpcb);
3014 
3015 	/*
3016 	 * Process the segment text, merging it into the TCP sequencing queue,
3017 	 * and arranging for acknowledgment of receipt if necessary.
3018 	 * This process logically involves adjusting tp->rcv_wnd as data
3019 	 * is presented to the user (this happens in tcp_usrreq.c,
3020 	 * case PRU_RCVD).  If a FIN has already been received on this
3021 	 * connection then we just ignore the text.
3022 	 */
3023 	tfo_syn = ((tp->t_state == TCPS_SYN_RECEIVED) &&
3024 		   (tp->t_flags & TF_FASTOPEN));
3025 	if ((tlen || (thflags & TH_FIN) || tfo_syn) &&
3026 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
3027 		tcp_seq save_start = th->th_seq;
3028 		m_adj(m, drop_hdrlen);	/* delayed header drop */
3029 		/*
3030 		 * Insert segment which includes th into TCP reassembly queue
3031 		 * with control block tp.  Set thflags to whether reassembly now
3032 		 * includes a segment with FIN.  This handles the common case
3033 		 * inline (segment is the next to be received on an established
3034 		 * connection, and the queue is empty), avoiding linkage into
3035 		 * and removal from the queue and repetition of various
3036 		 * conversions.
3037 		 * Set DELACK for segments received in order, but ack
3038 		 * immediately when segments are out of order (so
3039 		 * fast retransmit can work).
3040 		 */
3041 		if (th->th_seq == tp->rcv_nxt &&
3042 		    LIST_EMPTY(&tp->t_segq) &&
3043 		    (TCPS_HAVEESTABLISHED(tp->t_state) ||
3044 		     tfo_syn)) {
3045 			if (DELAY_ACK(tp, tlen) || tfo_syn)
3046 				tp->t_flags |= TF_DELACK;
3047 			else
3048 				tp->t_flags |= TF_ACKNOW;
3049 			tp->rcv_nxt += tlen;
3050 			thflags = th->th_flags & TH_FIN;
3051 			TCPSTAT_INC(tcps_rcvpack);
3052 			TCPSTAT_ADD(tcps_rcvbyte, tlen);
3053 			SOCKBUF_LOCK(&so->so_rcv);
3054 			if (so->so_rcv.sb_state & SBS_CANTRCVMORE)
3055 				m_freem(m);
3056 			else
3057 				sbappendstream_locked(&so->so_rcv, m, 0);
3058 			/* NB: sorwakeup_locked() does an implicit unlock. */
3059 			sorwakeup_locked(so);
3060 		} else {
3061 			/*
3062 			 * XXX: Due to the header drop above "th" is
3063 			 * theoretically invalid by now.  Fortunately
3064 			 * m_adj() doesn't actually frees any mbufs
3065 			 * when trimming from the head.
3066 			 */
3067 			thflags = tcp_reass(tp, th, &tlen, m);
3068 			tp->t_flags |= TF_ACKNOW;
3069 		}
3070 		if (tlen > 0 && (tp->t_flags & TF_SACK_PERMIT))
3071 			tcp_update_sack_list(tp, save_start, save_start + tlen);
3072 #if 0
3073 		/*
3074 		 * Note the amount of data that peer has sent into
3075 		 * our window, in order to estimate the sender's
3076 		 * buffer size.
3077 		 * XXX: Unused.
3078 		 */
3079 		if (SEQ_GT(tp->rcv_adv, tp->rcv_nxt))
3080 			len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
3081 		else
3082 			len = so->so_rcv.sb_hiwat;
3083 #endif
3084 	} else {
3085 		m_freem(m);
3086 		thflags &= ~TH_FIN;
3087 	}
3088 
3089 	/*
3090 	 * If FIN is received ACK the FIN and let the user know
3091 	 * that the connection is closing.
3092 	 */
3093 	if (thflags & TH_FIN) {
3094 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
3095 			socantrcvmore(so);
3096 			/*
3097 			 * If connection is half-synchronized
3098 			 * (ie NEEDSYN flag on) then delay ACK,
3099 			 * so it may be piggybacked when SYN is sent.
3100 			 * Otherwise, since we received a FIN then no
3101 			 * more input can be expected, send ACK now.
3102 			 */
3103 			if (tp->t_flags & TF_NEEDSYN)
3104 				tp->t_flags |= TF_DELACK;
3105 			else
3106 				tp->t_flags |= TF_ACKNOW;
3107 			tp->rcv_nxt++;
3108 		}
3109 		switch (tp->t_state) {
3110 
3111 		/*
3112 		 * In SYN_RECEIVED and ESTABLISHED STATES
3113 		 * enter the CLOSE_WAIT state.
3114 		 */
3115 		case TCPS_SYN_RECEIVED:
3116 			tp->t_starttime = ticks;
3117 			/* FALLTHROUGH */
3118 		case TCPS_ESTABLISHED:
3119 			tcp_state_change(tp, TCPS_CLOSE_WAIT);
3120 			break;
3121 
3122 		/*
3123 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
3124 		 * enter the CLOSING state.
3125 		 */
3126 		case TCPS_FIN_WAIT_1:
3127 			tcp_state_change(tp, TCPS_CLOSING);
3128 			break;
3129 
3130 		/*
3131 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
3132 		 * starting the time-wait timer, turning off the other
3133 		 * standard timers.
3134 		 */
3135 		case TCPS_FIN_WAIT_2:
3136 			INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
3137 			KASSERT(ti_locked == TI_RLOCKED, ("%s: dodata "
3138 			    "TCP_FIN_WAIT_2 ti_locked: %d", __func__,
3139 			    ti_locked));
3140 
3141 			tcp_twstart(tp);
3142 			INP_INFO_RUNLOCK(&V_tcbinfo);
3143 			return;
3144 		}
3145 	}
3146 	if (ti_locked == TI_RLOCKED)
3147 		INP_INFO_RUNLOCK(&V_tcbinfo);
3148 	ti_locked = TI_UNLOCKED;
3149 
3150 #ifdef TCPDEBUG
3151 	if (so->so_options & SO_DEBUG)
3152 		tcp_trace(TA_INPUT, ostate, tp, (void *)tcp_saveipgen,
3153 			  &tcp_savetcp, 0);
3154 #endif
3155 	TCP_PROBE3(debug__input, tp, th, mtod(m, const char *));
3156 
3157 	/*
3158 	 * Return any desired output.
3159 	 */
3160 	if (needoutput || (tp->t_flags & TF_ACKNOW))
3161 		(void) tp->t_fb->tfb_tcp_output(tp);
3162 
3163 check_delack:
3164 	KASSERT(ti_locked == TI_UNLOCKED, ("%s: check_delack ti_locked %d",
3165 	    __func__, ti_locked));
3166 	INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
3167 	INP_WLOCK_ASSERT(tp->t_inpcb);
3168 
3169 	if (tp->t_flags & TF_DELACK) {
3170 		tp->t_flags &= ~TF_DELACK;
3171 		tcp_timer_activate(tp, TT_DELACK, tcp_delacktime);
3172 	}
3173 	INP_WUNLOCK(tp->t_inpcb);
3174 	return;
3175 
3176 dropafterack:
3177 	/*
3178 	 * Generate an ACK dropping incoming segment if it occupies
3179 	 * sequence space, where the ACK reflects our state.
3180 	 *
3181 	 * We can now skip the test for the RST flag since all
3182 	 * paths to this code happen after packets containing
3183 	 * RST have been dropped.
3184 	 *
3185 	 * In the SYN-RECEIVED state, don't send an ACK unless the
3186 	 * segment we received passes the SYN-RECEIVED ACK test.
3187 	 * If it fails send a RST.  This breaks the loop in the
3188 	 * "LAND" DoS attack, and also prevents an ACK storm
3189 	 * between two listening ports that have been sent forged
3190 	 * SYN segments, each with the source address of the other.
3191 	 */
3192 	if (tp->t_state == TCPS_SYN_RECEIVED && (thflags & TH_ACK) &&
3193 	    (SEQ_GT(tp->snd_una, th->th_ack) ||
3194 	     SEQ_GT(th->th_ack, tp->snd_max)) ) {
3195 		rstreason = BANDLIM_RST_OPENPORT;
3196 		goto dropwithreset;
3197 	}
3198 #ifdef TCPDEBUG
3199 	if (so->so_options & SO_DEBUG)
3200 		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
3201 			  &tcp_savetcp, 0);
3202 #endif
3203 	TCP_PROBE3(debug__input, tp, th, mtod(m, const char *));
3204 	if (ti_locked == TI_RLOCKED)
3205 		INP_INFO_RUNLOCK(&V_tcbinfo);
3206 	ti_locked = TI_UNLOCKED;
3207 
3208 	tp->t_flags |= TF_ACKNOW;
3209 	(void) tp->t_fb->tfb_tcp_output(tp);
3210 	INP_WUNLOCK(tp->t_inpcb);
3211 	m_freem(m);
3212 	return;
3213 
3214 dropwithreset:
3215 	if (ti_locked == TI_RLOCKED)
3216 		INP_INFO_RUNLOCK(&V_tcbinfo);
3217 	ti_locked = TI_UNLOCKED;
3218 
3219 	if (tp != NULL) {
3220 		tcp_dropwithreset(m, th, tp, tlen, rstreason);
3221 		INP_WUNLOCK(tp->t_inpcb);
3222 	} else
3223 		tcp_dropwithreset(m, th, NULL, tlen, rstreason);
3224 	return;
3225 
3226 drop:
3227 	if (ti_locked == TI_RLOCKED) {
3228 		INP_INFO_RUNLOCK(&V_tcbinfo);
3229 		ti_locked = TI_UNLOCKED;
3230 	}
3231 #ifdef INVARIANTS
3232 	else
3233 		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
3234 #endif
3235 
3236 	/*
3237 	 * Drop space held by incoming segment and return.
3238 	 */
3239 #ifdef TCPDEBUG
3240 	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
3241 		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
3242 			  &tcp_savetcp, 0);
3243 #endif
3244 	TCP_PROBE3(debug__input, tp, th, mtod(m, const char *));
3245 	if (tp != NULL)
3246 		INP_WUNLOCK(tp->t_inpcb);
3247 	m_freem(m);
3248 }
3249 
3250 /*
3251  * Issue RST and make ACK acceptable to originator of segment.
3252  * The mbuf must still include the original packet header.
3253  * tp may be NULL.
3254  */
3255 void
3256 tcp_dropwithreset(struct mbuf *m, struct tcphdr *th, struct tcpcb *tp,
3257     int tlen, int rstreason)
3258 {
3259 #ifdef INET
3260 	struct ip *ip;
3261 #endif
3262 #ifdef INET6
3263 	struct ip6_hdr *ip6;
3264 #endif
3265 
3266 	if (tp != NULL) {
3267 		INP_WLOCK_ASSERT(tp->t_inpcb);
3268 	}
3269 
3270 	/* Don't bother if destination was broadcast/multicast. */
3271 	if ((th->th_flags & TH_RST) || m->m_flags & (M_BCAST|M_MCAST))
3272 		goto drop;
3273 #ifdef INET6
3274 	if (mtod(m, struct ip *)->ip_v == 6) {
3275 		ip6 = mtod(m, struct ip6_hdr *);
3276 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
3277 		    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
3278 			goto drop;
3279 		/* IPv6 anycast check is done at tcp6_input() */
3280 	}
3281 #endif
3282 #if defined(INET) && defined(INET6)
3283 	else
3284 #endif
3285 #ifdef INET
3286 	{
3287 		ip = mtod(m, struct ip *);
3288 		if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
3289 		    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
3290 		    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
3291 		    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
3292 			goto drop;
3293 	}
3294 #endif
3295 
3296 	/* Perform bandwidth limiting. */
3297 	if (badport_bandlim(rstreason) < 0)
3298 		goto drop;
3299 
3300 	/* tcp_respond consumes the mbuf chain. */
3301 	if (th->th_flags & TH_ACK) {
3302 		tcp_respond(tp, mtod(m, void *), th, m, (tcp_seq)0,
3303 		    th->th_ack, TH_RST);
3304 	} else {
3305 		if (th->th_flags & TH_SYN)
3306 			tlen++;
3307 		tcp_respond(tp, mtod(m, void *), th, m, th->th_seq+tlen,
3308 		    (tcp_seq)0, TH_RST|TH_ACK);
3309 	}
3310 	return;
3311 drop:
3312 	m_freem(m);
3313 }
3314 
3315 /*
3316  * Parse TCP options and place in tcpopt.
3317  */
3318 void
3319 tcp_dooptions(struct tcpopt *to, u_char *cp, int cnt, int flags)
3320 {
3321 	int opt, optlen;
3322 
3323 	to->to_flags = 0;
3324 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
3325 		opt = cp[0];
3326 		if (opt == TCPOPT_EOL)
3327 			break;
3328 		if (opt == TCPOPT_NOP)
3329 			optlen = 1;
3330 		else {
3331 			if (cnt < 2)
3332 				break;
3333 			optlen = cp[1];
3334 			if (optlen < 2 || optlen > cnt)
3335 				break;
3336 		}
3337 		switch (opt) {
3338 		case TCPOPT_MAXSEG:
3339 			if (optlen != TCPOLEN_MAXSEG)
3340 				continue;
3341 			if (!(flags & TO_SYN))
3342 				continue;
3343 			to->to_flags |= TOF_MSS;
3344 			bcopy((char *)cp + 2,
3345 			    (char *)&to->to_mss, sizeof(to->to_mss));
3346 			to->to_mss = ntohs(to->to_mss);
3347 			break;
3348 		case TCPOPT_WINDOW:
3349 			if (optlen != TCPOLEN_WINDOW)
3350 				continue;
3351 			if (!(flags & TO_SYN))
3352 				continue;
3353 			to->to_flags |= TOF_SCALE;
3354 			to->to_wscale = min(cp[2], TCP_MAX_WINSHIFT);
3355 			break;
3356 		case TCPOPT_TIMESTAMP:
3357 			if (optlen != TCPOLEN_TIMESTAMP)
3358 				continue;
3359 			to->to_flags |= TOF_TS;
3360 			bcopy((char *)cp + 2,
3361 			    (char *)&to->to_tsval, sizeof(to->to_tsval));
3362 			to->to_tsval = ntohl(to->to_tsval);
3363 			bcopy((char *)cp + 6,
3364 			    (char *)&to->to_tsecr, sizeof(to->to_tsecr));
3365 			to->to_tsecr = ntohl(to->to_tsecr);
3366 			break;
3367 #ifdef TCP_SIGNATURE
3368 		/*
3369 		 * XXX In order to reply to a host which has set the
3370 		 * TCP_SIGNATURE option in its initial SYN, we have to
3371 		 * record the fact that the option was observed here
3372 		 * for the syncache code to perform the correct response.
3373 		 */
3374 		case TCPOPT_SIGNATURE:
3375 			if (optlen != TCPOLEN_SIGNATURE)
3376 				continue;
3377 			to->to_flags |= TOF_SIGNATURE;
3378 			to->to_signature = cp + 2;
3379 			break;
3380 #endif
3381 		case TCPOPT_SACK_PERMITTED:
3382 			if (optlen != TCPOLEN_SACK_PERMITTED)
3383 				continue;
3384 			if (!(flags & TO_SYN))
3385 				continue;
3386 			if (!V_tcp_do_sack)
3387 				continue;
3388 			to->to_flags |= TOF_SACKPERM;
3389 			break;
3390 		case TCPOPT_SACK:
3391 			if (optlen <= 2 || (optlen - 2) % TCPOLEN_SACK != 0)
3392 				continue;
3393 			if (flags & TO_SYN)
3394 				continue;
3395 			to->to_flags |= TOF_SACK;
3396 			to->to_nsacks = (optlen - 2) / TCPOLEN_SACK;
3397 			to->to_sacks = cp + 2;
3398 			TCPSTAT_INC(tcps_sack_rcv_blocks);
3399 			break;
3400 #ifdef TCP_RFC7413
3401 		case TCPOPT_FAST_OPEN:
3402 			if ((optlen != TCPOLEN_FAST_OPEN_EMPTY) &&
3403 			    (optlen < TCPOLEN_FAST_OPEN_MIN) &&
3404 			    (optlen > TCPOLEN_FAST_OPEN_MAX))
3405 				continue;
3406 			if (!(flags & TO_SYN))
3407 				continue;
3408 			if (!V_tcp_fastopen_enabled)
3409 				continue;
3410 			to->to_flags |= TOF_FASTOPEN;
3411 			to->to_tfo_len = optlen - 2;
3412 			to->to_tfo_cookie = to->to_tfo_len ? cp + 2 : NULL;
3413 			break;
3414 #endif
3415 		default:
3416 			continue;
3417 		}
3418 	}
3419 }
3420 
3421 /*
3422  * Pull out of band byte out of a segment so
3423  * it doesn't appear in the user's data queue.
3424  * It is still reflected in the segment length for
3425  * sequencing purposes.
3426  */
3427 void
3428 tcp_pulloutofband(struct socket *so, struct tcphdr *th, struct mbuf *m,
3429     int off)
3430 {
3431 	int cnt = off + th->th_urp - 1;
3432 
3433 	while (cnt >= 0) {
3434 		if (m->m_len > cnt) {
3435 			char *cp = mtod(m, caddr_t) + cnt;
3436 			struct tcpcb *tp = sototcpcb(so);
3437 
3438 			INP_WLOCK_ASSERT(tp->t_inpcb);
3439 
3440 			tp->t_iobc = *cp;
3441 			tp->t_oobflags |= TCPOOB_HAVEDATA;
3442 			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
3443 			m->m_len--;
3444 			if (m->m_flags & M_PKTHDR)
3445 				m->m_pkthdr.len--;
3446 			return;
3447 		}
3448 		cnt -= m->m_len;
3449 		m = m->m_next;
3450 		if (m == NULL)
3451 			break;
3452 	}
3453 	panic("tcp_pulloutofband");
3454 }
3455 
3456 /*
3457  * Collect new round-trip time estimate
3458  * and update averages and current timeout.
3459  */
3460 void
3461 tcp_xmit_timer(struct tcpcb *tp, int rtt)
3462 {
3463 	int delta;
3464 
3465 	INP_WLOCK_ASSERT(tp->t_inpcb);
3466 
3467 	TCPSTAT_INC(tcps_rttupdated);
3468 	tp->t_rttupdated++;
3469 	if (tp->t_srtt != 0) {
3470 		/*
3471 		 * srtt is stored as fixed point with 5 bits after the
3472 		 * binary point (i.e., scaled by 8).  The following magic
3473 		 * is equivalent to the smoothing algorithm in rfc793 with
3474 		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
3475 		 * point).  Adjust rtt to origin 0.
3476 		 */
3477 		delta = ((rtt - 1) << TCP_DELTA_SHIFT)
3478 			- (tp->t_srtt >> (TCP_RTT_SHIFT - TCP_DELTA_SHIFT));
3479 
3480 		if ((tp->t_srtt += delta) <= 0)
3481 			tp->t_srtt = 1;
3482 
3483 		/*
3484 		 * We accumulate a smoothed rtt variance (actually, a
3485 		 * smoothed mean difference), then set the retransmit
3486 		 * timer to smoothed rtt + 4 times the smoothed variance.
3487 		 * rttvar is stored as fixed point with 4 bits after the
3488 		 * binary point (scaled by 16).  The following is
3489 		 * equivalent to rfc793 smoothing with an alpha of .75
3490 		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
3491 		 * rfc793's wired-in beta.
3492 		 */
3493 		if (delta < 0)
3494 			delta = -delta;
3495 		delta -= tp->t_rttvar >> (TCP_RTTVAR_SHIFT - TCP_DELTA_SHIFT);
3496 		if ((tp->t_rttvar += delta) <= 0)
3497 			tp->t_rttvar = 1;
3498 		if (tp->t_rttbest > tp->t_srtt + tp->t_rttvar)
3499 		    tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
3500 	} else {
3501 		/*
3502 		 * No rtt measurement yet - use the unsmoothed rtt.
3503 		 * Set the variance to half the rtt (so our first
3504 		 * retransmit happens at 3*rtt).
3505 		 */
3506 		tp->t_srtt = rtt << TCP_RTT_SHIFT;
3507 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1);
3508 		tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
3509 	}
3510 	tp->t_rtttime = 0;
3511 	tp->t_rxtshift = 0;
3512 
3513 	/*
3514 	 * the retransmit should happen at rtt + 4 * rttvar.
3515 	 * Because of the way we do the smoothing, srtt and rttvar
3516 	 * will each average +1/2 tick of bias.  When we compute
3517 	 * the retransmit timer, we want 1/2 tick of rounding and
3518 	 * 1 extra tick because of +-1/2 tick uncertainty in the
3519 	 * firing of the timer.  The bias will give us exactly the
3520 	 * 1.5 tick we need.  But, because the bias is
3521 	 * statistical, we have to test that we don't drop below
3522 	 * the minimum feasible timer (which is 2 ticks).
3523 	 */
3524 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
3525 		      max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
3526 
3527 	/*
3528 	 * We received an ack for a packet that wasn't retransmitted;
3529 	 * it is probably safe to discard any error indications we've
3530 	 * received recently.  This isn't quite right, but close enough
3531 	 * for now (a route might have failed after we sent a segment,
3532 	 * and the return path might not be symmetrical).
3533 	 */
3534 	tp->t_softerror = 0;
3535 }
3536 
3537 /*
3538  * Determine a reasonable value for maxseg size.
3539  * If the route is known, check route for mtu.
3540  * If none, use an mss that can be handled on the outgoing interface
3541  * without forcing IP to fragment.  If no route is found, route has no mtu,
3542  * or the destination isn't local, use a default, hopefully conservative
3543  * size (usually 512 or the default IP max size, but no more than the mtu
3544  * of the interface), as we can't discover anything about intervening
3545  * gateways or networks.  We also initialize the congestion/slow start
3546  * window to be a single segment if the destination isn't local.
3547  * While looking at the routing entry, we also initialize other path-dependent
3548  * parameters from pre-set or cached values in the routing entry.
3549  *
3550  * NOTE that resulting t_maxseg doesn't include space for TCP options or
3551  * IP options, e.g. IPSEC data, since length of this data may vary, and
3552  * thus it is calculated for every segment separately in tcp_output().
3553  *
3554  * NOTE that this routine is only called when we process an incoming
3555  * segment, or an ICMP need fragmentation datagram. Outgoing SYN/ACK MSS
3556  * settings are handled in tcp_mssopt().
3557  */
3558 void
3559 tcp_mss_update(struct tcpcb *tp, int offer, int mtuoffer,
3560     struct hc_metrics_lite *metricptr, struct tcp_ifcap *cap)
3561 {
3562 	int mss = 0;
3563 	u_long maxmtu = 0;
3564 	struct inpcb *inp = tp->t_inpcb;
3565 	struct hc_metrics_lite metrics;
3566 #ifdef INET6
3567 	int isipv6 = ((inp->inp_vflag & INP_IPV6) != 0) ? 1 : 0;
3568 	size_t min_protoh = isipv6 ?
3569 			    sizeof (struct ip6_hdr) + sizeof (struct tcphdr) :
3570 			    sizeof (struct tcpiphdr);
3571 #else
3572 	const size_t min_protoh = sizeof(struct tcpiphdr);
3573 #endif
3574 
3575 	INP_WLOCK_ASSERT(tp->t_inpcb);
3576 
3577 	if (mtuoffer != -1) {
3578 		KASSERT(offer == -1, ("%s: conflict", __func__));
3579 		offer = mtuoffer - min_protoh;
3580 	}
3581 
3582 	/* Initialize. */
3583 #ifdef INET6
3584 	if (isipv6) {
3585 		maxmtu = tcp_maxmtu6(&inp->inp_inc, cap);
3586 		tp->t_maxseg = V_tcp_v6mssdflt;
3587 	}
3588 #endif
3589 #if defined(INET) && defined(INET6)
3590 	else
3591 #endif
3592 #ifdef INET
3593 	{
3594 		maxmtu = tcp_maxmtu(&inp->inp_inc, cap);
3595 		tp->t_maxseg = V_tcp_mssdflt;
3596 	}
3597 #endif
3598 
3599 	/*
3600 	 * No route to sender, stay with default mss and return.
3601 	 */
3602 	if (maxmtu == 0) {
3603 		/*
3604 		 * In case we return early we need to initialize metrics
3605 		 * to a defined state as tcp_hc_get() would do for us
3606 		 * if there was no cache hit.
3607 		 */
3608 		if (metricptr != NULL)
3609 			bzero(metricptr, sizeof(struct hc_metrics_lite));
3610 		return;
3611 	}
3612 
3613 	/* What have we got? */
3614 	switch (offer) {
3615 		case 0:
3616 			/*
3617 			 * Offer == 0 means that there was no MSS on the SYN
3618 			 * segment, in this case we use tcp_mssdflt as
3619 			 * already assigned to t_maxseg above.
3620 			 */
3621 			offer = tp->t_maxseg;
3622 			break;
3623 
3624 		case -1:
3625 			/*
3626 			 * Offer == -1 means that we didn't receive SYN yet.
3627 			 */
3628 			/* FALLTHROUGH */
3629 
3630 		default:
3631 			/*
3632 			 * Prevent DoS attack with too small MSS. Round up
3633 			 * to at least minmss.
3634 			 */
3635 			offer = max(offer, V_tcp_minmss);
3636 	}
3637 
3638 	/*
3639 	 * rmx information is now retrieved from tcp_hostcache.
3640 	 */
3641 	tcp_hc_get(&inp->inp_inc, &metrics);
3642 	if (metricptr != NULL)
3643 		bcopy(&metrics, metricptr, sizeof(struct hc_metrics_lite));
3644 
3645 	/*
3646 	 * If there's a discovered mtu in tcp hostcache, use it.
3647 	 * Else, use the link mtu.
3648 	 */
3649 	if (metrics.rmx_mtu)
3650 		mss = min(metrics.rmx_mtu, maxmtu) - min_protoh;
3651 	else {
3652 #ifdef INET6
3653 		if (isipv6) {
3654 			mss = maxmtu - min_protoh;
3655 			if (!V_path_mtu_discovery &&
3656 			    !in6_localaddr(&inp->in6p_faddr))
3657 				mss = min(mss, V_tcp_v6mssdflt);
3658 		}
3659 #endif
3660 #if defined(INET) && defined(INET6)
3661 		else
3662 #endif
3663 #ifdef INET
3664 		{
3665 			mss = maxmtu - min_protoh;
3666 			if (!V_path_mtu_discovery &&
3667 			    !in_localaddr(inp->inp_faddr))
3668 				mss = min(mss, V_tcp_mssdflt);
3669 		}
3670 #endif
3671 		/*
3672 		 * XXX - The above conditional (mss = maxmtu - min_protoh)
3673 		 * probably violates the TCP spec.
3674 		 * The problem is that, since we don't know the
3675 		 * other end's MSS, we are supposed to use a conservative
3676 		 * default.  But, if we do that, then MTU discovery will
3677 		 * never actually take place, because the conservative
3678 		 * default is much less than the MTUs typically seen
3679 		 * on the Internet today.  For the moment, we'll sweep
3680 		 * this under the carpet.
3681 		 *
3682 		 * The conservative default might not actually be a problem
3683 		 * if the only case this occurs is when sending an initial
3684 		 * SYN with options and data to a host we've never talked
3685 		 * to before.  Then, they will reply with an MSS value which
3686 		 * will get recorded and the new parameters should get
3687 		 * recomputed.  For Further Study.
3688 		 */
3689 	}
3690 	mss = min(mss, offer);
3691 
3692 	/*
3693 	 * Sanity check: make sure that maxseg will be large
3694 	 * enough to allow some data on segments even if the
3695 	 * all the option space is used (40bytes).  Otherwise
3696 	 * funny things may happen in tcp_output.
3697 	 *
3698 	 * XXXGL: shouldn't we reserve space for IP/IPv6 options?
3699 	 */
3700 	mss = max(mss, 64);
3701 
3702 	tp->t_maxseg = mss;
3703 }
3704 
3705 void
3706 tcp_mss(struct tcpcb *tp, int offer)
3707 {
3708 	int mss;
3709 	u_long bufsize;
3710 	struct inpcb *inp;
3711 	struct socket *so;
3712 	struct hc_metrics_lite metrics;
3713 	struct tcp_ifcap cap;
3714 
3715 	KASSERT(tp != NULL, ("%s: tp == NULL", __func__));
3716 
3717 	bzero(&cap, sizeof(cap));
3718 	tcp_mss_update(tp, offer, -1, &metrics, &cap);
3719 
3720 	mss = tp->t_maxseg;
3721 	inp = tp->t_inpcb;
3722 
3723 	/*
3724 	 * If there's a pipesize, change the socket buffer to that size,
3725 	 * don't change if sb_hiwat is different than default (then it
3726 	 * has been changed on purpose with setsockopt).
3727 	 * Make the socket buffers an integral number of mss units;
3728 	 * if the mss is larger than the socket buffer, decrease the mss.
3729 	 */
3730 	so = inp->inp_socket;
3731 	SOCKBUF_LOCK(&so->so_snd);
3732 	if ((so->so_snd.sb_hiwat == V_tcp_sendspace) && metrics.rmx_sendpipe)
3733 		bufsize = metrics.rmx_sendpipe;
3734 	else
3735 		bufsize = so->so_snd.sb_hiwat;
3736 	if (bufsize < mss)
3737 		mss = bufsize;
3738 	else {
3739 		bufsize = roundup(bufsize, mss);
3740 		if (bufsize > sb_max)
3741 			bufsize = sb_max;
3742 		if (bufsize > so->so_snd.sb_hiwat)
3743 			(void)sbreserve_locked(&so->so_snd, bufsize, so, NULL);
3744 	}
3745 	SOCKBUF_UNLOCK(&so->so_snd);
3746 	tp->t_maxseg = mss;
3747 
3748 	SOCKBUF_LOCK(&so->so_rcv);
3749 	if ((so->so_rcv.sb_hiwat == V_tcp_recvspace) && metrics.rmx_recvpipe)
3750 		bufsize = metrics.rmx_recvpipe;
3751 	else
3752 		bufsize = so->so_rcv.sb_hiwat;
3753 	if (bufsize > mss) {
3754 		bufsize = roundup(bufsize, mss);
3755 		if (bufsize > sb_max)
3756 			bufsize = sb_max;
3757 		if (bufsize > so->so_rcv.sb_hiwat)
3758 			(void)sbreserve_locked(&so->so_rcv, bufsize, so, NULL);
3759 	}
3760 	SOCKBUF_UNLOCK(&so->so_rcv);
3761 
3762 	/* Check the interface for TSO capabilities. */
3763 	if (cap.ifcap & CSUM_TSO) {
3764 		tp->t_flags |= TF_TSO;
3765 		tp->t_tsomax = cap.tsomax;
3766 		tp->t_tsomaxsegcount = cap.tsomaxsegcount;
3767 		tp->t_tsomaxsegsize = cap.tsomaxsegsize;
3768 	}
3769 }
3770 
3771 /*
3772  * Determine the MSS option to send on an outgoing SYN.
3773  */
3774 int
3775 tcp_mssopt(struct in_conninfo *inc)
3776 {
3777 	int mss = 0;
3778 	u_long maxmtu = 0;
3779 	u_long thcmtu = 0;
3780 	size_t min_protoh;
3781 
3782 	KASSERT(inc != NULL, ("tcp_mssopt with NULL in_conninfo pointer"));
3783 
3784 #ifdef INET6
3785 	if (inc->inc_flags & INC_ISIPV6) {
3786 		mss = V_tcp_v6mssdflt;
3787 		maxmtu = tcp_maxmtu6(inc, NULL);
3788 		min_protoh = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
3789 	}
3790 #endif
3791 #if defined(INET) && defined(INET6)
3792 	else
3793 #endif
3794 #ifdef INET
3795 	{
3796 		mss = V_tcp_mssdflt;
3797 		maxmtu = tcp_maxmtu(inc, NULL);
3798 		min_protoh = sizeof(struct tcpiphdr);
3799 	}
3800 #endif
3801 #if defined(INET6) || defined(INET)
3802 	thcmtu = tcp_hc_getmtu(inc); /* IPv4 and IPv6 */
3803 #endif
3804 
3805 	if (maxmtu && thcmtu)
3806 		mss = min(maxmtu, thcmtu) - min_protoh;
3807 	else if (maxmtu || thcmtu)
3808 		mss = max(maxmtu, thcmtu) - min_protoh;
3809 
3810 	return (mss);
3811 }
3812 
3813 
3814 /*
3815  * On a partial ack arrives, force the retransmission of the
3816  * next unacknowledged segment.  Do not clear tp->t_dupacks.
3817  * By setting snd_nxt to ti_ack, this forces retransmission timer to
3818  * be started again.
3819  */
3820 void
3821 tcp_newreno_partial_ack(struct tcpcb *tp, struct tcphdr *th)
3822 {
3823 	tcp_seq onxt = tp->snd_nxt;
3824 	u_long ocwnd = tp->snd_cwnd;
3825 	u_int maxseg = tcp_maxseg(tp);
3826 
3827 	INP_WLOCK_ASSERT(tp->t_inpcb);
3828 
3829 	tcp_timer_activate(tp, TT_REXMT, 0);
3830 	tp->t_rtttime = 0;
3831 	tp->snd_nxt = th->th_ack;
3832 	/*
3833 	 * Set snd_cwnd to one segment beyond acknowledged offset.
3834 	 * (tp->snd_una has not yet been updated when this function is called.)
3835 	 */
3836 	tp->snd_cwnd = maxseg + BYTES_THIS_ACK(tp, th);
3837 	tp->t_flags |= TF_ACKNOW;
3838 	(void) tp->t_fb->tfb_tcp_output(tp);
3839 	tp->snd_cwnd = ocwnd;
3840 	if (SEQ_GT(onxt, tp->snd_nxt))
3841 		tp->snd_nxt = onxt;
3842 	/*
3843 	 * Partial window deflation.  Relies on fact that tp->snd_una
3844 	 * not updated yet.
3845 	 */
3846 	if (tp->snd_cwnd > BYTES_THIS_ACK(tp, th))
3847 		tp->snd_cwnd -= BYTES_THIS_ACK(tp, th);
3848 	else
3849 		tp->snd_cwnd = 0;
3850 	tp->snd_cwnd += maxseg;
3851 }
3852 
3853 int
3854 tcp_compute_pipe(struct tcpcb *tp)
3855 {
3856 	return (tp->snd_max - tp->snd_una +
3857 		tp->sackhint.sack_bytes_rexmit -
3858 		tp->sackhint.sacked_bytes);
3859 }
3860