xref: /freebsd/sys/netinet/tcp_input.c (revision 59c3cb81c1769fdb6c840c971df129b52f4a848d)
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
3  *	The Regents of the University of California.  All rights reserved.
4  * Copyright (c) 2007-2008,2010
5  *	Swinburne University of Technology, Melbourne, Australia.
6  * Copyright (c) 2009-2010 Lawrence Stewart <lstewart@freebsd.org>
7  * Copyright (c) 2010 The FreeBSD Foundation
8  * Copyright (c) 2010-2011 Juniper Networks, Inc.
9  * All rights reserved.
10  *
11  * Portions of this software were developed at the Centre for Advanced Internet
12  * Architectures, Swinburne University of Technology, by Lawrence Stewart,
13  * James Healy and David Hayes, made possible in part by a grant from the Cisco
14  * University Research Program Fund at Community Foundation Silicon Valley.
15  *
16  * Portions of this software were developed at the Centre for Advanced
17  * Internet Architectures, Swinburne University of Technology, Melbourne,
18  * Australia by David Hayes under sponsorship from the FreeBSD Foundation.
19  *
20  * Portions of this software were developed by Robert N. M. Watson under
21  * contract to Juniper Networks, Inc.
22  *
23  * Redistribution and use in source and binary forms, with or without
24  * modification, are permitted provided that the following conditions
25  * are met:
26  * 1. Redistributions of source code must retain the above copyright
27  *    notice, this list of conditions and the following disclaimer.
28  * 2. Redistributions in binary form must reproduce the above copyright
29  *    notice, this list of conditions and the following disclaimer in the
30  *    documentation and/or other materials provided with the distribution.
31  * 4. Neither the name of the University nor the names of its contributors
32  *    may be used to endorse or promote products derived from this software
33  *    without specific prior written permission.
34  *
35  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
36  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
37  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
38  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
39  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
40  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
41  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
42  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
43  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
44  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
45  * SUCH DAMAGE.
46  *
47  *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
48  */
49 
50 #include <sys/cdefs.h>
51 __FBSDID("$FreeBSD$");
52 
53 #include "opt_ipfw.h"		/* for ipfw_fwd	*/
54 #include "opt_inet.h"
55 #include "opt_inet6.h"
56 #include "opt_ipsec.h"
57 #include "opt_tcpdebug.h"
58 
59 #include <sys/param.h>
60 #include <sys/kernel.h>
61 #include <sys/hhook.h>
62 #include <sys/malloc.h>
63 #include <sys/mbuf.h>
64 #include <sys/proc.h>		/* for proc0 declaration */
65 #include <sys/protosw.h>
66 #include <sys/sdt.h>
67 #include <sys/signalvar.h>
68 #include <sys/socket.h>
69 #include <sys/socketvar.h>
70 #include <sys/sysctl.h>
71 #include <sys/syslog.h>
72 #include <sys/systm.h>
73 
74 #include <machine/cpu.h>	/* before tcp_seq.h, for tcp_random18() */
75 
76 #include <vm/uma.h>
77 
78 #include <net/if.h>
79 #include <net/if_var.h>
80 #include <net/route.h>
81 #include <net/vnet.h>
82 
83 #define TCPSTATES		/* for logging */
84 
85 #include <netinet/in.h>
86 #include <netinet/in_kdtrace.h>
87 #include <netinet/in_pcb.h>
88 #include <netinet/in_systm.h>
89 #include <netinet/ip.h>
90 #include <netinet/ip_icmp.h>	/* required for icmp_var.h */
91 #include <netinet/icmp_var.h>	/* for ICMP_BANDLIM */
92 #include <netinet/ip_var.h>
93 #include <netinet/ip_options.h>
94 #include <netinet/ip6.h>
95 #include <netinet/icmp6.h>
96 #include <netinet6/in6_pcb.h>
97 #include <netinet6/in6_var.h>
98 #include <netinet6/ip6_var.h>
99 #include <netinet6/nd6.h>
100 #ifdef TCP_RFC7413
101 #include <netinet/tcp_fastopen.h>
102 #endif
103 #include <netinet/tcp.h>
104 #include <netinet/tcp_fsm.h>
105 #include <netinet/tcp_seq.h>
106 #include <netinet/tcp_timer.h>
107 #include <netinet/tcp_var.h>
108 #include <netinet6/tcp6_var.h>
109 #include <netinet/tcpip.h>
110 #include <netinet/cc/cc.h>
111 #ifdef TCPPCAP
112 #include <netinet/tcp_pcap.h>
113 #endif
114 #include <netinet/tcp_syncache.h>
115 #ifdef TCPDEBUG
116 #include <netinet/tcp_debug.h>
117 #endif /* TCPDEBUG */
118 #ifdef TCP_OFFLOAD
119 #include <netinet/tcp_offload.h>
120 #endif
121 
122 #ifdef IPSEC
123 #include <netipsec/ipsec.h>
124 #include <netipsec/ipsec6.h>
125 #endif /*IPSEC*/
126 
127 #include <machine/in_cksum.h>
128 
129 #include <security/mac/mac_framework.h>
130 
131 const int tcprexmtthresh = 3;
132 
133 int tcp_log_in_vain = 0;
134 SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_in_vain, CTLFLAG_RW,
135     &tcp_log_in_vain, 0,
136     "Log all incoming TCP segments to closed ports");
137 
138 VNET_DEFINE(int, blackhole) = 0;
139 #define	V_blackhole		VNET(blackhole)
140 SYSCTL_INT(_net_inet_tcp, OID_AUTO, blackhole, CTLFLAG_VNET | CTLFLAG_RW,
141     &VNET_NAME(blackhole), 0,
142     "Do not send RST on segments to closed ports");
143 
144 VNET_DEFINE(int, tcp_delack_enabled) = 1;
145 SYSCTL_INT(_net_inet_tcp, OID_AUTO, delayed_ack, CTLFLAG_VNET | CTLFLAG_RW,
146     &VNET_NAME(tcp_delack_enabled), 0,
147     "Delay ACK to try and piggyback it onto a data packet");
148 
149 VNET_DEFINE(int, drop_synfin) = 0;
150 #define	V_drop_synfin		VNET(drop_synfin)
151 SYSCTL_INT(_net_inet_tcp, OID_AUTO, drop_synfin, CTLFLAG_VNET | CTLFLAG_RW,
152     &VNET_NAME(drop_synfin), 0,
153     "Drop TCP packets with SYN+FIN set");
154 
155 VNET_DEFINE(int, tcp_do_rfc6675_pipe) = 0;
156 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc6675_pipe, CTLFLAG_VNET | CTLFLAG_RW,
157     &VNET_NAME(tcp_do_rfc6675_pipe), 0,
158     "Use calculated pipe/in-flight bytes per RFC 6675");
159 
160 VNET_DEFINE(int, tcp_do_rfc3042) = 1;
161 #define	V_tcp_do_rfc3042	VNET(tcp_do_rfc3042)
162 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3042, CTLFLAG_VNET | CTLFLAG_RW,
163     &VNET_NAME(tcp_do_rfc3042), 0,
164     "Enable RFC 3042 (Limited Transmit)");
165 
166 VNET_DEFINE(int, tcp_do_rfc3390) = 1;
167 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3390, CTLFLAG_VNET | CTLFLAG_RW,
168     &VNET_NAME(tcp_do_rfc3390), 0,
169     "Enable RFC 3390 (Increasing TCP's Initial Congestion Window)");
170 
171 VNET_DEFINE(int, tcp_initcwnd_segments) = 10;
172 SYSCTL_INT(_net_inet_tcp, OID_AUTO, initcwnd_segments,
173     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(tcp_initcwnd_segments), 0,
174     "Slow-start flight size (initial congestion window) in number of segments");
175 
176 VNET_DEFINE(int, tcp_do_rfc3465) = 1;
177 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3465, CTLFLAG_VNET | CTLFLAG_RW,
178     &VNET_NAME(tcp_do_rfc3465), 0,
179     "Enable RFC 3465 (Appropriate Byte Counting)");
180 
181 VNET_DEFINE(int, tcp_abc_l_var) = 2;
182 SYSCTL_INT(_net_inet_tcp, OID_AUTO, abc_l_var, CTLFLAG_VNET | CTLFLAG_RW,
183     &VNET_NAME(tcp_abc_l_var), 2,
184     "Cap the max cwnd increment during slow-start to this number of segments");
185 
186 static SYSCTL_NODE(_net_inet_tcp, OID_AUTO, ecn, CTLFLAG_RW, 0, "TCP ECN");
187 
188 VNET_DEFINE(int, tcp_do_ecn) = 0;
189 SYSCTL_INT(_net_inet_tcp_ecn, OID_AUTO, enable, CTLFLAG_VNET | CTLFLAG_RW,
190     &VNET_NAME(tcp_do_ecn), 0,
191     "TCP ECN support");
192 
193 VNET_DEFINE(int, tcp_ecn_maxretries) = 1;
194 SYSCTL_INT(_net_inet_tcp_ecn, OID_AUTO, maxretries, CTLFLAG_VNET | CTLFLAG_RW,
195     &VNET_NAME(tcp_ecn_maxretries), 0,
196     "Max retries before giving up on ECN");
197 
198 VNET_DEFINE(int, tcp_insecure_syn) = 0;
199 #define	V_tcp_insecure_syn	VNET(tcp_insecure_syn)
200 SYSCTL_INT(_net_inet_tcp, OID_AUTO, insecure_syn, CTLFLAG_VNET | CTLFLAG_RW,
201     &VNET_NAME(tcp_insecure_syn), 0,
202     "Follow RFC793 instead of RFC5961 criteria for accepting SYN packets");
203 
204 VNET_DEFINE(int, tcp_insecure_rst) = 0;
205 #define	V_tcp_insecure_rst	VNET(tcp_insecure_rst)
206 SYSCTL_INT(_net_inet_tcp, OID_AUTO, insecure_rst, CTLFLAG_VNET | CTLFLAG_RW,
207     &VNET_NAME(tcp_insecure_rst), 0,
208     "Follow RFC793 instead of RFC5961 criteria for accepting RST packets");
209 
210 VNET_DEFINE(int, tcp_recvspace) = 1024*64;
211 #define	V_tcp_recvspace	VNET(tcp_recvspace)
212 SYSCTL_INT(_net_inet_tcp, TCPCTL_RECVSPACE, recvspace, CTLFLAG_VNET | CTLFLAG_RW,
213     &VNET_NAME(tcp_recvspace), 0, "Initial receive socket buffer size");
214 
215 VNET_DEFINE(int, tcp_do_autorcvbuf) = 1;
216 #define	V_tcp_do_autorcvbuf	VNET(tcp_do_autorcvbuf)
217 SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbuf_auto, CTLFLAG_VNET | CTLFLAG_RW,
218     &VNET_NAME(tcp_do_autorcvbuf), 0,
219     "Enable automatic receive buffer sizing");
220 
221 VNET_DEFINE(int, tcp_autorcvbuf_inc) = 16*1024;
222 #define	V_tcp_autorcvbuf_inc	VNET(tcp_autorcvbuf_inc)
223 SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbuf_inc, CTLFLAG_VNET | CTLFLAG_RW,
224     &VNET_NAME(tcp_autorcvbuf_inc), 0,
225     "Incrementor step size of automatic receive buffer");
226 
227 VNET_DEFINE(int, tcp_autorcvbuf_max) = 2*1024*1024;
228 #define	V_tcp_autorcvbuf_max	VNET(tcp_autorcvbuf_max)
229 SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbuf_max, CTLFLAG_VNET | CTLFLAG_RW,
230     &VNET_NAME(tcp_autorcvbuf_max), 0,
231     "Max size of automatic receive buffer");
232 
233 VNET_DEFINE(struct inpcbhead, tcb);
234 #define	tcb6	tcb  /* for KAME src sync over BSD*'s */
235 VNET_DEFINE(struct inpcbinfo, tcbinfo);
236 
237 /*
238  * TCP statistics are stored in an array of counter(9)s, which size matches
239  * size of struct tcpstat.  TCP running connection count is a regular array.
240  */
241 VNET_PCPUSTAT_DEFINE(struct tcpstat, tcpstat);
242 SYSCTL_VNET_PCPUSTAT(_net_inet_tcp, TCPCTL_STATS, stats, struct tcpstat,
243     tcpstat, "TCP statistics (struct tcpstat, netinet/tcp_var.h)");
244 VNET_DEFINE(counter_u64_t, tcps_states[TCP_NSTATES]);
245 SYSCTL_COUNTER_U64_ARRAY(_net_inet_tcp, TCPCTL_STATES, states, CTLFLAG_RD |
246     CTLFLAG_VNET, &VNET_NAME(tcps_states)[0], TCP_NSTATES,
247     "TCP connection counts by TCP state");
248 
249 static void
250 tcp_vnet_init(const void *unused)
251 {
252 
253 	COUNTER_ARRAY_ALLOC(VNET(tcps_states), TCP_NSTATES, M_WAITOK);
254 	VNET_PCPUSTAT_ALLOC(tcpstat, M_WAITOK);
255 }
256 VNET_SYSINIT(tcp_vnet_init, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_ANY,
257     tcp_vnet_init, NULL);
258 
259 #ifdef VIMAGE
260 static void
261 tcp_vnet_uninit(const void *unused)
262 {
263 
264 	COUNTER_ARRAY_FREE(VNET(tcps_states), TCP_NSTATES);
265 	VNET_PCPUSTAT_FREE(tcpstat);
266 }
267 VNET_SYSUNINIT(tcp_vnet_uninit, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_ANY,
268     tcp_vnet_uninit, NULL);
269 #endif /* VIMAGE */
270 
271 /*
272  * Kernel module interface for updating tcpstat.  The argument is an index
273  * into tcpstat treated as an array.
274  */
275 void
276 kmod_tcpstat_inc(int statnum)
277 {
278 
279 	counter_u64_add(VNET(tcpstat)[statnum], 1);
280 }
281 
282 /*
283  * Wrapper for the TCP established input helper hook.
284  */
285 void
286 hhook_run_tcp_est_in(struct tcpcb *tp, struct tcphdr *th, struct tcpopt *to)
287 {
288 	struct tcp_hhook_data hhook_data;
289 
290 	if (V_tcp_hhh[HHOOK_TCP_EST_IN]->hhh_nhooks > 0) {
291 		hhook_data.tp = tp;
292 		hhook_data.th = th;
293 		hhook_data.to = to;
294 
295 		hhook_run_hooks(V_tcp_hhh[HHOOK_TCP_EST_IN], &hhook_data,
296 		    tp->osd);
297 	}
298 }
299 
300 /*
301  * CC wrapper hook functions
302  */
303 void
304 cc_ack_received(struct tcpcb *tp, struct tcphdr *th, uint16_t type)
305 {
306 	INP_WLOCK_ASSERT(tp->t_inpcb);
307 
308 	tp->ccv->bytes_this_ack = BYTES_THIS_ACK(tp, th);
309 	if (tp->snd_cwnd <= tp->snd_wnd)
310 		tp->ccv->flags |= CCF_CWND_LIMITED;
311 	else
312 		tp->ccv->flags &= ~CCF_CWND_LIMITED;
313 
314 	if (type == CC_ACK) {
315 		if (tp->snd_cwnd > tp->snd_ssthresh) {
316 			tp->t_bytes_acked += min(tp->ccv->bytes_this_ack,
317 			     V_tcp_abc_l_var * tcp_maxseg(tp));
318 			if (tp->t_bytes_acked >= tp->snd_cwnd) {
319 				tp->t_bytes_acked -= tp->snd_cwnd;
320 				tp->ccv->flags |= CCF_ABC_SENTAWND;
321 			}
322 		} else {
323 				tp->ccv->flags &= ~CCF_ABC_SENTAWND;
324 				tp->t_bytes_acked = 0;
325 		}
326 	}
327 
328 	if (CC_ALGO(tp)->ack_received != NULL) {
329 		/* XXXLAS: Find a way to live without this */
330 		tp->ccv->curack = th->th_ack;
331 		CC_ALGO(tp)->ack_received(tp->ccv, type);
332 	}
333 }
334 
335 void
336 cc_conn_init(struct tcpcb *tp)
337 {
338 	struct hc_metrics_lite metrics;
339 	struct inpcb *inp = tp->t_inpcb;
340 	u_int maxseg;
341 	int rtt;
342 
343 	INP_WLOCK_ASSERT(tp->t_inpcb);
344 
345 	tcp_hc_get(&inp->inp_inc, &metrics);
346 	maxseg = tcp_maxseg(tp);
347 
348 	if (tp->t_srtt == 0 && (rtt = metrics.rmx_rtt)) {
349 		tp->t_srtt = rtt;
350 		tp->t_rttbest = tp->t_srtt + TCP_RTT_SCALE;
351 		TCPSTAT_INC(tcps_usedrtt);
352 		if (metrics.rmx_rttvar) {
353 			tp->t_rttvar = metrics.rmx_rttvar;
354 			TCPSTAT_INC(tcps_usedrttvar);
355 		} else {
356 			/* default variation is +- 1 rtt */
357 			tp->t_rttvar =
358 			    tp->t_srtt * TCP_RTTVAR_SCALE / TCP_RTT_SCALE;
359 		}
360 		TCPT_RANGESET(tp->t_rxtcur,
361 		    ((tp->t_srtt >> 2) + tp->t_rttvar) >> 1,
362 		    tp->t_rttmin, TCPTV_REXMTMAX);
363 	}
364 	if (metrics.rmx_ssthresh) {
365 		/*
366 		 * There's some sort of gateway or interface
367 		 * buffer limit on the path.  Use this to set
368 		 * the slow start threshhold, but set the
369 		 * threshold to no less than 2*mss.
370 		 */
371 		tp->snd_ssthresh = max(2 * maxseg, metrics.rmx_ssthresh);
372 		TCPSTAT_INC(tcps_usedssthresh);
373 	}
374 
375 	/*
376 	 * Set the initial slow-start flight size.
377 	 *
378 	 * RFC5681 Section 3.1 specifies the default conservative values.
379 	 * RFC3390 specifies slightly more aggressive values.
380 	 * RFC6928 increases it to ten segments.
381 	 * Support for user specified value for initial flight size.
382 	 *
383 	 * If a SYN or SYN/ACK was lost and retransmitted, we have to
384 	 * reduce the initial CWND to one segment as congestion is likely
385 	 * requiring us to be cautious.
386 	 */
387 	if (tp->snd_cwnd == 1)
388 		tp->snd_cwnd = maxseg;		/* SYN(-ACK) lost */
389 	else if (V_tcp_initcwnd_segments)
390 		tp->snd_cwnd = min(V_tcp_initcwnd_segments * maxseg,
391 		    max(2 * maxseg, V_tcp_initcwnd_segments * 1460));
392 	else if (V_tcp_do_rfc3390)
393 		tp->snd_cwnd = min(4 * maxseg, max(2 * maxseg, 4380));
394 	else {
395 		/* Per RFC5681 Section 3.1 */
396 		if (maxseg > 2190)
397 			tp->snd_cwnd = 2 * maxseg;
398 		else if (maxseg > 1095)
399 			tp->snd_cwnd = 3 * maxseg;
400 		else
401 			tp->snd_cwnd = 4 * maxseg;
402 	}
403 
404 	if (CC_ALGO(tp)->conn_init != NULL)
405 		CC_ALGO(tp)->conn_init(tp->ccv);
406 }
407 
408 void inline
409 cc_cong_signal(struct tcpcb *tp, struct tcphdr *th, uint32_t type)
410 {
411 	u_int maxseg;
412 
413 	INP_WLOCK_ASSERT(tp->t_inpcb);
414 
415 	switch(type) {
416 	case CC_NDUPACK:
417 		if (!IN_FASTRECOVERY(tp->t_flags)) {
418 			tp->snd_recover = tp->snd_max;
419 			if (tp->t_flags & TF_ECN_PERMIT)
420 				tp->t_flags |= TF_ECN_SND_CWR;
421 		}
422 		break;
423 	case CC_ECN:
424 		if (!IN_CONGRECOVERY(tp->t_flags)) {
425 			TCPSTAT_INC(tcps_ecn_rcwnd);
426 			tp->snd_recover = tp->snd_max;
427 			if (tp->t_flags & TF_ECN_PERMIT)
428 				tp->t_flags |= TF_ECN_SND_CWR;
429 		}
430 		break;
431 	case CC_RTO:
432 		maxseg = tcp_maxseg(tp);
433 		tp->t_dupacks = 0;
434 		tp->t_bytes_acked = 0;
435 		EXIT_RECOVERY(tp->t_flags);
436 		tp->snd_ssthresh = max(2, min(tp->snd_wnd, tp->snd_cwnd) / 2 /
437 		    maxseg) * maxseg;
438 		tp->snd_cwnd = maxseg;
439 		break;
440 	case CC_RTO_ERR:
441 		TCPSTAT_INC(tcps_sndrexmitbad);
442 		/* RTO was unnecessary, so reset everything. */
443 		tp->snd_cwnd = tp->snd_cwnd_prev;
444 		tp->snd_ssthresh = tp->snd_ssthresh_prev;
445 		tp->snd_recover = tp->snd_recover_prev;
446 		if (tp->t_flags & TF_WASFRECOVERY)
447 			ENTER_FASTRECOVERY(tp->t_flags);
448 		if (tp->t_flags & TF_WASCRECOVERY)
449 			ENTER_CONGRECOVERY(tp->t_flags);
450 		tp->snd_nxt = tp->snd_max;
451 		tp->t_flags &= ~TF_PREVVALID;
452 		tp->t_badrxtwin = 0;
453 		break;
454 	}
455 
456 	if (CC_ALGO(tp)->cong_signal != NULL) {
457 		if (th != NULL)
458 			tp->ccv->curack = th->th_ack;
459 		CC_ALGO(tp)->cong_signal(tp->ccv, type);
460 	}
461 }
462 
463 void inline
464 cc_post_recovery(struct tcpcb *tp, struct tcphdr *th)
465 {
466 	INP_WLOCK_ASSERT(tp->t_inpcb);
467 
468 	/* XXXLAS: KASSERT that we're in recovery? */
469 
470 	if (CC_ALGO(tp)->post_recovery != NULL) {
471 		tp->ccv->curack = th->th_ack;
472 		CC_ALGO(tp)->post_recovery(tp->ccv);
473 	}
474 	/* XXXLAS: EXIT_RECOVERY ? */
475 	tp->t_bytes_acked = 0;
476 }
477 
478 #ifdef TCP_SIGNATURE
479 static inline int
480 tcp_signature_verify_input(struct mbuf *m, int off0, int tlen, int optlen,
481     struct tcpopt *to, struct tcphdr *th, u_int tcpbflag)
482 {
483 	int ret;
484 
485 	tcp_fields_to_net(th);
486 	ret = tcp_signature_verify(m, off0, tlen, optlen, to, th, tcpbflag);
487 	tcp_fields_to_host(th);
488 	return (ret);
489 }
490 #endif
491 
492 /*
493  * Indicate whether this ack should be delayed.  We can delay the ack if
494  * following conditions are met:
495  *	- There is no delayed ack timer in progress.
496  *	- Our last ack wasn't a 0-sized window. We never want to delay
497  *	  the ack that opens up a 0-sized window.
498  *	- LRO wasn't used for this segment. We make sure by checking that the
499  *	  segment size is not larger than the MSS.
500  */
501 #define DELAY_ACK(tp, tlen)						\
502 	((!tcp_timer_active(tp, TT_DELACK) &&				\
503 	    (tp->t_flags & TF_RXWIN0SENT) == 0) &&			\
504 	    (tlen <= tp->t_maxseg) &&					\
505 	    (V_tcp_delack_enabled || (tp->t_flags & TF_NEEDSYN)))
506 
507 static void inline
508 cc_ecnpkt_handler(struct tcpcb *tp, struct tcphdr *th, uint8_t iptos)
509 {
510 	INP_WLOCK_ASSERT(tp->t_inpcb);
511 
512 	if (CC_ALGO(tp)->ecnpkt_handler != NULL) {
513 		switch (iptos & IPTOS_ECN_MASK) {
514 		case IPTOS_ECN_CE:
515 		    tp->ccv->flags |= CCF_IPHDR_CE;
516 		    break;
517 		case IPTOS_ECN_ECT0:
518 		    tp->ccv->flags &= ~CCF_IPHDR_CE;
519 		    break;
520 		case IPTOS_ECN_ECT1:
521 		    tp->ccv->flags &= ~CCF_IPHDR_CE;
522 		    break;
523 		}
524 
525 		if (th->th_flags & TH_CWR)
526 			tp->ccv->flags |= CCF_TCPHDR_CWR;
527 		else
528 			tp->ccv->flags &= ~CCF_TCPHDR_CWR;
529 
530 		if (tp->t_flags & TF_DELACK)
531 			tp->ccv->flags |= CCF_DELACK;
532 		else
533 			tp->ccv->flags &= ~CCF_DELACK;
534 
535 		CC_ALGO(tp)->ecnpkt_handler(tp->ccv);
536 
537 		if (tp->ccv->flags & CCF_ACKNOW)
538 			tcp_timer_activate(tp, TT_DELACK, tcp_delacktime);
539 	}
540 }
541 
542 /*
543  * TCP input handling is split into multiple parts:
544  *   tcp6_input is a thin wrapper around tcp_input for the extended
545  *	ip6_protox[] call format in ip6_input
546  *   tcp_input handles primary segment validation, inpcb lookup and
547  *	SYN processing on listen sockets
548  *   tcp_do_segment processes the ACK and text of the segment for
549  *	establishing, established and closing connections
550  */
551 #ifdef INET6
552 int
553 tcp6_input(struct mbuf **mp, int *offp, int proto)
554 {
555 	struct mbuf *m = *mp;
556 	struct in6_ifaddr *ia6;
557 	struct ip6_hdr *ip6;
558 
559 	IP6_EXTHDR_CHECK(m, *offp, sizeof(struct tcphdr), IPPROTO_DONE);
560 
561 	/*
562 	 * draft-itojun-ipv6-tcp-to-anycast
563 	 * better place to put this in?
564 	 */
565 	ip6 = mtod(m, struct ip6_hdr *);
566 	ia6 = in6ifa_ifwithaddr(&ip6->ip6_dst, 0 /* XXX */);
567 	if (ia6 && (ia6->ia6_flags & IN6_IFF_ANYCAST)) {
568 		struct ip6_hdr *ip6;
569 
570 		ifa_free(&ia6->ia_ifa);
571 		ip6 = mtod(m, struct ip6_hdr *);
572 		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
573 			    (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
574 		return (IPPROTO_DONE);
575 	}
576 	if (ia6)
577 		ifa_free(&ia6->ia_ifa);
578 
579 	return (tcp_input(mp, offp, proto));
580 }
581 #endif /* INET6 */
582 
583 int
584 tcp_input(struct mbuf **mp, int *offp, int proto)
585 {
586 	struct mbuf *m = *mp;
587 	struct tcphdr *th = NULL;
588 	struct ip *ip = NULL;
589 	struct inpcb *inp = NULL;
590 	struct tcpcb *tp = NULL;
591 	struct socket *so = NULL;
592 	u_char *optp = NULL;
593 	int off0;
594 	int optlen = 0;
595 #ifdef INET
596 	int len;
597 #endif
598 	int tlen = 0, off;
599 	int drop_hdrlen;
600 	int thflags;
601 	int rstreason = 0;	/* For badport_bandlim accounting purposes */
602 #ifdef TCP_SIGNATURE
603 	uint8_t sig_checked = 0;
604 #endif
605 	uint8_t iptos = 0;
606 	struct m_tag *fwd_tag = NULL;
607 #ifdef INET6
608 	struct ip6_hdr *ip6 = NULL;
609 	int isipv6;
610 #else
611 	const void *ip6 = NULL;
612 #endif /* INET6 */
613 	struct tcpopt to;		/* options in this segment */
614 	char *s = NULL;			/* address and port logging */
615 	int ti_locked;
616 #ifdef TCPDEBUG
617 	/*
618 	 * The size of tcp_saveipgen must be the size of the max ip header,
619 	 * now IPv6.
620 	 */
621 	u_char tcp_saveipgen[IP6_HDR_LEN];
622 	struct tcphdr tcp_savetcp;
623 	short ostate = 0;
624 #endif
625 
626 #ifdef INET6
627 	isipv6 = (mtod(m, struct ip *)->ip_v == 6) ? 1 : 0;
628 #endif
629 
630 	off0 = *offp;
631 	m = *mp;
632 	*mp = NULL;
633 	to.to_flags = 0;
634 	TCPSTAT_INC(tcps_rcvtotal);
635 
636 #ifdef INET6
637 	if (isipv6) {
638 		/* IP6_EXTHDR_CHECK() is already done at tcp6_input(). */
639 
640 		if (m->m_len < (sizeof(*ip6) + sizeof(*th))) {
641 			m = m_pullup(m, sizeof(*ip6) + sizeof(*th));
642 			if (m == NULL) {
643 				TCPSTAT_INC(tcps_rcvshort);
644 				return (IPPROTO_DONE);
645 			}
646 		}
647 
648 		ip6 = mtod(m, struct ip6_hdr *);
649 		th = (struct tcphdr *)((caddr_t)ip6 + off0);
650 		tlen = sizeof(*ip6) + ntohs(ip6->ip6_plen) - off0;
651 		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID_IPV6) {
652 			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
653 				th->th_sum = m->m_pkthdr.csum_data;
654 			else
655 				th->th_sum = in6_cksum_pseudo(ip6, tlen,
656 				    IPPROTO_TCP, m->m_pkthdr.csum_data);
657 			th->th_sum ^= 0xffff;
658 		} else
659 			th->th_sum = in6_cksum(m, IPPROTO_TCP, off0, tlen);
660 		if (th->th_sum) {
661 			TCPSTAT_INC(tcps_rcvbadsum);
662 			goto drop;
663 		}
664 
665 		/*
666 		 * Be proactive about unspecified IPv6 address in source.
667 		 * As we use all-zero to indicate unbounded/unconnected pcb,
668 		 * unspecified IPv6 address can be used to confuse us.
669 		 *
670 		 * Note that packets with unspecified IPv6 destination is
671 		 * already dropped in ip6_input.
672 		 */
673 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
674 			/* XXX stat */
675 			goto drop;
676 		}
677 	}
678 #endif
679 #if defined(INET) && defined(INET6)
680 	else
681 #endif
682 #ifdef INET
683 	{
684 		/*
685 		 * Get IP and TCP header together in first mbuf.
686 		 * Note: IP leaves IP header in first mbuf.
687 		 */
688 		if (off0 > sizeof (struct ip)) {
689 			ip_stripoptions(m);
690 			off0 = sizeof(struct ip);
691 		}
692 		if (m->m_len < sizeof (struct tcpiphdr)) {
693 			if ((m = m_pullup(m, sizeof (struct tcpiphdr)))
694 			    == NULL) {
695 				TCPSTAT_INC(tcps_rcvshort);
696 				return (IPPROTO_DONE);
697 			}
698 		}
699 		ip = mtod(m, struct ip *);
700 		th = (struct tcphdr *)((caddr_t)ip + off0);
701 		tlen = ntohs(ip->ip_len) - off0;
702 
703 		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
704 			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
705 				th->th_sum = m->m_pkthdr.csum_data;
706 			else
707 				th->th_sum = in_pseudo(ip->ip_src.s_addr,
708 				    ip->ip_dst.s_addr,
709 				    htonl(m->m_pkthdr.csum_data + tlen +
710 				    IPPROTO_TCP));
711 			th->th_sum ^= 0xffff;
712 		} else {
713 			struct ipovly *ipov = (struct ipovly *)ip;
714 
715 			/*
716 			 * Checksum extended TCP header and data.
717 			 */
718 			len = off0 + tlen;
719 			bzero(ipov->ih_x1, sizeof(ipov->ih_x1));
720 			ipov->ih_len = htons(tlen);
721 			th->th_sum = in_cksum(m, len);
722 			/* Reset length for SDT probes. */
723 			ip->ip_len = htons(tlen + off0);
724 		}
725 
726 		if (th->th_sum) {
727 			TCPSTAT_INC(tcps_rcvbadsum);
728 			goto drop;
729 		}
730 		/* Re-initialization for later version check */
731 		ip->ip_v = IPVERSION;
732 	}
733 #endif /* INET */
734 
735 #ifdef INET6
736 	if (isipv6)
737 		iptos = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
738 #endif
739 #if defined(INET) && defined(INET6)
740 	else
741 #endif
742 #ifdef INET
743 		iptos = ip->ip_tos;
744 #endif
745 
746 	/*
747 	 * Check that TCP offset makes sense,
748 	 * pull out TCP options and adjust length.		XXX
749 	 */
750 	off = th->th_off << 2;
751 	if (off < sizeof (struct tcphdr) || off > tlen) {
752 		TCPSTAT_INC(tcps_rcvbadoff);
753 		goto drop;
754 	}
755 	tlen -= off;	/* tlen is used instead of ti->ti_len */
756 	if (off > sizeof (struct tcphdr)) {
757 #ifdef INET6
758 		if (isipv6) {
759 			IP6_EXTHDR_CHECK(m, off0, off, IPPROTO_DONE);
760 			ip6 = mtod(m, struct ip6_hdr *);
761 			th = (struct tcphdr *)((caddr_t)ip6 + off0);
762 		}
763 #endif
764 #if defined(INET) && defined(INET6)
765 		else
766 #endif
767 #ifdef INET
768 		{
769 			if (m->m_len < sizeof(struct ip) + off) {
770 				if ((m = m_pullup(m, sizeof (struct ip) + off))
771 				    == NULL) {
772 					TCPSTAT_INC(tcps_rcvshort);
773 					return (IPPROTO_DONE);
774 				}
775 				ip = mtod(m, struct ip *);
776 				th = (struct tcphdr *)((caddr_t)ip + off0);
777 			}
778 		}
779 #endif
780 		optlen = off - sizeof (struct tcphdr);
781 		optp = (u_char *)(th + 1);
782 	}
783 	thflags = th->th_flags;
784 
785 	/*
786 	 * Convert TCP protocol specific fields to host format.
787 	 */
788 	tcp_fields_to_host(th);
789 
790 	/*
791 	 * Delay dropping TCP, IP headers, IPv6 ext headers, and TCP options.
792 	 */
793 	drop_hdrlen = off0 + off;
794 
795 	/*
796 	 * Locate pcb for segment; if we're likely to add or remove a
797 	 * connection then first acquire pcbinfo lock.  There are three cases
798 	 * where we might discover later we need a write lock despite the
799 	 * flags: ACKs moving a connection out of the syncache, ACKs for a
800 	 * connection in TIMEWAIT and SYNs not targeting a listening socket.
801 	 */
802 	if ((thflags & (TH_FIN | TH_RST)) != 0) {
803 		INP_INFO_RLOCK(&V_tcbinfo);
804 		ti_locked = TI_RLOCKED;
805 	} else
806 		ti_locked = TI_UNLOCKED;
807 
808 	/*
809 	 * Grab info from PACKET_TAG_IPFORWARD tag prepended to the chain.
810 	 */
811         if (
812 #ifdef INET6
813 	    (isipv6 && (m->m_flags & M_IP6_NEXTHOP))
814 #ifdef INET
815 	    || (!isipv6 && (m->m_flags & M_IP_NEXTHOP))
816 #endif
817 #endif
818 #if defined(INET) && !defined(INET6)
819 	    (m->m_flags & M_IP_NEXTHOP)
820 #endif
821 	    )
822 		fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
823 
824 findpcb:
825 #ifdef INVARIANTS
826 	if (ti_locked == TI_RLOCKED) {
827 		INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
828 	} else {
829 		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
830 	}
831 #endif
832 #ifdef INET6
833 	if (isipv6 && fwd_tag != NULL) {
834 		struct sockaddr_in6 *next_hop6;
835 
836 		next_hop6 = (struct sockaddr_in6 *)(fwd_tag + 1);
837 		/*
838 		 * Transparently forwarded. Pretend to be the destination.
839 		 * Already got one like this?
840 		 */
841 		inp = in6_pcblookup_mbuf(&V_tcbinfo,
842 		    &ip6->ip6_src, th->th_sport, &ip6->ip6_dst, th->th_dport,
843 		    INPLOOKUP_WLOCKPCB, m->m_pkthdr.rcvif, m);
844 		if (!inp) {
845 			/*
846 			 * It's new.  Try to find the ambushing socket.
847 			 * Because we've rewritten the destination address,
848 			 * any hardware-generated hash is ignored.
849 			 */
850 			inp = in6_pcblookup(&V_tcbinfo, &ip6->ip6_src,
851 			    th->th_sport, &next_hop6->sin6_addr,
852 			    next_hop6->sin6_port ? ntohs(next_hop6->sin6_port) :
853 			    th->th_dport, INPLOOKUP_WILDCARD |
854 			    INPLOOKUP_WLOCKPCB, m->m_pkthdr.rcvif);
855 		}
856 	} else if (isipv6) {
857 		inp = in6_pcblookup_mbuf(&V_tcbinfo, &ip6->ip6_src,
858 		    th->th_sport, &ip6->ip6_dst, th->th_dport,
859 		    INPLOOKUP_WILDCARD | INPLOOKUP_WLOCKPCB,
860 		    m->m_pkthdr.rcvif, m);
861 	}
862 #endif /* INET6 */
863 #if defined(INET6) && defined(INET)
864 	else
865 #endif
866 #ifdef INET
867 	if (fwd_tag != NULL) {
868 		struct sockaddr_in *next_hop;
869 
870 		next_hop = (struct sockaddr_in *)(fwd_tag+1);
871 		/*
872 		 * Transparently forwarded. Pretend to be the destination.
873 		 * already got one like this?
874 		 */
875 		inp = in_pcblookup_mbuf(&V_tcbinfo, ip->ip_src, th->th_sport,
876 		    ip->ip_dst, th->th_dport, INPLOOKUP_WLOCKPCB,
877 		    m->m_pkthdr.rcvif, m);
878 		if (!inp) {
879 			/*
880 			 * It's new.  Try to find the ambushing socket.
881 			 * Because we've rewritten the destination address,
882 			 * any hardware-generated hash is ignored.
883 			 */
884 			inp = in_pcblookup(&V_tcbinfo, ip->ip_src,
885 			    th->th_sport, next_hop->sin_addr,
886 			    next_hop->sin_port ? ntohs(next_hop->sin_port) :
887 			    th->th_dport, INPLOOKUP_WILDCARD |
888 			    INPLOOKUP_WLOCKPCB, m->m_pkthdr.rcvif);
889 		}
890 	} else
891 		inp = in_pcblookup_mbuf(&V_tcbinfo, ip->ip_src,
892 		    th->th_sport, ip->ip_dst, th->th_dport,
893 		    INPLOOKUP_WILDCARD | INPLOOKUP_WLOCKPCB,
894 		    m->m_pkthdr.rcvif, m);
895 #endif /* INET */
896 
897 	/*
898 	 * If the INPCB does not exist then all data in the incoming
899 	 * segment is discarded and an appropriate RST is sent back.
900 	 * XXX MRT Send RST using which routing table?
901 	 */
902 	if (inp == NULL) {
903 		/*
904 		 * Log communication attempts to ports that are not
905 		 * in use.
906 		 */
907 		if ((tcp_log_in_vain == 1 && (thflags & TH_SYN)) ||
908 		    tcp_log_in_vain == 2) {
909 			if ((s = tcp_log_vain(NULL, th, (void *)ip, ip6)))
910 				log(LOG_INFO, "%s; %s: Connection attempt "
911 				    "to closed port\n", s, __func__);
912 		}
913 		/*
914 		 * When blackholing do not respond with a RST but
915 		 * completely ignore the segment and drop it.
916 		 */
917 		if ((V_blackhole == 1 && (thflags & TH_SYN)) ||
918 		    V_blackhole == 2)
919 			goto dropunlock;
920 
921 		rstreason = BANDLIM_RST_CLOSEDPORT;
922 		goto dropwithreset;
923 	}
924 	INP_WLOCK_ASSERT(inp);
925 	if ((inp->inp_flowtype == M_HASHTYPE_NONE) &&
926 	    (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) &&
927 	    ((inp->inp_socket == NULL) ||
928 	    (inp->inp_socket->so_options & SO_ACCEPTCONN) == 0)) {
929 		inp->inp_flowid = m->m_pkthdr.flowid;
930 		inp->inp_flowtype = M_HASHTYPE_GET(m);
931 	}
932 #ifdef IPSEC
933 #ifdef INET6
934 	if (isipv6 && ipsec6_in_reject(m, inp)) {
935 		goto dropunlock;
936 	} else
937 #endif /* INET6 */
938 	if (ipsec4_in_reject(m, inp) != 0) {
939 		goto dropunlock;
940 	}
941 #endif /* IPSEC */
942 
943 	/*
944 	 * Check the minimum TTL for socket.
945 	 */
946 	if (inp->inp_ip_minttl != 0) {
947 #ifdef INET6
948 		if (isipv6) {
949 			if (inp->inp_ip_minttl > ip6->ip6_hlim)
950 				goto dropunlock;
951 		} else
952 #endif
953 		if (inp->inp_ip_minttl > ip->ip_ttl)
954 			goto dropunlock;
955 	}
956 
957 	/*
958 	 * A previous connection in TIMEWAIT state is supposed to catch stray
959 	 * or duplicate segments arriving late.  If this segment was a
960 	 * legitimate new connection attempt, the old INPCB gets removed and
961 	 * we can try again to find a listening socket.
962 	 *
963 	 * At this point, due to earlier optimism, we may hold only an inpcb
964 	 * lock, and not the inpcbinfo write lock.  If so, we need to try to
965 	 * acquire it, or if that fails, acquire a reference on the inpcb,
966 	 * drop all locks, acquire a global write lock, and then re-acquire
967 	 * the inpcb lock.  We may at that point discover that another thread
968 	 * has tried to free the inpcb, in which case we need to loop back
969 	 * and try to find a new inpcb to deliver to.
970 	 *
971 	 * XXXRW: It may be time to rethink timewait locking.
972 	 */
973 relocked:
974 	if (inp->inp_flags & INP_TIMEWAIT) {
975 		if (ti_locked == TI_UNLOCKED) {
976 			if (INP_INFO_TRY_RLOCK(&V_tcbinfo) == 0) {
977 				in_pcbref(inp);
978 				INP_WUNLOCK(inp);
979 				INP_INFO_RLOCK(&V_tcbinfo);
980 				ti_locked = TI_RLOCKED;
981 				INP_WLOCK(inp);
982 				if (in_pcbrele_wlocked(inp)) {
983 					inp = NULL;
984 					goto findpcb;
985 				}
986 			} else
987 				ti_locked = TI_RLOCKED;
988 		}
989 		INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
990 
991 		if (thflags & TH_SYN)
992 			tcp_dooptions(&to, optp, optlen, TO_SYN);
993 		/*
994 		 * NB: tcp_twcheck unlocks the INP and frees the mbuf.
995 		 */
996 		if (tcp_twcheck(inp, &to, th, m, tlen))
997 			goto findpcb;
998 		INP_INFO_RUNLOCK(&V_tcbinfo);
999 		return (IPPROTO_DONE);
1000 	}
1001 	/*
1002 	 * The TCPCB may no longer exist if the connection is winding
1003 	 * down or it is in the CLOSED state.  Either way we drop the
1004 	 * segment and send an appropriate response.
1005 	 */
1006 	tp = intotcpcb(inp);
1007 	if (tp == NULL || tp->t_state == TCPS_CLOSED) {
1008 		rstreason = BANDLIM_RST_CLOSEDPORT;
1009 		goto dropwithreset;
1010 	}
1011 
1012 #ifdef TCP_OFFLOAD
1013 	if (tp->t_flags & TF_TOE) {
1014 		tcp_offload_input(tp, m);
1015 		m = NULL;	/* consumed by the TOE driver */
1016 		goto dropunlock;
1017 	}
1018 #endif
1019 
1020 	/*
1021 	 * We've identified a valid inpcb, but it could be that we need an
1022 	 * inpcbinfo write lock but don't hold it.  In this case, attempt to
1023 	 * acquire using the same strategy as the TIMEWAIT case above.  If we
1024 	 * relock, we have to jump back to 'relocked' as the connection might
1025 	 * now be in TIMEWAIT.
1026 	 */
1027 #ifdef INVARIANTS
1028 	if ((thflags & (TH_FIN | TH_RST)) != 0)
1029 		INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
1030 #endif
1031 	if (!((tp->t_state == TCPS_ESTABLISHED && (thflags & TH_SYN) == 0) ||
1032 	      (tp->t_state == TCPS_LISTEN && (thflags & TH_SYN) &&
1033 	       !(tp->t_flags & TF_FASTOPEN)))) {
1034 		if (ti_locked == TI_UNLOCKED) {
1035 			if (INP_INFO_TRY_RLOCK(&V_tcbinfo) == 0) {
1036 				in_pcbref(inp);
1037 				INP_WUNLOCK(inp);
1038 				INP_INFO_RLOCK(&V_tcbinfo);
1039 				ti_locked = TI_RLOCKED;
1040 				INP_WLOCK(inp);
1041 				if (in_pcbrele_wlocked(inp)) {
1042 					inp = NULL;
1043 					goto findpcb;
1044 				}
1045 				goto relocked;
1046 			} else
1047 				ti_locked = TI_RLOCKED;
1048 		}
1049 		INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
1050 	}
1051 
1052 #ifdef MAC
1053 	INP_WLOCK_ASSERT(inp);
1054 	if (mac_inpcb_check_deliver(inp, m))
1055 		goto dropunlock;
1056 #endif
1057 	so = inp->inp_socket;
1058 	KASSERT(so != NULL, ("%s: so == NULL", __func__));
1059 #ifdef TCPDEBUG
1060 	if (so->so_options & SO_DEBUG) {
1061 		ostate = tp->t_state;
1062 #ifdef INET6
1063 		if (isipv6) {
1064 			bcopy((char *)ip6, (char *)tcp_saveipgen, sizeof(*ip6));
1065 		} else
1066 #endif
1067 			bcopy((char *)ip, (char *)tcp_saveipgen, sizeof(*ip));
1068 		tcp_savetcp = *th;
1069 	}
1070 #endif /* TCPDEBUG */
1071 	/*
1072 	 * When the socket is accepting connections (the INPCB is in LISTEN
1073 	 * state) we look into the SYN cache if this is a new connection
1074 	 * attempt or the completion of a previous one.
1075 	 */
1076 	if (so->so_options & SO_ACCEPTCONN) {
1077 		struct in_conninfo inc;
1078 
1079 		KASSERT(tp->t_state == TCPS_LISTEN, ("%s: so accepting but "
1080 		    "tp not listening", __func__));
1081 		bzero(&inc, sizeof(inc));
1082 #ifdef INET6
1083 		if (isipv6) {
1084 			inc.inc_flags |= INC_ISIPV6;
1085 			inc.inc6_faddr = ip6->ip6_src;
1086 			inc.inc6_laddr = ip6->ip6_dst;
1087 		} else
1088 #endif
1089 		{
1090 			inc.inc_faddr = ip->ip_src;
1091 			inc.inc_laddr = ip->ip_dst;
1092 		}
1093 		inc.inc_fport = th->th_sport;
1094 		inc.inc_lport = th->th_dport;
1095 		inc.inc_fibnum = so->so_fibnum;
1096 
1097 		/*
1098 		 * Check for an existing connection attempt in syncache if
1099 		 * the flag is only ACK.  A successful lookup creates a new
1100 		 * socket appended to the listen queue in SYN_RECEIVED state.
1101 		 */
1102 		if ((thflags & (TH_RST|TH_ACK|TH_SYN)) == TH_ACK) {
1103 
1104 			INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
1105 			/*
1106 			 * Parse the TCP options here because
1107 			 * syncookies need access to the reflected
1108 			 * timestamp.
1109 			 */
1110 			tcp_dooptions(&to, optp, optlen, 0);
1111 			/*
1112 			 * NB: syncache_expand() doesn't unlock
1113 			 * inp and tcpinfo locks.
1114 			 */
1115 			if (!syncache_expand(&inc, &to, th, &so, m)) {
1116 				/*
1117 				 * No syncache entry or ACK was not
1118 				 * for our SYN/ACK.  Send a RST.
1119 				 * NB: syncache did its own logging
1120 				 * of the failure cause.
1121 				 */
1122 				rstreason = BANDLIM_RST_OPENPORT;
1123 				goto dropwithreset;
1124 			}
1125 #ifdef TCP_RFC7413
1126 new_tfo_socket:
1127 #endif
1128 			if (so == NULL) {
1129 				/*
1130 				 * We completed the 3-way handshake
1131 				 * but could not allocate a socket
1132 				 * either due to memory shortage,
1133 				 * listen queue length limits or
1134 				 * global socket limits.  Send RST
1135 				 * or wait and have the remote end
1136 				 * retransmit the ACK for another
1137 				 * try.
1138 				 */
1139 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1140 					log(LOG_DEBUG, "%s; %s: Listen socket: "
1141 					    "Socket allocation failed due to "
1142 					    "limits or memory shortage, %s\n",
1143 					    s, __func__,
1144 					    V_tcp_sc_rst_sock_fail ?
1145 					    "sending RST" : "try again");
1146 				if (V_tcp_sc_rst_sock_fail) {
1147 					rstreason = BANDLIM_UNLIMITED;
1148 					goto dropwithreset;
1149 				} else
1150 					goto dropunlock;
1151 			}
1152 			/*
1153 			 * Socket is created in state SYN_RECEIVED.
1154 			 * Unlock the listen socket, lock the newly
1155 			 * created socket and update the tp variable.
1156 			 */
1157 			INP_WUNLOCK(inp);	/* listen socket */
1158 			inp = sotoinpcb(so);
1159 			/*
1160 			 * New connection inpcb is already locked by
1161 			 * syncache_expand().
1162 			 */
1163 			INP_WLOCK_ASSERT(inp);
1164 			tp = intotcpcb(inp);
1165 			KASSERT(tp->t_state == TCPS_SYN_RECEIVED,
1166 			    ("%s: ", __func__));
1167 #ifdef TCP_SIGNATURE
1168 			if (sig_checked == 0)  {
1169 				tcp_dooptions(&to, optp, optlen,
1170 				    (thflags & TH_SYN) ? TO_SYN : 0);
1171 				if (!tcp_signature_verify_input(m, off0, tlen,
1172 				    optlen, &to, th, tp->t_flags)) {
1173 
1174 					/*
1175 					 * In SYN_SENT state if it receives an
1176 					 * RST, it is allowed for further
1177 					 * processing.
1178 					 */
1179 					if ((thflags & TH_RST) == 0 ||
1180 					    (tp->t_state == TCPS_SYN_SENT) == 0)
1181 						goto dropunlock;
1182 				}
1183 				sig_checked = 1;
1184 			}
1185 #endif
1186 
1187 			/*
1188 			 * Process the segment and the data it
1189 			 * contains.  tcp_do_segment() consumes
1190 			 * the mbuf chain and unlocks the inpcb.
1191 			 */
1192 			tp->t_fb->tfb_tcp_do_segment(m, th, so, tp, drop_hdrlen, tlen,
1193 			    iptos, ti_locked);
1194 			INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1195 			return (IPPROTO_DONE);
1196 		}
1197 		/*
1198 		 * Segment flag validation for new connection attempts:
1199 		 *
1200 		 * Our (SYN|ACK) response was rejected.
1201 		 * Check with syncache and remove entry to prevent
1202 		 * retransmits.
1203 		 *
1204 		 * NB: syncache_chkrst does its own logging of failure
1205 		 * causes.
1206 		 */
1207 		if (thflags & TH_RST) {
1208 			syncache_chkrst(&inc, th);
1209 			goto dropunlock;
1210 		}
1211 		/*
1212 		 * We can't do anything without SYN.
1213 		 */
1214 		if ((thflags & TH_SYN) == 0) {
1215 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1216 				log(LOG_DEBUG, "%s; %s: Listen socket: "
1217 				    "SYN is missing, segment ignored\n",
1218 				    s, __func__);
1219 			TCPSTAT_INC(tcps_badsyn);
1220 			goto dropunlock;
1221 		}
1222 		/*
1223 		 * (SYN|ACK) is bogus on a listen socket.
1224 		 */
1225 		if (thflags & TH_ACK) {
1226 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1227 				log(LOG_DEBUG, "%s; %s: Listen socket: "
1228 				    "SYN|ACK invalid, segment rejected\n",
1229 				    s, __func__);
1230 			syncache_badack(&inc);	/* XXX: Not needed! */
1231 			TCPSTAT_INC(tcps_badsyn);
1232 			rstreason = BANDLIM_RST_OPENPORT;
1233 			goto dropwithreset;
1234 		}
1235 		/*
1236 		 * If the drop_synfin option is enabled, drop all
1237 		 * segments with both the SYN and FIN bits set.
1238 		 * This prevents e.g. nmap from identifying the
1239 		 * TCP/IP stack.
1240 		 * XXX: Poor reasoning.  nmap has other methods
1241 		 * and is constantly refining its stack detection
1242 		 * strategies.
1243 		 * XXX: This is a violation of the TCP specification
1244 		 * and was used by RFC1644.
1245 		 */
1246 		if ((thflags & TH_FIN) && V_drop_synfin) {
1247 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1248 				log(LOG_DEBUG, "%s; %s: Listen socket: "
1249 				    "SYN|FIN segment ignored (based on "
1250 				    "sysctl setting)\n", s, __func__);
1251 			TCPSTAT_INC(tcps_badsyn);
1252 			goto dropunlock;
1253 		}
1254 		/*
1255 		 * Segment's flags are (SYN) or (SYN|FIN).
1256 		 *
1257 		 * TH_PUSH, TH_URG, TH_ECE, TH_CWR are ignored
1258 		 * as they do not affect the state of the TCP FSM.
1259 		 * The data pointed to by TH_URG and th_urp is ignored.
1260 		 */
1261 		KASSERT((thflags & (TH_RST|TH_ACK)) == 0,
1262 		    ("%s: Listen socket: TH_RST or TH_ACK set", __func__));
1263 		KASSERT(thflags & (TH_SYN),
1264 		    ("%s: Listen socket: TH_SYN not set", __func__));
1265 #ifdef INET6
1266 		/*
1267 		 * If deprecated address is forbidden,
1268 		 * we do not accept SYN to deprecated interface
1269 		 * address to prevent any new inbound connection from
1270 		 * getting established.
1271 		 * When we do not accept SYN, we send a TCP RST,
1272 		 * with deprecated source address (instead of dropping
1273 		 * it).  We compromise it as it is much better for peer
1274 		 * to send a RST, and RST will be the final packet
1275 		 * for the exchange.
1276 		 *
1277 		 * If we do not forbid deprecated addresses, we accept
1278 		 * the SYN packet.  RFC2462 does not suggest dropping
1279 		 * SYN in this case.
1280 		 * If we decipher RFC2462 5.5.4, it says like this:
1281 		 * 1. use of deprecated addr with existing
1282 		 *    communication is okay - "SHOULD continue to be
1283 		 *    used"
1284 		 * 2. use of it with new communication:
1285 		 *   (2a) "SHOULD NOT be used if alternate address
1286 		 *        with sufficient scope is available"
1287 		 *   (2b) nothing mentioned otherwise.
1288 		 * Here we fall into (2b) case as we have no choice in
1289 		 * our source address selection - we must obey the peer.
1290 		 *
1291 		 * The wording in RFC2462 is confusing, and there are
1292 		 * multiple description text for deprecated address
1293 		 * handling - worse, they are not exactly the same.
1294 		 * I believe 5.5.4 is the best one, so we follow 5.5.4.
1295 		 */
1296 		if (isipv6 && !V_ip6_use_deprecated) {
1297 			struct in6_ifaddr *ia6;
1298 
1299 			ia6 = in6ifa_ifwithaddr(&ip6->ip6_dst, 0 /* XXX */);
1300 			if (ia6 != NULL &&
1301 			    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
1302 				ifa_free(&ia6->ia_ifa);
1303 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1304 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1305 					"Connection attempt to deprecated "
1306 					"IPv6 address rejected\n",
1307 					s, __func__);
1308 				rstreason = BANDLIM_RST_OPENPORT;
1309 				goto dropwithreset;
1310 			}
1311 			if (ia6)
1312 				ifa_free(&ia6->ia_ifa);
1313 		}
1314 #endif /* INET6 */
1315 		/*
1316 		 * Basic sanity checks on incoming SYN requests:
1317 		 *   Don't respond if the destination is a link layer
1318 		 *	broadcast according to RFC1122 4.2.3.10, p. 104.
1319 		 *   If it is from this socket it must be forged.
1320 		 *   Don't respond if the source or destination is a
1321 		 *	global or subnet broad- or multicast address.
1322 		 *   Note that it is quite possible to receive unicast
1323 		 *	link-layer packets with a broadcast IP address. Use
1324 		 *	in_broadcast() to find them.
1325 		 */
1326 		if (m->m_flags & (M_BCAST|M_MCAST)) {
1327 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1328 			    log(LOG_DEBUG, "%s; %s: Listen socket: "
1329 				"Connection attempt from broad- or multicast "
1330 				"link layer address ignored\n", s, __func__);
1331 			goto dropunlock;
1332 		}
1333 #ifdef INET6
1334 		if (isipv6) {
1335 			if (th->th_dport == th->th_sport &&
1336 			    IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst, &ip6->ip6_src)) {
1337 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1338 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1339 					"Connection attempt to/from self "
1340 					"ignored\n", s, __func__);
1341 				goto dropunlock;
1342 			}
1343 			if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
1344 			    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
1345 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1346 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1347 					"Connection attempt from/to multicast "
1348 					"address ignored\n", s, __func__);
1349 				goto dropunlock;
1350 			}
1351 		}
1352 #endif
1353 #if defined(INET) && defined(INET6)
1354 		else
1355 #endif
1356 #ifdef INET
1357 		{
1358 			if (th->th_dport == th->th_sport &&
1359 			    ip->ip_dst.s_addr == ip->ip_src.s_addr) {
1360 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1361 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1362 					"Connection attempt from/to self "
1363 					"ignored\n", s, __func__);
1364 				goto dropunlock;
1365 			}
1366 			if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
1367 			    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
1368 			    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
1369 			    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif)) {
1370 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1371 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1372 					"Connection attempt from/to broad- "
1373 					"or multicast address ignored\n",
1374 					s, __func__);
1375 				goto dropunlock;
1376 			}
1377 		}
1378 #endif
1379 		/*
1380 		 * SYN appears to be valid.  Create compressed TCP state
1381 		 * for syncache.
1382 		 */
1383 #ifdef TCPDEBUG
1384 		if (so->so_options & SO_DEBUG)
1385 			tcp_trace(TA_INPUT, ostate, tp,
1386 			    (void *)tcp_saveipgen, &tcp_savetcp, 0);
1387 #endif
1388 		TCP_PROBE3(debug__input, tp, th, mtod(m, const char *));
1389 		tcp_dooptions(&to, optp, optlen, TO_SYN);
1390 #ifdef TCP_RFC7413
1391 		if (syncache_add(&inc, &to, th, inp, &so, m, NULL, NULL))
1392 			goto new_tfo_socket;
1393 #else
1394 		syncache_add(&inc, &to, th, inp, &so, m, NULL, NULL);
1395 #endif
1396 		/*
1397 		 * Entry added to syncache and mbuf consumed.
1398 		 * Only the listen socket is unlocked by syncache_add().
1399 		 */
1400 		if (ti_locked == TI_RLOCKED) {
1401 			INP_INFO_RUNLOCK(&V_tcbinfo);
1402 			ti_locked = TI_UNLOCKED;
1403 		}
1404 		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1405 		return (IPPROTO_DONE);
1406 	} else if (tp->t_state == TCPS_LISTEN) {
1407 		/*
1408 		 * When a listen socket is torn down the SO_ACCEPTCONN
1409 		 * flag is removed first while connections are drained
1410 		 * from the accept queue in a unlock/lock cycle of the
1411 		 * ACCEPT_LOCK, opening a race condition allowing a SYN
1412 		 * attempt go through unhandled.
1413 		 */
1414 		goto dropunlock;
1415 	}
1416 
1417 #ifdef TCP_SIGNATURE
1418 	if (sig_checked == 0)  {
1419 		tcp_dooptions(&to, optp, optlen,
1420 		    (thflags & TH_SYN) ? TO_SYN : 0);
1421 		if (!tcp_signature_verify_input(m, off0, tlen, optlen, &to,
1422 		    th, tp->t_flags)) {
1423 
1424 			/*
1425 			 * In SYN_SENT state if it receives an RST, it is
1426 			 * allowed for further processing.
1427 			 */
1428 			if ((thflags & TH_RST) == 0 ||
1429 			    (tp->t_state == TCPS_SYN_SENT) == 0)
1430 				goto dropunlock;
1431 		}
1432 		sig_checked = 1;
1433 	}
1434 #endif
1435 
1436 	TCP_PROBE5(receive, NULL, tp, mtod(m, const char *), tp, th);
1437 
1438 	/*
1439 	 * Segment belongs to a connection in SYN_SENT, ESTABLISHED or later
1440 	 * state.  tcp_do_segment() always consumes the mbuf chain, unlocks
1441 	 * the inpcb, and unlocks pcbinfo.
1442 	 */
1443 	tp->t_fb->tfb_tcp_do_segment(m, th, so, tp, drop_hdrlen, tlen, iptos, ti_locked);
1444 	INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1445 	return (IPPROTO_DONE);
1446 
1447 dropwithreset:
1448 	TCP_PROBE5(receive, NULL, tp, mtod(m, const char *), tp, th);
1449 
1450 	if (ti_locked == TI_RLOCKED) {
1451 		INP_INFO_RUNLOCK(&V_tcbinfo);
1452 		ti_locked = TI_UNLOCKED;
1453 	}
1454 #ifdef INVARIANTS
1455 	else {
1456 		KASSERT(ti_locked == TI_UNLOCKED, ("%s: dropwithreset "
1457 		    "ti_locked: %d", __func__, ti_locked));
1458 		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1459 	}
1460 #endif
1461 
1462 	if (inp != NULL) {
1463 		tcp_dropwithreset(m, th, tp, tlen, rstreason);
1464 		INP_WUNLOCK(inp);
1465 	} else
1466 		tcp_dropwithreset(m, th, NULL, tlen, rstreason);
1467 	m = NULL;	/* mbuf chain got consumed. */
1468 	goto drop;
1469 
1470 dropunlock:
1471 	if (m != NULL)
1472 		TCP_PROBE5(receive, NULL, tp, mtod(m, const char *), tp, th);
1473 
1474 	if (ti_locked == TI_RLOCKED) {
1475 		INP_INFO_RUNLOCK(&V_tcbinfo);
1476 		ti_locked = TI_UNLOCKED;
1477 	}
1478 #ifdef INVARIANTS
1479 	else {
1480 		KASSERT(ti_locked == TI_UNLOCKED, ("%s: dropunlock "
1481 		    "ti_locked: %d", __func__, ti_locked));
1482 		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1483 	}
1484 #endif
1485 
1486 	if (inp != NULL)
1487 		INP_WUNLOCK(inp);
1488 
1489 drop:
1490 	INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1491 	if (s != NULL)
1492 		free(s, M_TCPLOG);
1493 	if (m != NULL)
1494 		m_freem(m);
1495 	return (IPPROTO_DONE);
1496 }
1497 
1498 void
1499 tcp_do_segment(struct mbuf *m, struct tcphdr *th, struct socket *so,
1500     struct tcpcb *tp, int drop_hdrlen, int tlen, uint8_t iptos,
1501     int ti_locked)
1502 {
1503 	int thflags, acked, ourfinisacked, needoutput = 0, sack_changed;
1504 	int rstreason, todrop, win;
1505 	u_long tiwin;
1506 	char *s;
1507 	struct in_conninfo *inc;
1508 	struct mbuf *mfree;
1509 	struct tcpopt to;
1510 	int tfo_syn;
1511 
1512 #ifdef TCPDEBUG
1513 	/*
1514 	 * The size of tcp_saveipgen must be the size of the max ip header,
1515 	 * now IPv6.
1516 	 */
1517 	u_char tcp_saveipgen[IP6_HDR_LEN];
1518 	struct tcphdr tcp_savetcp;
1519 	short ostate = 0;
1520 #endif
1521 	thflags = th->th_flags;
1522 	inc = &tp->t_inpcb->inp_inc;
1523 	tp->sackhint.last_sack_ack = 0;
1524 	sack_changed = 0;
1525 
1526 	/*
1527 	 * If this is either a state-changing packet or current state isn't
1528 	 * established, we require a write lock on tcbinfo.  Otherwise, we
1529 	 * allow the tcbinfo to be in either alocked or unlocked, as the
1530 	 * caller may have unnecessarily acquired a write lock due to a race.
1531 	 */
1532 	if ((thflags & (TH_SYN | TH_FIN | TH_RST)) != 0 ||
1533 	    tp->t_state != TCPS_ESTABLISHED) {
1534 		KASSERT(ti_locked == TI_RLOCKED, ("%s ti_locked %d for "
1535 		    "SYN/FIN/RST/!EST", __func__, ti_locked));
1536 		INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
1537 	} else {
1538 #ifdef INVARIANTS
1539 		if (ti_locked == TI_RLOCKED)
1540 			INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
1541 		else {
1542 			KASSERT(ti_locked == TI_UNLOCKED, ("%s: EST "
1543 			    "ti_locked: %d", __func__, ti_locked));
1544 			INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1545 		}
1546 #endif
1547 	}
1548 	INP_WLOCK_ASSERT(tp->t_inpcb);
1549 	KASSERT(tp->t_state > TCPS_LISTEN, ("%s: TCPS_LISTEN",
1550 	    __func__));
1551 	KASSERT(tp->t_state != TCPS_TIME_WAIT, ("%s: TCPS_TIME_WAIT",
1552 	    __func__));
1553 
1554 #ifdef TCPPCAP
1555 	/* Save segment, if requested. */
1556 	tcp_pcap_add(th, m, &(tp->t_inpkts));
1557 #endif
1558 
1559 	/*
1560 	 * Segment received on connection.
1561 	 * Reset idle time and keep-alive timer.
1562 	 * XXX: This should be done after segment
1563 	 * validation to ignore broken/spoofed segs.
1564 	 */
1565 	tp->t_rcvtime = ticks;
1566 	if (TCPS_HAVEESTABLISHED(tp->t_state))
1567 		tcp_timer_activate(tp, TT_KEEP, TP_KEEPIDLE(tp));
1568 
1569 	/*
1570 	 * Scale up the window into a 32-bit value.
1571 	 * For the SYN_SENT state the scale is zero.
1572 	 */
1573 	tiwin = th->th_win << tp->snd_scale;
1574 
1575 	/*
1576 	 * TCP ECN processing.
1577 	 */
1578 	if (tp->t_flags & TF_ECN_PERMIT) {
1579 		if (thflags & TH_CWR)
1580 			tp->t_flags &= ~TF_ECN_SND_ECE;
1581 		switch (iptos & IPTOS_ECN_MASK) {
1582 		case IPTOS_ECN_CE:
1583 			tp->t_flags |= TF_ECN_SND_ECE;
1584 			TCPSTAT_INC(tcps_ecn_ce);
1585 			break;
1586 		case IPTOS_ECN_ECT0:
1587 			TCPSTAT_INC(tcps_ecn_ect0);
1588 			break;
1589 		case IPTOS_ECN_ECT1:
1590 			TCPSTAT_INC(tcps_ecn_ect1);
1591 			break;
1592 		}
1593 
1594 		/* Process a packet differently from RFC3168. */
1595 		cc_ecnpkt_handler(tp, th, iptos);
1596 
1597 		/* Congestion experienced. */
1598 		if (thflags & TH_ECE) {
1599 			cc_cong_signal(tp, th, CC_ECN);
1600 		}
1601 	}
1602 
1603 	/*
1604 	 * Parse options on any incoming segment.
1605 	 */
1606 	tcp_dooptions(&to, (u_char *)(th + 1),
1607 	    (th->th_off << 2) - sizeof(struct tcphdr),
1608 	    (thflags & TH_SYN) ? TO_SYN : 0);
1609 
1610 	/*
1611 	 * If echoed timestamp is later than the current time,
1612 	 * fall back to non RFC1323 RTT calculation.  Normalize
1613 	 * timestamp if syncookies were used when this connection
1614 	 * was established.
1615 	 */
1616 	if ((to.to_flags & TOF_TS) && (to.to_tsecr != 0)) {
1617 		to.to_tsecr -= tp->ts_offset;
1618 		if (TSTMP_GT(to.to_tsecr, tcp_ts_getticks()))
1619 			to.to_tsecr = 0;
1620 	}
1621 	/*
1622 	 * If timestamps were negotiated during SYN/ACK they should
1623 	 * appear on every segment during this session and vice versa.
1624 	 */
1625 	if ((tp->t_flags & TF_RCVD_TSTMP) && !(to.to_flags & TOF_TS)) {
1626 		if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1627 			log(LOG_DEBUG, "%s; %s: Timestamp missing, "
1628 			    "no action\n", s, __func__);
1629 			free(s, M_TCPLOG);
1630 		}
1631 	}
1632 	if (!(tp->t_flags & TF_RCVD_TSTMP) && (to.to_flags & TOF_TS)) {
1633 		if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1634 			log(LOG_DEBUG, "%s; %s: Timestamp not expected, "
1635 			    "no action\n", s, __func__);
1636 			free(s, M_TCPLOG);
1637 		}
1638 	}
1639 
1640 	/*
1641 	 * Process options only when we get SYN/ACK back. The SYN case
1642 	 * for incoming connections is handled in tcp_syncache.
1643 	 * According to RFC1323 the window field in a SYN (i.e., a <SYN>
1644 	 * or <SYN,ACK>) segment itself is never scaled.
1645 	 * XXX this is traditional behavior, may need to be cleaned up.
1646 	 */
1647 	if (tp->t_state == TCPS_SYN_SENT && (thflags & TH_SYN)) {
1648 		if ((to.to_flags & TOF_SCALE) &&
1649 		    (tp->t_flags & TF_REQ_SCALE)) {
1650 			tp->t_flags |= TF_RCVD_SCALE;
1651 			tp->snd_scale = to.to_wscale;
1652 		}
1653 		/*
1654 		 * Initial send window.  It will be updated with
1655 		 * the next incoming segment to the scaled value.
1656 		 */
1657 		tp->snd_wnd = th->th_win;
1658 		if (to.to_flags & TOF_TS) {
1659 			tp->t_flags |= TF_RCVD_TSTMP;
1660 			tp->ts_recent = to.to_tsval;
1661 			tp->ts_recent_age = tcp_ts_getticks();
1662 		}
1663 		if (to.to_flags & TOF_MSS)
1664 			tcp_mss(tp, to.to_mss);
1665 		if ((tp->t_flags & TF_SACK_PERMIT) &&
1666 		    (to.to_flags & TOF_SACKPERM) == 0)
1667 			tp->t_flags &= ~TF_SACK_PERMIT;
1668 	}
1669 
1670 	/*
1671 	 * Header prediction: check for the two common cases
1672 	 * of a uni-directional data xfer.  If the packet has
1673 	 * no control flags, is in-sequence, the window didn't
1674 	 * change and we're not retransmitting, it's a
1675 	 * candidate.  If the length is zero and the ack moved
1676 	 * forward, we're the sender side of the xfer.  Just
1677 	 * free the data acked & wake any higher level process
1678 	 * that was blocked waiting for space.  If the length
1679 	 * is non-zero and the ack didn't move, we're the
1680 	 * receiver side.  If we're getting packets in-order
1681 	 * (the reassembly queue is empty), add the data to
1682 	 * the socket buffer and note that we need a delayed ack.
1683 	 * Make sure that the hidden state-flags are also off.
1684 	 * Since we check for TCPS_ESTABLISHED first, it can only
1685 	 * be TH_NEEDSYN.
1686 	 */
1687 	if (tp->t_state == TCPS_ESTABLISHED &&
1688 	    th->th_seq == tp->rcv_nxt &&
1689 	    (thflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
1690 	    tp->snd_nxt == tp->snd_max &&
1691 	    tiwin && tiwin == tp->snd_wnd &&
1692 	    ((tp->t_flags & (TF_NEEDSYN|TF_NEEDFIN)) == 0) &&
1693 	    LIST_EMPTY(&tp->t_segq) &&
1694 	    ((to.to_flags & TOF_TS) == 0 ||
1695 	     TSTMP_GEQ(to.to_tsval, tp->ts_recent)) ) {
1696 
1697 		/*
1698 		 * If last ACK falls within this segment's sequence numbers,
1699 		 * record the timestamp.
1700 		 * NOTE that the test is modified according to the latest
1701 		 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
1702 		 */
1703 		if ((to.to_flags & TOF_TS) != 0 &&
1704 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1705 			tp->ts_recent_age = tcp_ts_getticks();
1706 			tp->ts_recent = to.to_tsval;
1707 		}
1708 
1709 		if (tlen == 0) {
1710 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
1711 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
1712 			    !IN_RECOVERY(tp->t_flags) &&
1713 			    (to.to_flags & TOF_SACK) == 0 &&
1714 			    TAILQ_EMPTY(&tp->snd_holes)) {
1715 				/*
1716 				 * This is a pure ack for outstanding data.
1717 				 */
1718 				if (ti_locked == TI_RLOCKED)
1719 					INP_INFO_RUNLOCK(&V_tcbinfo);
1720 				ti_locked = TI_UNLOCKED;
1721 
1722 				TCPSTAT_INC(tcps_predack);
1723 
1724 				/*
1725 				 * "bad retransmit" recovery.
1726 				 */
1727 				if (tp->t_rxtshift == 1 &&
1728 				    tp->t_flags & TF_PREVVALID &&
1729 				    (int)(ticks - tp->t_badrxtwin) < 0) {
1730 					cc_cong_signal(tp, th, CC_RTO_ERR);
1731 				}
1732 
1733 				/*
1734 				 * Recalculate the transmit timer / rtt.
1735 				 *
1736 				 * Some boxes send broken timestamp replies
1737 				 * during the SYN+ACK phase, ignore
1738 				 * timestamps of 0 or we could calculate a
1739 				 * huge RTT and blow up the retransmit timer.
1740 				 */
1741 				if ((to.to_flags & TOF_TS) != 0 &&
1742 				    to.to_tsecr) {
1743 					u_int t;
1744 
1745 					t = tcp_ts_getticks() - to.to_tsecr;
1746 					if (!tp->t_rttlow || tp->t_rttlow > t)
1747 						tp->t_rttlow = t;
1748 					tcp_xmit_timer(tp,
1749 					    TCP_TS_TO_TICKS(t) + 1);
1750 				} else if (tp->t_rtttime &&
1751 				    SEQ_GT(th->th_ack, tp->t_rtseq)) {
1752 					if (!tp->t_rttlow ||
1753 					    tp->t_rttlow > ticks - tp->t_rtttime)
1754 						tp->t_rttlow = ticks - tp->t_rtttime;
1755 					tcp_xmit_timer(tp,
1756 							ticks - tp->t_rtttime);
1757 				}
1758 				acked = BYTES_THIS_ACK(tp, th);
1759 
1760 				/* Run HHOOK_TCP_ESTABLISHED_IN helper hooks. */
1761 				hhook_run_tcp_est_in(tp, th, &to);
1762 
1763 				TCPSTAT_INC(tcps_rcvackpack);
1764 				TCPSTAT_ADD(tcps_rcvackbyte, acked);
1765 				sbdrop(&so->so_snd, acked);
1766 				if (SEQ_GT(tp->snd_una, tp->snd_recover) &&
1767 				    SEQ_LEQ(th->th_ack, tp->snd_recover))
1768 					tp->snd_recover = th->th_ack - 1;
1769 
1770 				/*
1771 				 * Let the congestion control algorithm update
1772 				 * congestion control related information. This
1773 				 * typically means increasing the congestion
1774 				 * window.
1775 				 */
1776 				cc_ack_received(tp, th, CC_ACK);
1777 
1778 				tp->snd_una = th->th_ack;
1779 				/*
1780 				 * Pull snd_wl2 up to prevent seq wrap relative
1781 				 * to th_ack.
1782 				 */
1783 				tp->snd_wl2 = th->th_ack;
1784 				tp->t_dupacks = 0;
1785 				m_freem(m);
1786 
1787 				/*
1788 				 * If all outstanding data are acked, stop
1789 				 * retransmit timer, otherwise restart timer
1790 				 * using current (possibly backed-off) value.
1791 				 * If process is waiting for space,
1792 				 * wakeup/selwakeup/signal.  If data
1793 				 * are ready to send, let tcp_output
1794 				 * decide between more output or persist.
1795 				 */
1796 #ifdef TCPDEBUG
1797 				if (so->so_options & SO_DEBUG)
1798 					tcp_trace(TA_INPUT, ostate, tp,
1799 					    (void *)tcp_saveipgen,
1800 					    &tcp_savetcp, 0);
1801 #endif
1802 				TCP_PROBE3(debug__input, tp, th,
1803 					mtod(m, const char *));
1804 				if (tp->snd_una == tp->snd_max)
1805 					tcp_timer_activate(tp, TT_REXMT, 0);
1806 				else if (!tcp_timer_active(tp, TT_PERSIST))
1807 					tcp_timer_activate(tp, TT_REXMT,
1808 						      tp->t_rxtcur);
1809 				sowwakeup(so);
1810 				if (sbavail(&so->so_snd))
1811 					(void) tp->t_fb->tfb_tcp_output(tp);
1812 				goto check_delack;
1813 			}
1814 		} else if (th->th_ack == tp->snd_una &&
1815 		    tlen <= sbspace(&so->so_rcv)) {
1816 			int newsize = 0;	/* automatic sockbuf scaling */
1817 
1818 			/*
1819 			 * This is a pure, in-sequence data packet with
1820 			 * nothing on the reassembly queue and we have enough
1821 			 * buffer space to take it.
1822 			 */
1823 			if (ti_locked == TI_RLOCKED)
1824 				INP_INFO_RUNLOCK(&V_tcbinfo);
1825 			ti_locked = TI_UNLOCKED;
1826 
1827 			/* Clean receiver SACK report if present */
1828 			if ((tp->t_flags & TF_SACK_PERMIT) && tp->rcv_numsacks)
1829 				tcp_clean_sackreport(tp);
1830 			TCPSTAT_INC(tcps_preddat);
1831 			tp->rcv_nxt += tlen;
1832 			/*
1833 			 * Pull snd_wl1 up to prevent seq wrap relative to
1834 			 * th_seq.
1835 			 */
1836 			tp->snd_wl1 = th->th_seq;
1837 			/*
1838 			 * Pull rcv_up up to prevent seq wrap relative to
1839 			 * rcv_nxt.
1840 			 */
1841 			tp->rcv_up = tp->rcv_nxt;
1842 			TCPSTAT_INC(tcps_rcvpack);
1843 			TCPSTAT_ADD(tcps_rcvbyte, tlen);
1844 #ifdef TCPDEBUG
1845 			if (so->so_options & SO_DEBUG)
1846 				tcp_trace(TA_INPUT, ostate, tp,
1847 				    (void *)tcp_saveipgen, &tcp_savetcp, 0);
1848 #endif
1849 			TCP_PROBE3(debug__input, tp, th, mtod(m, const char *));
1850 
1851 		/*
1852 		 * Automatic sizing of receive socket buffer.  Often the send
1853 		 * buffer size is not optimally adjusted to the actual network
1854 		 * conditions at hand (delay bandwidth product).  Setting the
1855 		 * buffer size too small limits throughput on links with high
1856 		 * bandwidth and high delay (eg. trans-continental/oceanic links).
1857 		 *
1858 		 * On the receive side the socket buffer memory is only rarely
1859 		 * used to any significant extent.  This allows us to be much
1860 		 * more aggressive in scaling the receive socket buffer.  For
1861 		 * the case that the buffer space is actually used to a large
1862 		 * extent and we run out of kernel memory we can simply drop
1863 		 * the new segments; TCP on the sender will just retransmit it
1864 		 * later.  Setting the buffer size too big may only consume too
1865 		 * much kernel memory if the application doesn't read() from
1866 		 * the socket or packet loss or reordering makes use of the
1867 		 * reassembly queue.
1868 		 *
1869 		 * The criteria to step up the receive buffer one notch are:
1870 		 *  1. Application has not set receive buffer size with
1871 		 *     SO_RCVBUF. Setting SO_RCVBUF clears SB_AUTOSIZE.
1872 		 *  2. the number of bytes received during the time it takes
1873 		 *     one timestamp to be reflected back to us (the RTT);
1874 		 *  3. received bytes per RTT is within seven eighth of the
1875 		 *     current socket buffer size;
1876 		 *  4. receive buffer size has not hit maximal automatic size;
1877 		 *
1878 		 * This algorithm does one step per RTT at most and only if
1879 		 * we receive a bulk stream w/o packet losses or reorderings.
1880 		 * Shrinking the buffer during idle times is not necessary as
1881 		 * it doesn't consume any memory when idle.
1882 		 *
1883 		 * TODO: Only step up if the application is actually serving
1884 		 * the buffer to better manage the socket buffer resources.
1885 		 */
1886 			if (V_tcp_do_autorcvbuf &&
1887 			    (to.to_flags & TOF_TS) &&
1888 			    to.to_tsecr &&
1889 			    (so->so_rcv.sb_flags & SB_AUTOSIZE)) {
1890 				if (TSTMP_GT(to.to_tsecr, tp->rfbuf_ts) &&
1891 				    to.to_tsecr - tp->rfbuf_ts < hz) {
1892 					if (tp->rfbuf_cnt >
1893 					    (so->so_rcv.sb_hiwat / 8 * 7) &&
1894 					    so->so_rcv.sb_hiwat <
1895 					    V_tcp_autorcvbuf_max) {
1896 						newsize =
1897 						    min(so->so_rcv.sb_hiwat +
1898 						    V_tcp_autorcvbuf_inc,
1899 						    V_tcp_autorcvbuf_max);
1900 					}
1901 					/* Start over with next RTT. */
1902 					tp->rfbuf_ts = 0;
1903 					tp->rfbuf_cnt = 0;
1904 				} else
1905 					tp->rfbuf_cnt += tlen;	/* add up */
1906 			}
1907 
1908 			/* Add data to socket buffer. */
1909 			SOCKBUF_LOCK(&so->so_rcv);
1910 			if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
1911 				m_freem(m);
1912 			} else {
1913 				/*
1914 				 * Set new socket buffer size.
1915 				 * Give up when limit is reached.
1916 				 */
1917 				if (newsize)
1918 					if (!sbreserve_locked(&so->so_rcv,
1919 					    newsize, so, NULL))
1920 						so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
1921 				m_adj(m, drop_hdrlen);	/* delayed header drop */
1922 				sbappendstream_locked(&so->so_rcv, m, 0);
1923 			}
1924 			/* NB: sorwakeup_locked() does an implicit unlock. */
1925 			sorwakeup_locked(so);
1926 			if (DELAY_ACK(tp, tlen)) {
1927 				tp->t_flags |= TF_DELACK;
1928 			} else {
1929 				tp->t_flags |= TF_ACKNOW;
1930 				tp->t_fb->tfb_tcp_output(tp);
1931 			}
1932 			goto check_delack;
1933 		}
1934 	}
1935 
1936 	/*
1937 	 * Calculate amount of space in receive window,
1938 	 * and then do TCP input processing.
1939 	 * Receive window is amount of space in rcv queue,
1940 	 * but not less than advertised window.
1941 	 */
1942 	win = sbspace(&so->so_rcv);
1943 	if (win < 0)
1944 		win = 0;
1945 	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1946 
1947 	/* Reset receive buffer auto scaling when not in bulk receive mode. */
1948 	tp->rfbuf_ts = 0;
1949 	tp->rfbuf_cnt = 0;
1950 
1951 	switch (tp->t_state) {
1952 
1953 	/*
1954 	 * If the state is SYN_RECEIVED:
1955 	 *	if seg contains an ACK, but not for our SYN/ACK, send a RST.
1956 	 */
1957 	case TCPS_SYN_RECEIVED:
1958 		if ((thflags & TH_ACK) &&
1959 		    (SEQ_LEQ(th->th_ack, tp->snd_una) ||
1960 		     SEQ_GT(th->th_ack, tp->snd_max))) {
1961 				rstreason = BANDLIM_RST_OPENPORT;
1962 				goto dropwithreset;
1963 		}
1964 #ifdef TCP_RFC7413
1965 		if (tp->t_flags & TF_FASTOPEN) {
1966 			/*
1967 			 * When a TFO connection is in SYN_RECEIVED, the
1968 			 * only valid packets are the initial SYN, a
1969 			 * retransmit/copy of the initial SYN (possibly with
1970 			 * a subset of the original data), a valid ACK, a
1971 			 * FIN, or a RST.
1972 			 */
1973 			if ((thflags & (TH_SYN|TH_ACK)) == (TH_SYN|TH_ACK)) {
1974 				rstreason = BANDLIM_RST_OPENPORT;
1975 				goto dropwithreset;
1976 			} else if (thflags & TH_SYN) {
1977 				/* non-initial SYN is ignored */
1978 				if ((tcp_timer_active(tp, TT_DELACK) ||
1979 				     tcp_timer_active(tp, TT_REXMT)))
1980 					goto drop;
1981 			} else if (!(thflags & (TH_ACK|TH_FIN|TH_RST))) {
1982 				goto drop;
1983 			}
1984 		}
1985 #endif
1986 		break;
1987 
1988 	/*
1989 	 * If the state is SYN_SENT:
1990 	 *	if seg contains an ACK, but not for our SYN, drop the input.
1991 	 *	if seg contains a RST, then drop the connection.
1992 	 *	if seg does not contain SYN, then drop it.
1993 	 * Otherwise this is an acceptable SYN segment
1994 	 *	initialize tp->rcv_nxt and tp->irs
1995 	 *	if seg contains ack then advance tp->snd_una
1996 	 *	if seg contains an ECE and ECN support is enabled, the stream
1997 	 *	    is ECN capable.
1998 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1999 	 *	arrange for segment to be acked (eventually)
2000 	 *	continue processing rest of data/controls, beginning with URG
2001 	 */
2002 	case TCPS_SYN_SENT:
2003 		if ((thflags & TH_ACK) &&
2004 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
2005 		     SEQ_GT(th->th_ack, tp->snd_max))) {
2006 			rstreason = BANDLIM_UNLIMITED;
2007 			goto dropwithreset;
2008 		}
2009 		if ((thflags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) {
2010 			TCP_PROBE5(connect__refused, NULL, tp,
2011 			    mtod(m, const char *), tp, th);
2012 			tp = tcp_drop(tp, ECONNREFUSED);
2013 		}
2014 		if (thflags & TH_RST)
2015 			goto drop;
2016 		if (!(thflags & TH_SYN))
2017 			goto drop;
2018 
2019 		tp->irs = th->th_seq;
2020 		tcp_rcvseqinit(tp);
2021 		if (thflags & TH_ACK) {
2022 			TCPSTAT_INC(tcps_connects);
2023 			soisconnected(so);
2024 #ifdef MAC
2025 			mac_socketpeer_set_from_mbuf(m, so);
2026 #endif
2027 			/* Do window scaling on this connection? */
2028 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2029 				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
2030 				tp->rcv_scale = tp->request_r_scale;
2031 			}
2032 			tp->rcv_adv += imin(tp->rcv_wnd,
2033 			    TCP_MAXWIN << tp->rcv_scale);
2034 			tp->snd_una++;		/* SYN is acked */
2035 			/*
2036 			 * If there's data, delay ACK; if there's also a FIN
2037 			 * ACKNOW will be turned on later.
2038 			 */
2039 			if (DELAY_ACK(tp, tlen) && tlen != 0)
2040 				tcp_timer_activate(tp, TT_DELACK,
2041 				    tcp_delacktime);
2042 			else
2043 				tp->t_flags |= TF_ACKNOW;
2044 
2045 			if ((thflags & TH_ECE) && V_tcp_do_ecn) {
2046 				tp->t_flags |= TF_ECN_PERMIT;
2047 				TCPSTAT_INC(tcps_ecn_shs);
2048 			}
2049 
2050 			/*
2051 			 * Received <SYN,ACK> in SYN_SENT[*] state.
2052 			 * Transitions:
2053 			 *	SYN_SENT  --> ESTABLISHED
2054 			 *	SYN_SENT* --> FIN_WAIT_1
2055 			 */
2056 			tp->t_starttime = ticks;
2057 			if (tp->t_flags & TF_NEEDFIN) {
2058 				tcp_state_change(tp, TCPS_FIN_WAIT_1);
2059 				tp->t_flags &= ~TF_NEEDFIN;
2060 				thflags &= ~TH_SYN;
2061 			} else {
2062 				tcp_state_change(tp, TCPS_ESTABLISHED);
2063 				TCP_PROBE5(connect__established, NULL, tp,
2064 				    mtod(m, const char *), tp, th);
2065 				cc_conn_init(tp);
2066 				tcp_timer_activate(tp, TT_KEEP,
2067 				    TP_KEEPIDLE(tp));
2068 			}
2069 		} else {
2070 			/*
2071 			 * Received initial SYN in SYN-SENT[*] state =>
2072 			 * simultaneous open.
2073 			 * If it succeeds, connection is * half-synchronized.
2074 			 * Otherwise, do 3-way handshake:
2075 			 *        SYN-SENT -> SYN-RECEIVED
2076 			 *        SYN-SENT* -> SYN-RECEIVED*
2077 			 */
2078 			tp->t_flags |= (TF_ACKNOW | TF_NEEDSYN);
2079 			tcp_timer_activate(tp, TT_REXMT, 0);
2080 			tcp_state_change(tp, TCPS_SYN_RECEIVED);
2081 		}
2082 
2083 		KASSERT(ti_locked == TI_RLOCKED, ("%s: trimthenstep6: "
2084 		    "ti_locked %d", __func__, ti_locked));
2085 		INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
2086 		INP_WLOCK_ASSERT(tp->t_inpcb);
2087 
2088 		/*
2089 		 * Advance th->th_seq to correspond to first data byte.
2090 		 * If data, trim to stay within window,
2091 		 * dropping FIN if necessary.
2092 		 */
2093 		th->th_seq++;
2094 		if (tlen > tp->rcv_wnd) {
2095 			todrop = tlen - tp->rcv_wnd;
2096 			m_adj(m, -todrop);
2097 			tlen = tp->rcv_wnd;
2098 			thflags &= ~TH_FIN;
2099 			TCPSTAT_INC(tcps_rcvpackafterwin);
2100 			TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop);
2101 		}
2102 		tp->snd_wl1 = th->th_seq - 1;
2103 		tp->rcv_up = th->th_seq;
2104 		/*
2105 		 * Client side of transaction: already sent SYN and data.
2106 		 * If the remote host used T/TCP to validate the SYN,
2107 		 * our data will be ACK'd; if so, enter normal data segment
2108 		 * processing in the middle of step 5, ack processing.
2109 		 * Otherwise, goto step 6.
2110 		 */
2111 		if (thflags & TH_ACK)
2112 			goto process_ACK;
2113 
2114 		goto step6;
2115 
2116 	/*
2117 	 * If the state is LAST_ACK or CLOSING or TIME_WAIT:
2118 	 *      do normal processing.
2119 	 *
2120 	 * NB: Leftover from RFC1644 T/TCP.  Cases to be reused later.
2121 	 */
2122 	case TCPS_LAST_ACK:
2123 	case TCPS_CLOSING:
2124 		break;  /* continue normal processing */
2125 	}
2126 
2127 	/*
2128 	 * States other than LISTEN or SYN_SENT.
2129 	 * First check the RST flag and sequence number since reset segments
2130 	 * are exempt from the timestamp and connection count tests.  This
2131 	 * fixes a bug introduced by the Stevens, vol. 2, p. 960 bugfix
2132 	 * below which allowed reset segments in half the sequence space
2133 	 * to fall though and be processed (which gives forged reset
2134 	 * segments with a random sequence number a 50 percent chance of
2135 	 * killing a connection).
2136 	 * Then check timestamp, if present.
2137 	 * Then check the connection count, if present.
2138 	 * Then check that at least some bytes of segment are within
2139 	 * receive window.  If segment begins before rcv_nxt,
2140 	 * drop leading data (and SYN); if nothing left, just ack.
2141 	 */
2142 	if (thflags & TH_RST) {
2143 		/*
2144 		 * RFC5961 Section 3.2
2145 		 *
2146 		 * - RST drops connection only if SEG.SEQ == RCV.NXT.
2147 		 * - If RST is in window, we send challenge ACK.
2148 		 *
2149 		 * Note: to take into account delayed ACKs, we should
2150 		 *   test against last_ack_sent instead of rcv_nxt.
2151 		 * Note 2: we handle special case of closed window, not
2152 		 *   covered by the RFC.
2153 		 */
2154 		if ((SEQ_GEQ(th->th_seq, tp->last_ack_sent) &&
2155 		    SEQ_LT(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) ||
2156 		    (tp->rcv_wnd == 0 && tp->last_ack_sent == th->th_seq)) {
2157 
2158 			INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
2159 			KASSERT(ti_locked == TI_RLOCKED,
2160 			    ("%s: TH_RST ti_locked %d, th %p tp %p",
2161 			    __func__, ti_locked, th, tp));
2162 			KASSERT(tp->t_state != TCPS_SYN_SENT,
2163 			    ("%s: TH_RST for TCPS_SYN_SENT th %p tp %p",
2164 			    __func__, th, tp));
2165 
2166 			if (V_tcp_insecure_rst ||
2167 			    tp->last_ack_sent == th->th_seq) {
2168 				TCPSTAT_INC(tcps_drops);
2169 				/* Drop the connection. */
2170 				switch (tp->t_state) {
2171 				case TCPS_SYN_RECEIVED:
2172 					so->so_error = ECONNREFUSED;
2173 					goto close;
2174 				case TCPS_ESTABLISHED:
2175 				case TCPS_FIN_WAIT_1:
2176 				case TCPS_FIN_WAIT_2:
2177 				case TCPS_CLOSE_WAIT:
2178 					so->so_error = ECONNRESET;
2179 				close:
2180 					tcp_state_change(tp, TCPS_CLOSED);
2181 					/* FALLTHROUGH */
2182 				default:
2183 					tp = tcp_close(tp);
2184 				}
2185 			} else {
2186 				TCPSTAT_INC(tcps_badrst);
2187 				/* Send challenge ACK. */
2188 				tcp_respond(tp, mtod(m, void *), th, m,
2189 				    tp->rcv_nxt, tp->snd_nxt, TH_ACK);
2190 				tp->last_ack_sent = tp->rcv_nxt;
2191 				m = NULL;
2192 			}
2193 		}
2194 		goto drop;
2195 	}
2196 
2197 	/*
2198 	 * RFC5961 Section 4.2
2199 	 * Send challenge ACK for any SYN in synchronized state.
2200 	 */
2201 	if ((thflags & TH_SYN) && tp->t_state != TCPS_SYN_SENT &&
2202 	    tp->t_state != TCPS_SYN_RECEIVED) {
2203 		KASSERT(ti_locked == TI_RLOCKED,
2204 		    ("tcp_do_segment: TH_SYN ti_locked %d", ti_locked));
2205 		INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
2206 
2207 		TCPSTAT_INC(tcps_badsyn);
2208 		if (V_tcp_insecure_syn &&
2209 		    SEQ_GEQ(th->th_seq, tp->last_ack_sent) &&
2210 		    SEQ_LT(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) {
2211 			tp = tcp_drop(tp, ECONNRESET);
2212 			rstreason = BANDLIM_UNLIMITED;
2213 		} else {
2214 			/* Send challenge ACK. */
2215 			tcp_respond(tp, mtod(m, void *), th, m, tp->rcv_nxt,
2216 			    tp->snd_nxt, TH_ACK);
2217 			tp->last_ack_sent = tp->rcv_nxt;
2218 			m = NULL;
2219 		}
2220 		goto drop;
2221 	}
2222 
2223 	/*
2224 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
2225 	 * and it's less than ts_recent, drop it.
2226 	 */
2227 	if ((to.to_flags & TOF_TS) != 0 && tp->ts_recent &&
2228 	    TSTMP_LT(to.to_tsval, tp->ts_recent)) {
2229 
2230 		/* Check to see if ts_recent is over 24 days old.  */
2231 		if (tcp_ts_getticks() - tp->ts_recent_age > TCP_PAWS_IDLE) {
2232 			/*
2233 			 * Invalidate ts_recent.  If this segment updates
2234 			 * ts_recent, the age will be reset later and ts_recent
2235 			 * will get a valid value.  If it does not, setting
2236 			 * ts_recent to zero will at least satisfy the
2237 			 * requirement that zero be placed in the timestamp
2238 			 * echo reply when ts_recent isn't valid.  The
2239 			 * age isn't reset until we get a valid ts_recent
2240 			 * because we don't want out-of-order segments to be
2241 			 * dropped when ts_recent is old.
2242 			 */
2243 			tp->ts_recent = 0;
2244 		} else {
2245 			TCPSTAT_INC(tcps_rcvduppack);
2246 			TCPSTAT_ADD(tcps_rcvdupbyte, tlen);
2247 			TCPSTAT_INC(tcps_pawsdrop);
2248 			if (tlen)
2249 				goto dropafterack;
2250 			goto drop;
2251 		}
2252 	}
2253 
2254 	/*
2255 	 * In the SYN-RECEIVED state, validate that the packet belongs to
2256 	 * this connection before trimming the data to fit the receive
2257 	 * window.  Check the sequence number versus IRS since we know
2258 	 * the sequence numbers haven't wrapped.  This is a partial fix
2259 	 * for the "LAND" DoS attack.
2260 	 */
2261 	if (tp->t_state == TCPS_SYN_RECEIVED && SEQ_LT(th->th_seq, tp->irs)) {
2262 		rstreason = BANDLIM_RST_OPENPORT;
2263 		goto dropwithreset;
2264 	}
2265 
2266 	todrop = tp->rcv_nxt - th->th_seq;
2267 	if (todrop > 0) {
2268 		if (thflags & TH_SYN) {
2269 			thflags &= ~TH_SYN;
2270 			th->th_seq++;
2271 			if (th->th_urp > 1)
2272 				th->th_urp--;
2273 			else
2274 				thflags &= ~TH_URG;
2275 			todrop--;
2276 		}
2277 		/*
2278 		 * Following if statement from Stevens, vol. 2, p. 960.
2279 		 */
2280 		if (todrop > tlen
2281 		    || (todrop == tlen && (thflags & TH_FIN) == 0)) {
2282 			/*
2283 			 * Any valid FIN must be to the left of the window.
2284 			 * At this point the FIN must be a duplicate or out
2285 			 * of sequence; drop it.
2286 			 */
2287 			thflags &= ~TH_FIN;
2288 
2289 			/*
2290 			 * Send an ACK to resynchronize and drop any data.
2291 			 * But keep on processing for RST or ACK.
2292 			 */
2293 			tp->t_flags |= TF_ACKNOW;
2294 			todrop = tlen;
2295 			TCPSTAT_INC(tcps_rcvduppack);
2296 			TCPSTAT_ADD(tcps_rcvdupbyte, todrop);
2297 		} else {
2298 			TCPSTAT_INC(tcps_rcvpartduppack);
2299 			TCPSTAT_ADD(tcps_rcvpartdupbyte, todrop);
2300 		}
2301 		drop_hdrlen += todrop;	/* drop from the top afterwards */
2302 		th->th_seq += todrop;
2303 		tlen -= todrop;
2304 		if (th->th_urp > todrop)
2305 			th->th_urp -= todrop;
2306 		else {
2307 			thflags &= ~TH_URG;
2308 			th->th_urp = 0;
2309 		}
2310 	}
2311 
2312 	/*
2313 	 * If new data are received on a connection after the
2314 	 * user processes are gone, then RST the other end.
2315 	 */
2316 	if ((so->so_state & SS_NOFDREF) &&
2317 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
2318 		KASSERT(ti_locked == TI_RLOCKED, ("%s: SS_NOFDEREF && "
2319 		    "CLOSE_WAIT && tlen ti_locked %d", __func__, ti_locked));
2320 		INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
2321 
2322 		if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
2323 			log(LOG_DEBUG, "%s; %s: %s: Received %d bytes of data "
2324 			    "after socket was closed, "
2325 			    "sending RST and removing tcpcb\n",
2326 			    s, __func__, tcpstates[tp->t_state], tlen);
2327 			free(s, M_TCPLOG);
2328 		}
2329 		tp = tcp_close(tp);
2330 		TCPSTAT_INC(tcps_rcvafterclose);
2331 		rstreason = BANDLIM_UNLIMITED;
2332 		goto dropwithreset;
2333 	}
2334 
2335 	/*
2336 	 * If segment ends after window, drop trailing data
2337 	 * (and PUSH and FIN); if nothing left, just ACK.
2338 	 */
2339 	todrop = (th->th_seq + tlen) - (tp->rcv_nxt + tp->rcv_wnd);
2340 	if (todrop > 0) {
2341 		TCPSTAT_INC(tcps_rcvpackafterwin);
2342 		if (todrop >= tlen) {
2343 			TCPSTAT_ADD(tcps_rcvbyteafterwin, tlen);
2344 			/*
2345 			 * If window is closed can only take segments at
2346 			 * window edge, and have to drop data and PUSH from
2347 			 * incoming segments.  Continue processing, but
2348 			 * remember to ack.  Otherwise, drop segment
2349 			 * and ack.
2350 			 */
2351 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
2352 				tp->t_flags |= TF_ACKNOW;
2353 				TCPSTAT_INC(tcps_rcvwinprobe);
2354 			} else
2355 				goto dropafterack;
2356 		} else
2357 			TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop);
2358 		m_adj(m, -todrop);
2359 		tlen -= todrop;
2360 		thflags &= ~(TH_PUSH|TH_FIN);
2361 	}
2362 
2363 	/*
2364 	 * If last ACK falls within this segment's sequence numbers,
2365 	 * record its timestamp.
2366 	 * NOTE:
2367 	 * 1) That the test incorporates suggestions from the latest
2368 	 *    proposal of the tcplw@cray.com list (Braden 1993/04/26).
2369 	 * 2) That updating only on newer timestamps interferes with
2370 	 *    our earlier PAWS tests, so this check should be solely
2371 	 *    predicated on the sequence space of this segment.
2372 	 * 3) That we modify the segment boundary check to be
2373 	 *        Last.ACK.Sent <= SEG.SEQ + SEG.Len
2374 	 *    instead of RFC1323's
2375 	 *        Last.ACK.Sent < SEG.SEQ + SEG.Len,
2376 	 *    This modified check allows us to overcome RFC1323's
2377 	 *    limitations as described in Stevens TCP/IP Illustrated
2378 	 *    Vol. 2 p.869. In such cases, we can still calculate the
2379 	 *    RTT correctly when RCV.NXT == Last.ACK.Sent.
2380 	 */
2381 	if ((to.to_flags & TOF_TS) != 0 &&
2382 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
2383 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
2384 		((thflags & (TH_SYN|TH_FIN)) != 0))) {
2385 		tp->ts_recent_age = tcp_ts_getticks();
2386 		tp->ts_recent = to.to_tsval;
2387 	}
2388 
2389 	/*
2390 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN
2391 	 * flag is on (half-synchronized state), then queue data for
2392 	 * later processing; else drop segment and return.
2393 	 */
2394 	if ((thflags & TH_ACK) == 0) {
2395 		if (tp->t_state == TCPS_SYN_RECEIVED ||
2396 		    (tp->t_flags & TF_NEEDSYN)) {
2397 #ifdef TCP_RFC7413
2398 			if (tp->t_state == TCPS_SYN_RECEIVED &&
2399 			    tp->t_flags & TF_FASTOPEN) {
2400 				tp->snd_wnd = tiwin;
2401 				cc_conn_init(tp);
2402 			}
2403 #endif
2404 			goto step6;
2405 		} else if (tp->t_flags & TF_ACKNOW)
2406 			goto dropafterack;
2407 		else
2408 			goto drop;
2409 	}
2410 
2411 	/*
2412 	 * Ack processing.
2413 	 */
2414 	switch (tp->t_state) {
2415 
2416 	/*
2417 	 * In SYN_RECEIVED state, the ack ACKs our SYN, so enter
2418 	 * ESTABLISHED state and continue processing.
2419 	 * The ACK was checked above.
2420 	 */
2421 	case TCPS_SYN_RECEIVED:
2422 
2423 		TCPSTAT_INC(tcps_connects);
2424 		soisconnected(so);
2425 		/* Do window scaling? */
2426 		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2427 			(TF_RCVD_SCALE|TF_REQ_SCALE)) {
2428 			tp->rcv_scale = tp->request_r_scale;
2429 			tp->snd_wnd = tiwin;
2430 		}
2431 		/*
2432 		 * Make transitions:
2433 		 *      SYN-RECEIVED  -> ESTABLISHED
2434 		 *      SYN-RECEIVED* -> FIN-WAIT-1
2435 		 */
2436 		tp->t_starttime = ticks;
2437 		if (tp->t_flags & TF_NEEDFIN) {
2438 			tcp_state_change(tp, TCPS_FIN_WAIT_1);
2439 			tp->t_flags &= ~TF_NEEDFIN;
2440 		} else {
2441 			tcp_state_change(tp, TCPS_ESTABLISHED);
2442 			TCP_PROBE5(accept__established, NULL, tp,
2443 			    mtod(m, const char *), tp, th);
2444 #ifdef TCP_RFC7413
2445 			if (tp->t_tfo_pending) {
2446 				tcp_fastopen_decrement_counter(tp->t_tfo_pending);
2447 				tp->t_tfo_pending = NULL;
2448 
2449 				/*
2450 				 * Account for the ACK of our SYN prior to
2451 				 * regular ACK processing below.
2452 				 */
2453 				tp->snd_una++;
2454 			}
2455 			/*
2456 			 * TFO connections call cc_conn_init() during SYN
2457 			 * processing.  Calling it again here for such
2458 			 * connections is not harmless as it would undo the
2459 			 * snd_cwnd reduction that occurs when a TFO SYN|ACK
2460 			 * is retransmitted.
2461 			 */
2462 			if (!(tp->t_flags & TF_FASTOPEN))
2463 #endif
2464 				cc_conn_init(tp);
2465 			tcp_timer_activate(tp, TT_KEEP, TP_KEEPIDLE(tp));
2466 		}
2467 		/*
2468 		 * If segment contains data or ACK, will call tcp_reass()
2469 		 * later; if not, do so now to pass queued data to user.
2470 		 */
2471 		if (tlen == 0 && (thflags & TH_FIN) == 0)
2472 			(void) tcp_reass(tp, (struct tcphdr *)0, 0,
2473 			    (struct mbuf *)0);
2474 		tp->snd_wl1 = th->th_seq - 1;
2475 		/* FALLTHROUGH */
2476 
2477 	/*
2478 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
2479 	 * ACKs.  If the ack is in the range
2480 	 *	tp->snd_una < th->th_ack <= tp->snd_max
2481 	 * then advance tp->snd_una to th->th_ack and drop
2482 	 * data from the retransmission queue.  If this ACK reflects
2483 	 * more up to date window information we update our window information.
2484 	 */
2485 	case TCPS_ESTABLISHED:
2486 	case TCPS_FIN_WAIT_1:
2487 	case TCPS_FIN_WAIT_2:
2488 	case TCPS_CLOSE_WAIT:
2489 	case TCPS_CLOSING:
2490 	case TCPS_LAST_ACK:
2491 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
2492 			TCPSTAT_INC(tcps_rcvacktoomuch);
2493 			goto dropafterack;
2494 		}
2495 		if ((tp->t_flags & TF_SACK_PERMIT) &&
2496 		    ((to.to_flags & TOF_SACK) ||
2497 		     !TAILQ_EMPTY(&tp->snd_holes)))
2498 			sack_changed = tcp_sack_doack(tp, &to, th->th_ack);
2499 		else
2500 			/*
2501 			 * Reset the value so that previous (valid) value
2502 			 * from the last ack with SACK doesn't get used.
2503 			 */
2504 			tp->sackhint.sacked_bytes = 0;
2505 
2506 		/* Run HHOOK_TCP_ESTABLISHED_IN helper hooks. */
2507 		hhook_run_tcp_est_in(tp, th, &to);
2508 
2509 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
2510 			u_int maxseg;
2511 
2512 			maxseg = tcp_maxseg(tp);
2513 			if (tlen == 0 &&
2514 			    (tiwin == tp->snd_wnd ||
2515 			    (tp->t_flags & TF_SACK_PERMIT))) {
2516 				/*
2517 				 * If this is the first time we've seen a
2518 				 * FIN from the remote, this is not a
2519 				 * duplicate and it needs to be processed
2520 				 * normally.  This happens during a
2521 				 * simultaneous close.
2522 				 */
2523 				if ((thflags & TH_FIN) &&
2524 				    (TCPS_HAVERCVDFIN(tp->t_state) == 0)) {
2525 					tp->t_dupacks = 0;
2526 					break;
2527 				}
2528 				TCPSTAT_INC(tcps_rcvdupack);
2529 				/*
2530 				 * If we have outstanding data (other than
2531 				 * a window probe), this is a completely
2532 				 * duplicate ack (ie, window info didn't
2533 				 * change and FIN isn't set),
2534 				 * the ack is the biggest we've
2535 				 * seen and we've seen exactly our rexmt
2536 				 * threshhold of them, assume a packet
2537 				 * has been dropped and retransmit it.
2538 				 * Kludge snd_nxt & the congestion
2539 				 * window so we send only this one
2540 				 * packet.
2541 				 *
2542 				 * We know we're losing at the current
2543 				 * window size so do congestion avoidance
2544 				 * (set ssthresh to half the current window
2545 				 * and pull our congestion window back to
2546 				 * the new ssthresh).
2547 				 *
2548 				 * Dup acks mean that packets have left the
2549 				 * network (they're now cached at the receiver)
2550 				 * so bump cwnd by the amount in the receiver
2551 				 * to keep a constant cwnd packets in the
2552 				 * network.
2553 				 *
2554 				 * When using TCP ECN, notify the peer that
2555 				 * we reduced the cwnd.
2556 				 */
2557 				/*
2558 				 * Following 2 kinds of acks should not affect
2559 				 * dupack counting:
2560 				 * 1) Old acks
2561 				 * 2) Acks with SACK but without any new SACK
2562 				 * information in them. These could result from
2563 				 * any anomaly in the network like a switch
2564 				 * duplicating packets or a possible DoS attack.
2565 				 */
2566 				if (th->th_ack != tp->snd_una ||
2567 				    ((tp->t_flags & TF_SACK_PERMIT) &&
2568 				    !sack_changed))
2569 					break;
2570 				else if (!tcp_timer_active(tp, TT_REXMT))
2571 					tp->t_dupacks = 0;
2572 				else if (++tp->t_dupacks > tcprexmtthresh ||
2573 				     IN_FASTRECOVERY(tp->t_flags)) {
2574 					cc_ack_received(tp, th, CC_DUPACK);
2575 					if ((tp->t_flags & TF_SACK_PERMIT) &&
2576 					    IN_FASTRECOVERY(tp->t_flags)) {
2577 						int awnd;
2578 
2579 						/*
2580 						 * Compute the amount of data in flight first.
2581 						 * We can inject new data into the pipe iff
2582 						 * we have less than 1/2 the original window's
2583 						 * worth of data in flight.
2584 						 */
2585 						if (V_tcp_do_rfc6675_pipe)
2586 							awnd = tcp_compute_pipe(tp);
2587 						else
2588 							awnd = (tp->snd_nxt - tp->snd_fack) +
2589 								tp->sackhint.sack_bytes_rexmit;
2590 
2591 						if (awnd < tp->snd_ssthresh) {
2592 							tp->snd_cwnd += maxseg;
2593 							if (tp->snd_cwnd > tp->snd_ssthresh)
2594 								tp->snd_cwnd = tp->snd_ssthresh;
2595 						}
2596 					} else
2597 						tp->snd_cwnd += maxseg;
2598 					(void) tp->t_fb->tfb_tcp_output(tp);
2599 					goto drop;
2600 				} else if (tp->t_dupacks == tcprexmtthresh) {
2601 					tcp_seq onxt = tp->snd_nxt;
2602 
2603 					/*
2604 					 * If we're doing sack, check to
2605 					 * see if we're already in sack
2606 					 * recovery. If we're not doing sack,
2607 					 * check to see if we're in newreno
2608 					 * recovery.
2609 					 */
2610 					if (tp->t_flags & TF_SACK_PERMIT) {
2611 						if (IN_FASTRECOVERY(tp->t_flags)) {
2612 							tp->t_dupacks = 0;
2613 							break;
2614 						}
2615 					} else {
2616 						if (SEQ_LEQ(th->th_ack,
2617 						    tp->snd_recover)) {
2618 							tp->t_dupacks = 0;
2619 							break;
2620 						}
2621 					}
2622 					/* Congestion signal before ack. */
2623 					cc_cong_signal(tp, th, CC_NDUPACK);
2624 					cc_ack_received(tp, th, CC_DUPACK);
2625 					tcp_timer_activate(tp, TT_REXMT, 0);
2626 					tp->t_rtttime = 0;
2627 					if (tp->t_flags & TF_SACK_PERMIT) {
2628 						TCPSTAT_INC(
2629 						    tcps_sack_recovery_episode);
2630 						tp->sack_newdata = tp->snd_nxt;
2631 						tp->snd_cwnd = maxseg;
2632 						(void) tp->t_fb->tfb_tcp_output(tp);
2633 						goto drop;
2634 					}
2635 					tp->snd_nxt = th->th_ack;
2636 					tp->snd_cwnd = maxseg;
2637 					(void) tp->t_fb->tfb_tcp_output(tp);
2638 					KASSERT(tp->snd_limited <= 2,
2639 					    ("%s: tp->snd_limited too big",
2640 					    __func__));
2641 					tp->snd_cwnd = tp->snd_ssthresh +
2642 					     maxseg *
2643 					     (tp->t_dupacks - tp->snd_limited);
2644 					if (SEQ_GT(onxt, tp->snd_nxt))
2645 						tp->snd_nxt = onxt;
2646 					goto drop;
2647 				} else if (V_tcp_do_rfc3042) {
2648 					/*
2649 					 * Process first and second duplicate
2650 					 * ACKs. Each indicates a segment
2651 					 * leaving the network, creating room
2652 					 * for more. Make sure we can send a
2653 					 * packet on reception of each duplicate
2654 					 * ACK by increasing snd_cwnd by one
2655 					 * segment. Restore the original
2656 					 * snd_cwnd after packet transmission.
2657 					 */
2658 					cc_ack_received(tp, th, CC_DUPACK);
2659 					u_long oldcwnd = tp->snd_cwnd;
2660 					tcp_seq oldsndmax = tp->snd_max;
2661 					u_int sent;
2662 					int avail;
2663 
2664 					KASSERT(tp->t_dupacks == 1 ||
2665 					    tp->t_dupacks == 2,
2666 					    ("%s: dupacks not 1 or 2",
2667 					    __func__));
2668 					if (tp->t_dupacks == 1)
2669 						tp->snd_limited = 0;
2670 					tp->snd_cwnd =
2671 					    (tp->snd_nxt - tp->snd_una) +
2672 					    (tp->t_dupacks - tp->snd_limited) *
2673 					    maxseg;
2674 					/*
2675 					 * Only call tcp_output when there
2676 					 * is new data available to be sent.
2677 					 * Otherwise we would send pure ACKs.
2678 					 */
2679 					SOCKBUF_LOCK(&so->so_snd);
2680 					avail = sbavail(&so->so_snd) -
2681 					    (tp->snd_nxt - tp->snd_una);
2682 					SOCKBUF_UNLOCK(&so->so_snd);
2683 					if (avail > 0)
2684 						(void) tp->t_fb->tfb_tcp_output(tp);
2685 					sent = tp->snd_max - oldsndmax;
2686 					if (sent > maxseg) {
2687 						KASSERT((tp->t_dupacks == 2 &&
2688 						    tp->snd_limited == 0) ||
2689 						   (sent == maxseg + 1 &&
2690 						    tp->t_flags & TF_SENTFIN),
2691 						    ("%s: sent too much",
2692 						    __func__));
2693 						tp->snd_limited = 2;
2694 					} else if (sent > 0)
2695 						++tp->snd_limited;
2696 					tp->snd_cwnd = oldcwnd;
2697 					goto drop;
2698 				}
2699 			}
2700 			break;
2701 		} else {
2702 			/*
2703 			 * This ack is advancing the left edge, reset the
2704 			 * counter.
2705 			 */
2706 			tp->t_dupacks = 0;
2707 			/*
2708 			 * If this ack also has new SACK info, increment the
2709 			 * counter as per rfc6675.
2710 			 */
2711 			if ((tp->t_flags & TF_SACK_PERMIT) && sack_changed)
2712 				tp->t_dupacks++;
2713 		}
2714 
2715 		KASSERT(SEQ_GT(th->th_ack, tp->snd_una),
2716 		    ("%s: th_ack <= snd_una", __func__));
2717 
2718 		/*
2719 		 * If the congestion window was inflated to account
2720 		 * for the other side's cached packets, retract it.
2721 		 */
2722 		if (IN_FASTRECOVERY(tp->t_flags)) {
2723 			if (SEQ_LT(th->th_ack, tp->snd_recover)) {
2724 				if (tp->t_flags & TF_SACK_PERMIT)
2725 					tcp_sack_partialack(tp, th);
2726 				else
2727 					tcp_newreno_partial_ack(tp, th);
2728 			} else
2729 				cc_post_recovery(tp, th);
2730 		}
2731 		/*
2732 		 * If we reach this point, ACK is not a duplicate,
2733 		 *     i.e., it ACKs something we sent.
2734 		 */
2735 		if (tp->t_flags & TF_NEEDSYN) {
2736 			/*
2737 			 * T/TCP: Connection was half-synchronized, and our
2738 			 * SYN has been ACK'd (so connection is now fully
2739 			 * synchronized).  Go to non-starred state,
2740 			 * increment snd_una for ACK of SYN, and check if
2741 			 * we can do window scaling.
2742 			 */
2743 			tp->t_flags &= ~TF_NEEDSYN;
2744 			tp->snd_una++;
2745 			/* Do window scaling? */
2746 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2747 				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
2748 				tp->rcv_scale = tp->request_r_scale;
2749 				/* Send window already scaled. */
2750 			}
2751 		}
2752 
2753 process_ACK:
2754 		INP_WLOCK_ASSERT(tp->t_inpcb);
2755 
2756 		acked = BYTES_THIS_ACK(tp, th);
2757 		TCPSTAT_INC(tcps_rcvackpack);
2758 		TCPSTAT_ADD(tcps_rcvackbyte, acked);
2759 
2760 		/*
2761 		 * If we just performed our first retransmit, and the ACK
2762 		 * arrives within our recovery window, then it was a mistake
2763 		 * to do the retransmit in the first place.  Recover our
2764 		 * original cwnd and ssthresh, and proceed to transmit where
2765 		 * we left off.
2766 		 */
2767 		if (tp->t_rxtshift == 1 && tp->t_flags & TF_PREVVALID &&
2768 		    (int)(ticks - tp->t_badrxtwin) < 0)
2769 			cc_cong_signal(tp, th, CC_RTO_ERR);
2770 
2771 		/*
2772 		 * If we have a timestamp reply, update smoothed
2773 		 * round trip time.  If no timestamp is present but
2774 		 * transmit timer is running and timed sequence
2775 		 * number was acked, update smoothed round trip time.
2776 		 * Since we now have an rtt measurement, cancel the
2777 		 * timer backoff (cf., Phil Karn's retransmit alg.).
2778 		 * Recompute the initial retransmit timer.
2779 		 *
2780 		 * Some boxes send broken timestamp replies
2781 		 * during the SYN+ACK phase, ignore
2782 		 * timestamps of 0 or we could calculate a
2783 		 * huge RTT and blow up the retransmit timer.
2784 		 */
2785 		if ((to.to_flags & TOF_TS) != 0 && to.to_tsecr) {
2786 			u_int t;
2787 
2788 			t = tcp_ts_getticks() - to.to_tsecr;
2789 			if (!tp->t_rttlow || tp->t_rttlow > t)
2790 				tp->t_rttlow = t;
2791 			tcp_xmit_timer(tp, TCP_TS_TO_TICKS(t) + 1);
2792 		} else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq)) {
2793 			if (!tp->t_rttlow || tp->t_rttlow > ticks - tp->t_rtttime)
2794 				tp->t_rttlow = ticks - tp->t_rtttime;
2795 			tcp_xmit_timer(tp, ticks - tp->t_rtttime);
2796 		}
2797 
2798 		/*
2799 		 * If all outstanding data is acked, stop retransmit
2800 		 * timer and remember to restart (more output or persist).
2801 		 * If there is more data to be acked, restart retransmit
2802 		 * timer, using current (possibly backed-off) value.
2803 		 */
2804 		if (th->th_ack == tp->snd_max) {
2805 			tcp_timer_activate(tp, TT_REXMT, 0);
2806 			needoutput = 1;
2807 		} else if (!tcp_timer_active(tp, TT_PERSIST))
2808 			tcp_timer_activate(tp, TT_REXMT, tp->t_rxtcur);
2809 
2810 		/*
2811 		 * If no data (only SYN) was ACK'd,
2812 		 *    skip rest of ACK processing.
2813 		 */
2814 		if (acked == 0)
2815 			goto step6;
2816 
2817 		/*
2818 		 * Let the congestion control algorithm update congestion
2819 		 * control related information. This typically means increasing
2820 		 * the congestion window.
2821 		 */
2822 		cc_ack_received(tp, th, CC_ACK);
2823 
2824 		SOCKBUF_LOCK(&so->so_snd);
2825 		if (acked > sbavail(&so->so_snd)) {
2826 			tp->snd_wnd -= sbavail(&so->so_snd);
2827 			mfree = sbcut_locked(&so->so_snd,
2828 			    (int)sbavail(&so->so_snd));
2829 			ourfinisacked = 1;
2830 		} else {
2831 			mfree = sbcut_locked(&so->so_snd, acked);
2832 			tp->snd_wnd -= acked;
2833 			ourfinisacked = 0;
2834 		}
2835 		/* NB: sowwakeup_locked() does an implicit unlock. */
2836 		sowwakeup_locked(so);
2837 		m_freem(mfree);
2838 		/* Detect una wraparound. */
2839 		if (!IN_RECOVERY(tp->t_flags) &&
2840 		    SEQ_GT(tp->snd_una, tp->snd_recover) &&
2841 		    SEQ_LEQ(th->th_ack, tp->snd_recover))
2842 			tp->snd_recover = th->th_ack - 1;
2843 		/* XXXLAS: Can this be moved up into cc_post_recovery? */
2844 		if (IN_RECOVERY(tp->t_flags) &&
2845 		    SEQ_GEQ(th->th_ack, tp->snd_recover)) {
2846 			EXIT_RECOVERY(tp->t_flags);
2847 		}
2848 		tp->snd_una = th->th_ack;
2849 		if (tp->t_flags & TF_SACK_PERMIT) {
2850 			if (SEQ_GT(tp->snd_una, tp->snd_recover))
2851 				tp->snd_recover = tp->snd_una;
2852 		}
2853 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2854 			tp->snd_nxt = tp->snd_una;
2855 
2856 		switch (tp->t_state) {
2857 
2858 		/*
2859 		 * In FIN_WAIT_1 STATE in addition to the processing
2860 		 * for the ESTABLISHED state if our FIN is now acknowledged
2861 		 * then enter FIN_WAIT_2.
2862 		 */
2863 		case TCPS_FIN_WAIT_1:
2864 			if (ourfinisacked) {
2865 				/*
2866 				 * If we can't receive any more
2867 				 * data, then closing user can proceed.
2868 				 * Starting the timer is contrary to the
2869 				 * specification, but if we don't get a FIN
2870 				 * we'll hang forever.
2871 				 *
2872 				 * XXXjl:
2873 				 * we should release the tp also, and use a
2874 				 * compressed state.
2875 				 */
2876 				if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
2877 					soisdisconnected(so);
2878 					tcp_timer_activate(tp, TT_2MSL,
2879 					    (tcp_fast_finwait2_recycle ?
2880 					    tcp_finwait2_timeout :
2881 					    TP_MAXIDLE(tp)));
2882 				}
2883 				tcp_state_change(tp, TCPS_FIN_WAIT_2);
2884 			}
2885 			break;
2886 
2887 		/*
2888 		 * In CLOSING STATE in addition to the processing for
2889 		 * the ESTABLISHED state if the ACK acknowledges our FIN
2890 		 * then enter the TIME-WAIT state, otherwise ignore
2891 		 * the segment.
2892 		 */
2893 		case TCPS_CLOSING:
2894 			if (ourfinisacked) {
2895 				INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
2896 				tcp_twstart(tp);
2897 				INP_INFO_RUNLOCK(&V_tcbinfo);
2898 				m_freem(m);
2899 				return;
2900 			}
2901 			break;
2902 
2903 		/*
2904 		 * In LAST_ACK, we may still be waiting for data to drain
2905 		 * and/or to be acked, as well as for the ack of our FIN.
2906 		 * If our FIN is now acknowledged, delete the TCB,
2907 		 * enter the closed state and return.
2908 		 */
2909 		case TCPS_LAST_ACK:
2910 			if (ourfinisacked) {
2911 				INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
2912 				tp = tcp_close(tp);
2913 				goto drop;
2914 			}
2915 			break;
2916 		}
2917 	}
2918 
2919 step6:
2920 	INP_WLOCK_ASSERT(tp->t_inpcb);
2921 
2922 	/*
2923 	 * Update window information.
2924 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2925 	 */
2926 	if ((thflags & TH_ACK) &&
2927 	    (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2928 	    (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
2929 	     (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
2930 		/* keep track of pure window updates */
2931 		if (tlen == 0 &&
2932 		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2933 			TCPSTAT_INC(tcps_rcvwinupd);
2934 		tp->snd_wnd = tiwin;
2935 		tp->snd_wl1 = th->th_seq;
2936 		tp->snd_wl2 = th->th_ack;
2937 		if (tp->snd_wnd > tp->max_sndwnd)
2938 			tp->max_sndwnd = tp->snd_wnd;
2939 		needoutput = 1;
2940 	}
2941 
2942 	/*
2943 	 * Process segments with URG.
2944 	 */
2945 	if ((thflags & TH_URG) && th->th_urp &&
2946 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2947 		/*
2948 		 * This is a kludge, but if we receive and accept
2949 		 * random urgent pointers, we'll crash in
2950 		 * soreceive.  It's hard to imagine someone
2951 		 * actually wanting to send this much urgent data.
2952 		 */
2953 		SOCKBUF_LOCK(&so->so_rcv);
2954 		if (th->th_urp + sbavail(&so->so_rcv) > sb_max) {
2955 			th->th_urp = 0;			/* XXX */
2956 			thflags &= ~TH_URG;		/* XXX */
2957 			SOCKBUF_UNLOCK(&so->so_rcv);	/* XXX */
2958 			goto dodata;			/* XXX */
2959 		}
2960 		/*
2961 		 * If this segment advances the known urgent pointer,
2962 		 * then mark the data stream.  This should not happen
2963 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2964 		 * a FIN has been received from the remote side.
2965 		 * In these states we ignore the URG.
2966 		 *
2967 		 * According to RFC961 (Assigned Protocols),
2968 		 * the urgent pointer points to the last octet
2969 		 * of urgent data.  We continue, however,
2970 		 * to consider it to indicate the first octet
2971 		 * of data past the urgent section as the original
2972 		 * spec states (in one of two places).
2973 		 */
2974 		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2975 			tp->rcv_up = th->th_seq + th->th_urp;
2976 			so->so_oobmark = sbavail(&so->so_rcv) +
2977 			    (tp->rcv_up - tp->rcv_nxt) - 1;
2978 			if (so->so_oobmark == 0)
2979 				so->so_rcv.sb_state |= SBS_RCVATMARK;
2980 			sohasoutofband(so);
2981 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2982 		}
2983 		SOCKBUF_UNLOCK(&so->so_rcv);
2984 		/*
2985 		 * Remove out of band data so doesn't get presented to user.
2986 		 * This can happen independent of advancing the URG pointer,
2987 		 * but if two URG's are pending at once, some out-of-band
2988 		 * data may creep in... ick.
2989 		 */
2990 		if (th->th_urp <= (u_long)tlen &&
2991 		    !(so->so_options & SO_OOBINLINE)) {
2992 			/* hdr drop is delayed */
2993 			tcp_pulloutofband(so, th, m, drop_hdrlen);
2994 		}
2995 	} else {
2996 		/*
2997 		 * If no out of band data is expected,
2998 		 * pull receive urgent pointer along
2999 		 * with the receive window.
3000 		 */
3001 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
3002 			tp->rcv_up = tp->rcv_nxt;
3003 	}
3004 dodata:							/* XXX */
3005 	INP_WLOCK_ASSERT(tp->t_inpcb);
3006 
3007 	/*
3008 	 * Process the segment text, merging it into the TCP sequencing queue,
3009 	 * and arranging for acknowledgment of receipt if necessary.
3010 	 * This process logically involves adjusting tp->rcv_wnd as data
3011 	 * is presented to the user (this happens in tcp_usrreq.c,
3012 	 * case PRU_RCVD).  If a FIN has already been received on this
3013 	 * connection then we just ignore the text.
3014 	 */
3015 	tfo_syn = ((tp->t_state == TCPS_SYN_RECEIVED) &&
3016 		   (tp->t_flags & TF_FASTOPEN));
3017 	if ((tlen || (thflags & TH_FIN) || tfo_syn) &&
3018 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
3019 		tcp_seq save_start = th->th_seq;
3020 		m_adj(m, drop_hdrlen);	/* delayed header drop */
3021 		/*
3022 		 * Insert segment which includes th into TCP reassembly queue
3023 		 * with control block tp.  Set thflags to whether reassembly now
3024 		 * includes a segment with FIN.  This handles the common case
3025 		 * inline (segment is the next to be received on an established
3026 		 * connection, and the queue is empty), avoiding linkage into
3027 		 * and removal from the queue and repetition of various
3028 		 * conversions.
3029 		 * Set DELACK for segments received in order, but ack
3030 		 * immediately when segments are out of order (so
3031 		 * fast retransmit can work).
3032 		 */
3033 		if (th->th_seq == tp->rcv_nxt &&
3034 		    LIST_EMPTY(&tp->t_segq) &&
3035 		    (TCPS_HAVEESTABLISHED(tp->t_state) ||
3036 		     tfo_syn)) {
3037 			if (DELAY_ACK(tp, tlen) || tfo_syn)
3038 				tp->t_flags |= TF_DELACK;
3039 			else
3040 				tp->t_flags |= TF_ACKNOW;
3041 			tp->rcv_nxt += tlen;
3042 			thflags = th->th_flags & TH_FIN;
3043 			TCPSTAT_INC(tcps_rcvpack);
3044 			TCPSTAT_ADD(tcps_rcvbyte, tlen);
3045 			SOCKBUF_LOCK(&so->so_rcv);
3046 			if (so->so_rcv.sb_state & SBS_CANTRCVMORE)
3047 				m_freem(m);
3048 			else
3049 				sbappendstream_locked(&so->so_rcv, m, 0);
3050 			/* NB: sorwakeup_locked() does an implicit unlock. */
3051 			sorwakeup_locked(so);
3052 		} else {
3053 			/*
3054 			 * XXX: Due to the header drop above "th" is
3055 			 * theoretically invalid by now.  Fortunately
3056 			 * m_adj() doesn't actually frees any mbufs
3057 			 * when trimming from the head.
3058 			 */
3059 			thflags = tcp_reass(tp, th, &tlen, m);
3060 			tp->t_flags |= TF_ACKNOW;
3061 		}
3062 		if (tlen > 0 && (tp->t_flags & TF_SACK_PERMIT))
3063 			tcp_update_sack_list(tp, save_start, save_start + tlen);
3064 #if 0
3065 		/*
3066 		 * Note the amount of data that peer has sent into
3067 		 * our window, in order to estimate the sender's
3068 		 * buffer size.
3069 		 * XXX: Unused.
3070 		 */
3071 		if (SEQ_GT(tp->rcv_adv, tp->rcv_nxt))
3072 			len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
3073 		else
3074 			len = so->so_rcv.sb_hiwat;
3075 #endif
3076 	} else {
3077 		m_freem(m);
3078 		thflags &= ~TH_FIN;
3079 	}
3080 
3081 	/*
3082 	 * If FIN is received ACK the FIN and let the user know
3083 	 * that the connection is closing.
3084 	 */
3085 	if (thflags & TH_FIN) {
3086 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
3087 			socantrcvmore(so);
3088 			/*
3089 			 * If connection is half-synchronized
3090 			 * (ie NEEDSYN flag on) then delay ACK,
3091 			 * so it may be piggybacked when SYN is sent.
3092 			 * Otherwise, since we received a FIN then no
3093 			 * more input can be expected, send ACK now.
3094 			 */
3095 			if (tp->t_flags & TF_NEEDSYN)
3096 				tp->t_flags |= TF_DELACK;
3097 			else
3098 				tp->t_flags |= TF_ACKNOW;
3099 			tp->rcv_nxt++;
3100 		}
3101 		switch (tp->t_state) {
3102 
3103 		/*
3104 		 * In SYN_RECEIVED and ESTABLISHED STATES
3105 		 * enter the CLOSE_WAIT state.
3106 		 */
3107 		case TCPS_SYN_RECEIVED:
3108 			tp->t_starttime = ticks;
3109 			/* FALLTHROUGH */
3110 		case TCPS_ESTABLISHED:
3111 			tcp_state_change(tp, TCPS_CLOSE_WAIT);
3112 			break;
3113 
3114 		/*
3115 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
3116 		 * enter the CLOSING state.
3117 		 */
3118 		case TCPS_FIN_WAIT_1:
3119 			tcp_state_change(tp, TCPS_CLOSING);
3120 			break;
3121 
3122 		/*
3123 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
3124 		 * starting the time-wait timer, turning off the other
3125 		 * standard timers.
3126 		 */
3127 		case TCPS_FIN_WAIT_2:
3128 			INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
3129 			KASSERT(ti_locked == TI_RLOCKED, ("%s: dodata "
3130 			    "TCP_FIN_WAIT_2 ti_locked: %d", __func__,
3131 			    ti_locked));
3132 
3133 			tcp_twstart(tp);
3134 			INP_INFO_RUNLOCK(&V_tcbinfo);
3135 			return;
3136 		}
3137 	}
3138 	if (ti_locked == TI_RLOCKED)
3139 		INP_INFO_RUNLOCK(&V_tcbinfo);
3140 	ti_locked = TI_UNLOCKED;
3141 
3142 #ifdef TCPDEBUG
3143 	if (so->so_options & SO_DEBUG)
3144 		tcp_trace(TA_INPUT, ostate, tp, (void *)tcp_saveipgen,
3145 			  &tcp_savetcp, 0);
3146 #endif
3147 	TCP_PROBE3(debug__input, tp, th, mtod(m, const char *));
3148 
3149 	/*
3150 	 * Return any desired output.
3151 	 */
3152 	if (needoutput || (tp->t_flags & TF_ACKNOW))
3153 		(void) tp->t_fb->tfb_tcp_output(tp);
3154 
3155 check_delack:
3156 	KASSERT(ti_locked == TI_UNLOCKED, ("%s: check_delack ti_locked %d",
3157 	    __func__, ti_locked));
3158 	INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
3159 	INP_WLOCK_ASSERT(tp->t_inpcb);
3160 
3161 	if (tp->t_flags & TF_DELACK) {
3162 		tp->t_flags &= ~TF_DELACK;
3163 		tcp_timer_activate(tp, TT_DELACK, tcp_delacktime);
3164 	}
3165 	INP_WUNLOCK(tp->t_inpcb);
3166 	return;
3167 
3168 dropafterack:
3169 	/*
3170 	 * Generate an ACK dropping incoming segment if it occupies
3171 	 * sequence space, where the ACK reflects our state.
3172 	 *
3173 	 * We can now skip the test for the RST flag since all
3174 	 * paths to this code happen after packets containing
3175 	 * RST have been dropped.
3176 	 *
3177 	 * In the SYN-RECEIVED state, don't send an ACK unless the
3178 	 * segment we received passes the SYN-RECEIVED ACK test.
3179 	 * If it fails send a RST.  This breaks the loop in the
3180 	 * "LAND" DoS attack, and also prevents an ACK storm
3181 	 * between two listening ports that have been sent forged
3182 	 * SYN segments, each with the source address of the other.
3183 	 */
3184 	if (tp->t_state == TCPS_SYN_RECEIVED && (thflags & TH_ACK) &&
3185 	    (SEQ_GT(tp->snd_una, th->th_ack) ||
3186 	     SEQ_GT(th->th_ack, tp->snd_max)) ) {
3187 		rstreason = BANDLIM_RST_OPENPORT;
3188 		goto dropwithreset;
3189 	}
3190 #ifdef TCPDEBUG
3191 	if (so->so_options & SO_DEBUG)
3192 		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
3193 			  &tcp_savetcp, 0);
3194 #endif
3195 	TCP_PROBE3(debug__input, tp, th, mtod(m, const char *));
3196 	if (ti_locked == TI_RLOCKED)
3197 		INP_INFO_RUNLOCK(&V_tcbinfo);
3198 	ti_locked = TI_UNLOCKED;
3199 
3200 	tp->t_flags |= TF_ACKNOW;
3201 	(void) tp->t_fb->tfb_tcp_output(tp);
3202 	INP_WUNLOCK(tp->t_inpcb);
3203 	m_freem(m);
3204 	return;
3205 
3206 dropwithreset:
3207 	if (ti_locked == TI_RLOCKED)
3208 		INP_INFO_RUNLOCK(&V_tcbinfo);
3209 	ti_locked = TI_UNLOCKED;
3210 
3211 	if (tp != NULL) {
3212 		tcp_dropwithreset(m, th, tp, tlen, rstreason);
3213 		INP_WUNLOCK(tp->t_inpcb);
3214 	} else
3215 		tcp_dropwithreset(m, th, NULL, tlen, rstreason);
3216 	return;
3217 
3218 drop:
3219 	if (ti_locked == TI_RLOCKED) {
3220 		INP_INFO_RUNLOCK(&V_tcbinfo);
3221 		ti_locked = TI_UNLOCKED;
3222 	}
3223 #ifdef INVARIANTS
3224 	else
3225 		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
3226 #endif
3227 
3228 	/*
3229 	 * Drop space held by incoming segment and return.
3230 	 */
3231 #ifdef TCPDEBUG
3232 	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
3233 		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
3234 			  &tcp_savetcp, 0);
3235 #endif
3236 	TCP_PROBE3(debug__input, tp, th, mtod(m, const char *));
3237 	if (tp != NULL)
3238 		INP_WUNLOCK(tp->t_inpcb);
3239 	m_freem(m);
3240 }
3241 
3242 /*
3243  * Issue RST and make ACK acceptable to originator of segment.
3244  * The mbuf must still include the original packet header.
3245  * tp may be NULL.
3246  */
3247 void
3248 tcp_dropwithreset(struct mbuf *m, struct tcphdr *th, struct tcpcb *tp,
3249     int tlen, int rstreason)
3250 {
3251 #ifdef INET
3252 	struct ip *ip;
3253 #endif
3254 #ifdef INET6
3255 	struct ip6_hdr *ip6;
3256 #endif
3257 
3258 	if (tp != NULL) {
3259 		INP_WLOCK_ASSERT(tp->t_inpcb);
3260 	}
3261 
3262 	/* Don't bother if destination was broadcast/multicast. */
3263 	if ((th->th_flags & TH_RST) || m->m_flags & (M_BCAST|M_MCAST))
3264 		goto drop;
3265 #ifdef INET6
3266 	if (mtod(m, struct ip *)->ip_v == 6) {
3267 		ip6 = mtod(m, struct ip6_hdr *);
3268 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
3269 		    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
3270 			goto drop;
3271 		/* IPv6 anycast check is done at tcp6_input() */
3272 	}
3273 #endif
3274 #if defined(INET) && defined(INET6)
3275 	else
3276 #endif
3277 #ifdef INET
3278 	{
3279 		ip = mtod(m, struct ip *);
3280 		if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
3281 		    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
3282 		    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
3283 		    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
3284 			goto drop;
3285 	}
3286 #endif
3287 
3288 	/* Perform bandwidth limiting. */
3289 	if (badport_bandlim(rstreason) < 0)
3290 		goto drop;
3291 
3292 	/* tcp_respond consumes the mbuf chain. */
3293 	if (th->th_flags & TH_ACK) {
3294 		tcp_respond(tp, mtod(m, void *), th, m, (tcp_seq)0,
3295 		    th->th_ack, TH_RST);
3296 	} else {
3297 		if (th->th_flags & TH_SYN)
3298 			tlen++;
3299 		tcp_respond(tp, mtod(m, void *), th, m, th->th_seq+tlen,
3300 		    (tcp_seq)0, TH_RST|TH_ACK);
3301 	}
3302 	return;
3303 drop:
3304 	m_freem(m);
3305 }
3306 
3307 /*
3308  * Parse TCP options and place in tcpopt.
3309  */
3310 void
3311 tcp_dooptions(struct tcpopt *to, u_char *cp, int cnt, int flags)
3312 {
3313 	int opt, optlen;
3314 
3315 	to->to_flags = 0;
3316 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
3317 		opt = cp[0];
3318 		if (opt == TCPOPT_EOL)
3319 			break;
3320 		if (opt == TCPOPT_NOP)
3321 			optlen = 1;
3322 		else {
3323 			if (cnt < 2)
3324 				break;
3325 			optlen = cp[1];
3326 			if (optlen < 2 || optlen > cnt)
3327 				break;
3328 		}
3329 		switch (opt) {
3330 		case TCPOPT_MAXSEG:
3331 			if (optlen != TCPOLEN_MAXSEG)
3332 				continue;
3333 			if (!(flags & TO_SYN))
3334 				continue;
3335 			to->to_flags |= TOF_MSS;
3336 			bcopy((char *)cp + 2,
3337 			    (char *)&to->to_mss, sizeof(to->to_mss));
3338 			to->to_mss = ntohs(to->to_mss);
3339 			break;
3340 		case TCPOPT_WINDOW:
3341 			if (optlen != TCPOLEN_WINDOW)
3342 				continue;
3343 			if (!(flags & TO_SYN))
3344 				continue;
3345 			to->to_flags |= TOF_SCALE;
3346 			to->to_wscale = min(cp[2], TCP_MAX_WINSHIFT);
3347 			break;
3348 		case TCPOPT_TIMESTAMP:
3349 			if (optlen != TCPOLEN_TIMESTAMP)
3350 				continue;
3351 			to->to_flags |= TOF_TS;
3352 			bcopy((char *)cp + 2,
3353 			    (char *)&to->to_tsval, sizeof(to->to_tsval));
3354 			to->to_tsval = ntohl(to->to_tsval);
3355 			bcopy((char *)cp + 6,
3356 			    (char *)&to->to_tsecr, sizeof(to->to_tsecr));
3357 			to->to_tsecr = ntohl(to->to_tsecr);
3358 			break;
3359 #ifdef TCP_SIGNATURE
3360 		/*
3361 		 * XXX In order to reply to a host which has set the
3362 		 * TCP_SIGNATURE option in its initial SYN, we have to
3363 		 * record the fact that the option was observed here
3364 		 * for the syncache code to perform the correct response.
3365 		 */
3366 		case TCPOPT_SIGNATURE:
3367 			if (optlen != TCPOLEN_SIGNATURE)
3368 				continue;
3369 			to->to_flags |= TOF_SIGNATURE;
3370 			to->to_signature = cp + 2;
3371 			break;
3372 #endif
3373 		case TCPOPT_SACK_PERMITTED:
3374 			if (optlen != TCPOLEN_SACK_PERMITTED)
3375 				continue;
3376 			if (!(flags & TO_SYN))
3377 				continue;
3378 			if (!V_tcp_do_sack)
3379 				continue;
3380 			to->to_flags |= TOF_SACKPERM;
3381 			break;
3382 		case TCPOPT_SACK:
3383 			if (optlen <= 2 || (optlen - 2) % TCPOLEN_SACK != 0)
3384 				continue;
3385 			if (flags & TO_SYN)
3386 				continue;
3387 			to->to_flags |= TOF_SACK;
3388 			to->to_nsacks = (optlen - 2) / TCPOLEN_SACK;
3389 			to->to_sacks = cp + 2;
3390 			TCPSTAT_INC(tcps_sack_rcv_blocks);
3391 			break;
3392 #ifdef TCP_RFC7413
3393 		case TCPOPT_FAST_OPEN:
3394 			if ((optlen != TCPOLEN_FAST_OPEN_EMPTY) &&
3395 			    (optlen < TCPOLEN_FAST_OPEN_MIN) &&
3396 			    (optlen > TCPOLEN_FAST_OPEN_MAX))
3397 				continue;
3398 			if (!(flags & TO_SYN))
3399 				continue;
3400 			if (!V_tcp_fastopen_enabled)
3401 				continue;
3402 			to->to_flags |= TOF_FASTOPEN;
3403 			to->to_tfo_len = optlen - 2;
3404 			to->to_tfo_cookie = to->to_tfo_len ? cp + 2 : NULL;
3405 			break;
3406 #endif
3407 		default:
3408 			continue;
3409 		}
3410 	}
3411 }
3412 
3413 /*
3414  * Pull out of band byte out of a segment so
3415  * it doesn't appear in the user's data queue.
3416  * It is still reflected in the segment length for
3417  * sequencing purposes.
3418  */
3419 void
3420 tcp_pulloutofband(struct socket *so, struct tcphdr *th, struct mbuf *m,
3421     int off)
3422 {
3423 	int cnt = off + th->th_urp - 1;
3424 
3425 	while (cnt >= 0) {
3426 		if (m->m_len > cnt) {
3427 			char *cp = mtod(m, caddr_t) + cnt;
3428 			struct tcpcb *tp = sototcpcb(so);
3429 
3430 			INP_WLOCK_ASSERT(tp->t_inpcb);
3431 
3432 			tp->t_iobc = *cp;
3433 			tp->t_oobflags |= TCPOOB_HAVEDATA;
3434 			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
3435 			m->m_len--;
3436 			if (m->m_flags & M_PKTHDR)
3437 				m->m_pkthdr.len--;
3438 			return;
3439 		}
3440 		cnt -= m->m_len;
3441 		m = m->m_next;
3442 		if (m == NULL)
3443 			break;
3444 	}
3445 	panic("tcp_pulloutofband");
3446 }
3447 
3448 /*
3449  * Collect new round-trip time estimate
3450  * and update averages and current timeout.
3451  */
3452 void
3453 tcp_xmit_timer(struct tcpcb *tp, int rtt)
3454 {
3455 	int delta;
3456 
3457 	INP_WLOCK_ASSERT(tp->t_inpcb);
3458 
3459 	TCPSTAT_INC(tcps_rttupdated);
3460 	tp->t_rttupdated++;
3461 	if (tp->t_srtt != 0) {
3462 		/*
3463 		 * srtt is stored as fixed point with 5 bits after the
3464 		 * binary point (i.e., scaled by 8).  The following magic
3465 		 * is equivalent to the smoothing algorithm in rfc793 with
3466 		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
3467 		 * point).  Adjust rtt to origin 0.
3468 		 */
3469 		delta = ((rtt - 1) << TCP_DELTA_SHIFT)
3470 			- (tp->t_srtt >> (TCP_RTT_SHIFT - TCP_DELTA_SHIFT));
3471 
3472 		if ((tp->t_srtt += delta) <= 0)
3473 			tp->t_srtt = 1;
3474 
3475 		/*
3476 		 * We accumulate a smoothed rtt variance (actually, a
3477 		 * smoothed mean difference), then set the retransmit
3478 		 * timer to smoothed rtt + 4 times the smoothed variance.
3479 		 * rttvar is stored as fixed point with 4 bits after the
3480 		 * binary point (scaled by 16).  The following is
3481 		 * equivalent to rfc793 smoothing with an alpha of .75
3482 		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
3483 		 * rfc793's wired-in beta.
3484 		 */
3485 		if (delta < 0)
3486 			delta = -delta;
3487 		delta -= tp->t_rttvar >> (TCP_RTTVAR_SHIFT - TCP_DELTA_SHIFT);
3488 		if ((tp->t_rttvar += delta) <= 0)
3489 			tp->t_rttvar = 1;
3490 		if (tp->t_rttbest > tp->t_srtt + tp->t_rttvar)
3491 		    tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
3492 	} else {
3493 		/*
3494 		 * No rtt measurement yet - use the unsmoothed rtt.
3495 		 * Set the variance to half the rtt (so our first
3496 		 * retransmit happens at 3*rtt).
3497 		 */
3498 		tp->t_srtt = rtt << TCP_RTT_SHIFT;
3499 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1);
3500 		tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
3501 	}
3502 	tp->t_rtttime = 0;
3503 	tp->t_rxtshift = 0;
3504 
3505 	/*
3506 	 * the retransmit should happen at rtt + 4 * rttvar.
3507 	 * Because of the way we do the smoothing, srtt and rttvar
3508 	 * will each average +1/2 tick of bias.  When we compute
3509 	 * the retransmit timer, we want 1/2 tick of rounding and
3510 	 * 1 extra tick because of +-1/2 tick uncertainty in the
3511 	 * firing of the timer.  The bias will give us exactly the
3512 	 * 1.5 tick we need.  But, because the bias is
3513 	 * statistical, we have to test that we don't drop below
3514 	 * the minimum feasible timer (which is 2 ticks).
3515 	 */
3516 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
3517 		      max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
3518 
3519 	/*
3520 	 * We received an ack for a packet that wasn't retransmitted;
3521 	 * it is probably safe to discard any error indications we've
3522 	 * received recently.  This isn't quite right, but close enough
3523 	 * for now (a route might have failed after we sent a segment,
3524 	 * and the return path might not be symmetrical).
3525 	 */
3526 	tp->t_softerror = 0;
3527 }
3528 
3529 /*
3530  * Determine a reasonable value for maxseg size.
3531  * If the route is known, check route for mtu.
3532  * If none, use an mss that can be handled on the outgoing interface
3533  * without forcing IP to fragment.  If no route is found, route has no mtu,
3534  * or the destination isn't local, use a default, hopefully conservative
3535  * size (usually 512 or the default IP max size, but no more than the mtu
3536  * of the interface), as we can't discover anything about intervening
3537  * gateways or networks.  We also initialize the congestion/slow start
3538  * window to be a single segment if the destination isn't local.
3539  * While looking at the routing entry, we also initialize other path-dependent
3540  * parameters from pre-set or cached values in the routing entry.
3541  *
3542  * NOTE that resulting t_maxseg doesn't include space for TCP options or
3543  * IP options, e.g. IPSEC data, since length of this data may vary, and
3544  * thus it is calculated for every segment separately in tcp_output().
3545  *
3546  * NOTE that this routine is only called when we process an incoming
3547  * segment, or an ICMP need fragmentation datagram. Outgoing SYN/ACK MSS
3548  * settings are handled in tcp_mssopt().
3549  */
3550 void
3551 tcp_mss_update(struct tcpcb *tp, int offer, int mtuoffer,
3552     struct hc_metrics_lite *metricptr, struct tcp_ifcap *cap)
3553 {
3554 	int mss = 0;
3555 	u_long maxmtu = 0;
3556 	struct inpcb *inp = tp->t_inpcb;
3557 	struct hc_metrics_lite metrics;
3558 #ifdef INET6
3559 	int isipv6 = ((inp->inp_vflag & INP_IPV6) != 0) ? 1 : 0;
3560 	size_t min_protoh = isipv6 ?
3561 			    sizeof (struct ip6_hdr) + sizeof (struct tcphdr) :
3562 			    sizeof (struct tcpiphdr);
3563 #else
3564 	const size_t min_protoh = sizeof(struct tcpiphdr);
3565 #endif
3566 
3567 	INP_WLOCK_ASSERT(tp->t_inpcb);
3568 
3569 	if (mtuoffer != -1) {
3570 		KASSERT(offer == -1, ("%s: conflict", __func__));
3571 		offer = mtuoffer - min_protoh;
3572 	}
3573 
3574 	/* Initialize. */
3575 #ifdef INET6
3576 	if (isipv6) {
3577 		maxmtu = tcp_maxmtu6(&inp->inp_inc, cap);
3578 		tp->t_maxseg = V_tcp_v6mssdflt;
3579 	}
3580 #endif
3581 #if defined(INET) && defined(INET6)
3582 	else
3583 #endif
3584 #ifdef INET
3585 	{
3586 		maxmtu = tcp_maxmtu(&inp->inp_inc, cap);
3587 		tp->t_maxseg = V_tcp_mssdflt;
3588 	}
3589 #endif
3590 
3591 	/*
3592 	 * No route to sender, stay with default mss and return.
3593 	 */
3594 	if (maxmtu == 0) {
3595 		/*
3596 		 * In case we return early we need to initialize metrics
3597 		 * to a defined state as tcp_hc_get() would do for us
3598 		 * if there was no cache hit.
3599 		 */
3600 		if (metricptr != NULL)
3601 			bzero(metricptr, sizeof(struct hc_metrics_lite));
3602 		return;
3603 	}
3604 
3605 	/* What have we got? */
3606 	switch (offer) {
3607 		case 0:
3608 			/*
3609 			 * Offer == 0 means that there was no MSS on the SYN
3610 			 * segment, in this case we use tcp_mssdflt as
3611 			 * already assigned to t_maxseg above.
3612 			 */
3613 			offer = tp->t_maxseg;
3614 			break;
3615 
3616 		case -1:
3617 			/*
3618 			 * Offer == -1 means that we didn't receive SYN yet.
3619 			 */
3620 			/* FALLTHROUGH */
3621 
3622 		default:
3623 			/*
3624 			 * Prevent DoS attack with too small MSS. Round up
3625 			 * to at least minmss.
3626 			 */
3627 			offer = max(offer, V_tcp_minmss);
3628 	}
3629 
3630 	/*
3631 	 * rmx information is now retrieved from tcp_hostcache.
3632 	 */
3633 	tcp_hc_get(&inp->inp_inc, &metrics);
3634 	if (metricptr != NULL)
3635 		bcopy(&metrics, metricptr, sizeof(struct hc_metrics_lite));
3636 
3637 	/*
3638 	 * If there's a discovered mtu in tcp hostcache, use it.
3639 	 * Else, use the link mtu.
3640 	 */
3641 	if (metrics.rmx_mtu)
3642 		mss = min(metrics.rmx_mtu, maxmtu) - min_protoh;
3643 	else {
3644 #ifdef INET6
3645 		if (isipv6) {
3646 			mss = maxmtu - min_protoh;
3647 			if (!V_path_mtu_discovery &&
3648 			    !in6_localaddr(&inp->in6p_faddr))
3649 				mss = min(mss, V_tcp_v6mssdflt);
3650 		}
3651 #endif
3652 #if defined(INET) && defined(INET6)
3653 		else
3654 #endif
3655 #ifdef INET
3656 		{
3657 			mss = maxmtu - min_protoh;
3658 			if (!V_path_mtu_discovery &&
3659 			    !in_localaddr(inp->inp_faddr))
3660 				mss = min(mss, V_tcp_mssdflt);
3661 		}
3662 #endif
3663 		/*
3664 		 * XXX - The above conditional (mss = maxmtu - min_protoh)
3665 		 * probably violates the TCP spec.
3666 		 * The problem is that, since we don't know the
3667 		 * other end's MSS, we are supposed to use a conservative
3668 		 * default.  But, if we do that, then MTU discovery will
3669 		 * never actually take place, because the conservative
3670 		 * default is much less than the MTUs typically seen
3671 		 * on the Internet today.  For the moment, we'll sweep
3672 		 * this under the carpet.
3673 		 *
3674 		 * The conservative default might not actually be a problem
3675 		 * if the only case this occurs is when sending an initial
3676 		 * SYN with options and data to a host we've never talked
3677 		 * to before.  Then, they will reply with an MSS value which
3678 		 * will get recorded and the new parameters should get
3679 		 * recomputed.  For Further Study.
3680 		 */
3681 	}
3682 	mss = min(mss, offer);
3683 
3684 	/*
3685 	 * Sanity check: make sure that maxseg will be large
3686 	 * enough to allow some data on segments even if the
3687 	 * all the option space is used (40bytes).  Otherwise
3688 	 * funny things may happen in tcp_output.
3689 	 *
3690 	 * XXXGL: shouldn't we reserve space for IP/IPv6 options?
3691 	 */
3692 	mss = max(mss, 64);
3693 
3694 	tp->t_maxseg = mss;
3695 }
3696 
3697 void
3698 tcp_mss(struct tcpcb *tp, int offer)
3699 {
3700 	int mss;
3701 	u_long bufsize;
3702 	struct inpcb *inp;
3703 	struct socket *so;
3704 	struct hc_metrics_lite metrics;
3705 	struct tcp_ifcap cap;
3706 
3707 	KASSERT(tp != NULL, ("%s: tp == NULL", __func__));
3708 
3709 	bzero(&cap, sizeof(cap));
3710 	tcp_mss_update(tp, offer, -1, &metrics, &cap);
3711 
3712 	mss = tp->t_maxseg;
3713 	inp = tp->t_inpcb;
3714 
3715 	/*
3716 	 * If there's a pipesize, change the socket buffer to that size,
3717 	 * don't change if sb_hiwat is different than default (then it
3718 	 * has been changed on purpose with setsockopt).
3719 	 * Make the socket buffers an integral number of mss units;
3720 	 * if the mss is larger than the socket buffer, decrease the mss.
3721 	 */
3722 	so = inp->inp_socket;
3723 	SOCKBUF_LOCK(&so->so_snd);
3724 	if ((so->so_snd.sb_hiwat == V_tcp_sendspace) && metrics.rmx_sendpipe)
3725 		bufsize = metrics.rmx_sendpipe;
3726 	else
3727 		bufsize = so->so_snd.sb_hiwat;
3728 	if (bufsize < mss)
3729 		mss = bufsize;
3730 	else {
3731 		bufsize = roundup(bufsize, mss);
3732 		if (bufsize > sb_max)
3733 			bufsize = sb_max;
3734 		if (bufsize > so->so_snd.sb_hiwat)
3735 			(void)sbreserve_locked(&so->so_snd, bufsize, so, NULL);
3736 	}
3737 	SOCKBUF_UNLOCK(&so->so_snd);
3738 	tp->t_maxseg = mss;
3739 
3740 	SOCKBUF_LOCK(&so->so_rcv);
3741 	if ((so->so_rcv.sb_hiwat == V_tcp_recvspace) && metrics.rmx_recvpipe)
3742 		bufsize = metrics.rmx_recvpipe;
3743 	else
3744 		bufsize = so->so_rcv.sb_hiwat;
3745 	if (bufsize > mss) {
3746 		bufsize = roundup(bufsize, mss);
3747 		if (bufsize > sb_max)
3748 			bufsize = sb_max;
3749 		if (bufsize > so->so_rcv.sb_hiwat)
3750 			(void)sbreserve_locked(&so->so_rcv, bufsize, so, NULL);
3751 	}
3752 	SOCKBUF_UNLOCK(&so->so_rcv);
3753 
3754 	/* Check the interface for TSO capabilities. */
3755 	if (cap.ifcap & CSUM_TSO) {
3756 		tp->t_flags |= TF_TSO;
3757 		tp->t_tsomax = cap.tsomax;
3758 		tp->t_tsomaxsegcount = cap.tsomaxsegcount;
3759 		tp->t_tsomaxsegsize = cap.tsomaxsegsize;
3760 	}
3761 }
3762 
3763 /*
3764  * Determine the MSS option to send on an outgoing SYN.
3765  */
3766 int
3767 tcp_mssopt(struct in_conninfo *inc)
3768 {
3769 	int mss = 0;
3770 	u_long maxmtu = 0;
3771 	u_long thcmtu = 0;
3772 	size_t min_protoh;
3773 
3774 	KASSERT(inc != NULL, ("tcp_mssopt with NULL in_conninfo pointer"));
3775 
3776 #ifdef INET6
3777 	if (inc->inc_flags & INC_ISIPV6) {
3778 		mss = V_tcp_v6mssdflt;
3779 		maxmtu = tcp_maxmtu6(inc, NULL);
3780 		min_protoh = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
3781 	}
3782 #endif
3783 #if defined(INET) && defined(INET6)
3784 	else
3785 #endif
3786 #ifdef INET
3787 	{
3788 		mss = V_tcp_mssdflt;
3789 		maxmtu = tcp_maxmtu(inc, NULL);
3790 		min_protoh = sizeof(struct tcpiphdr);
3791 	}
3792 #endif
3793 #if defined(INET6) || defined(INET)
3794 	thcmtu = tcp_hc_getmtu(inc); /* IPv4 and IPv6 */
3795 #endif
3796 
3797 	if (maxmtu && thcmtu)
3798 		mss = min(maxmtu, thcmtu) - min_protoh;
3799 	else if (maxmtu || thcmtu)
3800 		mss = max(maxmtu, thcmtu) - min_protoh;
3801 
3802 	return (mss);
3803 }
3804 
3805 
3806 /*
3807  * On a partial ack arrives, force the retransmission of the
3808  * next unacknowledged segment.  Do not clear tp->t_dupacks.
3809  * By setting snd_nxt to ti_ack, this forces retransmission timer to
3810  * be started again.
3811  */
3812 void
3813 tcp_newreno_partial_ack(struct tcpcb *tp, struct tcphdr *th)
3814 {
3815 	tcp_seq onxt = tp->snd_nxt;
3816 	u_long ocwnd = tp->snd_cwnd;
3817 	u_int maxseg = tcp_maxseg(tp);
3818 
3819 	INP_WLOCK_ASSERT(tp->t_inpcb);
3820 
3821 	tcp_timer_activate(tp, TT_REXMT, 0);
3822 	tp->t_rtttime = 0;
3823 	tp->snd_nxt = th->th_ack;
3824 	/*
3825 	 * Set snd_cwnd to one segment beyond acknowledged offset.
3826 	 * (tp->snd_una has not yet been updated when this function is called.)
3827 	 */
3828 	tp->snd_cwnd = maxseg + BYTES_THIS_ACK(tp, th);
3829 	tp->t_flags |= TF_ACKNOW;
3830 	(void) tp->t_fb->tfb_tcp_output(tp);
3831 	tp->snd_cwnd = ocwnd;
3832 	if (SEQ_GT(onxt, tp->snd_nxt))
3833 		tp->snd_nxt = onxt;
3834 	/*
3835 	 * Partial window deflation.  Relies on fact that tp->snd_una
3836 	 * not updated yet.
3837 	 */
3838 	if (tp->snd_cwnd > BYTES_THIS_ACK(tp, th))
3839 		tp->snd_cwnd -= BYTES_THIS_ACK(tp, th);
3840 	else
3841 		tp->snd_cwnd = 0;
3842 	tp->snd_cwnd += maxseg;
3843 }
3844 
3845 int
3846 tcp_compute_pipe(struct tcpcb *tp)
3847 {
3848 	return (tp->snd_max - tp->snd_una +
3849 		tp->sackhint.sack_bytes_rexmit -
3850 		tp->sackhint.sacked_bytes);
3851 }
3852