xref: /freebsd/sys/netinet/tcp_input.c (revision 5861f9665471e98e544f6fa3ce73c4912229ff82)
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 4. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include "opt_ipfw.h"		/* for ipfw_fwd	*/
36 #include "opt_inet.h"
37 #include "opt_inet6.h"
38 #include "opt_ipsec.h"
39 #include "opt_tcpdebug.h"
40 
41 #include <sys/param.h>
42 #include <sys/kernel.h>
43 #include <sys/malloc.h>
44 #include <sys/mbuf.h>
45 #include <sys/proc.h>		/* for proc0 declaration */
46 #include <sys/protosw.h>
47 #include <sys/signalvar.h>
48 #include <sys/socket.h>
49 #include <sys/socketvar.h>
50 #include <sys/sysctl.h>
51 #include <sys/syslog.h>
52 #include <sys/systm.h>
53 #include <sys/vimage.h>
54 
55 #include <machine/cpu.h>	/* before tcp_seq.h, for tcp_random18() */
56 
57 #include <vm/uma.h>
58 
59 #include <net/if.h>
60 #include <net/route.h>
61 
62 #define TCPSTATES		/* for logging */
63 
64 #include <netinet/in.h>
65 #include <netinet/in_pcb.h>
66 #include <netinet/in_systm.h>
67 #include <netinet/in_var.h>
68 #include <netinet/ip.h>
69 #include <netinet/ip_icmp.h>	/* required for icmp_var.h */
70 #include <netinet/icmp_var.h>	/* for ICMP_BANDLIM */
71 #include <netinet/ip_var.h>
72 #include <netinet/ip_options.h>
73 #include <netinet/ip6.h>
74 #include <netinet/icmp6.h>
75 #include <netinet6/in6_pcb.h>
76 #include <netinet6/ip6_var.h>
77 #include <netinet6/nd6.h>
78 #include <netinet/tcp.h>
79 #include <netinet/tcp_fsm.h>
80 #include <netinet/tcp_seq.h>
81 #include <netinet/tcp_timer.h>
82 #include <netinet/tcp_var.h>
83 #include <netinet6/tcp6_var.h>
84 #include <netinet/tcpip.h>
85 #include <netinet/tcp_syncache.h>
86 #ifdef TCPDEBUG
87 #include <netinet/tcp_debug.h>
88 #endif /* TCPDEBUG */
89 #include <netinet/vinet.h>
90 
91 #ifdef INET6
92 #include <netinet6/vinet6.h>
93 #endif
94 
95 #ifdef IPSEC
96 #include <netipsec/ipsec.h>
97 #include <netipsec/ipsec6.h>
98 #endif /*IPSEC*/
99 
100 #include <machine/in_cksum.h>
101 
102 #include <security/mac/mac_framework.h>
103 
104 static const int tcprexmtthresh = 3;
105 
106 #ifdef VIMAGE_GLOBALS
107 struct	tcpstat tcpstat;
108 int	blackhole;
109 int	tcp_delack_enabled;
110 int	drop_synfin;
111 int	tcp_do_rfc3042;
112 int	tcp_do_rfc3390;
113 int	tcp_do_ecn;
114 int	tcp_ecn_maxretries;
115 int	tcp_insecure_rst;
116 int	tcp_do_autorcvbuf;
117 int	tcp_autorcvbuf_inc;
118 int	tcp_autorcvbuf_max;
119 int	tcp_do_rfc3465;
120 int	tcp_abc_l_var;
121 #endif
122 
123 SYSCTL_V_STRUCT(V_NET, vnet_inet, _net_inet_tcp, TCPCTL_STATS, stats,
124     CTLFLAG_RW, tcpstat , tcpstat,
125     "TCP statistics (struct tcpstat, netinet/tcp_var.h)");
126 
127 int tcp_log_in_vain = 0;
128 SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_in_vain, CTLFLAG_RW,
129     &tcp_log_in_vain, 0, "Log all incoming TCP segments to closed ports");
130 
131 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_tcp, OID_AUTO, blackhole, CTLFLAG_RW,
132     blackhole, 0, "Do not send RST on segments to closed ports");
133 
134 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_tcp, OID_AUTO, delayed_ack,
135     CTLFLAG_RW, tcp_delack_enabled, 0,
136     "Delay ACK to try and piggyback it onto a data packet");
137 
138 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_tcp, OID_AUTO, drop_synfin,
139     CTLFLAG_RW, drop_synfin, 0, "Drop TCP packets with SYN+FIN set");
140 
141 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_tcp, OID_AUTO, rfc3042, CTLFLAG_RW,
142     tcp_do_rfc3042, 0, "Enable RFC 3042 (Limited Transmit)");
143 
144 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_tcp, OID_AUTO, rfc3390, CTLFLAG_RW,
145     tcp_do_rfc3390, 0,
146     "Enable RFC 3390 (Increasing TCP's Initial Congestion Window)");
147 
148 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_tcp, OID_AUTO, rfc3465, CTLFLAG_RW,
149     tcp_do_rfc3465, 0,
150     "Enable RFC 3465 (Appropriate Byte Counting)");
151 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_tcp, OID_AUTO, abc_l_var, CTLFLAG_RW,
152     tcp_abc_l_var, 2,
153     "Cap the max cwnd increment during slow-start to this number of segments");
154 
155 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, ecn, CTLFLAG_RW, 0, "TCP ECN");
156 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_tcp_ecn, OID_AUTO, enable,
157     CTLFLAG_RW, tcp_do_ecn, 0, "TCP ECN support");
158 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_tcp_ecn, OID_AUTO, maxretries,
159     CTLFLAG_RW, tcp_ecn_maxretries, 0, "Max retries before giving up on ECN");
160 
161 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_tcp, OID_AUTO, insecure_rst,
162     CTLFLAG_RW, tcp_insecure_rst, 0,
163     "Follow the old (insecure) criteria for accepting RST packets");
164 
165 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_tcp, OID_AUTO, recvbuf_auto,
166     CTLFLAG_RW, tcp_do_autorcvbuf, 0,
167     "Enable automatic receive buffer sizing");
168 
169 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_tcp, OID_AUTO, recvbuf_inc,
170     CTLFLAG_RW, tcp_autorcvbuf_inc, 0,
171     "Incrementor step size of automatic receive buffer");
172 
173 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_tcp, OID_AUTO, recvbuf_max,
174     CTLFLAG_RW, tcp_autorcvbuf_max, 0,
175     "Max size of automatic receive buffer");
176 
177 int	tcp_read_locking = 1;
178 SYSCTL_INT(_net_inet_tcp, OID_AUTO, read_locking, CTLFLAG_RW,
179     &tcp_read_locking, 0, "Enable read locking strategy");
180 
181 int	tcp_rlock_atfirst;
182 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rlock_atfirst, CTLFLAG_RD,
183     &tcp_rlock_atfirst, 0, "");
184 
185 int	tcp_wlock_atfirst;
186 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcp_wlock_atfirst, CTLFLAG_RD,
187     &tcp_wlock_atfirst, 0, "");
188 
189 int	tcp_wlock_upgraded;
190 SYSCTL_INT(_net_inet_tcp, OID_AUTO, wlock_upgraded, CTLFLAG_RD,
191     &tcp_wlock_upgraded, 0, "");
192 
193 int	tcp_wlock_relocked;
194 SYSCTL_INT(_net_inet_tcp, OID_AUTO, wlock_relocked, CTLFLAG_RD,
195     &tcp_wlock_relocked, 0, "");
196 
197 int	tcp_wlock_looped;
198 SYSCTL_INT(_net_inet_tcp, OID_AUTO, wlock_looped, CTLFLAG_RD,
199     &tcp_wlock_looped, 0, "");
200 
201 #ifdef VIMAGE_GLOBALS
202 struct inpcbhead tcb;
203 struct inpcbinfo tcbinfo;
204 #endif
205 #define	tcb6	tcb  /* for KAME src sync over BSD*'s */
206 
207 static void	 tcp_dooptions(struct tcpopt *, u_char *, int, int);
208 static void	 tcp_do_segment(struct mbuf *, struct tcphdr *,
209 		     struct socket *, struct tcpcb *, int, int, uint8_t,
210 		     int);
211 static void	 tcp_dropwithreset(struct mbuf *, struct tcphdr *,
212 		     struct tcpcb *, int, int);
213 static void	 tcp_pulloutofband(struct socket *,
214 		     struct tcphdr *, struct mbuf *, int);
215 static void	 tcp_xmit_timer(struct tcpcb *, int);
216 static void	 tcp_newreno_partial_ack(struct tcpcb *, struct tcphdr *);
217 static void inline
218 		 tcp_congestion_exp(struct tcpcb *);
219 
220 static void inline
221 tcp_congestion_exp(struct tcpcb *tp)
222 {
223 	u_int win;
224 
225 	win = min(tp->snd_wnd, tp->snd_cwnd) /
226 	    2 / tp->t_maxseg;
227 	if (win < 2)
228 		win = 2;
229 	tp->snd_ssthresh = win * tp->t_maxseg;
230 	ENTER_FASTRECOVERY(tp);
231 	tp->snd_recover = tp->snd_max;
232 	if (tp->t_flags & TF_ECN_PERMIT)
233 		tp->t_flags |= TF_ECN_SND_CWR;
234 }
235 
236 /* Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint. */
237 #ifdef INET6
238 #define ND6_HINT(tp) \
239 do { \
240 	if ((tp) && (tp)->t_inpcb && \
241 	    ((tp)->t_inpcb->inp_vflag & INP_IPV6) != 0) \
242 		nd6_nud_hint(NULL, NULL, 0); \
243 } while (0)
244 #else
245 #define ND6_HINT(tp)
246 #endif
247 
248 /*
249  * Indicate whether this ack should be delayed.  We can delay the ack if
250  *	- there is no delayed ack timer in progress and
251  *	- our last ack wasn't a 0-sized window.  We never want to delay
252  *	  the ack that opens up a 0-sized window and
253  *		- delayed acks are enabled or
254  *		- this is a half-synchronized T/TCP connection.
255  */
256 #define DELAY_ACK(tp)							\
257 	((!tcp_timer_active(tp, TT_DELACK) &&				\
258 	    (tp->t_flags & TF_RXWIN0SENT) == 0) &&			\
259 	    (V_tcp_delack_enabled || (tp->t_flags & TF_NEEDSYN)))
260 
261 /*
262  * TCP input handling is split into multiple parts:
263  *   tcp6_input is a thin wrapper around tcp_input for the extended
264  *	ip6_protox[] call format in ip6_input
265  *   tcp_input handles primary segment validation, inpcb lookup and
266  *	SYN processing on listen sockets
267  *   tcp_do_segment processes the ACK and text of the segment for
268  *	establishing, established and closing connections
269  */
270 #ifdef INET6
271 int
272 tcp6_input(struct mbuf **mp, int *offp, int proto)
273 {
274 	INIT_VNET_INET6(curvnet);
275 	struct mbuf *m = *mp;
276 	struct in6_ifaddr *ia6;
277 
278 	IP6_EXTHDR_CHECK(m, *offp, sizeof(struct tcphdr), IPPROTO_DONE);
279 
280 	/*
281 	 * draft-itojun-ipv6-tcp-to-anycast
282 	 * better place to put this in?
283 	 */
284 	ia6 = ip6_getdstifaddr(m);
285 	if (ia6 && (ia6->ia6_flags & IN6_IFF_ANYCAST)) {
286 		struct ip6_hdr *ip6;
287 
288 		ifa_free(&ia6->ia_ifa);
289 		ip6 = mtod(m, struct ip6_hdr *);
290 		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
291 			    (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
292 		return IPPROTO_DONE;
293 	}
294 
295 	tcp_input(m, *offp);
296 	return IPPROTO_DONE;
297 }
298 #endif
299 
300 void
301 tcp_input(struct mbuf *m, int off0)
302 {
303 	INIT_VNET_INET(curvnet);
304 #ifdef INET6
305 	INIT_VNET_INET6(curvnet);
306 #endif
307 #ifdef IPSEC
308 	INIT_VNET_IPSEC(curvnet);
309 #endif
310 	struct tcphdr *th;
311 	struct ip *ip = NULL;
312 	struct ipovly *ipov;
313 	struct inpcb *inp = NULL;
314 	struct tcpcb *tp = NULL;
315 	struct socket *so = NULL;
316 	u_char *optp = NULL;
317 	int optlen = 0;
318 	int len, tlen, off;
319 	int drop_hdrlen;
320 	int thflags;
321 	int rstreason = 0;	/* For badport_bandlim accounting purposes */
322 	uint8_t iptos;
323 #ifdef IPFIREWALL_FORWARD
324 	struct m_tag *fwd_tag;
325 #endif
326 #ifdef INET6
327 	struct ip6_hdr *ip6 = NULL;
328 	int isipv6;
329 #else
330 	const void *ip6 = NULL;
331 	const int isipv6 = 0;
332 #endif
333 	struct tcpopt to;		/* options in this segment */
334 	char *s = NULL;			/* address and port logging */
335 	int ti_locked;
336 #define	TI_UNLOCKED	1
337 #define	TI_RLOCKED	2
338 #define	TI_WLOCKED	3
339 
340 #ifdef TCPDEBUG
341 	/*
342 	 * The size of tcp_saveipgen must be the size of the max ip header,
343 	 * now IPv6.
344 	 */
345 	u_char tcp_saveipgen[IP6_HDR_LEN];
346 	struct tcphdr tcp_savetcp;
347 	short ostate = 0;
348 #endif
349 
350 #ifdef INET6
351 	isipv6 = (mtod(m, struct ip *)->ip_v == 6) ? 1 : 0;
352 #endif
353 
354 	to.to_flags = 0;
355 	TCPSTAT_INC(tcps_rcvtotal);
356 
357 	if (isipv6) {
358 #ifdef INET6
359 		/* IP6_EXTHDR_CHECK() is already done at tcp6_input(). */
360 		ip6 = mtod(m, struct ip6_hdr *);
361 		tlen = sizeof(*ip6) + ntohs(ip6->ip6_plen) - off0;
362 		if (in6_cksum(m, IPPROTO_TCP, off0, tlen)) {
363 			TCPSTAT_INC(tcps_rcvbadsum);
364 			goto drop;
365 		}
366 		th = (struct tcphdr *)((caddr_t)ip6 + off0);
367 
368 		/*
369 		 * Be proactive about unspecified IPv6 address in source.
370 		 * As we use all-zero to indicate unbounded/unconnected pcb,
371 		 * unspecified IPv6 address can be used to confuse us.
372 		 *
373 		 * Note that packets with unspecified IPv6 destination is
374 		 * already dropped in ip6_input.
375 		 */
376 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
377 			/* XXX stat */
378 			goto drop;
379 		}
380 #else
381 		th = NULL;		/* XXX: Avoid compiler warning. */
382 #endif
383 	} else {
384 		/*
385 		 * Get IP and TCP header together in first mbuf.
386 		 * Note: IP leaves IP header in first mbuf.
387 		 */
388 		if (off0 > sizeof (struct ip)) {
389 			ip_stripoptions(m, (struct mbuf *)0);
390 			off0 = sizeof(struct ip);
391 		}
392 		if (m->m_len < sizeof (struct tcpiphdr)) {
393 			if ((m = m_pullup(m, sizeof (struct tcpiphdr)))
394 			    == NULL) {
395 				TCPSTAT_INC(tcps_rcvshort);
396 				return;
397 			}
398 		}
399 		ip = mtod(m, struct ip *);
400 		ipov = (struct ipovly *)ip;
401 		th = (struct tcphdr *)((caddr_t)ip + off0);
402 		tlen = ip->ip_len;
403 
404 		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
405 			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
406 				th->th_sum = m->m_pkthdr.csum_data;
407 			else
408 				th->th_sum = in_pseudo(ip->ip_src.s_addr,
409 						ip->ip_dst.s_addr,
410 						htonl(m->m_pkthdr.csum_data +
411 							ip->ip_len +
412 							IPPROTO_TCP));
413 			th->th_sum ^= 0xffff;
414 #ifdef TCPDEBUG
415 			ipov->ih_len = (u_short)tlen;
416 			ipov->ih_len = htons(ipov->ih_len);
417 #endif
418 		} else {
419 			/*
420 			 * Checksum extended TCP header and data.
421 			 */
422 			len = sizeof (struct ip) + tlen;
423 			bzero(ipov->ih_x1, sizeof(ipov->ih_x1));
424 			ipov->ih_len = (u_short)tlen;
425 			ipov->ih_len = htons(ipov->ih_len);
426 			th->th_sum = in_cksum(m, len);
427 		}
428 		if (th->th_sum) {
429 			TCPSTAT_INC(tcps_rcvbadsum);
430 			goto drop;
431 		}
432 		/* Re-initialization for later version check */
433 		ip->ip_v = IPVERSION;
434 	}
435 
436 #ifdef INET6
437 	if (isipv6)
438 		iptos = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
439 	else
440 #endif
441 		iptos = ip->ip_tos;
442 
443 	/*
444 	 * Check that TCP offset makes sense,
445 	 * pull out TCP options and adjust length.		XXX
446 	 */
447 	off = th->th_off << 2;
448 	if (off < sizeof (struct tcphdr) || off > tlen) {
449 		TCPSTAT_INC(tcps_rcvbadoff);
450 		goto drop;
451 	}
452 	tlen -= off;	/* tlen is used instead of ti->ti_len */
453 	if (off > sizeof (struct tcphdr)) {
454 		if (isipv6) {
455 #ifdef INET6
456 			IP6_EXTHDR_CHECK(m, off0, off, );
457 			ip6 = mtod(m, struct ip6_hdr *);
458 			th = (struct tcphdr *)((caddr_t)ip6 + off0);
459 #endif
460 		} else {
461 			if (m->m_len < sizeof(struct ip) + off) {
462 				if ((m = m_pullup(m, sizeof (struct ip) + off))
463 				    == NULL) {
464 					TCPSTAT_INC(tcps_rcvshort);
465 					return;
466 				}
467 				ip = mtod(m, struct ip *);
468 				ipov = (struct ipovly *)ip;
469 				th = (struct tcphdr *)((caddr_t)ip + off0);
470 			}
471 		}
472 		optlen = off - sizeof (struct tcphdr);
473 		optp = (u_char *)(th + 1);
474 	}
475 	thflags = th->th_flags;
476 
477 	/*
478 	 * Convert TCP protocol specific fields to host format.
479 	 */
480 	th->th_seq = ntohl(th->th_seq);
481 	th->th_ack = ntohl(th->th_ack);
482 	th->th_win = ntohs(th->th_win);
483 	th->th_urp = ntohs(th->th_urp);
484 
485 	/*
486 	 * Delay dropping TCP, IP headers, IPv6 ext headers, and TCP options.
487 	 */
488 	drop_hdrlen = off0 + off;
489 
490 	/*
491 	 * Locate pcb for segment, which requires a lock on tcbinfo.
492 	 * Optimisticaly acquire a global read lock rather than a write lock
493 	 * unless header flags necessarily imply a state change.  There are
494 	 * two cases where we might discover later we need a write lock
495 	 * despite the flags: ACKs moving a connection out of the syncache,
496 	 * and ACKs for a connection in TIMEWAIT.
497 	 */
498 	if ((thflags & (TH_SYN | TH_FIN | TH_RST)) != 0 ||
499 	    tcp_read_locking == 0) {
500 		INP_INFO_WLOCK(&V_tcbinfo);
501 		ti_locked = TI_WLOCKED;
502 		tcp_wlock_atfirst++;
503 	} else {
504 		INP_INFO_RLOCK(&V_tcbinfo);
505 		ti_locked = TI_RLOCKED;
506 		tcp_rlock_atfirst++;
507 	}
508 
509 findpcb:
510 #ifdef INVARIANTS
511 	if (ti_locked == TI_RLOCKED)
512 		INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
513 	else if (ti_locked == TI_WLOCKED)
514 		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
515 	else
516 		panic("%s: findpcb ti_locked %d\n", __func__, ti_locked);
517 #endif
518 
519 #ifdef IPFIREWALL_FORWARD
520 	/*
521 	 * Grab info from PACKET_TAG_IPFORWARD tag prepended to the chain.
522 	 */
523 	fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
524 
525 	if (fwd_tag != NULL && isipv6 == 0) {	/* IPv6 support is not yet */
526 		struct sockaddr_in *next_hop;
527 
528 		next_hop = (struct sockaddr_in *)(fwd_tag+1);
529 		/*
530 		 * Transparently forwarded. Pretend to be the destination.
531 		 * already got one like this?
532 		 */
533 		inp = in_pcblookup_hash(&V_tcbinfo,
534 					ip->ip_src, th->th_sport,
535 					ip->ip_dst, th->th_dport,
536 					0, m->m_pkthdr.rcvif);
537 		if (!inp) {
538 			/* It's new.  Try to find the ambushing socket. */
539 			inp = in_pcblookup_hash(&V_tcbinfo,
540 						ip->ip_src, th->th_sport,
541 						next_hop->sin_addr,
542 						next_hop->sin_port ?
543 						    ntohs(next_hop->sin_port) :
544 						    th->th_dport,
545 						INPLOOKUP_WILDCARD,
546 						m->m_pkthdr.rcvif);
547 		}
548 		/* Remove the tag from the packet.  We don't need it anymore. */
549 		m_tag_delete(m, fwd_tag);
550 	} else
551 #endif /* IPFIREWALL_FORWARD */
552 	{
553 		if (isipv6) {
554 #ifdef INET6
555 			inp = in6_pcblookup_hash(&V_tcbinfo,
556 						 &ip6->ip6_src, th->th_sport,
557 						 &ip6->ip6_dst, th->th_dport,
558 						 INPLOOKUP_WILDCARD,
559 						 m->m_pkthdr.rcvif);
560 #endif
561 		} else
562 			inp = in_pcblookup_hash(&V_tcbinfo,
563 						ip->ip_src, th->th_sport,
564 						ip->ip_dst, th->th_dport,
565 						INPLOOKUP_WILDCARD,
566 						m->m_pkthdr.rcvif);
567 	}
568 
569 	/*
570 	 * If the INPCB does not exist then all data in the incoming
571 	 * segment is discarded and an appropriate RST is sent back.
572 	 * XXX MRT Send RST using which routing table?
573 	 */
574 	if (inp == NULL) {
575 		/*
576 		 * Log communication attempts to ports that are not
577 		 * in use.
578 		 */
579 		if ((tcp_log_in_vain == 1 && (thflags & TH_SYN)) ||
580 		    tcp_log_in_vain == 2) {
581 			if ((s = tcp_log_addrs(NULL, th, (void *)ip, ip6)))
582 				log(LOG_INFO, "%s; %s: Connection attempt "
583 				    "to closed port\n", s, __func__);
584 		}
585 		/*
586 		 * When blackholing do not respond with a RST but
587 		 * completely ignore the segment and drop it.
588 		 */
589 		if ((V_blackhole == 1 && (thflags & TH_SYN)) ||
590 		    V_blackhole == 2)
591 			goto dropunlock;
592 
593 		rstreason = BANDLIM_RST_CLOSEDPORT;
594 		goto dropwithreset;
595 	}
596 	INP_WLOCK(inp);
597 	if (!(inp->inp_flags & INP_HW_FLOWID)
598 	    && (m->m_flags & M_FLOWID)
599 	    && ((inp->inp_socket == NULL)
600 		|| !(inp->inp_socket->so_options & SO_ACCEPTCONN))) {
601 		inp->inp_flags |= INP_HW_FLOWID;
602 		inp->inp_flags &= ~INP_SW_FLOWID;
603 		inp->inp_flowid = m->m_pkthdr.flowid;
604 	}
605 #ifdef IPSEC
606 #ifdef INET6
607 	if (isipv6 && ipsec6_in_reject(m, inp)) {
608 		V_ipsec6stat.in_polvio++;
609 		goto dropunlock;
610 	} else
611 #endif /* INET6 */
612 	if (ipsec4_in_reject(m, inp) != 0) {
613 		V_ipsec4stat.in_polvio++;
614 		goto dropunlock;
615 	}
616 #endif /* IPSEC */
617 
618 	/*
619 	 * Check the minimum TTL for socket.
620 	 */
621 	if (inp->inp_ip_minttl != 0) {
622 #ifdef INET6
623 		if (isipv6 && inp->inp_ip_minttl > ip6->ip6_hlim)
624 			goto dropunlock;
625 		else
626 #endif
627 		if (inp->inp_ip_minttl > ip->ip_ttl)
628 			goto dropunlock;
629 	}
630 
631 	/*
632 	 * A previous connection in TIMEWAIT state is supposed to catch stray
633 	 * or duplicate segments arriving late.  If this segment was a
634 	 * legitimate new connection attempt the old INPCB gets removed and
635 	 * we can try again to find a listening socket.
636 	 *
637 	 * At this point, due to earlier optimism, we may hold a read lock on
638 	 * the inpcbinfo, rather than a write lock.  If so, we need to
639 	 * upgrade, or if that fails, acquire a reference on the inpcb, drop
640 	 * all locks, acquire a global write lock, and then re-acquire the
641 	 * inpcb lock.  We may at that point discover that another thread has
642 	 * tried to free the inpcb, in which case we need to loop back and
643 	 * try to find a new inpcb to deliver to.
644 	 */
645 	if (inp->inp_flags & INP_TIMEWAIT) {
646 		KASSERT(ti_locked == TI_RLOCKED || ti_locked == TI_WLOCKED,
647 		    ("%s: INP_TIMEWAIT ti_locked %d", __func__, ti_locked));
648 
649 		if (ti_locked == TI_RLOCKED) {
650 			if (rw_try_upgrade(&V_tcbinfo.ipi_lock) == 0) {
651 				in_pcbref(inp);
652 				INP_WUNLOCK(inp);
653 				INP_INFO_RUNLOCK(&V_tcbinfo);
654 				INP_INFO_WLOCK(&V_tcbinfo);
655 				ti_locked = TI_WLOCKED;
656 				INP_WLOCK(inp);
657 				if (in_pcbrele(inp)) {
658 					tcp_wlock_looped++;
659 					inp = NULL;
660 					goto findpcb;
661 				}
662 				tcp_wlock_relocked++;
663 			} else {
664 				ti_locked = TI_WLOCKED;
665 				tcp_wlock_upgraded++;
666 			}
667 		}
668 		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
669 
670 		if (thflags & TH_SYN)
671 			tcp_dooptions(&to, optp, optlen, TO_SYN);
672 		/*
673 		 * NB: tcp_twcheck unlocks the INP and frees the mbuf.
674 		 */
675 		if (tcp_twcheck(inp, &to, th, m, tlen))
676 			goto findpcb;
677 		INP_INFO_WUNLOCK(&V_tcbinfo);
678 		return;
679 	}
680 	/*
681 	 * The TCPCB may no longer exist if the connection is winding
682 	 * down or it is in the CLOSED state.  Either way we drop the
683 	 * segment and send an appropriate response.
684 	 */
685 	tp = intotcpcb(inp);
686 	if (tp == NULL || tp->t_state == TCPS_CLOSED) {
687 		rstreason = BANDLIM_RST_CLOSEDPORT;
688 		goto dropwithreset;
689 	}
690 
691 	/*
692 	 * We've identified a valid inpcb, but it could be that we need an
693 	 * inpcbinfo write lock and have only a read lock.  In this case,
694 	 * attempt to upgrade/relock using the same strategy as the TIMEWAIT
695 	 * case above.
696 	 */
697 	if (tp->t_state != TCPS_ESTABLISHED ||
698 	    (thflags & (TH_SYN | TH_FIN | TH_RST)) != 0 ||
699 	    tcp_read_locking == 0) {
700 		KASSERT(ti_locked == TI_RLOCKED || ti_locked == TI_WLOCKED,
701 		    ("%s: upgrade check ti_locked %d", __func__, ti_locked));
702 
703 		if (ti_locked == TI_RLOCKED) {
704 			if (rw_try_upgrade(&V_tcbinfo.ipi_lock) == 0) {
705 				in_pcbref(inp);
706 				INP_WUNLOCK(inp);
707 				INP_INFO_RUNLOCK(&V_tcbinfo);
708 				INP_INFO_WLOCK(&V_tcbinfo);
709 				ti_locked = TI_WLOCKED;
710 				INP_WLOCK(inp);
711 				if (in_pcbrele(inp)) {
712 					tcp_wlock_looped++;
713 					inp = NULL;
714 					goto findpcb;
715 				}
716 				tcp_wlock_relocked++;
717 			} else {
718 				ti_locked = TI_WLOCKED;
719 				tcp_wlock_upgraded++;
720 			}
721 		}
722 		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
723 	}
724 
725 #ifdef MAC
726 	INP_WLOCK_ASSERT(inp);
727 	if (mac_inpcb_check_deliver(inp, m))
728 		goto dropunlock;
729 #endif
730 	so = inp->inp_socket;
731 	KASSERT(so != NULL, ("%s: so == NULL", __func__));
732 #ifdef TCPDEBUG
733 	if (so->so_options & SO_DEBUG) {
734 		ostate = tp->t_state;
735 		if (isipv6) {
736 #ifdef INET6
737 			bcopy((char *)ip6, (char *)tcp_saveipgen, sizeof(*ip6));
738 #endif
739 		} else
740 			bcopy((char *)ip, (char *)tcp_saveipgen, sizeof(*ip));
741 		tcp_savetcp = *th;
742 	}
743 #endif
744 	/*
745 	 * When the socket is accepting connections (the INPCB is in LISTEN
746 	 * state) we look into the SYN cache if this is a new connection
747 	 * attempt or the completion of a previous one.
748 	 */
749 	if (so->so_options & SO_ACCEPTCONN) {
750 		struct in_conninfo inc;
751 
752 		KASSERT(tp->t_state == TCPS_LISTEN, ("%s: so accepting but "
753 		    "tp not listening", __func__));
754 
755 		bzero(&inc, sizeof(inc));
756 #ifdef INET6
757 		if (isipv6) {
758 			inc.inc_flags |= INC_ISIPV6;
759 			inc.inc6_faddr = ip6->ip6_src;
760 			inc.inc6_laddr = ip6->ip6_dst;
761 		} else
762 #endif
763 		{
764 			inc.inc_faddr = ip->ip_src;
765 			inc.inc_laddr = ip->ip_dst;
766 		}
767 		inc.inc_fport = th->th_sport;
768 		inc.inc_lport = th->th_dport;
769 
770 		/*
771 		 * Check for an existing connection attempt in syncache if
772 		 * the flag is only ACK.  A successful lookup creates a new
773 		 * socket appended to the listen queue in SYN_RECEIVED state.
774 		 */
775 		if ((thflags & (TH_RST|TH_ACK|TH_SYN)) == TH_ACK) {
776 			/*
777 			 * Parse the TCP options here because
778 			 * syncookies need access to the reflected
779 			 * timestamp.
780 			 */
781 			tcp_dooptions(&to, optp, optlen, 0);
782 			/*
783 			 * NB: syncache_expand() doesn't unlock
784 			 * inp and tcpinfo locks.
785 			 */
786 			if (!syncache_expand(&inc, &to, th, &so, m)) {
787 				/*
788 				 * No syncache entry or ACK was not
789 				 * for our SYN/ACK.  Send a RST.
790 				 * NB: syncache did its own logging
791 				 * of the failure cause.
792 				 */
793 				rstreason = BANDLIM_RST_OPENPORT;
794 				goto dropwithreset;
795 			}
796 			if (so == NULL) {
797 				/*
798 				 * We completed the 3-way handshake
799 				 * but could not allocate a socket
800 				 * either due to memory shortage,
801 				 * listen queue length limits or
802 				 * global socket limits.  Send RST
803 				 * or wait and have the remote end
804 				 * retransmit the ACK for another
805 				 * try.
806 				 */
807 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
808 					log(LOG_DEBUG, "%s; %s: Listen socket: "
809 					    "Socket allocation failed due to "
810 					    "limits or memory shortage, %s\n",
811 					    s, __func__,
812 					    V_tcp_sc_rst_sock_fail ?
813 					    "sending RST" : "try again");
814 				if (V_tcp_sc_rst_sock_fail) {
815 					rstreason = BANDLIM_UNLIMITED;
816 					goto dropwithreset;
817 				} else
818 					goto dropunlock;
819 			}
820 			/*
821 			 * Socket is created in state SYN_RECEIVED.
822 			 * Unlock the listen socket, lock the newly
823 			 * created socket and update the tp variable.
824 			 */
825 			INP_WUNLOCK(inp);	/* listen socket */
826 			inp = sotoinpcb(so);
827 			INP_WLOCK(inp);		/* new connection */
828 			tp = intotcpcb(inp);
829 			KASSERT(tp->t_state == TCPS_SYN_RECEIVED,
830 			    ("%s: ", __func__));
831 			/*
832 			 * Process the segment and the data it
833 			 * contains.  tcp_do_segment() consumes
834 			 * the mbuf chain and unlocks the inpcb.
835 			 */
836 			tcp_do_segment(m, th, so, tp, drop_hdrlen, tlen,
837 			    iptos, ti_locked);
838 			INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
839 			return;
840 		}
841 		/*
842 		 * Segment flag validation for new connection attempts:
843 		 *
844 		 * Our (SYN|ACK) response was rejected.
845 		 * Check with syncache and remove entry to prevent
846 		 * retransmits.
847 		 *
848 		 * NB: syncache_chkrst does its own logging of failure
849 		 * causes.
850 		 */
851 		if (thflags & TH_RST) {
852 			syncache_chkrst(&inc, th);
853 			goto dropunlock;
854 		}
855 		/*
856 		 * We can't do anything without SYN.
857 		 */
858 		if ((thflags & TH_SYN) == 0) {
859 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
860 				log(LOG_DEBUG, "%s; %s: Listen socket: "
861 				    "SYN is missing, segment ignored\n",
862 				    s, __func__);
863 			TCPSTAT_INC(tcps_badsyn);
864 			goto dropunlock;
865 		}
866 		/*
867 		 * (SYN|ACK) is bogus on a listen socket.
868 		 */
869 		if (thflags & TH_ACK) {
870 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
871 				log(LOG_DEBUG, "%s; %s: Listen socket: "
872 				    "SYN|ACK invalid, segment rejected\n",
873 				    s, __func__);
874 			syncache_badack(&inc);	/* XXX: Not needed! */
875 			TCPSTAT_INC(tcps_badsyn);
876 			rstreason = BANDLIM_RST_OPENPORT;
877 			goto dropwithreset;
878 		}
879 		/*
880 		 * If the drop_synfin option is enabled, drop all
881 		 * segments with both the SYN and FIN bits set.
882 		 * This prevents e.g. nmap from identifying the
883 		 * TCP/IP stack.
884 		 * XXX: Poor reasoning.  nmap has other methods
885 		 * and is constantly refining its stack detection
886 		 * strategies.
887 		 * XXX: This is a violation of the TCP specification
888 		 * and was used by RFC1644.
889 		 */
890 		if ((thflags & TH_FIN) && V_drop_synfin) {
891 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
892 				log(LOG_DEBUG, "%s; %s: Listen socket: "
893 				    "SYN|FIN segment ignored (based on "
894 				    "sysctl setting)\n", s, __func__);
895 			TCPSTAT_INC(tcps_badsyn);
896                 	goto dropunlock;
897 		}
898 		/*
899 		 * Segment's flags are (SYN) or (SYN|FIN).
900 		 *
901 		 * TH_PUSH, TH_URG, TH_ECE, TH_CWR are ignored
902 		 * as they do not affect the state of the TCP FSM.
903 		 * The data pointed to by TH_URG and th_urp is ignored.
904 		 */
905 		KASSERT((thflags & (TH_RST|TH_ACK)) == 0,
906 		    ("%s: Listen socket: TH_RST or TH_ACK set", __func__));
907 		KASSERT(thflags & (TH_SYN),
908 		    ("%s: Listen socket: TH_SYN not set", __func__));
909 #ifdef INET6
910 		/*
911 		 * If deprecated address is forbidden,
912 		 * we do not accept SYN to deprecated interface
913 		 * address to prevent any new inbound connection from
914 		 * getting established.
915 		 * When we do not accept SYN, we send a TCP RST,
916 		 * with deprecated source address (instead of dropping
917 		 * it).  We compromise it as it is much better for peer
918 		 * to send a RST, and RST will be the final packet
919 		 * for the exchange.
920 		 *
921 		 * If we do not forbid deprecated addresses, we accept
922 		 * the SYN packet.  RFC2462 does not suggest dropping
923 		 * SYN in this case.
924 		 * If we decipher RFC2462 5.5.4, it says like this:
925 		 * 1. use of deprecated addr with existing
926 		 *    communication is okay - "SHOULD continue to be
927 		 *    used"
928 		 * 2. use of it with new communication:
929 		 *   (2a) "SHOULD NOT be used if alternate address
930 		 *        with sufficient scope is available"
931 		 *   (2b) nothing mentioned otherwise.
932 		 * Here we fall into (2b) case as we have no choice in
933 		 * our source address selection - we must obey the peer.
934 		 *
935 		 * The wording in RFC2462 is confusing, and there are
936 		 * multiple description text for deprecated address
937 		 * handling - worse, they are not exactly the same.
938 		 * I believe 5.5.4 is the best one, so we follow 5.5.4.
939 		 */
940 		if (isipv6 && !V_ip6_use_deprecated) {
941 			struct in6_ifaddr *ia6;
942 
943 			ia6 = ip6_getdstifaddr(m);
944 			if (ia6 != NULL &&
945 			    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
946 				ifa_free(&ia6->ia_ifa);
947 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
948 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
949 					"Connection attempt to deprecated "
950 					"IPv6 address rejected\n",
951 					s, __func__);
952 				rstreason = BANDLIM_RST_OPENPORT;
953 				goto dropwithreset;
954 			}
955 			ifa_free(&ia6->ia_ifa);
956 		}
957 #endif
958 		/*
959 		 * Basic sanity checks on incoming SYN requests:
960 		 *   Don't respond if the destination is a link layer
961 		 *	broadcast according to RFC1122 4.2.3.10, p. 104.
962 		 *   If it is from this socket it must be forged.
963 		 *   Don't respond if the source or destination is a
964 		 *	global or subnet broad- or multicast address.
965 		 *   Note that it is quite possible to receive unicast
966 		 *	link-layer packets with a broadcast IP address. Use
967 		 *	in_broadcast() to find them.
968 		 */
969 		if (m->m_flags & (M_BCAST|M_MCAST)) {
970 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
971 			    log(LOG_DEBUG, "%s; %s: Listen socket: "
972 				"Connection attempt from broad- or multicast "
973 				"link layer address ignored\n", s, __func__);
974 			goto dropunlock;
975 		}
976 		if (isipv6) {
977 #ifdef INET6
978 			if (th->th_dport == th->th_sport &&
979 			    IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst, &ip6->ip6_src)) {
980 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
981 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
982 					"Connection attempt to/from self "
983 					"ignored\n", s, __func__);
984 				goto dropunlock;
985 			}
986 			if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
987 			    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
988 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
989 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
990 					"Connection attempt from/to multicast "
991 					"address ignored\n", s, __func__);
992 				goto dropunlock;
993 			}
994 #endif
995 		} else {
996 			if (th->th_dport == th->th_sport &&
997 			    ip->ip_dst.s_addr == ip->ip_src.s_addr) {
998 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
999 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1000 					"Connection attempt from/to self "
1001 					"ignored\n", s, __func__);
1002 				goto dropunlock;
1003 			}
1004 			if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
1005 			    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
1006 			    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
1007 			    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif)) {
1008 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1009 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1010 					"Connection attempt from/to broad- "
1011 					"or multicast address ignored\n",
1012 					s, __func__);
1013 				goto dropunlock;
1014 			}
1015 		}
1016 		/*
1017 		 * SYN appears to be valid.  Create compressed TCP state
1018 		 * for syncache.
1019 		 */
1020 #ifdef TCPDEBUG
1021 		if (so->so_options & SO_DEBUG)
1022 			tcp_trace(TA_INPUT, ostate, tp,
1023 			    (void *)tcp_saveipgen, &tcp_savetcp, 0);
1024 #endif
1025 		tcp_dooptions(&to, optp, optlen, TO_SYN);
1026 		syncache_add(&inc, &to, th, inp, &so, m);
1027 		/*
1028 		 * Entry added to syncache and mbuf consumed.
1029 		 * Everything already unlocked by syncache_add().
1030 		 */
1031 		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1032 		return;
1033 	}
1034 
1035 	/*
1036 	 * Segment belongs to a connection in SYN_SENT, ESTABLISHED or later
1037 	 * state.  tcp_do_segment() always consumes the mbuf chain, unlocks
1038 	 * the inpcb, and unlocks pcbinfo.
1039 	 */
1040 	tcp_do_segment(m, th, so, tp, drop_hdrlen, tlen, iptos, ti_locked);
1041 	INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1042 	return;
1043 
1044 dropwithreset:
1045 	if (ti_locked == TI_RLOCKED)
1046 		INP_INFO_RUNLOCK(&V_tcbinfo);
1047 	else if (ti_locked == TI_WLOCKED)
1048 		INP_INFO_WUNLOCK(&V_tcbinfo);
1049 	else
1050 		panic("%s: dropwithreset ti_locked %d", __func__, ti_locked);
1051 	ti_locked = TI_UNLOCKED;
1052 
1053 	if (inp != NULL) {
1054 		tcp_dropwithreset(m, th, tp, tlen, rstreason);
1055 		INP_WUNLOCK(inp);
1056 	} else
1057 		tcp_dropwithreset(m, th, NULL, tlen, rstreason);
1058 	m = NULL;	/* mbuf chain got consumed. */
1059 	goto drop;
1060 
1061 dropunlock:
1062 	if (ti_locked == TI_RLOCKED)
1063 		INP_INFO_RUNLOCK(&V_tcbinfo);
1064 	else if (ti_locked == TI_WLOCKED)
1065 		INP_INFO_WUNLOCK(&V_tcbinfo);
1066 	else
1067 		panic("%s: dropunlock ti_locked %d", __func__, ti_locked);
1068 	ti_locked = TI_UNLOCKED;
1069 
1070 	if (inp != NULL)
1071 		INP_WUNLOCK(inp);
1072 
1073 drop:
1074 	INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1075 	if (s != NULL)
1076 		free(s, M_TCPLOG);
1077 	if (m != NULL)
1078 		m_freem(m);
1079 }
1080 
1081 static void
1082 tcp_do_segment(struct mbuf *m, struct tcphdr *th, struct socket *so,
1083     struct tcpcb *tp, int drop_hdrlen, int tlen, uint8_t iptos,
1084     int ti_locked)
1085 {
1086 	INIT_VNET_INET(tp->t_vnet);
1087 	int thflags, acked, ourfinisacked, needoutput = 0;
1088 	int rstreason, todrop, win;
1089 	u_long tiwin;
1090 	struct tcpopt to;
1091 
1092 #ifdef TCPDEBUG
1093 	/*
1094 	 * The size of tcp_saveipgen must be the size of the max ip header,
1095 	 * now IPv6.
1096 	 */
1097 	u_char tcp_saveipgen[IP6_HDR_LEN];
1098 	struct tcphdr tcp_savetcp;
1099 	short ostate = 0;
1100 #endif
1101 	thflags = th->th_flags;
1102 
1103 	/*
1104 	 * If this is either a state-changing packet or current state isn't
1105 	 * established, we require a write lock on tcbinfo.  Otherwise, we
1106 	 * allow either a read lock or a write lock, as we may have acquired
1107 	 * a write lock due to a race.
1108 	 *
1109 	 * Require a global write lock for SYN/FIN/RST segments or
1110 	 * non-established connections; otherwise accept either a read or
1111 	 * write lock, as we may have conservatively acquired a write lock in
1112 	 * certain cases in tcp_input() (is this still true?).  Currently we
1113 	 * will never enter with no lock, so we try to drop it quickly in the
1114 	 * common pure ack/pure data cases.
1115 	 */
1116 	if ((thflags & (TH_SYN | TH_FIN | TH_RST)) != 0 ||
1117 	    tp->t_state != TCPS_ESTABLISHED) {
1118 		KASSERT(ti_locked == TI_WLOCKED, ("%s ti_locked %d for "
1119 		    "SYN/FIN/RST/!EST", __func__, ti_locked));
1120 		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1121 	} else {
1122 #ifdef INVARIANTS
1123 		if (ti_locked == TI_RLOCKED)
1124 			INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
1125 		else if (ti_locked == TI_WLOCKED)
1126 			INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1127 		else
1128 			panic("%s: ti_locked %d for EST", __func__,
1129 			    ti_locked);
1130 #endif
1131 	}
1132 	INP_WLOCK_ASSERT(tp->t_inpcb);
1133 	KASSERT(tp->t_state > TCPS_LISTEN, ("%s: TCPS_LISTEN",
1134 	    __func__));
1135 	KASSERT(tp->t_state != TCPS_TIME_WAIT, ("%s: TCPS_TIME_WAIT",
1136 	    __func__));
1137 
1138 	/*
1139 	 * Segment received on connection.
1140 	 * Reset idle time and keep-alive timer.
1141 	 * XXX: This should be done after segment
1142 	 * validation to ignore broken/spoofed segs.
1143 	 */
1144 	tp->t_rcvtime = ticks;
1145 	if (TCPS_HAVEESTABLISHED(tp->t_state))
1146 		tcp_timer_activate(tp, TT_KEEP, tcp_keepidle);
1147 
1148 	/*
1149 	 * Unscale the window into a 32-bit value.
1150 	 * For the SYN_SENT state the scale is zero.
1151 	 */
1152 	tiwin = th->th_win << tp->snd_scale;
1153 
1154 	/*
1155 	 * TCP ECN processing.
1156 	 */
1157 	if (tp->t_flags & TF_ECN_PERMIT) {
1158 		switch (iptos & IPTOS_ECN_MASK) {
1159 		case IPTOS_ECN_CE:
1160 			tp->t_flags |= TF_ECN_SND_ECE;
1161 			TCPSTAT_INC(tcps_ecn_ce);
1162 			break;
1163 		case IPTOS_ECN_ECT0:
1164 			TCPSTAT_INC(tcps_ecn_ect0);
1165 			break;
1166 		case IPTOS_ECN_ECT1:
1167 			TCPSTAT_INC(tcps_ecn_ect1);
1168 			break;
1169 		}
1170 
1171 		if (thflags & TH_CWR)
1172 			tp->t_flags &= ~TF_ECN_SND_ECE;
1173 
1174 		/*
1175 		 * Congestion experienced.
1176 		 * Ignore if we are already trying to recover.
1177 		 */
1178 		if ((thflags & TH_ECE) &&
1179 		    SEQ_LEQ(th->th_ack, tp->snd_recover)) {
1180 			TCPSTAT_INC(tcps_ecn_rcwnd);
1181 			tcp_congestion_exp(tp);
1182 		}
1183 	}
1184 
1185 	/*
1186 	 * Parse options on any incoming segment.
1187 	 */
1188 	tcp_dooptions(&to, (u_char *)(th + 1),
1189 	    (th->th_off << 2) - sizeof(struct tcphdr),
1190 	    (thflags & TH_SYN) ? TO_SYN : 0);
1191 
1192 	/*
1193 	 * If echoed timestamp is later than the current time,
1194 	 * fall back to non RFC1323 RTT calculation.  Normalize
1195 	 * timestamp if syncookies were used when this connection
1196 	 * was established.
1197 	 */
1198 	if ((to.to_flags & TOF_TS) && (to.to_tsecr != 0)) {
1199 		to.to_tsecr -= tp->ts_offset;
1200 		if (TSTMP_GT(to.to_tsecr, ticks))
1201 			to.to_tsecr = 0;
1202 	}
1203 
1204 	/*
1205 	 * Process options only when we get SYN/ACK back. The SYN case
1206 	 * for incoming connections is handled in tcp_syncache.
1207 	 * According to RFC1323 the window field in a SYN (i.e., a <SYN>
1208 	 * or <SYN,ACK>) segment itself is never scaled.
1209 	 * XXX this is traditional behavior, may need to be cleaned up.
1210 	 */
1211 	if (tp->t_state == TCPS_SYN_SENT && (thflags & TH_SYN)) {
1212 		if ((to.to_flags & TOF_SCALE) &&
1213 		    (tp->t_flags & TF_REQ_SCALE)) {
1214 			tp->t_flags |= TF_RCVD_SCALE;
1215 			tp->snd_scale = to.to_wscale;
1216 		}
1217 		/*
1218 		 * Initial send window.  It will be updated with
1219 		 * the next incoming segment to the scaled value.
1220 		 */
1221 		tp->snd_wnd = th->th_win;
1222 		if (to.to_flags & TOF_TS) {
1223 			tp->t_flags |= TF_RCVD_TSTMP;
1224 			tp->ts_recent = to.to_tsval;
1225 			tp->ts_recent_age = ticks;
1226 		}
1227 		if (to.to_flags & TOF_MSS)
1228 			tcp_mss(tp, to.to_mss);
1229 		if ((tp->t_flags & TF_SACK_PERMIT) &&
1230 		    (to.to_flags & TOF_SACKPERM) == 0)
1231 			tp->t_flags &= ~TF_SACK_PERMIT;
1232 	}
1233 
1234 	/*
1235 	 * Header prediction: check for the two common cases
1236 	 * of a uni-directional data xfer.  If the packet has
1237 	 * no control flags, is in-sequence, the window didn't
1238 	 * change and we're not retransmitting, it's a
1239 	 * candidate.  If the length is zero and the ack moved
1240 	 * forward, we're the sender side of the xfer.  Just
1241 	 * free the data acked & wake any higher level process
1242 	 * that was blocked waiting for space.  If the length
1243 	 * is non-zero and the ack didn't move, we're the
1244 	 * receiver side.  If we're getting packets in-order
1245 	 * (the reassembly queue is empty), add the data to
1246 	 * the socket buffer and note that we need a delayed ack.
1247 	 * Make sure that the hidden state-flags are also off.
1248 	 * Since we check for TCPS_ESTABLISHED first, it can only
1249 	 * be TH_NEEDSYN.
1250 	 */
1251 	if (tp->t_state == TCPS_ESTABLISHED &&
1252 	    th->th_seq == tp->rcv_nxt &&
1253 	    (thflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
1254 	    tp->snd_nxt == tp->snd_max &&
1255 	    tiwin && tiwin == tp->snd_wnd &&
1256 	    ((tp->t_flags & (TF_NEEDSYN|TF_NEEDFIN)) == 0) &&
1257 	    LIST_EMPTY(&tp->t_segq) &&
1258 	    ((to.to_flags & TOF_TS) == 0 ||
1259 	     TSTMP_GEQ(to.to_tsval, tp->ts_recent)) ) {
1260 
1261 		/*
1262 		 * If last ACK falls within this segment's sequence numbers,
1263 		 * record the timestamp.
1264 		 * NOTE that the test is modified according to the latest
1265 		 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
1266 		 */
1267 		if ((to.to_flags & TOF_TS) != 0 &&
1268 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1269 			tp->ts_recent_age = ticks;
1270 			tp->ts_recent = to.to_tsval;
1271 		}
1272 
1273 		if (tlen == 0) {
1274 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
1275 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
1276 			    tp->snd_cwnd >= tp->snd_wnd &&
1277 			    ((!V_tcp_do_newreno &&
1278 			      !(tp->t_flags & TF_SACK_PERMIT) &&
1279 			      tp->t_dupacks < tcprexmtthresh) ||
1280 			     ((V_tcp_do_newreno ||
1281 			       (tp->t_flags & TF_SACK_PERMIT)) &&
1282 			      !IN_FASTRECOVERY(tp) &&
1283 			      (to.to_flags & TOF_SACK) == 0 &&
1284 			      TAILQ_EMPTY(&tp->snd_holes)))) {
1285 				/*
1286 				 * This is a pure ack for outstanding data.
1287 				 */
1288 				if (ti_locked == TI_RLOCKED)
1289 					INP_INFO_RUNLOCK(&V_tcbinfo);
1290 				else if (ti_locked == TI_WLOCKED)
1291 					INP_INFO_WUNLOCK(&V_tcbinfo);
1292 				else
1293 					panic("%s: ti_locked %d on pure ACK",
1294 					    __func__, ti_locked);
1295 				ti_locked = TI_UNLOCKED;
1296 
1297 				TCPSTAT_INC(tcps_predack);
1298 
1299 				/*
1300 				 * "bad retransmit" recovery.
1301 				 */
1302 				if (tp->t_rxtshift == 1 &&
1303 				    (int)(ticks - tp->t_badrxtwin) < 0) {
1304 					TCPSTAT_INC(tcps_sndrexmitbad);
1305 					tp->snd_cwnd = tp->snd_cwnd_prev;
1306 					tp->snd_ssthresh =
1307 					    tp->snd_ssthresh_prev;
1308 					tp->snd_recover = tp->snd_recover_prev;
1309 					if (tp->t_flags & TF_WASFRECOVERY)
1310 					    ENTER_FASTRECOVERY(tp);
1311 					tp->snd_nxt = tp->snd_max;
1312 					tp->t_badrxtwin = 0;
1313 				}
1314 
1315 				/*
1316 				 * Recalculate the transmit timer / rtt.
1317 				 *
1318 				 * Some boxes send broken timestamp replies
1319 				 * during the SYN+ACK phase, ignore
1320 				 * timestamps of 0 or we could calculate a
1321 				 * huge RTT and blow up the retransmit timer.
1322 				 */
1323 				if ((to.to_flags & TOF_TS) != 0 &&
1324 				    to.to_tsecr) {
1325 					if (!tp->t_rttlow ||
1326 					    tp->t_rttlow > ticks - to.to_tsecr)
1327 						tp->t_rttlow = ticks - to.to_tsecr;
1328 					tcp_xmit_timer(tp,
1329 					    ticks - to.to_tsecr + 1);
1330 				} else if (tp->t_rtttime &&
1331 				    SEQ_GT(th->th_ack, tp->t_rtseq)) {
1332 					if (!tp->t_rttlow ||
1333 					    tp->t_rttlow > ticks - tp->t_rtttime)
1334 						tp->t_rttlow = ticks - tp->t_rtttime;
1335 					tcp_xmit_timer(tp,
1336 							ticks - tp->t_rtttime);
1337 				}
1338 				tcp_xmit_bandwidth_limit(tp, th->th_ack);
1339 				acked = th->th_ack - tp->snd_una;
1340 				TCPSTAT_INC(tcps_rcvackpack);
1341 				TCPSTAT_ADD(tcps_rcvackbyte, acked);
1342 				sbdrop(&so->so_snd, acked);
1343 				if (SEQ_GT(tp->snd_una, tp->snd_recover) &&
1344 				    SEQ_LEQ(th->th_ack, tp->snd_recover))
1345 					tp->snd_recover = th->th_ack - 1;
1346 				tp->snd_una = th->th_ack;
1347 				/*
1348 				 * Pull snd_wl2 up to prevent seq wrap relative
1349 				 * to th_ack.
1350 				 */
1351 				tp->snd_wl2 = th->th_ack;
1352 				tp->t_dupacks = 0;
1353 				m_freem(m);
1354 				ND6_HINT(tp); /* Some progress has been made. */
1355 
1356 				/*
1357 				 * If all outstanding data are acked, stop
1358 				 * retransmit timer, otherwise restart timer
1359 				 * using current (possibly backed-off) value.
1360 				 * If process is waiting for space,
1361 				 * wakeup/selwakeup/signal.  If data
1362 				 * are ready to send, let tcp_output
1363 				 * decide between more output or persist.
1364 				 */
1365 #ifdef TCPDEBUG
1366 				if (so->so_options & SO_DEBUG)
1367 					tcp_trace(TA_INPUT, ostate, tp,
1368 					    (void *)tcp_saveipgen,
1369 					    &tcp_savetcp, 0);
1370 #endif
1371 				if (tp->snd_una == tp->snd_max)
1372 					tcp_timer_activate(tp, TT_REXMT, 0);
1373 				else if (!tcp_timer_active(tp, TT_PERSIST))
1374 					tcp_timer_activate(tp, TT_REXMT,
1375 						      tp->t_rxtcur);
1376 				sowwakeup(so);
1377 				if (so->so_snd.sb_cc)
1378 					(void) tcp_output(tp);
1379 				goto check_delack;
1380 			}
1381 		} else if (th->th_ack == tp->snd_una &&
1382 		    tlen <= sbspace(&so->so_rcv)) {
1383 			int newsize = 0;	/* automatic sockbuf scaling */
1384 
1385 			/*
1386 			 * This is a pure, in-sequence data packet with
1387 			 * nothing on the reassembly queue and we have enough
1388 			 * buffer space to take it.
1389 			 */
1390 			if (ti_locked == TI_RLOCKED)
1391 				INP_INFO_RUNLOCK(&V_tcbinfo);
1392 			else if (ti_locked == TI_WLOCKED)
1393 				INP_INFO_WUNLOCK(&V_tcbinfo);
1394 			else
1395 				panic("%s: ti_locked %d on pure data "
1396 				    "segment", __func__, ti_locked);
1397 			ti_locked = TI_UNLOCKED;
1398 
1399 			/* Clean receiver SACK report if present */
1400 			if ((tp->t_flags & TF_SACK_PERMIT) && tp->rcv_numsacks)
1401 				tcp_clean_sackreport(tp);
1402 			TCPSTAT_INC(tcps_preddat);
1403 			tp->rcv_nxt += tlen;
1404 			/*
1405 			 * Pull snd_wl1 up to prevent seq wrap relative to
1406 			 * th_seq.
1407 			 */
1408 			tp->snd_wl1 = th->th_seq;
1409 			/*
1410 			 * Pull rcv_up up to prevent seq wrap relative to
1411 			 * rcv_nxt.
1412 			 */
1413 			tp->rcv_up = tp->rcv_nxt;
1414 			TCPSTAT_INC(tcps_rcvpack);
1415 			TCPSTAT_ADD(tcps_rcvbyte, tlen);
1416 			ND6_HINT(tp);	/* Some progress has been made */
1417 #ifdef TCPDEBUG
1418 			if (so->so_options & SO_DEBUG)
1419 				tcp_trace(TA_INPUT, ostate, tp,
1420 				    (void *)tcp_saveipgen, &tcp_savetcp, 0);
1421 #endif
1422 		/*
1423 		 * Automatic sizing of receive socket buffer.  Often the send
1424 		 * buffer size is not optimally adjusted to the actual network
1425 		 * conditions at hand (delay bandwidth product).  Setting the
1426 		 * buffer size too small limits throughput on links with high
1427 		 * bandwidth and high delay (eg. trans-continental/oceanic links).
1428 		 *
1429 		 * On the receive side the socket buffer memory is only rarely
1430 		 * used to any significant extent.  This allows us to be much
1431 		 * more aggressive in scaling the receive socket buffer.  For
1432 		 * the case that the buffer space is actually used to a large
1433 		 * extent and we run out of kernel memory we can simply drop
1434 		 * the new segments; TCP on the sender will just retransmit it
1435 		 * later.  Setting the buffer size too big may only consume too
1436 		 * much kernel memory if the application doesn't read() from
1437 		 * the socket or packet loss or reordering makes use of the
1438 		 * reassembly queue.
1439 		 *
1440 		 * The criteria to step up the receive buffer one notch are:
1441 		 *  1. the number of bytes received during the time it takes
1442 		 *     one timestamp to be reflected back to us (the RTT);
1443 		 *  2. received bytes per RTT is within seven eighth of the
1444 		 *     current socket buffer size;
1445 		 *  3. receive buffer size has not hit maximal automatic size;
1446 		 *
1447 		 * This algorithm does one step per RTT at most and only if
1448 		 * we receive a bulk stream w/o packet losses or reorderings.
1449 		 * Shrinking the buffer during idle times is not necessary as
1450 		 * it doesn't consume any memory when idle.
1451 		 *
1452 		 * TODO: Only step up if the application is actually serving
1453 		 * the buffer to better manage the socket buffer resources.
1454 		 */
1455 			if (V_tcp_do_autorcvbuf &&
1456 			    to.to_tsecr &&
1457 			    (so->so_rcv.sb_flags & SB_AUTOSIZE)) {
1458 				if (to.to_tsecr > tp->rfbuf_ts &&
1459 				    to.to_tsecr - tp->rfbuf_ts < hz) {
1460 					if (tp->rfbuf_cnt >
1461 					    (so->so_rcv.sb_hiwat / 8 * 7) &&
1462 					    so->so_rcv.sb_hiwat <
1463 					    V_tcp_autorcvbuf_max) {
1464 						newsize =
1465 						    min(so->so_rcv.sb_hiwat +
1466 						    V_tcp_autorcvbuf_inc,
1467 						    V_tcp_autorcvbuf_max);
1468 					}
1469 					/* Start over with next RTT. */
1470 					tp->rfbuf_ts = 0;
1471 					tp->rfbuf_cnt = 0;
1472 				} else
1473 					tp->rfbuf_cnt += tlen;	/* add up */
1474 			}
1475 
1476 			/* Add data to socket buffer. */
1477 			SOCKBUF_LOCK(&so->so_rcv);
1478 			if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
1479 				m_freem(m);
1480 			} else {
1481 				/*
1482 				 * Set new socket buffer size.
1483 				 * Give up when limit is reached.
1484 				 */
1485 				if (newsize)
1486 					if (!sbreserve_locked(&so->so_rcv,
1487 					    newsize, so, NULL))
1488 						so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
1489 				m_adj(m, drop_hdrlen);	/* delayed header drop */
1490 				sbappendstream_locked(&so->so_rcv, m);
1491 			}
1492 			/* NB: sorwakeup_locked() does an implicit unlock. */
1493 			sorwakeup_locked(so);
1494 			if (DELAY_ACK(tp)) {
1495 				tp->t_flags |= TF_DELACK;
1496 			} else {
1497 				tp->t_flags |= TF_ACKNOW;
1498 				tcp_output(tp);
1499 			}
1500 			goto check_delack;
1501 		}
1502 	}
1503 
1504 	/*
1505 	 * Calculate amount of space in receive window,
1506 	 * and then do TCP input processing.
1507 	 * Receive window is amount of space in rcv queue,
1508 	 * but not less than advertised window.
1509 	 */
1510 	win = sbspace(&so->so_rcv);
1511 	if (win < 0)
1512 		win = 0;
1513 	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1514 
1515 	/* Reset receive buffer auto scaling when not in bulk receive mode. */
1516 	tp->rfbuf_ts = 0;
1517 	tp->rfbuf_cnt = 0;
1518 
1519 	switch (tp->t_state) {
1520 
1521 	/*
1522 	 * If the state is SYN_RECEIVED:
1523 	 *	if seg contains an ACK, but not for our SYN/ACK, send a RST.
1524 	 */
1525 	case TCPS_SYN_RECEIVED:
1526 		if ((thflags & TH_ACK) &&
1527 		    (SEQ_LEQ(th->th_ack, tp->snd_una) ||
1528 		     SEQ_GT(th->th_ack, tp->snd_max))) {
1529 				rstreason = BANDLIM_RST_OPENPORT;
1530 				goto dropwithreset;
1531 		}
1532 		break;
1533 
1534 	/*
1535 	 * If the state is SYN_SENT:
1536 	 *	if seg contains an ACK, but not for our SYN, drop the input.
1537 	 *	if seg contains a RST, then drop the connection.
1538 	 *	if seg does not contain SYN, then drop it.
1539 	 * Otherwise this is an acceptable SYN segment
1540 	 *	initialize tp->rcv_nxt and tp->irs
1541 	 *	if seg contains ack then advance tp->snd_una
1542 	 *	if seg contains an ECE and ECN support is enabled, the stream
1543 	 *	    is ECN capable.
1544 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1545 	 *	arrange for segment to be acked (eventually)
1546 	 *	continue processing rest of data/controls, beginning with URG
1547 	 */
1548 	case TCPS_SYN_SENT:
1549 		if ((thflags & TH_ACK) &&
1550 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
1551 		     SEQ_GT(th->th_ack, tp->snd_max))) {
1552 			rstreason = BANDLIM_UNLIMITED;
1553 			goto dropwithreset;
1554 		}
1555 		if ((thflags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST))
1556 			tp = tcp_drop(tp, ECONNREFUSED);
1557 		if (thflags & TH_RST)
1558 			goto drop;
1559 		if (!(thflags & TH_SYN))
1560 			goto drop;
1561 
1562 		tp->irs = th->th_seq;
1563 		tcp_rcvseqinit(tp);
1564 		if (thflags & TH_ACK) {
1565 			TCPSTAT_INC(tcps_connects);
1566 			soisconnected(so);
1567 #ifdef MAC
1568 			mac_socketpeer_set_from_mbuf(m, so);
1569 #endif
1570 			/* Do window scaling on this connection? */
1571 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1572 				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1573 				tp->rcv_scale = tp->request_r_scale;
1574 			}
1575 			tp->rcv_adv += tp->rcv_wnd;
1576 			tp->snd_una++;		/* SYN is acked */
1577 			/*
1578 			 * If there's data, delay ACK; if there's also a FIN
1579 			 * ACKNOW will be turned on later.
1580 			 */
1581 			if (DELAY_ACK(tp) && tlen != 0)
1582 				tcp_timer_activate(tp, TT_DELACK,
1583 				    tcp_delacktime);
1584 			else
1585 				tp->t_flags |= TF_ACKNOW;
1586 
1587 			if ((thflags & TH_ECE) && V_tcp_do_ecn) {
1588 				tp->t_flags |= TF_ECN_PERMIT;
1589 				TCPSTAT_INC(tcps_ecn_shs);
1590 			}
1591 
1592 			/*
1593 			 * Received <SYN,ACK> in SYN_SENT[*] state.
1594 			 * Transitions:
1595 			 *	SYN_SENT  --> ESTABLISHED
1596 			 *	SYN_SENT* --> FIN_WAIT_1
1597 			 */
1598 			tp->t_starttime = ticks;
1599 			if (tp->t_flags & TF_NEEDFIN) {
1600 				tp->t_state = TCPS_FIN_WAIT_1;
1601 				tp->t_flags &= ~TF_NEEDFIN;
1602 				thflags &= ~TH_SYN;
1603 			} else {
1604 				tp->t_state = TCPS_ESTABLISHED;
1605 				tcp_timer_activate(tp, TT_KEEP, tcp_keepidle);
1606 			}
1607 		} else {
1608 			/*
1609 			 * Received initial SYN in SYN-SENT[*] state =>
1610 			 * simultaneous open.  If segment contains CC option
1611 			 * and there is a cached CC, apply TAO test.
1612 			 * If it succeeds, connection is * half-synchronized.
1613 			 * Otherwise, do 3-way handshake:
1614 			 *        SYN-SENT -> SYN-RECEIVED
1615 			 *        SYN-SENT* -> SYN-RECEIVED*
1616 			 * If there was no CC option, clear cached CC value.
1617 			 */
1618 			tp->t_flags |= (TF_ACKNOW | TF_NEEDSYN);
1619 			tcp_timer_activate(tp, TT_REXMT, 0);
1620 			tp->t_state = TCPS_SYN_RECEIVED;
1621 		}
1622 
1623 		KASSERT(ti_locked == TI_WLOCKED, ("%s: trimthenstep6: "
1624 		    "ti_locked %d", __func__, ti_locked));
1625 		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1626 		INP_WLOCK_ASSERT(tp->t_inpcb);
1627 
1628 		/*
1629 		 * Advance th->th_seq to correspond to first data byte.
1630 		 * If data, trim to stay within window,
1631 		 * dropping FIN if necessary.
1632 		 */
1633 		th->th_seq++;
1634 		if (tlen > tp->rcv_wnd) {
1635 			todrop = tlen - tp->rcv_wnd;
1636 			m_adj(m, -todrop);
1637 			tlen = tp->rcv_wnd;
1638 			thflags &= ~TH_FIN;
1639 			TCPSTAT_INC(tcps_rcvpackafterwin);
1640 			TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop);
1641 		}
1642 		tp->snd_wl1 = th->th_seq - 1;
1643 		tp->rcv_up = th->th_seq;
1644 		/*
1645 		 * Client side of transaction: already sent SYN and data.
1646 		 * If the remote host used T/TCP to validate the SYN,
1647 		 * our data will be ACK'd; if so, enter normal data segment
1648 		 * processing in the middle of step 5, ack processing.
1649 		 * Otherwise, goto step 6.
1650 		 */
1651 		if (thflags & TH_ACK)
1652 			goto process_ACK;
1653 
1654 		goto step6;
1655 
1656 	/*
1657 	 * If the state is LAST_ACK or CLOSING or TIME_WAIT:
1658 	 *      do normal processing.
1659 	 *
1660 	 * NB: Leftover from RFC1644 T/TCP.  Cases to be reused later.
1661 	 */
1662 	case TCPS_LAST_ACK:
1663 	case TCPS_CLOSING:
1664 		break;  /* continue normal processing */
1665 	}
1666 
1667 	/*
1668 	 * States other than LISTEN or SYN_SENT.
1669 	 * First check the RST flag and sequence number since reset segments
1670 	 * are exempt from the timestamp and connection count tests.  This
1671 	 * fixes a bug introduced by the Stevens, vol. 2, p. 960 bugfix
1672 	 * below which allowed reset segments in half the sequence space
1673 	 * to fall though and be processed (which gives forged reset
1674 	 * segments with a random sequence number a 50 percent chance of
1675 	 * killing a connection).
1676 	 * Then check timestamp, if present.
1677 	 * Then check the connection count, if present.
1678 	 * Then check that at least some bytes of segment are within
1679 	 * receive window.  If segment begins before rcv_nxt,
1680 	 * drop leading data (and SYN); if nothing left, just ack.
1681 	 *
1682 	 *
1683 	 * If the RST bit is set, check the sequence number to see
1684 	 * if this is a valid reset segment.
1685 	 * RFC 793 page 37:
1686 	 *   In all states except SYN-SENT, all reset (RST) segments
1687 	 *   are validated by checking their SEQ-fields.  A reset is
1688 	 *   valid if its sequence number is in the window.
1689 	 * Note: this does not take into account delayed ACKs, so
1690 	 *   we should test against last_ack_sent instead of rcv_nxt.
1691 	 *   The sequence number in the reset segment is normally an
1692 	 *   echo of our outgoing acknowlegement numbers, but some hosts
1693 	 *   send a reset with the sequence number at the rightmost edge
1694 	 *   of our receive window, and we have to handle this case.
1695 	 * Note 2: Paul Watson's paper "Slipping in the Window" has shown
1696 	 *   that brute force RST attacks are possible.  To combat this,
1697 	 *   we use a much stricter check while in the ESTABLISHED state,
1698 	 *   only accepting RSTs where the sequence number is equal to
1699 	 *   last_ack_sent.  In all other states (the states in which a
1700 	 *   RST is more likely), the more permissive check is used.
1701 	 * If we have multiple segments in flight, the initial reset
1702 	 * segment sequence numbers will be to the left of last_ack_sent,
1703 	 * but they will eventually catch up.
1704 	 * In any case, it never made sense to trim reset segments to
1705 	 * fit the receive window since RFC 1122 says:
1706 	 *   4.2.2.12  RST Segment: RFC-793 Section 3.4
1707 	 *
1708 	 *    A TCP SHOULD allow a received RST segment to include data.
1709 	 *
1710 	 *    DISCUSSION
1711 	 *         It has been suggested that a RST segment could contain
1712 	 *         ASCII text that encoded and explained the cause of the
1713 	 *         RST.  No standard has yet been established for such
1714 	 *         data.
1715 	 *
1716 	 * If the reset segment passes the sequence number test examine
1717 	 * the state:
1718 	 *    SYN_RECEIVED STATE:
1719 	 *	If passive open, return to LISTEN state.
1720 	 *	If active open, inform user that connection was refused.
1721 	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT_2, CLOSE_WAIT STATES:
1722 	 *	Inform user that connection was reset, and close tcb.
1723 	 *    CLOSING, LAST_ACK STATES:
1724 	 *	Close the tcb.
1725 	 *    TIME_WAIT STATE:
1726 	 *	Drop the segment - see Stevens, vol. 2, p. 964 and
1727 	 *      RFC 1337.
1728 	 */
1729 	if (thflags & TH_RST) {
1730 		if (SEQ_GEQ(th->th_seq, tp->last_ack_sent - 1) &&
1731 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) {
1732 			switch (tp->t_state) {
1733 
1734 			case TCPS_SYN_RECEIVED:
1735 				so->so_error = ECONNREFUSED;
1736 				goto close;
1737 
1738 			case TCPS_ESTABLISHED:
1739 				if (V_tcp_insecure_rst == 0 &&
1740 				    !(SEQ_GEQ(th->th_seq, tp->rcv_nxt - 1) &&
1741 				    SEQ_LEQ(th->th_seq, tp->rcv_nxt + 1)) &&
1742 				    !(SEQ_GEQ(th->th_seq, tp->last_ack_sent - 1) &&
1743 				    SEQ_LEQ(th->th_seq, tp->last_ack_sent + 1))) {
1744 					TCPSTAT_INC(tcps_badrst);
1745 					goto drop;
1746 				}
1747 				/* FALLTHROUGH */
1748 			case TCPS_FIN_WAIT_1:
1749 			case TCPS_FIN_WAIT_2:
1750 			case TCPS_CLOSE_WAIT:
1751 				so->so_error = ECONNRESET;
1752 			close:
1753 				KASSERT(ti_locked == TI_WLOCKED,
1754 				    ("tcp_do_segment: TH_RST 1 ti_locked %d",
1755 				    ti_locked));
1756 				INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1757 
1758 				tp->t_state = TCPS_CLOSED;
1759 				TCPSTAT_INC(tcps_drops);
1760 				tp = tcp_close(tp);
1761 				break;
1762 
1763 			case TCPS_CLOSING:
1764 			case TCPS_LAST_ACK:
1765 				KASSERT(ti_locked == TI_WLOCKED,
1766 				    ("tcp_do_segment: TH_RST 2 ti_locked %d",
1767 				    ti_locked));
1768 				INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1769 
1770 				tp = tcp_close(tp);
1771 				break;
1772 			}
1773 		}
1774 		goto drop;
1775 	}
1776 
1777 	/*
1778 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
1779 	 * and it's less than ts_recent, drop it.
1780 	 */
1781 	if ((to.to_flags & TOF_TS) != 0 && tp->ts_recent &&
1782 	    TSTMP_LT(to.to_tsval, tp->ts_recent)) {
1783 
1784 		/* Check to see if ts_recent is over 24 days old.  */
1785 		if (ticks - tp->ts_recent_age > TCP_PAWS_IDLE) {
1786 			/*
1787 			 * Invalidate ts_recent.  If this segment updates
1788 			 * ts_recent, the age will be reset later and ts_recent
1789 			 * will get a valid value.  If it does not, setting
1790 			 * ts_recent to zero will at least satisfy the
1791 			 * requirement that zero be placed in the timestamp
1792 			 * echo reply when ts_recent isn't valid.  The
1793 			 * age isn't reset until we get a valid ts_recent
1794 			 * because we don't want out-of-order segments to be
1795 			 * dropped when ts_recent is old.
1796 			 */
1797 			tp->ts_recent = 0;
1798 		} else {
1799 			TCPSTAT_INC(tcps_rcvduppack);
1800 			TCPSTAT_ADD(tcps_rcvdupbyte, tlen);
1801 			TCPSTAT_INC(tcps_pawsdrop);
1802 			if (tlen)
1803 				goto dropafterack;
1804 			goto drop;
1805 		}
1806 	}
1807 
1808 	/*
1809 	 * In the SYN-RECEIVED state, validate that the packet belongs to
1810 	 * this connection before trimming the data to fit the receive
1811 	 * window.  Check the sequence number versus IRS since we know
1812 	 * the sequence numbers haven't wrapped.  This is a partial fix
1813 	 * for the "LAND" DoS attack.
1814 	 */
1815 	if (tp->t_state == TCPS_SYN_RECEIVED && SEQ_LT(th->th_seq, tp->irs)) {
1816 		rstreason = BANDLIM_RST_OPENPORT;
1817 		goto dropwithreset;
1818 	}
1819 
1820 	todrop = tp->rcv_nxt - th->th_seq;
1821 	if (todrop > 0) {
1822 		/*
1823 		 * If this is a duplicate SYN for our current connection,
1824 		 * advance over it and pretend and it's not a SYN.
1825 		 */
1826 		if (thflags & TH_SYN && th->th_seq == tp->irs) {
1827 			thflags &= ~TH_SYN;
1828 			th->th_seq++;
1829 			if (th->th_urp > 1)
1830 				th->th_urp--;
1831 			else
1832 				thflags &= ~TH_URG;
1833 			todrop--;
1834 		}
1835 		/*
1836 		 * Following if statement from Stevens, vol. 2, p. 960.
1837 		 */
1838 		if (todrop > tlen
1839 		    || (todrop == tlen && (thflags & TH_FIN) == 0)) {
1840 			/*
1841 			 * Any valid FIN must be to the left of the window.
1842 			 * At this point the FIN must be a duplicate or out
1843 			 * of sequence; drop it.
1844 			 */
1845 			thflags &= ~TH_FIN;
1846 
1847 			/*
1848 			 * Send an ACK to resynchronize and drop any data.
1849 			 * But keep on processing for RST or ACK.
1850 			 */
1851 			tp->t_flags |= TF_ACKNOW;
1852 			todrop = tlen;
1853 			TCPSTAT_INC(tcps_rcvduppack);
1854 			TCPSTAT_ADD(tcps_rcvdupbyte, todrop);
1855 		} else {
1856 			TCPSTAT_INC(tcps_rcvpartduppack);
1857 			TCPSTAT_ADD(tcps_rcvpartdupbyte, todrop);
1858 		}
1859 		drop_hdrlen += todrop;	/* drop from the top afterwards */
1860 		th->th_seq += todrop;
1861 		tlen -= todrop;
1862 		if (th->th_urp > todrop)
1863 			th->th_urp -= todrop;
1864 		else {
1865 			thflags &= ~TH_URG;
1866 			th->th_urp = 0;
1867 		}
1868 	}
1869 
1870 	/*
1871 	 * If new data are received on a connection after the
1872 	 * user processes are gone, then RST the other end.
1873 	 */
1874 	if ((so->so_state & SS_NOFDREF) &&
1875 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
1876 		char *s;
1877 
1878 		KASSERT(ti_locked == TI_WLOCKED, ("%s: SS_NOFDEREF && "
1879 		    "CLOSE_WAIT && tlen ti_locked %d", __func__, ti_locked));
1880 		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1881 
1882 		if ((s = tcp_log_addrs(&tp->t_inpcb->inp_inc, th, NULL, NULL))) {
1883 			log(LOG_DEBUG, "%s; %s: %s: Received %d bytes of data after socket "
1884 			    "was closed, sending RST and removing tcpcb\n",
1885 			    s, __func__, tcpstates[tp->t_state], tlen);
1886 			free(s, M_TCPLOG);
1887 		}
1888 		tp = tcp_close(tp);
1889 		TCPSTAT_INC(tcps_rcvafterclose);
1890 		rstreason = BANDLIM_UNLIMITED;
1891 		goto dropwithreset;
1892 	}
1893 
1894 	/*
1895 	 * If segment ends after window, drop trailing data
1896 	 * (and PUSH and FIN); if nothing left, just ACK.
1897 	 */
1898 	todrop = (th->th_seq + tlen) - (tp->rcv_nxt + tp->rcv_wnd);
1899 	if (todrop > 0) {
1900 		TCPSTAT_INC(tcps_rcvpackafterwin);
1901 		if (todrop >= tlen) {
1902 			TCPSTAT_ADD(tcps_rcvbyteafterwin, tlen);
1903 			/*
1904 			 * If window is closed can only take segments at
1905 			 * window edge, and have to drop data and PUSH from
1906 			 * incoming segments.  Continue processing, but
1907 			 * remember to ack.  Otherwise, drop segment
1908 			 * and ack.
1909 			 */
1910 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
1911 				tp->t_flags |= TF_ACKNOW;
1912 				TCPSTAT_INC(tcps_rcvwinprobe);
1913 			} else
1914 				goto dropafterack;
1915 		} else
1916 			TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop);
1917 		m_adj(m, -todrop);
1918 		tlen -= todrop;
1919 		thflags &= ~(TH_PUSH|TH_FIN);
1920 	}
1921 
1922 	/*
1923 	 * If last ACK falls within this segment's sequence numbers,
1924 	 * record its timestamp.
1925 	 * NOTE:
1926 	 * 1) That the test incorporates suggestions from the latest
1927 	 *    proposal of the tcplw@cray.com list (Braden 1993/04/26).
1928 	 * 2) That updating only on newer timestamps interferes with
1929 	 *    our earlier PAWS tests, so this check should be solely
1930 	 *    predicated on the sequence space of this segment.
1931 	 * 3) That we modify the segment boundary check to be
1932 	 *        Last.ACK.Sent <= SEG.SEQ + SEG.Len
1933 	 *    instead of RFC1323's
1934 	 *        Last.ACK.Sent < SEG.SEQ + SEG.Len,
1935 	 *    This modified check allows us to overcome RFC1323's
1936 	 *    limitations as described in Stevens TCP/IP Illustrated
1937 	 *    Vol. 2 p.869. In such cases, we can still calculate the
1938 	 *    RTT correctly when RCV.NXT == Last.ACK.Sent.
1939 	 */
1940 	if ((to.to_flags & TOF_TS) != 0 &&
1941 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1942 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
1943 		((thflags & (TH_SYN|TH_FIN)) != 0))) {
1944 		tp->ts_recent_age = ticks;
1945 		tp->ts_recent = to.to_tsval;
1946 	}
1947 
1948 	/*
1949 	 * If a SYN is in the window, then this is an
1950 	 * error and we send an RST and drop the connection.
1951 	 */
1952 	if (thflags & TH_SYN) {
1953 		KASSERT(ti_locked == TI_WLOCKED,
1954 		    ("tcp_do_segment: TH_SYN ti_locked %d", ti_locked));
1955 		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1956 
1957 		tp = tcp_drop(tp, ECONNRESET);
1958 		rstreason = BANDLIM_UNLIMITED;
1959 		goto drop;
1960 	}
1961 
1962 	/*
1963 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN
1964 	 * flag is on (half-synchronized state), then queue data for
1965 	 * later processing; else drop segment and return.
1966 	 */
1967 	if ((thflags & TH_ACK) == 0) {
1968 		if (tp->t_state == TCPS_SYN_RECEIVED ||
1969 		    (tp->t_flags & TF_NEEDSYN))
1970 			goto step6;
1971 		else if (tp->t_flags & TF_ACKNOW)
1972 			goto dropafterack;
1973 		else
1974 			goto drop;
1975 	}
1976 
1977 	/*
1978 	 * Ack processing.
1979 	 */
1980 	switch (tp->t_state) {
1981 
1982 	/*
1983 	 * In SYN_RECEIVED state, the ack ACKs our SYN, so enter
1984 	 * ESTABLISHED state and continue processing.
1985 	 * The ACK was checked above.
1986 	 */
1987 	case TCPS_SYN_RECEIVED:
1988 
1989 		TCPSTAT_INC(tcps_connects);
1990 		soisconnected(so);
1991 		/* Do window scaling? */
1992 		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1993 			(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1994 			tp->rcv_scale = tp->request_r_scale;
1995 			tp->snd_wnd = tiwin;
1996 		}
1997 		/*
1998 		 * Make transitions:
1999 		 *      SYN-RECEIVED  -> ESTABLISHED
2000 		 *      SYN-RECEIVED* -> FIN-WAIT-1
2001 		 */
2002 		tp->t_starttime = ticks;
2003 		if (tp->t_flags & TF_NEEDFIN) {
2004 			tp->t_state = TCPS_FIN_WAIT_1;
2005 			tp->t_flags &= ~TF_NEEDFIN;
2006 		} else {
2007 			tp->t_state = TCPS_ESTABLISHED;
2008 			tcp_timer_activate(tp, TT_KEEP, tcp_keepidle);
2009 		}
2010 		/*
2011 		 * If segment contains data or ACK, will call tcp_reass()
2012 		 * later; if not, do so now to pass queued data to user.
2013 		 */
2014 		if (tlen == 0 && (thflags & TH_FIN) == 0)
2015 			(void) tcp_reass(tp, (struct tcphdr *)0, 0,
2016 			    (struct mbuf *)0);
2017 		tp->snd_wl1 = th->th_seq - 1;
2018 		/* FALLTHROUGH */
2019 
2020 	/*
2021 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
2022 	 * ACKs.  If the ack is in the range
2023 	 *	tp->snd_una < th->th_ack <= tp->snd_max
2024 	 * then advance tp->snd_una to th->th_ack and drop
2025 	 * data from the retransmission queue.  If this ACK reflects
2026 	 * more up to date window information we update our window information.
2027 	 */
2028 	case TCPS_ESTABLISHED:
2029 	case TCPS_FIN_WAIT_1:
2030 	case TCPS_FIN_WAIT_2:
2031 	case TCPS_CLOSE_WAIT:
2032 	case TCPS_CLOSING:
2033 	case TCPS_LAST_ACK:
2034 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
2035 			TCPSTAT_INC(tcps_rcvacktoomuch);
2036 			goto dropafterack;
2037 		}
2038 		if ((tp->t_flags & TF_SACK_PERMIT) &&
2039 		    ((to.to_flags & TOF_SACK) ||
2040 		     !TAILQ_EMPTY(&tp->snd_holes)))
2041 			tcp_sack_doack(tp, &to, th->th_ack);
2042 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
2043 			if (tlen == 0 && tiwin == tp->snd_wnd) {
2044 				TCPSTAT_INC(tcps_rcvdupack);
2045 				/*
2046 				 * If we have outstanding data (other than
2047 				 * a window probe), this is a completely
2048 				 * duplicate ack (ie, window info didn't
2049 				 * change), the ack is the biggest we've
2050 				 * seen and we've seen exactly our rexmt
2051 				 * threshhold of them, assume a packet
2052 				 * has been dropped and retransmit it.
2053 				 * Kludge snd_nxt & the congestion
2054 				 * window so we send only this one
2055 				 * packet.
2056 				 *
2057 				 * We know we're losing at the current
2058 				 * window size so do congestion avoidance
2059 				 * (set ssthresh to half the current window
2060 				 * and pull our congestion window back to
2061 				 * the new ssthresh).
2062 				 *
2063 				 * Dup acks mean that packets have left the
2064 				 * network (they're now cached at the receiver)
2065 				 * so bump cwnd by the amount in the receiver
2066 				 * to keep a constant cwnd packets in the
2067 				 * network.
2068 				 *
2069 				 * When using TCP ECN, notify the peer that
2070 				 * we reduced the cwnd.
2071 				 */
2072 				if (!tcp_timer_active(tp, TT_REXMT) ||
2073 				    th->th_ack != tp->snd_una)
2074 					tp->t_dupacks = 0;
2075 				else if (++tp->t_dupacks > tcprexmtthresh ||
2076 				    ((V_tcp_do_newreno ||
2077 				      (tp->t_flags & TF_SACK_PERMIT)) &&
2078 				     IN_FASTRECOVERY(tp))) {
2079 					if ((tp->t_flags & TF_SACK_PERMIT) &&
2080 					    IN_FASTRECOVERY(tp)) {
2081 						int awnd;
2082 
2083 						/*
2084 						 * Compute the amount of data in flight first.
2085 						 * We can inject new data into the pipe iff
2086 						 * we have less than 1/2 the original window's
2087 						 * worth of data in flight.
2088 						 */
2089 						awnd = (tp->snd_nxt - tp->snd_fack) +
2090 							tp->sackhint.sack_bytes_rexmit;
2091 						if (awnd < tp->snd_ssthresh) {
2092 							tp->snd_cwnd += tp->t_maxseg;
2093 							if (tp->snd_cwnd > tp->snd_ssthresh)
2094 								tp->snd_cwnd = tp->snd_ssthresh;
2095 						}
2096 					} else
2097 						tp->snd_cwnd += tp->t_maxseg;
2098 					(void) tcp_output(tp);
2099 					goto drop;
2100 				} else if (tp->t_dupacks == tcprexmtthresh) {
2101 					tcp_seq onxt = tp->snd_nxt;
2102 
2103 					/*
2104 					 * If we're doing sack, check to
2105 					 * see if we're already in sack
2106 					 * recovery. If we're not doing sack,
2107 					 * check to see if we're in newreno
2108 					 * recovery.
2109 					 */
2110 					if (tp->t_flags & TF_SACK_PERMIT) {
2111 						if (IN_FASTRECOVERY(tp)) {
2112 							tp->t_dupacks = 0;
2113 							break;
2114 						}
2115 					} else if (V_tcp_do_newreno ||
2116 					    V_tcp_do_ecn) {
2117 						if (SEQ_LEQ(th->th_ack,
2118 						    tp->snd_recover)) {
2119 							tp->t_dupacks = 0;
2120 							break;
2121 						}
2122 					}
2123 					tcp_congestion_exp(tp);
2124 					tcp_timer_activate(tp, TT_REXMT, 0);
2125 					tp->t_rtttime = 0;
2126 					if (tp->t_flags & TF_SACK_PERMIT) {
2127 						TCPSTAT_INC(
2128 						    tcps_sack_recovery_episode);
2129 						tp->sack_newdata = tp->snd_nxt;
2130 						tp->snd_cwnd = tp->t_maxseg;
2131 						(void) tcp_output(tp);
2132 						goto drop;
2133 					}
2134 					tp->snd_nxt = th->th_ack;
2135 					tp->snd_cwnd = tp->t_maxseg;
2136 					(void) tcp_output(tp);
2137 					KASSERT(tp->snd_limited <= 2,
2138 					    ("%s: tp->snd_limited too big",
2139 					    __func__));
2140 					tp->snd_cwnd = tp->snd_ssthresh +
2141 					     tp->t_maxseg *
2142 					     (tp->t_dupacks - tp->snd_limited);
2143 					if (SEQ_GT(onxt, tp->snd_nxt))
2144 						tp->snd_nxt = onxt;
2145 					goto drop;
2146 				} else if (V_tcp_do_rfc3042) {
2147 					u_long oldcwnd = tp->snd_cwnd;
2148 					tcp_seq oldsndmax = tp->snd_max;
2149 					u_int sent;
2150 
2151 					KASSERT(tp->t_dupacks == 1 ||
2152 					    tp->t_dupacks == 2,
2153 					    ("%s: dupacks not 1 or 2",
2154 					    __func__));
2155 					if (tp->t_dupacks == 1)
2156 						tp->snd_limited = 0;
2157 					tp->snd_cwnd =
2158 					    (tp->snd_nxt - tp->snd_una) +
2159 					    (tp->t_dupacks - tp->snd_limited) *
2160 					    tp->t_maxseg;
2161 					(void) tcp_output(tp);
2162 					sent = tp->snd_max - oldsndmax;
2163 					if (sent > tp->t_maxseg) {
2164 						KASSERT((tp->t_dupacks == 2 &&
2165 						    tp->snd_limited == 0) ||
2166 						   (sent == tp->t_maxseg + 1 &&
2167 						    tp->t_flags & TF_SENTFIN),
2168 						    ("%s: sent too much",
2169 						    __func__));
2170 						tp->snd_limited = 2;
2171 					} else if (sent > 0)
2172 						++tp->snd_limited;
2173 					tp->snd_cwnd = oldcwnd;
2174 					goto drop;
2175 				}
2176 			} else
2177 				tp->t_dupacks = 0;
2178 			break;
2179 		}
2180 
2181 		KASSERT(SEQ_GT(th->th_ack, tp->snd_una),
2182 		    ("%s: th_ack <= snd_una", __func__));
2183 
2184 		/*
2185 		 * If the congestion window was inflated to account
2186 		 * for the other side's cached packets, retract it.
2187 		 */
2188 		if (V_tcp_do_newreno || (tp->t_flags & TF_SACK_PERMIT)) {
2189 			if (IN_FASTRECOVERY(tp)) {
2190 				if (SEQ_LT(th->th_ack, tp->snd_recover)) {
2191 					if (tp->t_flags & TF_SACK_PERMIT)
2192 						tcp_sack_partialack(tp, th);
2193 					else
2194 						tcp_newreno_partial_ack(tp, th);
2195 				} else {
2196 					/*
2197 					 * Out of fast recovery.
2198 					 * Window inflation should have left us
2199 					 * with approximately snd_ssthresh
2200 					 * outstanding data.
2201 					 * But in case we would be inclined to
2202 					 * send a burst, better to do it via
2203 					 * the slow start mechanism.
2204 					 */
2205 					if (SEQ_GT(th->th_ack +
2206 							tp->snd_ssthresh,
2207 						   tp->snd_max))
2208 						tp->snd_cwnd = tp->snd_max -
2209 								th->th_ack +
2210 								tp->t_maxseg;
2211 					else
2212 						tp->snd_cwnd = tp->snd_ssthresh;
2213 				}
2214 			}
2215 		} else {
2216 			if (tp->t_dupacks >= tcprexmtthresh &&
2217 			    tp->snd_cwnd > tp->snd_ssthresh)
2218 				tp->snd_cwnd = tp->snd_ssthresh;
2219 		}
2220 		tp->t_dupacks = 0;
2221 		/*
2222 		 * If we reach this point, ACK is not a duplicate,
2223 		 *     i.e., it ACKs something we sent.
2224 		 */
2225 		if (tp->t_flags & TF_NEEDSYN) {
2226 			/*
2227 			 * T/TCP: Connection was half-synchronized, and our
2228 			 * SYN has been ACK'd (so connection is now fully
2229 			 * synchronized).  Go to non-starred state,
2230 			 * increment snd_una for ACK of SYN, and check if
2231 			 * we can do window scaling.
2232 			 */
2233 			tp->t_flags &= ~TF_NEEDSYN;
2234 			tp->snd_una++;
2235 			/* Do window scaling? */
2236 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2237 				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
2238 				tp->rcv_scale = tp->request_r_scale;
2239 				/* Send window already scaled. */
2240 			}
2241 		}
2242 
2243 process_ACK:
2244 		INP_INFO_LOCK_ASSERT(&V_tcbinfo);
2245 		KASSERT(ti_locked == TI_RLOCKED || ti_locked == TI_WLOCKED,
2246 		    ("tcp_input: process_ACK ti_locked %d", ti_locked));
2247 		INP_WLOCK_ASSERT(tp->t_inpcb);
2248 
2249 		acked = th->th_ack - tp->snd_una;
2250 		TCPSTAT_INC(tcps_rcvackpack);
2251 		TCPSTAT_ADD(tcps_rcvackbyte, acked);
2252 
2253 		/*
2254 		 * If we just performed our first retransmit, and the ACK
2255 		 * arrives within our recovery window, then it was a mistake
2256 		 * to do the retransmit in the first place.  Recover our
2257 		 * original cwnd and ssthresh, and proceed to transmit where
2258 		 * we left off.
2259 		 */
2260 		if (tp->t_rxtshift == 1 && (int)(ticks - tp->t_badrxtwin) < 0) {
2261 			TCPSTAT_INC(tcps_sndrexmitbad);
2262 			tp->snd_cwnd = tp->snd_cwnd_prev;
2263 			tp->snd_ssthresh = tp->snd_ssthresh_prev;
2264 			tp->snd_recover = tp->snd_recover_prev;
2265 			if (tp->t_flags & TF_WASFRECOVERY)
2266 				ENTER_FASTRECOVERY(tp);
2267 			tp->snd_nxt = tp->snd_max;
2268 			tp->t_badrxtwin = 0;	/* XXX probably not required */
2269 		}
2270 
2271 		/*
2272 		 * If we have a timestamp reply, update smoothed
2273 		 * round trip time.  If no timestamp is present but
2274 		 * transmit timer is running and timed sequence
2275 		 * number was acked, update smoothed round trip time.
2276 		 * Since we now have an rtt measurement, cancel the
2277 		 * timer backoff (cf., Phil Karn's retransmit alg.).
2278 		 * Recompute the initial retransmit timer.
2279 		 *
2280 		 * Some boxes send broken timestamp replies
2281 		 * during the SYN+ACK phase, ignore
2282 		 * timestamps of 0 or we could calculate a
2283 		 * huge RTT and blow up the retransmit timer.
2284 		 */
2285 		if ((to.to_flags & TOF_TS) != 0 &&
2286 		    to.to_tsecr) {
2287 			if (!tp->t_rttlow || tp->t_rttlow > ticks - to.to_tsecr)
2288 				tp->t_rttlow = ticks - to.to_tsecr;
2289 			tcp_xmit_timer(tp, ticks - to.to_tsecr + 1);
2290 		} else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq)) {
2291 			if (!tp->t_rttlow || tp->t_rttlow > ticks - tp->t_rtttime)
2292 				tp->t_rttlow = ticks - tp->t_rtttime;
2293 			tcp_xmit_timer(tp, ticks - tp->t_rtttime);
2294 		}
2295 		tcp_xmit_bandwidth_limit(tp, th->th_ack);
2296 
2297 		/*
2298 		 * If all outstanding data is acked, stop retransmit
2299 		 * timer and remember to restart (more output or persist).
2300 		 * If there is more data to be acked, restart retransmit
2301 		 * timer, using current (possibly backed-off) value.
2302 		 */
2303 		if (th->th_ack == tp->snd_max) {
2304 			tcp_timer_activate(tp, TT_REXMT, 0);
2305 			needoutput = 1;
2306 		} else if (!tcp_timer_active(tp, TT_PERSIST))
2307 			tcp_timer_activate(tp, TT_REXMT, tp->t_rxtcur);
2308 
2309 		/*
2310 		 * If no data (only SYN) was ACK'd,
2311 		 *    skip rest of ACK processing.
2312 		 */
2313 		if (acked == 0)
2314 			goto step6;
2315 
2316 		/*
2317 		 * When new data is acked, open the congestion window.
2318 		 * Method depends on which congestion control state we're
2319 		 * in (slow start or cong avoid) and if ABC (RFC 3465) is
2320 		 * enabled.
2321 		 *
2322 		 * slow start: cwnd <= ssthresh
2323 		 * cong avoid: cwnd > ssthresh
2324 		 *
2325 		 * slow start and ABC (RFC 3465):
2326 		 *   Grow cwnd exponentially by the amount of data
2327 		 *   ACKed capping the max increment per ACK to
2328 		 *   (abc_l_var * maxseg) bytes.
2329 		 *
2330 		 * slow start without ABC (RFC 2581):
2331 		 *   Grow cwnd exponentially by maxseg per ACK.
2332 		 *
2333 		 * cong avoid and ABC (RFC 3465):
2334 		 *   Grow cwnd linearly by maxseg per RTT for each
2335 		 *   cwnd worth of ACKed data.
2336 		 *
2337 		 * cong avoid without ABC (RFC 2581):
2338 		 *   Grow cwnd linearly by approximately maxseg per RTT using
2339 		 *   maxseg^2 / cwnd per ACK as the increment.
2340 		 *   If cwnd > maxseg^2, fix the cwnd increment at 1 byte to
2341 		 *   avoid capping cwnd.
2342 		 */
2343 		if ((!V_tcp_do_newreno && !(tp->t_flags & TF_SACK_PERMIT)) ||
2344 		    !IN_FASTRECOVERY(tp)) {
2345 			u_int cw = tp->snd_cwnd;
2346 			u_int incr = tp->t_maxseg;
2347 			/* In congestion avoidance? */
2348 			if (cw > tp->snd_ssthresh) {
2349 				if (V_tcp_do_rfc3465) {
2350 					tp->t_bytes_acked += acked;
2351 					if (tp->t_bytes_acked >= tp->snd_cwnd)
2352 						tp->t_bytes_acked -= cw;
2353 					else
2354 						incr = 0;
2355 				}
2356 				else
2357 					incr = max((incr * incr / cw), 1);
2358 			/*
2359 			 * In slow-start with ABC enabled and no RTO in sight?
2360 			 * (Must not use abc_l_var > 1 if slow starting after an
2361 			 * RTO. On RTO, snd_nxt = snd_una, so the snd_nxt ==
2362 			 * snd_max check is sufficient to handle this).
2363 			 */
2364 			} else if (V_tcp_do_rfc3465 &&
2365 			    tp->snd_nxt == tp->snd_max)
2366 				incr = min(acked,
2367 				    V_tcp_abc_l_var * tp->t_maxseg);
2368 			/* ABC is on by default, so (incr == 0) frequently. */
2369 			if (incr > 0)
2370 				tp->snd_cwnd = min(cw+incr, TCP_MAXWIN<<tp->snd_scale);
2371 		}
2372 		SOCKBUF_LOCK(&so->so_snd);
2373 		if (acked > so->so_snd.sb_cc) {
2374 			tp->snd_wnd -= so->so_snd.sb_cc;
2375 			sbdrop_locked(&so->so_snd, (int)so->so_snd.sb_cc);
2376 			ourfinisacked = 1;
2377 		} else {
2378 			sbdrop_locked(&so->so_snd, acked);
2379 			tp->snd_wnd -= acked;
2380 			ourfinisacked = 0;
2381 		}
2382 		/* NB: sowwakeup_locked() does an implicit unlock. */
2383 		sowwakeup_locked(so);
2384 		/* Detect una wraparound. */
2385 		if ((V_tcp_do_newreno || (tp->t_flags & TF_SACK_PERMIT)) &&
2386 		    !IN_FASTRECOVERY(tp) &&
2387 		    SEQ_GT(tp->snd_una, tp->snd_recover) &&
2388 		    SEQ_LEQ(th->th_ack, tp->snd_recover))
2389 			tp->snd_recover = th->th_ack - 1;
2390 		if ((V_tcp_do_newreno || (tp->t_flags & TF_SACK_PERMIT)) &&
2391 		    IN_FASTRECOVERY(tp) &&
2392 		    SEQ_GEQ(th->th_ack, tp->snd_recover)) {
2393 			EXIT_FASTRECOVERY(tp);
2394 			tp->t_bytes_acked = 0;
2395 		}
2396 		tp->snd_una = th->th_ack;
2397 		if (tp->t_flags & TF_SACK_PERMIT) {
2398 			if (SEQ_GT(tp->snd_una, tp->snd_recover))
2399 				tp->snd_recover = tp->snd_una;
2400 		}
2401 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2402 			tp->snd_nxt = tp->snd_una;
2403 
2404 		switch (tp->t_state) {
2405 
2406 		/*
2407 		 * In FIN_WAIT_1 STATE in addition to the processing
2408 		 * for the ESTABLISHED state if our FIN is now acknowledged
2409 		 * then enter FIN_WAIT_2.
2410 		 */
2411 		case TCPS_FIN_WAIT_1:
2412 			if (ourfinisacked) {
2413 				/*
2414 				 * If we can't receive any more
2415 				 * data, then closing user can proceed.
2416 				 * Starting the timer is contrary to the
2417 				 * specification, but if we don't get a FIN
2418 				 * we'll hang forever.
2419 				 *
2420 				 * XXXjl:
2421 				 * we should release the tp also, and use a
2422 				 * compressed state.
2423 				 */
2424 				if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
2425 					int timeout;
2426 
2427 					soisdisconnected(so);
2428 					timeout = (tcp_fast_finwait2_recycle) ?
2429 						tcp_finwait2_timeout : tcp_maxidle;
2430 					tcp_timer_activate(tp, TT_2MSL, timeout);
2431 				}
2432 				tp->t_state = TCPS_FIN_WAIT_2;
2433 			}
2434 			break;
2435 
2436 		/*
2437 		 * In CLOSING STATE in addition to the processing for
2438 		 * the ESTABLISHED state if the ACK acknowledges our FIN
2439 		 * then enter the TIME-WAIT state, otherwise ignore
2440 		 * the segment.
2441 		 */
2442 		case TCPS_CLOSING:
2443 			if (ourfinisacked) {
2444 				INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2445 				tcp_twstart(tp);
2446 				INP_INFO_WUNLOCK(&V_tcbinfo);
2447 				m_freem(m);
2448 				return;
2449 			}
2450 			break;
2451 
2452 		/*
2453 		 * In LAST_ACK, we may still be waiting for data to drain
2454 		 * and/or to be acked, as well as for the ack of our FIN.
2455 		 * If our FIN is now acknowledged, delete the TCB,
2456 		 * enter the closed state and return.
2457 		 */
2458 		case TCPS_LAST_ACK:
2459 			if (ourfinisacked) {
2460 				INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2461 				tp = tcp_close(tp);
2462 				goto drop;
2463 			}
2464 			break;
2465 		}
2466 	}
2467 
2468 step6:
2469 	INP_INFO_LOCK_ASSERT(&V_tcbinfo);
2470 	KASSERT(ti_locked == TI_RLOCKED || ti_locked == TI_WLOCKED,
2471 	    ("tcp_do_segment: step6 ti_locked %d", ti_locked));
2472 	INP_WLOCK_ASSERT(tp->t_inpcb);
2473 
2474 	/*
2475 	 * Update window information.
2476 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2477 	 */
2478 	if ((thflags & TH_ACK) &&
2479 	    (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2480 	    (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
2481 	     (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
2482 		/* keep track of pure window updates */
2483 		if (tlen == 0 &&
2484 		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2485 			TCPSTAT_INC(tcps_rcvwinupd);
2486 		tp->snd_wnd = tiwin;
2487 		tp->snd_wl1 = th->th_seq;
2488 		tp->snd_wl2 = th->th_ack;
2489 		if (tp->snd_wnd > tp->max_sndwnd)
2490 			tp->max_sndwnd = tp->snd_wnd;
2491 		needoutput = 1;
2492 	}
2493 
2494 	/*
2495 	 * Process segments with URG.
2496 	 */
2497 	if ((thflags & TH_URG) && th->th_urp &&
2498 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2499 		/*
2500 		 * This is a kludge, but if we receive and accept
2501 		 * random urgent pointers, we'll crash in
2502 		 * soreceive.  It's hard to imagine someone
2503 		 * actually wanting to send this much urgent data.
2504 		 */
2505 		SOCKBUF_LOCK(&so->so_rcv);
2506 		if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2507 			th->th_urp = 0;			/* XXX */
2508 			thflags &= ~TH_URG;		/* XXX */
2509 			SOCKBUF_UNLOCK(&so->so_rcv);	/* XXX */
2510 			goto dodata;			/* XXX */
2511 		}
2512 		/*
2513 		 * If this segment advances the known urgent pointer,
2514 		 * then mark the data stream.  This should not happen
2515 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2516 		 * a FIN has been received from the remote side.
2517 		 * In these states we ignore the URG.
2518 		 *
2519 		 * According to RFC961 (Assigned Protocols),
2520 		 * the urgent pointer points to the last octet
2521 		 * of urgent data.  We continue, however,
2522 		 * to consider it to indicate the first octet
2523 		 * of data past the urgent section as the original
2524 		 * spec states (in one of two places).
2525 		 */
2526 		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2527 			tp->rcv_up = th->th_seq + th->th_urp;
2528 			so->so_oobmark = so->so_rcv.sb_cc +
2529 			    (tp->rcv_up - tp->rcv_nxt) - 1;
2530 			if (so->so_oobmark == 0)
2531 				so->so_rcv.sb_state |= SBS_RCVATMARK;
2532 			sohasoutofband(so);
2533 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2534 		}
2535 		SOCKBUF_UNLOCK(&so->so_rcv);
2536 		/*
2537 		 * Remove out of band data so doesn't get presented to user.
2538 		 * This can happen independent of advancing the URG pointer,
2539 		 * but if two URG's are pending at once, some out-of-band
2540 		 * data may creep in... ick.
2541 		 */
2542 		if (th->th_urp <= (u_long)tlen &&
2543 		    !(so->so_options & SO_OOBINLINE)) {
2544 			/* hdr drop is delayed */
2545 			tcp_pulloutofband(so, th, m, drop_hdrlen);
2546 		}
2547 	} else {
2548 		/*
2549 		 * If no out of band data is expected,
2550 		 * pull receive urgent pointer along
2551 		 * with the receive window.
2552 		 */
2553 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2554 			tp->rcv_up = tp->rcv_nxt;
2555 	}
2556 dodata:							/* XXX */
2557 	INP_INFO_LOCK_ASSERT(&V_tcbinfo);
2558 	KASSERT(ti_locked == TI_RLOCKED || ti_locked == TI_WLOCKED,
2559 	    ("tcp_do_segment: dodata ti_locked %d", ti_locked));
2560 	INP_WLOCK_ASSERT(tp->t_inpcb);
2561 
2562 	/*
2563 	 * Process the segment text, merging it into the TCP sequencing queue,
2564 	 * and arranging for acknowledgment of receipt if necessary.
2565 	 * This process logically involves adjusting tp->rcv_wnd as data
2566 	 * is presented to the user (this happens in tcp_usrreq.c,
2567 	 * case PRU_RCVD).  If a FIN has already been received on this
2568 	 * connection then we just ignore the text.
2569 	 */
2570 	if ((tlen || (thflags & TH_FIN)) &&
2571 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2572 		tcp_seq save_start = th->th_seq;
2573 		m_adj(m, drop_hdrlen);	/* delayed header drop */
2574 		/*
2575 		 * Insert segment which includes th into TCP reassembly queue
2576 		 * with control block tp.  Set thflags to whether reassembly now
2577 		 * includes a segment with FIN.  This handles the common case
2578 		 * inline (segment is the next to be received on an established
2579 		 * connection, and the queue is empty), avoiding linkage into
2580 		 * and removal from the queue and repetition of various
2581 		 * conversions.
2582 		 * Set DELACK for segments received in order, but ack
2583 		 * immediately when segments are out of order (so
2584 		 * fast retransmit can work).
2585 		 */
2586 		if (th->th_seq == tp->rcv_nxt &&
2587 		    LIST_EMPTY(&tp->t_segq) &&
2588 		    TCPS_HAVEESTABLISHED(tp->t_state)) {
2589 			if (DELAY_ACK(tp))
2590 				tp->t_flags |= TF_DELACK;
2591 			else
2592 				tp->t_flags |= TF_ACKNOW;
2593 			tp->rcv_nxt += tlen;
2594 			thflags = th->th_flags & TH_FIN;
2595 			TCPSTAT_INC(tcps_rcvpack);
2596 			TCPSTAT_ADD(tcps_rcvbyte, tlen);
2597 			ND6_HINT(tp);
2598 			SOCKBUF_LOCK(&so->so_rcv);
2599 			if (so->so_rcv.sb_state & SBS_CANTRCVMORE)
2600 				m_freem(m);
2601 			else
2602 				sbappendstream_locked(&so->so_rcv, m);
2603 			/* NB: sorwakeup_locked() does an implicit unlock. */
2604 			sorwakeup_locked(so);
2605 		} else {
2606 			/*
2607 			 * XXX: Due to the header drop above "th" is
2608 			 * theoretically invalid by now.  Fortunately
2609 			 * m_adj() doesn't actually frees any mbufs
2610 			 * when trimming from the head.
2611 			 */
2612 			thflags = tcp_reass(tp, th, &tlen, m);
2613 			tp->t_flags |= TF_ACKNOW;
2614 		}
2615 		if (tlen > 0 && (tp->t_flags & TF_SACK_PERMIT))
2616 			tcp_update_sack_list(tp, save_start, save_start + tlen);
2617 #if 0
2618 		/*
2619 		 * Note the amount of data that peer has sent into
2620 		 * our window, in order to estimate the sender's
2621 		 * buffer size.
2622 		 * XXX: Unused.
2623 		 */
2624 		len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2625 #endif
2626 	} else {
2627 		m_freem(m);
2628 		thflags &= ~TH_FIN;
2629 	}
2630 
2631 	/*
2632 	 * If FIN is received ACK the FIN and let the user know
2633 	 * that the connection is closing.
2634 	 */
2635 	if (thflags & TH_FIN) {
2636 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2637 			socantrcvmore(so);
2638 			/*
2639 			 * If connection is half-synchronized
2640 			 * (ie NEEDSYN flag on) then delay ACK,
2641 			 * so it may be piggybacked when SYN is sent.
2642 			 * Otherwise, since we received a FIN then no
2643 			 * more input can be expected, send ACK now.
2644 			 */
2645 			if (tp->t_flags & TF_NEEDSYN)
2646 				tp->t_flags |= TF_DELACK;
2647 			else
2648 				tp->t_flags |= TF_ACKNOW;
2649 			tp->rcv_nxt++;
2650 		}
2651 		switch (tp->t_state) {
2652 
2653 		/*
2654 		 * In SYN_RECEIVED and ESTABLISHED STATES
2655 		 * enter the CLOSE_WAIT state.
2656 		 */
2657 		case TCPS_SYN_RECEIVED:
2658 			tp->t_starttime = ticks;
2659 			/* FALLTHROUGH */
2660 		case TCPS_ESTABLISHED:
2661 			tp->t_state = TCPS_CLOSE_WAIT;
2662 			break;
2663 
2664 		/*
2665 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2666 		 * enter the CLOSING state.
2667 		 */
2668 		case TCPS_FIN_WAIT_1:
2669 			tp->t_state = TCPS_CLOSING;
2670 			break;
2671 
2672 		/*
2673 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2674 		 * starting the time-wait timer, turning off the other
2675 		 * standard timers.
2676 		 */
2677 		case TCPS_FIN_WAIT_2:
2678 			INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2679 			KASSERT(ti_locked == TI_WLOCKED, ("%s: dodata "
2680 			    "TCP_FIN_WAIT_2 ti_locked: %d", __func__,
2681 			    ti_locked));
2682 
2683 			tcp_twstart(tp);
2684 			INP_INFO_WUNLOCK(&V_tcbinfo);
2685 			return;
2686 		}
2687 	}
2688 	if (ti_locked == TI_RLOCKED)
2689 		INP_INFO_RUNLOCK(&V_tcbinfo);
2690 	else if (ti_locked == TI_WLOCKED)
2691 		INP_INFO_WUNLOCK(&V_tcbinfo);
2692 	else
2693 		panic("%s: dodata epilogue ti_locked %d", __func__,
2694 		    ti_locked);
2695 	ti_locked = TI_UNLOCKED;
2696 
2697 #ifdef TCPDEBUG
2698 	if (so->so_options & SO_DEBUG)
2699 		tcp_trace(TA_INPUT, ostate, tp, (void *)tcp_saveipgen,
2700 			  &tcp_savetcp, 0);
2701 #endif
2702 
2703 	/*
2704 	 * Return any desired output.
2705 	 */
2706 	if (needoutput || (tp->t_flags & TF_ACKNOW))
2707 		(void) tcp_output(tp);
2708 
2709 check_delack:
2710 	KASSERT(ti_locked == TI_UNLOCKED, ("%s: check_delack ti_locked %d",
2711 	    __func__, ti_locked));
2712 	INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
2713 	INP_WLOCK_ASSERT(tp->t_inpcb);
2714 
2715 	if (tp->t_flags & TF_DELACK) {
2716 		tp->t_flags &= ~TF_DELACK;
2717 		tcp_timer_activate(tp, TT_DELACK, tcp_delacktime);
2718 	}
2719 	INP_WUNLOCK(tp->t_inpcb);
2720 	return;
2721 
2722 dropafterack:
2723 	KASSERT(ti_locked == TI_RLOCKED || ti_locked == TI_WLOCKED,
2724 	    ("tcp_do_segment: dropafterack ti_locked %d", ti_locked));
2725 
2726 	/*
2727 	 * Generate an ACK dropping incoming segment if it occupies
2728 	 * sequence space, where the ACK reflects our state.
2729 	 *
2730 	 * We can now skip the test for the RST flag since all
2731 	 * paths to this code happen after packets containing
2732 	 * RST have been dropped.
2733 	 *
2734 	 * In the SYN-RECEIVED state, don't send an ACK unless the
2735 	 * segment we received passes the SYN-RECEIVED ACK test.
2736 	 * If it fails send a RST.  This breaks the loop in the
2737 	 * "LAND" DoS attack, and also prevents an ACK storm
2738 	 * between two listening ports that have been sent forged
2739 	 * SYN segments, each with the source address of the other.
2740 	 */
2741 	if (tp->t_state == TCPS_SYN_RECEIVED && (thflags & TH_ACK) &&
2742 	    (SEQ_GT(tp->snd_una, th->th_ack) ||
2743 	     SEQ_GT(th->th_ack, tp->snd_max)) ) {
2744 		rstreason = BANDLIM_RST_OPENPORT;
2745 		goto dropwithreset;
2746 	}
2747 #ifdef TCPDEBUG
2748 	if (so->so_options & SO_DEBUG)
2749 		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
2750 			  &tcp_savetcp, 0);
2751 #endif
2752 	if (ti_locked == TI_RLOCKED)
2753 		INP_INFO_RUNLOCK(&V_tcbinfo);
2754 	else if (ti_locked == TI_WLOCKED)
2755 		INP_INFO_WUNLOCK(&V_tcbinfo);
2756 	else
2757 		panic("%s: dropafterack epilogue ti_locked %d", __func__,
2758 		    ti_locked);
2759 	ti_locked = TI_UNLOCKED;
2760 
2761 	tp->t_flags |= TF_ACKNOW;
2762 	(void) tcp_output(tp);
2763 	INP_WUNLOCK(tp->t_inpcb);
2764 	m_freem(m);
2765 	return;
2766 
2767 dropwithreset:
2768 	if (ti_locked == TI_RLOCKED)
2769 		INP_INFO_RUNLOCK(&V_tcbinfo);
2770 	else if (ti_locked == TI_WLOCKED)
2771 		INP_INFO_WUNLOCK(&V_tcbinfo);
2772 	else
2773 		panic("%s: dropwithreset ti_locked %d", __func__, ti_locked);
2774 	ti_locked = TI_UNLOCKED;
2775 
2776 	if (tp != NULL) {
2777 		tcp_dropwithreset(m, th, tp, tlen, rstreason);
2778 		INP_WUNLOCK(tp->t_inpcb);
2779 	} else
2780 		tcp_dropwithreset(m, th, NULL, tlen, rstreason);
2781 	return;
2782 
2783 drop:
2784 	if (ti_locked == TI_RLOCKED)
2785 		INP_INFO_RUNLOCK(&V_tcbinfo);
2786 	else if (ti_locked == TI_WLOCKED)
2787 		INP_INFO_WUNLOCK(&V_tcbinfo);
2788 #ifdef INVARIANTS
2789 	else
2790 		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
2791 #endif
2792 	ti_locked = TI_UNLOCKED;
2793 
2794 	/*
2795 	 * Drop space held by incoming segment and return.
2796 	 */
2797 #ifdef TCPDEBUG
2798 	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
2799 		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
2800 			  &tcp_savetcp, 0);
2801 #endif
2802 	if (tp != NULL)
2803 		INP_WUNLOCK(tp->t_inpcb);
2804 	m_freem(m);
2805 }
2806 
2807 /*
2808  * Issue RST and make ACK acceptable to originator of segment.
2809  * The mbuf must still include the original packet header.
2810  * tp may be NULL.
2811  */
2812 static void
2813 tcp_dropwithreset(struct mbuf *m, struct tcphdr *th, struct tcpcb *tp,
2814     int tlen, int rstreason)
2815 {
2816 	struct ip *ip;
2817 #ifdef INET6
2818 	struct ip6_hdr *ip6;
2819 #endif
2820 
2821 	if (tp != NULL) {
2822 		INP_WLOCK_ASSERT(tp->t_inpcb);
2823 	}
2824 
2825 	/* Don't bother if destination was broadcast/multicast. */
2826 	if ((th->th_flags & TH_RST) || m->m_flags & (M_BCAST|M_MCAST))
2827 		goto drop;
2828 #ifdef INET6
2829 	if (mtod(m, struct ip *)->ip_v == 6) {
2830 		ip6 = mtod(m, struct ip6_hdr *);
2831 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
2832 		    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
2833 			goto drop;
2834 		/* IPv6 anycast check is done at tcp6_input() */
2835 	} else
2836 #endif
2837 	{
2838 		ip = mtod(m, struct ip *);
2839 		if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
2840 		    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
2841 		    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
2842 		    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
2843 			goto drop;
2844 	}
2845 
2846 	/* Perform bandwidth limiting. */
2847 	if (badport_bandlim(rstreason) < 0)
2848 		goto drop;
2849 
2850 	/* tcp_respond consumes the mbuf chain. */
2851 	if (th->th_flags & TH_ACK) {
2852 		tcp_respond(tp, mtod(m, void *), th, m, (tcp_seq)0,
2853 		    th->th_ack, TH_RST);
2854 	} else {
2855 		if (th->th_flags & TH_SYN)
2856 			tlen++;
2857 		tcp_respond(tp, mtod(m, void *), th, m, th->th_seq+tlen,
2858 		    (tcp_seq)0, TH_RST|TH_ACK);
2859 	}
2860 	return;
2861 drop:
2862 	m_freem(m);
2863 }
2864 
2865 /*
2866  * Parse TCP options and place in tcpopt.
2867  */
2868 static void
2869 tcp_dooptions(struct tcpopt *to, u_char *cp, int cnt, int flags)
2870 {
2871 	INIT_VNET_INET(curvnet);
2872 	int opt, optlen;
2873 
2874 	to->to_flags = 0;
2875 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
2876 		opt = cp[0];
2877 		if (opt == TCPOPT_EOL)
2878 			break;
2879 		if (opt == TCPOPT_NOP)
2880 			optlen = 1;
2881 		else {
2882 			if (cnt < 2)
2883 				break;
2884 			optlen = cp[1];
2885 			if (optlen < 2 || optlen > cnt)
2886 				break;
2887 		}
2888 		switch (opt) {
2889 		case TCPOPT_MAXSEG:
2890 			if (optlen != TCPOLEN_MAXSEG)
2891 				continue;
2892 			if (!(flags & TO_SYN))
2893 				continue;
2894 			to->to_flags |= TOF_MSS;
2895 			bcopy((char *)cp + 2,
2896 			    (char *)&to->to_mss, sizeof(to->to_mss));
2897 			to->to_mss = ntohs(to->to_mss);
2898 			break;
2899 		case TCPOPT_WINDOW:
2900 			if (optlen != TCPOLEN_WINDOW)
2901 				continue;
2902 			if (!(flags & TO_SYN))
2903 				continue;
2904 			to->to_flags |= TOF_SCALE;
2905 			to->to_wscale = min(cp[2], TCP_MAX_WINSHIFT);
2906 			break;
2907 		case TCPOPT_TIMESTAMP:
2908 			if (optlen != TCPOLEN_TIMESTAMP)
2909 				continue;
2910 			to->to_flags |= TOF_TS;
2911 			bcopy((char *)cp + 2,
2912 			    (char *)&to->to_tsval, sizeof(to->to_tsval));
2913 			to->to_tsval = ntohl(to->to_tsval);
2914 			bcopy((char *)cp + 6,
2915 			    (char *)&to->to_tsecr, sizeof(to->to_tsecr));
2916 			to->to_tsecr = ntohl(to->to_tsecr);
2917 			break;
2918 #ifdef TCP_SIGNATURE
2919 		/*
2920 		 * XXX In order to reply to a host which has set the
2921 		 * TCP_SIGNATURE option in its initial SYN, we have to
2922 		 * record the fact that the option was observed here
2923 		 * for the syncache code to perform the correct response.
2924 		 */
2925 		case TCPOPT_SIGNATURE:
2926 			if (optlen != TCPOLEN_SIGNATURE)
2927 				continue;
2928 			to->to_flags |= TOF_SIGNATURE;
2929 			to->to_signature = cp + 2;
2930 			break;
2931 #endif
2932 		case TCPOPT_SACK_PERMITTED:
2933 			if (optlen != TCPOLEN_SACK_PERMITTED)
2934 				continue;
2935 			if (!(flags & TO_SYN))
2936 				continue;
2937 			if (!V_tcp_do_sack)
2938 				continue;
2939 			to->to_flags |= TOF_SACKPERM;
2940 			break;
2941 		case TCPOPT_SACK:
2942 			if (optlen <= 2 || (optlen - 2) % TCPOLEN_SACK != 0)
2943 				continue;
2944 			if (flags & TO_SYN)
2945 				continue;
2946 			to->to_flags |= TOF_SACK;
2947 			to->to_nsacks = (optlen - 2) / TCPOLEN_SACK;
2948 			to->to_sacks = cp + 2;
2949 			TCPSTAT_INC(tcps_sack_rcv_blocks);
2950 			break;
2951 		default:
2952 			continue;
2953 		}
2954 	}
2955 }
2956 
2957 /*
2958  * Pull out of band byte out of a segment so
2959  * it doesn't appear in the user's data queue.
2960  * It is still reflected in the segment length for
2961  * sequencing purposes.
2962  */
2963 static void
2964 tcp_pulloutofband(struct socket *so, struct tcphdr *th, struct mbuf *m,
2965     int off)
2966 {
2967 	int cnt = off + th->th_urp - 1;
2968 
2969 	while (cnt >= 0) {
2970 		if (m->m_len > cnt) {
2971 			char *cp = mtod(m, caddr_t) + cnt;
2972 			struct tcpcb *tp = sototcpcb(so);
2973 
2974 			INP_WLOCK_ASSERT(tp->t_inpcb);
2975 
2976 			tp->t_iobc = *cp;
2977 			tp->t_oobflags |= TCPOOB_HAVEDATA;
2978 			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
2979 			m->m_len--;
2980 			if (m->m_flags & M_PKTHDR)
2981 				m->m_pkthdr.len--;
2982 			return;
2983 		}
2984 		cnt -= m->m_len;
2985 		m = m->m_next;
2986 		if (m == NULL)
2987 			break;
2988 	}
2989 	panic("tcp_pulloutofband");
2990 }
2991 
2992 /*
2993  * Collect new round-trip time estimate
2994  * and update averages and current timeout.
2995  */
2996 static void
2997 tcp_xmit_timer(struct tcpcb *tp, int rtt)
2998 {
2999 	INIT_VNET_INET(tp->t_inpcb->inp_vnet);
3000 	int delta;
3001 
3002 	INP_WLOCK_ASSERT(tp->t_inpcb);
3003 
3004 	TCPSTAT_INC(tcps_rttupdated);
3005 	tp->t_rttupdated++;
3006 	if (tp->t_srtt != 0) {
3007 		/*
3008 		 * srtt is stored as fixed point with 5 bits after the
3009 		 * binary point (i.e., scaled by 8).  The following magic
3010 		 * is equivalent to the smoothing algorithm in rfc793 with
3011 		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
3012 		 * point).  Adjust rtt to origin 0.
3013 		 */
3014 		delta = ((rtt - 1) << TCP_DELTA_SHIFT)
3015 			- (tp->t_srtt >> (TCP_RTT_SHIFT - TCP_DELTA_SHIFT));
3016 
3017 		if ((tp->t_srtt += delta) <= 0)
3018 			tp->t_srtt = 1;
3019 
3020 		/*
3021 		 * We accumulate a smoothed rtt variance (actually, a
3022 		 * smoothed mean difference), then set the retransmit
3023 		 * timer to smoothed rtt + 4 times the smoothed variance.
3024 		 * rttvar is stored as fixed point with 4 bits after the
3025 		 * binary point (scaled by 16).  The following is
3026 		 * equivalent to rfc793 smoothing with an alpha of .75
3027 		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
3028 		 * rfc793's wired-in beta.
3029 		 */
3030 		if (delta < 0)
3031 			delta = -delta;
3032 		delta -= tp->t_rttvar >> (TCP_RTTVAR_SHIFT - TCP_DELTA_SHIFT);
3033 		if ((tp->t_rttvar += delta) <= 0)
3034 			tp->t_rttvar = 1;
3035 		if (tp->t_rttbest > tp->t_srtt + tp->t_rttvar)
3036 		    tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
3037 	} else {
3038 		/*
3039 		 * No rtt measurement yet - use the unsmoothed rtt.
3040 		 * Set the variance to half the rtt (so our first
3041 		 * retransmit happens at 3*rtt).
3042 		 */
3043 		tp->t_srtt = rtt << TCP_RTT_SHIFT;
3044 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1);
3045 		tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
3046 	}
3047 	tp->t_rtttime = 0;
3048 	tp->t_rxtshift = 0;
3049 
3050 	/*
3051 	 * the retransmit should happen at rtt + 4 * rttvar.
3052 	 * Because of the way we do the smoothing, srtt and rttvar
3053 	 * will each average +1/2 tick of bias.  When we compute
3054 	 * the retransmit timer, we want 1/2 tick of rounding and
3055 	 * 1 extra tick because of +-1/2 tick uncertainty in the
3056 	 * firing of the timer.  The bias will give us exactly the
3057 	 * 1.5 tick we need.  But, because the bias is
3058 	 * statistical, we have to test that we don't drop below
3059 	 * the minimum feasible timer (which is 2 ticks).
3060 	 */
3061 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
3062 		      max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
3063 
3064 	/*
3065 	 * We received an ack for a packet that wasn't retransmitted;
3066 	 * it is probably safe to discard any error indications we've
3067 	 * received recently.  This isn't quite right, but close enough
3068 	 * for now (a route might have failed after we sent a segment,
3069 	 * and the return path might not be symmetrical).
3070 	 */
3071 	tp->t_softerror = 0;
3072 }
3073 
3074 /*
3075  * Determine a reasonable value for maxseg size.
3076  * If the route is known, check route for mtu.
3077  * If none, use an mss that can be handled on the outgoing
3078  * interface without forcing IP to fragment; if bigger than
3079  * an mbuf cluster (MCLBYTES), round down to nearest multiple of MCLBYTES
3080  * to utilize large mbufs.  If no route is found, route has no mtu,
3081  * or the destination isn't local, use a default, hopefully conservative
3082  * size (usually 512 or the default IP max size, but no more than the mtu
3083  * of the interface), as we can't discover anything about intervening
3084  * gateways or networks.  We also initialize the congestion/slow start
3085  * window to be a single segment if the destination isn't local.
3086  * While looking at the routing entry, we also initialize other path-dependent
3087  * parameters from pre-set or cached values in the routing entry.
3088  *
3089  * Also take into account the space needed for options that we
3090  * send regularly.  Make maxseg shorter by that amount to assure
3091  * that we can send maxseg amount of data even when the options
3092  * are present.  Store the upper limit of the length of options plus
3093  * data in maxopd.
3094  *
3095  * In case of T/TCP, we call this routine during implicit connection
3096  * setup as well (offer = -1), to initialize maxseg from the cached
3097  * MSS of our peer.
3098  *
3099  * NOTE that this routine is only called when we process an incoming
3100  * segment. Outgoing SYN/ACK MSS settings are handled in tcp_mssopt().
3101  */
3102 void
3103 tcp_mss_update(struct tcpcb *tp, int offer,
3104     struct hc_metrics_lite *metricptr, int *mtuflags)
3105 {
3106 	INIT_VNET_INET(tp->t_inpcb->inp_vnet);
3107 	int mss;
3108 	u_long maxmtu;
3109 	struct inpcb *inp = tp->t_inpcb;
3110 	struct hc_metrics_lite metrics;
3111 	int origoffer = offer;
3112 #ifdef INET6
3113 	int isipv6 = ((inp->inp_vflag & INP_IPV6) != 0) ? 1 : 0;
3114 	size_t min_protoh = isipv6 ?
3115 			    sizeof (struct ip6_hdr) + sizeof (struct tcphdr) :
3116 			    sizeof (struct tcpiphdr);
3117 #else
3118 	const size_t min_protoh = sizeof(struct tcpiphdr);
3119 #endif
3120 
3121 	INP_WLOCK_ASSERT(tp->t_inpcb);
3122 
3123 	/* Initialize. */
3124 #ifdef INET6
3125 	if (isipv6) {
3126 		maxmtu = tcp_maxmtu6(&inp->inp_inc, mtuflags);
3127 		tp->t_maxopd = tp->t_maxseg = V_tcp_v6mssdflt;
3128 	} else
3129 #endif
3130 	{
3131 		maxmtu = tcp_maxmtu(&inp->inp_inc, mtuflags);
3132 		tp->t_maxopd = tp->t_maxseg = V_tcp_mssdflt;
3133 	}
3134 
3135 	/*
3136 	 * No route to sender, stay with default mss and return.
3137 	 */
3138 	if (maxmtu == 0) {
3139 		/*
3140 		 * In case we return early we need to initialize metrics
3141 		 * to a defined state as tcp_hc_get() would do for us
3142 		 * if there was no cache hit.
3143 		 */
3144 		if (metricptr != NULL)
3145 			bzero(metricptr, sizeof(struct hc_metrics_lite));
3146 		return;
3147 	}
3148 
3149 	/* What have we got? */
3150 	switch (offer) {
3151 		case 0:
3152 			/*
3153 			 * Offer == 0 means that there was no MSS on the SYN
3154 			 * segment, in this case we use tcp_mssdflt as
3155 			 * already assigned to t_maxopd above.
3156 			 */
3157 			offer = tp->t_maxopd;
3158 			break;
3159 
3160 		case -1:
3161 			/*
3162 			 * Offer == -1 means that we didn't receive SYN yet.
3163 			 */
3164 			/* FALLTHROUGH */
3165 
3166 		default:
3167 			/*
3168 			 * Prevent DoS attack with too small MSS. Round up
3169 			 * to at least minmss.
3170 			 */
3171 			offer = max(offer, V_tcp_minmss);
3172 	}
3173 
3174 	/*
3175 	 * rmx information is now retrieved from tcp_hostcache.
3176 	 */
3177 	tcp_hc_get(&inp->inp_inc, &metrics);
3178 	if (metricptr != NULL)
3179 		bcopy(&metrics, metricptr, sizeof(struct hc_metrics_lite));
3180 
3181 	/*
3182 	 * If there's a discovered mtu int tcp hostcache, use it
3183 	 * else, use the link mtu.
3184 	 */
3185 	if (metrics.rmx_mtu)
3186 		mss = min(metrics.rmx_mtu, maxmtu) - min_protoh;
3187 	else {
3188 #ifdef INET6
3189 		if (isipv6) {
3190 			mss = maxmtu - min_protoh;
3191 			if (!V_path_mtu_discovery &&
3192 			    !in6_localaddr(&inp->in6p_faddr))
3193 				mss = min(mss, V_tcp_v6mssdflt);
3194 		} else
3195 #endif
3196 		{
3197 			mss = maxmtu - min_protoh;
3198 			if (!V_path_mtu_discovery &&
3199 			    !in_localaddr(inp->inp_faddr))
3200 				mss = min(mss, V_tcp_mssdflt);
3201 		}
3202 		/*
3203 		 * XXX - The above conditional (mss = maxmtu - min_protoh)
3204 		 * probably violates the TCP spec.
3205 		 * The problem is that, since we don't know the
3206 		 * other end's MSS, we are supposed to use a conservative
3207 		 * default.  But, if we do that, then MTU discovery will
3208 		 * never actually take place, because the conservative
3209 		 * default is much less than the MTUs typically seen
3210 		 * on the Internet today.  For the moment, we'll sweep
3211 		 * this under the carpet.
3212 		 *
3213 		 * The conservative default might not actually be a problem
3214 		 * if the only case this occurs is when sending an initial
3215 		 * SYN with options and data to a host we've never talked
3216 		 * to before.  Then, they will reply with an MSS value which
3217 		 * will get recorded and the new parameters should get
3218 		 * recomputed.  For Further Study.
3219 		 */
3220 	}
3221 	mss = min(mss, offer);
3222 
3223 	/*
3224 	 * Sanity check: make sure that maxopd will be large
3225 	 * enough to allow some data on segments even if the
3226 	 * all the option space is used (40bytes).  Otherwise
3227 	 * funny things may happen in tcp_output.
3228 	 */
3229 	mss = max(mss, 64);
3230 
3231 	/*
3232 	 * maxopd stores the maximum length of data AND options
3233 	 * in a segment; maxseg is the amount of data in a normal
3234 	 * segment.  We need to store this value (maxopd) apart
3235 	 * from maxseg, because now every segment carries options
3236 	 * and thus we normally have somewhat less data in segments.
3237 	 */
3238 	tp->t_maxopd = mss;
3239 
3240 	/*
3241 	 * origoffer==-1 indicates that no segments were received yet.
3242 	 * In this case we just guess.
3243 	 */
3244 	if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
3245 	    (origoffer == -1 ||
3246 	     (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP))
3247 		mss -= TCPOLEN_TSTAMP_APPA;
3248 
3249 #if	(MCLBYTES & (MCLBYTES - 1)) == 0
3250 	if (mss > MCLBYTES)
3251 		mss &= ~(MCLBYTES-1);
3252 #else
3253 	if (mss > MCLBYTES)
3254 		mss = mss / MCLBYTES * MCLBYTES;
3255 #endif
3256 	tp->t_maxseg = mss;
3257 }
3258 
3259 void
3260 tcp_mss(struct tcpcb *tp, int offer)
3261 {
3262 	int rtt, mss;
3263 	u_long bufsize;
3264 	struct inpcb *inp;
3265 	struct socket *so;
3266 	struct hc_metrics_lite metrics;
3267 	int mtuflags = 0;
3268 #ifdef INET6
3269 	int isipv6;
3270 #endif
3271 	KASSERT(tp != NULL, ("%s: tp == NULL", __func__));
3272 	INIT_VNET_INET(tp->t_vnet);
3273 
3274 	tcp_mss_update(tp, offer, &metrics, &mtuflags);
3275 
3276 	mss = tp->t_maxseg;
3277 	inp = tp->t_inpcb;
3278 #ifdef INET6
3279 	isipv6 = ((inp->inp_vflag & INP_IPV6) != 0) ? 1 : 0;
3280 #endif
3281 
3282 	/*
3283 	 * If there's a pipesize, change the socket buffer to that size,
3284 	 * don't change if sb_hiwat is different than default (then it
3285 	 * has been changed on purpose with setsockopt).
3286 	 * Make the socket buffers an integral number of mss units;
3287 	 * if the mss is larger than the socket buffer, decrease the mss.
3288 	 */
3289 	so = inp->inp_socket;
3290 	SOCKBUF_LOCK(&so->so_snd);
3291 	if ((so->so_snd.sb_hiwat == tcp_sendspace) && metrics.rmx_sendpipe)
3292 		bufsize = metrics.rmx_sendpipe;
3293 	else
3294 		bufsize = so->so_snd.sb_hiwat;
3295 	if (bufsize < mss)
3296 		mss = bufsize;
3297 	else {
3298 		bufsize = roundup(bufsize, mss);
3299 		if (bufsize > sb_max)
3300 			bufsize = sb_max;
3301 		if (bufsize > so->so_snd.sb_hiwat)
3302 			(void)sbreserve_locked(&so->so_snd, bufsize, so, NULL);
3303 	}
3304 	SOCKBUF_UNLOCK(&so->so_snd);
3305 	tp->t_maxseg = mss;
3306 
3307 	SOCKBUF_LOCK(&so->so_rcv);
3308 	if ((so->so_rcv.sb_hiwat == tcp_recvspace) && metrics.rmx_recvpipe)
3309 		bufsize = metrics.rmx_recvpipe;
3310 	else
3311 		bufsize = so->so_rcv.sb_hiwat;
3312 	if (bufsize > mss) {
3313 		bufsize = roundup(bufsize, mss);
3314 		if (bufsize > sb_max)
3315 			bufsize = sb_max;
3316 		if (bufsize > so->so_rcv.sb_hiwat)
3317 			(void)sbreserve_locked(&so->so_rcv, bufsize, so, NULL);
3318 	}
3319 	SOCKBUF_UNLOCK(&so->so_rcv);
3320 	/*
3321 	 * While we're here, check the others too.
3322 	 */
3323 	if (tp->t_srtt == 0 && (rtt = metrics.rmx_rtt)) {
3324 		tp->t_srtt = rtt;
3325 		tp->t_rttbest = tp->t_srtt + TCP_RTT_SCALE;
3326 		TCPSTAT_INC(tcps_usedrtt);
3327 		if (metrics.rmx_rttvar) {
3328 			tp->t_rttvar = metrics.rmx_rttvar;
3329 			TCPSTAT_INC(tcps_usedrttvar);
3330 		} else {
3331 			/* default variation is +- 1 rtt */
3332 			tp->t_rttvar =
3333 			    tp->t_srtt * TCP_RTTVAR_SCALE / TCP_RTT_SCALE;
3334 		}
3335 		TCPT_RANGESET(tp->t_rxtcur,
3336 			      ((tp->t_srtt >> 2) + tp->t_rttvar) >> 1,
3337 			      tp->t_rttmin, TCPTV_REXMTMAX);
3338 	}
3339 	if (metrics.rmx_ssthresh) {
3340 		/*
3341 		 * There's some sort of gateway or interface
3342 		 * buffer limit on the path.  Use this to set
3343 		 * the slow start threshhold, but set the
3344 		 * threshold to no less than 2*mss.
3345 		 */
3346 		tp->snd_ssthresh = max(2 * mss, metrics.rmx_ssthresh);
3347 		TCPSTAT_INC(tcps_usedssthresh);
3348 	}
3349 	if (metrics.rmx_bandwidth)
3350 		tp->snd_bandwidth = metrics.rmx_bandwidth;
3351 
3352 	/*
3353 	 * Set the slow-start flight size depending on whether this
3354 	 * is a local network or not.
3355 	 *
3356 	 * Extend this so we cache the cwnd too and retrieve it here.
3357 	 * Make cwnd even bigger than RFC3390 suggests but only if we
3358 	 * have previous experience with the remote host. Be careful
3359 	 * not make cwnd bigger than remote receive window or our own
3360 	 * send socket buffer. Maybe put some additional upper bound
3361 	 * on the retrieved cwnd. Should do incremental updates to
3362 	 * hostcache when cwnd collapses so next connection doesn't
3363 	 * overloads the path again.
3364 	 *
3365 	 * RFC3390 says only do this if SYN or SYN/ACK didn't got lost.
3366 	 * We currently check only in syncache_socket for that.
3367 	 */
3368 #define TCP_METRICS_CWND
3369 #ifdef TCP_METRICS_CWND
3370 	if (metrics.rmx_cwnd)
3371 		tp->snd_cwnd = max(mss,
3372 				min(metrics.rmx_cwnd / 2,
3373 				 min(tp->snd_wnd, so->so_snd.sb_hiwat)));
3374 	else
3375 #endif
3376 	if (V_tcp_do_rfc3390)
3377 		tp->snd_cwnd = min(4 * mss, max(2 * mss, 4380));
3378 #ifdef INET6
3379 	else if ((isipv6 && in6_localaddr(&inp->in6p_faddr)) ||
3380 		 (!isipv6 && in_localaddr(inp->inp_faddr)))
3381 #else
3382 	else if (in_localaddr(inp->inp_faddr))
3383 #endif
3384 		tp->snd_cwnd = mss * V_ss_fltsz_local;
3385 	else
3386 		tp->snd_cwnd = mss * V_ss_fltsz;
3387 
3388 	/* Check the interface for TSO capabilities. */
3389 	if (mtuflags & CSUM_TSO)
3390 		tp->t_flags |= TF_TSO;
3391 }
3392 
3393 /*
3394  * Determine the MSS option to send on an outgoing SYN.
3395  */
3396 int
3397 tcp_mssopt(struct in_conninfo *inc)
3398 {
3399 	INIT_VNET_INET(curvnet);
3400 	int mss = 0;
3401 	u_long maxmtu = 0;
3402 	u_long thcmtu = 0;
3403 	size_t min_protoh;
3404 
3405 	KASSERT(inc != NULL, ("tcp_mssopt with NULL in_conninfo pointer"));
3406 
3407 #ifdef INET6
3408 	if (inc->inc_flags & INC_ISIPV6) {
3409 		mss = V_tcp_v6mssdflt;
3410 		maxmtu = tcp_maxmtu6(inc, NULL);
3411 		thcmtu = tcp_hc_getmtu(inc); /* IPv4 and IPv6 */
3412 		min_protoh = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
3413 	} else
3414 #endif
3415 	{
3416 		mss = V_tcp_mssdflt;
3417 		maxmtu = tcp_maxmtu(inc, NULL);
3418 		thcmtu = tcp_hc_getmtu(inc); /* IPv4 and IPv6 */
3419 		min_protoh = sizeof(struct tcpiphdr);
3420 	}
3421 	if (maxmtu && thcmtu)
3422 		mss = min(maxmtu, thcmtu) - min_protoh;
3423 	else if (maxmtu || thcmtu)
3424 		mss = max(maxmtu, thcmtu) - min_protoh;
3425 
3426 	return (mss);
3427 }
3428 
3429 
3430 /*
3431  * On a partial ack arrives, force the retransmission of the
3432  * next unacknowledged segment.  Do not clear tp->t_dupacks.
3433  * By setting snd_nxt to ti_ack, this forces retransmission timer to
3434  * be started again.
3435  */
3436 static void
3437 tcp_newreno_partial_ack(struct tcpcb *tp, struct tcphdr *th)
3438 {
3439 	tcp_seq onxt = tp->snd_nxt;
3440 	u_long  ocwnd = tp->snd_cwnd;
3441 
3442 	INP_WLOCK_ASSERT(tp->t_inpcb);
3443 
3444 	tcp_timer_activate(tp, TT_REXMT, 0);
3445 	tp->t_rtttime = 0;
3446 	tp->snd_nxt = th->th_ack;
3447 	/*
3448 	 * Set snd_cwnd to one segment beyond acknowledged offset.
3449 	 * (tp->snd_una has not yet been updated when this function is called.)
3450 	 */
3451 	tp->snd_cwnd = tp->t_maxseg + (th->th_ack - tp->snd_una);
3452 	tp->t_flags |= TF_ACKNOW;
3453 	(void) tcp_output(tp);
3454 	tp->snd_cwnd = ocwnd;
3455 	if (SEQ_GT(onxt, tp->snd_nxt))
3456 		tp->snd_nxt = onxt;
3457 	/*
3458 	 * Partial window deflation.  Relies on fact that tp->snd_una
3459 	 * not updated yet.
3460 	 */
3461 	if (tp->snd_cwnd > th->th_ack - tp->snd_una)
3462 		tp->snd_cwnd -= th->th_ack - tp->snd_una;
3463 	else
3464 		tp->snd_cwnd = 0;
3465 	tp->snd_cwnd += tp->t_maxseg;
3466 }
3467