xref: /freebsd/sys/netinet/tcp_input.c (revision 5608fd23c27fa1e8ee595d7b678cbfd35d657fbe)
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
3  *	The Regents of the University of California.  All rights reserved.
4  * Copyright (c) 2007-2008,2010
5  *	Swinburne University of Technology, Melbourne, Australia.
6  * Copyright (c) 2009-2010 Lawrence Stewart <lstewart@freebsd.org>
7  * Copyright (c) 2010 The FreeBSD Foundation
8  * Copyright (c) 2010-2011 Juniper Networks, Inc.
9  * All rights reserved.
10  *
11  * Portions of this software were developed at the Centre for Advanced Internet
12  * Architectures, Swinburne University of Technology, by Lawrence Stewart,
13  * James Healy and David Hayes, made possible in part by a grant from the Cisco
14  * University Research Program Fund at Community Foundation Silicon Valley.
15  *
16  * Portions of this software were developed at the Centre for Advanced
17  * Internet Architectures, Swinburne University of Technology, Melbourne,
18  * Australia by David Hayes under sponsorship from the FreeBSD Foundation.
19  *
20  * Portions of this software were developed by Robert N. M. Watson under
21  * contract to Juniper Networks, Inc.
22  *
23  * Redistribution and use in source and binary forms, with or without
24  * modification, are permitted provided that the following conditions
25  * are met:
26  * 1. Redistributions of source code must retain the above copyright
27  *    notice, this list of conditions and the following disclaimer.
28  * 2. Redistributions in binary form must reproduce the above copyright
29  *    notice, this list of conditions and the following disclaimer in the
30  *    documentation and/or other materials provided with the distribution.
31  * 4. Neither the name of the University nor the names of its contributors
32  *    may be used to endorse or promote products derived from this software
33  *    without specific prior written permission.
34  *
35  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
36  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
37  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
38  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
39  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
40  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
41  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
42  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
43  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
44  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
45  * SUCH DAMAGE.
46  *
47  *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
48  */
49 
50 #include <sys/cdefs.h>
51 __FBSDID("$FreeBSD$");
52 
53 #include "opt_ipfw.h"		/* for ipfw_fwd	*/
54 #include "opt_inet.h"
55 #include "opt_inet6.h"
56 #include "opt_ipsec.h"
57 #include "opt_tcpdebug.h"
58 
59 #include <sys/param.h>
60 #include <sys/kernel.h>
61 #include <sys/hhook.h>
62 #include <sys/malloc.h>
63 #include <sys/mbuf.h>
64 #include <sys/proc.h>		/* for proc0 declaration */
65 #include <sys/protosw.h>
66 #include <sys/sdt.h>
67 #include <sys/signalvar.h>
68 #include <sys/socket.h>
69 #include <sys/socketvar.h>
70 #include <sys/sysctl.h>
71 #include <sys/syslog.h>
72 #include <sys/systm.h>
73 
74 #include <machine/cpu.h>	/* before tcp_seq.h, for tcp_random18() */
75 
76 #include <vm/uma.h>
77 
78 #include <net/if.h>
79 #include <net/if_var.h>
80 #include <net/route.h>
81 #include <net/vnet.h>
82 
83 #define TCPSTATES		/* for logging */
84 
85 #include <netinet/cc.h>
86 #include <netinet/in.h>
87 #include <netinet/in_kdtrace.h>
88 #include <netinet/in_pcb.h>
89 #include <netinet/in_systm.h>
90 #include <netinet/in_var.h>
91 #include <netinet/ip.h>
92 #include <netinet/ip_icmp.h>	/* required for icmp_var.h */
93 #include <netinet/icmp_var.h>	/* for ICMP_BANDLIM */
94 #include <netinet/ip_var.h>
95 #include <netinet/ip_options.h>
96 #include <netinet/ip6.h>
97 #include <netinet/icmp6.h>
98 #include <netinet6/in6_pcb.h>
99 #include <netinet6/ip6_var.h>
100 #include <netinet6/nd6.h>
101 #include <netinet/tcp_fsm.h>
102 #include <netinet/tcp_seq.h>
103 #include <netinet/tcp_timer.h>
104 #include <netinet/tcp_var.h>
105 #include <netinet6/tcp6_var.h>
106 #include <netinet/tcpip.h>
107 #include <netinet/tcp_syncache.h>
108 #ifdef TCPDEBUG
109 #include <netinet/tcp_debug.h>
110 #endif /* TCPDEBUG */
111 #ifdef TCP_OFFLOAD
112 #include <netinet/tcp_offload.h>
113 #endif
114 
115 #ifdef IPSEC
116 #include <netipsec/ipsec.h>
117 #include <netipsec/ipsec6.h>
118 #endif /*IPSEC*/
119 
120 #include <machine/in_cksum.h>
121 
122 #include <security/mac/mac_framework.h>
123 
124 const int tcprexmtthresh = 3;
125 
126 int tcp_log_in_vain = 0;
127 SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_in_vain, CTLFLAG_RW,
128     &tcp_log_in_vain, 0,
129     "Log all incoming TCP segments to closed ports");
130 
131 VNET_DEFINE(int, blackhole) = 0;
132 #define	V_blackhole		VNET(blackhole)
133 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, blackhole, CTLFLAG_RW,
134     &VNET_NAME(blackhole), 0,
135     "Do not send RST on segments to closed ports");
136 
137 VNET_DEFINE(int, tcp_delack_enabled) = 1;
138 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, delayed_ack, CTLFLAG_RW,
139     &VNET_NAME(tcp_delack_enabled), 0,
140     "Delay ACK to try and piggyback it onto a data packet");
141 
142 VNET_DEFINE(int, drop_synfin) = 0;
143 #define	V_drop_synfin		VNET(drop_synfin)
144 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, drop_synfin, CTLFLAG_RW,
145     &VNET_NAME(drop_synfin), 0,
146     "Drop TCP packets with SYN+FIN set");
147 
148 VNET_DEFINE(int, tcp_do_rfc3042) = 1;
149 #define	V_tcp_do_rfc3042	VNET(tcp_do_rfc3042)
150 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, rfc3042, CTLFLAG_RW,
151     &VNET_NAME(tcp_do_rfc3042), 0,
152     "Enable RFC 3042 (Limited Transmit)");
153 
154 VNET_DEFINE(int, tcp_do_rfc3390) = 1;
155 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, rfc3390, CTLFLAG_RW,
156     &VNET_NAME(tcp_do_rfc3390), 0,
157     "Enable RFC 3390 (Increasing TCP's Initial Congestion Window)");
158 
159 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, experimental, CTLFLAG_RW, 0,
160     "Experimental TCP extensions");
161 
162 VNET_DEFINE(int, tcp_do_initcwnd10) = 1;
163 SYSCTL_VNET_INT(_net_inet_tcp_experimental, OID_AUTO, initcwnd10, CTLFLAG_RW,
164     &VNET_NAME(tcp_do_initcwnd10), 0,
165     "Enable RFC 6928 (Increasing initial CWND to 10)");
166 
167 VNET_DEFINE(int, tcp_do_rfc3465) = 1;
168 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, rfc3465, CTLFLAG_RW,
169     &VNET_NAME(tcp_do_rfc3465), 0,
170     "Enable RFC 3465 (Appropriate Byte Counting)");
171 
172 VNET_DEFINE(int, tcp_abc_l_var) = 2;
173 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, abc_l_var, CTLFLAG_RW,
174     &VNET_NAME(tcp_abc_l_var), 2,
175     "Cap the max cwnd increment during slow-start to this number of segments");
176 
177 static SYSCTL_NODE(_net_inet_tcp, OID_AUTO, ecn, CTLFLAG_RW, 0, "TCP ECN");
178 
179 VNET_DEFINE(int, tcp_do_ecn) = 0;
180 SYSCTL_VNET_INT(_net_inet_tcp_ecn, OID_AUTO, enable, CTLFLAG_RW,
181     &VNET_NAME(tcp_do_ecn), 0,
182     "TCP ECN support");
183 
184 VNET_DEFINE(int, tcp_ecn_maxretries) = 1;
185 SYSCTL_VNET_INT(_net_inet_tcp_ecn, OID_AUTO, maxretries, CTLFLAG_RW,
186     &VNET_NAME(tcp_ecn_maxretries), 0,
187     "Max retries before giving up on ECN");
188 
189 VNET_DEFINE(int, tcp_insecure_rst) = 0;
190 #define	V_tcp_insecure_rst	VNET(tcp_insecure_rst)
191 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, insecure_rst, CTLFLAG_RW,
192     &VNET_NAME(tcp_insecure_rst), 0,
193     "Follow the old (insecure) criteria for accepting RST packets");
194 
195 VNET_DEFINE(int, tcp_recvspace) = 1024*64;
196 #define	V_tcp_recvspace	VNET(tcp_recvspace)
197 SYSCTL_VNET_INT(_net_inet_tcp, TCPCTL_RECVSPACE, recvspace, CTLFLAG_RW,
198     &VNET_NAME(tcp_recvspace), 0, "Initial receive socket buffer size");
199 
200 VNET_DEFINE(int, tcp_do_autorcvbuf) = 1;
201 #define	V_tcp_do_autorcvbuf	VNET(tcp_do_autorcvbuf)
202 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, recvbuf_auto, CTLFLAG_RW,
203     &VNET_NAME(tcp_do_autorcvbuf), 0,
204     "Enable automatic receive buffer sizing");
205 
206 VNET_DEFINE(int, tcp_autorcvbuf_inc) = 16*1024;
207 #define	V_tcp_autorcvbuf_inc	VNET(tcp_autorcvbuf_inc)
208 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, recvbuf_inc, CTLFLAG_RW,
209     &VNET_NAME(tcp_autorcvbuf_inc), 0,
210     "Incrementor step size of automatic receive buffer");
211 
212 VNET_DEFINE(int, tcp_autorcvbuf_max) = 2*1024*1024;
213 #define	V_tcp_autorcvbuf_max	VNET(tcp_autorcvbuf_max)
214 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, recvbuf_max, CTLFLAG_RW,
215     &VNET_NAME(tcp_autorcvbuf_max), 0,
216     "Max size of automatic receive buffer");
217 
218 VNET_DEFINE(struct inpcbhead, tcb);
219 #define	tcb6	tcb  /* for KAME src sync over BSD*'s */
220 VNET_DEFINE(struct inpcbinfo, tcbinfo);
221 
222 static void	 tcp_dooptions(struct tcpopt *, u_char *, int, int);
223 static void	 tcp_do_segment(struct mbuf *, struct tcphdr *,
224 		     struct socket *, struct tcpcb *, int, int, uint8_t,
225 		     int);
226 static void	 tcp_dropwithreset(struct mbuf *, struct tcphdr *,
227 		     struct tcpcb *, int, int);
228 static void	 tcp_pulloutofband(struct socket *,
229 		     struct tcphdr *, struct mbuf *, int);
230 static void	 tcp_xmit_timer(struct tcpcb *, int);
231 static void	 tcp_newreno_partial_ack(struct tcpcb *, struct tcphdr *);
232 static void inline	cc_ack_received(struct tcpcb *tp, struct tcphdr *th,
233 			    uint16_t type);
234 static void inline	cc_conn_init(struct tcpcb *tp);
235 static void inline	cc_post_recovery(struct tcpcb *tp, struct tcphdr *th);
236 static void inline	hhook_run_tcp_est_in(struct tcpcb *tp,
237 			    struct tcphdr *th, struct tcpopt *to);
238 
239 /*
240  * TCP statistics are stored in an "array" of counter(9)s.
241  */
242 VNET_PCPUSTAT_DEFINE(struct tcpstat, tcpstat);
243 VNET_PCPUSTAT_SYSINIT(tcpstat);
244 SYSCTL_VNET_PCPUSTAT(_net_inet_tcp, TCPCTL_STATS, stats, struct tcpstat,
245     tcpstat, "TCP statistics (struct tcpstat, netinet/tcp_var.h)");
246 
247 #ifdef VIMAGE
248 VNET_PCPUSTAT_SYSUNINIT(tcpstat);
249 #endif /* VIMAGE */
250 /*
251  * Kernel module interface for updating tcpstat.  The argument is an index
252  * into tcpstat treated as an array.
253  */
254 void
255 kmod_tcpstat_inc(int statnum)
256 {
257 
258 	counter_u64_add(VNET(tcpstat)[statnum], 1);
259 }
260 
261 /*
262  * Wrapper for the TCP established input helper hook.
263  */
264 static void inline
265 hhook_run_tcp_est_in(struct tcpcb *tp, struct tcphdr *th, struct tcpopt *to)
266 {
267 	struct tcp_hhook_data hhook_data;
268 
269 	if (V_tcp_hhh[HHOOK_TCP_EST_IN]->hhh_nhooks > 0) {
270 		hhook_data.tp = tp;
271 		hhook_data.th = th;
272 		hhook_data.to = to;
273 
274 		hhook_run_hooks(V_tcp_hhh[HHOOK_TCP_EST_IN], &hhook_data,
275 		    tp->osd);
276 	}
277 }
278 
279 /*
280  * CC wrapper hook functions
281  */
282 static void inline
283 cc_ack_received(struct tcpcb *tp, struct tcphdr *th, uint16_t type)
284 {
285 	INP_WLOCK_ASSERT(tp->t_inpcb);
286 
287 	tp->ccv->bytes_this_ack = BYTES_THIS_ACK(tp, th);
288 	if (tp->snd_cwnd <= tp->snd_wnd)
289 		tp->ccv->flags |= CCF_CWND_LIMITED;
290 	else
291 		tp->ccv->flags &= ~CCF_CWND_LIMITED;
292 
293 	if (type == CC_ACK) {
294 		if (tp->snd_cwnd > tp->snd_ssthresh) {
295 			tp->t_bytes_acked += min(tp->ccv->bytes_this_ack,
296 			     V_tcp_abc_l_var * tp->t_maxseg);
297 			if (tp->t_bytes_acked >= tp->snd_cwnd) {
298 				tp->t_bytes_acked -= tp->snd_cwnd;
299 				tp->ccv->flags |= CCF_ABC_SENTAWND;
300 			}
301 		} else {
302 				tp->ccv->flags &= ~CCF_ABC_SENTAWND;
303 				tp->t_bytes_acked = 0;
304 		}
305 	}
306 
307 	if (CC_ALGO(tp)->ack_received != NULL) {
308 		/* XXXLAS: Find a way to live without this */
309 		tp->ccv->curack = th->th_ack;
310 		CC_ALGO(tp)->ack_received(tp->ccv, type);
311 	}
312 }
313 
314 static void inline
315 cc_conn_init(struct tcpcb *tp)
316 {
317 	struct hc_metrics_lite metrics;
318 	struct inpcb *inp = tp->t_inpcb;
319 	int rtt;
320 
321 	INP_WLOCK_ASSERT(tp->t_inpcb);
322 
323 	tcp_hc_get(&inp->inp_inc, &metrics);
324 
325 	if (tp->t_srtt == 0 && (rtt = metrics.rmx_rtt)) {
326 		tp->t_srtt = rtt;
327 		tp->t_rttbest = tp->t_srtt + TCP_RTT_SCALE;
328 		TCPSTAT_INC(tcps_usedrtt);
329 		if (metrics.rmx_rttvar) {
330 			tp->t_rttvar = metrics.rmx_rttvar;
331 			TCPSTAT_INC(tcps_usedrttvar);
332 		} else {
333 			/* default variation is +- 1 rtt */
334 			tp->t_rttvar =
335 			    tp->t_srtt * TCP_RTTVAR_SCALE / TCP_RTT_SCALE;
336 		}
337 		TCPT_RANGESET(tp->t_rxtcur,
338 		    ((tp->t_srtt >> 2) + tp->t_rttvar) >> 1,
339 		    tp->t_rttmin, TCPTV_REXMTMAX);
340 	}
341 	if (metrics.rmx_ssthresh) {
342 		/*
343 		 * There's some sort of gateway or interface
344 		 * buffer limit on the path.  Use this to set
345 		 * the slow start threshhold, but set the
346 		 * threshold to no less than 2*mss.
347 		 */
348 		tp->snd_ssthresh = max(2 * tp->t_maxseg, metrics.rmx_ssthresh);
349 		TCPSTAT_INC(tcps_usedssthresh);
350 	}
351 
352 	/*
353 	 * Set the initial slow-start flight size.
354 	 *
355 	 * RFC5681 Section 3.1 specifies the default conservative values.
356 	 * RFC3390 specifies slightly more aggressive values.
357 	 * RFC6928 increases it to ten segments.
358 	 *
359 	 * If a SYN or SYN/ACK was lost and retransmitted, we have to
360 	 * reduce the initial CWND to one segment as congestion is likely
361 	 * requiring us to be cautious.
362 	 */
363 	if (tp->snd_cwnd == 1)
364 		tp->snd_cwnd = tp->t_maxseg;		/* SYN(-ACK) lost */
365 	else if (V_tcp_do_initcwnd10)
366 		tp->snd_cwnd = min(10 * tp->t_maxseg,
367 		    max(2 * tp->t_maxseg, 14600));
368 	else if (V_tcp_do_rfc3390)
369 		tp->snd_cwnd = min(4 * tp->t_maxseg,
370 		    max(2 * tp->t_maxseg, 4380));
371 	else {
372 		/* Per RFC5681 Section 3.1 */
373 		if (tp->t_maxseg > 2190)
374 			tp->snd_cwnd = 2 * tp->t_maxseg;
375 		else if (tp->t_maxseg > 1095)
376 			tp->snd_cwnd = 3 * tp->t_maxseg;
377 		else
378 			tp->snd_cwnd = 4 * tp->t_maxseg;
379 	}
380 
381 	if (CC_ALGO(tp)->conn_init != NULL)
382 		CC_ALGO(tp)->conn_init(tp->ccv);
383 }
384 
385 void inline
386 cc_cong_signal(struct tcpcb *tp, struct tcphdr *th, uint32_t type)
387 {
388 	INP_WLOCK_ASSERT(tp->t_inpcb);
389 
390 	switch(type) {
391 	case CC_NDUPACK:
392 		if (!IN_FASTRECOVERY(tp->t_flags)) {
393 			tp->snd_recover = tp->snd_max;
394 			if (tp->t_flags & TF_ECN_PERMIT)
395 				tp->t_flags |= TF_ECN_SND_CWR;
396 		}
397 		break;
398 	case CC_ECN:
399 		if (!IN_CONGRECOVERY(tp->t_flags)) {
400 			TCPSTAT_INC(tcps_ecn_rcwnd);
401 			tp->snd_recover = tp->snd_max;
402 			if (tp->t_flags & TF_ECN_PERMIT)
403 				tp->t_flags |= TF_ECN_SND_CWR;
404 		}
405 		break;
406 	case CC_RTO:
407 		tp->t_dupacks = 0;
408 		tp->t_bytes_acked = 0;
409 		EXIT_RECOVERY(tp->t_flags);
410 		tp->snd_ssthresh = max(2, min(tp->snd_wnd, tp->snd_cwnd) / 2 /
411 		    tp->t_maxseg) * tp->t_maxseg;
412 		tp->snd_cwnd = tp->t_maxseg;
413 		break;
414 	case CC_RTO_ERR:
415 		TCPSTAT_INC(tcps_sndrexmitbad);
416 		/* RTO was unnecessary, so reset everything. */
417 		tp->snd_cwnd = tp->snd_cwnd_prev;
418 		tp->snd_ssthresh = tp->snd_ssthresh_prev;
419 		tp->snd_recover = tp->snd_recover_prev;
420 		if (tp->t_flags & TF_WASFRECOVERY)
421 			ENTER_FASTRECOVERY(tp->t_flags);
422 		if (tp->t_flags & TF_WASCRECOVERY)
423 			ENTER_CONGRECOVERY(tp->t_flags);
424 		tp->snd_nxt = tp->snd_max;
425 		tp->t_flags &= ~TF_PREVVALID;
426 		tp->t_badrxtwin = 0;
427 		break;
428 	}
429 
430 	if (CC_ALGO(tp)->cong_signal != NULL) {
431 		if (th != NULL)
432 			tp->ccv->curack = th->th_ack;
433 		CC_ALGO(tp)->cong_signal(tp->ccv, type);
434 	}
435 }
436 
437 static void inline
438 cc_post_recovery(struct tcpcb *tp, struct tcphdr *th)
439 {
440 	INP_WLOCK_ASSERT(tp->t_inpcb);
441 
442 	/* XXXLAS: KASSERT that we're in recovery? */
443 
444 	if (CC_ALGO(tp)->post_recovery != NULL) {
445 		tp->ccv->curack = th->th_ack;
446 		CC_ALGO(tp)->post_recovery(tp->ccv);
447 	}
448 	/* XXXLAS: EXIT_RECOVERY ? */
449 	tp->t_bytes_acked = 0;
450 }
451 
452 #ifdef TCP_SIGNATURE
453 static inline int
454 tcp_signature_verify_input(struct mbuf *m, int off0, int tlen, int optlen,
455     struct tcpopt *to, struct tcphdr *th, u_int tcpbflag)
456 {
457 	int ret;
458 
459 	tcp_fields_to_net(th);
460 	ret = tcp_signature_verify(m, off0, tlen, optlen, to, th, tcpbflag);
461 	tcp_fields_to_host(th);
462 	return (ret);
463 }
464 #endif
465 
466 /* Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint. */
467 #ifdef INET6
468 #define ND6_HINT(tp) \
469 do { \
470 	if ((tp) && (tp)->t_inpcb && \
471 	    ((tp)->t_inpcb->inp_vflag & INP_IPV6) != 0) \
472 		nd6_nud_hint(NULL, NULL, 0); \
473 } while (0)
474 #else
475 #define ND6_HINT(tp)
476 #endif
477 
478 /*
479  * Indicate whether this ack should be delayed.  We can delay the ack if
480  * following conditions are met:
481  *	- There is no delayed ack timer in progress.
482  *	- Our last ack wasn't a 0-sized window. We never want to delay
483  *	  the ack that opens up a 0-sized window.
484  *	- LRO wasn't used for this segment. We make sure by checking that the
485  *	  segment size is not larger than the MSS.
486  *	- Delayed acks are enabled or this is a half-synchronized T/TCP
487  *	  connection.
488  */
489 #define DELAY_ACK(tp, tlen)						\
490 	((!tcp_timer_active(tp, TT_DELACK) &&				\
491 	    (tp->t_flags & TF_RXWIN0SENT) == 0) &&			\
492 	    (tlen <= tp->t_maxopd) &&					\
493 	    (V_tcp_delack_enabled || (tp->t_flags & TF_NEEDSYN)))
494 
495 /*
496  * TCP input handling is split into multiple parts:
497  *   tcp6_input is a thin wrapper around tcp_input for the extended
498  *	ip6_protox[] call format in ip6_input
499  *   tcp_input handles primary segment validation, inpcb lookup and
500  *	SYN processing on listen sockets
501  *   tcp_do_segment processes the ACK and text of the segment for
502  *	establishing, established and closing connections
503  */
504 #ifdef INET6
505 int
506 tcp6_input(struct mbuf **mp, int *offp, int proto)
507 {
508 	struct mbuf *m = *mp;
509 	struct in6_ifaddr *ia6;
510 
511 	IP6_EXTHDR_CHECK(m, *offp, sizeof(struct tcphdr), IPPROTO_DONE);
512 
513 	/*
514 	 * draft-itojun-ipv6-tcp-to-anycast
515 	 * better place to put this in?
516 	 */
517 	ia6 = ip6_getdstifaddr(m);
518 	if (ia6 && (ia6->ia6_flags & IN6_IFF_ANYCAST)) {
519 		struct ip6_hdr *ip6;
520 
521 		ifa_free(&ia6->ia_ifa);
522 		ip6 = mtod(m, struct ip6_hdr *);
523 		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
524 			    (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
525 		return (IPPROTO_DONE);
526 	}
527 	if (ia6)
528 		ifa_free(&ia6->ia_ifa);
529 
530 	return (tcp_input(mp, offp, proto));
531 }
532 #endif /* INET6 */
533 
534 int
535 tcp_input(struct mbuf **mp, int *offp, int proto)
536 {
537 	struct mbuf *m = *mp;
538 	struct tcphdr *th = NULL;
539 	struct ip *ip = NULL;
540 	struct inpcb *inp = NULL;
541 	struct tcpcb *tp = NULL;
542 	struct socket *so = NULL;
543 	u_char *optp = NULL;
544 	int off0;
545 	int optlen = 0;
546 #ifdef INET
547 	int len;
548 #endif
549 	int tlen = 0, off;
550 	int drop_hdrlen;
551 	int thflags;
552 	int rstreason = 0;	/* For badport_bandlim accounting purposes */
553 #ifdef TCP_SIGNATURE
554 	uint8_t sig_checked = 0;
555 #endif
556 	uint8_t iptos = 0;
557 	struct m_tag *fwd_tag = NULL;
558 #ifdef INET6
559 	struct ip6_hdr *ip6 = NULL;
560 	int isipv6;
561 #else
562 	const void *ip6 = NULL;
563 #endif /* INET6 */
564 	struct tcpopt to;		/* options in this segment */
565 	char *s = NULL;			/* address and port logging */
566 	int ti_locked;
567 #define	TI_UNLOCKED	1
568 #define	TI_WLOCKED	2
569 
570 #ifdef TCPDEBUG
571 	/*
572 	 * The size of tcp_saveipgen must be the size of the max ip header,
573 	 * now IPv6.
574 	 */
575 	u_char tcp_saveipgen[IP6_HDR_LEN];
576 	struct tcphdr tcp_savetcp;
577 	short ostate = 0;
578 #endif
579 
580 #ifdef INET6
581 	isipv6 = (mtod(m, struct ip *)->ip_v == 6) ? 1 : 0;
582 #endif
583 
584 	off0 = *offp;
585 	m = *mp;
586 	*mp = NULL;
587 	to.to_flags = 0;
588 	TCPSTAT_INC(tcps_rcvtotal);
589 
590 #ifdef INET6
591 	if (isipv6) {
592 		/* IP6_EXTHDR_CHECK() is already done at tcp6_input(). */
593 
594 		if (m->m_len < (sizeof(*ip6) + sizeof(*th))) {
595 			m = m_pullup(m, sizeof(*ip6) + sizeof(*th));
596 			if (m == NULL) {
597 				TCPSTAT_INC(tcps_rcvshort);
598 				return (IPPROTO_DONE);
599 			}
600 		}
601 
602 		ip6 = mtod(m, struct ip6_hdr *);
603 		th = (struct tcphdr *)((caddr_t)ip6 + off0);
604 		tlen = sizeof(*ip6) + ntohs(ip6->ip6_plen) - off0;
605 		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID_IPV6) {
606 			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
607 				th->th_sum = m->m_pkthdr.csum_data;
608 			else
609 				th->th_sum = in6_cksum_pseudo(ip6, tlen,
610 				    IPPROTO_TCP, m->m_pkthdr.csum_data);
611 			th->th_sum ^= 0xffff;
612 		} else
613 			th->th_sum = in6_cksum(m, IPPROTO_TCP, off0, tlen);
614 		if (th->th_sum) {
615 			TCPSTAT_INC(tcps_rcvbadsum);
616 			goto drop;
617 		}
618 
619 		/*
620 		 * Be proactive about unspecified IPv6 address in source.
621 		 * As we use all-zero to indicate unbounded/unconnected pcb,
622 		 * unspecified IPv6 address can be used to confuse us.
623 		 *
624 		 * Note that packets with unspecified IPv6 destination is
625 		 * already dropped in ip6_input.
626 		 */
627 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
628 			/* XXX stat */
629 			goto drop;
630 		}
631 	}
632 #endif
633 #if defined(INET) && defined(INET6)
634 	else
635 #endif
636 #ifdef INET
637 	{
638 		/*
639 		 * Get IP and TCP header together in first mbuf.
640 		 * Note: IP leaves IP header in first mbuf.
641 		 */
642 		if (off0 > sizeof (struct ip)) {
643 			ip_stripoptions(m);
644 			off0 = sizeof(struct ip);
645 		}
646 		if (m->m_len < sizeof (struct tcpiphdr)) {
647 			if ((m = m_pullup(m, sizeof (struct tcpiphdr)))
648 			    == NULL) {
649 				TCPSTAT_INC(tcps_rcvshort);
650 				return (IPPROTO_DONE);
651 			}
652 		}
653 		ip = mtod(m, struct ip *);
654 		th = (struct tcphdr *)((caddr_t)ip + off0);
655 		tlen = ntohs(ip->ip_len) - off0;
656 
657 		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
658 			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
659 				th->th_sum = m->m_pkthdr.csum_data;
660 			else
661 				th->th_sum = in_pseudo(ip->ip_src.s_addr,
662 				    ip->ip_dst.s_addr,
663 				    htonl(m->m_pkthdr.csum_data + tlen +
664 				    IPPROTO_TCP));
665 			th->th_sum ^= 0xffff;
666 		} else {
667 			struct ipovly *ipov = (struct ipovly *)ip;
668 
669 			/*
670 			 * Checksum extended TCP header and data.
671 			 */
672 			len = off0 + tlen;
673 			bzero(ipov->ih_x1, sizeof(ipov->ih_x1));
674 			ipov->ih_len = htons(tlen);
675 			th->th_sum = in_cksum(m, len);
676 			/* Reset length for SDT probes. */
677 			ip->ip_len = htons(tlen + off0);
678 		}
679 
680 		if (th->th_sum) {
681 			TCPSTAT_INC(tcps_rcvbadsum);
682 			goto drop;
683 		}
684 		/* Re-initialization for later version check */
685 		ip->ip_v = IPVERSION;
686 	}
687 #endif /* INET */
688 
689 #ifdef INET6
690 	if (isipv6)
691 		iptos = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
692 #endif
693 #if defined(INET) && defined(INET6)
694 	else
695 #endif
696 #ifdef INET
697 		iptos = ip->ip_tos;
698 #endif
699 
700 	/*
701 	 * Check that TCP offset makes sense,
702 	 * pull out TCP options and adjust length.		XXX
703 	 */
704 	off = th->th_off << 2;
705 	if (off < sizeof (struct tcphdr) || off > tlen) {
706 		TCPSTAT_INC(tcps_rcvbadoff);
707 		goto drop;
708 	}
709 	tlen -= off;	/* tlen is used instead of ti->ti_len */
710 	if (off > sizeof (struct tcphdr)) {
711 #ifdef INET6
712 		if (isipv6) {
713 			IP6_EXTHDR_CHECK(m, off0, off, IPPROTO_DONE);
714 			ip6 = mtod(m, struct ip6_hdr *);
715 			th = (struct tcphdr *)((caddr_t)ip6 + off0);
716 		}
717 #endif
718 #if defined(INET) && defined(INET6)
719 		else
720 #endif
721 #ifdef INET
722 		{
723 			if (m->m_len < sizeof(struct ip) + off) {
724 				if ((m = m_pullup(m, sizeof (struct ip) + off))
725 				    == NULL) {
726 					TCPSTAT_INC(tcps_rcvshort);
727 					return (IPPROTO_DONE);
728 				}
729 				ip = mtod(m, struct ip *);
730 				th = (struct tcphdr *)((caddr_t)ip + off0);
731 			}
732 		}
733 #endif
734 		optlen = off - sizeof (struct tcphdr);
735 		optp = (u_char *)(th + 1);
736 	}
737 	thflags = th->th_flags;
738 
739 	/*
740 	 * Convert TCP protocol specific fields to host format.
741 	 */
742 	tcp_fields_to_host(th);
743 
744 	/*
745 	 * Delay dropping TCP, IP headers, IPv6 ext headers, and TCP options.
746 	 */
747 	drop_hdrlen = off0 + off;
748 
749 	/*
750 	 * Locate pcb for segment; if we're likely to add or remove a
751 	 * connection then first acquire pcbinfo lock.  There are two cases
752 	 * where we might discover later we need a write lock despite the
753 	 * flags: ACKs moving a connection out of the syncache, and ACKs for
754 	 * a connection in TIMEWAIT.
755 	 */
756 	if ((thflags & (TH_SYN | TH_FIN | TH_RST)) != 0) {
757 		INP_INFO_WLOCK(&V_tcbinfo);
758 		ti_locked = TI_WLOCKED;
759 	} else
760 		ti_locked = TI_UNLOCKED;
761 
762 	/*
763 	 * Grab info from PACKET_TAG_IPFORWARD tag prepended to the chain.
764 	 */
765         if (
766 #ifdef INET6
767 	    (isipv6 && (m->m_flags & M_IP6_NEXTHOP))
768 #ifdef INET
769 	    || (!isipv6 && (m->m_flags & M_IP_NEXTHOP))
770 #endif
771 #endif
772 #if defined(INET) && !defined(INET6)
773 	    (m->m_flags & M_IP_NEXTHOP)
774 #endif
775 	    )
776 		fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
777 
778 findpcb:
779 #ifdef INVARIANTS
780 	if (ti_locked == TI_WLOCKED) {
781 		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
782 	} else {
783 		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
784 	}
785 #endif
786 #ifdef INET6
787 	if (isipv6 && fwd_tag != NULL) {
788 		struct sockaddr_in6 *next_hop6;
789 
790 		next_hop6 = (struct sockaddr_in6 *)(fwd_tag + 1);
791 		/*
792 		 * Transparently forwarded. Pretend to be the destination.
793 		 * Already got one like this?
794 		 */
795 		inp = in6_pcblookup_mbuf(&V_tcbinfo,
796 		    &ip6->ip6_src, th->th_sport, &ip6->ip6_dst, th->th_dport,
797 		    INPLOOKUP_WLOCKPCB, m->m_pkthdr.rcvif, m);
798 		if (!inp) {
799 			/*
800 			 * It's new.  Try to find the ambushing socket.
801 			 * Because we've rewritten the destination address,
802 			 * any hardware-generated hash is ignored.
803 			 */
804 			inp = in6_pcblookup(&V_tcbinfo, &ip6->ip6_src,
805 			    th->th_sport, &next_hop6->sin6_addr,
806 			    next_hop6->sin6_port ? ntohs(next_hop6->sin6_port) :
807 			    th->th_dport, INPLOOKUP_WILDCARD |
808 			    INPLOOKUP_WLOCKPCB, m->m_pkthdr.rcvif);
809 		}
810 	} else if (isipv6) {
811 		inp = in6_pcblookup_mbuf(&V_tcbinfo, &ip6->ip6_src,
812 		    th->th_sport, &ip6->ip6_dst, th->th_dport,
813 		    INPLOOKUP_WILDCARD | INPLOOKUP_WLOCKPCB,
814 		    m->m_pkthdr.rcvif, m);
815 	}
816 #endif /* INET6 */
817 #if defined(INET6) && defined(INET)
818 	else
819 #endif
820 #ifdef INET
821 	if (fwd_tag != NULL) {
822 		struct sockaddr_in *next_hop;
823 
824 		next_hop = (struct sockaddr_in *)(fwd_tag+1);
825 		/*
826 		 * Transparently forwarded. Pretend to be the destination.
827 		 * already got one like this?
828 		 */
829 		inp = in_pcblookup_mbuf(&V_tcbinfo, ip->ip_src, th->th_sport,
830 		    ip->ip_dst, th->th_dport, INPLOOKUP_WLOCKPCB,
831 		    m->m_pkthdr.rcvif, m);
832 		if (!inp) {
833 			/*
834 			 * It's new.  Try to find the ambushing socket.
835 			 * Because we've rewritten the destination address,
836 			 * any hardware-generated hash is ignored.
837 			 */
838 			inp = in_pcblookup(&V_tcbinfo, ip->ip_src,
839 			    th->th_sport, next_hop->sin_addr,
840 			    next_hop->sin_port ? ntohs(next_hop->sin_port) :
841 			    th->th_dport, INPLOOKUP_WILDCARD |
842 			    INPLOOKUP_WLOCKPCB, m->m_pkthdr.rcvif);
843 		}
844 	} else
845 		inp = in_pcblookup_mbuf(&V_tcbinfo, ip->ip_src,
846 		    th->th_sport, ip->ip_dst, th->th_dport,
847 		    INPLOOKUP_WILDCARD | INPLOOKUP_WLOCKPCB,
848 		    m->m_pkthdr.rcvif, m);
849 #endif /* INET */
850 
851 	/*
852 	 * If the INPCB does not exist then all data in the incoming
853 	 * segment is discarded and an appropriate RST is sent back.
854 	 * XXX MRT Send RST using which routing table?
855 	 */
856 	if (inp == NULL) {
857 		/*
858 		 * Log communication attempts to ports that are not
859 		 * in use.
860 		 */
861 		if ((tcp_log_in_vain == 1 && (thflags & TH_SYN)) ||
862 		    tcp_log_in_vain == 2) {
863 			if ((s = tcp_log_vain(NULL, th, (void *)ip, ip6)))
864 				log(LOG_INFO, "%s; %s: Connection attempt "
865 				    "to closed port\n", s, __func__);
866 		}
867 		/*
868 		 * When blackholing do not respond with a RST but
869 		 * completely ignore the segment and drop it.
870 		 */
871 		if ((V_blackhole == 1 && (thflags & TH_SYN)) ||
872 		    V_blackhole == 2)
873 			goto dropunlock;
874 
875 		rstreason = BANDLIM_RST_CLOSEDPORT;
876 		goto dropwithreset;
877 	}
878 	INP_WLOCK_ASSERT(inp);
879 	if (!(inp->inp_flags & INP_HW_FLOWID)
880 	    && (m->m_flags & M_FLOWID)
881 	    && ((inp->inp_socket == NULL)
882 		|| !(inp->inp_socket->so_options & SO_ACCEPTCONN))) {
883 		inp->inp_flags |= INP_HW_FLOWID;
884 		inp->inp_flags &= ~INP_SW_FLOWID;
885 		inp->inp_flowid = m->m_pkthdr.flowid;
886 		inp->inp_flowtype = M_HASHTYPE_GET(m);
887 	}
888 #ifdef IPSEC
889 #ifdef INET6
890 	if (isipv6 && ipsec6_in_reject(m, inp)) {
891 		IPSEC6STAT_INC(ips_in_polvio);
892 		goto dropunlock;
893 	} else
894 #endif /* INET6 */
895 	if (ipsec4_in_reject(m, inp) != 0) {
896 		IPSECSTAT_INC(ips_in_polvio);
897 		goto dropunlock;
898 	}
899 #endif /* IPSEC */
900 
901 	/*
902 	 * Check the minimum TTL for socket.
903 	 */
904 	if (inp->inp_ip_minttl != 0) {
905 #ifdef INET6
906 		if (isipv6 && inp->inp_ip_minttl > ip6->ip6_hlim)
907 			goto dropunlock;
908 		else
909 #endif
910 		if (inp->inp_ip_minttl > ip->ip_ttl)
911 			goto dropunlock;
912 	}
913 
914 	/*
915 	 * A previous connection in TIMEWAIT state is supposed to catch stray
916 	 * or duplicate segments arriving late.  If this segment was a
917 	 * legitimate new connection attempt, the old INPCB gets removed and
918 	 * we can try again to find a listening socket.
919 	 *
920 	 * At this point, due to earlier optimism, we may hold only an inpcb
921 	 * lock, and not the inpcbinfo write lock.  If so, we need to try to
922 	 * acquire it, or if that fails, acquire a reference on the inpcb,
923 	 * drop all locks, acquire a global write lock, and then re-acquire
924 	 * the inpcb lock.  We may at that point discover that another thread
925 	 * has tried to free the inpcb, in which case we need to loop back
926 	 * and try to find a new inpcb to deliver to.
927 	 *
928 	 * XXXRW: It may be time to rethink timewait locking.
929 	 */
930 relocked:
931 	if (inp->inp_flags & INP_TIMEWAIT) {
932 		if (ti_locked == TI_UNLOCKED) {
933 			if (INP_INFO_TRY_WLOCK(&V_tcbinfo) == 0) {
934 				in_pcbref(inp);
935 				INP_WUNLOCK(inp);
936 				INP_INFO_WLOCK(&V_tcbinfo);
937 				ti_locked = TI_WLOCKED;
938 				INP_WLOCK(inp);
939 				if (in_pcbrele_wlocked(inp)) {
940 					inp = NULL;
941 					goto findpcb;
942 				}
943 			} else
944 				ti_locked = TI_WLOCKED;
945 		}
946 		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
947 
948 		if (thflags & TH_SYN)
949 			tcp_dooptions(&to, optp, optlen, TO_SYN);
950 		/*
951 		 * NB: tcp_twcheck unlocks the INP and frees the mbuf.
952 		 */
953 		if (tcp_twcheck(inp, &to, th, m, tlen))
954 			goto findpcb;
955 		INP_INFO_WUNLOCK(&V_tcbinfo);
956 		return (IPPROTO_DONE);
957 	}
958 	/*
959 	 * The TCPCB may no longer exist if the connection is winding
960 	 * down or it is in the CLOSED state.  Either way we drop the
961 	 * segment and send an appropriate response.
962 	 */
963 	tp = intotcpcb(inp);
964 	if (tp == NULL || tp->t_state == TCPS_CLOSED) {
965 		rstreason = BANDLIM_RST_CLOSEDPORT;
966 		goto dropwithreset;
967 	}
968 
969 #ifdef TCP_OFFLOAD
970 	if (tp->t_flags & TF_TOE) {
971 		tcp_offload_input(tp, m);
972 		m = NULL;	/* consumed by the TOE driver */
973 		goto dropunlock;
974 	}
975 #endif
976 
977 	/*
978 	 * We've identified a valid inpcb, but it could be that we need an
979 	 * inpcbinfo write lock but don't hold it.  In this case, attempt to
980 	 * acquire using the same strategy as the TIMEWAIT case above.  If we
981 	 * relock, we have to jump back to 'relocked' as the connection might
982 	 * now be in TIMEWAIT.
983 	 */
984 #ifdef INVARIANTS
985 	if ((thflags & (TH_SYN | TH_FIN | TH_RST)) != 0)
986 		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
987 #endif
988 	if (tp->t_state != TCPS_ESTABLISHED) {
989 		if (ti_locked == TI_UNLOCKED) {
990 			if (INP_INFO_TRY_WLOCK(&V_tcbinfo) == 0) {
991 				in_pcbref(inp);
992 				INP_WUNLOCK(inp);
993 				INP_INFO_WLOCK(&V_tcbinfo);
994 				ti_locked = TI_WLOCKED;
995 				INP_WLOCK(inp);
996 				if (in_pcbrele_wlocked(inp)) {
997 					inp = NULL;
998 					goto findpcb;
999 				}
1000 				goto relocked;
1001 			} else
1002 				ti_locked = TI_WLOCKED;
1003 		}
1004 		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1005 	}
1006 
1007 #ifdef MAC
1008 	INP_WLOCK_ASSERT(inp);
1009 	if (mac_inpcb_check_deliver(inp, m))
1010 		goto dropunlock;
1011 #endif
1012 	so = inp->inp_socket;
1013 	KASSERT(so != NULL, ("%s: so == NULL", __func__));
1014 #ifdef TCPDEBUG
1015 	if (so->so_options & SO_DEBUG) {
1016 		ostate = tp->t_state;
1017 #ifdef INET6
1018 		if (isipv6) {
1019 			bcopy((char *)ip6, (char *)tcp_saveipgen, sizeof(*ip6));
1020 		} else
1021 #endif
1022 			bcopy((char *)ip, (char *)tcp_saveipgen, sizeof(*ip));
1023 		tcp_savetcp = *th;
1024 	}
1025 #endif /* TCPDEBUG */
1026 	/*
1027 	 * When the socket is accepting connections (the INPCB is in LISTEN
1028 	 * state) we look into the SYN cache if this is a new connection
1029 	 * attempt or the completion of a previous one.  Because listen
1030 	 * sockets are never in TCPS_ESTABLISHED, the V_tcbinfo lock will be
1031 	 * held in this case.
1032 	 */
1033 	if (so->so_options & SO_ACCEPTCONN) {
1034 		struct in_conninfo inc;
1035 
1036 		KASSERT(tp->t_state == TCPS_LISTEN, ("%s: so accepting but "
1037 		    "tp not listening", __func__));
1038 		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1039 
1040 		bzero(&inc, sizeof(inc));
1041 #ifdef INET6
1042 		if (isipv6) {
1043 			inc.inc_flags |= INC_ISIPV6;
1044 			inc.inc6_faddr = ip6->ip6_src;
1045 			inc.inc6_laddr = ip6->ip6_dst;
1046 		} else
1047 #endif
1048 		{
1049 			inc.inc_faddr = ip->ip_src;
1050 			inc.inc_laddr = ip->ip_dst;
1051 		}
1052 		inc.inc_fport = th->th_sport;
1053 		inc.inc_lport = th->th_dport;
1054 		inc.inc_fibnum = so->so_fibnum;
1055 
1056 		/*
1057 		 * Check for an existing connection attempt in syncache if
1058 		 * the flag is only ACK.  A successful lookup creates a new
1059 		 * socket appended to the listen queue in SYN_RECEIVED state.
1060 		 */
1061 		if ((thflags & (TH_RST|TH_ACK|TH_SYN)) == TH_ACK) {
1062 			/*
1063 			 * Parse the TCP options here because
1064 			 * syncookies need access to the reflected
1065 			 * timestamp.
1066 			 */
1067 			tcp_dooptions(&to, optp, optlen, 0);
1068 			/*
1069 			 * NB: syncache_expand() doesn't unlock
1070 			 * inp and tcpinfo locks.
1071 			 */
1072 			if (!syncache_expand(&inc, &to, th, &so, m)) {
1073 				/*
1074 				 * No syncache entry or ACK was not
1075 				 * for our SYN/ACK.  Send a RST.
1076 				 * NB: syncache did its own logging
1077 				 * of the failure cause.
1078 				 */
1079 				rstreason = BANDLIM_RST_OPENPORT;
1080 				goto dropwithreset;
1081 			}
1082 			if (so == NULL) {
1083 				/*
1084 				 * We completed the 3-way handshake
1085 				 * but could not allocate a socket
1086 				 * either due to memory shortage,
1087 				 * listen queue length limits or
1088 				 * global socket limits.  Send RST
1089 				 * or wait and have the remote end
1090 				 * retransmit the ACK for another
1091 				 * try.
1092 				 */
1093 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1094 					log(LOG_DEBUG, "%s; %s: Listen socket: "
1095 					    "Socket allocation failed due to "
1096 					    "limits or memory shortage, %s\n",
1097 					    s, __func__,
1098 					    V_tcp_sc_rst_sock_fail ?
1099 					    "sending RST" : "try again");
1100 				if (V_tcp_sc_rst_sock_fail) {
1101 					rstreason = BANDLIM_UNLIMITED;
1102 					goto dropwithreset;
1103 				} else
1104 					goto dropunlock;
1105 			}
1106 			/*
1107 			 * Socket is created in state SYN_RECEIVED.
1108 			 * Unlock the listen socket, lock the newly
1109 			 * created socket and update the tp variable.
1110 			 */
1111 			INP_WUNLOCK(inp);	/* listen socket */
1112 			inp = sotoinpcb(so);
1113 			INP_WLOCK(inp);		/* new connection */
1114 			tp = intotcpcb(inp);
1115 			KASSERT(tp->t_state == TCPS_SYN_RECEIVED,
1116 			    ("%s: ", __func__));
1117 #ifdef TCP_SIGNATURE
1118 			if (sig_checked == 0)  {
1119 				tcp_dooptions(&to, optp, optlen,
1120 				    (thflags & TH_SYN) ? TO_SYN : 0);
1121 				if (!tcp_signature_verify_input(m, off0, tlen,
1122 				    optlen, &to, th, tp->t_flags)) {
1123 
1124 					/*
1125 					 * In SYN_SENT state if it receives an
1126 					 * RST, it is allowed for further
1127 					 * processing.
1128 					 */
1129 					if ((thflags & TH_RST) == 0 ||
1130 					    (tp->t_state == TCPS_SYN_SENT) == 0)
1131 						goto dropunlock;
1132 				}
1133 				sig_checked = 1;
1134 			}
1135 #endif
1136 
1137 			/*
1138 			 * Process the segment and the data it
1139 			 * contains.  tcp_do_segment() consumes
1140 			 * the mbuf chain and unlocks the inpcb.
1141 			 */
1142 			tcp_do_segment(m, th, so, tp, drop_hdrlen, tlen,
1143 			    iptos, ti_locked);
1144 			INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1145 			return (IPPROTO_DONE);
1146 		}
1147 		/*
1148 		 * Segment flag validation for new connection attempts:
1149 		 *
1150 		 * Our (SYN|ACK) response was rejected.
1151 		 * Check with syncache and remove entry to prevent
1152 		 * retransmits.
1153 		 *
1154 		 * NB: syncache_chkrst does its own logging of failure
1155 		 * causes.
1156 		 */
1157 		if (thflags & TH_RST) {
1158 			syncache_chkrst(&inc, th);
1159 			goto dropunlock;
1160 		}
1161 		/*
1162 		 * We can't do anything without SYN.
1163 		 */
1164 		if ((thflags & TH_SYN) == 0) {
1165 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1166 				log(LOG_DEBUG, "%s; %s: Listen socket: "
1167 				    "SYN is missing, segment ignored\n",
1168 				    s, __func__);
1169 			TCPSTAT_INC(tcps_badsyn);
1170 			goto dropunlock;
1171 		}
1172 		/*
1173 		 * (SYN|ACK) is bogus on a listen socket.
1174 		 */
1175 		if (thflags & TH_ACK) {
1176 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1177 				log(LOG_DEBUG, "%s; %s: Listen socket: "
1178 				    "SYN|ACK invalid, segment rejected\n",
1179 				    s, __func__);
1180 			syncache_badack(&inc);	/* XXX: Not needed! */
1181 			TCPSTAT_INC(tcps_badsyn);
1182 			rstreason = BANDLIM_RST_OPENPORT;
1183 			goto dropwithreset;
1184 		}
1185 		/*
1186 		 * If the drop_synfin option is enabled, drop all
1187 		 * segments with both the SYN and FIN bits set.
1188 		 * This prevents e.g. nmap from identifying the
1189 		 * TCP/IP stack.
1190 		 * XXX: Poor reasoning.  nmap has other methods
1191 		 * and is constantly refining its stack detection
1192 		 * strategies.
1193 		 * XXX: This is a violation of the TCP specification
1194 		 * and was used by RFC1644.
1195 		 */
1196 		if ((thflags & TH_FIN) && V_drop_synfin) {
1197 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1198 				log(LOG_DEBUG, "%s; %s: Listen socket: "
1199 				    "SYN|FIN segment ignored (based on "
1200 				    "sysctl setting)\n", s, __func__);
1201 			TCPSTAT_INC(tcps_badsyn);
1202 			goto dropunlock;
1203 		}
1204 		/*
1205 		 * Segment's flags are (SYN) or (SYN|FIN).
1206 		 *
1207 		 * TH_PUSH, TH_URG, TH_ECE, TH_CWR are ignored
1208 		 * as they do not affect the state of the TCP FSM.
1209 		 * The data pointed to by TH_URG and th_urp is ignored.
1210 		 */
1211 		KASSERT((thflags & (TH_RST|TH_ACK)) == 0,
1212 		    ("%s: Listen socket: TH_RST or TH_ACK set", __func__));
1213 		KASSERT(thflags & (TH_SYN),
1214 		    ("%s: Listen socket: TH_SYN not set", __func__));
1215 #ifdef INET6
1216 		/*
1217 		 * If deprecated address is forbidden,
1218 		 * we do not accept SYN to deprecated interface
1219 		 * address to prevent any new inbound connection from
1220 		 * getting established.
1221 		 * When we do not accept SYN, we send a TCP RST,
1222 		 * with deprecated source address (instead of dropping
1223 		 * it).  We compromise it as it is much better for peer
1224 		 * to send a RST, and RST will be the final packet
1225 		 * for the exchange.
1226 		 *
1227 		 * If we do not forbid deprecated addresses, we accept
1228 		 * the SYN packet.  RFC2462 does not suggest dropping
1229 		 * SYN in this case.
1230 		 * If we decipher RFC2462 5.5.4, it says like this:
1231 		 * 1. use of deprecated addr with existing
1232 		 *    communication is okay - "SHOULD continue to be
1233 		 *    used"
1234 		 * 2. use of it with new communication:
1235 		 *   (2a) "SHOULD NOT be used if alternate address
1236 		 *        with sufficient scope is available"
1237 		 *   (2b) nothing mentioned otherwise.
1238 		 * Here we fall into (2b) case as we have no choice in
1239 		 * our source address selection - we must obey the peer.
1240 		 *
1241 		 * The wording in RFC2462 is confusing, and there are
1242 		 * multiple description text for deprecated address
1243 		 * handling - worse, they are not exactly the same.
1244 		 * I believe 5.5.4 is the best one, so we follow 5.5.4.
1245 		 */
1246 		if (isipv6 && !V_ip6_use_deprecated) {
1247 			struct in6_ifaddr *ia6;
1248 
1249 			ia6 = ip6_getdstifaddr(m);
1250 			if (ia6 != NULL &&
1251 			    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
1252 				ifa_free(&ia6->ia_ifa);
1253 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1254 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1255 					"Connection attempt to deprecated "
1256 					"IPv6 address rejected\n",
1257 					s, __func__);
1258 				rstreason = BANDLIM_RST_OPENPORT;
1259 				goto dropwithreset;
1260 			}
1261 			if (ia6)
1262 				ifa_free(&ia6->ia_ifa);
1263 		}
1264 #endif /* INET6 */
1265 		/*
1266 		 * Basic sanity checks on incoming SYN requests:
1267 		 *   Don't respond if the destination is a link layer
1268 		 *	broadcast according to RFC1122 4.2.3.10, p. 104.
1269 		 *   If it is from this socket it must be forged.
1270 		 *   Don't respond if the source or destination is a
1271 		 *	global or subnet broad- or multicast address.
1272 		 *   Note that it is quite possible to receive unicast
1273 		 *	link-layer packets with a broadcast IP address. Use
1274 		 *	in_broadcast() to find them.
1275 		 */
1276 		if (m->m_flags & (M_BCAST|M_MCAST)) {
1277 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1278 			    log(LOG_DEBUG, "%s; %s: Listen socket: "
1279 				"Connection attempt from broad- or multicast "
1280 				"link layer address ignored\n", s, __func__);
1281 			goto dropunlock;
1282 		}
1283 #ifdef INET6
1284 		if (isipv6) {
1285 			if (th->th_dport == th->th_sport &&
1286 			    IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst, &ip6->ip6_src)) {
1287 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1288 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1289 					"Connection attempt to/from self "
1290 					"ignored\n", s, __func__);
1291 				goto dropunlock;
1292 			}
1293 			if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
1294 			    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
1295 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1296 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1297 					"Connection attempt from/to multicast "
1298 					"address ignored\n", s, __func__);
1299 				goto dropunlock;
1300 			}
1301 		}
1302 #endif
1303 #if defined(INET) && defined(INET6)
1304 		else
1305 #endif
1306 #ifdef INET
1307 		{
1308 			if (th->th_dport == th->th_sport &&
1309 			    ip->ip_dst.s_addr == ip->ip_src.s_addr) {
1310 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1311 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1312 					"Connection attempt from/to self "
1313 					"ignored\n", s, __func__);
1314 				goto dropunlock;
1315 			}
1316 			if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
1317 			    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
1318 			    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
1319 			    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif)) {
1320 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1321 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1322 					"Connection attempt from/to broad- "
1323 					"or multicast address ignored\n",
1324 					s, __func__);
1325 				goto dropunlock;
1326 			}
1327 		}
1328 #endif
1329 		/*
1330 		 * SYN appears to be valid.  Create compressed TCP state
1331 		 * for syncache.
1332 		 */
1333 #ifdef TCPDEBUG
1334 		if (so->so_options & SO_DEBUG)
1335 			tcp_trace(TA_INPUT, ostate, tp,
1336 			    (void *)tcp_saveipgen, &tcp_savetcp, 0);
1337 #endif
1338 		tcp_dooptions(&to, optp, optlen, TO_SYN);
1339 		syncache_add(&inc, &to, th, inp, &so, m, NULL, NULL);
1340 		/*
1341 		 * Entry added to syncache and mbuf consumed.
1342 		 * Everything already unlocked by syncache_add().
1343 		 */
1344 		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1345 		return (IPPROTO_DONE);
1346 	} else if (tp->t_state == TCPS_LISTEN) {
1347 		/*
1348 		 * When a listen socket is torn down the SO_ACCEPTCONN
1349 		 * flag is removed first while connections are drained
1350 		 * from the accept queue in a unlock/lock cycle of the
1351 		 * ACCEPT_LOCK, opening a race condition allowing a SYN
1352 		 * attempt go through unhandled.
1353 		 */
1354 		goto dropunlock;
1355 	}
1356 
1357 #ifdef TCP_SIGNATURE
1358 	if (sig_checked == 0)  {
1359 		tcp_dooptions(&to, optp, optlen,
1360 		    (thflags & TH_SYN) ? TO_SYN : 0);
1361 		if (!tcp_signature_verify_input(m, off0, tlen, optlen, &to,
1362 		    th, tp->t_flags)) {
1363 
1364 			/*
1365 			 * In SYN_SENT state if it receives an RST, it is
1366 			 * allowed for further processing.
1367 			 */
1368 			if ((thflags & TH_RST) == 0 ||
1369 			    (tp->t_state == TCPS_SYN_SENT) == 0)
1370 				goto dropunlock;
1371 		}
1372 		sig_checked = 1;
1373 	}
1374 #endif
1375 
1376 	TCP_PROBE5(receive, NULL, tp, mtod(m, const char *), tp, th);
1377 
1378 	/*
1379 	 * Segment belongs to a connection in SYN_SENT, ESTABLISHED or later
1380 	 * state.  tcp_do_segment() always consumes the mbuf chain, unlocks
1381 	 * the inpcb, and unlocks pcbinfo.
1382 	 */
1383 	tcp_do_segment(m, th, so, tp, drop_hdrlen, tlen, iptos, ti_locked);
1384 	INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1385 	return (IPPROTO_DONE);
1386 
1387 dropwithreset:
1388 	TCP_PROBE5(receive, NULL, tp, mtod(m, const char *), tp, th);
1389 
1390 	if (ti_locked == TI_WLOCKED) {
1391 		INP_INFO_WUNLOCK(&V_tcbinfo);
1392 		ti_locked = TI_UNLOCKED;
1393 	}
1394 #ifdef INVARIANTS
1395 	else {
1396 		KASSERT(ti_locked == TI_UNLOCKED, ("%s: dropwithreset "
1397 		    "ti_locked: %d", __func__, ti_locked));
1398 		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1399 	}
1400 #endif
1401 
1402 	if (inp != NULL) {
1403 		tcp_dropwithreset(m, th, tp, tlen, rstreason);
1404 		INP_WUNLOCK(inp);
1405 	} else
1406 		tcp_dropwithreset(m, th, NULL, tlen, rstreason);
1407 	m = NULL;	/* mbuf chain got consumed. */
1408 	goto drop;
1409 
1410 dropunlock:
1411 	if (m != NULL)
1412 		TCP_PROBE5(receive, NULL, tp, mtod(m, const char *), tp, th);
1413 
1414 	if (ti_locked == TI_WLOCKED) {
1415 		INP_INFO_WUNLOCK(&V_tcbinfo);
1416 		ti_locked = TI_UNLOCKED;
1417 	}
1418 #ifdef INVARIANTS
1419 	else {
1420 		KASSERT(ti_locked == TI_UNLOCKED, ("%s: dropunlock "
1421 		    "ti_locked: %d", __func__, ti_locked));
1422 		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1423 	}
1424 #endif
1425 
1426 	if (inp != NULL)
1427 		INP_WUNLOCK(inp);
1428 
1429 drop:
1430 	INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1431 	if (s != NULL)
1432 		free(s, M_TCPLOG);
1433 	if (m != NULL)
1434 		m_freem(m);
1435 	return (IPPROTO_DONE);
1436 }
1437 
1438 static void
1439 tcp_do_segment(struct mbuf *m, struct tcphdr *th, struct socket *so,
1440     struct tcpcb *tp, int drop_hdrlen, int tlen, uint8_t iptos,
1441     int ti_locked)
1442 {
1443 	int thflags, acked, ourfinisacked, needoutput = 0;
1444 	int rstreason, todrop, win;
1445 	u_long tiwin;
1446 	char *s;
1447 	struct in_conninfo *inc;
1448 	struct mbuf *mfree;
1449 	struct tcpopt to;
1450 
1451 #ifdef TCPDEBUG
1452 	/*
1453 	 * The size of tcp_saveipgen must be the size of the max ip header,
1454 	 * now IPv6.
1455 	 */
1456 	u_char tcp_saveipgen[IP6_HDR_LEN];
1457 	struct tcphdr tcp_savetcp;
1458 	short ostate = 0;
1459 #endif
1460 	thflags = th->th_flags;
1461 	inc = &tp->t_inpcb->inp_inc;
1462 	tp->sackhint.last_sack_ack = 0;
1463 
1464 	/*
1465 	 * If this is either a state-changing packet or current state isn't
1466 	 * established, we require a write lock on tcbinfo.  Otherwise, we
1467 	 * allow the tcbinfo to be in either alocked or unlocked, as the
1468 	 * caller may have unnecessarily acquired a write lock due to a race.
1469 	 */
1470 	if ((thflags & (TH_SYN | TH_FIN | TH_RST)) != 0 ||
1471 	    tp->t_state != TCPS_ESTABLISHED) {
1472 		KASSERT(ti_locked == TI_WLOCKED, ("%s ti_locked %d for "
1473 		    "SYN/FIN/RST/!EST", __func__, ti_locked));
1474 		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1475 	} else {
1476 #ifdef INVARIANTS
1477 		if (ti_locked == TI_WLOCKED)
1478 			INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1479 		else {
1480 			KASSERT(ti_locked == TI_UNLOCKED, ("%s: EST "
1481 			    "ti_locked: %d", __func__, ti_locked));
1482 			INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1483 		}
1484 #endif
1485 	}
1486 	INP_WLOCK_ASSERT(tp->t_inpcb);
1487 	KASSERT(tp->t_state > TCPS_LISTEN, ("%s: TCPS_LISTEN",
1488 	    __func__));
1489 	KASSERT(tp->t_state != TCPS_TIME_WAIT, ("%s: TCPS_TIME_WAIT",
1490 	    __func__));
1491 
1492 	/*
1493 	 * Segment received on connection.
1494 	 * Reset idle time and keep-alive timer.
1495 	 * XXX: This should be done after segment
1496 	 * validation to ignore broken/spoofed segs.
1497 	 */
1498 	tp->t_rcvtime = ticks;
1499 	if (TCPS_HAVEESTABLISHED(tp->t_state))
1500 		tcp_timer_activate(tp, TT_KEEP, TP_KEEPIDLE(tp));
1501 
1502 	/*
1503 	 * Unscale the window into a 32-bit value.
1504 	 * For the SYN_SENT state the scale is zero.
1505 	 */
1506 	tiwin = th->th_win << tp->snd_scale;
1507 
1508 	/*
1509 	 * TCP ECN processing.
1510 	 */
1511 	if (tp->t_flags & TF_ECN_PERMIT) {
1512 		if (thflags & TH_CWR)
1513 			tp->t_flags &= ~TF_ECN_SND_ECE;
1514 		switch (iptos & IPTOS_ECN_MASK) {
1515 		case IPTOS_ECN_CE:
1516 			tp->t_flags |= TF_ECN_SND_ECE;
1517 			TCPSTAT_INC(tcps_ecn_ce);
1518 			break;
1519 		case IPTOS_ECN_ECT0:
1520 			TCPSTAT_INC(tcps_ecn_ect0);
1521 			break;
1522 		case IPTOS_ECN_ECT1:
1523 			TCPSTAT_INC(tcps_ecn_ect1);
1524 			break;
1525 		}
1526 		/* Congestion experienced. */
1527 		if (thflags & TH_ECE) {
1528 			cc_cong_signal(tp, th, CC_ECN);
1529 		}
1530 	}
1531 
1532 	/*
1533 	 * Parse options on any incoming segment.
1534 	 */
1535 	tcp_dooptions(&to, (u_char *)(th + 1),
1536 	    (th->th_off << 2) - sizeof(struct tcphdr),
1537 	    (thflags & TH_SYN) ? TO_SYN : 0);
1538 
1539 	/*
1540 	 * If echoed timestamp is later than the current time,
1541 	 * fall back to non RFC1323 RTT calculation.  Normalize
1542 	 * timestamp if syncookies were used when this connection
1543 	 * was established.
1544 	 */
1545 	if ((to.to_flags & TOF_TS) && (to.to_tsecr != 0)) {
1546 		to.to_tsecr -= tp->ts_offset;
1547 		if (TSTMP_GT(to.to_tsecr, tcp_ts_getticks()))
1548 			to.to_tsecr = 0;
1549 	}
1550 	/*
1551 	 * If timestamps were negotiated during SYN/ACK they should
1552 	 * appear on every segment during this session and vice versa.
1553 	 */
1554 	if ((tp->t_flags & TF_RCVD_TSTMP) && !(to.to_flags & TOF_TS)) {
1555 		if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1556 			log(LOG_DEBUG, "%s; %s: Timestamp missing, "
1557 			    "no action\n", s, __func__);
1558 			free(s, M_TCPLOG);
1559 		}
1560 	}
1561 	if (!(tp->t_flags & TF_RCVD_TSTMP) && (to.to_flags & TOF_TS)) {
1562 		if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1563 			log(LOG_DEBUG, "%s; %s: Timestamp not expected, "
1564 			    "no action\n", s, __func__);
1565 			free(s, M_TCPLOG);
1566 		}
1567 	}
1568 
1569 	/*
1570 	 * Process options only when we get SYN/ACK back. The SYN case
1571 	 * for incoming connections is handled in tcp_syncache.
1572 	 * According to RFC1323 the window field in a SYN (i.e., a <SYN>
1573 	 * or <SYN,ACK>) segment itself is never scaled.
1574 	 * XXX this is traditional behavior, may need to be cleaned up.
1575 	 */
1576 	if (tp->t_state == TCPS_SYN_SENT && (thflags & TH_SYN)) {
1577 		if ((to.to_flags & TOF_SCALE) &&
1578 		    (tp->t_flags & TF_REQ_SCALE)) {
1579 			tp->t_flags |= TF_RCVD_SCALE;
1580 			tp->snd_scale = to.to_wscale;
1581 		}
1582 		/*
1583 		 * Initial send window.  It will be updated with
1584 		 * the next incoming segment to the scaled value.
1585 		 */
1586 		tp->snd_wnd = th->th_win;
1587 		if (to.to_flags & TOF_TS) {
1588 			tp->t_flags |= TF_RCVD_TSTMP;
1589 			tp->ts_recent = to.to_tsval;
1590 			tp->ts_recent_age = tcp_ts_getticks();
1591 		}
1592 		if (to.to_flags & TOF_MSS)
1593 			tcp_mss(tp, to.to_mss);
1594 		if ((tp->t_flags & TF_SACK_PERMIT) &&
1595 		    (to.to_flags & TOF_SACKPERM) == 0)
1596 			tp->t_flags &= ~TF_SACK_PERMIT;
1597 	}
1598 
1599 	/*
1600 	 * Header prediction: check for the two common cases
1601 	 * of a uni-directional data xfer.  If the packet has
1602 	 * no control flags, is in-sequence, the window didn't
1603 	 * change and we're not retransmitting, it's a
1604 	 * candidate.  If the length is zero and the ack moved
1605 	 * forward, we're the sender side of the xfer.  Just
1606 	 * free the data acked & wake any higher level process
1607 	 * that was blocked waiting for space.  If the length
1608 	 * is non-zero and the ack didn't move, we're the
1609 	 * receiver side.  If we're getting packets in-order
1610 	 * (the reassembly queue is empty), add the data to
1611 	 * the socket buffer and note that we need a delayed ack.
1612 	 * Make sure that the hidden state-flags are also off.
1613 	 * Since we check for TCPS_ESTABLISHED first, it can only
1614 	 * be TH_NEEDSYN.
1615 	 */
1616 	if (tp->t_state == TCPS_ESTABLISHED &&
1617 	    th->th_seq == tp->rcv_nxt &&
1618 	    (thflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
1619 	    tp->snd_nxt == tp->snd_max &&
1620 	    tiwin && tiwin == tp->snd_wnd &&
1621 	    ((tp->t_flags & (TF_NEEDSYN|TF_NEEDFIN)) == 0) &&
1622 	    tp->t_segq == NULL && ((to.to_flags & TOF_TS) == 0 ||
1623 	     TSTMP_GEQ(to.to_tsval, tp->ts_recent)) ) {
1624 
1625 		/*
1626 		 * If last ACK falls within this segment's sequence numbers,
1627 		 * record the timestamp.
1628 		 * NOTE that the test is modified according to the latest
1629 		 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
1630 		 */
1631 		if ((to.to_flags & TOF_TS) != 0 &&
1632 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1633 			tp->ts_recent_age = tcp_ts_getticks();
1634 			tp->ts_recent = to.to_tsval;
1635 		}
1636 
1637 		if (tlen == 0) {
1638 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
1639 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
1640 			    !IN_RECOVERY(tp->t_flags) &&
1641 			    (to.to_flags & TOF_SACK) == 0 &&
1642 			    TAILQ_EMPTY(&tp->snd_holes)) {
1643 				/*
1644 				 * This is a pure ack for outstanding data.
1645 				 */
1646 				if (ti_locked == TI_WLOCKED)
1647 					INP_INFO_WUNLOCK(&V_tcbinfo);
1648 				ti_locked = TI_UNLOCKED;
1649 
1650 				TCPSTAT_INC(tcps_predack);
1651 
1652 				/*
1653 				 * "bad retransmit" recovery.
1654 				 */
1655 				if (tp->t_rxtshift == 1 &&
1656 				    tp->t_flags & TF_PREVVALID &&
1657 				    (int)(ticks - tp->t_badrxtwin) < 0) {
1658 					cc_cong_signal(tp, th, CC_RTO_ERR);
1659 				}
1660 
1661 				/*
1662 				 * Recalculate the transmit timer / rtt.
1663 				 *
1664 				 * Some boxes send broken timestamp replies
1665 				 * during the SYN+ACK phase, ignore
1666 				 * timestamps of 0 or we could calculate a
1667 				 * huge RTT and blow up the retransmit timer.
1668 				 */
1669 				if ((to.to_flags & TOF_TS) != 0 &&
1670 				    to.to_tsecr) {
1671 					u_int t;
1672 
1673 					t = tcp_ts_getticks() - to.to_tsecr;
1674 					if (!tp->t_rttlow || tp->t_rttlow > t)
1675 						tp->t_rttlow = t;
1676 					tcp_xmit_timer(tp,
1677 					    TCP_TS_TO_TICKS(t) + 1);
1678 				} else if (tp->t_rtttime &&
1679 				    SEQ_GT(th->th_ack, tp->t_rtseq)) {
1680 					if (!tp->t_rttlow ||
1681 					    tp->t_rttlow > ticks - tp->t_rtttime)
1682 						tp->t_rttlow = ticks - tp->t_rtttime;
1683 					tcp_xmit_timer(tp,
1684 							ticks - tp->t_rtttime);
1685 				}
1686 				acked = BYTES_THIS_ACK(tp, th);
1687 
1688 				/* Run HHOOK_TCP_ESTABLISHED_IN helper hooks. */
1689 				hhook_run_tcp_est_in(tp, th, &to);
1690 
1691 				TCPSTAT_INC(tcps_rcvackpack);
1692 				TCPSTAT_ADD(tcps_rcvackbyte, acked);
1693 				sbdrop(&so->so_snd, acked);
1694 				if (SEQ_GT(tp->snd_una, tp->snd_recover) &&
1695 				    SEQ_LEQ(th->th_ack, tp->snd_recover))
1696 					tp->snd_recover = th->th_ack - 1;
1697 
1698 				/*
1699 				 * Let the congestion control algorithm update
1700 				 * congestion control related information. This
1701 				 * typically means increasing the congestion
1702 				 * window.
1703 				 */
1704 				cc_ack_received(tp, th, CC_ACK);
1705 
1706 				tp->snd_una = th->th_ack;
1707 				/*
1708 				 * Pull snd_wl2 up to prevent seq wrap relative
1709 				 * to th_ack.
1710 				 */
1711 				tp->snd_wl2 = th->th_ack;
1712 				tp->t_dupacks = 0;
1713 				m_freem(m);
1714 				ND6_HINT(tp); /* Some progress has been made. */
1715 
1716 				/*
1717 				 * If all outstanding data are acked, stop
1718 				 * retransmit timer, otherwise restart timer
1719 				 * using current (possibly backed-off) value.
1720 				 * If process is waiting for space,
1721 				 * wakeup/selwakeup/signal.  If data
1722 				 * are ready to send, let tcp_output
1723 				 * decide between more output or persist.
1724 				 */
1725 #ifdef TCPDEBUG
1726 				if (so->so_options & SO_DEBUG)
1727 					tcp_trace(TA_INPUT, ostate, tp,
1728 					    (void *)tcp_saveipgen,
1729 					    &tcp_savetcp, 0);
1730 #endif
1731 				if (tp->snd_una == tp->snd_max)
1732 					tcp_timer_activate(tp, TT_REXMT, 0);
1733 				else if (!tcp_timer_active(tp, TT_PERSIST))
1734 					tcp_timer_activate(tp, TT_REXMT,
1735 						      tp->t_rxtcur);
1736 				sowwakeup(so);
1737 				if (so->so_snd.sb_cc)
1738 					(void) tcp_output(tp);
1739 				goto check_delack;
1740 			}
1741 		} else if (th->th_ack == tp->snd_una &&
1742 		    tlen <= sbspace(&so->so_rcv)) {
1743 			int newsize = 0;	/* automatic sockbuf scaling */
1744 
1745 			/*
1746 			 * This is a pure, in-sequence data packet with
1747 			 * nothing on the reassembly queue and we have enough
1748 			 * buffer space to take it.
1749 			 */
1750 			if (ti_locked == TI_WLOCKED)
1751 				INP_INFO_WUNLOCK(&V_tcbinfo);
1752 			ti_locked = TI_UNLOCKED;
1753 
1754 			/* Clean receiver SACK report if present */
1755 			if ((tp->t_flags & TF_SACK_PERMIT) && tp->rcv_numsacks)
1756 				tcp_clean_sackreport(tp);
1757 			TCPSTAT_INC(tcps_preddat);
1758 			tp->rcv_nxt += tlen;
1759 			/*
1760 			 * Pull snd_wl1 up to prevent seq wrap relative to
1761 			 * th_seq.
1762 			 */
1763 			tp->snd_wl1 = th->th_seq;
1764 			/*
1765 			 * Pull rcv_up up to prevent seq wrap relative to
1766 			 * rcv_nxt.
1767 			 */
1768 			tp->rcv_up = tp->rcv_nxt;
1769 			TCPSTAT_INC(tcps_rcvpack);
1770 			TCPSTAT_ADD(tcps_rcvbyte, tlen);
1771 			ND6_HINT(tp);	/* Some progress has been made */
1772 #ifdef TCPDEBUG
1773 			if (so->so_options & SO_DEBUG)
1774 				tcp_trace(TA_INPUT, ostate, tp,
1775 				    (void *)tcp_saveipgen, &tcp_savetcp, 0);
1776 #endif
1777 		/*
1778 		 * Automatic sizing of receive socket buffer.  Often the send
1779 		 * buffer size is not optimally adjusted to the actual network
1780 		 * conditions at hand (delay bandwidth product).  Setting the
1781 		 * buffer size too small limits throughput on links with high
1782 		 * bandwidth and high delay (eg. trans-continental/oceanic links).
1783 		 *
1784 		 * On the receive side the socket buffer memory is only rarely
1785 		 * used to any significant extent.  This allows us to be much
1786 		 * more aggressive in scaling the receive socket buffer.  For
1787 		 * the case that the buffer space is actually used to a large
1788 		 * extent and we run out of kernel memory we can simply drop
1789 		 * the new segments; TCP on the sender will just retransmit it
1790 		 * later.  Setting the buffer size too big may only consume too
1791 		 * much kernel memory if the application doesn't read() from
1792 		 * the socket or packet loss or reordering makes use of the
1793 		 * reassembly queue.
1794 		 *
1795 		 * The criteria to step up the receive buffer one notch are:
1796 		 *  1. Application has not set receive buffer size with
1797 		 *     SO_RCVBUF. Setting SO_RCVBUF clears SB_AUTOSIZE.
1798 		 *  2. the number of bytes received during the time it takes
1799 		 *     one timestamp to be reflected back to us (the RTT);
1800 		 *  3. received bytes per RTT is within seven eighth of the
1801 		 *     current socket buffer size;
1802 		 *  4. receive buffer size has not hit maximal automatic size;
1803 		 *
1804 		 * This algorithm does one step per RTT at most and only if
1805 		 * we receive a bulk stream w/o packet losses or reorderings.
1806 		 * Shrinking the buffer during idle times is not necessary as
1807 		 * it doesn't consume any memory when idle.
1808 		 *
1809 		 * TODO: Only step up if the application is actually serving
1810 		 * the buffer to better manage the socket buffer resources.
1811 		 */
1812 			if (V_tcp_do_autorcvbuf &&
1813 			    to.to_tsecr &&
1814 			    (so->so_rcv.sb_flags & SB_AUTOSIZE)) {
1815 				if (TSTMP_GT(to.to_tsecr, tp->rfbuf_ts) &&
1816 				    to.to_tsecr - tp->rfbuf_ts < hz) {
1817 					if (tp->rfbuf_cnt >
1818 					    (so->so_rcv.sb_hiwat / 8 * 7) &&
1819 					    so->so_rcv.sb_hiwat <
1820 					    V_tcp_autorcvbuf_max) {
1821 						newsize =
1822 						    min(so->so_rcv.sb_hiwat +
1823 						    V_tcp_autorcvbuf_inc,
1824 						    V_tcp_autorcvbuf_max);
1825 					}
1826 					/* Start over with next RTT. */
1827 					tp->rfbuf_ts = 0;
1828 					tp->rfbuf_cnt = 0;
1829 				} else
1830 					tp->rfbuf_cnt += tlen;	/* add up */
1831 			}
1832 
1833 			/* Add data to socket buffer. */
1834 			SOCKBUF_LOCK(&so->so_rcv);
1835 			if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
1836 				m_freem(m);
1837 			} else {
1838 				/*
1839 				 * Set new socket buffer size.
1840 				 * Give up when limit is reached.
1841 				 */
1842 				if (newsize)
1843 					if (!sbreserve_locked(&so->so_rcv,
1844 					    newsize, so, NULL))
1845 						so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
1846 				m_adj(m, drop_hdrlen);	/* delayed header drop */
1847 				sbappendstream_locked(&so->so_rcv, m);
1848 			}
1849 			/* NB: sorwakeup_locked() does an implicit unlock. */
1850 			sorwakeup_locked(so);
1851 			if (DELAY_ACK(tp, tlen)) {
1852 				tp->t_flags |= TF_DELACK;
1853 			} else {
1854 				tp->t_flags |= TF_ACKNOW;
1855 				tcp_output(tp);
1856 			}
1857 			goto check_delack;
1858 		}
1859 	}
1860 
1861 	/*
1862 	 * Calculate amount of space in receive window,
1863 	 * and then do TCP input processing.
1864 	 * Receive window is amount of space in rcv queue,
1865 	 * but not less than advertised window.
1866 	 */
1867 	win = sbspace(&so->so_rcv);
1868 	if (win < 0)
1869 		win = 0;
1870 	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1871 
1872 	/* Reset receive buffer auto scaling when not in bulk receive mode. */
1873 	tp->rfbuf_ts = 0;
1874 	tp->rfbuf_cnt = 0;
1875 
1876 	switch (tp->t_state) {
1877 
1878 	/*
1879 	 * If the state is SYN_RECEIVED:
1880 	 *	if seg contains an ACK, but not for our SYN/ACK, send a RST.
1881 	 */
1882 	case TCPS_SYN_RECEIVED:
1883 		if ((thflags & TH_ACK) &&
1884 		    (SEQ_LEQ(th->th_ack, tp->snd_una) ||
1885 		     SEQ_GT(th->th_ack, tp->snd_max))) {
1886 				rstreason = BANDLIM_RST_OPENPORT;
1887 				goto dropwithreset;
1888 		}
1889 		break;
1890 
1891 	/*
1892 	 * If the state is SYN_SENT:
1893 	 *	if seg contains an ACK, but not for our SYN, drop the input.
1894 	 *	if seg contains a RST, then drop the connection.
1895 	 *	if seg does not contain SYN, then drop it.
1896 	 * Otherwise this is an acceptable SYN segment
1897 	 *	initialize tp->rcv_nxt and tp->irs
1898 	 *	if seg contains ack then advance tp->snd_una
1899 	 *	if seg contains an ECE and ECN support is enabled, the stream
1900 	 *	    is ECN capable.
1901 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1902 	 *	arrange for segment to be acked (eventually)
1903 	 *	continue processing rest of data/controls, beginning with URG
1904 	 */
1905 	case TCPS_SYN_SENT:
1906 		if ((thflags & TH_ACK) &&
1907 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
1908 		     SEQ_GT(th->th_ack, tp->snd_max))) {
1909 			rstreason = BANDLIM_UNLIMITED;
1910 			goto dropwithreset;
1911 		}
1912 		if ((thflags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) {
1913 			TCP_PROBE5(connect__refused, NULL, tp,
1914 			    mtod(m, const char *), tp, th);
1915 			tp = tcp_drop(tp, ECONNREFUSED);
1916 		}
1917 		if (thflags & TH_RST)
1918 			goto drop;
1919 		if (!(thflags & TH_SYN))
1920 			goto drop;
1921 
1922 		tp->irs = th->th_seq;
1923 		tcp_rcvseqinit(tp);
1924 		if (thflags & TH_ACK) {
1925 			TCPSTAT_INC(tcps_connects);
1926 			soisconnected(so);
1927 #ifdef MAC
1928 			mac_socketpeer_set_from_mbuf(m, so);
1929 #endif
1930 			/* Do window scaling on this connection? */
1931 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1932 				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1933 				tp->rcv_scale = tp->request_r_scale;
1934 			}
1935 			tp->rcv_adv += imin(tp->rcv_wnd,
1936 			    TCP_MAXWIN << tp->rcv_scale);
1937 			tp->snd_una++;		/* SYN is acked */
1938 			/*
1939 			 * If there's data, delay ACK; if there's also a FIN
1940 			 * ACKNOW will be turned on later.
1941 			 */
1942 			if (DELAY_ACK(tp, tlen) && tlen != 0)
1943 				tcp_timer_activate(tp, TT_DELACK,
1944 				    tcp_delacktime);
1945 			else
1946 				tp->t_flags |= TF_ACKNOW;
1947 
1948 			if ((thflags & TH_ECE) && V_tcp_do_ecn) {
1949 				tp->t_flags |= TF_ECN_PERMIT;
1950 				TCPSTAT_INC(tcps_ecn_shs);
1951 			}
1952 
1953 			/*
1954 			 * Received <SYN,ACK> in SYN_SENT[*] state.
1955 			 * Transitions:
1956 			 *	SYN_SENT  --> ESTABLISHED
1957 			 *	SYN_SENT* --> FIN_WAIT_1
1958 			 */
1959 			tp->t_starttime = ticks;
1960 			if (tp->t_flags & TF_NEEDFIN) {
1961 				tcp_state_change(tp, TCPS_FIN_WAIT_1);
1962 				tp->t_flags &= ~TF_NEEDFIN;
1963 				thflags &= ~TH_SYN;
1964 			} else {
1965 				tcp_state_change(tp, TCPS_ESTABLISHED);
1966 				TCP_PROBE5(connect__established, NULL, tp,
1967 				    mtod(m, const char *), tp, th);
1968 				cc_conn_init(tp);
1969 				tcp_timer_activate(tp, TT_KEEP,
1970 				    TP_KEEPIDLE(tp));
1971 			}
1972 		} else {
1973 			/*
1974 			 * Received initial SYN in SYN-SENT[*] state =>
1975 			 * simultaneous open.
1976 			 * If it succeeds, connection is * half-synchronized.
1977 			 * Otherwise, do 3-way handshake:
1978 			 *        SYN-SENT -> SYN-RECEIVED
1979 			 *        SYN-SENT* -> SYN-RECEIVED*
1980 			 */
1981 			tp->t_flags |= (TF_ACKNOW | TF_NEEDSYN);
1982 			tcp_timer_activate(tp, TT_REXMT, 0);
1983 			tcp_state_change(tp, TCPS_SYN_RECEIVED);
1984 		}
1985 
1986 		KASSERT(ti_locked == TI_WLOCKED, ("%s: trimthenstep6: "
1987 		    "ti_locked %d", __func__, ti_locked));
1988 		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1989 		INP_WLOCK_ASSERT(tp->t_inpcb);
1990 
1991 		/*
1992 		 * Advance th->th_seq to correspond to first data byte.
1993 		 * If data, trim to stay within window,
1994 		 * dropping FIN if necessary.
1995 		 */
1996 		th->th_seq++;
1997 		if (tlen > tp->rcv_wnd) {
1998 			todrop = tlen - tp->rcv_wnd;
1999 			m_adj(m, -todrop);
2000 			tlen = tp->rcv_wnd;
2001 			thflags &= ~TH_FIN;
2002 			TCPSTAT_INC(tcps_rcvpackafterwin);
2003 			TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop);
2004 		}
2005 		tp->snd_wl1 = th->th_seq - 1;
2006 		tp->rcv_up = th->th_seq;
2007 		/*
2008 		 * Client side of transaction: already sent SYN and data.
2009 		 * If the remote host used T/TCP to validate the SYN,
2010 		 * our data will be ACK'd; if so, enter normal data segment
2011 		 * processing in the middle of step 5, ack processing.
2012 		 * Otherwise, goto step 6.
2013 		 */
2014 		if (thflags & TH_ACK)
2015 			goto process_ACK;
2016 
2017 		goto step6;
2018 
2019 	/*
2020 	 * If the state is LAST_ACK or CLOSING or TIME_WAIT:
2021 	 *      do normal processing.
2022 	 *
2023 	 * NB: Leftover from RFC1644 T/TCP.  Cases to be reused later.
2024 	 */
2025 	case TCPS_LAST_ACK:
2026 	case TCPS_CLOSING:
2027 		break;  /* continue normal processing */
2028 	}
2029 
2030 	/*
2031 	 * States other than LISTEN or SYN_SENT.
2032 	 * First check the RST flag and sequence number since reset segments
2033 	 * are exempt from the timestamp and connection count tests.  This
2034 	 * fixes a bug introduced by the Stevens, vol. 2, p. 960 bugfix
2035 	 * below which allowed reset segments in half the sequence space
2036 	 * to fall though and be processed (which gives forged reset
2037 	 * segments with a random sequence number a 50 percent chance of
2038 	 * killing a connection).
2039 	 * Then check timestamp, if present.
2040 	 * Then check the connection count, if present.
2041 	 * Then check that at least some bytes of segment are within
2042 	 * receive window.  If segment begins before rcv_nxt,
2043 	 * drop leading data (and SYN); if nothing left, just ack.
2044 	 *
2045 	 *
2046 	 * If the RST bit is set, check the sequence number to see
2047 	 * if this is a valid reset segment.
2048 	 * RFC 793 page 37:
2049 	 *   In all states except SYN-SENT, all reset (RST) segments
2050 	 *   are validated by checking their SEQ-fields.  A reset is
2051 	 *   valid if its sequence number is in the window.
2052 	 * Note: this does not take into account delayed ACKs, so
2053 	 *   we should test against last_ack_sent instead of rcv_nxt.
2054 	 *   The sequence number in the reset segment is normally an
2055 	 *   echo of our outgoing acknowlegement numbers, but some hosts
2056 	 *   send a reset with the sequence number at the rightmost edge
2057 	 *   of our receive window, and we have to handle this case.
2058 	 * Note 2: Paul Watson's paper "Slipping in the Window" has shown
2059 	 *   that brute force RST attacks are possible.  To combat this,
2060 	 *   we use a much stricter check while in the ESTABLISHED state,
2061 	 *   only accepting RSTs where the sequence number is equal to
2062 	 *   last_ack_sent.  In all other states (the states in which a
2063 	 *   RST is more likely), the more permissive check is used.
2064 	 * If we have multiple segments in flight, the initial reset
2065 	 * segment sequence numbers will be to the left of last_ack_sent,
2066 	 * but they will eventually catch up.
2067 	 * In any case, it never made sense to trim reset segments to
2068 	 * fit the receive window since RFC 1122 says:
2069 	 *   4.2.2.12  RST Segment: RFC-793 Section 3.4
2070 	 *
2071 	 *    A TCP SHOULD allow a received RST segment to include data.
2072 	 *
2073 	 *    DISCUSSION
2074 	 *         It has been suggested that a RST segment could contain
2075 	 *         ASCII text that encoded and explained the cause of the
2076 	 *         RST.  No standard has yet been established for such
2077 	 *         data.
2078 	 *
2079 	 * If the reset segment passes the sequence number test examine
2080 	 * the state:
2081 	 *    SYN_RECEIVED STATE:
2082 	 *	If passive open, return to LISTEN state.
2083 	 *	If active open, inform user that connection was refused.
2084 	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT_2, CLOSE_WAIT STATES:
2085 	 *	Inform user that connection was reset, and close tcb.
2086 	 *    CLOSING, LAST_ACK STATES:
2087 	 *	Close the tcb.
2088 	 *    TIME_WAIT STATE:
2089 	 *	Drop the segment - see Stevens, vol. 2, p. 964 and
2090 	 *      RFC 1337.
2091 	 */
2092 	if (thflags & TH_RST) {
2093 		if (SEQ_GEQ(th->th_seq, tp->last_ack_sent - 1) &&
2094 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) {
2095 			switch (tp->t_state) {
2096 
2097 			case TCPS_SYN_RECEIVED:
2098 				so->so_error = ECONNREFUSED;
2099 				goto close;
2100 
2101 			case TCPS_ESTABLISHED:
2102 				if (V_tcp_insecure_rst == 0 &&
2103 				    !(SEQ_GEQ(th->th_seq, tp->rcv_nxt - 1) &&
2104 				    SEQ_LEQ(th->th_seq, tp->rcv_nxt + 1)) &&
2105 				    !(SEQ_GEQ(th->th_seq, tp->last_ack_sent - 1) &&
2106 				    SEQ_LEQ(th->th_seq, tp->last_ack_sent + 1))) {
2107 					TCPSTAT_INC(tcps_badrst);
2108 					goto drop;
2109 				}
2110 				/* FALLTHROUGH */
2111 			case TCPS_FIN_WAIT_1:
2112 			case TCPS_FIN_WAIT_2:
2113 			case TCPS_CLOSE_WAIT:
2114 				so->so_error = ECONNRESET;
2115 			close:
2116 				KASSERT(ti_locked == TI_WLOCKED,
2117 				    ("tcp_do_segment: TH_RST 1 ti_locked %d",
2118 				    ti_locked));
2119 				INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2120 
2121 				tcp_state_change(tp, TCPS_CLOSED);
2122 				TCPSTAT_INC(tcps_drops);
2123 				tp = tcp_close(tp);
2124 				break;
2125 
2126 			case TCPS_CLOSING:
2127 			case TCPS_LAST_ACK:
2128 				KASSERT(ti_locked == TI_WLOCKED,
2129 				    ("tcp_do_segment: TH_RST 2 ti_locked %d",
2130 				    ti_locked));
2131 				INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2132 
2133 				tp = tcp_close(tp);
2134 				break;
2135 			}
2136 		}
2137 		goto drop;
2138 	}
2139 
2140 	/*
2141 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
2142 	 * and it's less than ts_recent, drop it.
2143 	 */
2144 	if ((to.to_flags & TOF_TS) != 0 && tp->ts_recent &&
2145 	    TSTMP_LT(to.to_tsval, tp->ts_recent)) {
2146 
2147 		/* Check to see if ts_recent is over 24 days old.  */
2148 		if (tcp_ts_getticks() - tp->ts_recent_age > TCP_PAWS_IDLE) {
2149 			/*
2150 			 * Invalidate ts_recent.  If this segment updates
2151 			 * ts_recent, the age will be reset later and ts_recent
2152 			 * will get a valid value.  If it does not, setting
2153 			 * ts_recent to zero will at least satisfy the
2154 			 * requirement that zero be placed in the timestamp
2155 			 * echo reply when ts_recent isn't valid.  The
2156 			 * age isn't reset until we get a valid ts_recent
2157 			 * because we don't want out-of-order segments to be
2158 			 * dropped when ts_recent is old.
2159 			 */
2160 			tp->ts_recent = 0;
2161 		} else {
2162 			TCPSTAT_INC(tcps_rcvduppack);
2163 			TCPSTAT_ADD(tcps_rcvdupbyte, tlen);
2164 			TCPSTAT_INC(tcps_pawsdrop);
2165 			if (tlen)
2166 				goto dropafterack;
2167 			goto drop;
2168 		}
2169 	}
2170 
2171 	/*
2172 	 * In the SYN-RECEIVED state, validate that the packet belongs to
2173 	 * this connection before trimming the data to fit the receive
2174 	 * window.  Check the sequence number versus IRS since we know
2175 	 * the sequence numbers haven't wrapped.  This is a partial fix
2176 	 * for the "LAND" DoS attack.
2177 	 */
2178 	if (tp->t_state == TCPS_SYN_RECEIVED && SEQ_LT(th->th_seq, tp->irs)) {
2179 		rstreason = BANDLIM_RST_OPENPORT;
2180 		goto dropwithreset;
2181 	}
2182 
2183 	todrop = tp->rcv_nxt - th->th_seq;
2184 	if (todrop > 0) {
2185 		/*
2186 		 * If this is a duplicate SYN for our current connection,
2187 		 * advance over it and pretend and it's not a SYN.
2188 		 */
2189 		if (thflags & TH_SYN && th->th_seq == tp->irs) {
2190 			thflags &= ~TH_SYN;
2191 			th->th_seq++;
2192 			if (th->th_urp > 1)
2193 				th->th_urp--;
2194 			else
2195 				thflags &= ~TH_URG;
2196 			todrop--;
2197 		}
2198 		/*
2199 		 * Following if statement from Stevens, vol. 2, p. 960.
2200 		 */
2201 		if (todrop > tlen
2202 		    || (todrop == tlen && (thflags & TH_FIN) == 0)) {
2203 			/*
2204 			 * Any valid FIN must be to the left of the window.
2205 			 * At this point the FIN must be a duplicate or out
2206 			 * of sequence; drop it.
2207 			 */
2208 			thflags &= ~TH_FIN;
2209 
2210 			/*
2211 			 * Send an ACK to resynchronize and drop any data.
2212 			 * But keep on processing for RST or ACK.
2213 			 */
2214 			tp->t_flags |= TF_ACKNOW;
2215 			todrop = tlen;
2216 			TCPSTAT_INC(tcps_rcvduppack);
2217 			TCPSTAT_ADD(tcps_rcvdupbyte, todrop);
2218 		} else {
2219 			TCPSTAT_INC(tcps_rcvpartduppack);
2220 			TCPSTAT_ADD(tcps_rcvpartdupbyte, todrop);
2221 		}
2222 		drop_hdrlen += todrop;	/* drop from the top afterwards */
2223 		th->th_seq += todrop;
2224 		tlen -= todrop;
2225 		if (th->th_urp > todrop)
2226 			th->th_urp -= todrop;
2227 		else {
2228 			thflags &= ~TH_URG;
2229 			th->th_urp = 0;
2230 		}
2231 	}
2232 
2233 	/*
2234 	 * If new data are received on a connection after the
2235 	 * user processes are gone, then RST the other end.
2236 	 */
2237 	if ((so->so_state & SS_NOFDREF) &&
2238 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
2239 		KASSERT(ti_locked == TI_WLOCKED, ("%s: SS_NOFDEREF && "
2240 		    "CLOSE_WAIT && tlen ti_locked %d", __func__, ti_locked));
2241 		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2242 
2243 		if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
2244 			log(LOG_DEBUG, "%s; %s: %s: Received %d bytes of data "
2245 			    "after socket was closed, "
2246 			    "sending RST and removing tcpcb\n",
2247 			    s, __func__, tcpstates[tp->t_state], tlen);
2248 			free(s, M_TCPLOG);
2249 		}
2250 		tp = tcp_close(tp);
2251 		TCPSTAT_INC(tcps_rcvafterclose);
2252 		rstreason = BANDLIM_UNLIMITED;
2253 		goto dropwithreset;
2254 	}
2255 
2256 	/*
2257 	 * If segment ends after window, drop trailing data
2258 	 * (and PUSH and FIN); if nothing left, just ACK.
2259 	 */
2260 	todrop = (th->th_seq + tlen) - (tp->rcv_nxt + tp->rcv_wnd);
2261 	if (todrop > 0) {
2262 		TCPSTAT_INC(tcps_rcvpackafterwin);
2263 		if (todrop >= tlen) {
2264 			TCPSTAT_ADD(tcps_rcvbyteafterwin, tlen);
2265 			/*
2266 			 * If window is closed can only take segments at
2267 			 * window edge, and have to drop data and PUSH from
2268 			 * incoming segments.  Continue processing, but
2269 			 * remember to ack.  Otherwise, drop segment
2270 			 * and ack.
2271 			 */
2272 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
2273 				tp->t_flags |= TF_ACKNOW;
2274 				TCPSTAT_INC(tcps_rcvwinprobe);
2275 			} else
2276 				goto dropafterack;
2277 		} else
2278 			TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop);
2279 		m_adj(m, -todrop);
2280 		tlen -= todrop;
2281 		thflags &= ~(TH_PUSH|TH_FIN);
2282 	}
2283 
2284 	/*
2285 	 * If last ACK falls within this segment's sequence numbers,
2286 	 * record its timestamp.
2287 	 * NOTE:
2288 	 * 1) That the test incorporates suggestions from the latest
2289 	 *    proposal of the tcplw@cray.com list (Braden 1993/04/26).
2290 	 * 2) That updating only on newer timestamps interferes with
2291 	 *    our earlier PAWS tests, so this check should be solely
2292 	 *    predicated on the sequence space of this segment.
2293 	 * 3) That we modify the segment boundary check to be
2294 	 *        Last.ACK.Sent <= SEG.SEQ + SEG.Len
2295 	 *    instead of RFC1323's
2296 	 *        Last.ACK.Sent < SEG.SEQ + SEG.Len,
2297 	 *    This modified check allows us to overcome RFC1323's
2298 	 *    limitations as described in Stevens TCP/IP Illustrated
2299 	 *    Vol. 2 p.869. In such cases, we can still calculate the
2300 	 *    RTT correctly when RCV.NXT == Last.ACK.Sent.
2301 	 */
2302 	if ((to.to_flags & TOF_TS) != 0 &&
2303 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
2304 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
2305 		((thflags & (TH_SYN|TH_FIN)) != 0))) {
2306 		tp->ts_recent_age = tcp_ts_getticks();
2307 		tp->ts_recent = to.to_tsval;
2308 	}
2309 
2310 	/*
2311 	 * If a SYN is in the window, then this is an
2312 	 * error and we send an RST and drop the connection.
2313 	 */
2314 	if (thflags & TH_SYN) {
2315 		KASSERT(ti_locked == TI_WLOCKED,
2316 		    ("tcp_do_segment: TH_SYN ti_locked %d", ti_locked));
2317 		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2318 
2319 		tp = tcp_drop(tp, ECONNRESET);
2320 		rstreason = BANDLIM_UNLIMITED;
2321 		goto drop;
2322 	}
2323 
2324 	/*
2325 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN
2326 	 * flag is on (half-synchronized state), then queue data for
2327 	 * later processing; else drop segment and return.
2328 	 */
2329 	if ((thflags & TH_ACK) == 0) {
2330 		if (tp->t_state == TCPS_SYN_RECEIVED ||
2331 		    (tp->t_flags & TF_NEEDSYN))
2332 			goto step6;
2333 		else if (tp->t_flags & TF_ACKNOW)
2334 			goto dropafterack;
2335 		else
2336 			goto drop;
2337 	}
2338 
2339 	/*
2340 	 * Ack processing.
2341 	 */
2342 	switch (tp->t_state) {
2343 
2344 	/*
2345 	 * In SYN_RECEIVED state, the ack ACKs our SYN, so enter
2346 	 * ESTABLISHED state and continue processing.
2347 	 * The ACK was checked above.
2348 	 */
2349 	case TCPS_SYN_RECEIVED:
2350 
2351 		TCPSTAT_INC(tcps_connects);
2352 		soisconnected(so);
2353 		/* Do window scaling? */
2354 		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2355 			(TF_RCVD_SCALE|TF_REQ_SCALE)) {
2356 			tp->rcv_scale = tp->request_r_scale;
2357 			tp->snd_wnd = tiwin;
2358 		}
2359 		/*
2360 		 * Make transitions:
2361 		 *      SYN-RECEIVED  -> ESTABLISHED
2362 		 *      SYN-RECEIVED* -> FIN-WAIT-1
2363 		 */
2364 		tp->t_starttime = ticks;
2365 		if (tp->t_flags & TF_NEEDFIN) {
2366 			tcp_state_change(tp, TCPS_FIN_WAIT_1);
2367 			tp->t_flags &= ~TF_NEEDFIN;
2368 		} else {
2369 			tcp_state_change(tp, TCPS_ESTABLISHED);
2370 			TCP_PROBE5(accept__established, NULL, tp,
2371 			    mtod(m, const char *), tp, th);
2372 			cc_conn_init(tp);
2373 			tcp_timer_activate(tp, TT_KEEP, TP_KEEPIDLE(tp));
2374 		}
2375 		/*
2376 		 * If segment contains data or ACK, will call tcp_reass()
2377 		 * later; if not, do so now to pass queued data to user.
2378 		 */
2379 		if (tlen == 0 && (thflags & TH_FIN) == 0)
2380 			(void) tcp_reass(tp, (struct tcphdr *)0, 0,
2381 			    (struct mbuf *)0);
2382 		tp->snd_wl1 = th->th_seq - 1;
2383 		/* FALLTHROUGH */
2384 
2385 	/*
2386 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
2387 	 * ACKs.  If the ack is in the range
2388 	 *	tp->snd_una < th->th_ack <= tp->snd_max
2389 	 * then advance tp->snd_una to th->th_ack and drop
2390 	 * data from the retransmission queue.  If this ACK reflects
2391 	 * more up to date window information we update our window information.
2392 	 */
2393 	case TCPS_ESTABLISHED:
2394 	case TCPS_FIN_WAIT_1:
2395 	case TCPS_FIN_WAIT_2:
2396 	case TCPS_CLOSE_WAIT:
2397 	case TCPS_CLOSING:
2398 	case TCPS_LAST_ACK:
2399 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
2400 			TCPSTAT_INC(tcps_rcvacktoomuch);
2401 			goto dropafterack;
2402 		}
2403 		if ((tp->t_flags & TF_SACK_PERMIT) &&
2404 		    ((to.to_flags & TOF_SACK) ||
2405 		     !TAILQ_EMPTY(&tp->snd_holes)))
2406 			tcp_sack_doack(tp, &to, th->th_ack);
2407 
2408 		/* Run HHOOK_TCP_ESTABLISHED_IN helper hooks. */
2409 		hhook_run_tcp_est_in(tp, th, &to);
2410 
2411 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
2412 			if (tlen == 0 && tiwin == tp->snd_wnd) {
2413 				/*
2414 				 * If this is the first time we've seen a
2415 				 * FIN from the remote, this is not a
2416 				 * duplicate and it needs to be processed
2417 				 * normally.  This happens during a
2418 				 * simultaneous close.
2419 				 */
2420 				if ((thflags & TH_FIN) &&
2421 				    (TCPS_HAVERCVDFIN(tp->t_state) == 0)) {
2422 					tp->t_dupacks = 0;
2423 					break;
2424 				}
2425 				TCPSTAT_INC(tcps_rcvdupack);
2426 				/*
2427 				 * If we have outstanding data (other than
2428 				 * a window probe), this is a completely
2429 				 * duplicate ack (ie, window info didn't
2430 				 * change and FIN isn't set),
2431 				 * the ack is the biggest we've
2432 				 * seen and we've seen exactly our rexmt
2433 				 * threshhold of them, assume a packet
2434 				 * has been dropped and retransmit it.
2435 				 * Kludge snd_nxt & the congestion
2436 				 * window so we send only this one
2437 				 * packet.
2438 				 *
2439 				 * We know we're losing at the current
2440 				 * window size so do congestion avoidance
2441 				 * (set ssthresh to half the current window
2442 				 * and pull our congestion window back to
2443 				 * the new ssthresh).
2444 				 *
2445 				 * Dup acks mean that packets have left the
2446 				 * network (they're now cached at the receiver)
2447 				 * so bump cwnd by the amount in the receiver
2448 				 * to keep a constant cwnd packets in the
2449 				 * network.
2450 				 *
2451 				 * When using TCP ECN, notify the peer that
2452 				 * we reduced the cwnd.
2453 				 */
2454 				if (!tcp_timer_active(tp, TT_REXMT) ||
2455 				    th->th_ack != tp->snd_una)
2456 					tp->t_dupacks = 0;
2457 				else if (++tp->t_dupacks > tcprexmtthresh ||
2458 				     IN_FASTRECOVERY(tp->t_flags)) {
2459 					cc_ack_received(tp, th, CC_DUPACK);
2460 					if ((tp->t_flags & TF_SACK_PERMIT) &&
2461 					    IN_FASTRECOVERY(tp->t_flags)) {
2462 						int awnd;
2463 
2464 						/*
2465 						 * Compute the amount of data in flight first.
2466 						 * We can inject new data into the pipe iff
2467 						 * we have less than 1/2 the original window's
2468 						 * worth of data in flight.
2469 						 */
2470 						awnd = (tp->snd_nxt - tp->snd_fack) +
2471 							tp->sackhint.sack_bytes_rexmit;
2472 						if (awnd < tp->snd_ssthresh) {
2473 							tp->snd_cwnd += tp->t_maxseg;
2474 							if (tp->snd_cwnd > tp->snd_ssthresh)
2475 								tp->snd_cwnd = tp->snd_ssthresh;
2476 						}
2477 					} else
2478 						tp->snd_cwnd += tp->t_maxseg;
2479 					(void) tcp_output(tp);
2480 					goto drop;
2481 				} else if (tp->t_dupacks == tcprexmtthresh) {
2482 					tcp_seq onxt = tp->snd_nxt;
2483 
2484 					/*
2485 					 * If we're doing sack, check to
2486 					 * see if we're already in sack
2487 					 * recovery. If we're not doing sack,
2488 					 * check to see if we're in newreno
2489 					 * recovery.
2490 					 */
2491 					if (tp->t_flags & TF_SACK_PERMIT) {
2492 						if (IN_FASTRECOVERY(tp->t_flags)) {
2493 							tp->t_dupacks = 0;
2494 							break;
2495 						}
2496 					} else {
2497 						if (SEQ_LEQ(th->th_ack,
2498 						    tp->snd_recover)) {
2499 							tp->t_dupacks = 0;
2500 							break;
2501 						}
2502 					}
2503 					/* Congestion signal before ack. */
2504 					cc_cong_signal(tp, th, CC_NDUPACK);
2505 					cc_ack_received(tp, th, CC_DUPACK);
2506 					tcp_timer_activate(tp, TT_REXMT, 0);
2507 					tp->t_rtttime = 0;
2508 					if (tp->t_flags & TF_SACK_PERMIT) {
2509 						TCPSTAT_INC(
2510 						    tcps_sack_recovery_episode);
2511 						tp->sack_newdata = tp->snd_nxt;
2512 						tp->snd_cwnd = tp->t_maxseg;
2513 						(void) tcp_output(tp);
2514 						goto drop;
2515 					}
2516 					tp->snd_nxt = th->th_ack;
2517 					tp->snd_cwnd = tp->t_maxseg;
2518 					(void) tcp_output(tp);
2519 					KASSERT(tp->snd_limited <= 2,
2520 					    ("%s: tp->snd_limited too big",
2521 					    __func__));
2522 					tp->snd_cwnd = tp->snd_ssthresh +
2523 					     tp->t_maxseg *
2524 					     (tp->t_dupacks - tp->snd_limited);
2525 					if (SEQ_GT(onxt, tp->snd_nxt))
2526 						tp->snd_nxt = onxt;
2527 					goto drop;
2528 				} else if (V_tcp_do_rfc3042) {
2529 					cc_ack_received(tp, th, CC_DUPACK);
2530 					u_long oldcwnd = tp->snd_cwnd;
2531 					tcp_seq oldsndmax = tp->snd_max;
2532 					u_int sent;
2533 					int avail;
2534 
2535 					KASSERT(tp->t_dupacks == 1 ||
2536 					    tp->t_dupacks == 2,
2537 					    ("%s: dupacks not 1 or 2",
2538 					    __func__));
2539 					if (tp->t_dupacks == 1)
2540 						tp->snd_limited = 0;
2541 					tp->snd_cwnd =
2542 					    (tp->snd_nxt - tp->snd_una) +
2543 					    (tp->t_dupacks - tp->snd_limited) *
2544 					    tp->t_maxseg;
2545 					/*
2546 					 * Only call tcp_output when there
2547 					 * is new data available to be sent.
2548 					 * Otherwise we would send pure ACKs.
2549 					 */
2550 					SOCKBUF_LOCK(&so->so_snd);
2551 					avail = so->so_snd.sb_cc -
2552 					    (tp->snd_nxt - tp->snd_una);
2553 					SOCKBUF_UNLOCK(&so->so_snd);
2554 					if (avail > 0)
2555 						(void) tcp_output(tp);
2556 					sent = tp->snd_max - oldsndmax;
2557 					if (sent > tp->t_maxseg) {
2558 						KASSERT((tp->t_dupacks == 2 &&
2559 						    tp->snd_limited == 0) ||
2560 						   (sent == tp->t_maxseg + 1 &&
2561 						    tp->t_flags & TF_SENTFIN),
2562 						    ("%s: sent too much",
2563 						    __func__));
2564 						tp->snd_limited = 2;
2565 					} else if (sent > 0)
2566 						++tp->snd_limited;
2567 					tp->snd_cwnd = oldcwnd;
2568 					goto drop;
2569 				}
2570 			} else
2571 				tp->t_dupacks = 0;
2572 			break;
2573 		}
2574 
2575 		KASSERT(SEQ_GT(th->th_ack, tp->snd_una),
2576 		    ("%s: th_ack <= snd_una", __func__));
2577 
2578 		/*
2579 		 * If the congestion window was inflated to account
2580 		 * for the other side's cached packets, retract it.
2581 		 */
2582 		if (IN_FASTRECOVERY(tp->t_flags)) {
2583 			if (SEQ_LT(th->th_ack, tp->snd_recover)) {
2584 				if (tp->t_flags & TF_SACK_PERMIT)
2585 					tcp_sack_partialack(tp, th);
2586 				else
2587 					tcp_newreno_partial_ack(tp, th);
2588 			} else
2589 				cc_post_recovery(tp, th);
2590 		}
2591 		tp->t_dupacks = 0;
2592 		/*
2593 		 * If we reach this point, ACK is not a duplicate,
2594 		 *     i.e., it ACKs something we sent.
2595 		 */
2596 		if (tp->t_flags & TF_NEEDSYN) {
2597 			/*
2598 			 * T/TCP: Connection was half-synchronized, and our
2599 			 * SYN has been ACK'd (so connection is now fully
2600 			 * synchronized).  Go to non-starred state,
2601 			 * increment snd_una for ACK of SYN, and check if
2602 			 * we can do window scaling.
2603 			 */
2604 			tp->t_flags &= ~TF_NEEDSYN;
2605 			tp->snd_una++;
2606 			/* Do window scaling? */
2607 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2608 				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
2609 				tp->rcv_scale = tp->request_r_scale;
2610 				/* Send window already scaled. */
2611 			}
2612 		}
2613 
2614 process_ACK:
2615 		INP_WLOCK_ASSERT(tp->t_inpcb);
2616 
2617 		acked = BYTES_THIS_ACK(tp, th);
2618 		TCPSTAT_INC(tcps_rcvackpack);
2619 		TCPSTAT_ADD(tcps_rcvackbyte, acked);
2620 
2621 		/*
2622 		 * If we just performed our first retransmit, and the ACK
2623 		 * arrives within our recovery window, then it was a mistake
2624 		 * to do the retransmit in the first place.  Recover our
2625 		 * original cwnd and ssthresh, and proceed to transmit where
2626 		 * we left off.
2627 		 */
2628 		if (tp->t_rxtshift == 1 && tp->t_flags & TF_PREVVALID &&
2629 		    (int)(ticks - tp->t_badrxtwin) < 0)
2630 			cc_cong_signal(tp, th, CC_RTO_ERR);
2631 
2632 		/*
2633 		 * If we have a timestamp reply, update smoothed
2634 		 * round trip time.  If no timestamp is present but
2635 		 * transmit timer is running and timed sequence
2636 		 * number was acked, update smoothed round trip time.
2637 		 * Since we now have an rtt measurement, cancel the
2638 		 * timer backoff (cf., Phil Karn's retransmit alg.).
2639 		 * Recompute the initial retransmit timer.
2640 		 *
2641 		 * Some boxes send broken timestamp replies
2642 		 * during the SYN+ACK phase, ignore
2643 		 * timestamps of 0 or we could calculate a
2644 		 * huge RTT and blow up the retransmit timer.
2645 		 */
2646 		if ((to.to_flags & TOF_TS) != 0 && to.to_tsecr) {
2647 			u_int t;
2648 
2649 			t = tcp_ts_getticks() - to.to_tsecr;
2650 			if (!tp->t_rttlow || tp->t_rttlow > t)
2651 				tp->t_rttlow = t;
2652 			tcp_xmit_timer(tp, TCP_TS_TO_TICKS(t) + 1);
2653 		} else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq)) {
2654 			if (!tp->t_rttlow || tp->t_rttlow > ticks - tp->t_rtttime)
2655 				tp->t_rttlow = ticks - tp->t_rtttime;
2656 			tcp_xmit_timer(tp, ticks - tp->t_rtttime);
2657 		}
2658 
2659 		/*
2660 		 * If all outstanding data is acked, stop retransmit
2661 		 * timer and remember to restart (more output or persist).
2662 		 * If there is more data to be acked, restart retransmit
2663 		 * timer, using current (possibly backed-off) value.
2664 		 */
2665 		if (th->th_ack == tp->snd_max) {
2666 			tcp_timer_activate(tp, TT_REXMT, 0);
2667 			needoutput = 1;
2668 		} else if (!tcp_timer_active(tp, TT_PERSIST))
2669 			tcp_timer_activate(tp, TT_REXMT, tp->t_rxtcur);
2670 
2671 		/*
2672 		 * If no data (only SYN) was ACK'd,
2673 		 *    skip rest of ACK processing.
2674 		 */
2675 		if (acked == 0)
2676 			goto step6;
2677 
2678 		/*
2679 		 * Let the congestion control algorithm update congestion
2680 		 * control related information. This typically means increasing
2681 		 * the congestion window.
2682 		 */
2683 		cc_ack_received(tp, th, CC_ACK);
2684 
2685 		SOCKBUF_LOCK(&so->so_snd);
2686 		if (acked > so->so_snd.sb_cc) {
2687 			tp->snd_wnd -= so->so_snd.sb_cc;
2688 			mfree = sbcut_locked(&so->so_snd,
2689 			    (int)so->so_snd.sb_cc);
2690 			ourfinisacked = 1;
2691 		} else {
2692 			mfree = sbcut_locked(&so->so_snd, acked);
2693 			tp->snd_wnd -= acked;
2694 			ourfinisacked = 0;
2695 		}
2696 		/* NB: sowwakeup_locked() does an implicit unlock. */
2697 		sowwakeup_locked(so);
2698 		m_freem(mfree);
2699 		/* Detect una wraparound. */
2700 		if (!IN_RECOVERY(tp->t_flags) &&
2701 		    SEQ_GT(tp->snd_una, tp->snd_recover) &&
2702 		    SEQ_LEQ(th->th_ack, tp->snd_recover))
2703 			tp->snd_recover = th->th_ack - 1;
2704 		/* XXXLAS: Can this be moved up into cc_post_recovery? */
2705 		if (IN_RECOVERY(tp->t_flags) &&
2706 		    SEQ_GEQ(th->th_ack, tp->snd_recover)) {
2707 			EXIT_RECOVERY(tp->t_flags);
2708 		}
2709 		tp->snd_una = th->th_ack;
2710 		if (tp->t_flags & TF_SACK_PERMIT) {
2711 			if (SEQ_GT(tp->snd_una, tp->snd_recover))
2712 				tp->snd_recover = tp->snd_una;
2713 		}
2714 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2715 			tp->snd_nxt = tp->snd_una;
2716 
2717 		switch (tp->t_state) {
2718 
2719 		/*
2720 		 * In FIN_WAIT_1 STATE in addition to the processing
2721 		 * for the ESTABLISHED state if our FIN is now acknowledged
2722 		 * then enter FIN_WAIT_2.
2723 		 */
2724 		case TCPS_FIN_WAIT_1:
2725 			if (ourfinisacked) {
2726 				/*
2727 				 * If we can't receive any more
2728 				 * data, then closing user can proceed.
2729 				 * Starting the timer is contrary to the
2730 				 * specification, but if we don't get a FIN
2731 				 * we'll hang forever.
2732 				 *
2733 				 * XXXjl:
2734 				 * we should release the tp also, and use a
2735 				 * compressed state.
2736 				 */
2737 				if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
2738 					soisdisconnected(so);
2739 					tcp_timer_activate(tp, TT_2MSL,
2740 					    (tcp_fast_finwait2_recycle ?
2741 					    tcp_finwait2_timeout :
2742 					    TP_MAXIDLE(tp)));
2743 				}
2744 				tcp_state_change(tp, TCPS_FIN_WAIT_2);
2745 			}
2746 			break;
2747 
2748 		/*
2749 		 * In CLOSING STATE in addition to the processing for
2750 		 * the ESTABLISHED state if the ACK acknowledges our FIN
2751 		 * then enter the TIME-WAIT state, otherwise ignore
2752 		 * the segment.
2753 		 */
2754 		case TCPS_CLOSING:
2755 			if (ourfinisacked) {
2756 				INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2757 				tcp_twstart(tp);
2758 				INP_INFO_WUNLOCK(&V_tcbinfo);
2759 				m_freem(m);
2760 				return;
2761 			}
2762 			break;
2763 
2764 		/*
2765 		 * In LAST_ACK, we may still be waiting for data to drain
2766 		 * and/or to be acked, as well as for the ack of our FIN.
2767 		 * If our FIN is now acknowledged, delete the TCB,
2768 		 * enter the closed state and return.
2769 		 */
2770 		case TCPS_LAST_ACK:
2771 			if (ourfinisacked) {
2772 				INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2773 				tp = tcp_close(tp);
2774 				goto drop;
2775 			}
2776 			break;
2777 		}
2778 	}
2779 
2780 step6:
2781 	INP_WLOCK_ASSERT(tp->t_inpcb);
2782 
2783 	/*
2784 	 * Update window information.
2785 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2786 	 */
2787 	if ((thflags & TH_ACK) &&
2788 	    (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2789 	    (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
2790 	     (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
2791 		/* keep track of pure window updates */
2792 		if (tlen == 0 &&
2793 		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2794 			TCPSTAT_INC(tcps_rcvwinupd);
2795 		tp->snd_wnd = tiwin;
2796 		tp->snd_wl1 = th->th_seq;
2797 		tp->snd_wl2 = th->th_ack;
2798 		if (tp->snd_wnd > tp->max_sndwnd)
2799 			tp->max_sndwnd = tp->snd_wnd;
2800 		needoutput = 1;
2801 	}
2802 
2803 	/*
2804 	 * Process segments with URG.
2805 	 */
2806 	if ((thflags & TH_URG) && th->th_urp &&
2807 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2808 		/*
2809 		 * This is a kludge, but if we receive and accept
2810 		 * random urgent pointers, we'll crash in
2811 		 * soreceive.  It's hard to imagine someone
2812 		 * actually wanting to send this much urgent data.
2813 		 */
2814 		SOCKBUF_LOCK(&so->so_rcv);
2815 		if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2816 			th->th_urp = 0;			/* XXX */
2817 			thflags &= ~TH_URG;		/* XXX */
2818 			SOCKBUF_UNLOCK(&so->so_rcv);	/* XXX */
2819 			goto dodata;			/* XXX */
2820 		}
2821 		/*
2822 		 * If this segment advances the known urgent pointer,
2823 		 * then mark the data stream.  This should not happen
2824 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2825 		 * a FIN has been received from the remote side.
2826 		 * In these states we ignore the URG.
2827 		 *
2828 		 * According to RFC961 (Assigned Protocols),
2829 		 * the urgent pointer points to the last octet
2830 		 * of urgent data.  We continue, however,
2831 		 * to consider it to indicate the first octet
2832 		 * of data past the urgent section as the original
2833 		 * spec states (in one of two places).
2834 		 */
2835 		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2836 			tp->rcv_up = th->th_seq + th->th_urp;
2837 			so->so_oobmark = so->so_rcv.sb_cc +
2838 			    (tp->rcv_up - tp->rcv_nxt) - 1;
2839 			if (so->so_oobmark == 0)
2840 				so->so_rcv.sb_state |= SBS_RCVATMARK;
2841 			sohasoutofband(so);
2842 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2843 		}
2844 		SOCKBUF_UNLOCK(&so->so_rcv);
2845 		/*
2846 		 * Remove out of band data so doesn't get presented to user.
2847 		 * This can happen independent of advancing the URG pointer,
2848 		 * but if two URG's are pending at once, some out-of-band
2849 		 * data may creep in... ick.
2850 		 */
2851 		if (th->th_urp <= (u_long)tlen &&
2852 		    !(so->so_options & SO_OOBINLINE)) {
2853 			/* hdr drop is delayed */
2854 			tcp_pulloutofband(so, th, m, drop_hdrlen);
2855 		}
2856 	} else {
2857 		/*
2858 		 * If no out of band data is expected,
2859 		 * pull receive urgent pointer along
2860 		 * with the receive window.
2861 		 */
2862 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2863 			tp->rcv_up = tp->rcv_nxt;
2864 	}
2865 dodata:							/* XXX */
2866 	INP_WLOCK_ASSERT(tp->t_inpcb);
2867 
2868 	/*
2869 	 * Process the segment text, merging it into the TCP sequencing queue,
2870 	 * and arranging for acknowledgment of receipt if necessary.
2871 	 * This process logically involves adjusting tp->rcv_wnd as data
2872 	 * is presented to the user (this happens in tcp_usrreq.c,
2873 	 * case PRU_RCVD).  If a FIN has already been received on this
2874 	 * connection then we just ignore the text.
2875 	 */
2876 	if ((tlen || (thflags & TH_FIN)) &&
2877 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2878 		tcp_seq save_start = th->th_seq;
2879 		m_adj(m, drop_hdrlen);	/* delayed header drop */
2880 		/*
2881 		 * Insert segment which includes th into TCP reassembly queue
2882 		 * with control block tp.  Set thflags to whether reassembly now
2883 		 * includes a segment with FIN.  This handles the common case
2884 		 * inline (segment is the next to be received on an established
2885 		 * connection, and the queue is empty), avoiding linkage into
2886 		 * and removal from the queue and repetition of various
2887 		 * conversions.
2888 		 * Set DELACK for segments received in order, but ack
2889 		 * immediately when segments are out of order (so
2890 		 * fast retransmit can work).
2891 		 */
2892 		if (th->th_seq == tp->rcv_nxt && tp->t_segq == NULL &&
2893 		    TCPS_HAVEESTABLISHED(tp->t_state)) {
2894 			if (DELAY_ACK(tp, tlen))
2895 				tp->t_flags |= TF_DELACK;
2896 			else
2897 				tp->t_flags |= TF_ACKNOW;
2898 			tp->rcv_nxt += tlen;
2899 			thflags = th->th_flags & TH_FIN;
2900 			TCPSTAT_INC(tcps_rcvpack);
2901 			TCPSTAT_ADD(tcps_rcvbyte, tlen);
2902 			ND6_HINT(tp);
2903 			SOCKBUF_LOCK(&so->so_rcv);
2904 			if (so->so_rcv.sb_state & SBS_CANTRCVMORE)
2905 				m_freem(m);
2906 			else
2907 				sbappendstream_locked(&so->so_rcv, m);
2908 			/* NB: sorwakeup_locked() does an implicit unlock. */
2909 			sorwakeup_locked(so);
2910 		} else {
2911 			/*
2912 			 * XXX: Due to the header drop above "th" is
2913 			 * theoretically invalid by now.  Fortunately
2914 			 * m_adj() doesn't actually frees any mbufs
2915 			 * when trimming from the head.
2916 			 */
2917 			thflags = tcp_reass(tp, th, &tlen, m);
2918 			tp->t_flags |= TF_ACKNOW;
2919 		}
2920 		if (tlen > 0 && (tp->t_flags & TF_SACK_PERMIT))
2921 			tcp_update_sack_list(tp, save_start, save_start + tlen);
2922 #if 0
2923 		/*
2924 		 * Note the amount of data that peer has sent into
2925 		 * our window, in order to estimate the sender's
2926 		 * buffer size.
2927 		 * XXX: Unused.
2928 		 */
2929 		if (SEQ_GT(tp->rcv_adv, tp->rcv_nxt))
2930 			len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2931 		else
2932 			len = so->so_rcv.sb_hiwat;
2933 #endif
2934 	} else {
2935 		m_freem(m);
2936 		thflags &= ~TH_FIN;
2937 	}
2938 
2939 	/*
2940 	 * If FIN is received ACK the FIN and let the user know
2941 	 * that the connection is closing.
2942 	 */
2943 	if (thflags & TH_FIN) {
2944 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2945 			socantrcvmore(so);
2946 			/*
2947 			 * If connection is half-synchronized
2948 			 * (ie NEEDSYN flag on) then delay ACK,
2949 			 * so it may be piggybacked when SYN is sent.
2950 			 * Otherwise, since we received a FIN then no
2951 			 * more input can be expected, send ACK now.
2952 			 */
2953 			if (tp->t_flags & TF_NEEDSYN)
2954 				tp->t_flags |= TF_DELACK;
2955 			else
2956 				tp->t_flags |= TF_ACKNOW;
2957 			tp->rcv_nxt++;
2958 		}
2959 		switch (tp->t_state) {
2960 
2961 		/*
2962 		 * In SYN_RECEIVED and ESTABLISHED STATES
2963 		 * enter the CLOSE_WAIT state.
2964 		 */
2965 		case TCPS_SYN_RECEIVED:
2966 			tp->t_starttime = ticks;
2967 			/* FALLTHROUGH */
2968 		case TCPS_ESTABLISHED:
2969 			tcp_state_change(tp, TCPS_CLOSE_WAIT);
2970 			break;
2971 
2972 		/*
2973 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2974 		 * enter the CLOSING state.
2975 		 */
2976 		case TCPS_FIN_WAIT_1:
2977 			tcp_state_change(tp, TCPS_CLOSING);
2978 			break;
2979 
2980 		/*
2981 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2982 		 * starting the time-wait timer, turning off the other
2983 		 * standard timers.
2984 		 */
2985 		case TCPS_FIN_WAIT_2:
2986 			INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2987 			KASSERT(ti_locked == TI_WLOCKED, ("%s: dodata "
2988 			    "TCP_FIN_WAIT_2 ti_locked: %d", __func__,
2989 			    ti_locked));
2990 
2991 			tcp_twstart(tp);
2992 			INP_INFO_WUNLOCK(&V_tcbinfo);
2993 			return;
2994 		}
2995 	}
2996 	if (ti_locked == TI_WLOCKED)
2997 		INP_INFO_WUNLOCK(&V_tcbinfo);
2998 	ti_locked = TI_UNLOCKED;
2999 
3000 #ifdef TCPDEBUG
3001 	if (so->so_options & SO_DEBUG)
3002 		tcp_trace(TA_INPUT, ostate, tp, (void *)tcp_saveipgen,
3003 			  &tcp_savetcp, 0);
3004 #endif
3005 
3006 	/*
3007 	 * Return any desired output.
3008 	 */
3009 	if (needoutput || (tp->t_flags & TF_ACKNOW))
3010 		(void) tcp_output(tp);
3011 
3012 check_delack:
3013 	KASSERT(ti_locked == TI_UNLOCKED, ("%s: check_delack ti_locked %d",
3014 	    __func__, ti_locked));
3015 	INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
3016 	INP_WLOCK_ASSERT(tp->t_inpcb);
3017 
3018 	if (tp->t_flags & TF_DELACK) {
3019 		tp->t_flags &= ~TF_DELACK;
3020 		tcp_timer_activate(tp, TT_DELACK, tcp_delacktime);
3021 	}
3022 	INP_WUNLOCK(tp->t_inpcb);
3023 	return;
3024 
3025 dropafterack:
3026 	/*
3027 	 * Generate an ACK dropping incoming segment if it occupies
3028 	 * sequence space, where the ACK reflects our state.
3029 	 *
3030 	 * We can now skip the test for the RST flag since all
3031 	 * paths to this code happen after packets containing
3032 	 * RST have been dropped.
3033 	 *
3034 	 * In the SYN-RECEIVED state, don't send an ACK unless the
3035 	 * segment we received passes the SYN-RECEIVED ACK test.
3036 	 * If it fails send a RST.  This breaks the loop in the
3037 	 * "LAND" DoS attack, and also prevents an ACK storm
3038 	 * between two listening ports that have been sent forged
3039 	 * SYN segments, each with the source address of the other.
3040 	 */
3041 	if (tp->t_state == TCPS_SYN_RECEIVED && (thflags & TH_ACK) &&
3042 	    (SEQ_GT(tp->snd_una, th->th_ack) ||
3043 	     SEQ_GT(th->th_ack, tp->snd_max)) ) {
3044 		rstreason = BANDLIM_RST_OPENPORT;
3045 		goto dropwithreset;
3046 	}
3047 #ifdef TCPDEBUG
3048 	if (so->so_options & SO_DEBUG)
3049 		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
3050 			  &tcp_savetcp, 0);
3051 #endif
3052 	if (ti_locked == TI_WLOCKED)
3053 		INP_INFO_WUNLOCK(&V_tcbinfo);
3054 	ti_locked = TI_UNLOCKED;
3055 
3056 	tp->t_flags |= TF_ACKNOW;
3057 	(void) tcp_output(tp);
3058 	INP_WUNLOCK(tp->t_inpcb);
3059 	m_freem(m);
3060 	return;
3061 
3062 dropwithreset:
3063 	if (ti_locked == TI_WLOCKED)
3064 		INP_INFO_WUNLOCK(&V_tcbinfo);
3065 	ti_locked = TI_UNLOCKED;
3066 
3067 	if (tp != NULL) {
3068 		tcp_dropwithreset(m, th, tp, tlen, rstreason);
3069 		INP_WUNLOCK(tp->t_inpcb);
3070 	} else
3071 		tcp_dropwithreset(m, th, NULL, tlen, rstreason);
3072 	return;
3073 
3074 drop:
3075 	if (ti_locked == TI_WLOCKED) {
3076 		INP_INFO_WUNLOCK(&V_tcbinfo);
3077 		ti_locked = TI_UNLOCKED;
3078 	}
3079 #ifdef INVARIANTS
3080 	else
3081 		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
3082 #endif
3083 
3084 	/*
3085 	 * Drop space held by incoming segment and return.
3086 	 */
3087 #ifdef TCPDEBUG
3088 	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
3089 		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
3090 			  &tcp_savetcp, 0);
3091 #endif
3092 	if (tp != NULL)
3093 		INP_WUNLOCK(tp->t_inpcb);
3094 	m_freem(m);
3095 }
3096 
3097 /*
3098  * Issue RST and make ACK acceptable to originator of segment.
3099  * The mbuf must still include the original packet header.
3100  * tp may be NULL.
3101  */
3102 static void
3103 tcp_dropwithreset(struct mbuf *m, struct tcphdr *th, struct tcpcb *tp,
3104     int tlen, int rstreason)
3105 {
3106 #ifdef INET
3107 	struct ip *ip;
3108 #endif
3109 #ifdef INET6
3110 	struct ip6_hdr *ip6;
3111 #endif
3112 
3113 	if (tp != NULL) {
3114 		INP_WLOCK_ASSERT(tp->t_inpcb);
3115 	}
3116 
3117 	/* Don't bother if destination was broadcast/multicast. */
3118 	if ((th->th_flags & TH_RST) || m->m_flags & (M_BCAST|M_MCAST))
3119 		goto drop;
3120 #ifdef INET6
3121 	if (mtod(m, struct ip *)->ip_v == 6) {
3122 		ip6 = mtod(m, struct ip6_hdr *);
3123 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
3124 		    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
3125 			goto drop;
3126 		/* IPv6 anycast check is done at tcp6_input() */
3127 	}
3128 #endif
3129 #if defined(INET) && defined(INET6)
3130 	else
3131 #endif
3132 #ifdef INET
3133 	{
3134 		ip = mtod(m, struct ip *);
3135 		if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
3136 		    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
3137 		    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
3138 		    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
3139 			goto drop;
3140 	}
3141 #endif
3142 
3143 	/* Perform bandwidth limiting. */
3144 	if (badport_bandlim(rstreason) < 0)
3145 		goto drop;
3146 
3147 	/* tcp_respond consumes the mbuf chain. */
3148 	if (th->th_flags & TH_ACK) {
3149 		tcp_respond(tp, mtod(m, void *), th, m, (tcp_seq)0,
3150 		    th->th_ack, TH_RST);
3151 	} else {
3152 		if (th->th_flags & TH_SYN)
3153 			tlen++;
3154 		tcp_respond(tp, mtod(m, void *), th, m, th->th_seq+tlen,
3155 		    (tcp_seq)0, TH_RST|TH_ACK);
3156 	}
3157 	return;
3158 drop:
3159 	m_freem(m);
3160 }
3161 
3162 /*
3163  * Parse TCP options and place in tcpopt.
3164  */
3165 static void
3166 tcp_dooptions(struct tcpopt *to, u_char *cp, int cnt, int flags)
3167 {
3168 	int opt, optlen;
3169 
3170 	to->to_flags = 0;
3171 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
3172 		opt = cp[0];
3173 		if (opt == TCPOPT_EOL)
3174 			break;
3175 		if (opt == TCPOPT_NOP)
3176 			optlen = 1;
3177 		else {
3178 			if (cnt < 2)
3179 				break;
3180 			optlen = cp[1];
3181 			if (optlen < 2 || optlen > cnt)
3182 				break;
3183 		}
3184 		switch (opt) {
3185 		case TCPOPT_MAXSEG:
3186 			if (optlen != TCPOLEN_MAXSEG)
3187 				continue;
3188 			if (!(flags & TO_SYN))
3189 				continue;
3190 			to->to_flags |= TOF_MSS;
3191 			bcopy((char *)cp + 2,
3192 			    (char *)&to->to_mss, sizeof(to->to_mss));
3193 			to->to_mss = ntohs(to->to_mss);
3194 			break;
3195 		case TCPOPT_WINDOW:
3196 			if (optlen != TCPOLEN_WINDOW)
3197 				continue;
3198 			if (!(flags & TO_SYN))
3199 				continue;
3200 			to->to_flags |= TOF_SCALE;
3201 			to->to_wscale = min(cp[2], TCP_MAX_WINSHIFT);
3202 			break;
3203 		case TCPOPT_TIMESTAMP:
3204 			if (optlen != TCPOLEN_TIMESTAMP)
3205 				continue;
3206 			to->to_flags |= TOF_TS;
3207 			bcopy((char *)cp + 2,
3208 			    (char *)&to->to_tsval, sizeof(to->to_tsval));
3209 			to->to_tsval = ntohl(to->to_tsval);
3210 			bcopy((char *)cp + 6,
3211 			    (char *)&to->to_tsecr, sizeof(to->to_tsecr));
3212 			to->to_tsecr = ntohl(to->to_tsecr);
3213 			break;
3214 #ifdef TCP_SIGNATURE
3215 		/*
3216 		 * XXX In order to reply to a host which has set the
3217 		 * TCP_SIGNATURE option in its initial SYN, we have to
3218 		 * record the fact that the option was observed here
3219 		 * for the syncache code to perform the correct response.
3220 		 */
3221 		case TCPOPT_SIGNATURE:
3222 			if (optlen != TCPOLEN_SIGNATURE)
3223 				continue;
3224 			to->to_flags |= TOF_SIGNATURE;
3225 			to->to_signature = cp + 2;
3226 			break;
3227 #endif
3228 		case TCPOPT_SACK_PERMITTED:
3229 			if (optlen != TCPOLEN_SACK_PERMITTED)
3230 				continue;
3231 			if (!(flags & TO_SYN))
3232 				continue;
3233 			if (!V_tcp_do_sack)
3234 				continue;
3235 			to->to_flags |= TOF_SACKPERM;
3236 			break;
3237 		case TCPOPT_SACK:
3238 			if (optlen <= 2 || (optlen - 2) % TCPOLEN_SACK != 0)
3239 				continue;
3240 			if (flags & TO_SYN)
3241 				continue;
3242 			to->to_flags |= TOF_SACK;
3243 			to->to_nsacks = (optlen - 2) / TCPOLEN_SACK;
3244 			to->to_sacks = cp + 2;
3245 			TCPSTAT_INC(tcps_sack_rcv_blocks);
3246 			break;
3247 		default:
3248 			continue;
3249 		}
3250 	}
3251 }
3252 
3253 /*
3254  * Pull out of band byte out of a segment so
3255  * it doesn't appear in the user's data queue.
3256  * It is still reflected in the segment length for
3257  * sequencing purposes.
3258  */
3259 static void
3260 tcp_pulloutofband(struct socket *so, struct tcphdr *th, struct mbuf *m,
3261     int off)
3262 {
3263 	int cnt = off + th->th_urp - 1;
3264 
3265 	while (cnt >= 0) {
3266 		if (m->m_len > cnt) {
3267 			char *cp = mtod(m, caddr_t) + cnt;
3268 			struct tcpcb *tp = sototcpcb(so);
3269 
3270 			INP_WLOCK_ASSERT(tp->t_inpcb);
3271 
3272 			tp->t_iobc = *cp;
3273 			tp->t_oobflags |= TCPOOB_HAVEDATA;
3274 			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
3275 			m->m_len--;
3276 			if (m->m_flags & M_PKTHDR)
3277 				m->m_pkthdr.len--;
3278 			return;
3279 		}
3280 		cnt -= m->m_len;
3281 		m = m->m_next;
3282 		if (m == NULL)
3283 			break;
3284 	}
3285 	panic("tcp_pulloutofband");
3286 }
3287 
3288 /*
3289  * Collect new round-trip time estimate
3290  * and update averages and current timeout.
3291  */
3292 static void
3293 tcp_xmit_timer(struct tcpcb *tp, int rtt)
3294 {
3295 	int delta;
3296 
3297 	INP_WLOCK_ASSERT(tp->t_inpcb);
3298 
3299 	TCPSTAT_INC(tcps_rttupdated);
3300 	tp->t_rttupdated++;
3301 	if (tp->t_srtt != 0) {
3302 		/*
3303 		 * srtt is stored as fixed point with 5 bits after the
3304 		 * binary point (i.e., scaled by 8).  The following magic
3305 		 * is equivalent to the smoothing algorithm in rfc793 with
3306 		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
3307 		 * point).  Adjust rtt to origin 0.
3308 		 */
3309 		delta = ((rtt - 1) << TCP_DELTA_SHIFT)
3310 			- (tp->t_srtt >> (TCP_RTT_SHIFT - TCP_DELTA_SHIFT));
3311 
3312 		if ((tp->t_srtt += delta) <= 0)
3313 			tp->t_srtt = 1;
3314 
3315 		/*
3316 		 * We accumulate a smoothed rtt variance (actually, a
3317 		 * smoothed mean difference), then set the retransmit
3318 		 * timer to smoothed rtt + 4 times the smoothed variance.
3319 		 * rttvar is stored as fixed point with 4 bits after the
3320 		 * binary point (scaled by 16).  The following is
3321 		 * equivalent to rfc793 smoothing with an alpha of .75
3322 		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
3323 		 * rfc793's wired-in beta.
3324 		 */
3325 		if (delta < 0)
3326 			delta = -delta;
3327 		delta -= tp->t_rttvar >> (TCP_RTTVAR_SHIFT - TCP_DELTA_SHIFT);
3328 		if ((tp->t_rttvar += delta) <= 0)
3329 			tp->t_rttvar = 1;
3330 		if (tp->t_rttbest > tp->t_srtt + tp->t_rttvar)
3331 		    tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
3332 	} else {
3333 		/*
3334 		 * No rtt measurement yet - use the unsmoothed rtt.
3335 		 * Set the variance to half the rtt (so our first
3336 		 * retransmit happens at 3*rtt).
3337 		 */
3338 		tp->t_srtt = rtt << TCP_RTT_SHIFT;
3339 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1);
3340 		tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
3341 	}
3342 	tp->t_rtttime = 0;
3343 	tp->t_rxtshift = 0;
3344 
3345 	/*
3346 	 * the retransmit should happen at rtt + 4 * rttvar.
3347 	 * Because of the way we do the smoothing, srtt and rttvar
3348 	 * will each average +1/2 tick of bias.  When we compute
3349 	 * the retransmit timer, we want 1/2 tick of rounding and
3350 	 * 1 extra tick because of +-1/2 tick uncertainty in the
3351 	 * firing of the timer.  The bias will give us exactly the
3352 	 * 1.5 tick we need.  But, because the bias is
3353 	 * statistical, we have to test that we don't drop below
3354 	 * the minimum feasible timer (which is 2 ticks).
3355 	 */
3356 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
3357 		      max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
3358 
3359 	/*
3360 	 * We received an ack for a packet that wasn't retransmitted;
3361 	 * it is probably safe to discard any error indications we've
3362 	 * received recently.  This isn't quite right, but close enough
3363 	 * for now (a route might have failed after we sent a segment,
3364 	 * and the return path might not be symmetrical).
3365 	 */
3366 	tp->t_softerror = 0;
3367 }
3368 
3369 /*
3370  * Determine a reasonable value for maxseg size.
3371  * If the route is known, check route for mtu.
3372  * If none, use an mss that can be handled on the outgoing interface
3373  * without forcing IP to fragment.  If no route is found, route has no mtu,
3374  * or the destination isn't local, use a default, hopefully conservative
3375  * size (usually 512 or the default IP max size, but no more than the mtu
3376  * of the interface), as we can't discover anything about intervening
3377  * gateways or networks.  We also initialize the congestion/slow start
3378  * window to be a single segment if the destination isn't local.
3379  * While looking at the routing entry, we also initialize other path-dependent
3380  * parameters from pre-set or cached values in the routing entry.
3381  *
3382  * Also take into account the space needed for options that we
3383  * send regularly.  Make maxseg shorter by that amount to assure
3384  * that we can send maxseg amount of data even when the options
3385  * are present.  Store the upper limit of the length of options plus
3386  * data in maxopd.
3387  *
3388  * NOTE that this routine is only called when we process an incoming
3389  * segment, or an ICMP need fragmentation datagram. Outgoing SYN/ACK MSS
3390  * settings are handled in tcp_mssopt().
3391  */
3392 void
3393 tcp_mss_update(struct tcpcb *tp, int offer, int mtuoffer,
3394     struct hc_metrics_lite *metricptr, struct tcp_ifcap *cap)
3395 {
3396 	int mss = 0;
3397 	u_long maxmtu = 0;
3398 	struct inpcb *inp = tp->t_inpcb;
3399 	struct hc_metrics_lite metrics;
3400 	int origoffer;
3401 #ifdef INET6
3402 	int isipv6 = ((inp->inp_vflag & INP_IPV6) != 0) ? 1 : 0;
3403 	size_t min_protoh = isipv6 ?
3404 			    sizeof (struct ip6_hdr) + sizeof (struct tcphdr) :
3405 			    sizeof (struct tcpiphdr);
3406 #else
3407 	const size_t min_protoh = sizeof(struct tcpiphdr);
3408 #endif
3409 
3410 	INP_WLOCK_ASSERT(tp->t_inpcb);
3411 
3412 	if (mtuoffer != -1) {
3413 		KASSERT(offer == -1, ("%s: conflict", __func__));
3414 		offer = mtuoffer - min_protoh;
3415 	}
3416 	origoffer = offer;
3417 
3418 	/* Initialize. */
3419 #ifdef INET6
3420 	if (isipv6) {
3421 		maxmtu = tcp_maxmtu6(&inp->inp_inc, cap);
3422 		tp->t_maxopd = tp->t_maxseg = V_tcp_v6mssdflt;
3423 	}
3424 #endif
3425 #if defined(INET) && defined(INET6)
3426 	else
3427 #endif
3428 #ifdef INET
3429 	{
3430 		maxmtu = tcp_maxmtu(&inp->inp_inc, cap);
3431 		tp->t_maxopd = tp->t_maxseg = V_tcp_mssdflt;
3432 	}
3433 #endif
3434 
3435 	/*
3436 	 * No route to sender, stay with default mss and return.
3437 	 */
3438 	if (maxmtu == 0) {
3439 		/*
3440 		 * In case we return early we need to initialize metrics
3441 		 * to a defined state as tcp_hc_get() would do for us
3442 		 * if there was no cache hit.
3443 		 */
3444 		if (metricptr != NULL)
3445 			bzero(metricptr, sizeof(struct hc_metrics_lite));
3446 		return;
3447 	}
3448 
3449 	/* What have we got? */
3450 	switch (offer) {
3451 		case 0:
3452 			/*
3453 			 * Offer == 0 means that there was no MSS on the SYN
3454 			 * segment, in this case we use tcp_mssdflt as
3455 			 * already assigned to t_maxopd above.
3456 			 */
3457 			offer = tp->t_maxopd;
3458 			break;
3459 
3460 		case -1:
3461 			/*
3462 			 * Offer == -1 means that we didn't receive SYN yet.
3463 			 */
3464 			/* FALLTHROUGH */
3465 
3466 		default:
3467 			/*
3468 			 * Prevent DoS attack with too small MSS. Round up
3469 			 * to at least minmss.
3470 			 */
3471 			offer = max(offer, V_tcp_minmss);
3472 	}
3473 
3474 	/*
3475 	 * rmx information is now retrieved from tcp_hostcache.
3476 	 */
3477 	tcp_hc_get(&inp->inp_inc, &metrics);
3478 	if (metricptr != NULL)
3479 		bcopy(&metrics, metricptr, sizeof(struct hc_metrics_lite));
3480 
3481 	/*
3482 	 * If there's a discovered mtu in tcp hostcache, use it.
3483 	 * Else, use the link mtu.
3484 	 */
3485 	if (metrics.rmx_mtu)
3486 		mss = min(metrics.rmx_mtu, maxmtu) - min_protoh;
3487 	else {
3488 #ifdef INET6
3489 		if (isipv6) {
3490 			mss = maxmtu - min_protoh;
3491 			if (!V_path_mtu_discovery &&
3492 			    !in6_localaddr(&inp->in6p_faddr))
3493 				mss = min(mss, V_tcp_v6mssdflt);
3494 		}
3495 #endif
3496 #if defined(INET) && defined(INET6)
3497 		else
3498 #endif
3499 #ifdef INET
3500 		{
3501 			mss = maxmtu - min_protoh;
3502 			if (!V_path_mtu_discovery &&
3503 			    !in_localaddr(inp->inp_faddr))
3504 				mss = min(mss, V_tcp_mssdflt);
3505 		}
3506 #endif
3507 		/*
3508 		 * XXX - The above conditional (mss = maxmtu - min_protoh)
3509 		 * probably violates the TCP spec.
3510 		 * The problem is that, since we don't know the
3511 		 * other end's MSS, we are supposed to use a conservative
3512 		 * default.  But, if we do that, then MTU discovery will
3513 		 * never actually take place, because the conservative
3514 		 * default is much less than the MTUs typically seen
3515 		 * on the Internet today.  For the moment, we'll sweep
3516 		 * this under the carpet.
3517 		 *
3518 		 * The conservative default might not actually be a problem
3519 		 * if the only case this occurs is when sending an initial
3520 		 * SYN with options and data to a host we've never talked
3521 		 * to before.  Then, they will reply with an MSS value which
3522 		 * will get recorded and the new parameters should get
3523 		 * recomputed.  For Further Study.
3524 		 */
3525 	}
3526 	mss = min(mss, offer);
3527 
3528 	/*
3529 	 * Sanity check: make sure that maxopd will be large
3530 	 * enough to allow some data on segments even if the
3531 	 * all the option space is used (40bytes).  Otherwise
3532 	 * funny things may happen in tcp_output.
3533 	 */
3534 	mss = max(mss, 64);
3535 
3536 	/*
3537 	 * maxopd stores the maximum length of data AND options
3538 	 * in a segment; maxseg is the amount of data in a normal
3539 	 * segment.  We need to store this value (maxopd) apart
3540 	 * from maxseg, because now every segment carries options
3541 	 * and thus we normally have somewhat less data in segments.
3542 	 */
3543 	tp->t_maxopd = mss;
3544 
3545 	/*
3546 	 * origoffer==-1 indicates that no segments were received yet.
3547 	 * In this case we just guess.
3548 	 */
3549 	if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
3550 	    (origoffer == -1 ||
3551 	     (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP))
3552 		mss -= TCPOLEN_TSTAMP_APPA;
3553 
3554 	tp->t_maxseg = mss;
3555 }
3556 
3557 void
3558 tcp_mss(struct tcpcb *tp, int offer)
3559 {
3560 	int mss;
3561 	u_long bufsize;
3562 	struct inpcb *inp;
3563 	struct socket *so;
3564 	struct hc_metrics_lite metrics;
3565 	struct tcp_ifcap cap;
3566 
3567 	KASSERT(tp != NULL, ("%s: tp == NULL", __func__));
3568 
3569 	bzero(&cap, sizeof(cap));
3570 	tcp_mss_update(tp, offer, -1, &metrics, &cap);
3571 
3572 	mss = tp->t_maxseg;
3573 	inp = tp->t_inpcb;
3574 
3575 	/*
3576 	 * If there's a pipesize, change the socket buffer to that size,
3577 	 * don't change if sb_hiwat is different than default (then it
3578 	 * has been changed on purpose with setsockopt).
3579 	 * Make the socket buffers an integral number of mss units;
3580 	 * if the mss is larger than the socket buffer, decrease the mss.
3581 	 */
3582 	so = inp->inp_socket;
3583 	SOCKBUF_LOCK(&so->so_snd);
3584 	if ((so->so_snd.sb_hiwat == V_tcp_sendspace) && metrics.rmx_sendpipe)
3585 		bufsize = metrics.rmx_sendpipe;
3586 	else
3587 		bufsize = so->so_snd.sb_hiwat;
3588 	if (bufsize < mss)
3589 		mss = bufsize;
3590 	else {
3591 		bufsize = roundup(bufsize, mss);
3592 		if (bufsize > sb_max)
3593 			bufsize = sb_max;
3594 		if (bufsize > so->so_snd.sb_hiwat)
3595 			(void)sbreserve_locked(&so->so_snd, bufsize, so, NULL);
3596 	}
3597 	SOCKBUF_UNLOCK(&so->so_snd);
3598 	tp->t_maxseg = mss;
3599 
3600 	SOCKBUF_LOCK(&so->so_rcv);
3601 	if ((so->so_rcv.sb_hiwat == V_tcp_recvspace) && metrics.rmx_recvpipe)
3602 		bufsize = metrics.rmx_recvpipe;
3603 	else
3604 		bufsize = so->so_rcv.sb_hiwat;
3605 	if (bufsize > mss) {
3606 		bufsize = roundup(bufsize, mss);
3607 		if (bufsize > sb_max)
3608 			bufsize = sb_max;
3609 		if (bufsize > so->so_rcv.sb_hiwat)
3610 			(void)sbreserve_locked(&so->so_rcv, bufsize, so, NULL);
3611 	}
3612 	SOCKBUF_UNLOCK(&so->so_rcv);
3613 
3614 	/* Check the interface for TSO capabilities. */
3615 	if (cap.ifcap & CSUM_TSO) {
3616 		tp->t_flags |= TF_TSO;
3617 		tp->t_tsomax = cap.tsomax;
3618 	}
3619 }
3620 
3621 /*
3622  * Determine the MSS option to send on an outgoing SYN.
3623  */
3624 int
3625 tcp_mssopt(struct in_conninfo *inc)
3626 {
3627 	int mss = 0;
3628 	u_long maxmtu = 0;
3629 	u_long thcmtu = 0;
3630 	size_t min_protoh;
3631 
3632 	KASSERT(inc != NULL, ("tcp_mssopt with NULL in_conninfo pointer"));
3633 
3634 #ifdef INET6
3635 	if (inc->inc_flags & INC_ISIPV6) {
3636 		mss = V_tcp_v6mssdflt;
3637 		maxmtu = tcp_maxmtu6(inc, NULL);
3638 		min_protoh = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
3639 	}
3640 #endif
3641 #if defined(INET) && defined(INET6)
3642 	else
3643 #endif
3644 #ifdef INET
3645 	{
3646 		mss = V_tcp_mssdflt;
3647 		maxmtu = tcp_maxmtu(inc, NULL);
3648 		min_protoh = sizeof(struct tcpiphdr);
3649 	}
3650 #endif
3651 #if defined(INET6) || defined(INET)
3652 	thcmtu = tcp_hc_getmtu(inc); /* IPv4 and IPv6 */
3653 #endif
3654 
3655 	if (maxmtu && thcmtu)
3656 		mss = min(maxmtu, thcmtu) - min_protoh;
3657 	else if (maxmtu || thcmtu)
3658 		mss = max(maxmtu, thcmtu) - min_protoh;
3659 
3660 	return (mss);
3661 }
3662 
3663 
3664 /*
3665  * On a partial ack arrives, force the retransmission of the
3666  * next unacknowledged segment.  Do not clear tp->t_dupacks.
3667  * By setting snd_nxt to ti_ack, this forces retransmission timer to
3668  * be started again.
3669  */
3670 static void
3671 tcp_newreno_partial_ack(struct tcpcb *tp, struct tcphdr *th)
3672 {
3673 	tcp_seq onxt = tp->snd_nxt;
3674 	u_long  ocwnd = tp->snd_cwnd;
3675 
3676 	INP_WLOCK_ASSERT(tp->t_inpcb);
3677 
3678 	tcp_timer_activate(tp, TT_REXMT, 0);
3679 	tp->t_rtttime = 0;
3680 	tp->snd_nxt = th->th_ack;
3681 	/*
3682 	 * Set snd_cwnd to one segment beyond acknowledged offset.
3683 	 * (tp->snd_una has not yet been updated when this function is called.)
3684 	 */
3685 	tp->snd_cwnd = tp->t_maxseg + BYTES_THIS_ACK(tp, th);
3686 	tp->t_flags |= TF_ACKNOW;
3687 	(void) tcp_output(tp);
3688 	tp->snd_cwnd = ocwnd;
3689 	if (SEQ_GT(onxt, tp->snd_nxt))
3690 		tp->snd_nxt = onxt;
3691 	/*
3692 	 * Partial window deflation.  Relies on fact that tp->snd_una
3693 	 * not updated yet.
3694 	 */
3695 	if (tp->snd_cwnd > BYTES_THIS_ACK(tp, th))
3696 		tp->snd_cwnd -= BYTES_THIS_ACK(tp, th);
3697 	else
3698 		tp->snd_cwnd = 0;
3699 	tp->snd_cwnd += tp->t_maxseg;
3700 }
3701