xref: /freebsd/sys/netinet/tcp_input.c (revision 542aef4874baf2030a1e5fd995419e25398252d4)
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
3  *	The Regents of the University of California.  All rights reserved.
4  * Copyright (c) 2007-2008,2010
5  *	Swinburne University of Technology, Melbourne, Australia.
6  * Copyright (c) 2009-2010 Lawrence Stewart <lstewart@freebsd.org>
7  * Copyright (c) 2010 The FreeBSD Foundation
8  * All rights reserved.
9  *
10  * Portions of this software were developed at the Centre for Advanced Internet
11  * Architectures, Swinburne University, by Lawrence Stewart, James Healy and
12  * David Hayes, made possible in part by a grant from the Cisco University
13  * Research Program Fund at Community Foundation Silicon Valley.
14  *
15  * Portions of this software were developed at the Centre for Advanced
16  * Internet Architectures, Swinburne University of Technology, Melbourne,
17  * Australia by David Hayes under sponsorship from the FreeBSD Foundation.
18  *
19  * Redistribution and use in source and binary forms, with or without
20  * modification, are permitted provided that the following conditions
21  * are met:
22  * 1. Redistributions of source code must retain the above copyright
23  *    notice, this list of conditions and the following disclaimer.
24  * 2. Redistributions in binary form must reproduce the above copyright
25  *    notice, this list of conditions and the following disclaimer in the
26  *    documentation and/or other materials provided with the distribution.
27  * 4. Neither the name of the University nor the names of its contributors
28  *    may be used to endorse or promote products derived from this software
29  *    without specific prior written permission.
30  *
31  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41  * SUCH DAMAGE.
42  *
43  *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
44  */
45 
46 #include <sys/cdefs.h>
47 __FBSDID("$FreeBSD$");
48 
49 #include "opt_ipfw.h"		/* for ipfw_fwd	*/
50 #include "opt_inet.h"
51 #include "opt_inet6.h"
52 #include "opt_ipsec.h"
53 #include "opt_tcpdebug.h"
54 
55 #include <sys/param.h>
56 #include <sys/kernel.h>
57 #include <sys/malloc.h>
58 #include <sys/mbuf.h>
59 #include <sys/proc.h>		/* for proc0 declaration */
60 #include <sys/protosw.h>
61 #include <sys/signalvar.h>
62 #include <sys/socket.h>
63 #include <sys/socketvar.h>
64 #include <sys/sysctl.h>
65 #include <sys/syslog.h>
66 #include <sys/systm.h>
67 
68 #include <machine/cpu.h>	/* before tcp_seq.h, for tcp_random18() */
69 
70 #include <vm/uma.h>
71 
72 #include <net/if.h>
73 #include <net/route.h>
74 #include <net/vnet.h>
75 
76 #define TCPSTATES		/* for logging */
77 
78 #include <netinet/cc.h>
79 #include <netinet/in.h>
80 #include <netinet/in_pcb.h>
81 #include <netinet/in_systm.h>
82 #include <netinet/in_var.h>
83 #include <netinet/ip.h>
84 #include <netinet/ip_icmp.h>	/* required for icmp_var.h */
85 #include <netinet/icmp_var.h>	/* for ICMP_BANDLIM */
86 #include <netinet/ip_var.h>
87 #include <netinet/ip_options.h>
88 #include <netinet/ip6.h>
89 #include <netinet/icmp6.h>
90 #include <netinet6/in6_pcb.h>
91 #include <netinet6/ip6_var.h>
92 #include <netinet6/nd6.h>
93 #include <netinet/tcp_fsm.h>
94 #include <netinet/tcp_seq.h>
95 #include <netinet/tcp_timer.h>
96 #include <netinet/tcp_var.h>
97 #include <netinet6/tcp6_var.h>
98 #include <netinet/tcpip.h>
99 #include <netinet/tcp_syncache.h>
100 #ifdef TCPDEBUG
101 #include <netinet/tcp_debug.h>
102 #endif /* TCPDEBUG */
103 
104 #ifdef IPSEC
105 #include <netipsec/ipsec.h>
106 #include <netipsec/ipsec6.h>
107 #endif /*IPSEC*/
108 
109 #include <machine/in_cksum.h>
110 
111 #include <security/mac/mac_framework.h>
112 
113 const int tcprexmtthresh = 3;
114 
115 VNET_DEFINE(struct tcpstat, tcpstat);
116 SYSCTL_VNET_STRUCT(_net_inet_tcp, TCPCTL_STATS, stats, CTLFLAG_RW,
117     &VNET_NAME(tcpstat), tcpstat,
118     "TCP statistics (struct tcpstat, netinet/tcp_var.h)");
119 
120 int tcp_log_in_vain = 0;
121 SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_in_vain, CTLFLAG_RW,
122     &tcp_log_in_vain, 0,
123     "Log all incoming TCP segments to closed ports");
124 
125 VNET_DEFINE(int, blackhole) = 0;
126 #define	V_blackhole		VNET(blackhole)
127 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, blackhole, CTLFLAG_RW,
128     &VNET_NAME(blackhole), 0,
129     "Do not send RST on segments to closed ports");
130 
131 VNET_DEFINE(int, tcp_delack_enabled) = 1;
132 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, delayed_ack, CTLFLAG_RW,
133     &VNET_NAME(tcp_delack_enabled), 0,
134     "Delay ACK to try and piggyback it onto a data packet");
135 
136 VNET_DEFINE(int, drop_synfin) = 0;
137 #define	V_drop_synfin		VNET(drop_synfin)
138 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, drop_synfin, CTLFLAG_RW,
139     &VNET_NAME(drop_synfin), 0,
140     "Drop TCP packets with SYN+FIN set");
141 
142 VNET_DEFINE(int, tcp_do_rfc3042) = 1;
143 #define	V_tcp_do_rfc3042	VNET(tcp_do_rfc3042)
144 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, rfc3042, CTLFLAG_RW,
145     &VNET_NAME(tcp_do_rfc3042), 0,
146     "Enable RFC 3042 (Limited Transmit)");
147 
148 VNET_DEFINE(int, tcp_do_rfc3390) = 1;
149 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, rfc3390, CTLFLAG_RW,
150     &VNET_NAME(tcp_do_rfc3390), 0,
151     "Enable RFC 3390 (Increasing TCP's Initial Congestion Window)");
152 
153 VNET_DEFINE(int, tcp_do_rfc3465) = 1;
154 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, rfc3465, CTLFLAG_RW,
155     &VNET_NAME(tcp_do_rfc3465), 0,
156     "Enable RFC 3465 (Appropriate Byte Counting)");
157 
158 VNET_DEFINE(int, tcp_abc_l_var) = 2;
159 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, abc_l_var, CTLFLAG_RW,
160     &VNET_NAME(tcp_abc_l_var), 2,
161     "Cap the max cwnd increment during slow-start to this number of segments");
162 
163 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, ecn, CTLFLAG_RW, 0, "TCP ECN");
164 
165 VNET_DEFINE(int, tcp_do_ecn) = 0;
166 SYSCTL_VNET_INT(_net_inet_tcp_ecn, OID_AUTO, enable, CTLFLAG_RW,
167     &VNET_NAME(tcp_do_ecn), 0,
168     "TCP ECN support");
169 
170 VNET_DEFINE(int, tcp_ecn_maxretries) = 1;
171 SYSCTL_VNET_INT(_net_inet_tcp_ecn, OID_AUTO, maxretries, CTLFLAG_RW,
172     &VNET_NAME(tcp_ecn_maxretries), 0,
173     "Max retries before giving up on ECN");
174 
175 VNET_DEFINE(int, tcp_insecure_rst) = 0;
176 #define	V_tcp_insecure_rst	VNET(tcp_insecure_rst)
177 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, insecure_rst, CTLFLAG_RW,
178     &VNET_NAME(tcp_insecure_rst), 0,
179     "Follow the old (insecure) criteria for accepting RST packets");
180 
181 VNET_DEFINE(int, tcp_do_autorcvbuf) = 1;
182 #define	V_tcp_do_autorcvbuf	VNET(tcp_do_autorcvbuf)
183 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, recvbuf_auto, CTLFLAG_RW,
184     &VNET_NAME(tcp_do_autorcvbuf), 0,
185     "Enable automatic receive buffer sizing");
186 
187 VNET_DEFINE(int, tcp_autorcvbuf_inc) = 16*1024;
188 #define	V_tcp_autorcvbuf_inc	VNET(tcp_autorcvbuf_inc)
189 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, recvbuf_inc, CTLFLAG_RW,
190     &VNET_NAME(tcp_autorcvbuf_inc), 0,
191     "Incrementor step size of automatic receive buffer");
192 
193 VNET_DEFINE(int, tcp_autorcvbuf_max) = 256*1024;
194 #define	V_tcp_autorcvbuf_max	VNET(tcp_autorcvbuf_max)
195 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, recvbuf_max, CTLFLAG_RW,
196     &VNET_NAME(tcp_autorcvbuf_max), 0,
197     "Max size of automatic receive buffer");
198 
199 int	tcp_read_locking = 1;
200 SYSCTL_INT(_net_inet_tcp, OID_AUTO, read_locking, CTLFLAG_RW,
201     &tcp_read_locking, 0, "Enable read locking strategy");
202 
203 VNET_DEFINE(struct inpcbhead, tcb);
204 #define	tcb6	tcb  /* for KAME src sync over BSD*'s */
205 VNET_DEFINE(struct inpcbinfo, tcbinfo);
206 
207 static void	 tcp_dooptions(struct tcpopt *, u_char *, int, int);
208 static void	 tcp_do_segment(struct mbuf *, struct tcphdr *,
209 		     struct socket *, struct tcpcb *, int, int, uint8_t,
210 		     int);
211 static void	 tcp_dropwithreset(struct mbuf *, struct tcphdr *,
212 		     struct tcpcb *, int, int);
213 static void	 tcp_pulloutofband(struct socket *,
214 		     struct tcphdr *, struct mbuf *, int);
215 static void	 tcp_xmit_timer(struct tcpcb *, int);
216 static void	 tcp_newreno_partial_ack(struct tcpcb *, struct tcphdr *);
217 static void inline	cc_ack_received(struct tcpcb *tp, struct tcphdr *th,
218 			    uint16_t type);
219 static void inline	cc_conn_init(struct tcpcb *tp);
220 static void inline	cc_post_recovery(struct tcpcb *tp, struct tcphdr *th);
221 
222 /*
223  * Kernel module interface for updating tcpstat.  The argument is an index
224  * into tcpstat treated as an array of u_long.  While this encodes the
225  * general layout of tcpstat into the caller, it doesn't encode its location,
226  * so that future changes to add, for example, per-CPU stats support won't
227  * cause binary compatibility problems for kernel modules.
228  */
229 void
230 kmod_tcpstat_inc(int statnum)
231 {
232 
233 	(*((u_long *)&V_tcpstat + statnum))++;
234 }
235 
236 /*
237  * CC wrapper hook functions
238  */
239 static void inline
240 cc_ack_received(struct tcpcb *tp, struct tcphdr *th, uint16_t type)
241 {
242 	INP_WLOCK_ASSERT(tp->t_inpcb);
243 
244 	tp->ccv->bytes_this_ack = BYTES_THIS_ACK(tp, th);
245 	if (tp->snd_cwnd == min(tp->snd_cwnd, tp->snd_wnd))
246 		tp->ccv->flags |= CCF_CWND_LIMITED;
247 	else
248 		tp->ccv->flags &= ~CCF_CWND_LIMITED;
249 
250 	if (type == CC_ACK) {
251 		if (tp->snd_cwnd > tp->snd_ssthresh) {
252 			tp->t_bytes_acked += min(tp->ccv->bytes_this_ack,
253 			     V_tcp_abc_l_var * tp->t_maxseg);
254 			if (tp->t_bytes_acked >= tp->snd_cwnd) {
255 				tp->t_bytes_acked -= tp->snd_cwnd;
256 				tp->ccv->flags |= CCF_ABC_SENTAWND;
257 			}
258 		} else {
259 				tp->ccv->flags &= ~CCF_ABC_SENTAWND;
260 				tp->t_bytes_acked = 0;
261 		}
262 	}
263 
264 	if (CC_ALGO(tp)->ack_received != NULL) {
265 		/* XXXLAS: Find a way to live without this */
266 		tp->ccv->curack = th->th_ack;
267 		CC_ALGO(tp)->ack_received(tp->ccv, type);
268 	}
269 }
270 
271 static void inline
272 cc_conn_init(struct tcpcb *tp)
273 {
274 	struct hc_metrics_lite metrics;
275 	struct inpcb *inp = tp->t_inpcb;
276 	int rtt;
277 #ifdef INET6
278 	int isipv6 = ((inp->inp_vflag & INP_IPV6) != 0) ? 1 : 0;
279 #endif
280 
281 	INP_WLOCK_ASSERT(tp->t_inpcb);
282 
283 	tcp_hc_get(&inp->inp_inc, &metrics);
284 
285 	if (tp->t_srtt == 0 && (rtt = metrics.rmx_rtt)) {
286 		tp->t_srtt = rtt;
287 		tp->t_rttbest = tp->t_srtt + TCP_RTT_SCALE;
288 		TCPSTAT_INC(tcps_usedrtt);
289 		if (metrics.rmx_rttvar) {
290 			tp->t_rttvar = metrics.rmx_rttvar;
291 			TCPSTAT_INC(tcps_usedrttvar);
292 		} else {
293 			/* default variation is +- 1 rtt */
294 			tp->t_rttvar =
295 			    tp->t_srtt * TCP_RTTVAR_SCALE / TCP_RTT_SCALE;
296 		}
297 		TCPT_RANGESET(tp->t_rxtcur,
298 		    ((tp->t_srtt >> 2) + tp->t_rttvar) >> 1,
299 		    tp->t_rttmin, TCPTV_REXMTMAX);
300 	}
301 	if (metrics.rmx_ssthresh) {
302 		/*
303 		 * There's some sort of gateway or interface
304 		 * buffer limit on the path.  Use this to set
305 		 * the slow start threshhold, but set the
306 		 * threshold to no less than 2*mss.
307 		 */
308 		tp->snd_ssthresh = max(2 * tp->t_maxseg, metrics.rmx_ssthresh);
309 		TCPSTAT_INC(tcps_usedssthresh);
310 	}
311 
312 	/*
313 	 * Set the slow-start flight size depending on whether this
314 	 * is a local network or not.
315 	 *
316 	 * Extend this so we cache the cwnd too and retrieve it here.
317 	 * Make cwnd even bigger than RFC3390 suggests but only if we
318 	 * have previous experience with the remote host. Be careful
319 	 * not make cwnd bigger than remote receive window or our own
320 	 * send socket buffer. Maybe put some additional upper bound
321 	 * on the retrieved cwnd. Should do incremental updates to
322 	 * hostcache when cwnd collapses so next connection doesn't
323 	 * overloads the path again.
324 	 *
325 	 * XXXAO: Initializing the CWND from the hostcache is broken
326 	 * and in its current form not RFC conformant.  It is disabled
327 	 * until fixed or removed entirely.
328 	 *
329 	 * RFC3390 says only do this if SYN or SYN/ACK didn't got lost.
330 	 * We currently check only in syncache_socket for that.
331 	 */
332 /* #define TCP_METRICS_CWND */
333 #ifdef TCP_METRICS_CWND
334 	if (metrics.rmx_cwnd)
335 		tp->snd_cwnd = max(tp->t_maxseg, min(metrics.rmx_cwnd / 2,
336 		    min(tp->snd_wnd, so->so_snd.sb_hiwat)));
337 	else
338 #endif
339 	if (V_tcp_do_rfc3390)
340 		tp->snd_cwnd = min(4 * tp->t_maxseg,
341 		    max(2 * tp->t_maxseg, 4380));
342 #ifdef INET6
343 	else if ((isipv6 && in6_localaddr(&inp->in6p_faddr)) ||
344 		 (!isipv6 && in_localaddr(inp->inp_faddr)))
345 #else
346 	else if (in_localaddr(inp->inp_faddr))
347 #endif
348 		tp->snd_cwnd = tp->t_maxseg * V_ss_fltsz_local;
349 	else
350 		tp->snd_cwnd = tp->t_maxseg * V_ss_fltsz;
351 
352 	if (CC_ALGO(tp)->conn_init != NULL)
353 		CC_ALGO(tp)->conn_init(tp->ccv);
354 }
355 
356 void inline
357 cc_cong_signal(struct tcpcb *tp, struct tcphdr *th, uint32_t type)
358 {
359 	INP_WLOCK_ASSERT(tp->t_inpcb);
360 
361 	switch(type) {
362 	case CC_NDUPACK:
363 		if (!IN_FASTRECOVERY(tp->t_flags)) {
364 			tp->snd_recover = tp->snd_max;
365 			if (tp->t_flags & TF_ECN_PERMIT)
366 				tp->t_flags |= TF_ECN_SND_CWR;
367 		}
368 		break;
369 	case CC_ECN:
370 		if (!IN_CONGRECOVERY(tp->t_flags)) {
371 			TCPSTAT_INC(tcps_ecn_rcwnd);
372 			tp->snd_recover = tp->snd_max;
373 			if (tp->t_flags & TF_ECN_PERMIT)
374 				tp->t_flags |= TF_ECN_SND_CWR;
375 		}
376 		break;
377 	case CC_RTO:
378 		tp->t_dupacks = 0;
379 		tp->t_bytes_acked = 0;
380 		EXIT_RECOVERY(tp->t_flags);
381 		tp->snd_cwnd = tp->t_maxseg;
382 		break;
383 	case CC_RTO_ERR:
384 		TCPSTAT_INC(tcps_sndrexmitbad);
385 		/* RTO was unnecessary, so reset everything. */
386 		tp->snd_cwnd = tp->snd_cwnd_prev;
387 		tp->snd_ssthresh = tp->snd_ssthresh_prev;
388 		tp->snd_recover = tp->snd_recover_prev;
389 		if (tp->t_flags & TF_WASFRECOVERY)
390 			ENTER_FASTRECOVERY(tp->t_flags);
391 		if (tp->t_flags & TF_WASCRECOVERY)
392 			ENTER_CONGRECOVERY(tp->t_flags);
393 		tp->snd_nxt = tp->snd_max;
394 		tp->t_badrxtwin = 0;
395 		break;
396 	}
397 
398 	if (CC_ALGO(tp)->cong_signal != NULL) {
399 		if (th != NULL)
400 			tp->ccv->curack = th->th_ack;
401 		CC_ALGO(tp)->cong_signal(tp->ccv, type);
402 	}
403 }
404 
405 static void inline
406 cc_post_recovery(struct tcpcb *tp, struct tcphdr *th)
407 {
408 	INP_WLOCK_ASSERT(tp->t_inpcb);
409 
410 	/* XXXLAS: KASSERT that we're in recovery? */
411 
412 	if (CC_ALGO(tp)->post_recovery != NULL) {
413 		tp->ccv->curack = th->th_ack;
414 		CC_ALGO(tp)->post_recovery(tp->ccv);
415 	}
416 	/* XXXLAS: EXIT_RECOVERY ? */
417 	tp->t_bytes_acked = 0;
418 }
419 
420 /* Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint. */
421 #ifdef INET6
422 #define ND6_HINT(tp) \
423 do { \
424 	if ((tp) && (tp)->t_inpcb && \
425 	    ((tp)->t_inpcb->inp_vflag & INP_IPV6) != 0) \
426 		nd6_nud_hint(NULL, NULL, 0); \
427 } while (0)
428 #else
429 #define ND6_HINT(tp)
430 #endif
431 
432 /*
433  * Indicate whether this ack should be delayed.  We can delay the ack if
434  *	- there is no delayed ack timer in progress and
435  *	- our last ack wasn't a 0-sized window.  We never want to delay
436  *	  the ack that opens up a 0-sized window and
437  *		- delayed acks are enabled or
438  *		- this is a half-synchronized T/TCP connection.
439  */
440 #define DELAY_ACK(tp)							\
441 	((!tcp_timer_active(tp, TT_DELACK) &&				\
442 	    (tp->t_flags & TF_RXWIN0SENT) == 0) &&			\
443 	    (V_tcp_delack_enabled || (tp->t_flags & TF_NEEDSYN)))
444 
445 /*
446  * TCP input handling is split into multiple parts:
447  *   tcp6_input is a thin wrapper around tcp_input for the extended
448  *	ip6_protox[] call format in ip6_input
449  *   tcp_input handles primary segment validation, inpcb lookup and
450  *	SYN processing on listen sockets
451  *   tcp_do_segment processes the ACK and text of the segment for
452  *	establishing, established and closing connections
453  */
454 #ifdef INET6
455 int
456 tcp6_input(struct mbuf **mp, int *offp, int proto)
457 {
458 	struct mbuf *m = *mp;
459 	struct in6_ifaddr *ia6;
460 
461 	IP6_EXTHDR_CHECK(m, *offp, sizeof(struct tcphdr), IPPROTO_DONE);
462 
463 	/*
464 	 * draft-itojun-ipv6-tcp-to-anycast
465 	 * better place to put this in?
466 	 */
467 	ia6 = ip6_getdstifaddr(m);
468 	if (ia6 && (ia6->ia6_flags & IN6_IFF_ANYCAST)) {
469 		struct ip6_hdr *ip6;
470 
471 		ifa_free(&ia6->ia_ifa);
472 		ip6 = mtod(m, struct ip6_hdr *);
473 		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
474 			    (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
475 		return IPPROTO_DONE;
476 	}
477 
478 	tcp_input(m, *offp);
479 	return IPPROTO_DONE;
480 }
481 #endif
482 
483 void
484 tcp_input(struct mbuf *m, int off0)
485 {
486 	struct tcphdr *th;
487 	struct ip *ip = NULL;
488 	struct ipovly *ipov;
489 	struct inpcb *inp = NULL;
490 	struct tcpcb *tp = NULL;
491 	struct socket *so = NULL;
492 	u_char *optp = NULL;
493 	int optlen = 0;
494 	int len, tlen, off;
495 	int drop_hdrlen;
496 	int thflags;
497 	int rstreason = 0;	/* For badport_bandlim accounting purposes */
498 	uint8_t iptos;
499 #ifdef IPFIREWALL_FORWARD
500 	struct m_tag *fwd_tag;
501 #endif
502 #ifdef INET6
503 	struct ip6_hdr *ip6 = NULL;
504 	int isipv6;
505 #else
506 	const void *ip6 = NULL;
507 	const int isipv6 = 0;
508 #endif
509 	struct tcpopt to;		/* options in this segment */
510 	char *s = NULL;			/* address and port logging */
511 	int ti_locked;
512 #define	TI_UNLOCKED	1
513 #define	TI_RLOCKED	2
514 #define	TI_WLOCKED	3
515 
516 #ifdef TCPDEBUG
517 	/*
518 	 * The size of tcp_saveipgen must be the size of the max ip header,
519 	 * now IPv6.
520 	 */
521 	u_char tcp_saveipgen[IP6_HDR_LEN];
522 	struct tcphdr tcp_savetcp;
523 	short ostate = 0;
524 #endif
525 
526 #ifdef INET6
527 	isipv6 = (mtod(m, struct ip *)->ip_v == 6) ? 1 : 0;
528 #endif
529 
530 	to.to_flags = 0;
531 	TCPSTAT_INC(tcps_rcvtotal);
532 
533 	if (isipv6) {
534 #ifdef INET6
535 		/* IP6_EXTHDR_CHECK() is already done at tcp6_input(). */
536 		ip6 = mtod(m, struct ip6_hdr *);
537 		tlen = sizeof(*ip6) + ntohs(ip6->ip6_plen) - off0;
538 		if (in6_cksum(m, IPPROTO_TCP, off0, tlen)) {
539 			TCPSTAT_INC(tcps_rcvbadsum);
540 			goto drop;
541 		}
542 		th = (struct tcphdr *)((caddr_t)ip6 + off0);
543 
544 		/*
545 		 * Be proactive about unspecified IPv6 address in source.
546 		 * As we use all-zero to indicate unbounded/unconnected pcb,
547 		 * unspecified IPv6 address can be used to confuse us.
548 		 *
549 		 * Note that packets with unspecified IPv6 destination is
550 		 * already dropped in ip6_input.
551 		 */
552 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
553 			/* XXX stat */
554 			goto drop;
555 		}
556 #else
557 		th = NULL;		/* XXX: Avoid compiler warning. */
558 #endif
559 	} else {
560 		/*
561 		 * Get IP and TCP header together in first mbuf.
562 		 * Note: IP leaves IP header in first mbuf.
563 		 */
564 		if (off0 > sizeof (struct ip)) {
565 			ip_stripoptions(m, (struct mbuf *)0);
566 			off0 = sizeof(struct ip);
567 		}
568 		if (m->m_len < sizeof (struct tcpiphdr)) {
569 			if ((m = m_pullup(m, sizeof (struct tcpiphdr)))
570 			    == NULL) {
571 				TCPSTAT_INC(tcps_rcvshort);
572 				return;
573 			}
574 		}
575 		ip = mtod(m, struct ip *);
576 		ipov = (struct ipovly *)ip;
577 		th = (struct tcphdr *)((caddr_t)ip + off0);
578 		tlen = ip->ip_len;
579 
580 		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
581 			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
582 				th->th_sum = m->m_pkthdr.csum_data;
583 			else
584 				th->th_sum = in_pseudo(ip->ip_src.s_addr,
585 						ip->ip_dst.s_addr,
586 						htonl(m->m_pkthdr.csum_data +
587 							ip->ip_len +
588 							IPPROTO_TCP));
589 			th->th_sum ^= 0xffff;
590 #ifdef TCPDEBUG
591 			ipov->ih_len = (u_short)tlen;
592 			ipov->ih_len = htons(ipov->ih_len);
593 #endif
594 		} else {
595 			/*
596 			 * Checksum extended TCP header and data.
597 			 */
598 			len = sizeof (struct ip) + tlen;
599 			bzero(ipov->ih_x1, sizeof(ipov->ih_x1));
600 			ipov->ih_len = (u_short)tlen;
601 			ipov->ih_len = htons(ipov->ih_len);
602 			th->th_sum = in_cksum(m, len);
603 		}
604 		if (th->th_sum) {
605 			TCPSTAT_INC(tcps_rcvbadsum);
606 			goto drop;
607 		}
608 		/* Re-initialization for later version check */
609 		ip->ip_v = IPVERSION;
610 	}
611 
612 #ifdef INET6
613 	if (isipv6)
614 		iptos = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
615 	else
616 #endif
617 		iptos = ip->ip_tos;
618 
619 	/*
620 	 * Check that TCP offset makes sense,
621 	 * pull out TCP options and adjust length.		XXX
622 	 */
623 	off = th->th_off << 2;
624 	if (off < sizeof (struct tcphdr) || off > tlen) {
625 		TCPSTAT_INC(tcps_rcvbadoff);
626 		goto drop;
627 	}
628 	tlen -= off;	/* tlen is used instead of ti->ti_len */
629 	if (off > sizeof (struct tcphdr)) {
630 		if (isipv6) {
631 #ifdef INET6
632 			IP6_EXTHDR_CHECK(m, off0, off, );
633 			ip6 = mtod(m, struct ip6_hdr *);
634 			th = (struct tcphdr *)((caddr_t)ip6 + off0);
635 #endif
636 		} else {
637 			if (m->m_len < sizeof(struct ip) + off) {
638 				if ((m = m_pullup(m, sizeof (struct ip) + off))
639 				    == NULL) {
640 					TCPSTAT_INC(tcps_rcvshort);
641 					return;
642 				}
643 				ip = mtod(m, struct ip *);
644 				ipov = (struct ipovly *)ip;
645 				th = (struct tcphdr *)((caddr_t)ip + off0);
646 			}
647 		}
648 		optlen = off - sizeof (struct tcphdr);
649 		optp = (u_char *)(th + 1);
650 	}
651 	thflags = th->th_flags;
652 
653 	/*
654 	 * Convert TCP protocol specific fields to host format.
655 	 */
656 	th->th_seq = ntohl(th->th_seq);
657 	th->th_ack = ntohl(th->th_ack);
658 	th->th_win = ntohs(th->th_win);
659 	th->th_urp = ntohs(th->th_urp);
660 
661 	/*
662 	 * Delay dropping TCP, IP headers, IPv6 ext headers, and TCP options.
663 	 */
664 	drop_hdrlen = off0 + off;
665 
666 	/*
667 	 * Locate pcb for segment, which requires a lock on tcbinfo.
668 	 * Optimisticaly acquire a global read lock rather than a write lock
669 	 * unless header flags necessarily imply a state change.  There are
670 	 * two cases where we might discover later we need a write lock
671 	 * despite the flags: ACKs moving a connection out of the syncache,
672 	 * and ACKs for a connection in TIMEWAIT.
673 	 */
674 	if ((thflags & (TH_SYN | TH_FIN | TH_RST)) != 0 ||
675 	    tcp_read_locking == 0) {
676 		INP_INFO_WLOCK(&V_tcbinfo);
677 		ti_locked = TI_WLOCKED;
678 	} else {
679 		INP_INFO_RLOCK(&V_tcbinfo);
680 		ti_locked = TI_RLOCKED;
681 	}
682 
683 findpcb:
684 #ifdef INVARIANTS
685 	if (ti_locked == TI_RLOCKED)
686 		INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
687 	else if (ti_locked == TI_WLOCKED)
688 		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
689 	else
690 		panic("%s: findpcb ti_locked %d\n", __func__, ti_locked);
691 #endif
692 
693 #ifdef IPFIREWALL_FORWARD
694 	/*
695 	 * Grab info from PACKET_TAG_IPFORWARD tag prepended to the chain.
696 	 */
697 	fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
698 
699 	if (fwd_tag != NULL && isipv6 == 0) {	/* IPv6 support is not yet */
700 		struct sockaddr_in *next_hop;
701 
702 		next_hop = (struct sockaddr_in *)(fwd_tag+1);
703 		/*
704 		 * Transparently forwarded. Pretend to be the destination.
705 		 * already got one like this?
706 		 */
707 		inp = in_pcblookup_hash(&V_tcbinfo,
708 					ip->ip_src, th->th_sport,
709 					ip->ip_dst, th->th_dport,
710 					0, m->m_pkthdr.rcvif);
711 		if (!inp) {
712 			/* It's new.  Try to find the ambushing socket. */
713 			inp = in_pcblookup_hash(&V_tcbinfo,
714 						ip->ip_src, th->th_sport,
715 						next_hop->sin_addr,
716 						next_hop->sin_port ?
717 						    ntohs(next_hop->sin_port) :
718 						    th->th_dport,
719 						INPLOOKUP_WILDCARD,
720 						m->m_pkthdr.rcvif);
721 		}
722 		/* Remove the tag from the packet.  We don't need it anymore. */
723 		m_tag_delete(m, fwd_tag);
724 	} else
725 #endif /* IPFIREWALL_FORWARD */
726 	{
727 		if (isipv6) {
728 #ifdef INET6
729 			inp = in6_pcblookup_hash(&V_tcbinfo,
730 						 &ip6->ip6_src, th->th_sport,
731 						 &ip6->ip6_dst, th->th_dport,
732 						 INPLOOKUP_WILDCARD,
733 						 m->m_pkthdr.rcvif);
734 #endif
735 		} else
736 			inp = in_pcblookup_hash(&V_tcbinfo,
737 						ip->ip_src, th->th_sport,
738 						ip->ip_dst, th->th_dport,
739 						INPLOOKUP_WILDCARD,
740 						m->m_pkthdr.rcvif);
741 	}
742 
743 	/*
744 	 * If the INPCB does not exist then all data in the incoming
745 	 * segment is discarded and an appropriate RST is sent back.
746 	 * XXX MRT Send RST using which routing table?
747 	 */
748 	if (inp == NULL) {
749 		/*
750 		 * Log communication attempts to ports that are not
751 		 * in use.
752 		 */
753 		if ((tcp_log_in_vain == 1 && (thflags & TH_SYN)) ||
754 		    tcp_log_in_vain == 2) {
755 			if ((s = tcp_log_vain(NULL, th, (void *)ip, ip6)))
756 				log(LOG_INFO, "%s; %s: Connection attempt "
757 				    "to closed port\n", s, __func__);
758 		}
759 		/*
760 		 * When blackholing do not respond with a RST but
761 		 * completely ignore the segment and drop it.
762 		 */
763 		if ((V_blackhole == 1 && (thflags & TH_SYN)) ||
764 		    V_blackhole == 2)
765 			goto dropunlock;
766 
767 		rstreason = BANDLIM_RST_CLOSEDPORT;
768 		goto dropwithreset;
769 	}
770 	INP_WLOCK(inp);
771 	if (!(inp->inp_flags & INP_HW_FLOWID)
772 	    && (m->m_flags & M_FLOWID)
773 	    && ((inp->inp_socket == NULL)
774 		|| !(inp->inp_socket->so_options & SO_ACCEPTCONN))) {
775 		inp->inp_flags |= INP_HW_FLOWID;
776 		inp->inp_flags &= ~INP_SW_FLOWID;
777 		inp->inp_flowid = m->m_pkthdr.flowid;
778 	}
779 #ifdef IPSEC
780 #ifdef INET6
781 	if (isipv6 && ipsec6_in_reject(m, inp)) {
782 		V_ipsec6stat.in_polvio++;
783 		goto dropunlock;
784 	} else
785 #endif /* INET6 */
786 	if (ipsec4_in_reject(m, inp) != 0) {
787 		V_ipsec4stat.in_polvio++;
788 		goto dropunlock;
789 	}
790 #endif /* IPSEC */
791 
792 	/*
793 	 * Check the minimum TTL for socket.
794 	 */
795 	if (inp->inp_ip_minttl != 0) {
796 #ifdef INET6
797 		if (isipv6 && inp->inp_ip_minttl > ip6->ip6_hlim)
798 			goto dropunlock;
799 		else
800 #endif
801 		if (inp->inp_ip_minttl > ip->ip_ttl)
802 			goto dropunlock;
803 	}
804 
805 	/*
806 	 * A previous connection in TIMEWAIT state is supposed to catch stray
807 	 * or duplicate segments arriving late.  If this segment was a
808 	 * legitimate new connection attempt the old INPCB gets removed and
809 	 * we can try again to find a listening socket.
810 	 *
811 	 * At this point, due to earlier optimism, we may hold a read lock on
812 	 * the inpcbinfo, rather than a write lock.  If so, we need to
813 	 * upgrade, or if that fails, acquire a reference on the inpcb, drop
814 	 * all locks, acquire a global write lock, and then re-acquire the
815 	 * inpcb lock.  We may at that point discover that another thread has
816 	 * tried to free the inpcb, in which case we need to loop back and
817 	 * try to find a new inpcb to deliver to.
818 	 */
819 relocked:
820 	if (inp->inp_flags & INP_TIMEWAIT) {
821 		KASSERT(ti_locked == TI_RLOCKED || ti_locked == TI_WLOCKED,
822 		    ("%s: INP_TIMEWAIT ti_locked %d", __func__, ti_locked));
823 
824 		if (ti_locked == TI_RLOCKED) {
825 			if (INP_INFO_TRY_UPGRADE(&V_tcbinfo) == 0) {
826 				in_pcbref(inp);
827 				INP_WUNLOCK(inp);
828 				INP_INFO_RUNLOCK(&V_tcbinfo);
829 				INP_INFO_WLOCK(&V_tcbinfo);
830 				ti_locked = TI_WLOCKED;
831 				INP_WLOCK(inp);
832 				if (in_pcbrele(inp)) {
833 					inp = NULL;
834 					goto findpcb;
835 				}
836 			} else
837 				ti_locked = TI_WLOCKED;
838 		}
839 		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
840 
841 		if (thflags & TH_SYN)
842 			tcp_dooptions(&to, optp, optlen, TO_SYN);
843 		/*
844 		 * NB: tcp_twcheck unlocks the INP and frees the mbuf.
845 		 */
846 		if (tcp_twcheck(inp, &to, th, m, tlen))
847 			goto findpcb;
848 		INP_INFO_WUNLOCK(&V_tcbinfo);
849 		return;
850 	}
851 	/*
852 	 * The TCPCB may no longer exist if the connection is winding
853 	 * down or it is in the CLOSED state.  Either way we drop the
854 	 * segment and send an appropriate response.
855 	 */
856 	tp = intotcpcb(inp);
857 	if (tp == NULL || tp->t_state == TCPS_CLOSED) {
858 		rstreason = BANDLIM_RST_CLOSEDPORT;
859 		goto dropwithreset;
860 	}
861 
862 	/*
863 	 * We've identified a valid inpcb, but it could be that we need an
864 	 * inpcbinfo write lock and have only a read lock.  In this case,
865 	 * attempt to upgrade/relock using the same strategy as the TIMEWAIT
866 	 * case above.  If we relock, we have to jump back to 'relocked' as
867 	 * the connection might now be in TIMEWAIT.
868 	 */
869 	if (tp->t_state != TCPS_ESTABLISHED ||
870 	    (thflags & (TH_SYN | TH_FIN | TH_RST)) != 0 ||
871 	    tcp_read_locking == 0) {
872 		KASSERT(ti_locked == TI_RLOCKED || ti_locked == TI_WLOCKED,
873 		    ("%s: upgrade check ti_locked %d", __func__, ti_locked));
874 
875 		if (ti_locked == TI_RLOCKED) {
876 			if (INP_INFO_TRY_UPGRADE(&V_tcbinfo) == 0) {
877 				in_pcbref(inp);
878 				INP_WUNLOCK(inp);
879 				INP_INFO_RUNLOCK(&V_tcbinfo);
880 				INP_INFO_WLOCK(&V_tcbinfo);
881 				ti_locked = TI_WLOCKED;
882 				INP_WLOCK(inp);
883 				if (in_pcbrele(inp)) {
884 					inp = NULL;
885 					goto findpcb;
886 				}
887 				goto relocked;
888 			} else
889 				ti_locked = TI_WLOCKED;
890 		}
891 		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
892 	}
893 
894 #ifdef MAC
895 	INP_WLOCK_ASSERT(inp);
896 	if (mac_inpcb_check_deliver(inp, m))
897 		goto dropunlock;
898 #endif
899 	so = inp->inp_socket;
900 	KASSERT(so != NULL, ("%s: so == NULL", __func__));
901 #ifdef TCPDEBUG
902 	if (so->so_options & SO_DEBUG) {
903 		ostate = tp->t_state;
904 		if (isipv6) {
905 #ifdef INET6
906 			bcopy((char *)ip6, (char *)tcp_saveipgen, sizeof(*ip6));
907 #endif
908 		} else
909 			bcopy((char *)ip, (char *)tcp_saveipgen, sizeof(*ip));
910 		tcp_savetcp = *th;
911 	}
912 #endif
913 	/*
914 	 * When the socket is accepting connections (the INPCB is in LISTEN
915 	 * state) we look into the SYN cache if this is a new connection
916 	 * attempt or the completion of a previous one.
917 	 */
918 	if (so->so_options & SO_ACCEPTCONN) {
919 		struct in_conninfo inc;
920 
921 		KASSERT(tp->t_state == TCPS_LISTEN, ("%s: so accepting but "
922 		    "tp not listening", __func__));
923 
924 		bzero(&inc, sizeof(inc));
925 #ifdef INET6
926 		if (isipv6) {
927 			inc.inc_flags |= INC_ISIPV6;
928 			inc.inc6_faddr = ip6->ip6_src;
929 			inc.inc6_laddr = ip6->ip6_dst;
930 		} else
931 #endif
932 		{
933 			inc.inc_faddr = ip->ip_src;
934 			inc.inc_laddr = ip->ip_dst;
935 		}
936 		inc.inc_fport = th->th_sport;
937 		inc.inc_lport = th->th_dport;
938 		inc.inc_fibnum = so->so_fibnum;
939 
940 		/*
941 		 * Check for an existing connection attempt in syncache if
942 		 * the flag is only ACK.  A successful lookup creates a new
943 		 * socket appended to the listen queue in SYN_RECEIVED state.
944 		 */
945 		if ((thflags & (TH_RST|TH_ACK|TH_SYN)) == TH_ACK) {
946 			/*
947 			 * Parse the TCP options here because
948 			 * syncookies need access to the reflected
949 			 * timestamp.
950 			 */
951 			tcp_dooptions(&to, optp, optlen, 0);
952 			/*
953 			 * NB: syncache_expand() doesn't unlock
954 			 * inp and tcpinfo locks.
955 			 */
956 			if (!syncache_expand(&inc, &to, th, &so, m)) {
957 				/*
958 				 * No syncache entry or ACK was not
959 				 * for our SYN/ACK.  Send a RST.
960 				 * NB: syncache did its own logging
961 				 * of the failure cause.
962 				 */
963 				rstreason = BANDLIM_RST_OPENPORT;
964 				goto dropwithreset;
965 			}
966 			if (so == NULL) {
967 				/*
968 				 * We completed the 3-way handshake
969 				 * but could not allocate a socket
970 				 * either due to memory shortage,
971 				 * listen queue length limits or
972 				 * global socket limits.  Send RST
973 				 * or wait and have the remote end
974 				 * retransmit the ACK for another
975 				 * try.
976 				 */
977 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
978 					log(LOG_DEBUG, "%s; %s: Listen socket: "
979 					    "Socket allocation failed due to "
980 					    "limits or memory shortage, %s\n",
981 					    s, __func__,
982 					    V_tcp_sc_rst_sock_fail ?
983 					    "sending RST" : "try again");
984 				if (V_tcp_sc_rst_sock_fail) {
985 					rstreason = BANDLIM_UNLIMITED;
986 					goto dropwithreset;
987 				} else
988 					goto dropunlock;
989 			}
990 			/*
991 			 * Socket is created in state SYN_RECEIVED.
992 			 * Unlock the listen socket, lock the newly
993 			 * created socket and update the tp variable.
994 			 */
995 			INP_WUNLOCK(inp);	/* listen socket */
996 			inp = sotoinpcb(so);
997 			INP_WLOCK(inp);		/* new connection */
998 			tp = intotcpcb(inp);
999 			KASSERT(tp->t_state == TCPS_SYN_RECEIVED,
1000 			    ("%s: ", __func__));
1001 			/*
1002 			 * Process the segment and the data it
1003 			 * contains.  tcp_do_segment() consumes
1004 			 * the mbuf chain and unlocks the inpcb.
1005 			 */
1006 			tcp_do_segment(m, th, so, tp, drop_hdrlen, tlen,
1007 			    iptos, ti_locked);
1008 			INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1009 			return;
1010 		}
1011 		/*
1012 		 * Segment flag validation for new connection attempts:
1013 		 *
1014 		 * Our (SYN|ACK) response was rejected.
1015 		 * Check with syncache and remove entry to prevent
1016 		 * retransmits.
1017 		 *
1018 		 * NB: syncache_chkrst does its own logging of failure
1019 		 * causes.
1020 		 */
1021 		if (thflags & TH_RST) {
1022 			syncache_chkrst(&inc, th);
1023 			goto dropunlock;
1024 		}
1025 		/*
1026 		 * We can't do anything without SYN.
1027 		 */
1028 		if ((thflags & TH_SYN) == 0) {
1029 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1030 				log(LOG_DEBUG, "%s; %s: Listen socket: "
1031 				    "SYN is missing, segment ignored\n",
1032 				    s, __func__);
1033 			TCPSTAT_INC(tcps_badsyn);
1034 			goto dropunlock;
1035 		}
1036 		/*
1037 		 * (SYN|ACK) is bogus on a listen socket.
1038 		 */
1039 		if (thflags & TH_ACK) {
1040 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1041 				log(LOG_DEBUG, "%s; %s: Listen socket: "
1042 				    "SYN|ACK invalid, segment rejected\n",
1043 				    s, __func__);
1044 			syncache_badack(&inc);	/* XXX: Not needed! */
1045 			TCPSTAT_INC(tcps_badsyn);
1046 			rstreason = BANDLIM_RST_OPENPORT;
1047 			goto dropwithreset;
1048 		}
1049 		/*
1050 		 * If the drop_synfin option is enabled, drop all
1051 		 * segments with both the SYN and FIN bits set.
1052 		 * This prevents e.g. nmap from identifying the
1053 		 * TCP/IP stack.
1054 		 * XXX: Poor reasoning.  nmap has other methods
1055 		 * and is constantly refining its stack detection
1056 		 * strategies.
1057 		 * XXX: This is a violation of the TCP specification
1058 		 * and was used by RFC1644.
1059 		 */
1060 		if ((thflags & TH_FIN) && V_drop_synfin) {
1061 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1062 				log(LOG_DEBUG, "%s; %s: Listen socket: "
1063 				    "SYN|FIN segment ignored (based on "
1064 				    "sysctl setting)\n", s, __func__);
1065 			TCPSTAT_INC(tcps_badsyn);
1066                 	goto dropunlock;
1067 		}
1068 		/*
1069 		 * Segment's flags are (SYN) or (SYN|FIN).
1070 		 *
1071 		 * TH_PUSH, TH_URG, TH_ECE, TH_CWR are ignored
1072 		 * as they do not affect the state of the TCP FSM.
1073 		 * The data pointed to by TH_URG and th_urp is ignored.
1074 		 */
1075 		KASSERT((thflags & (TH_RST|TH_ACK)) == 0,
1076 		    ("%s: Listen socket: TH_RST or TH_ACK set", __func__));
1077 		KASSERT(thflags & (TH_SYN),
1078 		    ("%s: Listen socket: TH_SYN not set", __func__));
1079 #ifdef INET6
1080 		/*
1081 		 * If deprecated address is forbidden,
1082 		 * we do not accept SYN to deprecated interface
1083 		 * address to prevent any new inbound connection from
1084 		 * getting established.
1085 		 * When we do not accept SYN, we send a TCP RST,
1086 		 * with deprecated source address (instead of dropping
1087 		 * it).  We compromise it as it is much better for peer
1088 		 * to send a RST, and RST will be the final packet
1089 		 * for the exchange.
1090 		 *
1091 		 * If we do not forbid deprecated addresses, we accept
1092 		 * the SYN packet.  RFC2462 does not suggest dropping
1093 		 * SYN in this case.
1094 		 * If we decipher RFC2462 5.5.4, it says like this:
1095 		 * 1. use of deprecated addr with existing
1096 		 *    communication is okay - "SHOULD continue to be
1097 		 *    used"
1098 		 * 2. use of it with new communication:
1099 		 *   (2a) "SHOULD NOT be used if alternate address
1100 		 *        with sufficient scope is available"
1101 		 *   (2b) nothing mentioned otherwise.
1102 		 * Here we fall into (2b) case as we have no choice in
1103 		 * our source address selection - we must obey the peer.
1104 		 *
1105 		 * The wording in RFC2462 is confusing, and there are
1106 		 * multiple description text for deprecated address
1107 		 * handling - worse, they are not exactly the same.
1108 		 * I believe 5.5.4 is the best one, so we follow 5.5.4.
1109 		 */
1110 		if (isipv6 && !V_ip6_use_deprecated) {
1111 			struct in6_ifaddr *ia6;
1112 
1113 			ia6 = ip6_getdstifaddr(m);
1114 			if (ia6 != NULL &&
1115 			    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
1116 				ifa_free(&ia6->ia_ifa);
1117 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1118 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1119 					"Connection attempt to deprecated "
1120 					"IPv6 address rejected\n",
1121 					s, __func__);
1122 				rstreason = BANDLIM_RST_OPENPORT;
1123 				goto dropwithreset;
1124 			}
1125 			ifa_free(&ia6->ia_ifa);
1126 		}
1127 #endif
1128 		/*
1129 		 * Basic sanity checks on incoming SYN requests:
1130 		 *   Don't respond if the destination is a link layer
1131 		 *	broadcast according to RFC1122 4.2.3.10, p. 104.
1132 		 *   If it is from this socket it must be forged.
1133 		 *   Don't respond if the source or destination is a
1134 		 *	global or subnet broad- or multicast address.
1135 		 *   Note that it is quite possible to receive unicast
1136 		 *	link-layer packets with a broadcast IP address. Use
1137 		 *	in_broadcast() to find them.
1138 		 */
1139 		if (m->m_flags & (M_BCAST|M_MCAST)) {
1140 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1141 			    log(LOG_DEBUG, "%s; %s: Listen socket: "
1142 				"Connection attempt from broad- or multicast "
1143 				"link layer address ignored\n", s, __func__);
1144 			goto dropunlock;
1145 		}
1146 		if (isipv6) {
1147 #ifdef INET6
1148 			if (th->th_dport == th->th_sport &&
1149 			    IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst, &ip6->ip6_src)) {
1150 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1151 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1152 					"Connection attempt to/from self "
1153 					"ignored\n", s, __func__);
1154 				goto dropunlock;
1155 			}
1156 			if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
1157 			    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
1158 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1159 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1160 					"Connection attempt from/to multicast "
1161 					"address ignored\n", s, __func__);
1162 				goto dropunlock;
1163 			}
1164 #endif
1165 		} else {
1166 			if (th->th_dport == th->th_sport &&
1167 			    ip->ip_dst.s_addr == ip->ip_src.s_addr) {
1168 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1169 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1170 					"Connection attempt from/to self "
1171 					"ignored\n", s, __func__);
1172 				goto dropunlock;
1173 			}
1174 			if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
1175 			    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
1176 			    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
1177 			    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif)) {
1178 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1179 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1180 					"Connection attempt from/to broad- "
1181 					"or multicast address ignored\n",
1182 					s, __func__);
1183 				goto dropunlock;
1184 			}
1185 		}
1186 		/*
1187 		 * SYN appears to be valid.  Create compressed TCP state
1188 		 * for syncache.
1189 		 */
1190 #ifdef TCPDEBUG
1191 		if (so->so_options & SO_DEBUG)
1192 			tcp_trace(TA_INPUT, ostate, tp,
1193 			    (void *)tcp_saveipgen, &tcp_savetcp, 0);
1194 #endif
1195 		tcp_dooptions(&to, optp, optlen, TO_SYN);
1196 		syncache_add(&inc, &to, th, inp, &so, m);
1197 		/*
1198 		 * Entry added to syncache and mbuf consumed.
1199 		 * Everything already unlocked by syncache_add().
1200 		 */
1201 		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1202 		return;
1203 	}
1204 
1205 	/*
1206 	 * Segment belongs to a connection in SYN_SENT, ESTABLISHED or later
1207 	 * state.  tcp_do_segment() always consumes the mbuf chain, unlocks
1208 	 * the inpcb, and unlocks pcbinfo.
1209 	 */
1210 	tcp_do_segment(m, th, so, tp, drop_hdrlen, tlen, iptos, ti_locked);
1211 	INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1212 	return;
1213 
1214 dropwithreset:
1215 	if (ti_locked == TI_RLOCKED)
1216 		INP_INFO_RUNLOCK(&V_tcbinfo);
1217 	else if (ti_locked == TI_WLOCKED)
1218 		INP_INFO_WUNLOCK(&V_tcbinfo);
1219 	else
1220 		panic("%s: dropwithreset ti_locked %d", __func__, ti_locked);
1221 	ti_locked = TI_UNLOCKED;
1222 
1223 	if (inp != NULL) {
1224 		tcp_dropwithreset(m, th, tp, tlen, rstreason);
1225 		INP_WUNLOCK(inp);
1226 	} else
1227 		tcp_dropwithreset(m, th, NULL, tlen, rstreason);
1228 	m = NULL;	/* mbuf chain got consumed. */
1229 	goto drop;
1230 
1231 dropunlock:
1232 	if (ti_locked == TI_RLOCKED)
1233 		INP_INFO_RUNLOCK(&V_tcbinfo);
1234 	else if (ti_locked == TI_WLOCKED)
1235 		INP_INFO_WUNLOCK(&V_tcbinfo);
1236 	else
1237 		panic("%s: dropunlock ti_locked %d", __func__, ti_locked);
1238 	ti_locked = TI_UNLOCKED;
1239 
1240 	if (inp != NULL)
1241 		INP_WUNLOCK(inp);
1242 
1243 drop:
1244 	INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1245 	if (s != NULL)
1246 		free(s, M_TCPLOG);
1247 	if (m != NULL)
1248 		m_freem(m);
1249 }
1250 
1251 static void
1252 tcp_do_segment(struct mbuf *m, struct tcphdr *th, struct socket *so,
1253     struct tcpcb *tp, int drop_hdrlen, int tlen, uint8_t iptos,
1254     int ti_locked)
1255 {
1256 	int thflags, acked, ourfinisacked, needoutput = 0;
1257 	int rstreason, todrop, win;
1258 	u_long tiwin;
1259 	struct tcpopt to;
1260 
1261 #ifdef TCPDEBUG
1262 	/*
1263 	 * The size of tcp_saveipgen must be the size of the max ip header,
1264 	 * now IPv6.
1265 	 */
1266 	u_char tcp_saveipgen[IP6_HDR_LEN];
1267 	struct tcphdr tcp_savetcp;
1268 	short ostate = 0;
1269 #endif
1270 	thflags = th->th_flags;
1271 
1272 	/*
1273 	 * If this is either a state-changing packet or current state isn't
1274 	 * established, we require a write lock on tcbinfo.  Otherwise, we
1275 	 * allow either a read lock or a write lock, as we may have acquired
1276 	 * a write lock due to a race.
1277 	 *
1278 	 * Require a global write lock for SYN/FIN/RST segments or
1279 	 * non-established connections; otherwise accept either a read or
1280 	 * write lock, as we may have conservatively acquired a write lock in
1281 	 * certain cases in tcp_input() (is this still true?).  Currently we
1282 	 * will never enter with no lock, so we try to drop it quickly in the
1283 	 * common pure ack/pure data cases.
1284 	 */
1285 	if ((thflags & (TH_SYN | TH_FIN | TH_RST)) != 0 ||
1286 	    tp->t_state != TCPS_ESTABLISHED) {
1287 		KASSERT(ti_locked == TI_WLOCKED, ("%s ti_locked %d for "
1288 		    "SYN/FIN/RST/!EST", __func__, ti_locked));
1289 		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1290 	} else {
1291 #ifdef INVARIANTS
1292 		if (ti_locked == TI_RLOCKED)
1293 			INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
1294 		else if (ti_locked == TI_WLOCKED)
1295 			INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1296 		else
1297 			panic("%s: ti_locked %d for EST", __func__,
1298 			    ti_locked);
1299 #endif
1300 	}
1301 	INP_WLOCK_ASSERT(tp->t_inpcb);
1302 	KASSERT(tp->t_state > TCPS_LISTEN, ("%s: TCPS_LISTEN",
1303 	    __func__));
1304 	KASSERT(tp->t_state != TCPS_TIME_WAIT, ("%s: TCPS_TIME_WAIT",
1305 	    __func__));
1306 
1307 	/*
1308 	 * Segment received on connection.
1309 	 * Reset idle time and keep-alive timer.
1310 	 * XXX: This should be done after segment
1311 	 * validation to ignore broken/spoofed segs.
1312 	 */
1313 	tp->t_rcvtime = ticks;
1314 	if (TCPS_HAVEESTABLISHED(tp->t_state))
1315 		tcp_timer_activate(tp, TT_KEEP, tcp_keepidle);
1316 
1317 	/*
1318 	 * Unscale the window into a 32-bit value.
1319 	 * For the SYN_SENT state the scale is zero.
1320 	 */
1321 	tiwin = th->th_win << tp->snd_scale;
1322 
1323 	/*
1324 	 * TCP ECN processing.
1325 	 */
1326 	if (tp->t_flags & TF_ECN_PERMIT) {
1327 		if (thflags & TH_CWR)
1328 			tp->t_flags &= ~TF_ECN_SND_ECE;
1329 		switch (iptos & IPTOS_ECN_MASK) {
1330 		case IPTOS_ECN_CE:
1331 			tp->t_flags |= TF_ECN_SND_ECE;
1332 			TCPSTAT_INC(tcps_ecn_ce);
1333 			break;
1334 		case IPTOS_ECN_ECT0:
1335 			TCPSTAT_INC(tcps_ecn_ect0);
1336 			break;
1337 		case IPTOS_ECN_ECT1:
1338 			TCPSTAT_INC(tcps_ecn_ect1);
1339 			break;
1340 		}
1341 		/* Congestion experienced. */
1342 		if (thflags & TH_ECE) {
1343 			cc_cong_signal(tp, th, CC_ECN);
1344 		}
1345 	}
1346 
1347 	/*
1348 	 * Parse options on any incoming segment.
1349 	 */
1350 	tcp_dooptions(&to, (u_char *)(th + 1),
1351 	    (th->th_off << 2) - sizeof(struct tcphdr),
1352 	    (thflags & TH_SYN) ? TO_SYN : 0);
1353 
1354 	/*
1355 	 * If echoed timestamp is later than the current time,
1356 	 * fall back to non RFC1323 RTT calculation.  Normalize
1357 	 * timestamp if syncookies were used when this connection
1358 	 * was established.
1359 	 */
1360 	if ((to.to_flags & TOF_TS) && (to.to_tsecr != 0)) {
1361 		to.to_tsecr -= tp->ts_offset;
1362 		if (TSTMP_GT(to.to_tsecr, ticks))
1363 			to.to_tsecr = 0;
1364 	}
1365 
1366 	/*
1367 	 * Process options only when we get SYN/ACK back. The SYN case
1368 	 * for incoming connections is handled in tcp_syncache.
1369 	 * According to RFC1323 the window field in a SYN (i.e., a <SYN>
1370 	 * or <SYN,ACK>) segment itself is never scaled.
1371 	 * XXX this is traditional behavior, may need to be cleaned up.
1372 	 */
1373 	if (tp->t_state == TCPS_SYN_SENT && (thflags & TH_SYN)) {
1374 		if ((to.to_flags & TOF_SCALE) &&
1375 		    (tp->t_flags & TF_REQ_SCALE)) {
1376 			tp->t_flags |= TF_RCVD_SCALE;
1377 			tp->snd_scale = to.to_wscale;
1378 		}
1379 		/*
1380 		 * Initial send window.  It will be updated with
1381 		 * the next incoming segment to the scaled value.
1382 		 */
1383 		tp->snd_wnd = th->th_win;
1384 		if (to.to_flags & TOF_TS) {
1385 			tp->t_flags |= TF_RCVD_TSTMP;
1386 			tp->ts_recent = to.to_tsval;
1387 			tp->ts_recent_age = ticks;
1388 		}
1389 		if (to.to_flags & TOF_MSS)
1390 			tcp_mss(tp, to.to_mss);
1391 		if ((tp->t_flags & TF_SACK_PERMIT) &&
1392 		    (to.to_flags & TOF_SACKPERM) == 0)
1393 			tp->t_flags &= ~TF_SACK_PERMIT;
1394 	}
1395 
1396 	/*
1397 	 * Header prediction: check for the two common cases
1398 	 * of a uni-directional data xfer.  If the packet has
1399 	 * no control flags, is in-sequence, the window didn't
1400 	 * change and we're not retransmitting, it's a
1401 	 * candidate.  If the length is zero and the ack moved
1402 	 * forward, we're the sender side of the xfer.  Just
1403 	 * free the data acked & wake any higher level process
1404 	 * that was blocked waiting for space.  If the length
1405 	 * is non-zero and the ack didn't move, we're the
1406 	 * receiver side.  If we're getting packets in-order
1407 	 * (the reassembly queue is empty), add the data to
1408 	 * the socket buffer and note that we need a delayed ack.
1409 	 * Make sure that the hidden state-flags are also off.
1410 	 * Since we check for TCPS_ESTABLISHED first, it can only
1411 	 * be TH_NEEDSYN.
1412 	 */
1413 	if (tp->t_state == TCPS_ESTABLISHED &&
1414 	    th->th_seq == tp->rcv_nxt &&
1415 	    (thflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
1416 	    tp->snd_nxt == tp->snd_max &&
1417 	    tiwin && tiwin == tp->snd_wnd &&
1418 	    ((tp->t_flags & (TF_NEEDSYN|TF_NEEDFIN)) == 0) &&
1419 	    LIST_EMPTY(&tp->t_segq) &&
1420 	    ((to.to_flags & TOF_TS) == 0 ||
1421 	     TSTMP_GEQ(to.to_tsval, tp->ts_recent)) ) {
1422 
1423 		/*
1424 		 * If last ACK falls within this segment's sequence numbers,
1425 		 * record the timestamp.
1426 		 * NOTE that the test is modified according to the latest
1427 		 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
1428 		 */
1429 		if ((to.to_flags & TOF_TS) != 0 &&
1430 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1431 			tp->ts_recent_age = ticks;
1432 			tp->ts_recent = to.to_tsval;
1433 		}
1434 
1435 		if (tlen == 0) {
1436 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
1437 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
1438 			    !IN_RECOVERY(tp->t_flags) &&
1439 			    (to.to_flags & TOF_SACK) == 0 &&
1440 			    TAILQ_EMPTY(&tp->snd_holes)) {
1441 				/*
1442 				 * This is a pure ack for outstanding data.
1443 				 */
1444 				if (ti_locked == TI_RLOCKED)
1445 					INP_INFO_RUNLOCK(&V_tcbinfo);
1446 				else if (ti_locked == TI_WLOCKED)
1447 					INP_INFO_WUNLOCK(&V_tcbinfo);
1448 				else
1449 					panic("%s: ti_locked %d on pure ACK",
1450 					    __func__, ti_locked);
1451 				ti_locked = TI_UNLOCKED;
1452 
1453 				TCPSTAT_INC(tcps_predack);
1454 
1455 				/*
1456 				 * "bad retransmit" recovery.
1457 				 */
1458 				if (tp->t_rxtshift == 1 &&
1459 				    (int)(ticks - tp->t_badrxtwin) < 0) {
1460 					cc_cong_signal(tp, th, CC_RTO_ERR);
1461 				}
1462 
1463 				/*
1464 				 * Recalculate the transmit timer / rtt.
1465 				 *
1466 				 * Some boxes send broken timestamp replies
1467 				 * during the SYN+ACK phase, ignore
1468 				 * timestamps of 0 or we could calculate a
1469 				 * huge RTT and blow up the retransmit timer.
1470 				 */
1471 				if ((to.to_flags & TOF_TS) != 0 &&
1472 				    to.to_tsecr) {
1473 					if (!tp->t_rttlow ||
1474 					    tp->t_rttlow > ticks - to.to_tsecr)
1475 						tp->t_rttlow = ticks - to.to_tsecr;
1476 					tcp_xmit_timer(tp,
1477 					    ticks - to.to_tsecr + 1);
1478 				} else if (tp->t_rtttime &&
1479 				    SEQ_GT(th->th_ack, tp->t_rtseq)) {
1480 					if (!tp->t_rttlow ||
1481 					    tp->t_rttlow > ticks - tp->t_rtttime)
1482 						tp->t_rttlow = ticks - tp->t_rtttime;
1483 					tcp_xmit_timer(tp,
1484 							ticks - tp->t_rtttime);
1485 				}
1486 				acked = BYTES_THIS_ACK(tp, th);
1487 				TCPSTAT_INC(tcps_rcvackpack);
1488 				TCPSTAT_ADD(tcps_rcvackbyte, acked);
1489 				sbdrop(&so->so_snd, acked);
1490 				if (SEQ_GT(tp->snd_una, tp->snd_recover) &&
1491 				    SEQ_LEQ(th->th_ack, tp->snd_recover))
1492 					tp->snd_recover = th->th_ack - 1;
1493 
1494 				/*
1495 				 * Let the congestion control algorithm update
1496 				 * congestion control related information. This
1497 				 * typically means increasing the congestion
1498 				 * window.
1499 				 */
1500 				cc_ack_received(tp, th, CC_ACK);
1501 
1502 				tp->snd_una = th->th_ack;
1503 				/*
1504 				 * Pull snd_wl2 up to prevent seq wrap relative
1505 				 * to th_ack.
1506 				 */
1507 				tp->snd_wl2 = th->th_ack;
1508 				tp->t_dupacks = 0;
1509 				m_freem(m);
1510 				ND6_HINT(tp); /* Some progress has been made. */
1511 
1512 				/*
1513 				 * If all outstanding data are acked, stop
1514 				 * retransmit timer, otherwise restart timer
1515 				 * using current (possibly backed-off) value.
1516 				 * If process is waiting for space,
1517 				 * wakeup/selwakeup/signal.  If data
1518 				 * are ready to send, let tcp_output
1519 				 * decide between more output or persist.
1520 				 */
1521 #ifdef TCPDEBUG
1522 				if (so->so_options & SO_DEBUG)
1523 					tcp_trace(TA_INPUT, ostate, tp,
1524 					    (void *)tcp_saveipgen,
1525 					    &tcp_savetcp, 0);
1526 #endif
1527 				if (tp->snd_una == tp->snd_max)
1528 					tcp_timer_activate(tp, TT_REXMT, 0);
1529 				else if (!tcp_timer_active(tp, TT_PERSIST))
1530 					tcp_timer_activate(tp, TT_REXMT,
1531 						      tp->t_rxtcur);
1532 				sowwakeup(so);
1533 				if (so->so_snd.sb_cc)
1534 					(void) tcp_output(tp);
1535 				goto check_delack;
1536 			}
1537 		} else if (th->th_ack == tp->snd_una &&
1538 		    tlen <= sbspace(&so->so_rcv)) {
1539 			int newsize = 0;	/* automatic sockbuf scaling */
1540 
1541 			/*
1542 			 * This is a pure, in-sequence data packet with
1543 			 * nothing on the reassembly queue and we have enough
1544 			 * buffer space to take it.
1545 			 */
1546 			if (ti_locked == TI_RLOCKED)
1547 				INP_INFO_RUNLOCK(&V_tcbinfo);
1548 			else if (ti_locked == TI_WLOCKED)
1549 				INP_INFO_WUNLOCK(&V_tcbinfo);
1550 			else
1551 				panic("%s: ti_locked %d on pure data "
1552 				    "segment", __func__, ti_locked);
1553 			ti_locked = TI_UNLOCKED;
1554 
1555 			/* Clean receiver SACK report if present */
1556 			if ((tp->t_flags & TF_SACK_PERMIT) && tp->rcv_numsacks)
1557 				tcp_clean_sackreport(tp);
1558 			TCPSTAT_INC(tcps_preddat);
1559 			tp->rcv_nxt += tlen;
1560 			/*
1561 			 * Pull snd_wl1 up to prevent seq wrap relative to
1562 			 * th_seq.
1563 			 */
1564 			tp->snd_wl1 = th->th_seq;
1565 			/*
1566 			 * Pull rcv_up up to prevent seq wrap relative to
1567 			 * rcv_nxt.
1568 			 */
1569 			tp->rcv_up = tp->rcv_nxt;
1570 			TCPSTAT_INC(tcps_rcvpack);
1571 			TCPSTAT_ADD(tcps_rcvbyte, tlen);
1572 			ND6_HINT(tp);	/* Some progress has been made */
1573 #ifdef TCPDEBUG
1574 			if (so->so_options & SO_DEBUG)
1575 				tcp_trace(TA_INPUT, ostate, tp,
1576 				    (void *)tcp_saveipgen, &tcp_savetcp, 0);
1577 #endif
1578 		/*
1579 		 * Automatic sizing of receive socket buffer.  Often the send
1580 		 * buffer size is not optimally adjusted to the actual network
1581 		 * conditions at hand (delay bandwidth product).  Setting the
1582 		 * buffer size too small limits throughput on links with high
1583 		 * bandwidth and high delay (eg. trans-continental/oceanic links).
1584 		 *
1585 		 * On the receive side the socket buffer memory is only rarely
1586 		 * used to any significant extent.  This allows us to be much
1587 		 * more aggressive in scaling the receive socket buffer.  For
1588 		 * the case that the buffer space is actually used to a large
1589 		 * extent and we run out of kernel memory we can simply drop
1590 		 * the new segments; TCP on the sender will just retransmit it
1591 		 * later.  Setting the buffer size too big may only consume too
1592 		 * much kernel memory if the application doesn't read() from
1593 		 * the socket or packet loss or reordering makes use of the
1594 		 * reassembly queue.
1595 		 *
1596 		 * The criteria to step up the receive buffer one notch are:
1597 		 *  1. the number of bytes received during the time it takes
1598 		 *     one timestamp to be reflected back to us (the RTT);
1599 		 *  2. received bytes per RTT is within seven eighth of the
1600 		 *     current socket buffer size;
1601 		 *  3. receive buffer size has not hit maximal automatic size;
1602 		 *
1603 		 * This algorithm does one step per RTT at most and only if
1604 		 * we receive a bulk stream w/o packet losses or reorderings.
1605 		 * Shrinking the buffer during idle times is not necessary as
1606 		 * it doesn't consume any memory when idle.
1607 		 *
1608 		 * TODO: Only step up if the application is actually serving
1609 		 * the buffer to better manage the socket buffer resources.
1610 		 */
1611 			if (V_tcp_do_autorcvbuf &&
1612 			    to.to_tsecr &&
1613 			    (so->so_rcv.sb_flags & SB_AUTOSIZE)) {
1614 				if (TSTMP_GT(to.to_tsecr, tp->rfbuf_ts) &&
1615 				    to.to_tsecr - tp->rfbuf_ts < hz) {
1616 					if (tp->rfbuf_cnt >
1617 					    (so->so_rcv.sb_hiwat / 8 * 7) &&
1618 					    so->so_rcv.sb_hiwat <
1619 					    V_tcp_autorcvbuf_max) {
1620 						newsize =
1621 						    min(so->so_rcv.sb_hiwat +
1622 						    V_tcp_autorcvbuf_inc,
1623 						    V_tcp_autorcvbuf_max);
1624 					}
1625 					/* Start over with next RTT. */
1626 					tp->rfbuf_ts = 0;
1627 					tp->rfbuf_cnt = 0;
1628 				} else
1629 					tp->rfbuf_cnt += tlen;	/* add up */
1630 			}
1631 
1632 			/* Add data to socket buffer. */
1633 			SOCKBUF_LOCK(&so->so_rcv);
1634 			if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
1635 				m_freem(m);
1636 			} else {
1637 				/*
1638 				 * Set new socket buffer size.
1639 				 * Give up when limit is reached.
1640 				 */
1641 				if (newsize)
1642 					if (!sbreserve_locked(&so->so_rcv,
1643 					    newsize, so, NULL))
1644 						so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
1645 				m_adj(m, drop_hdrlen);	/* delayed header drop */
1646 				sbappendstream_locked(&so->so_rcv, m);
1647 			}
1648 			/* NB: sorwakeup_locked() does an implicit unlock. */
1649 			sorwakeup_locked(so);
1650 			if (DELAY_ACK(tp)) {
1651 				tp->t_flags |= TF_DELACK;
1652 			} else {
1653 				tp->t_flags |= TF_ACKNOW;
1654 				tcp_output(tp);
1655 			}
1656 			goto check_delack;
1657 		}
1658 	}
1659 
1660 	/*
1661 	 * Calculate amount of space in receive window,
1662 	 * and then do TCP input processing.
1663 	 * Receive window is amount of space in rcv queue,
1664 	 * but not less than advertised window.
1665 	 */
1666 	win = sbspace(&so->so_rcv);
1667 	if (win < 0)
1668 		win = 0;
1669 	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1670 
1671 	/* Reset receive buffer auto scaling when not in bulk receive mode. */
1672 	tp->rfbuf_ts = 0;
1673 	tp->rfbuf_cnt = 0;
1674 
1675 	switch (tp->t_state) {
1676 
1677 	/*
1678 	 * If the state is SYN_RECEIVED:
1679 	 *	if seg contains an ACK, but not for our SYN/ACK, send a RST.
1680 	 */
1681 	case TCPS_SYN_RECEIVED:
1682 		if ((thflags & TH_ACK) &&
1683 		    (SEQ_LEQ(th->th_ack, tp->snd_una) ||
1684 		     SEQ_GT(th->th_ack, tp->snd_max))) {
1685 				rstreason = BANDLIM_RST_OPENPORT;
1686 				goto dropwithreset;
1687 		}
1688 		break;
1689 
1690 	/*
1691 	 * If the state is SYN_SENT:
1692 	 *	if seg contains an ACK, but not for our SYN, drop the input.
1693 	 *	if seg contains a RST, then drop the connection.
1694 	 *	if seg does not contain SYN, then drop it.
1695 	 * Otherwise this is an acceptable SYN segment
1696 	 *	initialize tp->rcv_nxt and tp->irs
1697 	 *	if seg contains ack then advance tp->snd_una
1698 	 *	if seg contains an ECE and ECN support is enabled, the stream
1699 	 *	    is ECN capable.
1700 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1701 	 *	arrange for segment to be acked (eventually)
1702 	 *	continue processing rest of data/controls, beginning with URG
1703 	 */
1704 	case TCPS_SYN_SENT:
1705 		if ((thflags & TH_ACK) &&
1706 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
1707 		     SEQ_GT(th->th_ack, tp->snd_max))) {
1708 			rstreason = BANDLIM_UNLIMITED;
1709 			goto dropwithreset;
1710 		}
1711 		if ((thflags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST))
1712 			tp = tcp_drop(tp, ECONNREFUSED);
1713 		if (thflags & TH_RST)
1714 			goto drop;
1715 		if (!(thflags & TH_SYN))
1716 			goto drop;
1717 
1718 		tp->irs = th->th_seq;
1719 		tcp_rcvseqinit(tp);
1720 		if (thflags & TH_ACK) {
1721 			TCPSTAT_INC(tcps_connects);
1722 			soisconnected(so);
1723 #ifdef MAC
1724 			mac_socketpeer_set_from_mbuf(m, so);
1725 #endif
1726 			/* Do window scaling on this connection? */
1727 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1728 				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1729 				tp->rcv_scale = tp->request_r_scale;
1730 			}
1731 			tp->rcv_adv += tp->rcv_wnd;
1732 			tp->snd_una++;		/* SYN is acked */
1733 			/*
1734 			 * If there's data, delay ACK; if there's also a FIN
1735 			 * ACKNOW will be turned on later.
1736 			 */
1737 			if (DELAY_ACK(tp) && tlen != 0)
1738 				tcp_timer_activate(tp, TT_DELACK,
1739 				    tcp_delacktime);
1740 			else
1741 				tp->t_flags |= TF_ACKNOW;
1742 
1743 			if ((thflags & TH_ECE) && V_tcp_do_ecn) {
1744 				tp->t_flags |= TF_ECN_PERMIT;
1745 				TCPSTAT_INC(tcps_ecn_shs);
1746 			}
1747 
1748 			/*
1749 			 * Received <SYN,ACK> in SYN_SENT[*] state.
1750 			 * Transitions:
1751 			 *	SYN_SENT  --> ESTABLISHED
1752 			 *	SYN_SENT* --> FIN_WAIT_1
1753 			 */
1754 			tp->t_starttime = ticks;
1755 			if (tp->t_flags & TF_NEEDFIN) {
1756 				tp->t_state = TCPS_FIN_WAIT_1;
1757 				tp->t_flags &= ~TF_NEEDFIN;
1758 				thflags &= ~TH_SYN;
1759 			} else {
1760 				tp->t_state = TCPS_ESTABLISHED;
1761 				cc_conn_init(tp);
1762 				tcp_timer_activate(tp, TT_KEEP, tcp_keepidle);
1763 			}
1764 		} else {
1765 			/*
1766 			 * Received initial SYN in SYN-SENT[*] state =>
1767 			 * simultaneous open.  If segment contains CC option
1768 			 * and there is a cached CC, apply TAO test.
1769 			 * If it succeeds, connection is * half-synchronized.
1770 			 * Otherwise, do 3-way handshake:
1771 			 *        SYN-SENT -> SYN-RECEIVED
1772 			 *        SYN-SENT* -> SYN-RECEIVED*
1773 			 * If there was no CC option, clear cached CC value.
1774 			 */
1775 			tp->t_flags |= (TF_ACKNOW | TF_NEEDSYN);
1776 			tcp_timer_activate(tp, TT_REXMT, 0);
1777 			tp->t_state = TCPS_SYN_RECEIVED;
1778 		}
1779 
1780 		KASSERT(ti_locked == TI_WLOCKED, ("%s: trimthenstep6: "
1781 		    "ti_locked %d", __func__, ti_locked));
1782 		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1783 		INP_WLOCK_ASSERT(tp->t_inpcb);
1784 
1785 		/*
1786 		 * Advance th->th_seq to correspond to first data byte.
1787 		 * If data, trim to stay within window,
1788 		 * dropping FIN if necessary.
1789 		 */
1790 		th->th_seq++;
1791 		if (tlen > tp->rcv_wnd) {
1792 			todrop = tlen - tp->rcv_wnd;
1793 			m_adj(m, -todrop);
1794 			tlen = tp->rcv_wnd;
1795 			thflags &= ~TH_FIN;
1796 			TCPSTAT_INC(tcps_rcvpackafterwin);
1797 			TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop);
1798 		}
1799 		tp->snd_wl1 = th->th_seq - 1;
1800 		tp->rcv_up = th->th_seq;
1801 		/*
1802 		 * Client side of transaction: already sent SYN and data.
1803 		 * If the remote host used T/TCP to validate the SYN,
1804 		 * our data will be ACK'd; if so, enter normal data segment
1805 		 * processing in the middle of step 5, ack processing.
1806 		 * Otherwise, goto step 6.
1807 		 */
1808 		if (thflags & TH_ACK)
1809 			goto process_ACK;
1810 
1811 		goto step6;
1812 
1813 	/*
1814 	 * If the state is LAST_ACK or CLOSING or TIME_WAIT:
1815 	 *      do normal processing.
1816 	 *
1817 	 * NB: Leftover from RFC1644 T/TCP.  Cases to be reused later.
1818 	 */
1819 	case TCPS_LAST_ACK:
1820 	case TCPS_CLOSING:
1821 		break;  /* continue normal processing */
1822 	}
1823 
1824 	/*
1825 	 * States other than LISTEN or SYN_SENT.
1826 	 * First check the RST flag and sequence number since reset segments
1827 	 * are exempt from the timestamp and connection count tests.  This
1828 	 * fixes a bug introduced by the Stevens, vol. 2, p. 960 bugfix
1829 	 * below which allowed reset segments in half the sequence space
1830 	 * to fall though and be processed (which gives forged reset
1831 	 * segments with a random sequence number a 50 percent chance of
1832 	 * killing a connection).
1833 	 * Then check timestamp, if present.
1834 	 * Then check the connection count, if present.
1835 	 * Then check that at least some bytes of segment are within
1836 	 * receive window.  If segment begins before rcv_nxt,
1837 	 * drop leading data (and SYN); if nothing left, just ack.
1838 	 *
1839 	 *
1840 	 * If the RST bit is set, check the sequence number to see
1841 	 * if this is a valid reset segment.
1842 	 * RFC 793 page 37:
1843 	 *   In all states except SYN-SENT, all reset (RST) segments
1844 	 *   are validated by checking their SEQ-fields.  A reset is
1845 	 *   valid if its sequence number is in the window.
1846 	 * Note: this does not take into account delayed ACKs, so
1847 	 *   we should test against last_ack_sent instead of rcv_nxt.
1848 	 *   The sequence number in the reset segment is normally an
1849 	 *   echo of our outgoing acknowlegement numbers, but some hosts
1850 	 *   send a reset with the sequence number at the rightmost edge
1851 	 *   of our receive window, and we have to handle this case.
1852 	 * Note 2: Paul Watson's paper "Slipping in the Window" has shown
1853 	 *   that brute force RST attacks are possible.  To combat this,
1854 	 *   we use a much stricter check while in the ESTABLISHED state,
1855 	 *   only accepting RSTs where the sequence number is equal to
1856 	 *   last_ack_sent.  In all other states (the states in which a
1857 	 *   RST is more likely), the more permissive check is used.
1858 	 * If we have multiple segments in flight, the initial reset
1859 	 * segment sequence numbers will be to the left of last_ack_sent,
1860 	 * but they will eventually catch up.
1861 	 * In any case, it never made sense to trim reset segments to
1862 	 * fit the receive window since RFC 1122 says:
1863 	 *   4.2.2.12  RST Segment: RFC-793 Section 3.4
1864 	 *
1865 	 *    A TCP SHOULD allow a received RST segment to include data.
1866 	 *
1867 	 *    DISCUSSION
1868 	 *         It has been suggested that a RST segment could contain
1869 	 *         ASCII text that encoded and explained the cause of the
1870 	 *         RST.  No standard has yet been established for such
1871 	 *         data.
1872 	 *
1873 	 * If the reset segment passes the sequence number test examine
1874 	 * the state:
1875 	 *    SYN_RECEIVED STATE:
1876 	 *	If passive open, return to LISTEN state.
1877 	 *	If active open, inform user that connection was refused.
1878 	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT_2, CLOSE_WAIT STATES:
1879 	 *	Inform user that connection was reset, and close tcb.
1880 	 *    CLOSING, LAST_ACK STATES:
1881 	 *	Close the tcb.
1882 	 *    TIME_WAIT STATE:
1883 	 *	Drop the segment - see Stevens, vol. 2, p. 964 and
1884 	 *      RFC 1337.
1885 	 */
1886 	if (thflags & TH_RST) {
1887 		if (SEQ_GEQ(th->th_seq, tp->last_ack_sent - 1) &&
1888 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) {
1889 			switch (tp->t_state) {
1890 
1891 			case TCPS_SYN_RECEIVED:
1892 				so->so_error = ECONNREFUSED;
1893 				goto close;
1894 
1895 			case TCPS_ESTABLISHED:
1896 				if (V_tcp_insecure_rst == 0 &&
1897 				    !(SEQ_GEQ(th->th_seq, tp->rcv_nxt - 1) &&
1898 				    SEQ_LEQ(th->th_seq, tp->rcv_nxt + 1)) &&
1899 				    !(SEQ_GEQ(th->th_seq, tp->last_ack_sent - 1) &&
1900 				    SEQ_LEQ(th->th_seq, tp->last_ack_sent + 1))) {
1901 					TCPSTAT_INC(tcps_badrst);
1902 					goto drop;
1903 				}
1904 				/* FALLTHROUGH */
1905 			case TCPS_FIN_WAIT_1:
1906 			case TCPS_FIN_WAIT_2:
1907 			case TCPS_CLOSE_WAIT:
1908 				so->so_error = ECONNRESET;
1909 			close:
1910 				KASSERT(ti_locked == TI_WLOCKED,
1911 				    ("tcp_do_segment: TH_RST 1 ti_locked %d",
1912 				    ti_locked));
1913 				INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1914 
1915 				tp->t_state = TCPS_CLOSED;
1916 				TCPSTAT_INC(tcps_drops);
1917 				tp = tcp_close(tp);
1918 				break;
1919 
1920 			case TCPS_CLOSING:
1921 			case TCPS_LAST_ACK:
1922 				KASSERT(ti_locked == TI_WLOCKED,
1923 				    ("tcp_do_segment: TH_RST 2 ti_locked %d",
1924 				    ti_locked));
1925 				INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1926 
1927 				tp = tcp_close(tp);
1928 				break;
1929 			}
1930 		}
1931 		goto drop;
1932 	}
1933 
1934 	/*
1935 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
1936 	 * and it's less than ts_recent, drop it.
1937 	 */
1938 	if ((to.to_flags & TOF_TS) != 0 && tp->ts_recent &&
1939 	    TSTMP_LT(to.to_tsval, tp->ts_recent)) {
1940 
1941 		/* Check to see if ts_recent is over 24 days old.  */
1942 		if (ticks - tp->ts_recent_age > TCP_PAWS_IDLE) {
1943 			/*
1944 			 * Invalidate ts_recent.  If this segment updates
1945 			 * ts_recent, the age will be reset later and ts_recent
1946 			 * will get a valid value.  If it does not, setting
1947 			 * ts_recent to zero will at least satisfy the
1948 			 * requirement that zero be placed in the timestamp
1949 			 * echo reply when ts_recent isn't valid.  The
1950 			 * age isn't reset until we get a valid ts_recent
1951 			 * because we don't want out-of-order segments to be
1952 			 * dropped when ts_recent is old.
1953 			 */
1954 			tp->ts_recent = 0;
1955 		} else {
1956 			TCPSTAT_INC(tcps_rcvduppack);
1957 			TCPSTAT_ADD(tcps_rcvdupbyte, tlen);
1958 			TCPSTAT_INC(tcps_pawsdrop);
1959 			if (tlen)
1960 				goto dropafterack;
1961 			goto drop;
1962 		}
1963 	}
1964 
1965 	/*
1966 	 * In the SYN-RECEIVED state, validate that the packet belongs to
1967 	 * this connection before trimming the data to fit the receive
1968 	 * window.  Check the sequence number versus IRS since we know
1969 	 * the sequence numbers haven't wrapped.  This is a partial fix
1970 	 * for the "LAND" DoS attack.
1971 	 */
1972 	if (tp->t_state == TCPS_SYN_RECEIVED && SEQ_LT(th->th_seq, tp->irs)) {
1973 		rstreason = BANDLIM_RST_OPENPORT;
1974 		goto dropwithreset;
1975 	}
1976 
1977 	todrop = tp->rcv_nxt - th->th_seq;
1978 	if (todrop > 0) {
1979 		/*
1980 		 * If this is a duplicate SYN for our current connection,
1981 		 * advance over it and pretend and it's not a SYN.
1982 		 */
1983 		if (thflags & TH_SYN && th->th_seq == tp->irs) {
1984 			thflags &= ~TH_SYN;
1985 			th->th_seq++;
1986 			if (th->th_urp > 1)
1987 				th->th_urp--;
1988 			else
1989 				thflags &= ~TH_URG;
1990 			todrop--;
1991 		}
1992 		/*
1993 		 * Following if statement from Stevens, vol. 2, p. 960.
1994 		 */
1995 		if (todrop > tlen
1996 		    || (todrop == tlen && (thflags & TH_FIN) == 0)) {
1997 			/*
1998 			 * Any valid FIN must be to the left of the window.
1999 			 * At this point the FIN must be a duplicate or out
2000 			 * of sequence; drop it.
2001 			 */
2002 			thflags &= ~TH_FIN;
2003 
2004 			/*
2005 			 * Send an ACK to resynchronize and drop any data.
2006 			 * But keep on processing for RST or ACK.
2007 			 */
2008 			tp->t_flags |= TF_ACKNOW;
2009 			todrop = tlen;
2010 			TCPSTAT_INC(tcps_rcvduppack);
2011 			TCPSTAT_ADD(tcps_rcvdupbyte, todrop);
2012 		} else {
2013 			TCPSTAT_INC(tcps_rcvpartduppack);
2014 			TCPSTAT_ADD(tcps_rcvpartdupbyte, todrop);
2015 		}
2016 		drop_hdrlen += todrop;	/* drop from the top afterwards */
2017 		th->th_seq += todrop;
2018 		tlen -= todrop;
2019 		if (th->th_urp > todrop)
2020 			th->th_urp -= todrop;
2021 		else {
2022 			thflags &= ~TH_URG;
2023 			th->th_urp = 0;
2024 		}
2025 	}
2026 
2027 	/*
2028 	 * If new data are received on a connection after the
2029 	 * user processes are gone, then RST the other end.
2030 	 */
2031 	if ((so->so_state & SS_NOFDREF) &&
2032 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
2033 		char *s;
2034 
2035 		KASSERT(ti_locked == TI_WLOCKED, ("%s: SS_NOFDEREF && "
2036 		    "CLOSE_WAIT && tlen ti_locked %d", __func__, ti_locked));
2037 		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2038 
2039 		if ((s = tcp_log_addrs(&tp->t_inpcb->inp_inc, th, NULL, NULL))) {
2040 			log(LOG_DEBUG, "%s; %s: %s: Received %d bytes of data after socket "
2041 			    "was closed, sending RST and removing tcpcb\n",
2042 			    s, __func__, tcpstates[tp->t_state], tlen);
2043 			free(s, M_TCPLOG);
2044 		}
2045 		tp = tcp_close(tp);
2046 		TCPSTAT_INC(tcps_rcvafterclose);
2047 		rstreason = BANDLIM_UNLIMITED;
2048 		goto dropwithreset;
2049 	}
2050 
2051 	/*
2052 	 * If segment ends after window, drop trailing data
2053 	 * (and PUSH and FIN); if nothing left, just ACK.
2054 	 */
2055 	todrop = (th->th_seq + tlen) - (tp->rcv_nxt + tp->rcv_wnd);
2056 	if (todrop > 0) {
2057 		TCPSTAT_INC(tcps_rcvpackafterwin);
2058 		if (todrop >= tlen) {
2059 			TCPSTAT_ADD(tcps_rcvbyteafterwin, tlen);
2060 			/*
2061 			 * If window is closed can only take segments at
2062 			 * window edge, and have to drop data and PUSH from
2063 			 * incoming segments.  Continue processing, but
2064 			 * remember to ack.  Otherwise, drop segment
2065 			 * and ack.
2066 			 */
2067 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
2068 				tp->t_flags |= TF_ACKNOW;
2069 				TCPSTAT_INC(tcps_rcvwinprobe);
2070 			} else
2071 				goto dropafterack;
2072 		} else
2073 			TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop);
2074 		m_adj(m, -todrop);
2075 		tlen -= todrop;
2076 		thflags &= ~(TH_PUSH|TH_FIN);
2077 	}
2078 
2079 	/*
2080 	 * If last ACK falls within this segment's sequence numbers,
2081 	 * record its timestamp.
2082 	 * NOTE:
2083 	 * 1) That the test incorporates suggestions from the latest
2084 	 *    proposal of the tcplw@cray.com list (Braden 1993/04/26).
2085 	 * 2) That updating only on newer timestamps interferes with
2086 	 *    our earlier PAWS tests, so this check should be solely
2087 	 *    predicated on the sequence space of this segment.
2088 	 * 3) That we modify the segment boundary check to be
2089 	 *        Last.ACK.Sent <= SEG.SEQ + SEG.Len
2090 	 *    instead of RFC1323's
2091 	 *        Last.ACK.Sent < SEG.SEQ + SEG.Len,
2092 	 *    This modified check allows us to overcome RFC1323's
2093 	 *    limitations as described in Stevens TCP/IP Illustrated
2094 	 *    Vol. 2 p.869. In such cases, we can still calculate the
2095 	 *    RTT correctly when RCV.NXT == Last.ACK.Sent.
2096 	 */
2097 	if ((to.to_flags & TOF_TS) != 0 &&
2098 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
2099 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
2100 		((thflags & (TH_SYN|TH_FIN)) != 0))) {
2101 		tp->ts_recent_age = ticks;
2102 		tp->ts_recent = to.to_tsval;
2103 	}
2104 
2105 	/*
2106 	 * If a SYN is in the window, then this is an
2107 	 * error and we send an RST and drop the connection.
2108 	 */
2109 	if (thflags & TH_SYN) {
2110 		KASSERT(ti_locked == TI_WLOCKED,
2111 		    ("tcp_do_segment: TH_SYN ti_locked %d", ti_locked));
2112 		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2113 
2114 		tp = tcp_drop(tp, ECONNRESET);
2115 		rstreason = BANDLIM_UNLIMITED;
2116 		goto drop;
2117 	}
2118 
2119 	/*
2120 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN
2121 	 * flag is on (half-synchronized state), then queue data for
2122 	 * later processing; else drop segment and return.
2123 	 */
2124 	if ((thflags & TH_ACK) == 0) {
2125 		if (tp->t_state == TCPS_SYN_RECEIVED ||
2126 		    (tp->t_flags & TF_NEEDSYN))
2127 			goto step6;
2128 		else if (tp->t_flags & TF_ACKNOW)
2129 			goto dropafterack;
2130 		else
2131 			goto drop;
2132 	}
2133 
2134 	/*
2135 	 * Ack processing.
2136 	 */
2137 	switch (tp->t_state) {
2138 
2139 	/*
2140 	 * In SYN_RECEIVED state, the ack ACKs our SYN, so enter
2141 	 * ESTABLISHED state and continue processing.
2142 	 * The ACK was checked above.
2143 	 */
2144 	case TCPS_SYN_RECEIVED:
2145 
2146 		TCPSTAT_INC(tcps_connects);
2147 		soisconnected(so);
2148 		/* Do window scaling? */
2149 		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2150 			(TF_RCVD_SCALE|TF_REQ_SCALE)) {
2151 			tp->rcv_scale = tp->request_r_scale;
2152 			tp->snd_wnd = tiwin;
2153 		}
2154 		/*
2155 		 * Make transitions:
2156 		 *      SYN-RECEIVED  -> ESTABLISHED
2157 		 *      SYN-RECEIVED* -> FIN-WAIT-1
2158 		 */
2159 		tp->t_starttime = ticks;
2160 		if (tp->t_flags & TF_NEEDFIN) {
2161 			tp->t_state = TCPS_FIN_WAIT_1;
2162 			tp->t_flags &= ~TF_NEEDFIN;
2163 		} else {
2164 			tp->t_state = TCPS_ESTABLISHED;
2165 			cc_conn_init(tp);
2166 			tcp_timer_activate(tp, TT_KEEP, tcp_keepidle);
2167 		}
2168 		/*
2169 		 * If segment contains data or ACK, will call tcp_reass()
2170 		 * later; if not, do so now to pass queued data to user.
2171 		 */
2172 		if (tlen == 0 && (thflags & TH_FIN) == 0)
2173 			(void) tcp_reass(tp, (struct tcphdr *)0, 0,
2174 			    (struct mbuf *)0);
2175 		tp->snd_wl1 = th->th_seq - 1;
2176 		/* FALLTHROUGH */
2177 
2178 	/*
2179 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
2180 	 * ACKs.  If the ack is in the range
2181 	 *	tp->snd_una < th->th_ack <= tp->snd_max
2182 	 * then advance tp->snd_una to th->th_ack and drop
2183 	 * data from the retransmission queue.  If this ACK reflects
2184 	 * more up to date window information we update our window information.
2185 	 */
2186 	case TCPS_ESTABLISHED:
2187 	case TCPS_FIN_WAIT_1:
2188 	case TCPS_FIN_WAIT_2:
2189 	case TCPS_CLOSE_WAIT:
2190 	case TCPS_CLOSING:
2191 	case TCPS_LAST_ACK:
2192 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
2193 			TCPSTAT_INC(tcps_rcvacktoomuch);
2194 			goto dropafterack;
2195 		}
2196 		if ((tp->t_flags & TF_SACK_PERMIT) &&
2197 		    ((to.to_flags & TOF_SACK) ||
2198 		     !TAILQ_EMPTY(&tp->snd_holes)))
2199 			tcp_sack_doack(tp, &to, th->th_ack);
2200 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
2201 			if (tlen == 0 && tiwin == tp->snd_wnd) {
2202 				TCPSTAT_INC(tcps_rcvdupack);
2203 				/*
2204 				 * If we have outstanding data (other than
2205 				 * a window probe), this is a completely
2206 				 * duplicate ack (ie, window info didn't
2207 				 * change), the ack is the biggest we've
2208 				 * seen and we've seen exactly our rexmt
2209 				 * threshhold of them, assume a packet
2210 				 * has been dropped and retransmit it.
2211 				 * Kludge snd_nxt & the congestion
2212 				 * window so we send only this one
2213 				 * packet.
2214 				 *
2215 				 * We know we're losing at the current
2216 				 * window size so do congestion avoidance
2217 				 * (set ssthresh to half the current window
2218 				 * and pull our congestion window back to
2219 				 * the new ssthresh).
2220 				 *
2221 				 * Dup acks mean that packets have left the
2222 				 * network (they're now cached at the receiver)
2223 				 * so bump cwnd by the amount in the receiver
2224 				 * to keep a constant cwnd packets in the
2225 				 * network.
2226 				 *
2227 				 * When using TCP ECN, notify the peer that
2228 				 * we reduced the cwnd.
2229 				 */
2230 				if (!tcp_timer_active(tp, TT_REXMT) ||
2231 				    th->th_ack != tp->snd_una)
2232 					tp->t_dupacks = 0;
2233 				else if (++tp->t_dupacks > tcprexmtthresh ||
2234 				     IN_FASTRECOVERY(tp->t_flags)) {
2235 					cc_ack_received(tp, th, CC_DUPACK);
2236 					if ((tp->t_flags & TF_SACK_PERMIT) &&
2237 					    IN_FASTRECOVERY(tp->t_flags)) {
2238 						int awnd;
2239 
2240 						/*
2241 						 * Compute the amount of data in flight first.
2242 						 * We can inject new data into the pipe iff
2243 						 * we have less than 1/2 the original window's
2244 						 * worth of data in flight.
2245 						 */
2246 						awnd = (tp->snd_nxt - tp->snd_fack) +
2247 							tp->sackhint.sack_bytes_rexmit;
2248 						if (awnd < tp->snd_ssthresh) {
2249 							tp->snd_cwnd += tp->t_maxseg;
2250 							if (tp->snd_cwnd > tp->snd_ssthresh)
2251 								tp->snd_cwnd = tp->snd_ssthresh;
2252 						}
2253 					} else
2254 						tp->snd_cwnd += tp->t_maxseg;
2255 					(void) tcp_output(tp);
2256 					goto drop;
2257 				} else if (tp->t_dupacks == tcprexmtthresh) {
2258 					tcp_seq onxt = tp->snd_nxt;
2259 
2260 					/*
2261 					 * If we're doing sack, check to
2262 					 * see if we're already in sack
2263 					 * recovery. If we're not doing sack,
2264 					 * check to see if we're in newreno
2265 					 * recovery.
2266 					 */
2267 					if (tp->t_flags & TF_SACK_PERMIT) {
2268 						if (IN_FASTRECOVERY(tp->t_flags)) {
2269 							tp->t_dupacks = 0;
2270 							break;
2271 						}
2272 					} else {
2273 						if (SEQ_LEQ(th->th_ack,
2274 						    tp->snd_recover)) {
2275 							tp->t_dupacks = 0;
2276 							break;
2277 						}
2278 					}
2279 					/* Congestion signal before ack. */
2280 					cc_cong_signal(tp, th, CC_NDUPACK);
2281 					cc_ack_received(tp, th, CC_DUPACK);
2282 					tcp_timer_activate(tp, TT_REXMT, 0);
2283 					tp->t_rtttime = 0;
2284 					if (tp->t_flags & TF_SACK_PERMIT) {
2285 						TCPSTAT_INC(
2286 						    tcps_sack_recovery_episode);
2287 						tp->sack_newdata = tp->snd_nxt;
2288 						tp->snd_cwnd = tp->t_maxseg;
2289 						(void) tcp_output(tp);
2290 						goto drop;
2291 					}
2292 					tp->snd_nxt = th->th_ack;
2293 					tp->snd_cwnd = tp->t_maxseg;
2294 					(void) tcp_output(tp);
2295 					KASSERT(tp->snd_limited <= 2,
2296 					    ("%s: tp->snd_limited too big",
2297 					    __func__));
2298 					tp->snd_cwnd = tp->snd_ssthresh +
2299 					     tp->t_maxseg *
2300 					     (tp->t_dupacks - tp->snd_limited);
2301 					if (SEQ_GT(onxt, tp->snd_nxt))
2302 						tp->snd_nxt = onxt;
2303 					goto drop;
2304 				} else if (V_tcp_do_rfc3042) {
2305 					cc_ack_received(tp, th, CC_DUPACK);
2306 					u_long oldcwnd = tp->snd_cwnd;
2307 					tcp_seq oldsndmax = tp->snd_max;
2308 					u_int sent;
2309 
2310 					KASSERT(tp->t_dupacks == 1 ||
2311 					    tp->t_dupacks == 2,
2312 					    ("%s: dupacks not 1 or 2",
2313 					    __func__));
2314 					if (tp->t_dupacks == 1)
2315 						tp->snd_limited = 0;
2316 					tp->snd_cwnd =
2317 					    (tp->snd_nxt - tp->snd_una) +
2318 					    (tp->t_dupacks - tp->snd_limited) *
2319 					    tp->t_maxseg;
2320 					(void) tcp_output(tp);
2321 					sent = tp->snd_max - oldsndmax;
2322 					if (sent > tp->t_maxseg) {
2323 						KASSERT((tp->t_dupacks == 2 &&
2324 						    tp->snd_limited == 0) ||
2325 						   (sent == tp->t_maxseg + 1 &&
2326 						    tp->t_flags & TF_SENTFIN),
2327 						    ("%s: sent too much",
2328 						    __func__));
2329 						tp->snd_limited = 2;
2330 					} else if (sent > 0)
2331 						++tp->snd_limited;
2332 					tp->snd_cwnd = oldcwnd;
2333 					goto drop;
2334 				}
2335 			} else
2336 				tp->t_dupacks = 0;
2337 			break;
2338 		}
2339 
2340 		KASSERT(SEQ_GT(th->th_ack, tp->snd_una),
2341 		    ("%s: th_ack <= snd_una", __func__));
2342 
2343 		/*
2344 		 * If the congestion window was inflated to account
2345 		 * for the other side's cached packets, retract it.
2346 		 */
2347 		if (IN_FASTRECOVERY(tp->t_flags)) {
2348 			if (SEQ_LT(th->th_ack, tp->snd_recover)) {
2349 				if (tp->t_flags & TF_SACK_PERMIT)
2350 					tcp_sack_partialack(tp, th);
2351 				else
2352 					tcp_newreno_partial_ack(tp, th);
2353 			} else
2354 				cc_post_recovery(tp, th);
2355 		}
2356 		tp->t_dupacks = 0;
2357 		/*
2358 		 * If we reach this point, ACK is not a duplicate,
2359 		 *     i.e., it ACKs something we sent.
2360 		 */
2361 		if (tp->t_flags & TF_NEEDSYN) {
2362 			/*
2363 			 * T/TCP: Connection was half-synchronized, and our
2364 			 * SYN has been ACK'd (so connection is now fully
2365 			 * synchronized).  Go to non-starred state,
2366 			 * increment snd_una for ACK of SYN, and check if
2367 			 * we can do window scaling.
2368 			 */
2369 			tp->t_flags &= ~TF_NEEDSYN;
2370 			tp->snd_una++;
2371 			/* Do window scaling? */
2372 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2373 				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
2374 				tp->rcv_scale = tp->request_r_scale;
2375 				/* Send window already scaled. */
2376 			}
2377 		}
2378 
2379 process_ACK:
2380 		INP_INFO_LOCK_ASSERT(&V_tcbinfo);
2381 		KASSERT(ti_locked == TI_RLOCKED || ti_locked == TI_WLOCKED,
2382 		    ("tcp_input: process_ACK ti_locked %d", ti_locked));
2383 		INP_WLOCK_ASSERT(tp->t_inpcb);
2384 
2385 		acked = BYTES_THIS_ACK(tp, th);
2386 		TCPSTAT_INC(tcps_rcvackpack);
2387 		TCPSTAT_ADD(tcps_rcvackbyte, acked);
2388 
2389 		/*
2390 		 * If we just performed our first retransmit, and the ACK
2391 		 * arrives within our recovery window, then it was a mistake
2392 		 * to do the retransmit in the first place.  Recover our
2393 		 * original cwnd and ssthresh, and proceed to transmit where
2394 		 * we left off.
2395 		 */
2396 		if (tp->t_rxtshift == 1 && (int)(ticks - tp->t_badrxtwin) < 0)
2397 			cc_cong_signal(tp, th, CC_RTO_ERR);
2398 
2399 		/*
2400 		 * If we have a timestamp reply, update smoothed
2401 		 * round trip time.  If no timestamp is present but
2402 		 * transmit timer is running and timed sequence
2403 		 * number was acked, update smoothed round trip time.
2404 		 * Since we now have an rtt measurement, cancel the
2405 		 * timer backoff (cf., Phil Karn's retransmit alg.).
2406 		 * Recompute the initial retransmit timer.
2407 		 *
2408 		 * Some boxes send broken timestamp replies
2409 		 * during the SYN+ACK phase, ignore
2410 		 * timestamps of 0 or we could calculate a
2411 		 * huge RTT and blow up the retransmit timer.
2412 		 */
2413 		if ((to.to_flags & TOF_TS) != 0 &&
2414 		    to.to_tsecr) {
2415 			if (!tp->t_rttlow || tp->t_rttlow > ticks - to.to_tsecr)
2416 				tp->t_rttlow = ticks - to.to_tsecr;
2417 			tcp_xmit_timer(tp, ticks - to.to_tsecr + 1);
2418 		} else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq)) {
2419 			if (!tp->t_rttlow || tp->t_rttlow > ticks - tp->t_rtttime)
2420 				tp->t_rttlow = ticks - tp->t_rtttime;
2421 			tcp_xmit_timer(tp, ticks - tp->t_rtttime);
2422 		}
2423 
2424 		/*
2425 		 * If all outstanding data is acked, stop retransmit
2426 		 * timer and remember to restart (more output or persist).
2427 		 * If there is more data to be acked, restart retransmit
2428 		 * timer, using current (possibly backed-off) value.
2429 		 */
2430 		if (th->th_ack == tp->snd_max) {
2431 			tcp_timer_activate(tp, TT_REXMT, 0);
2432 			needoutput = 1;
2433 		} else if (!tcp_timer_active(tp, TT_PERSIST))
2434 			tcp_timer_activate(tp, TT_REXMT, tp->t_rxtcur);
2435 
2436 		/*
2437 		 * If no data (only SYN) was ACK'd,
2438 		 *    skip rest of ACK processing.
2439 		 */
2440 		if (acked == 0)
2441 			goto step6;
2442 
2443 		/*
2444 		 * Let the congestion control algorithm update congestion
2445 		 * control related information. This typically means increasing
2446 		 * the congestion window.
2447 		 */
2448 		cc_ack_received(tp, th, CC_ACK);
2449 
2450 		SOCKBUF_LOCK(&so->so_snd);
2451 		if (acked > so->so_snd.sb_cc) {
2452 			tp->snd_wnd -= so->so_snd.sb_cc;
2453 			sbdrop_locked(&so->so_snd, (int)so->so_snd.sb_cc);
2454 			ourfinisacked = 1;
2455 		} else {
2456 			sbdrop_locked(&so->so_snd, acked);
2457 			tp->snd_wnd -= acked;
2458 			ourfinisacked = 0;
2459 		}
2460 		/* NB: sowwakeup_locked() does an implicit unlock. */
2461 		sowwakeup_locked(so);
2462 		/* Detect una wraparound. */
2463 		if (!IN_RECOVERY(tp->t_flags) &&
2464 		    SEQ_GT(tp->snd_una, tp->snd_recover) &&
2465 		    SEQ_LEQ(th->th_ack, tp->snd_recover))
2466 			tp->snd_recover = th->th_ack - 1;
2467 		/* XXXLAS: Can this be moved up into cc_post_recovery? */
2468 		if (IN_RECOVERY(tp->t_flags) &&
2469 		    SEQ_GEQ(th->th_ack, tp->snd_recover)) {
2470 			EXIT_RECOVERY(tp->t_flags);
2471 		}
2472 		tp->snd_una = th->th_ack;
2473 		if (tp->t_flags & TF_SACK_PERMIT) {
2474 			if (SEQ_GT(tp->snd_una, tp->snd_recover))
2475 				tp->snd_recover = tp->snd_una;
2476 		}
2477 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2478 			tp->snd_nxt = tp->snd_una;
2479 
2480 		switch (tp->t_state) {
2481 
2482 		/*
2483 		 * In FIN_WAIT_1 STATE in addition to the processing
2484 		 * for the ESTABLISHED state if our FIN is now acknowledged
2485 		 * then enter FIN_WAIT_2.
2486 		 */
2487 		case TCPS_FIN_WAIT_1:
2488 			if (ourfinisacked) {
2489 				/*
2490 				 * If we can't receive any more
2491 				 * data, then closing user can proceed.
2492 				 * Starting the timer is contrary to the
2493 				 * specification, but if we don't get a FIN
2494 				 * we'll hang forever.
2495 				 *
2496 				 * XXXjl:
2497 				 * we should release the tp also, and use a
2498 				 * compressed state.
2499 				 */
2500 				if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
2501 					int timeout;
2502 
2503 					soisdisconnected(so);
2504 					timeout = (tcp_fast_finwait2_recycle) ?
2505 						tcp_finwait2_timeout : tcp_maxidle;
2506 					tcp_timer_activate(tp, TT_2MSL, timeout);
2507 				}
2508 				tp->t_state = TCPS_FIN_WAIT_2;
2509 			}
2510 			break;
2511 
2512 		/*
2513 		 * In CLOSING STATE in addition to the processing for
2514 		 * the ESTABLISHED state if the ACK acknowledges our FIN
2515 		 * then enter the TIME-WAIT state, otherwise ignore
2516 		 * the segment.
2517 		 */
2518 		case TCPS_CLOSING:
2519 			if (ourfinisacked) {
2520 				INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2521 				tcp_twstart(tp);
2522 				INP_INFO_WUNLOCK(&V_tcbinfo);
2523 				m_freem(m);
2524 				return;
2525 			}
2526 			break;
2527 
2528 		/*
2529 		 * In LAST_ACK, we may still be waiting for data to drain
2530 		 * and/or to be acked, as well as for the ack of our FIN.
2531 		 * If our FIN is now acknowledged, delete the TCB,
2532 		 * enter the closed state and return.
2533 		 */
2534 		case TCPS_LAST_ACK:
2535 			if (ourfinisacked) {
2536 				INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2537 				tp = tcp_close(tp);
2538 				goto drop;
2539 			}
2540 			break;
2541 		}
2542 	}
2543 
2544 step6:
2545 	INP_INFO_LOCK_ASSERT(&V_tcbinfo);
2546 	KASSERT(ti_locked == TI_RLOCKED || ti_locked == TI_WLOCKED,
2547 	    ("tcp_do_segment: step6 ti_locked %d", ti_locked));
2548 	INP_WLOCK_ASSERT(tp->t_inpcb);
2549 
2550 	/*
2551 	 * Update window information.
2552 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2553 	 */
2554 	if ((thflags & TH_ACK) &&
2555 	    (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2556 	    (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
2557 	     (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
2558 		/* keep track of pure window updates */
2559 		if (tlen == 0 &&
2560 		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2561 			TCPSTAT_INC(tcps_rcvwinupd);
2562 		tp->snd_wnd = tiwin;
2563 		tp->snd_wl1 = th->th_seq;
2564 		tp->snd_wl2 = th->th_ack;
2565 		if (tp->snd_wnd > tp->max_sndwnd)
2566 			tp->max_sndwnd = tp->snd_wnd;
2567 		needoutput = 1;
2568 	}
2569 
2570 	/*
2571 	 * Process segments with URG.
2572 	 */
2573 	if ((thflags & TH_URG) && th->th_urp &&
2574 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2575 		/*
2576 		 * This is a kludge, but if we receive and accept
2577 		 * random urgent pointers, we'll crash in
2578 		 * soreceive.  It's hard to imagine someone
2579 		 * actually wanting to send this much urgent data.
2580 		 */
2581 		SOCKBUF_LOCK(&so->so_rcv);
2582 		if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2583 			th->th_urp = 0;			/* XXX */
2584 			thflags &= ~TH_URG;		/* XXX */
2585 			SOCKBUF_UNLOCK(&so->so_rcv);	/* XXX */
2586 			goto dodata;			/* XXX */
2587 		}
2588 		/*
2589 		 * If this segment advances the known urgent pointer,
2590 		 * then mark the data stream.  This should not happen
2591 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2592 		 * a FIN has been received from the remote side.
2593 		 * In these states we ignore the URG.
2594 		 *
2595 		 * According to RFC961 (Assigned Protocols),
2596 		 * the urgent pointer points to the last octet
2597 		 * of urgent data.  We continue, however,
2598 		 * to consider it to indicate the first octet
2599 		 * of data past the urgent section as the original
2600 		 * spec states (in one of two places).
2601 		 */
2602 		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2603 			tp->rcv_up = th->th_seq + th->th_urp;
2604 			so->so_oobmark = so->so_rcv.sb_cc +
2605 			    (tp->rcv_up - tp->rcv_nxt) - 1;
2606 			if (so->so_oobmark == 0)
2607 				so->so_rcv.sb_state |= SBS_RCVATMARK;
2608 			sohasoutofband(so);
2609 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2610 		}
2611 		SOCKBUF_UNLOCK(&so->so_rcv);
2612 		/*
2613 		 * Remove out of band data so doesn't get presented to user.
2614 		 * This can happen independent of advancing the URG pointer,
2615 		 * but if two URG's are pending at once, some out-of-band
2616 		 * data may creep in... ick.
2617 		 */
2618 		if (th->th_urp <= (u_long)tlen &&
2619 		    !(so->so_options & SO_OOBINLINE)) {
2620 			/* hdr drop is delayed */
2621 			tcp_pulloutofband(so, th, m, drop_hdrlen);
2622 		}
2623 	} else {
2624 		/*
2625 		 * If no out of band data is expected,
2626 		 * pull receive urgent pointer along
2627 		 * with the receive window.
2628 		 */
2629 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2630 			tp->rcv_up = tp->rcv_nxt;
2631 	}
2632 dodata:							/* XXX */
2633 	INP_INFO_LOCK_ASSERT(&V_tcbinfo);
2634 	KASSERT(ti_locked == TI_RLOCKED || ti_locked == TI_WLOCKED,
2635 	    ("tcp_do_segment: dodata ti_locked %d", ti_locked));
2636 	INP_WLOCK_ASSERT(tp->t_inpcb);
2637 
2638 	/*
2639 	 * Process the segment text, merging it into the TCP sequencing queue,
2640 	 * and arranging for acknowledgment of receipt if necessary.
2641 	 * This process logically involves adjusting tp->rcv_wnd as data
2642 	 * is presented to the user (this happens in tcp_usrreq.c,
2643 	 * case PRU_RCVD).  If a FIN has already been received on this
2644 	 * connection then we just ignore the text.
2645 	 */
2646 	if ((tlen || (thflags & TH_FIN)) &&
2647 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2648 		tcp_seq save_start = th->th_seq;
2649 		m_adj(m, drop_hdrlen);	/* delayed header drop */
2650 		/*
2651 		 * Insert segment which includes th into TCP reassembly queue
2652 		 * with control block tp.  Set thflags to whether reassembly now
2653 		 * includes a segment with FIN.  This handles the common case
2654 		 * inline (segment is the next to be received on an established
2655 		 * connection, and the queue is empty), avoiding linkage into
2656 		 * and removal from the queue and repetition of various
2657 		 * conversions.
2658 		 * Set DELACK for segments received in order, but ack
2659 		 * immediately when segments are out of order (so
2660 		 * fast retransmit can work).
2661 		 */
2662 		if (th->th_seq == tp->rcv_nxt &&
2663 		    LIST_EMPTY(&tp->t_segq) &&
2664 		    TCPS_HAVEESTABLISHED(tp->t_state)) {
2665 			if (DELAY_ACK(tp))
2666 				tp->t_flags |= TF_DELACK;
2667 			else
2668 				tp->t_flags |= TF_ACKNOW;
2669 			tp->rcv_nxt += tlen;
2670 			thflags = th->th_flags & TH_FIN;
2671 			TCPSTAT_INC(tcps_rcvpack);
2672 			TCPSTAT_ADD(tcps_rcvbyte, tlen);
2673 			ND6_HINT(tp);
2674 			SOCKBUF_LOCK(&so->so_rcv);
2675 			if (so->so_rcv.sb_state & SBS_CANTRCVMORE)
2676 				m_freem(m);
2677 			else
2678 				sbappendstream_locked(&so->so_rcv, m);
2679 			/* NB: sorwakeup_locked() does an implicit unlock. */
2680 			sorwakeup_locked(so);
2681 		} else {
2682 			/*
2683 			 * XXX: Due to the header drop above "th" is
2684 			 * theoretically invalid by now.  Fortunately
2685 			 * m_adj() doesn't actually frees any mbufs
2686 			 * when trimming from the head.
2687 			 */
2688 			thflags = tcp_reass(tp, th, &tlen, m);
2689 			tp->t_flags |= TF_ACKNOW;
2690 		}
2691 		if (tlen > 0 && (tp->t_flags & TF_SACK_PERMIT))
2692 			tcp_update_sack_list(tp, save_start, save_start + tlen);
2693 #if 0
2694 		/*
2695 		 * Note the amount of data that peer has sent into
2696 		 * our window, in order to estimate the sender's
2697 		 * buffer size.
2698 		 * XXX: Unused.
2699 		 */
2700 		len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2701 #endif
2702 	} else {
2703 		m_freem(m);
2704 		thflags &= ~TH_FIN;
2705 	}
2706 
2707 	/*
2708 	 * If FIN is received ACK the FIN and let the user know
2709 	 * that the connection is closing.
2710 	 */
2711 	if (thflags & TH_FIN) {
2712 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2713 			socantrcvmore(so);
2714 			/*
2715 			 * If connection is half-synchronized
2716 			 * (ie NEEDSYN flag on) then delay ACK,
2717 			 * so it may be piggybacked when SYN is sent.
2718 			 * Otherwise, since we received a FIN then no
2719 			 * more input can be expected, send ACK now.
2720 			 */
2721 			if (tp->t_flags & TF_NEEDSYN)
2722 				tp->t_flags |= TF_DELACK;
2723 			else
2724 				tp->t_flags |= TF_ACKNOW;
2725 			tp->rcv_nxt++;
2726 		}
2727 		switch (tp->t_state) {
2728 
2729 		/*
2730 		 * In SYN_RECEIVED and ESTABLISHED STATES
2731 		 * enter the CLOSE_WAIT state.
2732 		 */
2733 		case TCPS_SYN_RECEIVED:
2734 			tp->t_starttime = ticks;
2735 			/* FALLTHROUGH */
2736 		case TCPS_ESTABLISHED:
2737 			tp->t_state = TCPS_CLOSE_WAIT;
2738 			break;
2739 
2740 		/*
2741 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2742 		 * enter the CLOSING state.
2743 		 */
2744 		case TCPS_FIN_WAIT_1:
2745 			tp->t_state = TCPS_CLOSING;
2746 			break;
2747 
2748 		/*
2749 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2750 		 * starting the time-wait timer, turning off the other
2751 		 * standard timers.
2752 		 */
2753 		case TCPS_FIN_WAIT_2:
2754 			INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2755 			KASSERT(ti_locked == TI_WLOCKED, ("%s: dodata "
2756 			    "TCP_FIN_WAIT_2 ti_locked: %d", __func__,
2757 			    ti_locked));
2758 
2759 			tcp_twstart(tp);
2760 			INP_INFO_WUNLOCK(&V_tcbinfo);
2761 			return;
2762 		}
2763 	}
2764 	if (ti_locked == TI_RLOCKED)
2765 		INP_INFO_RUNLOCK(&V_tcbinfo);
2766 	else if (ti_locked == TI_WLOCKED)
2767 		INP_INFO_WUNLOCK(&V_tcbinfo);
2768 	else
2769 		panic("%s: dodata epilogue ti_locked %d", __func__,
2770 		    ti_locked);
2771 	ti_locked = TI_UNLOCKED;
2772 
2773 #ifdef TCPDEBUG
2774 	if (so->so_options & SO_DEBUG)
2775 		tcp_trace(TA_INPUT, ostate, tp, (void *)tcp_saveipgen,
2776 			  &tcp_savetcp, 0);
2777 #endif
2778 
2779 	/*
2780 	 * Return any desired output.
2781 	 */
2782 	if (needoutput || (tp->t_flags & TF_ACKNOW))
2783 		(void) tcp_output(tp);
2784 
2785 check_delack:
2786 	KASSERT(ti_locked == TI_UNLOCKED, ("%s: check_delack ti_locked %d",
2787 	    __func__, ti_locked));
2788 	INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
2789 	INP_WLOCK_ASSERT(tp->t_inpcb);
2790 
2791 	if (tp->t_flags & TF_DELACK) {
2792 		tp->t_flags &= ~TF_DELACK;
2793 		tcp_timer_activate(tp, TT_DELACK, tcp_delacktime);
2794 	}
2795 	INP_WUNLOCK(tp->t_inpcb);
2796 	return;
2797 
2798 dropafterack:
2799 	KASSERT(ti_locked == TI_RLOCKED || ti_locked == TI_WLOCKED,
2800 	    ("tcp_do_segment: dropafterack ti_locked %d", ti_locked));
2801 
2802 	/*
2803 	 * Generate an ACK dropping incoming segment if it occupies
2804 	 * sequence space, where the ACK reflects our state.
2805 	 *
2806 	 * We can now skip the test for the RST flag since all
2807 	 * paths to this code happen after packets containing
2808 	 * RST have been dropped.
2809 	 *
2810 	 * In the SYN-RECEIVED state, don't send an ACK unless the
2811 	 * segment we received passes the SYN-RECEIVED ACK test.
2812 	 * If it fails send a RST.  This breaks the loop in the
2813 	 * "LAND" DoS attack, and also prevents an ACK storm
2814 	 * between two listening ports that have been sent forged
2815 	 * SYN segments, each with the source address of the other.
2816 	 */
2817 	if (tp->t_state == TCPS_SYN_RECEIVED && (thflags & TH_ACK) &&
2818 	    (SEQ_GT(tp->snd_una, th->th_ack) ||
2819 	     SEQ_GT(th->th_ack, tp->snd_max)) ) {
2820 		rstreason = BANDLIM_RST_OPENPORT;
2821 		goto dropwithreset;
2822 	}
2823 #ifdef TCPDEBUG
2824 	if (so->so_options & SO_DEBUG)
2825 		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
2826 			  &tcp_savetcp, 0);
2827 #endif
2828 	if (ti_locked == TI_RLOCKED)
2829 		INP_INFO_RUNLOCK(&V_tcbinfo);
2830 	else if (ti_locked == TI_WLOCKED)
2831 		INP_INFO_WUNLOCK(&V_tcbinfo);
2832 	else
2833 		panic("%s: dropafterack epilogue ti_locked %d", __func__,
2834 		    ti_locked);
2835 	ti_locked = TI_UNLOCKED;
2836 
2837 	tp->t_flags |= TF_ACKNOW;
2838 	(void) tcp_output(tp);
2839 	INP_WUNLOCK(tp->t_inpcb);
2840 	m_freem(m);
2841 	return;
2842 
2843 dropwithreset:
2844 	if (ti_locked == TI_RLOCKED)
2845 		INP_INFO_RUNLOCK(&V_tcbinfo);
2846 	else if (ti_locked == TI_WLOCKED)
2847 		INP_INFO_WUNLOCK(&V_tcbinfo);
2848 	else
2849 		panic("%s: dropwithreset ti_locked %d", __func__, ti_locked);
2850 	ti_locked = TI_UNLOCKED;
2851 
2852 	if (tp != NULL) {
2853 		tcp_dropwithreset(m, th, tp, tlen, rstreason);
2854 		INP_WUNLOCK(tp->t_inpcb);
2855 	} else
2856 		tcp_dropwithreset(m, th, NULL, tlen, rstreason);
2857 	return;
2858 
2859 drop:
2860 	if (ti_locked == TI_RLOCKED)
2861 		INP_INFO_RUNLOCK(&V_tcbinfo);
2862 	else if (ti_locked == TI_WLOCKED)
2863 		INP_INFO_WUNLOCK(&V_tcbinfo);
2864 #ifdef INVARIANTS
2865 	else
2866 		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
2867 #endif
2868 	ti_locked = TI_UNLOCKED;
2869 
2870 	/*
2871 	 * Drop space held by incoming segment and return.
2872 	 */
2873 #ifdef TCPDEBUG
2874 	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
2875 		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
2876 			  &tcp_savetcp, 0);
2877 #endif
2878 	if (tp != NULL)
2879 		INP_WUNLOCK(tp->t_inpcb);
2880 	m_freem(m);
2881 }
2882 
2883 /*
2884  * Issue RST and make ACK acceptable to originator of segment.
2885  * The mbuf must still include the original packet header.
2886  * tp may be NULL.
2887  */
2888 static void
2889 tcp_dropwithreset(struct mbuf *m, struct tcphdr *th, struct tcpcb *tp,
2890     int tlen, int rstreason)
2891 {
2892 	struct ip *ip;
2893 #ifdef INET6
2894 	struct ip6_hdr *ip6;
2895 #endif
2896 
2897 	if (tp != NULL) {
2898 		INP_WLOCK_ASSERT(tp->t_inpcb);
2899 	}
2900 
2901 	/* Don't bother if destination was broadcast/multicast. */
2902 	if ((th->th_flags & TH_RST) || m->m_flags & (M_BCAST|M_MCAST))
2903 		goto drop;
2904 #ifdef INET6
2905 	if (mtod(m, struct ip *)->ip_v == 6) {
2906 		ip6 = mtod(m, struct ip6_hdr *);
2907 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
2908 		    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
2909 			goto drop;
2910 		/* IPv6 anycast check is done at tcp6_input() */
2911 	} else
2912 #endif
2913 	{
2914 		ip = mtod(m, struct ip *);
2915 		if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
2916 		    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
2917 		    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
2918 		    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
2919 			goto drop;
2920 	}
2921 
2922 	/* Perform bandwidth limiting. */
2923 	if (badport_bandlim(rstreason) < 0)
2924 		goto drop;
2925 
2926 	/* tcp_respond consumes the mbuf chain. */
2927 	if (th->th_flags & TH_ACK) {
2928 		tcp_respond(tp, mtod(m, void *), th, m, (tcp_seq)0,
2929 		    th->th_ack, TH_RST);
2930 	} else {
2931 		if (th->th_flags & TH_SYN)
2932 			tlen++;
2933 		tcp_respond(tp, mtod(m, void *), th, m, th->th_seq+tlen,
2934 		    (tcp_seq)0, TH_RST|TH_ACK);
2935 	}
2936 	return;
2937 drop:
2938 	m_freem(m);
2939 }
2940 
2941 /*
2942  * Parse TCP options and place in tcpopt.
2943  */
2944 static void
2945 tcp_dooptions(struct tcpopt *to, u_char *cp, int cnt, int flags)
2946 {
2947 	int opt, optlen;
2948 
2949 	to->to_flags = 0;
2950 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
2951 		opt = cp[0];
2952 		if (opt == TCPOPT_EOL)
2953 			break;
2954 		if (opt == TCPOPT_NOP)
2955 			optlen = 1;
2956 		else {
2957 			if (cnt < 2)
2958 				break;
2959 			optlen = cp[1];
2960 			if (optlen < 2 || optlen > cnt)
2961 				break;
2962 		}
2963 		switch (opt) {
2964 		case TCPOPT_MAXSEG:
2965 			if (optlen != TCPOLEN_MAXSEG)
2966 				continue;
2967 			if (!(flags & TO_SYN))
2968 				continue;
2969 			to->to_flags |= TOF_MSS;
2970 			bcopy((char *)cp + 2,
2971 			    (char *)&to->to_mss, sizeof(to->to_mss));
2972 			to->to_mss = ntohs(to->to_mss);
2973 			break;
2974 		case TCPOPT_WINDOW:
2975 			if (optlen != TCPOLEN_WINDOW)
2976 				continue;
2977 			if (!(flags & TO_SYN))
2978 				continue;
2979 			to->to_flags |= TOF_SCALE;
2980 			to->to_wscale = min(cp[2], TCP_MAX_WINSHIFT);
2981 			break;
2982 		case TCPOPT_TIMESTAMP:
2983 			if (optlen != TCPOLEN_TIMESTAMP)
2984 				continue;
2985 			to->to_flags |= TOF_TS;
2986 			bcopy((char *)cp + 2,
2987 			    (char *)&to->to_tsval, sizeof(to->to_tsval));
2988 			to->to_tsval = ntohl(to->to_tsval);
2989 			bcopy((char *)cp + 6,
2990 			    (char *)&to->to_tsecr, sizeof(to->to_tsecr));
2991 			to->to_tsecr = ntohl(to->to_tsecr);
2992 			break;
2993 #ifdef TCP_SIGNATURE
2994 		/*
2995 		 * XXX In order to reply to a host which has set the
2996 		 * TCP_SIGNATURE option in its initial SYN, we have to
2997 		 * record the fact that the option was observed here
2998 		 * for the syncache code to perform the correct response.
2999 		 */
3000 		case TCPOPT_SIGNATURE:
3001 			if (optlen != TCPOLEN_SIGNATURE)
3002 				continue;
3003 			to->to_flags |= TOF_SIGNATURE;
3004 			to->to_signature = cp + 2;
3005 			break;
3006 #endif
3007 		case TCPOPT_SACK_PERMITTED:
3008 			if (optlen != TCPOLEN_SACK_PERMITTED)
3009 				continue;
3010 			if (!(flags & TO_SYN))
3011 				continue;
3012 			if (!V_tcp_do_sack)
3013 				continue;
3014 			to->to_flags |= TOF_SACKPERM;
3015 			break;
3016 		case TCPOPT_SACK:
3017 			if (optlen <= 2 || (optlen - 2) % TCPOLEN_SACK != 0)
3018 				continue;
3019 			if (flags & TO_SYN)
3020 				continue;
3021 			to->to_flags |= TOF_SACK;
3022 			to->to_nsacks = (optlen - 2) / TCPOLEN_SACK;
3023 			to->to_sacks = cp + 2;
3024 			TCPSTAT_INC(tcps_sack_rcv_blocks);
3025 			break;
3026 		default:
3027 			continue;
3028 		}
3029 	}
3030 }
3031 
3032 /*
3033  * Pull out of band byte out of a segment so
3034  * it doesn't appear in the user's data queue.
3035  * It is still reflected in the segment length for
3036  * sequencing purposes.
3037  */
3038 static void
3039 tcp_pulloutofband(struct socket *so, struct tcphdr *th, struct mbuf *m,
3040     int off)
3041 {
3042 	int cnt = off + th->th_urp - 1;
3043 
3044 	while (cnt >= 0) {
3045 		if (m->m_len > cnt) {
3046 			char *cp = mtod(m, caddr_t) + cnt;
3047 			struct tcpcb *tp = sototcpcb(so);
3048 
3049 			INP_WLOCK_ASSERT(tp->t_inpcb);
3050 
3051 			tp->t_iobc = *cp;
3052 			tp->t_oobflags |= TCPOOB_HAVEDATA;
3053 			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
3054 			m->m_len--;
3055 			if (m->m_flags & M_PKTHDR)
3056 				m->m_pkthdr.len--;
3057 			return;
3058 		}
3059 		cnt -= m->m_len;
3060 		m = m->m_next;
3061 		if (m == NULL)
3062 			break;
3063 	}
3064 	panic("tcp_pulloutofband");
3065 }
3066 
3067 /*
3068  * Collect new round-trip time estimate
3069  * and update averages and current timeout.
3070  */
3071 static void
3072 tcp_xmit_timer(struct tcpcb *tp, int rtt)
3073 {
3074 	int delta;
3075 
3076 	INP_WLOCK_ASSERT(tp->t_inpcb);
3077 
3078 	TCPSTAT_INC(tcps_rttupdated);
3079 	tp->t_rttupdated++;
3080 	if (tp->t_srtt != 0) {
3081 		/*
3082 		 * srtt is stored as fixed point with 5 bits after the
3083 		 * binary point (i.e., scaled by 8).  The following magic
3084 		 * is equivalent to the smoothing algorithm in rfc793 with
3085 		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
3086 		 * point).  Adjust rtt to origin 0.
3087 		 */
3088 		delta = ((rtt - 1) << TCP_DELTA_SHIFT)
3089 			- (tp->t_srtt >> (TCP_RTT_SHIFT - TCP_DELTA_SHIFT));
3090 
3091 		if ((tp->t_srtt += delta) <= 0)
3092 			tp->t_srtt = 1;
3093 
3094 		/*
3095 		 * We accumulate a smoothed rtt variance (actually, a
3096 		 * smoothed mean difference), then set the retransmit
3097 		 * timer to smoothed rtt + 4 times the smoothed variance.
3098 		 * rttvar is stored as fixed point with 4 bits after the
3099 		 * binary point (scaled by 16).  The following is
3100 		 * equivalent to rfc793 smoothing with an alpha of .75
3101 		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
3102 		 * rfc793's wired-in beta.
3103 		 */
3104 		if (delta < 0)
3105 			delta = -delta;
3106 		delta -= tp->t_rttvar >> (TCP_RTTVAR_SHIFT - TCP_DELTA_SHIFT);
3107 		if ((tp->t_rttvar += delta) <= 0)
3108 			tp->t_rttvar = 1;
3109 		if (tp->t_rttbest > tp->t_srtt + tp->t_rttvar)
3110 		    tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
3111 	} else {
3112 		/*
3113 		 * No rtt measurement yet - use the unsmoothed rtt.
3114 		 * Set the variance to half the rtt (so our first
3115 		 * retransmit happens at 3*rtt).
3116 		 */
3117 		tp->t_srtt = rtt << TCP_RTT_SHIFT;
3118 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1);
3119 		tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
3120 	}
3121 	tp->t_rtttime = 0;
3122 	tp->t_rxtshift = 0;
3123 
3124 	/*
3125 	 * the retransmit should happen at rtt + 4 * rttvar.
3126 	 * Because of the way we do the smoothing, srtt and rttvar
3127 	 * will each average +1/2 tick of bias.  When we compute
3128 	 * the retransmit timer, we want 1/2 tick of rounding and
3129 	 * 1 extra tick because of +-1/2 tick uncertainty in the
3130 	 * firing of the timer.  The bias will give us exactly the
3131 	 * 1.5 tick we need.  But, because the bias is
3132 	 * statistical, we have to test that we don't drop below
3133 	 * the minimum feasible timer (which is 2 ticks).
3134 	 */
3135 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
3136 		      max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
3137 
3138 	/*
3139 	 * We received an ack for a packet that wasn't retransmitted;
3140 	 * it is probably safe to discard any error indications we've
3141 	 * received recently.  This isn't quite right, but close enough
3142 	 * for now (a route might have failed after we sent a segment,
3143 	 * and the return path might not be symmetrical).
3144 	 */
3145 	tp->t_softerror = 0;
3146 }
3147 
3148 /*
3149  * Determine a reasonable value for maxseg size.
3150  * If the route is known, check route for mtu.
3151  * If none, use an mss that can be handled on the outgoing
3152  * interface without forcing IP to fragment; if bigger than
3153  * an mbuf cluster (MCLBYTES), round down to nearest multiple of MCLBYTES
3154  * to utilize large mbufs.  If no route is found, route has no mtu,
3155  * or the destination isn't local, use a default, hopefully conservative
3156  * size (usually 512 or the default IP max size, but no more than the mtu
3157  * of the interface), as we can't discover anything about intervening
3158  * gateways or networks.  We also initialize the congestion/slow start
3159  * window to be a single segment if the destination isn't local.
3160  * While looking at the routing entry, we also initialize other path-dependent
3161  * parameters from pre-set or cached values in the routing entry.
3162  *
3163  * Also take into account the space needed for options that we
3164  * send regularly.  Make maxseg shorter by that amount to assure
3165  * that we can send maxseg amount of data even when the options
3166  * are present.  Store the upper limit of the length of options plus
3167  * data in maxopd.
3168  *
3169  * In case of T/TCP, we call this routine during implicit connection
3170  * setup as well (offer = -1), to initialize maxseg from the cached
3171  * MSS of our peer.
3172  *
3173  * NOTE that this routine is only called when we process an incoming
3174  * segment. Outgoing SYN/ACK MSS settings are handled in tcp_mssopt().
3175  */
3176 void
3177 tcp_mss_update(struct tcpcb *tp, int offer,
3178     struct hc_metrics_lite *metricptr, int *mtuflags)
3179 {
3180 	int mss;
3181 	u_long maxmtu;
3182 	struct inpcb *inp = tp->t_inpcb;
3183 	struct hc_metrics_lite metrics;
3184 	int origoffer = offer;
3185 #ifdef INET6
3186 	int isipv6 = ((inp->inp_vflag & INP_IPV6) != 0) ? 1 : 0;
3187 	size_t min_protoh = isipv6 ?
3188 			    sizeof (struct ip6_hdr) + sizeof (struct tcphdr) :
3189 			    sizeof (struct tcpiphdr);
3190 #else
3191 	const size_t min_protoh = sizeof(struct tcpiphdr);
3192 #endif
3193 
3194 	INP_WLOCK_ASSERT(tp->t_inpcb);
3195 
3196 	/* Initialize. */
3197 #ifdef INET6
3198 	if (isipv6) {
3199 		maxmtu = tcp_maxmtu6(&inp->inp_inc, mtuflags);
3200 		tp->t_maxopd = tp->t_maxseg = V_tcp_v6mssdflt;
3201 	} else
3202 #endif
3203 	{
3204 		maxmtu = tcp_maxmtu(&inp->inp_inc, mtuflags);
3205 		tp->t_maxopd = tp->t_maxseg = V_tcp_mssdflt;
3206 	}
3207 
3208 	/*
3209 	 * No route to sender, stay with default mss and return.
3210 	 */
3211 	if (maxmtu == 0) {
3212 		/*
3213 		 * In case we return early we need to initialize metrics
3214 		 * to a defined state as tcp_hc_get() would do for us
3215 		 * if there was no cache hit.
3216 		 */
3217 		if (metricptr != NULL)
3218 			bzero(metricptr, sizeof(struct hc_metrics_lite));
3219 		return;
3220 	}
3221 
3222 	/* What have we got? */
3223 	switch (offer) {
3224 		case 0:
3225 			/*
3226 			 * Offer == 0 means that there was no MSS on the SYN
3227 			 * segment, in this case we use tcp_mssdflt as
3228 			 * already assigned to t_maxopd above.
3229 			 */
3230 			offer = tp->t_maxopd;
3231 			break;
3232 
3233 		case -1:
3234 			/*
3235 			 * Offer == -1 means that we didn't receive SYN yet.
3236 			 */
3237 			/* FALLTHROUGH */
3238 
3239 		default:
3240 			/*
3241 			 * Prevent DoS attack with too small MSS. Round up
3242 			 * to at least minmss.
3243 			 */
3244 			offer = max(offer, V_tcp_minmss);
3245 	}
3246 
3247 	/*
3248 	 * rmx information is now retrieved from tcp_hostcache.
3249 	 */
3250 	tcp_hc_get(&inp->inp_inc, &metrics);
3251 	if (metricptr != NULL)
3252 		bcopy(&metrics, metricptr, sizeof(struct hc_metrics_lite));
3253 
3254 	/*
3255 	 * If there's a discovered mtu int tcp hostcache, use it
3256 	 * else, use the link mtu.
3257 	 */
3258 	if (metrics.rmx_mtu)
3259 		mss = min(metrics.rmx_mtu, maxmtu) - min_protoh;
3260 	else {
3261 #ifdef INET6
3262 		if (isipv6) {
3263 			mss = maxmtu - min_protoh;
3264 			if (!V_path_mtu_discovery &&
3265 			    !in6_localaddr(&inp->in6p_faddr))
3266 				mss = min(mss, V_tcp_v6mssdflt);
3267 		} else
3268 #endif
3269 		{
3270 			mss = maxmtu - min_protoh;
3271 			if (!V_path_mtu_discovery &&
3272 			    !in_localaddr(inp->inp_faddr))
3273 				mss = min(mss, V_tcp_mssdflt);
3274 		}
3275 		/*
3276 		 * XXX - The above conditional (mss = maxmtu - min_protoh)
3277 		 * probably violates the TCP spec.
3278 		 * The problem is that, since we don't know the
3279 		 * other end's MSS, we are supposed to use a conservative
3280 		 * default.  But, if we do that, then MTU discovery will
3281 		 * never actually take place, because the conservative
3282 		 * default is much less than the MTUs typically seen
3283 		 * on the Internet today.  For the moment, we'll sweep
3284 		 * this under the carpet.
3285 		 *
3286 		 * The conservative default might not actually be a problem
3287 		 * if the only case this occurs is when sending an initial
3288 		 * SYN with options and data to a host we've never talked
3289 		 * to before.  Then, they will reply with an MSS value which
3290 		 * will get recorded and the new parameters should get
3291 		 * recomputed.  For Further Study.
3292 		 */
3293 	}
3294 	mss = min(mss, offer);
3295 
3296 	/*
3297 	 * Sanity check: make sure that maxopd will be large
3298 	 * enough to allow some data on segments even if the
3299 	 * all the option space is used (40bytes).  Otherwise
3300 	 * funny things may happen in tcp_output.
3301 	 */
3302 	mss = max(mss, 64);
3303 
3304 	/*
3305 	 * maxopd stores the maximum length of data AND options
3306 	 * in a segment; maxseg is the amount of data in a normal
3307 	 * segment.  We need to store this value (maxopd) apart
3308 	 * from maxseg, because now every segment carries options
3309 	 * and thus we normally have somewhat less data in segments.
3310 	 */
3311 	tp->t_maxopd = mss;
3312 
3313 	/*
3314 	 * origoffer==-1 indicates that no segments were received yet.
3315 	 * In this case we just guess.
3316 	 */
3317 	if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
3318 	    (origoffer == -1 ||
3319 	     (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP))
3320 		mss -= TCPOLEN_TSTAMP_APPA;
3321 
3322 #if	(MCLBYTES & (MCLBYTES - 1)) == 0
3323 	if (mss > MCLBYTES)
3324 		mss &= ~(MCLBYTES-1);
3325 #else
3326 	if (mss > MCLBYTES)
3327 		mss = mss / MCLBYTES * MCLBYTES;
3328 #endif
3329 	tp->t_maxseg = mss;
3330 }
3331 
3332 void
3333 tcp_mss(struct tcpcb *tp, int offer)
3334 {
3335 	int mss;
3336 	u_long bufsize;
3337 	struct inpcb *inp;
3338 	struct socket *so;
3339 	struct hc_metrics_lite metrics;
3340 	int mtuflags = 0;
3341 
3342 	KASSERT(tp != NULL, ("%s: tp == NULL", __func__));
3343 
3344 	tcp_mss_update(tp, offer, &metrics, &mtuflags);
3345 
3346 	mss = tp->t_maxseg;
3347 	inp = tp->t_inpcb;
3348 
3349 	/*
3350 	 * If there's a pipesize, change the socket buffer to that size,
3351 	 * don't change if sb_hiwat is different than default (then it
3352 	 * has been changed on purpose with setsockopt).
3353 	 * Make the socket buffers an integral number of mss units;
3354 	 * if the mss is larger than the socket buffer, decrease the mss.
3355 	 */
3356 	so = inp->inp_socket;
3357 	SOCKBUF_LOCK(&so->so_snd);
3358 	if ((so->so_snd.sb_hiwat == tcp_sendspace) && metrics.rmx_sendpipe)
3359 		bufsize = metrics.rmx_sendpipe;
3360 	else
3361 		bufsize = so->so_snd.sb_hiwat;
3362 	if (bufsize < mss)
3363 		mss = bufsize;
3364 	else {
3365 		bufsize = roundup(bufsize, mss);
3366 		if (bufsize > sb_max)
3367 			bufsize = sb_max;
3368 		if (bufsize > so->so_snd.sb_hiwat)
3369 			(void)sbreserve_locked(&so->so_snd, bufsize, so, NULL);
3370 	}
3371 	SOCKBUF_UNLOCK(&so->so_snd);
3372 	tp->t_maxseg = mss;
3373 
3374 	SOCKBUF_LOCK(&so->so_rcv);
3375 	if ((so->so_rcv.sb_hiwat == tcp_recvspace) && metrics.rmx_recvpipe)
3376 		bufsize = metrics.rmx_recvpipe;
3377 	else
3378 		bufsize = so->so_rcv.sb_hiwat;
3379 	if (bufsize > mss) {
3380 		bufsize = roundup(bufsize, mss);
3381 		if (bufsize > sb_max)
3382 			bufsize = sb_max;
3383 		if (bufsize > so->so_rcv.sb_hiwat)
3384 			(void)sbreserve_locked(&so->so_rcv, bufsize, so, NULL);
3385 	}
3386 	SOCKBUF_UNLOCK(&so->so_rcv);
3387 
3388 	/* Check the interface for TSO capabilities. */
3389 	if (mtuflags & CSUM_TSO)
3390 		tp->t_flags |= TF_TSO;
3391 }
3392 
3393 /*
3394  * Determine the MSS option to send on an outgoing SYN.
3395  */
3396 int
3397 tcp_mssopt(struct in_conninfo *inc)
3398 {
3399 	int mss = 0;
3400 	u_long maxmtu = 0;
3401 	u_long thcmtu = 0;
3402 	size_t min_protoh;
3403 
3404 	KASSERT(inc != NULL, ("tcp_mssopt with NULL in_conninfo pointer"));
3405 
3406 #ifdef INET6
3407 	if (inc->inc_flags & INC_ISIPV6) {
3408 		mss = V_tcp_v6mssdflt;
3409 		maxmtu = tcp_maxmtu6(inc, NULL);
3410 		thcmtu = tcp_hc_getmtu(inc); /* IPv4 and IPv6 */
3411 		min_protoh = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
3412 	} else
3413 #endif
3414 	{
3415 		mss = V_tcp_mssdflt;
3416 		maxmtu = tcp_maxmtu(inc, NULL);
3417 		thcmtu = tcp_hc_getmtu(inc); /* IPv4 and IPv6 */
3418 		min_protoh = sizeof(struct tcpiphdr);
3419 	}
3420 	if (maxmtu && thcmtu)
3421 		mss = min(maxmtu, thcmtu) - min_protoh;
3422 	else if (maxmtu || thcmtu)
3423 		mss = max(maxmtu, thcmtu) - min_protoh;
3424 
3425 	return (mss);
3426 }
3427 
3428 
3429 /*
3430  * On a partial ack arrives, force the retransmission of the
3431  * next unacknowledged segment.  Do not clear tp->t_dupacks.
3432  * By setting snd_nxt to ti_ack, this forces retransmission timer to
3433  * be started again.
3434  */
3435 static void
3436 tcp_newreno_partial_ack(struct tcpcb *tp, struct tcphdr *th)
3437 {
3438 	tcp_seq onxt = tp->snd_nxt;
3439 	u_long  ocwnd = tp->snd_cwnd;
3440 
3441 	INP_WLOCK_ASSERT(tp->t_inpcb);
3442 
3443 	tcp_timer_activate(tp, TT_REXMT, 0);
3444 	tp->t_rtttime = 0;
3445 	tp->snd_nxt = th->th_ack;
3446 	/*
3447 	 * Set snd_cwnd to one segment beyond acknowledged offset.
3448 	 * (tp->snd_una has not yet been updated when this function is called.)
3449 	 */
3450 	tp->snd_cwnd = tp->t_maxseg + BYTES_THIS_ACK(tp, th);
3451 	tp->t_flags |= TF_ACKNOW;
3452 	(void) tcp_output(tp);
3453 	tp->snd_cwnd = ocwnd;
3454 	if (SEQ_GT(onxt, tp->snd_nxt))
3455 		tp->snd_nxt = onxt;
3456 	/*
3457 	 * Partial window deflation.  Relies on fact that tp->snd_una
3458 	 * not updated yet.
3459 	 */
3460 	if (tp->snd_cwnd > BYTES_THIS_ACK(tp, th))
3461 		tp->snd_cwnd -= BYTES_THIS_ACK(tp, th);
3462 	else
3463 		tp->snd_cwnd = 0;
3464 	tp->snd_cwnd += tp->t_maxseg;
3465 }
3466