xref: /freebsd/sys/netinet/tcp_input.c (revision 4ec234c813eed05c166859bba82c882e40826eb9)
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
3  *	The Regents of the University of California.  All rights reserved.
4  * Copyright (c) 2007-2008,2010
5  *	Swinburne University of Technology, Melbourne, Australia.
6  * Copyright (c) 2009-2010 Lawrence Stewart <lstewart@freebsd.org>
7  * Copyright (c) 2010 The FreeBSD Foundation
8  * Copyright (c) 2010-2011 Juniper Networks, Inc.
9  * All rights reserved.
10  *
11  * Portions of this software were developed at the Centre for Advanced Internet
12  * Architectures, Swinburne University of Technology, by Lawrence Stewart,
13  * James Healy and David Hayes, made possible in part by a grant from the Cisco
14  * University Research Program Fund at Community Foundation Silicon Valley.
15  *
16  * Portions of this software were developed at the Centre for Advanced
17  * Internet Architectures, Swinburne University of Technology, Melbourne,
18  * Australia by David Hayes under sponsorship from the FreeBSD Foundation.
19  *
20  * Portions of this software were developed by Robert N. M. Watson under
21  * contract to Juniper Networks, Inc.
22  *
23  * Redistribution and use in source and binary forms, with or without
24  * modification, are permitted provided that the following conditions
25  * are met:
26  * 1. Redistributions of source code must retain the above copyright
27  *    notice, this list of conditions and the following disclaimer.
28  * 2. Redistributions in binary form must reproduce the above copyright
29  *    notice, this list of conditions and the following disclaimer in the
30  *    documentation and/or other materials provided with the distribution.
31  * 4. Neither the name of the University nor the names of its contributors
32  *    may be used to endorse or promote products derived from this software
33  *    without specific prior written permission.
34  *
35  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
36  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
37  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
38  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
39  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
40  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
41  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
42  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
43  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
44  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
45  * SUCH DAMAGE.
46  *
47  *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
48  */
49 
50 #include <sys/cdefs.h>
51 __FBSDID("$FreeBSD$");
52 
53 #include "opt_ipfw.h"		/* for ipfw_fwd	*/
54 #include "opt_inet.h"
55 #include "opt_inet6.h"
56 #include "opt_ipsec.h"
57 #include "opt_tcpdebug.h"
58 
59 #include <sys/param.h>
60 #include <sys/kernel.h>
61 #include <sys/hhook.h>
62 #include <sys/malloc.h>
63 #include <sys/mbuf.h>
64 #include <sys/proc.h>		/* for proc0 declaration */
65 #include <sys/protosw.h>
66 #include <sys/sdt.h>
67 #include <sys/signalvar.h>
68 #include <sys/socket.h>
69 #include <sys/socketvar.h>
70 #include <sys/sysctl.h>
71 #include <sys/syslog.h>
72 #include <sys/systm.h>
73 
74 #include <machine/cpu.h>	/* before tcp_seq.h, for tcp_random18() */
75 
76 #include <vm/uma.h>
77 
78 #include <net/if.h>
79 #include <net/if_var.h>
80 #include <net/route.h>
81 #include <net/vnet.h>
82 
83 #define TCPSTATES		/* for logging */
84 
85 #include <netinet/cc.h>
86 #include <netinet/in.h>
87 #include <netinet/in_kdtrace.h>
88 #include <netinet/in_pcb.h>
89 #include <netinet/in_systm.h>
90 #include <netinet/in_var.h>
91 #include <netinet/ip.h>
92 #include <netinet/ip_icmp.h>	/* required for icmp_var.h */
93 #include <netinet/icmp_var.h>	/* for ICMP_BANDLIM */
94 #include <netinet/ip_var.h>
95 #include <netinet/ip_options.h>
96 #include <netinet/ip6.h>
97 #include <netinet/icmp6.h>
98 #include <netinet6/in6_pcb.h>
99 #include <netinet6/ip6_var.h>
100 #include <netinet6/nd6.h>
101 #include <netinet/tcp_fsm.h>
102 #include <netinet/tcp_seq.h>
103 #include <netinet/tcp_timer.h>
104 #include <netinet/tcp_var.h>
105 #include <netinet6/tcp6_var.h>
106 #include <netinet/tcpip.h>
107 #include <netinet/tcp_syncache.h>
108 #ifdef TCPDEBUG
109 #include <netinet/tcp_debug.h>
110 #endif /* TCPDEBUG */
111 #ifdef TCP_OFFLOAD
112 #include <netinet/tcp_offload.h>
113 #endif
114 
115 #ifdef IPSEC
116 #include <netipsec/ipsec.h>
117 #include <netipsec/ipsec6.h>
118 #endif /*IPSEC*/
119 
120 #include <machine/in_cksum.h>
121 
122 #include <security/mac/mac_framework.h>
123 
124 const int tcprexmtthresh = 3;
125 
126 int tcp_log_in_vain = 0;
127 SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_in_vain, CTLFLAG_RW,
128     &tcp_log_in_vain, 0,
129     "Log all incoming TCP segments to closed ports");
130 
131 VNET_DEFINE(int, blackhole) = 0;
132 #define	V_blackhole		VNET(blackhole)
133 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, blackhole, CTLFLAG_RW,
134     &VNET_NAME(blackhole), 0,
135     "Do not send RST on segments to closed ports");
136 
137 VNET_DEFINE(int, tcp_delack_enabled) = 1;
138 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, delayed_ack, CTLFLAG_RW,
139     &VNET_NAME(tcp_delack_enabled), 0,
140     "Delay ACK to try and piggyback it onto a data packet");
141 
142 VNET_DEFINE(int, drop_synfin) = 0;
143 #define	V_drop_synfin		VNET(drop_synfin)
144 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, drop_synfin, CTLFLAG_RW,
145     &VNET_NAME(drop_synfin), 0,
146     "Drop TCP packets with SYN+FIN set");
147 
148 VNET_DEFINE(int, tcp_do_rfc3042) = 1;
149 #define	V_tcp_do_rfc3042	VNET(tcp_do_rfc3042)
150 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, rfc3042, CTLFLAG_RW,
151     &VNET_NAME(tcp_do_rfc3042), 0,
152     "Enable RFC 3042 (Limited Transmit)");
153 
154 VNET_DEFINE(int, tcp_do_rfc3390) = 1;
155 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, rfc3390, CTLFLAG_RW,
156     &VNET_NAME(tcp_do_rfc3390), 0,
157     "Enable RFC 3390 (Increasing TCP's Initial Congestion Window)");
158 
159 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, experimental, CTLFLAG_RW, 0,
160     "Experimental TCP extensions");
161 
162 VNET_DEFINE(int, tcp_do_initcwnd10) = 1;
163 SYSCTL_VNET_INT(_net_inet_tcp_experimental, OID_AUTO, initcwnd10, CTLFLAG_RW,
164     &VNET_NAME(tcp_do_initcwnd10), 0,
165     "Enable RFC 6928 (Increasing initial CWND to 10)");
166 
167 VNET_DEFINE(int, tcp_do_rfc3465) = 1;
168 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, rfc3465, CTLFLAG_RW,
169     &VNET_NAME(tcp_do_rfc3465), 0,
170     "Enable RFC 3465 (Appropriate Byte Counting)");
171 
172 VNET_DEFINE(int, tcp_abc_l_var) = 2;
173 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, abc_l_var, CTLFLAG_RW,
174     &VNET_NAME(tcp_abc_l_var), 2,
175     "Cap the max cwnd increment during slow-start to this number of segments");
176 
177 static SYSCTL_NODE(_net_inet_tcp, OID_AUTO, ecn, CTLFLAG_RW, 0, "TCP ECN");
178 
179 VNET_DEFINE(int, tcp_do_ecn) = 0;
180 SYSCTL_VNET_INT(_net_inet_tcp_ecn, OID_AUTO, enable, CTLFLAG_RW,
181     &VNET_NAME(tcp_do_ecn), 0,
182     "TCP ECN support");
183 
184 VNET_DEFINE(int, tcp_ecn_maxretries) = 1;
185 SYSCTL_VNET_INT(_net_inet_tcp_ecn, OID_AUTO, maxretries, CTLFLAG_RW,
186     &VNET_NAME(tcp_ecn_maxretries), 0,
187     "Max retries before giving up on ECN");
188 
189 VNET_DEFINE(int, tcp_insecure_rst) = 0;
190 #define	V_tcp_insecure_rst	VNET(tcp_insecure_rst)
191 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, insecure_rst, CTLFLAG_RW,
192     &VNET_NAME(tcp_insecure_rst), 0,
193     "Follow the old (insecure) criteria for accepting RST packets");
194 
195 VNET_DEFINE(int, tcp_recvspace) = 1024*64;
196 #define	V_tcp_recvspace	VNET(tcp_recvspace)
197 SYSCTL_VNET_INT(_net_inet_tcp, TCPCTL_RECVSPACE, recvspace, CTLFLAG_RW,
198     &VNET_NAME(tcp_recvspace), 0, "Initial receive socket buffer size");
199 
200 VNET_DEFINE(int, tcp_do_autorcvbuf) = 1;
201 #define	V_tcp_do_autorcvbuf	VNET(tcp_do_autorcvbuf)
202 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, recvbuf_auto, CTLFLAG_RW,
203     &VNET_NAME(tcp_do_autorcvbuf), 0,
204     "Enable automatic receive buffer sizing");
205 
206 VNET_DEFINE(int, tcp_autorcvbuf_inc) = 16*1024;
207 #define	V_tcp_autorcvbuf_inc	VNET(tcp_autorcvbuf_inc)
208 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, recvbuf_inc, CTLFLAG_RW,
209     &VNET_NAME(tcp_autorcvbuf_inc), 0,
210     "Incrementor step size of automatic receive buffer");
211 
212 VNET_DEFINE(int, tcp_autorcvbuf_max) = 2*1024*1024;
213 #define	V_tcp_autorcvbuf_max	VNET(tcp_autorcvbuf_max)
214 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, recvbuf_max, CTLFLAG_RW,
215     &VNET_NAME(tcp_autorcvbuf_max), 0,
216     "Max size of automatic receive buffer");
217 
218 VNET_DEFINE(struct inpcbhead, tcb);
219 #define	tcb6	tcb  /* for KAME src sync over BSD*'s */
220 VNET_DEFINE(struct inpcbinfo, tcbinfo);
221 
222 static void	 tcp_dooptions(struct tcpopt *, u_char *, int, int);
223 static void	 tcp_do_segment(struct mbuf *, struct tcphdr *,
224 		     struct socket *, struct tcpcb *, int, int, uint8_t,
225 		     int);
226 static void	 tcp_dropwithreset(struct mbuf *, struct tcphdr *,
227 		     struct tcpcb *, int, int);
228 static void	 tcp_pulloutofband(struct socket *,
229 		     struct tcphdr *, struct mbuf *, int);
230 static void	 tcp_xmit_timer(struct tcpcb *, int);
231 static void	 tcp_newreno_partial_ack(struct tcpcb *, struct tcphdr *);
232 static void inline 	tcp_fields_to_host(struct tcphdr *);
233 #ifdef TCP_SIGNATURE
234 static void inline 	tcp_fields_to_net(struct tcphdr *);
235 static int inline	tcp_signature_verify_input(struct mbuf *, int, int,
236 			    int, struct tcpopt *, struct tcphdr *, u_int);
237 #endif
238 static void inline	cc_ack_received(struct tcpcb *tp, struct tcphdr *th,
239 			    uint16_t type);
240 static void inline	cc_conn_init(struct tcpcb *tp);
241 static void inline	cc_post_recovery(struct tcpcb *tp, struct tcphdr *th);
242 static void inline	hhook_run_tcp_est_in(struct tcpcb *tp,
243 			    struct tcphdr *th, struct tcpopt *to);
244 
245 /*
246  * TCP statistics are stored in an "array" of counter(9)s.
247  */
248 VNET_PCPUSTAT_DEFINE(struct tcpstat, tcpstat);
249 VNET_PCPUSTAT_SYSINIT(tcpstat);
250 SYSCTL_VNET_PCPUSTAT(_net_inet_tcp, TCPCTL_STATS, stats, struct tcpstat,
251     tcpstat, "TCP statistics (struct tcpstat, netinet/tcp_var.h)");
252 
253 #ifdef VIMAGE
254 VNET_PCPUSTAT_SYSUNINIT(tcpstat);
255 #endif /* VIMAGE */
256 /*
257  * Kernel module interface for updating tcpstat.  The argument is an index
258  * into tcpstat treated as an array.
259  */
260 void
261 kmod_tcpstat_inc(int statnum)
262 {
263 
264 	counter_u64_add(VNET(tcpstat)[statnum], 1);
265 }
266 
267 /*
268  * Wrapper for the TCP established input helper hook.
269  */
270 static void inline
271 hhook_run_tcp_est_in(struct tcpcb *tp, struct tcphdr *th, struct tcpopt *to)
272 {
273 	struct tcp_hhook_data hhook_data;
274 
275 	if (V_tcp_hhh[HHOOK_TCP_EST_IN]->hhh_nhooks > 0) {
276 		hhook_data.tp = tp;
277 		hhook_data.th = th;
278 		hhook_data.to = to;
279 
280 		hhook_run_hooks(V_tcp_hhh[HHOOK_TCP_EST_IN], &hhook_data,
281 		    tp->osd);
282 	}
283 }
284 
285 /*
286  * CC wrapper hook functions
287  */
288 static void inline
289 cc_ack_received(struct tcpcb *tp, struct tcphdr *th, uint16_t type)
290 {
291 	INP_WLOCK_ASSERT(tp->t_inpcb);
292 
293 	tp->ccv->bytes_this_ack = BYTES_THIS_ACK(tp, th);
294 	if (tp->snd_cwnd <= tp->snd_wnd)
295 		tp->ccv->flags |= CCF_CWND_LIMITED;
296 	else
297 		tp->ccv->flags &= ~CCF_CWND_LIMITED;
298 
299 	if (type == CC_ACK) {
300 		if (tp->snd_cwnd > tp->snd_ssthresh) {
301 			tp->t_bytes_acked += min(tp->ccv->bytes_this_ack,
302 			     V_tcp_abc_l_var * tp->t_maxseg);
303 			if (tp->t_bytes_acked >= tp->snd_cwnd) {
304 				tp->t_bytes_acked -= tp->snd_cwnd;
305 				tp->ccv->flags |= CCF_ABC_SENTAWND;
306 			}
307 		} else {
308 				tp->ccv->flags &= ~CCF_ABC_SENTAWND;
309 				tp->t_bytes_acked = 0;
310 		}
311 	}
312 
313 	if (CC_ALGO(tp)->ack_received != NULL) {
314 		/* XXXLAS: Find a way to live without this */
315 		tp->ccv->curack = th->th_ack;
316 		CC_ALGO(tp)->ack_received(tp->ccv, type);
317 	}
318 }
319 
320 static void inline
321 cc_conn_init(struct tcpcb *tp)
322 {
323 	struct hc_metrics_lite metrics;
324 	struct inpcb *inp = tp->t_inpcb;
325 	int rtt;
326 
327 	INP_WLOCK_ASSERT(tp->t_inpcb);
328 
329 	tcp_hc_get(&inp->inp_inc, &metrics);
330 
331 	if (tp->t_srtt == 0 && (rtt = metrics.rmx_rtt)) {
332 		tp->t_srtt = rtt;
333 		tp->t_rttbest = tp->t_srtt + TCP_RTT_SCALE;
334 		TCPSTAT_INC(tcps_usedrtt);
335 		if (metrics.rmx_rttvar) {
336 			tp->t_rttvar = metrics.rmx_rttvar;
337 			TCPSTAT_INC(tcps_usedrttvar);
338 		} else {
339 			/* default variation is +- 1 rtt */
340 			tp->t_rttvar =
341 			    tp->t_srtt * TCP_RTTVAR_SCALE / TCP_RTT_SCALE;
342 		}
343 		TCPT_RANGESET(tp->t_rxtcur,
344 		    ((tp->t_srtt >> 2) + tp->t_rttvar) >> 1,
345 		    tp->t_rttmin, TCPTV_REXMTMAX);
346 	}
347 	if (metrics.rmx_ssthresh) {
348 		/*
349 		 * There's some sort of gateway or interface
350 		 * buffer limit on the path.  Use this to set
351 		 * the slow start threshhold, but set the
352 		 * threshold to no less than 2*mss.
353 		 */
354 		tp->snd_ssthresh = max(2 * tp->t_maxseg, metrics.rmx_ssthresh);
355 		TCPSTAT_INC(tcps_usedssthresh);
356 	}
357 
358 	/*
359 	 * Set the initial slow-start flight size.
360 	 *
361 	 * RFC5681 Section 3.1 specifies the default conservative values.
362 	 * RFC3390 specifies slightly more aggressive values.
363 	 * RFC6928 increases it to ten segments.
364 	 *
365 	 * If a SYN or SYN/ACK was lost and retransmitted, we have to
366 	 * reduce the initial CWND to one segment as congestion is likely
367 	 * requiring us to be cautious.
368 	 */
369 	if (tp->snd_cwnd == 1)
370 		tp->snd_cwnd = tp->t_maxseg;		/* SYN(-ACK) lost */
371 	else if (V_tcp_do_initcwnd10)
372 		tp->snd_cwnd = min(10 * tp->t_maxseg,
373 		    max(2 * tp->t_maxseg, 14600));
374 	else if (V_tcp_do_rfc3390)
375 		tp->snd_cwnd = min(4 * tp->t_maxseg,
376 		    max(2 * tp->t_maxseg, 4380));
377 	else {
378 		/* Per RFC5681 Section 3.1 */
379 		if (tp->t_maxseg > 2190)
380 			tp->snd_cwnd = 2 * tp->t_maxseg;
381 		else if (tp->t_maxseg > 1095)
382 			tp->snd_cwnd = 3 * tp->t_maxseg;
383 		else
384 			tp->snd_cwnd = 4 * tp->t_maxseg;
385 	}
386 
387 	if (CC_ALGO(tp)->conn_init != NULL)
388 		CC_ALGO(tp)->conn_init(tp->ccv);
389 }
390 
391 void inline
392 cc_cong_signal(struct tcpcb *tp, struct tcphdr *th, uint32_t type)
393 {
394 	INP_WLOCK_ASSERT(tp->t_inpcb);
395 
396 	switch(type) {
397 	case CC_NDUPACK:
398 		if (!IN_FASTRECOVERY(tp->t_flags)) {
399 			tp->snd_recover = tp->snd_max;
400 			if (tp->t_flags & TF_ECN_PERMIT)
401 				tp->t_flags |= TF_ECN_SND_CWR;
402 		}
403 		break;
404 	case CC_ECN:
405 		if (!IN_CONGRECOVERY(tp->t_flags)) {
406 			TCPSTAT_INC(tcps_ecn_rcwnd);
407 			tp->snd_recover = tp->snd_max;
408 			if (tp->t_flags & TF_ECN_PERMIT)
409 				tp->t_flags |= TF_ECN_SND_CWR;
410 		}
411 		break;
412 	case CC_RTO:
413 		tp->t_dupacks = 0;
414 		tp->t_bytes_acked = 0;
415 		EXIT_RECOVERY(tp->t_flags);
416 		tp->snd_ssthresh = max(2, min(tp->snd_wnd, tp->snd_cwnd) / 2 /
417 		    tp->t_maxseg) * tp->t_maxseg;
418 		tp->snd_cwnd = tp->t_maxseg;
419 		break;
420 	case CC_RTO_ERR:
421 		TCPSTAT_INC(tcps_sndrexmitbad);
422 		/* RTO was unnecessary, so reset everything. */
423 		tp->snd_cwnd = tp->snd_cwnd_prev;
424 		tp->snd_ssthresh = tp->snd_ssthresh_prev;
425 		tp->snd_recover = tp->snd_recover_prev;
426 		if (tp->t_flags & TF_WASFRECOVERY)
427 			ENTER_FASTRECOVERY(tp->t_flags);
428 		if (tp->t_flags & TF_WASCRECOVERY)
429 			ENTER_CONGRECOVERY(tp->t_flags);
430 		tp->snd_nxt = tp->snd_max;
431 		tp->t_flags &= ~TF_PREVVALID;
432 		tp->t_badrxtwin = 0;
433 		break;
434 	}
435 
436 	if (CC_ALGO(tp)->cong_signal != NULL) {
437 		if (th != NULL)
438 			tp->ccv->curack = th->th_ack;
439 		CC_ALGO(tp)->cong_signal(tp->ccv, type);
440 	}
441 }
442 
443 static void inline
444 cc_post_recovery(struct tcpcb *tp, struct tcphdr *th)
445 {
446 	INP_WLOCK_ASSERT(tp->t_inpcb);
447 
448 	/* XXXLAS: KASSERT that we're in recovery? */
449 
450 	if (CC_ALGO(tp)->post_recovery != NULL) {
451 		tp->ccv->curack = th->th_ack;
452 		CC_ALGO(tp)->post_recovery(tp->ccv);
453 	}
454 	/* XXXLAS: EXIT_RECOVERY ? */
455 	tp->t_bytes_acked = 0;
456 }
457 
458 static inline void
459 tcp_fields_to_host(struct tcphdr *th)
460 {
461 
462 	th->th_seq = ntohl(th->th_seq);
463 	th->th_ack = ntohl(th->th_ack);
464 	th->th_win = ntohs(th->th_win);
465 	th->th_urp = ntohs(th->th_urp);
466 }
467 
468 #ifdef TCP_SIGNATURE
469 static inline void
470 tcp_fields_to_net(struct tcphdr *th)
471 {
472 
473 	th->th_seq = htonl(th->th_seq);
474 	th->th_ack = htonl(th->th_ack);
475 	th->th_win = htons(th->th_win);
476 	th->th_urp = htons(th->th_urp);
477 }
478 
479 static inline int
480 tcp_signature_verify_input(struct mbuf *m, int off0, int tlen, int optlen,
481     struct tcpopt *to, struct tcphdr *th, u_int tcpbflag)
482 {
483 	int ret;
484 
485 	tcp_fields_to_net(th);
486 	ret = tcp_signature_verify(m, off0, tlen, optlen, to, th, tcpbflag);
487 	tcp_fields_to_host(th);
488 	return (ret);
489 }
490 #endif
491 
492 /* Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint. */
493 #ifdef INET6
494 #define ND6_HINT(tp) \
495 do { \
496 	if ((tp) && (tp)->t_inpcb && \
497 	    ((tp)->t_inpcb->inp_vflag & INP_IPV6) != 0) \
498 		nd6_nud_hint(NULL, NULL, 0); \
499 } while (0)
500 #else
501 #define ND6_HINT(tp)
502 #endif
503 
504 /*
505  * Indicate whether this ack should be delayed.  We can delay the ack if
506  *	- there is no delayed ack timer in progress and
507  *	- our last ack wasn't a 0-sized window.  We never want to delay
508  *	  the ack that opens up a 0-sized window and
509  *		- delayed acks are enabled or
510  *		- this is a half-synchronized T/TCP connection.
511  *	- the segment size is not larger than the MSS and LRO wasn't used
512  *	  for this segment.
513  */
514 #define DELAY_ACK(tp, tlen)						\
515 	((!tcp_timer_active(tp, TT_DELACK) &&				\
516 	    (tp->t_flags & TF_RXWIN0SENT) == 0) &&			\
517 	    (tlen <= tp->t_maxopd) &&					\
518 	    (V_tcp_delack_enabled || (tp->t_flags & TF_NEEDSYN)))
519 
520 /*
521  * TCP input handling is split into multiple parts:
522  *   tcp6_input is a thin wrapper around tcp_input for the extended
523  *	ip6_protox[] call format in ip6_input
524  *   tcp_input handles primary segment validation, inpcb lookup and
525  *	SYN processing on listen sockets
526  *   tcp_do_segment processes the ACK and text of the segment for
527  *	establishing, established and closing connections
528  */
529 #ifdef INET6
530 int
531 tcp6_input(struct mbuf **mp, int *offp, int proto)
532 {
533 	struct mbuf *m = *mp;
534 	struct in6_ifaddr *ia6;
535 
536 	IP6_EXTHDR_CHECK(m, *offp, sizeof(struct tcphdr), IPPROTO_DONE);
537 
538 	/*
539 	 * draft-itojun-ipv6-tcp-to-anycast
540 	 * better place to put this in?
541 	 */
542 	ia6 = ip6_getdstifaddr(m);
543 	if (ia6 && (ia6->ia6_flags & IN6_IFF_ANYCAST)) {
544 		struct ip6_hdr *ip6;
545 
546 		ifa_free(&ia6->ia_ifa);
547 		ip6 = mtod(m, struct ip6_hdr *);
548 		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
549 			    (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
550 		return IPPROTO_DONE;
551 	}
552 	if (ia6)
553 		ifa_free(&ia6->ia_ifa);
554 
555 	tcp_input(m, *offp);
556 	return IPPROTO_DONE;
557 }
558 #endif /* INET6 */
559 
560 void
561 tcp_input(struct mbuf *m, int off0)
562 {
563 	struct tcphdr *th = NULL;
564 	struct ip *ip = NULL;
565 	struct inpcb *inp = NULL;
566 	struct tcpcb *tp = NULL;
567 	struct socket *so = NULL;
568 	u_char *optp = NULL;
569 	int optlen = 0;
570 #ifdef INET
571 	int len;
572 #endif
573 	int tlen = 0, off;
574 	int drop_hdrlen;
575 	int thflags;
576 	int rstreason = 0;	/* For badport_bandlim accounting purposes */
577 #ifdef TCP_SIGNATURE
578 	uint8_t sig_checked = 0;
579 #endif
580 	uint8_t iptos = 0;
581 	struct m_tag *fwd_tag = NULL;
582 #ifdef INET6
583 	struct ip6_hdr *ip6 = NULL;
584 	int isipv6;
585 #else
586 	const void *ip6 = NULL;
587 #endif /* INET6 */
588 	struct tcpopt to;		/* options in this segment */
589 	char *s = NULL;			/* address and port logging */
590 	int ti_locked;
591 #define	TI_UNLOCKED	1
592 #define	TI_WLOCKED	2
593 
594 #ifdef TCPDEBUG
595 	/*
596 	 * The size of tcp_saveipgen must be the size of the max ip header,
597 	 * now IPv6.
598 	 */
599 	u_char tcp_saveipgen[IP6_HDR_LEN];
600 	struct tcphdr tcp_savetcp;
601 	short ostate = 0;
602 #endif
603 
604 #ifdef INET6
605 	isipv6 = (mtod(m, struct ip *)->ip_v == 6) ? 1 : 0;
606 #endif
607 
608 	to.to_flags = 0;
609 	TCPSTAT_INC(tcps_rcvtotal);
610 
611 #ifdef INET6
612 	if (isipv6) {
613 		/* IP6_EXTHDR_CHECK() is already done at tcp6_input(). */
614 
615 		if (m->m_len < (sizeof(*ip6) + sizeof(*th))) {
616 			m = m_pullup(m, sizeof(*ip6) + sizeof(*th));
617 			if (m == NULL) {
618 				TCPSTAT_INC(tcps_rcvshort);
619 				return;
620 			}
621 		}
622 
623 		ip6 = mtod(m, struct ip6_hdr *);
624 		th = (struct tcphdr *)((caddr_t)ip6 + off0);
625 		tlen = sizeof(*ip6) + ntohs(ip6->ip6_plen) - off0;
626 		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID_IPV6) {
627 			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
628 				th->th_sum = m->m_pkthdr.csum_data;
629 			else
630 				th->th_sum = in6_cksum_pseudo(ip6, tlen,
631 				    IPPROTO_TCP, m->m_pkthdr.csum_data);
632 			th->th_sum ^= 0xffff;
633 		} else
634 			th->th_sum = in6_cksum(m, IPPROTO_TCP, off0, tlen);
635 		if (th->th_sum) {
636 			TCPSTAT_INC(tcps_rcvbadsum);
637 			goto drop;
638 		}
639 
640 		/*
641 		 * Be proactive about unspecified IPv6 address in source.
642 		 * As we use all-zero to indicate unbounded/unconnected pcb,
643 		 * unspecified IPv6 address can be used to confuse us.
644 		 *
645 		 * Note that packets with unspecified IPv6 destination is
646 		 * already dropped in ip6_input.
647 		 */
648 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
649 			/* XXX stat */
650 			goto drop;
651 		}
652 	}
653 #endif
654 #if defined(INET) && defined(INET6)
655 	else
656 #endif
657 #ifdef INET
658 	{
659 		/*
660 		 * Get IP and TCP header together in first mbuf.
661 		 * Note: IP leaves IP header in first mbuf.
662 		 */
663 		if (off0 > sizeof (struct ip)) {
664 			ip_stripoptions(m);
665 			off0 = sizeof(struct ip);
666 		}
667 		if (m->m_len < sizeof (struct tcpiphdr)) {
668 			if ((m = m_pullup(m, sizeof (struct tcpiphdr)))
669 			    == NULL) {
670 				TCPSTAT_INC(tcps_rcvshort);
671 				return;
672 			}
673 		}
674 		ip = mtod(m, struct ip *);
675 		th = (struct tcphdr *)((caddr_t)ip + off0);
676 		tlen = ntohs(ip->ip_len) - off0;
677 
678 		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
679 			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
680 				th->th_sum = m->m_pkthdr.csum_data;
681 			else
682 				th->th_sum = in_pseudo(ip->ip_src.s_addr,
683 				    ip->ip_dst.s_addr,
684 				    htonl(m->m_pkthdr.csum_data + tlen +
685 				    IPPROTO_TCP));
686 			th->th_sum ^= 0xffff;
687 		} else {
688 			struct ipovly *ipov = (struct ipovly *)ip;
689 
690 			/*
691 			 * Checksum extended TCP header and data.
692 			 */
693 			len = off0 + tlen;
694 			bzero(ipov->ih_x1, sizeof(ipov->ih_x1));
695 			ipov->ih_len = htons(tlen);
696 			th->th_sum = in_cksum(m, len);
697 			/* Reset length for SDT probes. */
698 			ip->ip_len = htons(tlen + off0);
699 		}
700 
701 		if (th->th_sum) {
702 			TCPSTAT_INC(tcps_rcvbadsum);
703 			goto drop;
704 		}
705 		/* Re-initialization for later version check */
706 		ip->ip_v = IPVERSION;
707 	}
708 #endif /* INET */
709 
710 #ifdef INET6
711 	if (isipv6)
712 		iptos = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
713 #endif
714 #if defined(INET) && defined(INET6)
715 	else
716 #endif
717 #ifdef INET
718 		iptos = ip->ip_tos;
719 #endif
720 
721 	/*
722 	 * Check that TCP offset makes sense,
723 	 * pull out TCP options and adjust length.		XXX
724 	 */
725 	off = th->th_off << 2;
726 	if (off < sizeof (struct tcphdr) || off > tlen) {
727 		TCPSTAT_INC(tcps_rcvbadoff);
728 		goto drop;
729 	}
730 	tlen -= off;	/* tlen is used instead of ti->ti_len */
731 	if (off > sizeof (struct tcphdr)) {
732 #ifdef INET6
733 		if (isipv6) {
734 			IP6_EXTHDR_CHECK(m, off0, off, );
735 			ip6 = mtod(m, struct ip6_hdr *);
736 			th = (struct tcphdr *)((caddr_t)ip6 + off0);
737 		}
738 #endif
739 #if defined(INET) && defined(INET6)
740 		else
741 #endif
742 #ifdef INET
743 		{
744 			if (m->m_len < sizeof(struct ip) + off) {
745 				if ((m = m_pullup(m, sizeof (struct ip) + off))
746 				    == NULL) {
747 					TCPSTAT_INC(tcps_rcvshort);
748 					return;
749 				}
750 				ip = mtod(m, struct ip *);
751 				th = (struct tcphdr *)((caddr_t)ip + off0);
752 			}
753 		}
754 #endif
755 		optlen = off - sizeof (struct tcphdr);
756 		optp = (u_char *)(th + 1);
757 	}
758 	thflags = th->th_flags;
759 
760 	/*
761 	 * Convert TCP protocol specific fields to host format.
762 	 */
763 	tcp_fields_to_host(th);
764 
765 	/*
766 	 * Delay dropping TCP, IP headers, IPv6 ext headers, and TCP options.
767 	 */
768 	drop_hdrlen = off0 + off;
769 
770 	/*
771 	 * Locate pcb for segment; if we're likely to add or remove a
772 	 * connection then first acquire pcbinfo lock.  There are two cases
773 	 * where we might discover later we need a write lock despite the
774 	 * flags: ACKs moving a connection out of the syncache, and ACKs for
775 	 * a connection in TIMEWAIT.
776 	 */
777 	if ((thflags & (TH_SYN | TH_FIN | TH_RST)) != 0) {
778 		INP_INFO_WLOCK(&V_tcbinfo);
779 		ti_locked = TI_WLOCKED;
780 	} else
781 		ti_locked = TI_UNLOCKED;
782 
783 	/*
784 	 * Grab info from PACKET_TAG_IPFORWARD tag prepended to the chain.
785 	 */
786         if (
787 #ifdef INET6
788 	    (isipv6 && (m->m_flags & M_IP6_NEXTHOP))
789 #ifdef INET
790 	    || (!isipv6 && (m->m_flags & M_IP_NEXTHOP))
791 #endif
792 #endif
793 #if defined(INET) && !defined(INET6)
794 	    (m->m_flags & M_IP_NEXTHOP)
795 #endif
796 	    )
797 		fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
798 
799 findpcb:
800 #ifdef INVARIANTS
801 	if (ti_locked == TI_WLOCKED) {
802 		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
803 	} else {
804 		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
805 	}
806 #endif
807 #ifdef INET6
808 	if (isipv6 && fwd_tag != NULL) {
809 		struct sockaddr_in6 *next_hop6;
810 
811 		next_hop6 = (struct sockaddr_in6 *)(fwd_tag + 1);
812 		/*
813 		 * Transparently forwarded. Pretend to be the destination.
814 		 * Already got one like this?
815 		 */
816 		inp = in6_pcblookup_mbuf(&V_tcbinfo,
817 		    &ip6->ip6_src, th->th_sport, &ip6->ip6_dst, th->th_dport,
818 		    INPLOOKUP_WLOCKPCB, m->m_pkthdr.rcvif, m);
819 		if (!inp) {
820 			/*
821 			 * It's new.  Try to find the ambushing socket.
822 			 * Because we've rewritten the destination address,
823 			 * any hardware-generated hash is ignored.
824 			 */
825 			inp = in6_pcblookup(&V_tcbinfo, &ip6->ip6_src,
826 			    th->th_sport, &next_hop6->sin6_addr,
827 			    next_hop6->sin6_port ? ntohs(next_hop6->sin6_port) :
828 			    th->th_dport, INPLOOKUP_WILDCARD |
829 			    INPLOOKUP_WLOCKPCB, m->m_pkthdr.rcvif);
830 		}
831 	} else if (isipv6) {
832 		inp = in6_pcblookup_mbuf(&V_tcbinfo, &ip6->ip6_src,
833 		    th->th_sport, &ip6->ip6_dst, th->th_dport,
834 		    INPLOOKUP_WILDCARD | INPLOOKUP_WLOCKPCB,
835 		    m->m_pkthdr.rcvif, m);
836 	}
837 #endif /* INET6 */
838 #if defined(INET6) && defined(INET)
839 	else
840 #endif
841 #ifdef INET
842 	if (fwd_tag != NULL) {
843 		struct sockaddr_in *next_hop;
844 
845 		next_hop = (struct sockaddr_in *)(fwd_tag+1);
846 		/*
847 		 * Transparently forwarded. Pretend to be the destination.
848 		 * already got one like this?
849 		 */
850 		inp = in_pcblookup_mbuf(&V_tcbinfo, ip->ip_src, th->th_sport,
851 		    ip->ip_dst, th->th_dport, INPLOOKUP_WLOCKPCB,
852 		    m->m_pkthdr.rcvif, m);
853 		if (!inp) {
854 			/*
855 			 * It's new.  Try to find the ambushing socket.
856 			 * Because we've rewritten the destination address,
857 			 * any hardware-generated hash is ignored.
858 			 */
859 			inp = in_pcblookup(&V_tcbinfo, ip->ip_src,
860 			    th->th_sport, next_hop->sin_addr,
861 			    next_hop->sin_port ? ntohs(next_hop->sin_port) :
862 			    th->th_dport, INPLOOKUP_WILDCARD |
863 			    INPLOOKUP_WLOCKPCB, m->m_pkthdr.rcvif);
864 		}
865 	} else
866 		inp = in_pcblookup_mbuf(&V_tcbinfo, ip->ip_src,
867 		    th->th_sport, ip->ip_dst, th->th_dport,
868 		    INPLOOKUP_WILDCARD | INPLOOKUP_WLOCKPCB,
869 		    m->m_pkthdr.rcvif, m);
870 #endif /* INET */
871 
872 	/*
873 	 * If the INPCB does not exist then all data in the incoming
874 	 * segment is discarded and an appropriate RST is sent back.
875 	 * XXX MRT Send RST using which routing table?
876 	 */
877 	if (inp == NULL) {
878 		/*
879 		 * Log communication attempts to ports that are not
880 		 * in use.
881 		 */
882 		if ((tcp_log_in_vain == 1 && (thflags & TH_SYN)) ||
883 		    tcp_log_in_vain == 2) {
884 			if ((s = tcp_log_vain(NULL, th, (void *)ip, ip6)))
885 				log(LOG_INFO, "%s; %s: Connection attempt "
886 				    "to closed port\n", s, __func__);
887 		}
888 		/*
889 		 * When blackholing do not respond with a RST but
890 		 * completely ignore the segment and drop it.
891 		 */
892 		if ((V_blackhole == 1 && (thflags & TH_SYN)) ||
893 		    V_blackhole == 2)
894 			goto dropunlock;
895 
896 		rstreason = BANDLIM_RST_CLOSEDPORT;
897 		goto dropwithreset;
898 	}
899 	INP_WLOCK_ASSERT(inp);
900 	if (!(inp->inp_flags & INP_HW_FLOWID)
901 	    && (m->m_flags & M_FLOWID)
902 	    && ((inp->inp_socket == NULL)
903 		|| !(inp->inp_socket->so_options & SO_ACCEPTCONN))) {
904 		inp->inp_flags |= INP_HW_FLOWID;
905 		inp->inp_flags &= ~INP_SW_FLOWID;
906 		inp->inp_flowid = m->m_pkthdr.flowid;
907 	}
908 #ifdef IPSEC
909 #ifdef INET6
910 	if (isipv6 && ipsec6_in_reject(m, inp)) {
911 		IPSEC6STAT_INC(ips_in_polvio);
912 		goto dropunlock;
913 	} else
914 #endif /* INET6 */
915 	if (ipsec4_in_reject(m, inp) != 0) {
916 		IPSECSTAT_INC(ips_in_polvio);
917 		goto dropunlock;
918 	}
919 #endif /* IPSEC */
920 
921 	/*
922 	 * Check the minimum TTL for socket.
923 	 */
924 	if (inp->inp_ip_minttl != 0) {
925 #ifdef INET6
926 		if (isipv6 && inp->inp_ip_minttl > ip6->ip6_hlim)
927 			goto dropunlock;
928 		else
929 #endif
930 		if (inp->inp_ip_minttl > ip->ip_ttl)
931 			goto dropunlock;
932 	}
933 
934 	/*
935 	 * A previous connection in TIMEWAIT state is supposed to catch stray
936 	 * or duplicate segments arriving late.  If this segment was a
937 	 * legitimate new connection attempt, the old INPCB gets removed and
938 	 * we can try again to find a listening socket.
939 	 *
940 	 * At this point, due to earlier optimism, we may hold only an inpcb
941 	 * lock, and not the inpcbinfo write lock.  If so, we need to try to
942 	 * acquire it, or if that fails, acquire a reference on the inpcb,
943 	 * drop all locks, acquire a global write lock, and then re-acquire
944 	 * the inpcb lock.  We may at that point discover that another thread
945 	 * has tried to free the inpcb, in which case we need to loop back
946 	 * and try to find a new inpcb to deliver to.
947 	 *
948 	 * XXXRW: It may be time to rethink timewait locking.
949 	 */
950 relocked:
951 	if (inp->inp_flags & INP_TIMEWAIT) {
952 		if (ti_locked == TI_UNLOCKED) {
953 			if (INP_INFO_TRY_WLOCK(&V_tcbinfo) == 0) {
954 				in_pcbref(inp);
955 				INP_WUNLOCK(inp);
956 				INP_INFO_WLOCK(&V_tcbinfo);
957 				ti_locked = TI_WLOCKED;
958 				INP_WLOCK(inp);
959 				if (in_pcbrele_wlocked(inp)) {
960 					inp = NULL;
961 					goto findpcb;
962 				}
963 			} else
964 				ti_locked = TI_WLOCKED;
965 		}
966 		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
967 
968 		if (thflags & TH_SYN)
969 			tcp_dooptions(&to, optp, optlen, TO_SYN);
970 		/*
971 		 * NB: tcp_twcheck unlocks the INP and frees the mbuf.
972 		 */
973 		if (tcp_twcheck(inp, &to, th, m, tlen))
974 			goto findpcb;
975 		INP_INFO_WUNLOCK(&V_tcbinfo);
976 		return;
977 	}
978 	/*
979 	 * The TCPCB may no longer exist if the connection is winding
980 	 * down or it is in the CLOSED state.  Either way we drop the
981 	 * segment and send an appropriate response.
982 	 */
983 	tp = intotcpcb(inp);
984 	if (tp == NULL || tp->t_state == TCPS_CLOSED) {
985 		rstreason = BANDLIM_RST_CLOSEDPORT;
986 		goto dropwithreset;
987 	}
988 
989 #ifdef TCP_OFFLOAD
990 	if (tp->t_flags & TF_TOE) {
991 		tcp_offload_input(tp, m);
992 		m = NULL;	/* consumed by the TOE driver */
993 		goto dropunlock;
994 	}
995 #endif
996 
997 	/*
998 	 * We've identified a valid inpcb, but it could be that we need an
999 	 * inpcbinfo write lock but don't hold it.  In this case, attempt to
1000 	 * acquire using the same strategy as the TIMEWAIT case above.  If we
1001 	 * relock, we have to jump back to 'relocked' as the connection might
1002 	 * now be in TIMEWAIT.
1003 	 */
1004 #ifdef INVARIANTS
1005 	if ((thflags & (TH_SYN | TH_FIN | TH_RST)) != 0)
1006 		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1007 #endif
1008 	if (tp->t_state != TCPS_ESTABLISHED) {
1009 		if (ti_locked == TI_UNLOCKED) {
1010 			if (INP_INFO_TRY_WLOCK(&V_tcbinfo) == 0) {
1011 				in_pcbref(inp);
1012 				INP_WUNLOCK(inp);
1013 				INP_INFO_WLOCK(&V_tcbinfo);
1014 				ti_locked = TI_WLOCKED;
1015 				INP_WLOCK(inp);
1016 				if (in_pcbrele_wlocked(inp)) {
1017 					inp = NULL;
1018 					goto findpcb;
1019 				}
1020 				goto relocked;
1021 			} else
1022 				ti_locked = TI_WLOCKED;
1023 		}
1024 		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1025 	}
1026 
1027 #ifdef MAC
1028 	INP_WLOCK_ASSERT(inp);
1029 	if (mac_inpcb_check_deliver(inp, m))
1030 		goto dropunlock;
1031 #endif
1032 	so = inp->inp_socket;
1033 	KASSERT(so != NULL, ("%s: so == NULL", __func__));
1034 #ifdef TCPDEBUG
1035 	if (so->so_options & SO_DEBUG) {
1036 		ostate = tp->t_state;
1037 #ifdef INET6
1038 		if (isipv6) {
1039 			bcopy((char *)ip6, (char *)tcp_saveipgen, sizeof(*ip6));
1040 		} else
1041 #endif
1042 			bcopy((char *)ip, (char *)tcp_saveipgen, sizeof(*ip));
1043 		tcp_savetcp = *th;
1044 	}
1045 #endif /* TCPDEBUG */
1046 	/*
1047 	 * When the socket is accepting connections (the INPCB is in LISTEN
1048 	 * state) we look into the SYN cache if this is a new connection
1049 	 * attempt or the completion of a previous one.  Because listen
1050 	 * sockets are never in TCPS_ESTABLISHED, the V_tcbinfo lock will be
1051 	 * held in this case.
1052 	 */
1053 	if (so->so_options & SO_ACCEPTCONN) {
1054 		struct in_conninfo inc;
1055 
1056 		KASSERT(tp->t_state == TCPS_LISTEN, ("%s: so accepting but "
1057 		    "tp not listening", __func__));
1058 		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1059 
1060 		bzero(&inc, sizeof(inc));
1061 #ifdef INET6
1062 		if (isipv6) {
1063 			inc.inc_flags |= INC_ISIPV6;
1064 			inc.inc6_faddr = ip6->ip6_src;
1065 			inc.inc6_laddr = ip6->ip6_dst;
1066 		} else
1067 #endif
1068 		{
1069 			inc.inc_faddr = ip->ip_src;
1070 			inc.inc_laddr = ip->ip_dst;
1071 		}
1072 		inc.inc_fport = th->th_sport;
1073 		inc.inc_lport = th->th_dport;
1074 		inc.inc_fibnum = so->so_fibnum;
1075 
1076 		/*
1077 		 * Check for an existing connection attempt in syncache if
1078 		 * the flag is only ACK.  A successful lookup creates a new
1079 		 * socket appended to the listen queue in SYN_RECEIVED state.
1080 		 */
1081 		if ((thflags & (TH_RST|TH_ACK|TH_SYN)) == TH_ACK) {
1082 			/*
1083 			 * Parse the TCP options here because
1084 			 * syncookies need access to the reflected
1085 			 * timestamp.
1086 			 */
1087 			tcp_dooptions(&to, optp, optlen, 0);
1088 			/*
1089 			 * NB: syncache_expand() doesn't unlock
1090 			 * inp and tcpinfo locks.
1091 			 */
1092 			if (!syncache_expand(&inc, &to, th, &so, m)) {
1093 				/*
1094 				 * No syncache entry or ACK was not
1095 				 * for our SYN/ACK.  Send a RST.
1096 				 * NB: syncache did its own logging
1097 				 * of the failure cause.
1098 				 */
1099 				rstreason = BANDLIM_RST_OPENPORT;
1100 				goto dropwithreset;
1101 			}
1102 			if (so == NULL) {
1103 				/*
1104 				 * We completed the 3-way handshake
1105 				 * but could not allocate a socket
1106 				 * either due to memory shortage,
1107 				 * listen queue length limits or
1108 				 * global socket limits.  Send RST
1109 				 * or wait and have the remote end
1110 				 * retransmit the ACK for another
1111 				 * try.
1112 				 */
1113 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1114 					log(LOG_DEBUG, "%s; %s: Listen socket: "
1115 					    "Socket allocation failed due to "
1116 					    "limits or memory shortage, %s\n",
1117 					    s, __func__,
1118 					    V_tcp_sc_rst_sock_fail ?
1119 					    "sending RST" : "try again");
1120 				if (V_tcp_sc_rst_sock_fail) {
1121 					rstreason = BANDLIM_UNLIMITED;
1122 					goto dropwithreset;
1123 				} else
1124 					goto dropunlock;
1125 			}
1126 			/*
1127 			 * Socket is created in state SYN_RECEIVED.
1128 			 * Unlock the listen socket, lock the newly
1129 			 * created socket and update the tp variable.
1130 			 */
1131 			INP_WUNLOCK(inp);	/* listen socket */
1132 			inp = sotoinpcb(so);
1133 			INP_WLOCK(inp);		/* new connection */
1134 			tp = intotcpcb(inp);
1135 			KASSERT(tp->t_state == TCPS_SYN_RECEIVED,
1136 			    ("%s: ", __func__));
1137 #ifdef TCP_SIGNATURE
1138 			if (sig_checked == 0)  {
1139 				tcp_dooptions(&to, optp, optlen,
1140 				    (thflags & TH_SYN) ? TO_SYN : 0);
1141 				if (!tcp_signature_verify_input(m, off0, tlen,
1142 				    optlen, &to, th, tp->t_flags)) {
1143 
1144 					/*
1145 					 * In SYN_SENT state if it receives an
1146 					 * RST, it is allowed for further
1147 					 * processing.
1148 					 */
1149 					if ((thflags & TH_RST) == 0 ||
1150 					    (tp->t_state == TCPS_SYN_SENT) == 0)
1151 						goto dropunlock;
1152 				}
1153 				sig_checked = 1;
1154 			}
1155 #endif
1156 
1157 			/*
1158 			 * Process the segment and the data it
1159 			 * contains.  tcp_do_segment() consumes
1160 			 * the mbuf chain and unlocks the inpcb.
1161 			 */
1162 			tcp_do_segment(m, th, so, tp, drop_hdrlen, tlen,
1163 			    iptos, ti_locked);
1164 			INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1165 			return;
1166 		}
1167 		/*
1168 		 * Segment flag validation for new connection attempts:
1169 		 *
1170 		 * Our (SYN|ACK) response was rejected.
1171 		 * Check with syncache and remove entry to prevent
1172 		 * retransmits.
1173 		 *
1174 		 * NB: syncache_chkrst does its own logging of failure
1175 		 * causes.
1176 		 */
1177 		if (thflags & TH_RST) {
1178 			syncache_chkrst(&inc, th);
1179 			goto dropunlock;
1180 		}
1181 		/*
1182 		 * We can't do anything without SYN.
1183 		 */
1184 		if ((thflags & TH_SYN) == 0) {
1185 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1186 				log(LOG_DEBUG, "%s; %s: Listen socket: "
1187 				    "SYN is missing, segment ignored\n",
1188 				    s, __func__);
1189 			TCPSTAT_INC(tcps_badsyn);
1190 			goto dropunlock;
1191 		}
1192 		/*
1193 		 * (SYN|ACK) is bogus on a listen socket.
1194 		 */
1195 		if (thflags & TH_ACK) {
1196 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1197 				log(LOG_DEBUG, "%s; %s: Listen socket: "
1198 				    "SYN|ACK invalid, segment rejected\n",
1199 				    s, __func__);
1200 			syncache_badack(&inc);	/* XXX: Not needed! */
1201 			TCPSTAT_INC(tcps_badsyn);
1202 			rstreason = BANDLIM_RST_OPENPORT;
1203 			goto dropwithreset;
1204 		}
1205 		/*
1206 		 * If the drop_synfin option is enabled, drop all
1207 		 * segments with both the SYN and FIN bits set.
1208 		 * This prevents e.g. nmap from identifying the
1209 		 * TCP/IP stack.
1210 		 * XXX: Poor reasoning.  nmap has other methods
1211 		 * and is constantly refining its stack detection
1212 		 * strategies.
1213 		 * XXX: This is a violation of the TCP specification
1214 		 * and was used by RFC1644.
1215 		 */
1216 		if ((thflags & TH_FIN) && V_drop_synfin) {
1217 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1218 				log(LOG_DEBUG, "%s; %s: Listen socket: "
1219 				    "SYN|FIN segment ignored (based on "
1220 				    "sysctl setting)\n", s, __func__);
1221 			TCPSTAT_INC(tcps_badsyn);
1222 			goto dropunlock;
1223 		}
1224 		/*
1225 		 * Segment's flags are (SYN) or (SYN|FIN).
1226 		 *
1227 		 * TH_PUSH, TH_URG, TH_ECE, TH_CWR are ignored
1228 		 * as they do not affect the state of the TCP FSM.
1229 		 * The data pointed to by TH_URG and th_urp is ignored.
1230 		 */
1231 		KASSERT((thflags & (TH_RST|TH_ACK)) == 0,
1232 		    ("%s: Listen socket: TH_RST or TH_ACK set", __func__));
1233 		KASSERT(thflags & (TH_SYN),
1234 		    ("%s: Listen socket: TH_SYN not set", __func__));
1235 #ifdef INET6
1236 		/*
1237 		 * If deprecated address is forbidden,
1238 		 * we do not accept SYN to deprecated interface
1239 		 * address to prevent any new inbound connection from
1240 		 * getting established.
1241 		 * When we do not accept SYN, we send a TCP RST,
1242 		 * with deprecated source address (instead of dropping
1243 		 * it).  We compromise it as it is much better for peer
1244 		 * to send a RST, and RST will be the final packet
1245 		 * for the exchange.
1246 		 *
1247 		 * If we do not forbid deprecated addresses, we accept
1248 		 * the SYN packet.  RFC2462 does not suggest dropping
1249 		 * SYN in this case.
1250 		 * If we decipher RFC2462 5.5.4, it says like this:
1251 		 * 1. use of deprecated addr with existing
1252 		 *    communication is okay - "SHOULD continue to be
1253 		 *    used"
1254 		 * 2. use of it with new communication:
1255 		 *   (2a) "SHOULD NOT be used if alternate address
1256 		 *        with sufficient scope is available"
1257 		 *   (2b) nothing mentioned otherwise.
1258 		 * Here we fall into (2b) case as we have no choice in
1259 		 * our source address selection - we must obey the peer.
1260 		 *
1261 		 * The wording in RFC2462 is confusing, and there are
1262 		 * multiple description text for deprecated address
1263 		 * handling - worse, they are not exactly the same.
1264 		 * I believe 5.5.4 is the best one, so we follow 5.5.4.
1265 		 */
1266 		if (isipv6 && !V_ip6_use_deprecated) {
1267 			struct in6_ifaddr *ia6;
1268 
1269 			ia6 = ip6_getdstifaddr(m);
1270 			if (ia6 != NULL &&
1271 			    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
1272 				ifa_free(&ia6->ia_ifa);
1273 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1274 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1275 					"Connection attempt to deprecated "
1276 					"IPv6 address rejected\n",
1277 					s, __func__);
1278 				rstreason = BANDLIM_RST_OPENPORT;
1279 				goto dropwithreset;
1280 			}
1281 			if (ia6)
1282 				ifa_free(&ia6->ia_ifa);
1283 		}
1284 #endif /* INET6 */
1285 		/*
1286 		 * Basic sanity checks on incoming SYN requests:
1287 		 *   Don't respond if the destination is a link layer
1288 		 *	broadcast according to RFC1122 4.2.3.10, p. 104.
1289 		 *   If it is from this socket it must be forged.
1290 		 *   Don't respond if the source or destination is a
1291 		 *	global or subnet broad- or multicast address.
1292 		 *   Note that it is quite possible to receive unicast
1293 		 *	link-layer packets with a broadcast IP address. Use
1294 		 *	in_broadcast() to find them.
1295 		 */
1296 		if (m->m_flags & (M_BCAST|M_MCAST)) {
1297 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1298 			    log(LOG_DEBUG, "%s; %s: Listen socket: "
1299 				"Connection attempt from broad- or multicast "
1300 				"link layer address ignored\n", s, __func__);
1301 			goto dropunlock;
1302 		}
1303 #ifdef INET6
1304 		if (isipv6) {
1305 			if (th->th_dport == th->th_sport &&
1306 			    IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst, &ip6->ip6_src)) {
1307 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1308 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1309 					"Connection attempt to/from self "
1310 					"ignored\n", s, __func__);
1311 				goto dropunlock;
1312 			}
1313 			if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
1314 			    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
1315 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1316 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1317 					"Connection attempt from/to multicast "
1318 					"address ignored\n", s, __func__);
1319 				goto dropunlock;
1320 			}
1321 		}
1322 #endif
1323 #if defined(INET) && defined(INET6)
1324 		else
1325 #endif
1326 #ifdef INET
1327 		{
1328 			if (th->th_dport == th->th_sport &&
1329 			    ip->ip_dst.s_addr == ip->ip_src.s_addr) {
1330 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1331 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1332 					"Connection attempt from/to self "
1333 					"ignored\n", s, __func__);
1334 				goto dropunlock;
1335 			}
1336 			if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
1337 			    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
1338 			    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
1339 			    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif)) {
1340 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1341 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1342 					"Connection attempt from/to broad- "
1343 					"or multicast address ignored\n",
1344 					s, __func__);
1345 				goto dropunlock;
1346 			}
1347 		}
1348 #endif
1349 		/*
1350 		 * SYN appears to be valid.  Create compressed TCP state
1351 		 * for syncache.
1352 		 */
1353 #ifdef TCPDEBUG
1354 		if (so->so_options & SO_DEBUG)
1355 			tcp_trace(TA_INPUT, ostate, tp,
1356 			    (void *)tcp_saveipgen, &tcp_savetcp, 0);
1357 #endif
1358 		tcp_dooptions(&to, optp, optlen, TO_SYN);
1359 		syncache_add(&inc, &to, th, inp, &so, m, NULL, NULL);
1360 		/*
1361 		 * Entry added to syncache and mbuf consumed.
1362 		 * Everything already unlocked by syncache_add().
1363 		 */
1364 		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1365 		return;
1366 	} else if (tp->t_state == TCPS_LISTEN) {
1367 		/*
1368 		 * When a listen socket is torn down the SO_ACCEPTCONN
1369 		 * flag is removed first while connections are drained
1370 		 * from the accept queue in a unlock/lock cycle of the
1371 		 * ACCEPT_LOCK, opening a race condition allowing a SYN
1372 		 * attempt go through unhandled.
1373 		 */
1374 		goto dropunlock;
1375 	}
1376 
1377 #ifdef TCP_SIGNATURE
1378 	if (sig_checked == 0)  {
1379 		tcp_dooptions(&to, optp, optlen,
1380 		    (thflags & TH_SYN) ? TO_SYN : 0);
1381 		if (!tcp_signature_verify_input(m, off0, tlen, optlen, &to,
1382 		    th, tp->t_flags)) {
1383 
1384 			/*
1385 			 * In SYN_SENT state if it receives an RST, it is
1386 			 * allowed for further processing.
1387 			 */
1388 			if ((thflags & TH_RST) == 0 ||
1389 			    (tp->t_state == TCPS_SYN_SENT) == 0)
1390 				goto dropunlock;
1391 		}
1392 		sig_checked = 1;
1393 	}
1394 #endif
1395 
1396 	TCP_PROBE5(receive, NULL, tp, mtod(m, const char *), tp, th);
1397 
1398 	/*
1399 	 * Segment belongs to a connection in SYN_SENT, ESTABLISHED or later
1400 	 * state.  tcp_do_segment() always consumes the mbuf chain, unlocks
1401 	 * the inpcb, and unlocks pcbinfo.
1402 	 */
1403 	tcp_do_segment(m, th, so, tp, drop_hdrlen, tlen, iptos, ti_locked);
1404 	INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1405 	return;
1406 
1407 dropwithreset:
1408 	TCP_PROBE5(receive, NULL, tp, mtod(m, const char *), tp, th);
1409 
1410 	if (ti_locked == TI_WLOCKED) {
1411 		INP_INFO_WUNLOCK(&V_tcbinfo);
1412 		ti_locked = TI_UNLOCKED;
1413 	}
1414 #ifdef INVARIANTS
1415 	else {
1416 		KASSERT(ti_locked == TI_UNLOCKED, ("%s: dropwithreset "
1417 		    "ti_locked: %d", __func__, ti_locked));
1418 		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1419 	}
1420 #endif
1421 
1422 	if (inp != NULL) {
1423 		tcp_dropwithreset(m, th, tp, tlen, rstreason);
1424 		INP_WUNLOCK(inp);
1425 	} else
1426 		tcp_dropwithreset(m, th, NULL, tlen, rstreason);
1427 	m = NULL;	/* mbuf chain got consumed. */
1428 	goto drop;
1429 
1430 dropunlock:
1431 	if (m != NULL)
1432 		TCP_PROBE5(receive, NULL, tp, mtod(m, const char *), tp, th);
1433 
1434 	if (ti_locked == TI_WLOCKED) {
1435 		INP_INFO_WUNLOCK(&V_tcbinfo);
1436 		ti_locked = TI_UNLOCKED;
1437 	}
1438 #ifdef INVARIANTS
1439 	else {
1440 		KASSERT(ti_locked == TI_UNLOCKED, ("%s: dropunlock "
1441 		    "ti_locked: %d", __func__, ti_locked));
1442 		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1443 	}
1444 #endif
1445 
1446 	if (inp != NULL)
1447 		INP_WUNLOCK(inp);
1448 
1449 drop:
1450 	INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1451 	if (s != NULL)
1452 		free(s, M_TCPLOG);
1453 	if (m != NULL)
1454 		m_freem(m);
1455 }
1456 
1457 static void
1458 tcp_do_segment(struct mbuf *m, struct tcphdr *th, struct socket *so,
1459     struct tcpcb *tp, int drop_hdrlen, int tlen, uint8_t iptos,
1460     int ti_locked)
1461 {
1462 	int thflags, acked, ourfinisacked, needoutput = 0;
1463 	int rstreason, todrop, win;
1464 	u_long tiwin;
1465 	char *s;
1466 	struct in_conninfo *inc;
1467 	struct mbuf *mfree;
1468 	struct tcpopt to;
1469 
1470 #ifdef TCPDEBUG
1471 	/*
1472 	 * The size of tcp_saveipgen must be the size of the max ip header,
1473 	 * now IPv6.
1474 	 */
1475 	u_char tcp_saveipgen[IP6_HDR_LEN];
1476 	struct tcphdr tcp_savetcp;
1477 	short ostate = 0;
1478 #endif
1479 	thflags = th->th_flags;
1480 	inc = &tp->t_inpcb->inp_inc;
1481 	tp->sackhint.last_sack_ack = 0;
1482 
1483 	/*
1484 	 * If this is either a state-changing packet or current state isn't
1485 	 * established, we require a write lock on tcbinfo.  Otherwise, we
1486 	 * allow the tcbinfo to be in either alocked or unlocked, as the
1487 	 * caller may have unnecessarily acquired a write lock due to a race.
1488 	 */
1489 	if ((thflags & (TH_SYN | TH_FIN | TH_RST)) != 0 ||
1490 	    tp->t_state != TCPS_ESTABLISHED) {
1491 		KASSERT(ti_locked == TI_WLOCKED, ("%s ti_locked %d for "
1492 		    "SYN/FIN/RST/!EST", __func__, ti_locked));
1493 		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1494 	} else {
1495 #ifdef INVARIANTS
1496 		if (ti_locked == TI_WLOCKED)
1497 			INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1498 		else {
1499 			KASSERT(ti_locked == TI_UNLOCKED, ("%s: EST "
1500 			    "ti_locked: %d", __func__, ti_locked));
1501 			INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1502 		}
1503 #endif
1504 	}
1505 	INP_WLOCK_ASSERT(tp->t_inpcb);
1506 	KASSERT(tp->t_state > TCPS_LISTEN, ("%s: TCPS_LISTEN",
1507 	    __func__));
1508 	KASSERT(tp->t_state != TCPS_TIME_WAIT, ("%s: TCPS_TIME_WAIT",
1509 	    __func__));
1510 
1511 	/*
1512 	 * Segment received on connection.
1513 	 * Reset idle time and keep-alive timer.
1514 	 * XXX: This should be done after segment
1515 	 * validation to ignore broken/spoofed segs.
1516 	 */
1517 	tp->t_rcvtime = ticks;
1518 	if (TCPS_HAVEESTABLISHED(tp->t_state))
1519 		tcp_timer_activate(tp, TT_KEEP, TP_KEEPIDLE(tp));
1520 
1521 	/*
1522 	 * Unscale the window into a 32-bit value.
1523 	 * For the SYN_SENT state the scale is zero.
1524 	 */
1525 	tiwin = th->th_win << tp->snd_scale;
1526 
1527 	/*
1528 	 * TCP ECN processing.
1529 	 */
1530 	if (tp->t_flags & TF_ECN_PERMIT) {
1531 		if (thflags & TH_CWR)
1532 			tp->t_flags &= ~TF_ECN_SND_ECE;
1533 		switch (iptos & IPTOS_ECN_MASK) {
1534 		case IPTOS_ECN_CE:
1535 			tp->t_flags |= TF_ECN_SND_ECE;
1536 			TCPSTAT_INC(tcps_ecn_ce);
1537 			break;
1538 		case IPTOS_ECN_ECT0:
1539 			TCPSTAT_INC(tcps_ecn_ect0);
1540 			break;
1541 		case IPTOS_ECN_ECT1:
1542 			TCPSTAT_INC(tcps_ecn_ect1);
1543 			break;
1544 		}
1545 		/* Congestion experienced. */
1546 		if (thflags & TH_ECE) {
1547 			cc_cong_signal(tp, th, CC_ECN);
1548 		}
1549 	}
1550 
1551 	/*
1552 	 * Parse options on any incoming segment.
1553 	 */
1554 	tcp_dooptions(&to, (u_char *)(th + 1),
1555 	    (th->th_off << 2) - sizeof(struct tcphdr),
1556 	    (thflags & TH_SYN) ? TO_SYN : 0);
1557 
1558 	/*
1559 	 * If echoed timestamp is later than the current time,
1560 	 * fall back to non RFC1323 RTT calculation.  Normalize
1561 	 * timestamp if syncookies were used when this connection
1562 	 * was established.
1563 	 */
1564 	if ((to.to_flags & TOF_TS) && (to.to_tsecr != 0)) {
1565 		to.to_tsecr -= tp->ts_offset;
1566 		if (TSTMP_GT(to.to_tsecr, tcp_ts_getticks()))
1567 			to.to_tsecr = 0;
1568 	}
1569 	/*
1570 	 * If timestamps were negotiated during SYN/ACK they should
1571 	 * appear on every segment during this session and vice versa.
1572 	 */
1573 	if ((tp->t_flags & TF_RCVD_TSTMP) && !(to.to_flags & TOF_TS)) {
1574 		if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1575 			log(LOG_DEBUG, "%s; %s: Timestamp missing, "
1576 			    "no action\n", s, __func__);
1577 			free(s, M_TCPLOG);
1578 		}
1579 	}
1580 	if (!(tp->t_flags & TF_RCVD_TSTMP) && (to.to_flags & TOF_TS)) {
1581 		if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1582 			log(LOG_DEBUG, "%s; %s: Timestamp not expected, "
1583 			    "no action\n", s, __func__);
1584 			free(s, M_TCPLOG);
1585 		}
1586 	}
1587 
1588 	/*
1589 	 * Process options only when we get SYN/ACK back. The SYN case
1590 	 * for incoming connections is handled in tcp_syncache.
1591 	 * According to RFC1323 the window field in a SYN (i.e., a <SYN>
1592 	 * or <SYN,ACK>) segment itself is never scaled.
1593 	 * XXX this is traditional behavior, may need to be cleaned up.
1594 	 */
1595 	if (tp->t_state == TCPS_SYN_SENT && (thflags & TH_SYN)) {
1596 		if ((to.to_flags & TOF_SCALE) &&
1597 		    (tp->t_flags & TF_REQ_SCALE)) {
1598 			tp->t_flags |= TF_RCVD_SCALE;
1599 			tp->snd_scale = to.to_wscale;
1600 		}
1601 		/*
1602 		 * Initial send window.  It will be updated with
1603 		 * the next incoming segment to the scaled value.
1604 		 */
1605 		tp->snd_wnd = th->th_win;
1606 		if (to.to_flags & TOF_TS) {
1607 			tp->t_flags |= TF_RCVD_TSTMP;
1608 			tp->ts_recent = to.to_tsval;
1609 			tp->ts_recent_age = tcp_ts_getticks();
1610 		}
1611 		if (to.to_flags & TOF_MSS)
1612 			tcp_mss(tp, to.to_mss);
1613 		if ((tp->t_flags & TF_SACK_PERMIT) &&
1614 		    (to.to_flags & TOF_SACKPERM) == 0)
1615 			tp->t_flags &= ~TF_SACK_PERMIT;
1616 	}
1617 
1618 	/*
1619 	 * Header prediction: check for the two common cases
1620 	 * of a uni-directional data xfer.  If the packet has
1621 	 * no control flags, is in-sequence, the window didn't
1622 	 * change and we're not retransmitting, it's a
1623 	 * candidate.  If the length is zero and the ack moved
1624 	 * forward, we're the sender side of the xfer.  Just
1625 	 * free the data acked & wake any higher level process
1626 	 * that was blocked waiting for space.  If the length
1627 	 * is non-zero and the ack didn't move, we're the
1628 	 * receiver side.  If we're getting packets in-order
1629 	 * (the reassembly queue is empty), add the data to
1630 	 * the socket buffer and note that we need a delayed ack.
1631 	 * Make sure that the hidden state-flags are also off.
1632 	 * Since we check for TCPS_ESTABLISHED first, it can only
1633 	 * be TH_NEEDSYN.
1634 	 */
1635 	if (tp->t_state == TCPS_ESTABLISHED &&
1636 	    th->th_seq == tp->rcv_nxt &&
1637 	    (thflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
1638 	    tp->snd_nxt == tp->snd_max &&
1639 	    tiwin && tiwin == tp->snd_wnd &&
1640 	    ((tp->t_flags & (TF_NEEDSYN|TF_NEEDFIN)) == 0) &&
1641 	    LIST_EMPTY(&tp->t_segq) &&
1642 	    ((to.to_flags & TOF_TS) == 0 ||
1643 	     TSTMP_GEQ(to.to_tsval, tp->ts_recent)) ) {
1644 
1645 		/*
1646 		 * If last ACK falls within this segment's sequence numbers,
1647 		 * record the timestamp.
1648 		 * NOTE that the test is modified according to the latest
1649 		 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
1650 		 */
1651 		if ((to.to_flags & TOF_TS) != 0 &&
1652 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1653 			tp->ts_recent_age = tcp_ts_getticks();
1654 			tp->ts_recent = to.to_tsval;
1655 		}
1656 
1657 		if (tlen == 0) {
1658 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
1659 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
1660 			    !IN_RECOVERY(tp->t_flags) &&
1661 			    (to.to_flags & TOF_SACK) == 0 &&
1662 			    TAILQ_EMPTY(&tp->snd_holes)) {
1663 				/*
1664 				 * This is a pure ack for outstanding data.
1665 				 */
1666 				if (ti_locked == TI_WLOCKED)
1667 					INP_INFO_WUNLOCK(&V_tcbinfo);
1668 				ti_locked = TI_UNLOCKED;
1669 
1670 				TCPSTAT_INC(tcps_predack);
1671 
1672 				/*
1673 				 * "bad retransmit" recovery.
1674 				 */
1675 				if (tp->t_rxtshift == 1 &&
1676 				    tp->t_flags & TF_PREVVALID &&
1677 				    (int)(ticks - tp->t_badrxtwin) < 0) {
1678 					cc_cong_signal(tp, th, CC_RTO_ERR);
1679 				}
1680 
1681 				/*
1682 				 * Recalculate the transmit timer / rtt.
1683 				 *
1684 				 * Some boxes send broken timestamp replies
1685 				 * during the SYN+ACK phase, ignore
1686 				 * timestamps of 0 or we could calculate a
1687 				 * huge RTT and blow up the retransmit timer.
1688 				 */
1689 				if ((to.to_flags & TOF_TS) != 0 &&
1690 				    to.to_tsecr) {
1691 					u_int t;
1692 
1693 					t = tcp_ts_getticks() - to.to_tsecr;
1694 					if (!tp->t_rttlow || tp->t_rttlow > t)
1695 						tp->t_rttlow = t;
1696 					tcp_xmit_timer(tp,
1697 					    TCP_TS_TO_TICKS(t) + 1);
1698 				} else if (tp->t_rtttime &&
1699 				    SEQ_GT(th->th_ack, tp->t_rtseq)) {
1700 					if (!tp->t_rttlow ||
1701 					    tp->t_rttlow > ticks - tp->t_rtttime)
1702 						tp->t_rttlow = ticks - tp->t_rtttime;
1703 					tcp_xmit_timer(tp,
1704 							ticks - tp->t_rtttime);
1705 				}
1706 				acked = BYTES_THIS_ACK(tp, th);
1707 
1708 				/* Run HHOOK_TCP_ESTABLISHED_IN helper hooks. */
1709 				hhook_run_tcp_est_in(tp, th, &to);
1710 
1711 				TCPSTAT_INC(tcps_rcvackpack);
1712 				TCPSTAT_ADD(tcps_rcvackbyte, acked);
1713 				sbdrop(&so->so_snd, acked);
1714 				if (SEQ_GT(tp->snd_una, tp->snd_recover) &&
1715 				    SEQ_LEQ(th->th_ack, tp->snd_recover))
1716 					tp->snd_recover = th->th_ack - 1;
1717 
1718 				/*
1719 				 * Let the congestion control algorithm update
1720 				 * congestion control related information. This
1721 				 * typically means increasing the congestion
1722 				 * window.
1723 				 */
1724 				cc_ack_received(tp, th, CC_ACK);
1725 
1726 				tp->snd_una = th->th_ack;
1727 				/*
1728 				 * Pull snd_wl2 up to prevent seq wrap relative
1729 				 * to th_ack.
1730 				 */
1731 				tp->snd_wl2 = th->th_ack;
1732 				tp->t_dupacks = 0;
1733 				m_freem(m);
1734 				ND6_HINT(tp); /* Some progress has been made. */
1735 
1736 				/*
1737 				 * If all outstanding data are acked, stop
1738 				 * retransmit timer, otherwise restart timer
1739 				 * using current (possibly backed-off) value.
1740 				 * If process is waiting for space,
1741 				 * wakeup/selwakeup/signal.  If data
1742 				 * are ready to send, let tcp_output
1743 				 * decide between more output or persist.
1744 				 */
1745 #ifdef TCPDEBUG
1746 				if (so->so_options & SO_DEBUG)
1747 					tcp_trace(TA_INPUT, ostate, tp,
1748 					    (void *)tcp_saveipgen,
1749 					    &tcp_savetcp, 0);
1750 #endif
1751 				if (tp->snd_una == tp->snd_max)
1752 					tcp_timer_activate(tp, TT_REXMT, 0);
1753 				else if (!tcp_timer_active(tp, TT_PERSIST))
1754 					tcp_timer_activate(tp, TT_REXMT,
1755 						      tp->t_rxtcur);
1756 				sowwakeup(so);
1757 				if (so->so_snd.sb_cc)
1758 					(void) tcp_output(tp);
1759 				goto check_delack;
1760 			}
1761 		} else if (th->th_ack == tp->snd_una &&
1762 		    tlen <= sbspace(&so->so_rcv)) {
1763 			int newsize = 0;	/* automatic sockbuf scaling */
1764 
1765 			/*
1766 			 * This is a pure, in-sequence data packet with
1767 			 * nothing on the reassembly queue and we have enough
1768 			 * buffer space to take it.
1769 			 */
1770 			if (ti_locked == TI_WLOCKED)
1771 				INP_INFO_WUNLOCK(&V_tcbinfo);
1772 			ti_locked = TI_UNLOCKED;
1773 
1774 			/* Clean receiver SACK report if present */
1775 			if ((tp->t_flags & TF_SACK_PERMIT) && tp->rcv_numsacks)
1776 				tcp_clean_sackreport(tp);
1777 			TCPSTAT_INC(tcps_preddat);
1778 			tp->rcv_nxt += tlen;
1779 			/*
1780 			 * Pull snd_wl1 up to prevent seq wrap relative to
1781 			 * th_seq.
1782 			 */
1783 			tp->snd_wl1 = th->th_seq;
1784 			/*
1785 			 * Pull rcv_up up to prevent seq wrap relative to
1786 			 * rcv_nxt.
1787 			 */
1788 			tp->rcv_up = tp->rcv_nxt;
1789 			TCPSTAT_INC(tcps_rcvpack);
1790 			TCPSTAT_ADD(tcps_rcvbyte, tlen);
1791 			ND6_HINT(tp);	/* Some progress has been made */
1792 #ifdef TCPDEBUG
1793 			if (so->so_options & SO_DEBUG)
1794 				tcp_trace(TA_INPUT, ostate, tp,
1795 				    (void *)tcp_saveipgen, &tcp_savetcp, 0);
1796 #endif
1797 		/*
1798 		 * Automatic sizing of receive socket buffer.  Often the send
1799 		 * buffer size is not optimally adjusted to the actual network
1800 		 * conditions at hand (delay bandwidth product).  Setting the
1801 		 * buffer size too small limits throughput on links with high
1802 		 * bandwidth and high delay (eg. trans-continental/oceanic links).
1803 		 *
1804 		 * On the receive side the socket buffer memory is only rarely
1805 		 * used to any significant extent.  This allows us to be much
1806 		 * more aggressive in scaling the receive socket buffer.  For
1807 		 * the case that the buffer space is actually used to a large
1808 		 * extent and we run out of kernel memory we can simply drop
1809 		 * the new segments; TCP on the sender will just retransmit it
1810 		 * later.  Setting the buffer size too big may only consume too
1811 		 * much kernel memory if the application doesn't read() from
1812 		 * the socket or packet loss or reordering makes use of the
1813 		 * reassembly queue.
1814 		 *
1815 		 * The criteria to step up the receive buffer one notch are:
1816 		 *  1. the number of bytes received during the time it takes
1817 		 *     one timestamp to be reflected back to us (the RTT);
1818 		 *  2. received bytes per RTT is within seven eighth of the
1819 		 *     current socket buffer size;
1820 		 *  3. receive buffer size has not hit maximal automatic size;
1821 		 *
1822 		 * This algorithm does one step per RTT at most and only if
1823 		 * we receive a bulk stream w/o packet losses or reorderings.
1824 		 * Shrinking the buffer during idle times is not necessary as
1825 		 * it doesn't consume any memory when idle.
1826 		 *
1827 		 * TODO: Only step up if the application is actually serving
1828 		 * the buffer to better manage the socket buffer resources.
1829 		 */
1830 			if (V_tcp_do_autorcvbuf &&
1831 			    to.to_tsecr &&
1832 			    (so->so_rcv.sb_flags & SB_AUTOSIZE)) {
1833 				if (TSTMP_GT(to.to_tsecr, tp->rfbuf_ts) &&
1834 				    to.to_tsecr - tp->rfbuf_ts < hz) {
1835 					if (tp->rfbuf_cnt >
1836 					    (so->so_rcv.sb_hiwat / 8 * 7) &&
1837 					    so->so_rcv.sb_hiwat <
1838 					    V_tcp_autorcvbuf_max) {
1839 						newsize =
1840 						    min(so->so_rcv.sb_hiwat +
1841 						    V_tcp_autorcvbuf_inc,
1842 						    V_tcp_autorcvbuf_max);
1843 					}
1844 					/* Start over with next RTT. */
1845 					tp->rfbuf_ts = 0;
1846 					tp->rfbuf_cnt = 0;
1847 				} else
1848 					tp->rfbuf_cnt += tlen;	/* add up */
1849 			}
1850 
1851 			/* Add data to socket buffer. */
1852 			SOCKBUF_LOCK(&so->so_rcv);
1853 			if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
1854 				m_freem(m);
1855 			} else {
1856 				/*
1857 				 * Set new socket buffer size.
1858 				 * Give up when limit is reached.
1859 				 */
1860 				if (newsize)
1861 					if (!sbreserve_locked(&so->so_rcv,
1862 					    newsize, so, NULL))
1863 						so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
1864 				m_adj(m, drop_hdrlen);	/* delayed header drop */
1865 				sbappendstream_locked(&so->so_rcv, m);
1866 			}
1867 			/* NB: sorwakeup_locked() does an implicit unlock. */
1868 			sorwakeup_locked(so);
1869 			if (DELAY_ACK(tp, tlen)) {
1870 				tp->t_flags |= TF_DELACK;
1871 			} else {
1872 				tp->t_flags |= TF_ACKNOW;
1873 				tcp_output(tp);
1874 			}
1875 			goto check_delack;
1876 		}
1877 	}
1878 
1879 	/*
1880 	 * Calculate amount of space in receive window,
1881 	 * and then do TCP input processing.
1882 	 * Receive window is amount of space in rcv queue,
1883 	 * but not less than advertised window.
1884 	 */
1885 	win = sbspace(&so->so_rcv);
1886 	if (win < 0)
1887 		win = 0;
1888 	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1889 
1890 	/* Reset receive buffer auto scaling when not in bulk receive mode. */
1891 	tp->rfbuf_ts = 0;
1892 	tp->rfbuf_cnt = 0;
1893 
1894 	switch (tp->t_state) {
1895 
1896 	/*
1897 	 * If the state is SYN_RECEIVED:
1898 	 *	if seg contains an ACK, but not for our SYN/ACK, send a RST.
1899 	 */
1900 	case TCPS_SYN_RECEIVED:
1901 		if ((thflags & TH_ACK) &&
1902 		    (SEQ_LEQ(th->th_ack, tp->snd_una) ||
1903 		     SEQ_GT(th->th_ack, tp->snd_max))) {
1904 				rstreason = BANDLIM_RST_OPENPORT;
1905 				goto dropwithreset;
1906 		}
1907 		break;
1908 
1909 	/*
1910 	 * If the state is SYN_SENT:
1911 	 *	if seg contains an ACK, but not for our SYN, drop the input.
1912 	 *	if seg contains a RST, then drop the connection.
1913 	 *	if seg does not contain SYN, then drop it.
1914 	 * Otherwise this is an acceptable SYN segment
1915 	 *	initialize tp->rcv_nxt and tp->irs
1916 	 *	if seg contains ack then advance tp->snd_una
1917 	 *	if seg contains an ECE and ECN support is enabled, the stream
1918 	 *	    is ECN capable.
1919 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1920 	 *	arrange for segment to be acked (eventually)
1921 	 *	continue processing rest of data/controls, beginning with URG
1922 	 */
1923 	case TCPS_SYN_SENT:
1924 		if ((thflags & TH_ACK) &&
1925 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
1926 		     SEQ_GT(th->th_ack, tp->snd_max))) {
1927 			rstreason = BANDLIM_UNLIMITED;
1928 			goto dropwithreset;
1929 		}
1930 		if ((thflags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) {
1931 			TCP_PROBE5(connect__refused, NULL, tp,
1932 			    mtod(m, const char *), tp, th);
1933 			tp = tcp_drop(tp, ECONNREFUSED);
1934 		}
1935 		if (thflags & TH_RST)
1936 			goto drop;
1937 		if (!(thflags & TH_SYN))
1938 			goto drop;
1939 
1940 		tp->irs = th->th_seq;
1941 		tcp_rcvseqinit(tp);
1942 		if (thflags & TH_ACK) {
1943 			TCPSTAT_INC(tcps_connects);
1944 			soisconnected(so);
1945 #ifdef MAC
1946 			mac_socketpeer_set_from_mbuf(m, so);
1947 #endif
1948 			/* Do window scaling on this connection? */
1949 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1950 				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1951 				tp->rcv_scale = tp->request_r_scale;
1952 			}
1953 			tp->rcv_adv += imin(tp->rcv_wnd,
1954 			    TCP_MAXWIN << tp->rcv_scale);
1955 			tp->snd_una++;		/* SYN is acked */
1956 			/*
1957 			 * If there's data, delay ACK; if there's also a FIN
1958 			 * ACKNOW will be turned on later.
1959 			 */
1960 			if (DELAY_ACK(tp, tlen) && tlen != 0)
1961 				tcp_timer_activate(tp, TT_DELACK,
1962 				    tcp_delacktime);
1963 			else
1964 				tp->t_flags |= TF_ACKNOW;
1965 
1966 			if ((thflags & TH_ECE) && V_tcp_do_ecn) {
1967 				tp->t_flags |= TF_ECN_PERMIT;
1968 				TCPSTAT_INC(tcps_ecn_shs);
1969 			}
1970 
1971 			/*
1972 			 * Received <SYN,ACK> in SYN_SENT[*] state.
1973 			 * Transitions:
1974 			 *	SYN_SENT  --> ESTABLISHED
1975 			 *	SYN_SENT* --> FIN_WAIT_1
1976 			 */
1977 			tp->t_starttime = ticks;
1978 			if (tp->t_flags & TF_NEEDFIN) {
1979 				tcp_state_change(tp, TCPS_FIN_WAIT_1);
1980 				tp->t_flags &= ~TF_NEEDFIN;
1981 				thflags &= ~TH_SYN;
1982 			} else {
1983 				tcp_state_change(tp, TCPS_ESTABLISHED);
1984 				TCP_PROBE5(connect__established, NULL, tp,
1985 				    mtod(m, const char *), tp, th);
1986 				cc_conn_init(tp);
1987 				tcp_timer_activate(tp, TT_KEEP,
1988 				    TP_KEEPIDLE(tp));
1989 			}
1990 		} else {
1991 			/*
1992 			 * Received initial SYN in SYN-SENT[*] state =>
1993 			 * simultaneous open.  If segment contains CC option
1994 			 * and there is a cached CC, apply TAO test.
1995 			 * If it succeeds, connection is * half-synchronized.
1996 			 * Otherwise, do 3-way handshake:
1997 			 *        SYN-SENT -> SYN-RECEIVED
1998 			 *        SYN-SENT* -> SYN-RECEIVED*
1999 			 * If there was no CC option, clear cached CC value.
2000 			 */
2001 			tp->t_flags |= (TF_ACKNOW | TF_NEEDSYN);
2002 			tcp_timer_activate(tp, TT_REXMT, 0);
2003 			tcp_state_change(tp, TCPS_SYN_RECEIVED);
2004 		}
2005 
2006 		KASSERT(ti_locked == TI_WLOCKED, ("%s: trimthenstep6: "
2007 		    "ti_locked %d", __func__, ti_locked));
2008 		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2009 		INP_WLOCK_ASSERT(tp->t_inpcb);
2010 
2011 		/*
2012 		 * Advance th->th_seq to correspond to first data byte.
2013 		 * If data, trim to stay within window,
2014 		 * dropping FIN if necessary.
2015 		 */
2016 		th->th_seq++;
2017 		if (tlen > tp->rcv_wnd) {
2018 			todrop = tlen - tp->rcv_wnd;
2019 			m_adj(m, -todrop);
2020 			tlen = tp->rcv_wnd;
2021 			thflags &= ~TH_FIN;
2022 			TCPSTAT_INC(tcps_rcvpackafterwin);
2023 			TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop);
2024 		}
2025 		tp->snd_wl1 = th->th_seq - 1;
2026 		tp->rcv_up = th->th_seq;
2027 		/*
2028 		 * Client side of transaction: already sent SYN and data.
2029 		 * If the remote host used T/TCP to validate the SYN,
2030 		 * our data will be ACK'd; if so, enter normal data segment
2031 		 * processing in the middle of step 5, ack processing.
2032 		 * Otherwise, goto step 6.
2033 		 */
2034 		if (thflags & TH_ACK)
2035 			goto process_ACK;
2036 
2037 		goto step6;
2038 
2039 	/*
2040 	 * If the state is LAST_ACK or CLOSING or TIME_WAIT:
2041 	 *      do normal processing.
2042 	 *
2043 	 * NB: Leftover from RFC1644 T/TCP.  Cases to be reused later.
2044 	 */
2045 	case TCPS_LAST_ACK:
2046 	case TCPS_CLOSING:
2047 		break;  /* continue normal processing */
2048 	}
2049 
2050 	/*
2051 	 * States other than LISTEN or SYN_SENT.
2052 	 * First check the RST flag and sequence number since reset segments
2053 	 * are exempt from the timestamp and connection count tests.  This
2054 	 * fixes a bug introduced by the Stevens, vol. 2, p. 960 bugfix
2055 	 * below which allowed reset segments in half the sequence space
2056 	 * to fall though and be processed (which gives forged reset
2057 	 * segments with a random sequence number a 50 percent chance of
2058 	 * killing a connection).
2059 	 * Then check timestamp, if present.
2060 	 * Then check the connection count, if present.
2061 	 * Then check that at least some bytes of segment are within
2062 	 * receive window.  If segment begins before rcv_nxt,
2063 	 * drop leading data (and SYN); if nothing left, just ack.
2064 	 *
2065 	 *
2066 	 * If the RST bit is set, check the sequence number to see
2067 	 * if this is a valid reset segment.
2068 	 * RFC 793 page 37:
2069 	 *   In all states except SYN-SENT, all reset (RST) segments
2070 	 *   are validated by checking their SEQ-fields.  A reset is
2071 	 *   valid if its sequence number is in the window.
2072 	 * Note: this does not take into account delayed ACKs, so
2073 	 *   we should test against last_ack_sent instead of rcv_nxt.
2074 	 *   The sequence number in the reset segment is normally an
2075 	 *   echo of our outgoing acknowlegement numbers, but some hosts
2076 	 *   send a reset with the sequence number at the rightmost edge
2077 	 *   of our receive window, and we have to handle this case.
2078 	 * Note 2: Paul Watson's paper "Slipping in the Window" has shown
2079 	 *   that brute force RST attacks are possible.  To combat this,
2080 	 *   we use a much stricter check while in the ESTABLISHED state,
2081 	 *   only accepting RSTs where the sequence number is equal to
2082 	 *   last_ack_sent.  In all other states (the states in which a
2083 	 *   RST is more likely), the more permissive check is used.
2084 	 * If we have multiple segments in flight, the initial reset
2085 	 * segment sequence numbers will be to the left of last_ack_sent,
2086 	 * but they will eventually catch up.
2087 	 * In any case, it never made sense to trim reset segments to
2088 	 * fit the receive window since RFC 1122 says:
2089 	 *   4.2.2.12  RST Segment: RFC-793 Section 3.4
2090 	 *
2091 	 *    A TCP SHOULD allow a received RST segment to include data.
2092 	 *
2093 	 *    DISCUSSION
2094 	 *         It has been suggested that a RST segment could contain
2095 	 *         ASCII text that encoded and explained the cause of the
2096 	 *         RST.  No standard has yet been established for such
2097 	 *         data.
2098 	 *
2099 	 * If the reset segment passes the sequence number test examine
2100 	 * the state:
2101 	 *    SYN_RECEIVED STATE:
2102 	 *	If passive open, return to LISTEN state.
2103 	 *	If active open, inform user that connection was refused.
2104 	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT_2, CLOSE_WAIT STATES:
2105 	 *	Inform user that connection was reset, and close tcb.
2106 	 *    CLOSING, LAST_ACK STATES:
2107 	 *	Close the tcb.
2108 	 *    TIME_WAIT STATE:
2109 	 *	Drop the segment - see Stevens, vol. 2, p. 964 and
2110 	 *      RFC 1337.
2111 	 */
2112 	if (thflags & TH_RST) {
2113 		if (SEQ_GEQ(th->th_seq, tp->last_ack_sent - 1) &&
2114 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) {
2115 			switch (tp->t_state) {
2116 
2117 			case TCPS_SYN_RECEIVED:
2118 				so->so_error = ECONNREFUSED;
2119 				goto close;
2120 
2121 			case TCPS_ESTABLISHED:
2122 				if (V_tcp_insecure_rst == 0 &&
2123 				    !(SEQ_GEQ(th->th_seq, tp->rcv_nxt - 1) &&
2124 				    SEQ_LEQ(th->th_seq, tp->rcv_nxt + 1)) &&
2125 				    !(SEQ_GEQ(th->th_seq, tp->last_ack_sent - 1) &&
2126 				    SEQ_LEQ(th->th_seq, tp->last_ack_sent + 1))) {
2127 					TCPSTAT_INC(tcps_badrst);
2128 					goto drop;
2129 				}
2130 				/* FALLTHROUGH */
2131 			case TCPS_FIN_WAIT_1:
2132 			case TCPS_FIN_WAIT_2:
2133 			case TCPS_CLOSE_WAIT:
2134 				so->so_error = ECONNRESET;
2135 			close:
2136 				KASSERT(ti_locked == TI_WLOCKED,
2137 				    ("tcp_do_segment: TH_RST 1 ti_locked %d",
2138 				    ti_locked));
2139 				INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2140 
2141 				tcp_state_change(tp, TCPS_CLOSED);
2142 				TCPSTAT_INC(tcps_drops);
2143 				tp = tcp_close(tp);
2144 				break;
2145 
2146 			case TCPS_CLOSING:
2147 			case TCPS_LAST_ACK:
2148 				KASSERT(ti_locked == TI_WLOCKED,
2149 				    ("tcp_do_segment: TH_RST 2 ti_locked %d",
2150 				    ti_locked));
2151 				INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2152 
2153 				tp = tcp_close(tp);
2154 				break;
2155 			}
2156 		}
2157 		goto drop;
2158 	}
2159 
2160 	/*
2161 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
2162 	 * and it's less than ts_recent, drop it.
2163 	 */
2164 	if ((to.to_flags & TOF_TS) != 0 && tp->ts_recent &&
2165 	    TSTMP_LT(to.to_tsval, tp->ts_recent)) {
2166 
2167 		/* Check to see if ts_recent is over 24 days old.  */
2168 		if (tcp_ts_getticks() - tp->ts_recent_age > TCP_PAWS_IDLE) {
2169 			/*
2170 			 * Invalidate ts_recent.  If this segment updates
2171 			 * ts_recent, the age will be reset later and ts_recent
2172 			 * will get a valid value.  If it does not, setting
2173 			 * ts_recent to zero will at least satisfy the
2174 			 * requirement that zero be placed in the timestamp
2175 			 * echo reply when ts_recent isn't valid.  The
2176 			 * age isn't reset until we get a valid ts_recent
2177 			 * because we don't want out-of-order segments to be
2178 			 * dropped when ts_recent is old.
2179 			 */
2180 			tp->ts_recent = 0;
2181 		} else {
2182 			TCPSTAT_INC(tcps_rcvduppack);
2183 			TCPSTAT_ADD(tcps_rcvdupbyte, tlen);
2184 			TCPSTAT_INC(tcps_pawsdrop);
2185 			if (tlen)
2186 				goto dropafterack;
2187 			goto drop;
2188 		}
2189 	}
2190 
2191 	/*
2192 	 * In the SYN-RECEIVED state, validate that the packet belongs to
2193 	 * this connection before trimming the data to fit the receive
2194 	 * window.  Check the sequence number versus IRS since we know
2195 	 * the sequence numbers haven't wrapped.  This is a partial fix
2196 	 * for the "LAND" DoS attack.
2197 	 */
2198 	if (tp->t_state == TCPS_SYN_RECEIVED && SEQ_LT(th->th_seq, tp->irs)) {
2199 		rstreason = BANDLIM_RST_OPENPORT;
2200 		goto dropwithreset;
2201 	}
2202 
2203 	todrop = tp->rcv_nxt - th->th_seq;
2204 	if (todrop > 0) {
2205 		/*
2206 		 * If this is a duplicate SYN for our current connection,
2207 		 * advance over it and pretend and it's not a SYN.
2208 		 */
2209 		if (thflags & TH_SYN && th->th_seq == tp->irs) {
2210 			thflags &= ~TH_SYN;
2211 			th->th_seq++;
2212 			if (th->th_urp > 1)
2213 				th->th_urp--;
2214 			else
2215 				thflags &= ~TH_URG;
2216 			todrop--;
2217 		}
2218 		/*
2219 		 * Following if statement from Stevens, vol. 2, p. 960.
2220 		 */
2221 		if (todrop > tlen
2222 		    || (todrop == tlen && (thflags & TH_FIN) == 0)) {
2223 			/*
2224 			 * Any valid FIN must be to the left of the window.
2225 			 * At this point the FIN must be a duplicate or out
2226 			 * of sequence; drop it.
2227 			 */
2228 			thflags &= ~TH_FIN;
2229 
2230 			/*
2231 			 * Send an ACK to resynchronize and drop any data.
2232 			 * But keep on processing for RST or ACK.
2233 			 */
2234 			tp->t_flags |= TF_ACKNOW;
2235 			todrop = tlen;
2236 			TCPSTAT_INC(tcps_rcvduppack);
2237 			TCPSTAT_ADD(tcps_rcvdupbyte, todrop);
2238 		} else {
2239 			TCPSTAT_INC(tcps_rcvpartduppack);
2240 			TCPSTAT_ADD(tcps_rcvpartdupbyte, todrop);
2241 		}
2242 		drop_hdrlen += todrop;	/* drop from the top afterwards */
2243 		th->th_seq += todrop;
2244 		tlen -= todrop;
2245 		if (th->th_urp > todrop)
2246 			th->th_urp -= todrop;
2247 		else {
2248 			thflags &= ~TH_URG;
2249 			th->th_urp = 0;
2250 		}
2251 	}
2252 
2253 	/*
2254 	 * If new data are received on a connection after the
2255 	 * user processes are gone, then RST the other end.
2256 	 */
2257 	if ((so->so_state & SS_NOFDREF) &&
2258 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
2259 		KASSERT(ti_locked == TI_WLOCKED, ("%s: SS_NOFDEREF && "
2260 		    "CLOSE_WAIT && tlen ti_locked %d", __func__, ti_locked));
2261 		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2262 
2263 		if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
2264 			log(LOG_DEBUG, "%s; %s: %s: Received %d bytes of data "
2265 			    "after socket was closed, "
2266 			    "sending RST and removing tcpcb\n",
2267 			    s, __func__, tcpstates[tp->t_state], tlen);
2268 			free(s, M_TCPLOG);
2269 		}
2270 		tp = tcp_close(tp);
2271 		TCPSTAT_INC(tcps_rcvafterclose);
2272 		rstreason = BANDLIM_UNLIMITED;
2273 		goto dropwithreset;
2274 	}
2275 
2276 	/*
2277 	 * If segment ends after window, drop trailing data
2278 	 * (and PUSH and FIN); if nothing left, just ACK.
2279 	 */
2280 	todrop = (th->th_seq + tlen) - (tp->rcv_nxt + tp->rcv_wnd);
2281 	if (todrop > 0) {
2282 		TCPSTAT_INC(tcps_rcvpackafterwin);
2283 		if (todrop >= tlen) {
2284 			TCPSTAT_ADD(tcps_rcvbyteafterwin, tlen);
2285 			/*
2286 			 * If window is closed can only take segments at
2287 			 * window edge, and have to drop data and PUSH from
2288 			 * incoming segments.  Continue processing, but
2289 			 * remember to ack.  Otherwise, drop segment
2290 			 * and ack.
2291 			 */
2292 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
2293 				tp->t_flags |= TF_ACKNOW;
2294 				TCPSTAT_INC(tcps_rcvwinprobe);
2295 			} else
2296 				goto dropafterack;
2297 		} else
2298 			TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop);
2299 		m_adj(m, -todrop);
2300 		tlen -= todrop;
2301 		thflags &= ~(TH_PUSH|TH_FIN);
2302 	}
2303 
2304 	/*
2305 	 * If last ACK falls within this segment's sequence numbers,
2306 	 * record its timestamp.
2307 	 * NOTE:
2308 	 * 1) That the test incorporates suggestions from the latest
2309 	 *    proposal of the tcplw@cray.com list (Braden 1993/04/26).
2310 	 * 2) That updating only on newer timestamps interferes with
2311 	 *    our earlier PAWS tests, so this check should be solely
2312 	 *    predicated on the sequence space of this segment.
2313 	 * 3) That we modify the segment boundary check to be
2314 	 *        Last.ACK.Sent <= SEG.SEQ + SEG.Len
2315 	 *    instead of RFC1323's
2316 	 *        Last.ACK.Sent < SEG.SEQ + SEG.Len,
2317 	 *    This modified check allows us to overcome RFC1323's
2318 	 *    limitations as described in Stevens TCP/IP Illustrated
2319 	 *    Vol. 2 p.869. In such cases, we can still calculate the
2320 	 *    RTT correctly when RCV.NXT == Last.ACK.Sent.
2321 	 */
2322 	if ((to.to_flags & TOF_TS) != 0 &&
2323 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
2324 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
2325 		((thflags & (TH_SYN|TH_FIN)) != 0))) {
2326 		tp->ts_recent_age = tcp_ts_getticks();
2327 		tp->ts_recent = to.to_tsval;
2328 	}
2329 
2330 	/*
2331 	 * If a SYN is in the window, then this is an
2332 	 * error and we send an RST and drop the connection.
2333 	 */
2334 	if (thflags & TH_SYN) {
2335 		KASSERT(ti_locked == TI_WLOCKED,
2336 		    ("tcp_do_segment: TH_SYN ti_locked %d", ti_locked));
2337 		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2338 
2339 		tp = tcp_drop(tp, ECONNRESET);
2340 		rstreason = BANDLIM_UNLIMITED;
2341 		goto drop;
2342 	}
2343 
2344 	/*
2345 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN
2346 	 * flag is on (half-synchronized state), then queue data for
2347 	 * later processing; else drop segment and return.
2348 	 */
2349 	if ((thflags & TH_ACK) == 0) {
2350 		if (tp->t_state == TCPS_SYN_RECEIVED ||
2351 		    (tp->t_flags & TF_NEEDSYN))
2352 			goto step6;
2353 		else if (tp->t_flags & TF_ACKNOW)
2354 			goto dropafterack;
2355 		else
2356 			goto drop;
2357 	}
2358 
2359 	/*
2360 	 * Ack processing.
2361 	 */
2362 	switch (tp->t_state) {
2363 
2364 	/*
2365 	 * In SYN_RECEIVED state, the ack ACKs our SYN, so enter
2366 	 * ESTABLISHED state and continue processing.
2367 	 * The ACK was checked above.
2368 	 */
2369 	case TCPS_SYN_RECEIVED:
2370 
2371 		TCPSTAT_INC(tcps_connects);
2372 		soisconnected(so);
2373 		/* Do window scaling? */
2374 		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2375 			(TF_RCVD_SCALE|TF_REQ_SCALE)) {
2376 			tp->rcv_scale = tp->request_r_scale;
2377 			tp->snd_wnd = tiwin;
2378 		}
2379 		/*
2380 		 * Make transitions:
2381 		 *      SYN-RECEIVED  -> ESTABLISHED
2382 		 *      SYN-RECEIVED* -> FIN-WAIT-1
2383 		 */
2384 		tp->t_starttime = ticks;
2385 		if (tp->t_flags & TF_NEEDFIN) {
2386 			tcp_state_change(tp, TCPS_FIN_WAIT_1);
2387 			tp->t_flags &= ~TF_NEEDFIN;
2388 		} else {
2389 			tcp_state_change(tp, TCPS_ESTABLISHED);
2390 			TCP_PROBE5(accept__established, NULL, tp,
2391 			    mtod(m, const char *), tp, th);
2392 			cc_conn_init(tp);
2393 			tcp_timer_activate(tp, TT_KEEP, TP_KEEPIDLE(tp));
2394 		}
2395 		/*
2396 		 * If segment contains data or ACK, will call tcp_reass()
2397 		 * later; if not, do so now to pass queued data to user.
2398 		 */
2399 		if (tlen == 0 && (thflags & TH_FIN) == 0)
2400 			(void) tcp_reass(tp, (struct tcphdr *)0, 0,
2401 			    (struct mbuf *)0);
2402 		tp->snd_wl1 = th->th_seq - 1;
2403 		/* FALLTHROUGH */
2404 
2405 	/*
2406 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
2407 	 * ACKs.  If the ack is in the range
2408 	 *	tp->snd_una < th->th_ack <= tp->snd_max
2409 	 * then advance tp->snd_una to th->th_ack and drop
2410 	 * data from the retransmission queue.  If this ACK reflects
2411 	 * more up to date window information we update our window information.
2412 	 */
2413 	case TCPS_ESTABLISHED:
2414 	case TCPS_FIN_WAIT_1:
2415 	case TCPS_FIN_WAIT_2:
2416 	case TCPS_CLOSE_WAIT:
2417 	case TCPS_CLOSING:
2418 	case TCPS_LAST_ACK:
2419 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
2420 			TCPSTAT_INC(tcps_rcvacktoomuch);
2421 			goto dropafterack;
2422 		}
2423 		if ((tp->t_flags & TF_SACK_PERMIT) &&
2424 		    ((to.to_flags & TOF_SACK) ||
2425 		     !TAILQ_EMPTY(&tp->snd_holes)))
2426 			tcp_sack_doack(tp, &to, th->th_ack);
2427 
2428 		/* Run HHOOK_TCP_ESTABLISHED_IN helper hooks. */
2429 		hhook_run_tcp_est_in(tp, th, &to);
2430 
2431 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
2432 			if (tlen == 0 && tiwin == tp->snd_wnd &&
2433 			    !(thflags & TH_FIN)) {
2434 				TCPSTAT_INC(tcps_rcvdupack);
2435 				/*
2436 				 * If we have outstanding data (other than
2437 				 * a window probe), this is a completely
2438 				 * duplicate ack (ie, window info didn't
2439 				 * change and FIN isn't set),
2440 				 * the ack is the biggest we've
2441 				 * seen and we've seen exactly our rexmt
2442 				 * threshhold of them, assume a packet
2443 				 * has been dropped and retransmit it.
2444 				 * Kludge snd_nxt & the congestion
2445 				 * window so we send only this one
2446 				 * packet.
2447 				 *
2448 				 * We know we're losing at the current
2449 				 * window size so do congestion avoidance
2450 				 * (set ssthresh to half the current window
2451 				 * and pull our congestion window back to
2452 				 * the new ssthresh).
2453 				 *
2454 				 * Dup acks mean that packets have left the
2455 				 * network (they're now cached at the receiver)
2456 				 * so bump cwnd by the amount in the receiver
2457 				 * to keep a constant cwnd packets in the
2458 				 * network.
2459 				 *
2460 				 * When using TCP ECN, notify the peer that
2461 				 * we reduced the cwnd.
2462 				 */
2463 				if (!tcp_timer_active(tp, TT_REXMT) ||
2464 				    th->th_ack != tp->snd_una)
2465 					tp->t_dupacks = 0;
2466 				else if (++tp->t_dupacks > tcprexmtthresh ||
2467 				     IN_FASTRECOVERY(tp->t_flags)) {
2468 					cc_ack_received(tp, th, CC_DUPACK);
2469 					if ((tp->t_flags & TF_SACK_PERMIT) &&
2470 					    IN_FASTRECOVERY(tp->t_flags)) {
2471 						int awnd;
2472 
2473 						/*
2474 						 * Compute the amount of data in flight first.
2475 						 * We can inject new data into the pipe iff
2476 						 * we have less than 1/2 the original window's
2477 						 * worth of data in flight.
2478 						 */
2479 						awnd = (tp->snd_nxt - tp->snd_fack) +
2480 							tp->sackhint.sack_bytes_rexmit;
2481 						if (awnd < tp->snd_ssthresh) {
2482 							tp->snd_cwnd += tp->t_maxseg;
2483 							if (tp->snd_cwnd > tp->snd_ssthresh)
2484 								tp->snd_cwnd = tp->snd_ssthresh;
2485 						}
2486 					} else
2487 						tp->snd_cwnd += tp->t_maxseg;
2488 					if ((thflags & TH_FIN) &&
2489 					    (TCPS_HAVERCVDFIN(tp->t_state) == 0)) {
2490 						/*
2491 						 * If its a fin we need to process
2492 						 * it to avoid a race where both
2493 						 * sides enter FIN-WAIT and send FIN|ACK
2494 						 * at the same time.
2495 						 */
2496 						break;
2497 					}
2498 					(void) tcp_output(tp);
2499 					goto drop;
2500 				} else if (tp->t_dupacks == tcprexmtthresh) {
2501 					tcp_seq onxt = tp->snd_nxt;
2502 
2503 					/*
2504 					 * If we're doing sack, check to
2505 					 * see if we're already in sack
2506 					 * recovery. If we're not doing sack,
2507 					 * check to see if we're in newreno
2508 					 * recovery.
2509 					 */
2510 					if (tp->t_flags & TF_SACK_PERMIT) {
2511 						if (IN_FASTRECOVERY(tp->t_flags)) {
2512 							tp->t_dupacks = 0;
2513 							break;
2514 						}
2515 					} else {
2516 						if (SEQ_LEQ(th->th_ack,
2517 						    tp->snd_recover)) {
2518 							tp->t_dupacks = 0;
2519 							break;
2520 						}
2521 					}
2522 					/* Congestion signal before ack. */
2523 					cc_cong_signal(tp, th, CC_NDUPACK);
2524 					cc_ack_received(tp, th, CC_DUPACK);
2525 					tcp_timer_activate(tp, TT_REXMT, 0);
2526 					tp->t_rtttime = 0;
2527 					if (tp->t_flags & TF_SACK_PERMIT) {
2528 						TCPSTAT_INC(
2529 						    tcps_sack_recovery_episode);
2530 						tp->sack_newdata = tp->snd_nxt;
2531 						tp->snd_cwnd = tp->t_maxseg;
2532 						(void) tcp_output(tp);
2533 						goto drop;
2534 					}
2535 					tp->snd_nxt = th->th_ack;
2536 					tp->snd_cwnd = tp->t_maxseg;
2537 					if ((thflags & TH_FIN) &&
2538 					    (TCPS_HAVERCVDFIN(tp->t_state) == 0)) {
2539 						/*
2540 						 * If its a fin we need to process
2541 						 * it to avoid a race where both
2542 						 * sides enter FIN-WAIT and send FIN|ACK
2543 						 * at the same time.
2544 						 */
2545 						break;
2546 					}
2547 					(void) tcp_output(tp);
2548 					KASSERT(tp->snd_limited <= 2,
2549 					    ("%s: tp->snd_limited too big",
2550 					    __func__));
2551 					tp->snd_cwnd = tp->snd_ssthresh +
2552 					     tp->t_maxseg *
2553 					     (tp->t_dupacks - tp->snd_limited);
2554 					if (SEQ_GT(onxt, tp->snd_nxt))
2555 						tp->snd_nxt = onxt;
2556 					goto drop;
2557 				} else if (V_tcp_do_rfc3042) {
2558 					cc_ack_received(tp, th, CC_DUPACK);
2559 					u_long oldcwnd = tp->snd_cwnd;
2560 					tcp_seq oldsndmax = tp->snd_max;
2561 					u_int sent;
2562 					int avail;
2563 
2564 					KASSERT(tp->t_dupacks == 1 ||
2565 					    tp->t_dupacks == 2,
2566 					    ("%s: dupacks not 1 or 2",
2567 					    __func__));
2568 					if (tp->t_dupacks == 1)
2569 						tp->snd_limited = 0;
2570 					tp->snd_cwnd =
2571 					    (tp->snd_nxt - tp->snd_una) +
2572 					    (tp->t_dupacks - tp->snd_limited) *
2573 					    tp->t_maxseg;
2574 					if ((thflags & TH_FIN) &&
2575 					    (TCPS_HAVERCVDFIN(tp->t_state) == 0)) {
2576 						/*
2577 						 * If its a fin we need to process
2578 						 * it to avoid a race where both
2579 						 * sides enter FIN-WAIT and send FIN|ACK
2580 						 * at the same time.
2581 						 */
2582 						break;
2583 					}
2584 					/*
2585 					 * Only call tcp_output when there
2586 					 * is new data available to be sent.
2587 					 * Otherwise we would send pure ACKs.
2588 					 */
2589 					SOCKBUF_LOCK(&so->so_snd);
2590 					avail = so->so_snd.sb_cc -
2591 					    (tp->snd_nxt - tp->snd_una);
2592 					SOCKBUF_UNLOCK(&so->so_snd);
2593 					if (avail > 0)
2594 						(void) tcp_output(tp);
2595 					sent = tp->snd_max - oldsndmax;
2596 					if (sent > tp->t_maxseg) {
2597 						KASSERT((tp->t_dupacks == 2 &&
2598 						    tp->snd_limited == 0) ||
2599 						   (sent == tp->t_maxseg + 1 &&
2600 						    tp->t_flags & TF_SENTFIN),
2601 						    ("%s: sent too much",
2602 						    __func__));
2603 						tp->snd_limited = 2;
2604 					} else if (sent > 0)
2605 						++tp->snd_limited;
2606 					tp->snd_cwnd = oldcwnd;
2607 					goto drop;
2608 				}
2609 			} else
2610 				tp->t_dupacks = 0;
2611 			break;
2612 		}
2613 
2614 		KASSERT(SEQ_GT(th->th_ack, tp->snd_una),
2615 		    ("%s: th_ack <= snd_una", __func__));
2616 
2617 		/*
2618 		 * If the congestion window was inflated to account
2619 		 * for the other side's cached packets, retract it.
2620 		 */
2621 		if (IN_FASTRECOVERY(tp->t_flags)) {
2622 			if (SEQ_LT(th->th_ack, tp->snd_recover)) {
2623 				if (tp->t_flags & TF_SACK_PERMIT)
2624 					tcp_sack_partialack(tp, th);
2625 				else
2626 					tcp_newreno_partial_ack(tp, th);
2627 			} else
2628 				cc_post_recovery(tp, th);
2629 		}
2630 		tp->t_dupacks = 0;
2631 		/*
2632 		 * If we reach this point, ACK is not a duplicate,
2633 		 *     i.e., it ACKs something we sent.
2634 		 */
2635 		if (tp->t_flags & TF_NEEDSYN) {
2636 			/*
2637 			 * T/TCP: Connection was half-synchronized, and our
2638 			 * SYN has been ACK'd (so connection is now fully
2639 			 * synchronized).  Go to non-starred state,
2640 			 * increment snd_una for ACK of SYN, and check if
2641 			 * we can do window scaling.
2642 			 */
2643 			tp->t_flags &= ~TF_NEEDSYN;
2644 			tp->snd_una++;
2645 			/* Do window scaling? */
2646 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2647 				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
2648 				tp->rcv_scale = tp->request_r_scale;
2649 				/* Send window already scaled. */
2650 			}
2651 		}
2652 
2653 process_ACK:
2654 		INP_WLOCK_ASSERT(tp->t_inpcb);
2655 
2656 		acked = BYTES_THIS_ACK(tp, th);
2657 		TCPSTAT_INC(tcps_rcvackpack);
2658 		TCPSTAT_ADD(tcps_rcvackbyte, acked);
2659 
2660 		/*
2661 		 * If we just performed our first retransmit, and the ACK
2662 		 * arrives within our recovery window, then it was a mistake
2663 		 * to do the retransmit in the first place.  Recover our
2664 		 * original cwnd and ssthresh, and proceed to transmit where
2665 		 * we left off.
2666 		 */
2667 		if (tp->t_rxtshift == 1 && tp->t_flags & TF_PREVVALID &&
2668 		    (int)(ticks - tp->t_badrxtwin) < 0)
2669 			cc_cong_signal(tp, th, CC_RTO_ERR);
2670 
2671 		/*
2672 		 * If we have a timestamp reply, update smoothed
2673 		 * round trip time.  If no timestamp is present but
2674 		 * transmit timer is running and timed sequence
2675 		 * number was acked, update smoothed round trip time.
2676 		 * Since we now have an rtt measurement, cancel the
2677 		 * timer backoff (cf., Phil Karn's retransmit alg.).
2678 		 * Recompute the initial retransmit timer.
2679 		 *
2680 		 * Some boxes send broken timestamp replies
2681 		 * during the SYN+ACK phase, ignore
2682 		 * timestamps of 0 or we could calculate a
2683 		 * huge RTT and blow up the retransmit timer.
2684 		 */
2685 		if ((to.to_flags & TOF_TS) != 0 && to.to_tsecr) {
2686 			u_int t;
2687 
2688 			t = tcp_ts_getticks() - to.to_tsecr;
2689 			if (!tp->t_rttlow || tp->t_rttlow > t)
2690 				tp->t_rttlow = t;
2691 			tcp_xmit_timer(tp, TCP_TS_TO_TICKS(t) + 1);
2692 		} else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq)) {
2693 			if (!tp->t_rttlow || tp->t_rttlow > ticks - tp->t_rtttime)
2694 				tp->t_rttlow = ticks - tp->t_rtttime;
2695 			tcp_xmit_timer(tp, ticks - tp->t_rtttime);
2696 		}
2697 
2698 		/*
2699 		 * If all outstanding data is acked, stop retransmit
2700 		 * timer and remember to restart (more output or persist).
2701 		 * If there is more data to be acked, restart retransmit
2702 		 * timer, using current (possibly backed-off) value.
2703 		 */
2704 		if (th->th_ack == tp->snd_max) {
2705 			tcp_timer_activate(tp, TT_REXMT, 0);
2706 			needoutput = 1;
2707 		} else if (!tcp_timer_active(tp, TT_PERSIST))
2708 			tcp_timer_activate(tp, TT_REXMT, tp->t_rxtcur);
2709 
2710 		/*
2711 		 * If no data (only SYN) was ACK'd,
2712 		 *    skip rest of ACK processing.
2713 		 */
2714 		if (acked == 0)
2715 			goto step6;
2716 
2717 		/*
2718 		 * Let the congestion control algorithm update congestion
2719 		 * control related information. This typically means increasing
2720 		 * the congestion window.
2721 		 */
2722 		cc_ack_received(tp, th, CC_ACK);
2723 
2724 		SOCKBUF_LOCK(&so->so_snd);
2725 		if (acked > so->so_snd.sb_cc) {
2726 			tp->snd_wnd -= so->so_snd.sb_cc;
2727 			mfree = sbcut_locked(&so->so_snd,
2728 			    (int)so->so_snd.sb_cc);
2729 			ourfinisacked = 1;
2730 		} else {
2731 			mfree = sbcut_locked(&so->so_snd, acked);
2732 			tp->snd_wnd -= acked;
2733 			ourfinisacked = 0;
2734 		}
2735 		/* NB: sowwakeup_locked() does an implicit unlock. */
2736 		sowwakeup_locked(so);
2737 		m_freem(mfree);
2738 		/* Detect una wraparound. */
2739 		if (!IN_RECOVERY(tp->t_flags) &&
2740 		    SEQ_GT(tp->snd_una, tp->snd_recover) &&
2741 		    SEQ_LEQ(th->th_ack, tp->snd_recover))
2742 			tp->snd_recover = th->th_ack - 1;
2743 		/* XXXLAS: Can this be moved up into cc_post_recovery? */
2744 		if (IN_RECOVERY(tp->t_flags) &&
2745 		    SEQ_GEQ(th->th_ack, tp->snd_recover)) {
2746 			EXIT_RECOVERY(tp->t_flags);
2747 		}
2748 		tp->snd_una = th->th_ack;
2749 		if (tp->t_flags & TF_SACK_PERMIT) {
2750 			if (SEQ_GT(tp->snd_una, tp->snd_recover))
2751 				tp->snd_recover = tp->snd_una;
2752 		}
2753 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2754 			tp->snd_nxt = tp->snd_una;
2755 
2756 		switch (tp->t_state) {
2757 
2758 		/*
2759 		 * In FIN_WAIT_1 STATE in addition to the processing
2760 		 * for the ESTABLISHED state if our FIN is now acknowledged
2761 		 * then enter FIN_WAIT_2.
2762 		 */
2763 		case TCPS_FIN_WAIT_1:
2764 			if (ourfinisacked) {
2765 				/*
2766 				 * If we can't receive any more
2767 				 * data, then closing user can proceed.
2768 				 * Starting the timer is contrary to the
2769 				 * specification, but if we don't get a FIN
2770 				 * we'll hang forever.
2771 				 *
2772 				 * XXXjl:
2773 				 * we should release the tp also, and use a
2774 				 * compressed state.
2775 				 */
2776 				if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
2777 					soisdisconnected(so);
2778 					tcp_timer_activate(tp, TT_2MSL,
2779 					    (tcp_fast_finwait2_recycle ?
2780 					    tcp_finwait2_timeout :
2781 					    TP_MAXIDLE(tp)));
2782 				}
2783 				tcp_state_change(tp, TCPS_FIN_WAIT_2);
2784 			}
2785 			break;
2786 
2787 		/*
2788 		 * In CLOSING STATE in addition to the processing for
2789 		 * the ESTABLISHED state if the ACK acknowledges our FIN
2790 		 * then enter the TIME-WAIT state, otherwise ignore
2791 		 * the segment.
2792 		 */
2793 		case TCPS_CLOSING:
2794 			if (ourfinisacked) {
2795 				INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2796 				tcp_twstart(tp);
2797 				INP_INFO_WUNLOCK(&V_tcbinfo);
2798 				m_freem(m);
2799 				return;
2800 			}
2801 			break;
2802 
2803 		/*
2804 		 * In LAST_ACK, we may still be waiting for data to drain
2805 		 * and/or to be acked, as well as for the ack of our FIN.
2806 		 * If our FIN is now acknowledged, delete the TCB,
2807 		 * enter the closed state and return.
2808 		 */
2809 		case TCPS_LAST_ACK:
2810 			if (ourfinisacked) {
2811 				INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2812 				tp = tcp_close(tp);
2813 				goto drop;
2814 			}
2815 			break;
2816 		}
2817 	}
2818 
2819 step6:
2820 	INP_WLOCK_ASSERT(tp->t_inpcb);
2821 
2822 	/*
2823 	 * Update window information.
2824 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2825 	 */
2826 	if ((thflags & TH_ACK) &&
2827 	    (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2828 	    (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
2829 	     (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
2830 		/* keep track of pure window updates */
2831 		if (tlen == 0 &&
2832 		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2833 			TCPSTAT_INC(tcps_rcvwinupd);
2834 		tp->snd_wnd = tiwin;
2835 		tp->snd_wl1 = th->th_seq;
2836 		tp->snd_wl2 = th->th_ack;
2837 		if (tp->snd_wnd > tp->max_sndwnd)
2838 			tp->max_sndwnd = tp->snd_wnd;
2839 		needoutput = 1;
2840 	}
2841 
2842 	/*
2843 	 * Process segments with URG.
2844 	 */
2845 	if ((thflags & TH_URG) && th->th_urp &&
2846 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2847 		/*
2848 		 * This is a kludge, but if we receive and accept
2849 		 * random urgent pointers, we'll crash in
2850 		 * soreceive.  It's hard to imagine someone
2851 		 * actually wanting to send this much urgent data.
2852 		 */
2853 		SOCKBUF_LOCK(&so->so_rcv);
2854 		if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2855 			th->th_urp = 0;			/* XXX */
2856 			thflags &= ~TH_URG;		/* XXX */
2857 			SOCKBUF_UNLOCK(&so->so_rcv);	/* XXX */
2858 			goto dodata;			/* XXX */
2859 		}
2860 		/*
2861 		 * If this segment advances the known urgent pointer,
2862 		 * then mark the data stream.  This should not happen
2863 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2864 		 * a FIN has been received from the remote side.
2865 		 * In these states we ignore the URG.
2866 		 *
2867 		 * According to RFC961 (Assigned Protocols),
2868 		 * the urgent pointer points to the last octet
2869 		 * of urgent data.  We continue, however,
2870 		 * to consider it to indicate the first octet
2871 		 * of data past the urgent section as the original
2872 		 * spec states (in one of two places).
2873 		 */
2874 		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2875 			tp->rcv_up = th->th_seq + th->th_urp;
2876 			so->so_oobmark = so->so_rcv.sb_cc +
2877 			    (tp->rcv_up - tp->rcv_nxt) - 1;
2878 			if (so->so_oobmark == 0)
2879 				so->so_rcv.sb_state |= SBS_RCVATMARK;
2880 			sohasoutofband(so);
2881 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2882 		}
2883 		SOCKBUF_UNLOCK(&so->so_rcv);
2884 		/*
2885 		 * Remove out of band data so doesn't get presented to user.
2886 		 * This can happen independent of advancing the URG pointer,
2887 		 * but if two URG's are pending at once, some out-of-band
2888 		 * data may creep in... ick.
2889 		 */
2890 		if (th->th_urp <= (u_long)tlen &&
2891 		    !(so->so_options & SO_OOBINLINE)) {
2892 			/* hdr drop is delayed */
2893 			tcp_pulloutofband(so, th, m, drop_hdrlen);
2894 		}
2895 	} else {
2896 		/*
2897 		 * If no out of band data is expected,
2898 		 * pull receive urgent pointer along
2899 		 * with the receive window.
2900 		 */
2901 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2902 			tp->rcv_up = tp->rcv_nxt;
2903 	}
2904 dodata:							/* XXX */
2905 	INP_WLOCK_ASSERT(tp->t_inpcb);
2906 
2907 	/*
2908 	 * Process the segment text, merging it into the TCP sequencing queue,
2909 	 * and arranging for acknowledgment of receipt if necessary.
2910 	 * This process logically involves adjusting tp->rcv_wnd as data
2911 	 * is presented to the user (this happens in tcp_usrreq.c,
2912 	 * case PRU_RCVD).  If a FIN has already been received on this
2913 	 * connection then we just ignore the text.
2914 	 */
2915 	if ((tlen || (thflags & TH_FIN)) &&
2916 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2917 		tcp_seq save_start = th->th_seq;
2918 		m_adj(m, drop_hdrlen);	/* delayed header drop */
2919 		/*
2920 		 * Insert segment which includes th into TCP reassembly queue
2921 		 * with control block tp.  Set thflags to whether reassembly now
2922 		 * includes a segment with FIN.  This handles the common case
2923 		 * inline (segment is the next to be received on an established
2924 		 * connection, and the queue is empty), avoiding linkage into
2925 		 * and removal from the queue and repetition of various
2926 		 * conversions.
2927 		 * Set DELACK for segments received in order, but ack
2928 		 * immediately when segments are out of order (so
2929 		 * fast retransmit can work).
2930 		 */
2931 		if (th->th_seq == tp->rcv_nxt &&
2932 		    LIST_EMPTY(&tp->t_segq) &&
2933 		    TCPS_HAVEESTABLISHED(tp->t_state)) {
2934 			if (DELAY_ACK(tp, tlen))
2935 				tp->t_flags |= TF_DELACK;
2936 			else
2937 				tp->t_flags |= TF_ACKNOW;
2938 			tp->rcv_nxt += tlen;
2939 			thflags = th->th_flags & TH_FIN;
2940 			TCPSTAT_INC(tcps_rcvpack);
2941 			TCPSTAT_ADD(tcps_rcvbyte, tlen);
2942 			ND6_HINT(tp);
2943 			SOCKBUF_LOCK(&so->so_rcv);
2944 			if (so->so_rcv.sb_state & SBS_CANTRCVMORE)
2945 				m_freem(m);
2946 			else
2947 				sbappendstream_locked(&so->so_rcv, m);
2948 			/* NB: sorwakeup_locked() does an implicit unlock. */
2949 			sorwakeup_locked(so);
2950 		} else {
2951 			/*
2952 			 * XXX: Due to the header drop above "th" is
2953 			 * theoretically invalid by now.  Fortunately
2954 			 * m_adj() doesn't actually frees any mbufs
2955 			 * when trimming from the head.
2956 			 */
2957 			thflags = tcp_reass(tp, th, &tlen, m);
2958 			tp->t_flags |= TF_ACKNOW;
2959 		}
2960 		if (tlen > 0 && (tp->t_flags & TF_SACK_PERMIT))
2961 			tcp_update_sack_list(tp, save_start, save_start + tlen);
2962 #if 0
2963 		/*
2964 		 * Note the amount of data that peer has sent into
2965 		 * our window, in order to estimate the sender's
2966 		 * buffer size.
2967 		 * XXX: Unused.
2968 		 */
2969 		if (SEQ_GT(tp->rcv_adv, tp->rcv_nxt))
2970 			len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2971 		else
2972 			len = so->so_rcv.sb_hiwat;
2973 #endif
2974 	} else {
2975 		m_freem(m);
2976 		thflags &= ~TH_FIN;
2977 	}
2978 
2979 	/*
2980 	 * If FIN is received ACK the FIN and let the user know
2981 	 * that the connection is closing.
2982 	 */
2983 	if (thflags & TH_FIN) {
2984 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2985 			socantrcvmore(so);
2986 			/*
2987 			 * If connection is half-synchronized
2988 			 * (ie NEEDSYN flag on) then delay ACK,
2989 			 * so it may be piggybacked when SYN is sent.
2990 			 * Otherwise, since we received a FIN then no
2991 			 * more input can be expected, send ACK now.
2992 			 */
2993 			if (tp->t_flags & TF_NEEDSYN)
2994 				tp->t_flags |= TF_DELACK;
2995 			else
2996 				tp->t_flags |= TF_ACKNOW;
2997 			tp->rcv_nxt++;
2998 		}
2999 		switch (tp->t_state) {
3000 
3001 		/*
3002 		 * In SYN_RECEIVED and ESTABLISHED STATES
3003 		 * enter the CLOSE_WAIT state.
3004 		 */
3005 		case TCPS_SYN_RECEIVED:
3006 			tp->t_starttime = ticks;
3007 			/* FALLTHROUGH */
3008 		case TCPS_ESTABLISHED:
3009 			tcp_state_change(tp, TCPS_CLOSE_WAIT);
3010 			break;
3011 
3012 		/*
3013 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
3014 		 * enter the CLOSING state.
3015 		 */
3016 		case TCPS_FIN_WAIT_1:
3017 			tcp_state_change(tp, TCPS_CLOSING);
3018 			break;
3019 
3020 		/*
3021 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
3022 		 * starting the time-wait timer, turning off the other
3023 		 * standard timers.
3024 		 */
3025 		case TCPS_FIN_WAIT_2:
3026 			INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
3027 			KASSERT(ti_locked == TI_WLOCKED, ("%s: dodata "
3028 			    "TCP_FIN_WAIT_2 ti_locked: %d", __func__,
3029 			    ti_locked));
3030 
3031 			tcp_twstart(tp);
3032 			INP_INFO_WUNLOCK(&V_tcbinfo);
3033 			return;
3034 		}
3035 	}
3036 	if (ti_locked == TI_WLOCKED)
3037 		INP_INFO_WUNLOCK(&V_tcbinfo);
3038 	ti_locked = TI_UNLOCKED;
3039 
3040 #ifdef TCPDEBUG
3041 	if (so->so_options & SO_DEBUG)
3042 		tcp_trace(TA_INPUT, ostate, tp, (void *)tcp_saveipgen,
3043 			  &tcp_savetcp, 0);
3044 #endif
3045 
3046 	/*
3047 	 * Return any desired output.
3048 	 */
3049 	if (needoutput || (tp->t_flags & TF_ACKNOW))
3050 		(void) tcp_output(tp);
3051 
3052 check_delack:
3053 	KASSERT(ti_locked == TI_UNLOCKED, ("%s: check_delack ti_locked %d",
3054 	    __func__, ti_locked));
3055 	INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
3056 	INP_WLOCK_ASSERT(tp->t_inpcb);
3057 
3058 	if (tp->t_flags & TF_DELACK) {
3059 		tp->t_flags &= ~TF_DELACK;
3060 		tcp_timer_activate(tp, TT_DELACK, tcp_delacktime);
3061 	}
3062 	INP_WUNLOCK(tp->t_inpcb);
3063 	return;
3064 
3065 dropafterack:
3066 	/*
3067 	 * Generate an ACK dropping incoming segment if it occupies
3068 	 * sequence space, where the ACK reflects our state.
3069 	 *
3070 	 * We can now skip the test for the RST flag since all
3071 	 * paths to this code happen after packets containing
3072 	 * RST have been dropped.
3073 	 *
3074 	 * In the SYN-RECEIVED state, don't send an ACK unless the
3075 	 * segment we received passes the SYN-RECEIVED ACK test.
3076 	 * If it fails send a RST.  This breaks the loop in the
3077 	 * "LAND" DoS attack, and also prevents an ACK storm
3078 	 * between two listening ports that have been sent forged
3079 	 * SYN segments, each with the source address of the other.
3080 	 */
3081 	if (tp->t_state == TCPS_SYN_RECEIVED && (thflags & TH_ACK) &&
3082 	    (SEQ_GT(tp->snd_una, th->th_ack) ||
3083 	     SEQ_GT(th->th_ack, tp->snd_max)) ) {
3084 		rstreason = BANDLIM_RST_OPENPORT;
3085 		goto dropwithreset;
3086 	}
3087 #ifdef TCPDEBUG
3088 	if (so->so_options & SO_DEBUG)
3089 		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
3090 			  &tcp_savetcp, 0);
3091 #endif
3092 	if (ti_locked == TI_WLOCKED)
3093 		INP_INFO_WUNLOCK(&V_tcbinfo);
3094 	ti_locked = TI_UNLOCKED;
3095 
3096 	tp->t_flags |= TF_ACKNOW;
3097 	(void) tcp_output(tp);
3098 	INP_WUNLOCK(tp->t_inpcb);
3099 	m_freem(m);
3100 	return;
3101 
3102 dropwithreset:
3103 	if (ti_locked == TI_WLOCKED)
3104 		INP_INFO_WUNLOCK(&V_tcbinfo);
3105 	ti_locked = TI_UNLOCKED;
3106 
3107 	if (tp != NULL) {
3108 		tcp_dropwithreset(m, th, tp, tlen, rstreason);
3109 		INP_WUNLOCK(tp->t_inpcb);
3110 	} else
3111 		tcp_dropwithreset(m, th, NULL, tlen, rstreason);
3112 	return;
3113 
3114 drop:
3115 	if (ti_locked == TI_WLOCKED) {
3116 		INP_INFO_WUNLOCK(&V_tcbinfo);
3117 		ti_locked = TI_UNLOCKED;
3118 	}
3119 #ifdef INVARIANTS
3120 	else
3121 		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
3122 #endif
3123 
3124 	/*
3125 	 * Drop space held by incoming segment and return.
3126 	 */
3127 #ifdef TCPDEBUG
3128 	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
3129 		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
3130 			  &tcp_savetcp, 0);
3131 #endif
3132 	if (tp != NULL)
3133 		INP_WUNLOCK(tp->t_inpcb);
3134 	m_freem(m);
3135 }
3136 
3137 /*
3138  * Issue RST and make ACK acceptable to originator of segment.
3139  * The mbuf must still include the original packet header.
3140  * tp may be NULL.
3141  */
3142 static void
3143 tcp_dropwithreset(struct mbuf *m, struct tcphdr *th, struct tcpcb *tp,
3144     int tlen, int rstreason)
3145 {
3146 #ifdef INET
3147 	struct ip *ip;
3148 #endif
3149 #ifdef INET6
3150 	struct ip6_hdr *ip6;
3151 #endif
3152 
3153 	if (tp != NULL) {
3154 		INP_WLOCK_ASSERT(tp->t_inpcb);
3155 	}
3156 
3157 	/* Don't bother if destination was broadcast/multicast. */
3158 	if ((th->th_flags & TH_RST) || m->m_flags & (M_BCAST|M_MCAST))
3159 		goto drop;
3160 #ifdef INET6
3161 	if (mtod(m, struct ip *)->ip_v == 6) {
3162 		ip6 = mtod(m, struct ip6_hdr *);
3163 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
3164 		    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
3165 			goto drop;
3166 		/* IPv6 anycast check is done at tcp6_input() */
3167 	}
3168 #endif
3169 #if defined(INET) && defined(INET6)
3170 	else
3171 #endif
3172 #ifdef INET
3173 	{
3174 		ip = mtod(m, struct ip *);
3175 		if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
3176 		    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
3177 		    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
3178 		    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
3179 			goto drop;
3180 	}
3181 #endif
3182 
3183 	/* Perform bandwidth limiting. */
3184 	if (badport_bandlim(rstreason) < 0)
3185 		goto drop;
3186 
3187 	/* tcp_respond consumes the mbuf chain. */
3188 	if (th->th_flags & TH_ACK) {
3189 		tcp_respond(tp, mtod(m, void *), th, m, (tcp_seq)0,
3190 		    th->th_ack, TH_RST);
3191 	} else {
3192 		if (th->th_flags & TH_SYN)
3193 			tlen++;
3194 		tcp_respond(tp, mtod(m, void *), th, m, th->th_seq+tlen,
3195 		    (tcp_seq)0, TH_RST|TH_ACK);
3196 	}
3197 	return;
3198 drop:
3199 	m_freem(m);
3200 }
3201 
3202 /*
3203  * Parse TCP options and place in tcpopt.
3204  */
3205 static void
3206 tcp_dooptions(struct tcpopt *to, u_char *cp, int cnt, int flags)
3207 {
3208 	int opt, optlen;
3209 
3210 	to->to_flags = 0;
3211 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
3212 		opt = cp[0];
3213 		if (opt == TCPOPT_EOL)
3214 			break;
3215 		if (opt == TCPOPT_NOP)
3216 			optlen = 1;
3217 		else {
3218 			if (cnt < 2)
3219 				break;
3220 			optlen = cp[1];
3221 			if (optlen < 2 || optlen > cnt)
3222 				break;
3223 		}
3224 		switch (opt) {
3225 		case TCPOPT_MAXSEG:
3226 			if (optlen != TCPOLEN_MAXSEG)
3227 				continue;
3228 			if (!(flags & TO_SYN))
3229 				continue;
3230 			to->to_flags |= TOF_MSS;
3231 			bcopy((char *)cp + 2,
3232 			    (char *)&to->to_mss, sizeof(to->to_mss));
3233 			to->to_mss = ntohs(to->to_mss);
3234 			break;
3235 		case TCPOPT_WINDOW:
3236 			if (optlen != TCPOLEN_WINDOW)
3237 				continue;
3238 			if (!(flags & TO_SYN))
3239 				continue;
3240 			to->to_flags |= TOF_SCALE;
3241 			to->to_wscale = min(cp[2], TCP_MAX_WINSHIFT);
3242 			break;
3243 		case TCPOPT_TIMESTAMP:
3244 			if (optlen != TCPOLEN_TIMESTAMP)
3245 				continue;
3246 			to->to_flags |= TOF_TS;
3247 			bcopy((char *)cp + 2,
3248 			    (char *)&to->to_tsval, sizeof(to->to_tsval));
3249 			to->to_tsval = ntohl(to->to_tsval);
3250 			bcopy((char *)cp + 6,
3251 			    (char *)&to->to_tsecr, sizeof(to->to_tsecr));
3252 			to->to_tsecr = ntohl(to->to_tsecr);
3253 			break;
3254 #ifdef TCP_SIGNATURE
3255 		/*
3256 		 * XXX In order to reply to a host which has set the
3257 		 * TCP_SIGNATURE option in its initial SYN, we have to
3258 		 * record the fact that the option was observed here
3259 		 * for the syncache code to perform the correct response.
3260 		 */
3261 		case TCPOPT_SIGNATURE:
3262 			if (optlen != TCPOLEN_SIGNATURE)
3263 				continue;
3264 			to->to_flags |= TOF_SIGNATURE;
3265 			to->to_signature = cp + 2;
3266 			break;
3267 #endif
3268 		case TCPOPT_SACK_PERMITTED:
3269 			if (optlen != TCPOLEN_SACK_PERMITTED)
3270 				continue;
3271 			if (!(flags & TO_SYN))
3272 				continue;
3273 			if (!V_tcp_do_sack)
3274 				continue;
3275 			to->to_flags |= TOF_SACKPERM;
3276 			break;
3277 		case TCPOPT_SACK:
3278 			if (optlen <= 2 || (optlen - 2) % TCPOLEN_SACK != 0)
3279 				continue;
3280 			if (flags & TO_SYN)
3281 				continue;
3282 			to->to_flags |= TOF_SACK;
3283 			to->to_nsacks = (optlen - 2) / TCPOLEN_SACK;
3284 			to->to_sacks = cp + 2;
3285 			TCPSTAT_INC(tcps_sack_rcv_blocks);
3286 			break;
3287 		default:
3288 			continue;
3289 		}
3290 	}
3291 }
3292 
3293 /*
3294  * Pull out of band byte out of a segment so
3295  * it doesn't appear in the user's data queue.
3296  * It is still reflected in the segment length for
3297  * sequencing purposes.
3298  */
3299 static void
3300 tcp_pulloutofband(struct socket *so, struct tcphdr *th, struct mbuf *m,
3301     int off)
3302 {
3303 	int cnt = off + th->th_urp - 1;
3304 
3305 	while (cnt >= 0) {
3306 		if (m->m_len > cnt) {
3307 			char *cp = mtod(m, caddr_t) + cnt;
3308 			struct tcpcb *tp = sototcpcb(so);
3309 
3310 			INP_WLOCK_ASSERT(tp->t_inpcb);
3311 
3312 			tp->t_iobc = *cp;
3313 			tp->t_oobflags |= TCPOOB_HAVEDATA;
3314 			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
3315 			m->m_len--;
3316 			if (m->m_flags & M_PKTHDR)
3317 				m->m_pkthdr.len--;
3318 			return;
3319 		}
3320 		cnt -= m->m_len;
3321 		m = m->m_next;
3322 		if (m == NULL)
3323 			break;
3324 	}
3325 	panic("tcp_pulloutofband");
3326 }
3327 
3328 /*
3329  * Collect new round-trip time estimate
3330  * and update averages and current timeout.
3331  */
3332 static void
3333 tcp_xmit_timer(struct tcpcb *tp, int rtt)
3334 {
3335 	int delta;
3336 
3337 	INP_WLOCK_ASSERT(tp->t_inpcb);
3338 
3339 	TCPSTAT_INC(tcps_rttupdated);
3340 	tp->t_rttupdated++;
3341 	if (tp->t_srtt != 0) {
3342 		/*
3343 		 * srtt is stored as fixed point with 5 bits after the
3344 		 * binary point (i.e., scaled by 8).  The following magic
3345 		 * is equivalent to the smoothing algorithm in rfc793 with
3346 		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
3347 		 * point).  Adjust rtt to origin 0.
3348 		 */
3349 		delta = ((rtt - 1) << TCP_DELTA_SHIFT)
3350 			- (tp->t_srtt >> (TCP_RTT_SHIFT - TCP_DELTA_SHIFT));
3351 
3352 		if ((tp->t_srtt += delta) <= 0)
3353 			tp->t_srtt = 1;
3354 
3355 		/*
3356 		 * We accumulate a smoothed rtt variance (actually, a
3357 		 * smoothed mean difference), then set the retransmit
3358 		 * timer to smoothed rtt + 4 times the smoothed variance.
3359 		 * rttvar is stored as fixed point with 4 bits after the
3360 		 * binary point (scaled by 16).  The following is
3361 		 * equivalent to rfc793 smoothing with an alpha of .75
3362 		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
3363 		 * rfc793's wired-in beta.
3364 		 */
3365 		if (delta < 0)
3366 			delta = -delta;
3367 		delta -= tp->t_rttvar >> (TCP_RTTVAR_SHIFT - TCP_DELTA_SHIFT);
3368 		if ((tp->t_rttvar += delta) <= 0)
3369 			tp->t_rttvar = 1;
3370 		if (tp->t_rttbest > tp->t_srtt + tp->t_rttvar)
3371 		    tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
3372 	} else {
3373 		/*
3374 		 * No rtt measurement yet - use the unsmoothed rtt.
3375 		 * Set the variance to half the rtt (so our first
3376 		 * retransmit happens at 3*rtt).
3377 		 */
3378 		tp->t_srtt = rtt << TCP_RTT_SHIFT;
3379 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1);
3380 		tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
3381 	}
3382 	tp->t_rtttime = 0;
3383 	tp->t_rxtshift = 0;
3384 
3385 	/*
3386 	 * the retransmit should happen at rtt + 4 * rttvar.
3387 	 * Because of the way we do the smoothing, srtt and rttvar
3388 	 * will each average +1/2 tick of bias.  When we compute
3389 	 * the retransmit timer, we want 1/2 tick of rounding and
3390 	 * 1 extra tick because of +-1/2 tick uncertainty in the
3391 	 * firing of the timer.  The bias will give us exactly the
3392 	 * 1.5 tick we need.  But, because the bias is
3393 	 * statistical, we have to test that we don't drop below
3394 	 * the minimum feasible timer (which is 2 ticks).
3395 	 */
3396 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
3397 		      max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
3398 
3399 	/*
3400 	 * We received an ack for a packet that wasn't retransmitted;
3401 	 * it is probably safe to discard any error indications we've
3402 	 * received recently.  This isn't quite right, but close enough
3403 	 * for now (a route might have failed after we sent a segment,
3404 	 * and the return path might not be symmetrical).
3405 	 */
3406 	tp->t_softerror = 0;
3407 }
3408 
3409 /*
3410  * Determine a reasonable value for maxseg size.
3411  * If the route is known, check route for mtu.
3412  * If none, use an mss that can be handled on the outgoing interface
3413  * without forcing IP to fragment.  If no route is found, route has no mtu,
3414  * or the destination isn't local, use a default, hopefully conservative
3415  * size (usually 512 or the default IP max size, but no more than the mtu
3416  * of the interface), as we can't discover anything about intervening
3417  * gateways or networks.  We also initialize the congestion/slow start
3418  * window to be a single segment if the destination isn't local.
3419  * While looking at the routing entry, we also initialize other path-dependent
3420  * parameters from pre-set or cached values in the routing entry.
3421  *
3422  * Also take into account the space needed for options that we
3423  * send regularly.  Make maxseg shorter by that amount to assure
3424  * that we can send maxseg amount of data even when the options
3425  * are present.  Store the upper limit of the length of options plus
3426  * data in maxopd.
3427  *
3428  * NOTE that this routine is only called when we process an incoming
3429  * segment, or an ICMP need fragmentation datagram. Outgoing SYN/ACK MSS
3430  * settings are handled in tcp_mssopt().
3431  */
3432 void
3433 tcp_mss_update(struct tcpcb *tp, int offer, int mtuoffer,
3434     struct hc_metrics_lite *metricptr, struct tcp_ifcap *cap)
3435 {
3436 	int mss = 0;
3437 	u_long maxmtu = 0;
3438 	struct inpcb *inp = tp->t_inpcb;
3439 	struct hc_metrics_lite metrics;
3440 	int origoffer;
3441 #ifdef INET6
3442 	int isipv6 = ((inp->inp_vflag & INP_IPV6) != 0) ? 1 : 0;
3443 	size_t min_protoh = isipv6 ?
3444 			    sizeof (struct ip6_hdr) + sizeof (struct tcphdr) :
3445 			    sizeof (struct tcpiphdr);
3446 #else
3447 	const size_t min_protoh = sizeof(struct tcpiphdr);
3448 #endif
3449 
3450 	INP_WLOCK_ASSERT(tp->t_inpcb);
3451 
3452 	if (mtuoffer != -1) {
3453 		KASSERT(offer == -1, ("%s: conflict", __func__));
3454 		offer = mtuoffer - min_protoh;
3455 	}
3456 	origoffer = offer;
3457 
3458 	/* Initialize. */
3459 #ifdef INET6
3460 	if (isipv6) {
3461 		maxmtu = tcp_maxmtu6(&inp->inp_inc, cap);
3462 		tp->t_maxopd = tp->t_maxseg = V_tcp_v6mssdflt;
3463 	}
3464 #endif
3465 #if defined(INET) && defined(INET6)
3466 	else
3467 #endif
3468 #ifdef INET
3469 	{
3470 		maxmtu = tcp_maxmtu(&inp->inp_inc, cap);
3471 		tp->t_maxopd = tp->t_maxseg = V_tcp_mssdflt;
3472 	}
3473 #endif
3474 
3475 	/*
3476 	 * No route to sender, stay with default mss and return.
3477 	 */
3478 	if (maxmtu == 0) {
3479 		/*
3480 		 * In case we return early we need to initialize metrics
3481 		 * to a defined state as tcp_hc_get() would do for us
3482 		 * if there was no cache hit.
3483 		 */
3484 		if (metricptr != NULL)
3485 			bzero(metricptr, sizeof(struct hc_metrics_lite));
3486 		return;
3487 	}
3488 
3489 	/* What have we got? */
3490 	switch (offer) {
3491 		case 0:
3492 			/*
3493 			 * Offer == 0 means that there was no MSS on the SYN
3494 			 * segment, in this case we use tcp_mssdflt as
3495 			 * already assigned to t_maxopd above.
3496 			 */
3497 			offer = tp->t_maxopd;
3498 			break;
3499 
3500 		case -1:
3501 			/*
3502 			 * Offer == -1 means that we didn't receive SYN yet.
3503 			 */
3504 			/* FALLTHROUGH */
3505 
3506 		default:
3507 			/*
3508 			 * Prevent DoS attack with too small MSS. Round up
3509 			 * to at least minmss.
3510 			 */
3511 			offer = max(offer, V_tcp_minmss);
3512 	}
3513 
3514 	/*
3515 	 * rmx information is now retrieved from tcp_hostcache.
3516 	 */
3517 	tcp_hc_get(&inp->inp_inc, &metrics);
3518 	if (metricptr != NULL)
3519 		bcopy(&metrics, metricptr, sizeof(struct hc_metrics_lite));
3520 
3521 	/*
3522 	 * If there's a discovered mtu int tcp hostcache, use it
3523 	 * else, use the link mtu.
3524 	 */
3525 	if (metrics.rmx_mtu)
3526 		mss = min(metrics.rmx_mtu, maxmtu) - min_protoh;
3527 	else {
3528 #ifdef INET6
3529 		if (isipv6) {
3530 			mss = maxmtu - min_protoh;
3531 			if (!V_path_mtu_discovery &&
3532 			    !in6_localaddr(&inp->in6p_faddr))
3533 				mss = min(mss, V_tcp_v6mssdflt);
3534 		}
3535 #endif
3536 #if defined(INET) && defined(INET6)
3537 		else
3538 #endif
3539 #ifdef INET
3540 		{
3541 			mss = maxmtu - min_protoh;
3542 			if (!V_path_mtu_discovery &&
3543 			    !in_localaddr(inp->inp_faddr))
3544 				mss = min(mss, V_tcp_mssdflt);
3545 		}
3546 #endif
3547 		/*
3548 		 * XXX - The above conditional (mss = maxmtu - min_protoh)
3549 		 * probably violates the TCP spec.
3550 		 * The problem is that, since we don't know the
3551 		 * other end's MSS, we are supposed to use a conservative
3552 		 * default.  But, if we do that, then MTU discovery will
3553 		 * never actually take place, because the conservative
3554 		 * default is much less than the MTUs typically seen
3555 		 * on the Internet today.  For the moment, we'll sweep
3556 		 * this under the carpet.
3557 		 *
3558 		 * The conservative default might not actually be a problem
3559 		 * if the only case this occurs is when sending an initial
3560 		 * SYN with options and data to a host we've never talked
3561 		 * to before.  Then, they will reply with an MSS value which
3562 		 * will get recorded and the new parameters should get
3563 		 * recomputed.  For Further Study.
3564 		 */
3565 	}
3566 	mss = min(mss, offer);
3567 
3568 	/*
3569 	 * Sanity check: make sure that maxopd will be large
3570 	 * enough to allow some data on segments even if the
3571 	 * all the option space is used (40bytes).  Otherwise
3572 	 * funny things may happen in tcp_output.
3573 	 */
3574 	mss = max(mss, 64);
3575 
3576 	/*
3577 	 * maxopd stores the maximum length of data AND options
3578 	 * in a segment; maxseg is the amount of data in a normal
3579 	 * segment.  We need to store this value (maxopd) apart
3580 	 * from maxseg, because now every segment carries options
3581 	 * and thus we normally have somewhat less data in segments.
3582 	 */
3583 	tp->t_maxopd = mss;
3584 
3585 	/*
3586 	 * origoffer==-1 indicates that no segments were received yet.
3587 	 * In this case we just guess.
3588 	 */
3589 	if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
3590 	    (origoffer == -1 ||
3591 	     (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP))
3592 		mss -= TCPOLEN_TSTAMP_APPA;
3593 
3594 	tp->t_maxseg = mss;
3595 }
3596 
3597 void
3598 tcp_mss(struct tcpcb *tp, int offer)
3599 {
3600 	int mss;
3601 	u_long bufsize;
3602 	struct inpcb *inp;
3603 	struct socket *so;
3604 	struct hc_metrics_lite metrics;
3605 	struct tcp_ifcap cap;
3606 
3607 	KASSERT(tp != NULL, ("%s: tp == NULL", __func__));
3608 
3609 	bzero(&cap, sizeof(cap));
3610 	tcp_mss_update(tp, offer, -1, &metrics, &cap);
3611 
3612 	mss = tp->t_maxseg;
3613 	inp = tp->t_inpcb;
3614 
3615 	/*
3616 	 * If there's a pipesize, change the socket buffer to that size,
3617 	 * don't change if sb_hiwat is different than default (then it
3618 	 * has been changed on purpose with setsockopt).
3619 	 * Make the socket buffers an integral number of mss units;
3620 	 * if the mss is larger than the socket buffer, decrease the mss.
3621 	 */
3622 	so = inp->inp_socket;
3623 	SOCKBUF_LOCK(&so->so_snd);
3624 	if ((so->so_snd.sb_hiwat == V_tcp_sendspace) && metrics.rmx_sendpipe)
3625 		bufsize = metrics.rmx_sendpipe;
3626 	else
3627 		bufsize = so->so_snd.sb_hiwat;
3628 	if (bufsize < mss)
3629 		mss = bufsize;
3630 	else {
3631 		bufsize = roundup(bufsize, mss);
3632 		if (bufsize > sb_max)
3633 			bufsize = sb_max;
3634 		if (bufsize > so->so_snd.sb_hiwat)
3635 			(void)sbreserve_locked(&so->so_snd, bufsize, so, NULL);
3636 	}
3637 	SOCKBUF_UNLOCK(&so->so_snd);
3638 	tp->t_maxseg = mss;
3639 
3640 	SOCKBUF_LOCK(&so->so_rcv);
3641 	if ((so->so_rcv.sb_hiwat == V_tcp_recvspace) && metrics.rmx_recvpipe)
3642 		bufsize = metrics.rmx_recvpipe;
3643 	else
3644 		bufsize = so->so_rcv.sb_hiwat;
3645 	if (bufsize > mss) {
3646 		bufsize = roundup(bufsize, mss);
3647 		if (bufsize > sb_max)
3648 			bufsize = sb_max;
3649 		if (bufsize > so->so_rcv.sb_hiwat)
3650 			(void)sbreserve_locked(&so->so_rcv, bufsize, so, NULL);
3651 	}
3652 	SOCKBUF_UNLOCK(&so->so_rcv);
3653 
3654 	/* Check the interface for TSO capabilities. */
3655 	if (cap.ifcap & CSUM_TSO) {
3656 		tp->t_flags |= TF_TSO;
3657 		tp->t_tsomax = cap.tsomax;
3658 	}
3659 }
3660 
3661 /*
3662  * Determine the MSS option to send on an outgoing SYN.
3663  */
3664 int
3665 tcp_mssopt(struct in_conninfo *inc)
3666 {
3667 	int mss = 0;
3668 	u_long maxmtu = 0;
3669 	u_long thcmtu = 0;
3670 	size_t min_protoh;
3671 
3672 	KASSERT(inc != NULL, ("tcp_mssopt with NULL in_conninfo pointer"));
3673 
3674 #ifdef INET6
3675 	if (inc->inc_flags & INC_ISIPV6) {
3676 		mss = V_tcp_v6mssdflt;
3677 		maxmtu = tcp_maxmtu6(inc, NULL);
3678 		min_protoh = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
3679 	}
3680 #endif
3681 #if defined(INET) && defined(INET6)
3682 	else
3683 #endif
3684 #ifdef INET
3685 	{
3686 		mss = V_tcp_mssdflt;
3687 		maxmtu = tcp_maxmtu(inc, NULL);
3688 		min_protoh = sizeof(struct tcpiphdr);
3689 	}
3690 #endif
3691 #if defined(INET6) || defined(INET)
3692 	thcmtu = tcp_hc_getmtu(inc); /* IPv4 and IPv6 */
3693 #endif
3694 
3695 	if (maxmtu && thcmtu)
3696 		mss = min(maxmtu, thcmtu) - min_protoh;
3697 	else if (maxmtu || thcmtu)
3698 		mss = max(maxmtu, thcmtu) - min_protoh;
3699 
3700 	return (mss);
3701 }
3702 
3703 
3704 /*
3705  * On a partial ack arrives, force the retransmission of the
3706  * next unacknowledged segment.  Do not clear tp->t_dupacks.
3707  * By setting snd_nxt to ti_ack, this forces retransmission timer to
3708  * be started again.
3709  */
3710 static void
3711 tcp_newreno_partial_ack(struct tcpcb *tp, struct tcphdr *th)
3712 {
3713 	tcp_seq onxt = tp->snd_nxt;
3714 	u_long  ocwnd = tp->snd_cwnd;
3715 
3716 	INP_WLOCK_ASSERT(tp->t_inpcb);
3717 
3718 	tcp_timer_activate(tp, TT_REXMT, 0);
3719 	tp->t_rtttime = 0;
3720 	tp->snd_nxt = th->th_ack;
3721 	/*
3722 	 * Set snd_cwnd to one segment beyond acknowledged offset.
3723 	 * (tp->snd_una has not yet been updated when this function is called.)
3724 	 */
3725 	tp->snd_cwnd = tp->t_maxseg + BYTES_THIS_ACK(tp, th);
3726 	tp->t_flags |= TF_ACKNOW;
3727 	(void) tcp_output(tp);
3728 	tp->snd_cwnd = ocwnd;
3729 	if (SEQ_GT(onxt, tp->snd_nxt))
3730 		tp->snd_nxt = onxt;
3731 	/*
3732 	 * Partial window deflation.  Relies on fact that tp->snd_una
3733 	 * not updated yet.
3734 	 */
3735 	if (tp->snd_cwnd > BYTES_THIS_ACK(tp, th))
3736 		tp->snd_cwnd -= BYTES_THIS_ACK(tp, th);
3737 	else
3738 		tp->snd_cwnd = 0;
3739 	tp->snd_cwnd += tp->t_maxseg;
3740 }
3741