xref: /freebsd/sys/netinet/tcp_input.c (revision 48c779cdecb5f803e5fe5d761987e976ca9609db)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
5  *	The Regents of the University of California.  All rights reserved.
6  * Copyright (c) 2007-2008,2010
7  *	Swinburne University of Technology, Melbourne, Australia.
8  * Copyright (c) 2009-2010 Lawrence Stewart <lstewart@freebsd.org>
9  * Copyright (c) 2010 The FreeBSD Foundation
10  * Copyright (c) 2010-2011 Juniper Networks, Inc.
11  * All rights reserved.
12  *
13  * Portions of this software were developed at the Centre for Advanced Internet
14  * Architectures, Swinburne University of Technology, by Lawrence Stewart,
15  * James Healy and David Hayes, made possible in part by a grant from the Cisco
16  * University Research Program Fund at Community Foundation Silicon Valley.
17  *
18  * Portions of this software were developed at the Centre for Advanced
19  * Internet Architectures, Swinburne University of Technology, Melbourne,
20  * Australia by David Hayes under sponsorship from the FreeBSD Foundation.
21  *
22  * Portions of this software were developed by Robert N. M. Watson under
23  * contract to Juniper Networks, Inc.
24  *
25  * Redistribution and use in source and binary forms, with or without
26  * modification, are permitted provided that the following conditions
27  * are met:
28  * 1. Redistributions of source code must retain the above copyright
29  *    notice, this list of conditions and the following disclaimer.
30  * 2. Redistributions in binary form must reproduce the above copyright
31  *    notice, this list of conditions and the following disclaimer in the
32  *    documentation and/or other materials provided with the distribution.
33  * 3. Neither the name of the University nor the names of its contributors
34  *    may be used to endorse or promote products derived from this software
35  *    without specific prior written permission.
36  *
37  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
38  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
39  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
40  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
41  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
42  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
43  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
45  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
46  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
47  * SUCH DAMAGE.
48  *
49  *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
50  */
51 
52 #include <sys/cdefs.h>
53 __FBSDID("$FreeBSD$");
54 
55 #include "opt_inet.h"
56 #include "opt_inet6.h"
57 #include "opt_ipsec.h"
58 #include "opt_tcpdebug.h"
59 
60 #include <sys/param.h>
61 #include <sys/kernel.h>
62 #ifdef TCP_HHOOK
63 #include <sys/hhook.h>
64 #endif
65 #include <sys/malloc.h>
66 #include <sys/mbuf.h>
67 #include <sys/proc.h>		/* for proc0 declaration */
68 #include <sys/protosw.h>
69 #include <sys/sdt.h>
70 #include <sys/signalvar.h>
71 #include <sys/socket.h>
72 #include <sys/socketvar.h>
73 #include <sys/sysctl.h>
74 #include <sys/syslog.h>
75 #include <sys/systm.h>
76 
77 #include <machine/cpu.h>	/* before tcp_seq.h, for tcp_random18() */
78 
79 #include <vm/uma.h>
80 
81 #include <net/if.h>
82 #include <net/if_var.h>
83 #include <net/route.h>
84 #include <net/vnet.h>
85 
86 #define TCPSTATES		/* for logging */
87 
88 #include <netinet/in.h>
89 #include <netinet/in_kdtrace.h>
90 #include <netinet/in_pcb.h>
91 #include <netinet/in_systm.h>
92 #include <netinet/ip.h>
93 #include <netinet/ip_icmp.h>	/* required for icmp_var.h */
94 #include <netinet/icmp_var.h>	/* for ICMP_BANDLIM */
95 #include <netinet/ip_var.h>
96 #include <netinet/ip_options.h>
97 #include <netinet/ip6.h>
98 #include <netinet/icmp6.h>
99 #include <netinet6/in6_pcb.h>
100 #include <netinet6/in6_var.h>
101 #include <netinet6/ip6_var.h>
102 #include <netinet6/nd6.h>
103 #include <netinet/tcp.h>
104 #include <netinet/tcp_fsm.h>
105 #include <netinet/tcp_log_buf.h>
106 #include <netinet/tcp_seq.h>
107 #include <netinet/tcp_timer.h>
108 #include <netinet/tcp_var.h>
109 #include <netinet6/tcp6_var.h>
110 #include <netinet/tcpip.h>
111 #include <netinet/cc/cc.h>
112 #include <netinet/tcp_fastopen.h>
113 #ifdef TCPPCAP
114 #include <netinet/tcp_pcap.h>
115 #endif
116 #include <netinet/tcp_syncache.h>
117 #ifdef TCPDEBUG
118 #include <netinet/tcp_debug.h>
119 #endif /* TCPDEBUG */
120 #ifdef TCP_OFFLOAD
121 #include <netinet/tcp_offload.h>
122 #endif
123 
124 #include <netipsec/ipsec_support.h>
125 
126 #include <machine/in_cksum.h>
127 
128 #include <security/mac/mac_framework.h>
129 
130 const int tcprexmtthresh = 3;
131 
132 int tcp_log_in_vain = 0;
133 SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_in_vain, CTLFLAG_RW,
134     &tcp_log_in_vain, 0,
135     "Log all incoming TCP segments to closed ports");
136 
137 VNET_DEFINE(int, blackhole) = 0;
138 #define	V_blackhole		VNET(blackhole)
139 SYSCTL_INT(_net_inet_tcp, OID_AUTO, blackhole, CTLFLAG_VNET | CTLFLAG_RW,
140     &VNET_NAME(blackhole), 0,
141     "Do not send RST on segments to closed ports");
142 
143 VNET_DEFINE(int, tcp_delack_enabled) = 1;
144 SYSCTL_INT(_net_inet_tcp, OID_AUTO, delayed_ack, CTLFLAG_VNET | CTLFLAG_RW,
145     &VNET_NAME(tcp_delack_enabled), 0,
146     "Delay ACK to try and piggyback it onto a data packet");
147 
148 VNET_DEFINE(int, drop_synfin) = 0;
149 SYSCTL_INT(_net_inet_tcp, OID_AUTO, drop_synfin, CTLFLAG_VNET | CTLFLAG_RW,
150     &VNET_NAME(drop_synfin), 0,
151     "Drop TCP packets with SYN+FIN set");
152 
153 VNET_DEFINE(int, tcp_do_rfc6675_pipe) = 0;
154 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc6675_pipe, CTLFLAG_VNET | CTLFLAG_RW,
155     &VNET_NAME(tcp_do_rfc6675_pipe), 0,
156     "Use calculated pipe/in-flight bytes per RFC 6675");
157 
158 VNET_DEFINE(int, tcp_do_rfc3042) = 1;
159 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3042, CTLFLAG_VNET | CTLFLAG_RW,
160     &VNET_NAME(tcp_do_rfc3042), 0,
161     "Enable RFC 3042 (Limited Transmit)");
162 
163 VNET_DEFINE(int, tcp_do_rfc3390) = 1;
164 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3390, CTLFLAG_VNET | CTLFLAG_RW,
165     &VNET_NAME(tcp_do_rfc3390), 0,
166     "Enable RFC 3390 (Increasing TCP's Initial Congestion Window)");
167 
168 VNET_DEFINE(int, tcp_initcwnd_segments) = 10;
169 SYSCTL_INT(_net_inet_tcp, OID_AUTO, initcwnd_segments,
170     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(tcp_initcwnd_segments), 0,
171     "Slow-start flight size (initial congestion window) in number of segments");
172 
173 VNET_DEFINE(int, tcp_do_rfc3465) = 1;
174 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3465, CTLFLAG_VNET | CTLFLAG_RW,
175     &VNET_NAME(tcp_do_rfc3465), 0,
176     "Enable RFC 3465 (Appropriate Byte Counting)");
177 
178 VNET_DEFINE(int, tcp_abc_l_var) = 2;
179 SYSCTL_INT(_net_inet_tcp, OID_AUTO, abc_l_var, CTLFLAG_VNET | CTLFLAG_RW,
180     &VNET_NAME(tcp_abc_l_var), 2,
181     "Cap the max cwnd increment during slow-start to this number of segments");
182 
183 static SYSCTL_NODE(_net_inet_tcp, OID_AUTO, ecn, CTLFLAG_RW, 0, "TCP ECN");
184 
185 VNET_DEFINE(int, tcp_do_ecn) = 2;
186 SYSCTL_INT(_net_inet_tcp_ecn, OID_AUTO, enable, CTLFLAG_VNET | CTLFLAG_RW,
187     &VNET_NAME(tcp_do_ecn), 0,
188     "TCP ECN support");
189 
190 VNET_DEFINE(int, tcp_ecn_maxretries) = 1;
191 SYSCTL_INT(_net_inet_tcp_ecn, OID_AUTO, maxretries, CTLFLAG_VNET | CTLFLAG_RW,
192     &VNET_NAME(tcp_ecn_maxretries), 0,
193     "Max retries before giving up on ECN");
194 
195 VNET_DEFINE(int, tcp_insecure_syn) = 0;
196 SYSCTL_INT(_net_inet_tcp, OID_AUTO, insecure_syn, CTLFLAG_VNET | CTLFLAG_RW,
197     &VNET_NAME(tcp_insecure_syn), 0,
198     "Follow RFC793 instead of RFC5961 criteria for accepting SYN packets");
199 
200 VNET_DEFINE(int, tcp_insecure_rst) = 0;
201 SYSCTL_INT(_net_inet_tcp, OID_AUTO, insecure_rst, CTLFLAG_VNET | CTLFLAG_RW,
202     &VNET_NAME(tcp_insecure_rst), 0,
203     "Follow RFC793 instead of RFC5961 criteria for accepting RST packets");
204 
205 VNET_DEFINE(int, tcp_recvspace) = 1024*64;
206 #define	V_tcp_recvspace	VNET(tcp_recvspace)
207 SYSCTL_INT(_net_inet_tcp, TCPCTL_RECVSPACE, recvspace, CTLFLAG_VNET | CTLFLAG_RW,
208     &VNET_NAME(tcp_recvspace), 0, "Initial receive socket buffer size");
209 
210 VNET_DEFINE(int, tcp_do_autorcvbuf) = 1;
211 SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbuf_auto, CTLFLAG_VNET | CTLFLAG_RW,
212     &VNET_NAME(tcp_do_autorcvbuf), 0,
213     "Enable automatic receive buffer sizing");
214 
215 VNET_DEFINE(int, tcp_autorcvbuf_max) = 2*1024*1024;
216 SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbuf_max, CTLFLAG_VNET | CTLFLAG_RW,
217     &VNET_NAME(tcp_autorcvbuf_max), 0,
218     "Max size of automatic receive buffer");
219 
220 VNET_DEFINE(struct inpcbhead, tcb);
221 #define	tcb6	tcb  /* for KAME src sync over BSD*'s */
222 VNET_DEFINE(struct inpcbinfo, tcbinfo);
223 
224 /*
225  * TCP statistics are stored in an array of counter(9)s, which size matches
226  * size of struct tcpstat.  TCP running connection count is a regular array.
227  */
228 VNET_PCPUSTAT_DEFINE(struct tcpstat, tcpstat);
229 SYSCTL_VNET_PCPUSTAT(_net_inet_tcp, TCPCTL_STATS, stats, struct tcpstat,
230     tcpstat, "TCP statistics (struct tcpstat, netinet/tcp_var.h)");
231 VNET_DEFINE(counter_u64_t, tcps_states[TCP_NSTATES]);
232 SYSCTL_COUNTER_U64_ARRAY(_net_inet_tcp, TCPCTL_STATES, states, CTLFLAG_RD |
233     CTLFLAG_VNET, &VNET_NAME(tcps_states)[0], TCP_NSTATES,
234     "TCP connection counts by TCP state");
235 
236 static void
237 tcp_vnet_init(const void *unused)
238 {
239 
240 	COUNTER_ARRAY_ALLOC(V_tcps_states, TCP_NSTATES, M_WAITOK);
241 	VNET_PCPUSTAT_ALLOC(tcpstat, M_WAITOK);
242 }
243 VNET_SYSINIT(tcp_vnet_init, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_ANY,
244     tcp_vnet_init, NULL);
245 
246 #ifdef VIMAGE
247 static void
248 tcp_vnet_uninit(const void *unused)
249 {
250 
251 	COUNTER_ARRAY_FREE(V_tcps_states, TCP_NSTATES);
252 	VNET_PCPUSTAT_FREE(tcpstat);
253 }
254 VNET_SYSUNINIT(tcp_vnet_uninit, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_ANY,
255     tcp_vnet_uninit, NULL);
256 #endif /* VIMAGE */
257 
258 /*
259  * Kernel module interface for updating tcpstat.  The argument is an index
260  * into tcpstat treated as an array.
261  */
262 void
263 kmod_tcpstat_inc(int statnum)
264 {
265 
266 	counter_u64_add(VNET(tcpstat)[statnum], 1);
267 }
268 
269 #ifdef TCP_HHOOK
270 /*
271  * Wrapper for the TCP established input helper hook.
272  */
273 void
274 hhook_run_tcp_est_in(struct tcpcb *tp, struct tcphdr *th, struct tcpopt *to)
275 {
276 	struct tcp_hhook_data hhook_data;
277 
278 	if (V_tcp_hhh[HHOOK_TCP_EST_IN]->hhh_nhooks > 0) {
279 		hhook_data.tp = tp;
280 		hhook_data.th = th;
281 		hhook_data.to = to;
282 
283 		hhook_run_hooks(V_tcp_hhh[HHOOK_TCP_EST_IN], &hhook_data,
284 		    tp->osd);
285 	}
286 }
287 #endif
288 
289 /*
290  * CC wrapper hook functions
291  */
292 void
293 cc_ack_received(struct tcpcb *tp, struct tcphdr *th, uint16_t nsegs,
294     uint16_t type)
295 {
296 	INP_WLOCK_ASSERT(tp->t_inpcb);
297 
298 	tp->ccv->nsegs = nsegs;
299 	tp->ccv->bytes_this_ack = BYTES_THIS_ACK(tp, th);
300 	if (tp->snd_cwnd <= tp->snd_wnd)
301 		tp->ccv->flags |= CCF_CWND_LIMITED;
302 	else
303 		tp->ccv->flags &= ~CCF_CWND_LIMITED;
304 
305 	if (type == CC_ACK) {
306 		if (tp->snd_cwnd > tp->snd_ssthresh) {
307 			tp->t_bytes_acked += min(tp->ccv->bytes_this_ack,
308 			     nsegs * V_tcp_abc_l_var * tcp_maxseg(tp));
309 			if (tp->t_bytes_acked >= tp->snd_cwnd) {
310 				tp->t_bytes_acked -= tp->snd_cwnd;
311 				tp->ccv->flags |= CCF_ABC_SENTAWND;
312 			}
313 		} else {
314 				tp->ccv->flags &= ~CCF_ABC_SENTAWND;
315 				tp->t_bytes_acked = 0;
316 		}
317 	}
318 
319 	if (CC_ALGO(tp)->ack_received != NULL) {
320 		/* XXXLAS: Find a way to live without this */
321 		tp->ccv->curack = th->th_ack;
322 		CC_ALGO(tp)->ack_received(tp->ccv, type);
323 	}
324 }
325 
326 void
327 cc_conn_init(struct tcpcb *tp)
328 {
329 	struct hc_metrics_lite metrics;
330 	struct inpcb *inp = tp->t_inpcb;
331 	u_int maxseg;
332 	int rtt;
333 
334 	INP_WLOCK_ASSERT(tp->t_inpcb);
335 
336 	tcp_hc_get(&inp->inp_inc, &metrics);
337 	maxseg = tcp_maxseg(tp);
338 
339 	if (tp->t_srtt == 0 && (rtt = metrics.rmx_rtt)) {
340 		tp->t_srtt = rtt;
341 		tp->t_rttbest = tp->t_srtt + TCP_RTT_SCALE;
342 		TCPSTAT_INC(tcps_usedrtt);
343 		if (metrics.rmx_rttvar) {
344 			tp->t_rttvar = metrics.rmx_rttvar;
345 			TCPSTAT_INC(tcps_usedrttvar);
346 		} else {
347 			/* default variation is +- 1 rtt */
348 			tp->t_rttvar =
349 			    tp->t_srtt * TCP_RTTVAR_SCALE / TCP_RTT_SCALE;
350 		}
351 		TCPT_RANGESET(tp->t_rxtcur,
352 		    ((tp->t_srtt >> 2) + tp->t_rttvar) >> 1,
353 		    tp->t_rttmin, TCPTV_REXMTMAX);
354 	}
355 	if (metrics.rmx_ssthresh) {
356 		/*
357 		 * There's some sort of gateway or interface
358 		 * buffer limit on the path.  Use this to set
359 		 * the slow start threshold, but set the
360 		 * threshold to no less than 2*mss.
361 		 */
362 		tp->snd_ssthresh = max(2 * maxseg, metrics.rmx_ssthresh);
363 		TCPSTAT_INC(tcps_usedssthresh);
364 	}
365 
366 	/*
367 	 * Set the initial slow-start flight size.
368 	 *
369 	 * If a SYN or SYN/ACK was lost and retransmitted, we have to
370 	 * reduce the initial CWND to one segment as congestion is likely
371 	 * requiring us to be cautious.
372 	 */
373 	if (tp->snd_cwnd == 1)
374 		tp->snd_cwnd = maxseg;		/* SYN(-ACK) lost */
375 	else
376 		tp->snd_cwnd = tcp_compute_initwnd(maxseg);
377 
378 	if (CC_ALGO(tp)->conn_init != NULL)
379 		CC_ALGO(tp)->conn_init(tp->ccv);
380 }
381 
382 void inline
383 cc_cong_signal(struct tcpcb *tp, struct tcphdr *th, uint32_t type)
384 {
385 	u_int maxseg;
386 
387 	INP_WLOCK_ASSERT(tp->t_inpcb);
388 
389 	switch(type) {
390 	case CC_NDUPACK:
391 		if (!IN_FASTRECOVERY(tp->t_flags)) {
392 			tp->snd_recover = tp->snd_max;
393 			if (tp->t_flags & TF_ECN_PERMIT)
394 				tp->t_flags |= TF_ECN_SND_CWR;
395 		}
396 		break;
397 	case CC_ECN:
398 		if (!IN_CONGRECOVERY(tp->t_flags)) {
399 			TCPSTAT_INC(tcps_ecn_rcwnd);
400 			tp->snd_recover = tp->snd_max;
401 			if (tp->t_flags & TF_ECN_PERMIT)
402 				tp->t_flags |= TF_ECN_SND_CWR;
403 		}
404 		break;
405 	case CC_RTO:
406 		maxseg = tcp_maxseg(tp);
407 		tp->t_dupacks = 0;
408 		tp->t_bytes_acked = 0;
409 		EXIT_RECOVERY(tp->t_flags);
410 		tp->snd_ssthresh = max(2, min(tp->snd_wnd, tp->snd_cwnd) / 2 /
411 		    maxseg) * maxseg;
412 		tp->snd_cwnd = maxseg;
413 		break;
414 	case CC_RTO_ERR:
415 		TCPSTAT_INC(tcps_sndrexmitbad);
416 		/* RTO was unnecessary, so reset everything. */
417 		tp->snd_cwnd = tp->snd_cwnd_prev;
418 		tp->snd_ssthresh = tp->snd_ssthresh_prev;
419 		tp->snd_recover = tp->snd_recover_prev;
420 		if (tp->t_flags & TF_WASFRECOVERY)
421 			ENTER_FASTRECOVERY(tp->t_flags);
422 		if (tp->t_flags & TF_WASCRECOVERY)
423 			ENTER_CONGRECOVERY(tp->t_flags);
424 		tp->snd_nxt = tp->snd_max;
425 		tp->t_flags &= ~TF_PREVVALID;
426 		tp->t_badrxtwin = 0;
427 		break;
428 	}
429 
430 	if (CC_ALGO(tp)->cong_signal != NULL) {
431 		if (th != NULL)
432 			tp->ccv->curack = th->th_ack;
433 		CC_ALGO(tp)->cong_signal(tp->ccv, type);
434 	}
435 }
436 
437 void inline
438 cc_post_recovery(struct tcpcb *tp, struct tcphdr *th)
439 {
440 	INP_WLOCK_ASSERT(tp->t_inpcb);
441 
442 	/* XXXLAS: KASSERT that we're in recovery? */
443 
444 	if (CC_ALGO(tp)->post_recovery != NULL) {
445 		tp->ccv->curack = th->th_ack;
446 		CC_ALGO(tp)->post_recovery(tp->ccv);
447 	}
448 	/* XXXLAS: EXIT_RECOVERY ? */
449 	tp->t_bytes_acked = 0;
450 }
451 
452 /*
453  * Indicate whether this ack should be delayed.  We can delay the ack if
454  * following conditions are met:
455  *	- There is no delayed ack timer in progress.
456  *	- Our last ack wasn't a 0-sized window. We never want to delay
457  *	  the ack that opens up a 0-sized window.
458  *	- LRO wasn't used for this segment. We make sure by checking that the
459  *	  segment size is not larger than the MSS.
460  */
461 #define DELAY_ACK(tp, tlen)						\
462 	((!tcp_timer_active(tp, TT_DELACK) &&				\
463 	    (tp->t_flags & TF_RXWIN0SENT) == 0) &&			\
464 	    (tlen <= tp->t_maxseg) &&					\
465 	    (V_tcp_delack_enabled || (tp->t_flags & TF_NEEDSYN)))
466 
467 static void inline
468 cc_ecnpkt_handler(struct tcpcb *tp, struct tcphdr *th, uint8_t iptos)
469 {
470 	INP_WLOCK_ASSERT(tp->t_inpcb);
471 
472 	if (CC_ALGO(tp)->ecnpkt_handler != NULL) {
473 		switch (iptos & IPTOS_ECN_MASK) {
474 		case IPTOS_ECN_CE:
475 		    tp->ccv->flags |= CCF_IPHDR_CE;
476 		    break;
477 		case IPTOS_ECN_ECT0:
478 		    tp->ccv->flags &= ~CCF_IPHDR_CE;
479 		    break;
480 		case IPTOS_ECN_ECT1:
481 		    tp->ccv->flags &= ~CCF_IPHDR_CE;
482 		    break;
483 		}
484 
485 		if (th->th_flags & TH_CWR)
486 			tp->ccv->flags |= CCF_TCPHDR_CWR;
487 		else
488 			tp->ccv->flags &= ~CCF_TCPHDR_CWR;
489 
490 		if (tp->t_flags & TF_DELACK)
491 			tp->ccv->flags |= CCF_DELACK;
492 		else
493 			tp->ccv->flags &= ~CCF_DELACK;
494 
495 		CC_ALGO(tp)->ecnpkt_handler(tp->ccv);
496 
497 		if (tp->ccv->flags & CCF_ACKNOW)
498 			tcp_timer_activate(tp, TT_DELACK, tcp_delacktime);
499 	}
500 }
501 
502 /*
503  * TCP input handling is split into multiple parts:
504  *   tcp6_input is a thin wrapper around tcp_input for the extended
505  *	ip6_protox[] call format in ip6_input
506  *   tcp_input handles primary segment validation, inpcb lookup and
507  *	SYN processing on listen sockets
508  *   tcp_do_segment processes the ACK and text of the segment for
509  *	establishing, established and closing connections
510  */
511 #ifdef INET6
512 int
513 tcp6_input(struct mbuf **mp, int *offp, int proto)
514 {
515 	struct mbuf *m;
516 	struct in6_ifaddr *ia6;
517 	struct ip6_hdr *ip6;
518 
519 	m = *mp;
520 	IP6_EXTHDR_CHECK(m, *offp, sizeof(struct tcphdr), IPPROTO_DONE);
521 
522 	/*
523 	 * draft-itojun-ipv6-tcp-to-anycast
524 	 * better place to put this in?
525 	 */
526 	ip6 = mtod(m, struct ip6_hdr *);
527 	ia6 = in6ifa_ifwithaddr(&ip6->ip6_dst, 0 /* XXX */);
528 	if (ia6 && (ia6->ia6_flags & IN6_IFF_ANYCAST)) {
529 
530 		ifa_free(&ia6->ia_ifa);
531 		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
532 			    (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
533 		return (IPPROTO_DONE);
534 	}
535 	if (ia6)
536 		ifa_free(&ia6->ia_ifa);
537 
538 	return (tcp_input(mp, offp, proto));
539 }
540 #endif /* INET6 */
541 
542 int
543 tcp_input(struct mbuf **mp, int *offp, int proto)
544 {
545 	struct mbuf *m = *mp;
546 	struct tcphdr *th = NULL;
547 	struct ip *ip = NULL;
548 	struct inpcb *inp = NULL;
549 	struct tcpcb *tp = NULL;
550 	struct socket *so = NULL;
551 	u_char *optp = NULL;
552 	int off0;
553 	int optlen = 0;
554 #ifdef INET
555 	int len;
556 	uint8_t ipttl;
557 #endif
558 	int tlen = 0, off;
559 	int drop_hdrlen;
560 	int thflags;
561 	int rstreason = 0;	/* For badport_bandlim accounting purposes */
562 	uint8_t iptos;
563 	struct m_tag *fwd_tag = NULL;
564 #ifdef INET6
565 	struct ip6_hdr *ip6 = NULL;
566 	int isipv6;
567 #else
568 	const void *ip6 = NULL;
569 #endif /* INET6 */
570 	struct tcpopt to;		/* options in this segment */
571 	char *s = NULL;			/* address and port logging */
572 #ifdef TCPDEBUG
573 	/*
574 	 * The size of tcp_saveipgen must be the size of the max ip header,
575 	 * now IPv6.
576 	 */
577 	u_char tcp_saveipgen[IP6_HDR_LEN];
578 	struct tcphdr tcp_savetcp;
579 	short ostate = 0;
580 #endif
581 
582 	NET_EPOCH_ASSERT();
583 
584 #ifdef INET6
585 	isipv6 = (mtod(m, struct ip *)->ip_v == 6) ? 1 : 0;
586 #endif
587 
588 	off0 = *offp;
589 	m = *mp;
590 	*mp = NULL;
591 	to.to_flags = 0;
592 	TCPSTAT_INC(tcps_rcvtotal);
593 
594 #ifdef INET6
595 	if (isipv6) {
596 		/* IP6_EXTHDR_CHECK() is already done at tcp6_input(). */
597 
598 		if (m->m_len < (sizeof(*ip6) + sizeof(*th))) {
599 			m = m_pullup(m, sizeof(*ip6) + sizeof(*th));
600 			if (m == NULL) {
601 				TCPSTAT_INC(tcps_rcvshort);
602 				return (IPPROTO_DONE);
603 			}
604 		}
605 
606 		ip6 = mtod(m, struct ip6_hdr *);
607 		th = (struct tcphdr *)((caddr_t)ip6 + off0);
608 		tlen = sizeof(*ip6) + ntohs(ip6->ip6_plen) - off0;
609 		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID_IPV6) {
610 			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
611 				th->th_sum = m->m_pkthdr.csum_data;
612 			else
613 				th->th_sum = in6_cksum_pseudo(ip6, tlen,
614 				    IPPROTO_TCP, m->m_pkthdr.csum_data);
615 			th->th_sum ^= 0xffff;
616 		} else
617 			th->th_sum = in6_cksum(m, IPPROTO_TCP, off0, tlen);
618 		if (th->th_sum) {
619 			TCPSTAT_INC(tcps_rcvbadsum);
620 			goto drop;
621 		}
622 
623 		/*
624 		 * Be proactive about unspecified IPv6 address in source.
625 		 * As we use all-zero to indicate unbounded/unconnected pcb,
626 		 * unspecified IPv6 address can be used to confuse us.
627 		 *
628 		 * Note that packets with unspecified IPv6 destination is
629 		 * already dropped in ip6_input.
630 		 */
631 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
632 			/* XXX stat */
633 			goto drop;
634 		}
635 		iptos = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
636 	}
637 #endif
638 #if defined(INET) && defined(INET6)
639 	else
640 #endif
641 #ifdef INET
642 	{
643 		/*
644 		 * Get IP and TCP header together in first mbuf.
645 		 * Note: IP leaves IP header in first mbuf.
646 		 */
647 		if (off0 > sizeof (struct ip)) {
648 			ip_stripoptions(m);
649 			off0 = sizeof(struct ip);
650 		}
651 		if (m->m_len < sizeof (struct tcpiphdr)) {
652 			if ((m = m_pullup(m, sizeof (struct tcpiphdr)))
653 			    == NULL) {
654 				TCPSTAT_INC(tcps_rcvshort);
655 				return (IPPROTO_DONE);
656 			}
657 		}
658 		ip = mtod(m, struct ip *);
659 		th = (struct tcphdr *)((caddr_t)ip + off0);
660 		tlen = ntohs(ip->ip_len) - off0;
661 
662 		iptos = ip->ip_tos;
663 		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
664 			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
665 				th->th_sum = m->m_pkthdr.csum_data;
666 			else
667 				th->th_sum = in_pseudo(ip->ip_src.s_addr,
668 				    ip->ip_dst.s_addr,
669 				    htonl(m->m_pkthdr.csum_data + tlen +
670 				    IPPROTO_TCP));
671 			th->th_sum ^= 0xffff;
672 		} else {
673 			struct ipovly *ipov = (struct ipovly *)ip;
674 
675 			/*
676 			 * Checksum extended TCP header and data.
677 			 */
678 			len = off0 + tlen;
679 			ipttl = ip->ip_ttl;
680 			bzero(ipov->ih_x1, sizeof(ipov->ih_x1));
681 			ipov->ih_len = htons(tlen);
682 			th->th_sum = in_cksum(m, len);
683 			/* Reset length for SDT probes. */
684 			ip->ip_len = htons(len);
685 			/* Reset TOS bits */
686 			ip->ip_tos = iptos;
687 			/* Re-initialization for later version check */
688 			ip->ip_ttl = ipttl;
689 			ip->ip_v = IPVERSION;
690 			ip->ip_hl = off0 >> 2;
691 		}
692 
693 		if (th->th_sum) {
694 			TCPSTAT_INC(tcps_rcvbadsum);
695 			goto drop;
696 		}
697 	}
698 #endif /* INET */
699 
700 	/*
701 	 * Check that TCP offset makes sense,
702 	 * pull out TCP options and adjust length.		XXX
703 	 */
704 	off = th->th_off << 2;
705 	if (off < sizeof (struct tcphdr) || off > tlen) {
706 		TCPSTAT_INC(tcps_rcvbadoff);
707 		goto drop;
708 	}
709 	tlen -= off;	/* tlen is used instead of ti->ti_len */
710 	if (off > sizeof (struct tcphdr)) {
711 #ifdef INET6
712 		if (isipv6) {
713 			IP6_EXTHDR_CHECK(m, off0, off, IPPROTO_DONE);
714 			ip6 = mtod(m, struct ip6_hdr *);
715 			th = (struct tcphdr *)((caddr_t)ip6 + off0);
716 		}
717 #endif
718 #if defined(INET) && defined(INET6)
719 		else
720 #endif
721 #ifdef INET
722 		{
723 			if (m->m_len < sizeof(struct ip) + off) {
724 				if ((m = m_pullup(m, sizeof (struct ip) + off))
725 				    == NULL) {
726 					TCPSTAT_INC(tcps_rcvshort);
727 					return (IPPROTO_DONE);
728 				}
729 				ip = mtod(m, struct ip *);
730 				th = (struct tcphdr *)((caddr_t)ip + off0);
731 			}
732 		}
733 #endif
734 		optlen = off - sizeof (struct tcphdr);
735 		optp = (u_char *)(th + 1);
736 	}
737 	thflags = th->th_flags;
738 
739 	/*
740 	 * Convert TCP protocol specific fields to host format.
741 	 */
742 	tcp_fields_to_host(th);
743 
744 	/*
745 	 * Delay dropping TCP, IP headers, IPv6 ext headers, and TCP options.
746 	 */
747 	drop_hdrlen = off0 + off;
748 
749 	/*
750 	 * Grab info from PACKET_TAG_IPFORWARD tag prepended to the chain.
751 	 */
752         if (
753 #ifdef INET6
754 	    (isipv6 && (m->m_flags & M_IP6_NEXTHOP))
755 #ifdef INET
756 	    || (!isipv6 && (m->m_flags & M_IP_NEXTHOP))
757 #endif
758 #endif
759 #if defined(INET) && !defined(INET6)
760 	    (m->m_flags & M_IP_NEXTHOP)
761 #endif
762 	    )
763 		fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
764 
765 findpcb:
766 #ifdef INET6
767 	if (isipv6 && fwd_tag != NULL) {
768 		struct sockaddr_in6 *next_hop6;
769 
770 		next_hop6 = (struct sockaddr_in6 *)(fwd_tag + 1);
771 		/*
772 		 * Transparently forwarded. Pretend to be the destination.
773 		 * Already got one like this?
774 		 */
775 		inp = in6_pcblookup_mbuf(&V_tcbinfo,
776 		    &ip6->ip6_src, th->th_sport, &ip6->ip6_dst, th->th_dport,
777 		    INPLOOKUP_WLOCKPCB, m->m_pkthdr.rcvif, m);
778 		if (!inp) {
779 			/*
780 			 * It's new.  Try to find the ambushing socket.
781 			 * Because we've rewritten the destination address,
782 			 * any hardware-generated hash is ignored.
783 			 */
784 			inp = in6_pcblookup(&V_tcbinfo, &ip6->ip6_src,
785 			    th->th_sport, &next_hop6->sin6_addr,
786 			    next_hop6->sin6_port ? ntohs(next_hop6->sin6_port) :
787 			    th->th_dport, INPLOOKUP_WILDCARD |
788 			    INPLOOKUP_WLOCKPCB, m->m_pkthdr.rcvif);
789 		}
790 	} else if (isipv6) {
791 		inp = in6_pcblookup_mbuf(&V_tcbinfo, &ip6->ip6_src,
792 		    th->th_sport, &ip6->ip6_dst, th->th_dport,
793 		    INPLOOKUP_WILDCARD | INPLOOKUP_WLOCKPCB,
794 		    m->m_pkthdr.rcvif, m);
795 	}
796 #endif /* INET6 */
797 #if defined(INET6) && defined(INET)
798 	else
799 #endif
800 #ifdef INET
801 	if (fwd_tag != NULL) {
802 		struct sockaddr_in *next_hop;
803 
804 		next_hop = (struct sockaddr_in *)(fwd_tag+1);
805 		/*
806 		 * Transparently forwarded. Pretend to be the destination.
807 		 * already got one like this?
808 		 */
809 		inp = in_pcblookup_mbuf(&V_tcbinfo, ip->ip_src, th->th_sport,
810 		    ip->ip_dst, th->th_dport, INPLOOKUP_WLOCKPCB,
811 		    m->m_pkthdr.rcvif, m);
812 		if (!inp) {
813 			/*
814 			 * It's new.  Try to find the ambushing socket.
815 			 * Because we've rewritten the destination address,
816 			 * any hardware-generated hash is ignored.
817 			 */
818 			inp = in_pcblookup(&V_tcbinfo, ip->ip_src,
819 			    th->th_sport, next_hop->sin_addr,
820 			    next_hop->sin_port ? ntohs(next_hop->sin_port) :
821 			    th->th_dport, INPLOOKUP_WILDCARD |
822 			    INPLOOKUP_WLOCKPCB, m->m_pkthdr.rcvif);
823 		}
824 	} else
825 		inp = in_pcblookup_mbuf(&V_tcbinfo, ip->ip_src,
826 		    th->th_sport, ip->ip_dst, th->th_dport,
827 		    INPLOOKUP_WILDCARD | INPLOOKUP_WLOCKPCB,
828 		    m->m_pkthdr.rcvif, m);
829 #endif /* INET */
830 
831 	/*
832 	 * If the INPCB does not exist then all data in the incoming
833 	 * segment is discarded and an appropriate RST is sent back.
834 	 * XXX MRT Send RST using which routing table?
835 	 */
836 	if (inp == NULL) {
837 		/*
838 		 * Log communication attempts to ports that are not
839 		 * in use.
840 		 */
841 		if ((tcp_log_in_vain == 1 && (thflags & TH_SYN)) ||
842 		    tcp_log_in_vain == 2) {
843 			if ((s = tcp_log_vain(NULL, th, (void *)ip, ip6)))
844 				log(LOG_INFO, "%s; %s: Connection attempt "
845 				    "to closed port\n", s, __func__);
846 		}
847 		/*
848 		 * When blackholing do not respond with a RST but
849 		 * completely ignore the segment and drop it.
850 		 */
851 		if ((V_blackhole == 1 && (thflags & TH_SYN)) ||
852 		    V_blackhole == 2)
853 			goto dropunlock;
854 
855 		rstreason = BANDLIM_RST_CLOSEDPORT;
856 		goto dropwithreset;
857 	}
858 	INP_WLOCK_ASSERT(inp);
859 	/*
860 	 * While waiting for inp lock during the lookup, another thread
861 	 * can have dropped the inpcb, in which case we need to loop back
862 	 * and try to find a new inpcb to deliver to.
863 	 */
864 	if (inp->inp_flags & INP_DROPPED) {
865 		INP_WUNLOCK(inp);
866 		inp = NULL;
867 		goto findpcb;
868 	}
869 	if ((inp->inp_flowtype == M_HASHTYPE_NONE) &&
870 	    (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) &&
871 	    ((inp->inp_socket == NULL) ||
872 	    (inp->inp_socket->so_options & SO_ACCEPTCONN) == 0)) {
873 		inp->inp_flowid = m->m_pkthdr.flowid;
874 		inp->inp_flowtype = M_HASHTYPE_GET(m);
875 	}
876 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
877 #ifdef INET6
878 	if (isipv6 && IPSEC_ENABLED(ipv6) &&
879 	    IPSEC_CHECK_POLICY(ipv6, m, inp) != 0) {
880 		goto dropunlock;
881 	}
882 #ifdef INET
883 	else
884 #endif
885 #endif /* INET6 */
886 #ifdef INET
887 	if (IPSEC_ENABLED(ipv4) &&
888 	    IPSEC_CHECK_POLICY(ipv4, m, inp) != 0) {
889 		goto dropunlock;
890 	}
891 #endif /* INET */
892 #endif /* IPSEC */
893 
894 	/*
895 	 * Check the minimum TTL for socket.
896 	 */
897 	if (inp->inp_ip_minttl != 0) {
898 #ifdef INET6
899 		if (isipv6) {
900 			if (inp->inp_ip_minttl > ip6->ip6_hlim)
901 				goto dropunlock;
902 		} else
903 #endif
904 		if (inp->inp_ip_minttl > ip->ip_ttl)
905 			goto dropunlock;
906 	}
907 
908 	/*
909 	 * A previous connection in TIMEWAIT state is supposed to catch stray
910 	 * or duplicate segments arriving late.  If this segment was a
911 	 * legitimate new connection attempt, the old INPCB gets removed and
912 	 * we can try again to find a listening socket.
913 	 *
914 	 * At this point, due to earlier optimism, we may hold only an inpcb
915 	 * lock, and not the inpcbinfo write lock.  If so, we need to try to
916 	 * acquire it, or if that fails, acquire a reference on the inpcb,
917 	 * drop all locks, acquire a global write lock, and then re-acquire
918 	 * the inpcb lock.  We may at that point discover that another thread
919 	 * has tried to free the inpcb, in which case we need to loop back
920 	 * and try to find a new inpcb to deliver to.
921 	 *
922 	 * XXXRW: It may be time to rethink timewait locking.
923 	 */
924 	if (inp->inp_flags & INP_TIMEWAIT) {
925 		if (thflags & TH_SYN)
926 			tcp_dooptions(&to, optp, optlen, TO_SYN);
927 		/*
928 		 * NB: tcp_twcheck unlocks the INP and frees the mbuf.
929 		 */
930 		if (tcp_twcheck(inp, &to, th, m, tlen))
931 			goto findpcb;
932 		return (IPPROTO_DONE);
933 	}
934 	/*
935 	 * The TCPCB may no longer exist if the connection is winding
936 	 * down or it is in the CLOSED state.  Either way we drop the
937 	 * segment and send an appropriate response.
938 	 */
939 	tp = intotcpcb(inp);
940 	if (tp == NULL || tp->t_state == TCPS_CLOSED) {
941 		rstreason = BANDLIM_RST_CLOSEDPORT;
942 		goto dropwithreset;
943 	}
944 
945 #ifdef TCP_OFFLOAD
946 	if (tp->t_flags & TF_TOE) {
947 		tcp_offload_input(tp, m);
948 		m = NULL;	/* consumed by the TOE driver */
949 		goto dropunlock;
950 	}
951 #endif
952 
953 #ifdef MAC
954 	INP_WLOCK_ASSERT(inp);
955 	if (mac_inpcb_check_deliver(inp, m))
956 		goto dropunlock;
957 #endif
958 	so = inp->inp_socket;
959 	KASSERT(so != NULL, ("%s: so == NULL", __func__));
960 #ifdef TCPDEBUG
961 	if (so->so_options & SO_DEBUG) {
962 		ostate = tp->t_state;
963 #ifdef INET6
964 		if (isipv6) {
965 			bcopy((char *)ip6, (char *)tcp_saveipgen, sizeof(*ip6));
966 		} else
967 #endif
968 			bcopy((char *)ip, (char *)tcp_saveipgen, sizeof(*ip));
969 		tcp_savetcp = *th;
970 	}
971 #endif /* TCPDEBUG */
972 	/*
973 	 * When the socket is accepting connections (the INPCB is in LISTEN
974 	 * state) we look into the SYN cache if this is a new connection
975 	 * attempt or the completion of a previous one.
976 	 */
977 	KASSERT(tp->t_state == TCPS_LISTEN || !(so->so_options & SO_ACCEPTCONN),
978 	    ("%s: so accepting but tp %p not listening", __func__, tp));
979 	if (tp->t_state == TCPS_LISTEN && (so->so_options & SO_ACCEPTCONN)) {
980 		struct in_conninfo inc;
981 
982 		bzero(&inc, sizeof(inc));
983 #ifdef INET6
984 		if (isipv6) {
985 			inc.inc_flags |= INC_ISIPV6;
986 			if (inp->inp_inc.inc_flags & INC_IPV6MINMTU)
987 				inc.inc_flags |= INC_IPV6MINMTU;
988 			inc.inc6_faddr = ip6->ip6_src;
989 			inc.inc6_laddr = ip6->ip6_dst;
990 		} else
991 #endif
992 		{
993 			inc.inc_faddr = ip->ip_src;
994 			inc.inc_laddr = ip->ip_dst;
995 		}
996 		inc.inc_fport = th->th_sport;
997 		inc.inc_lport = th->th_dport;
998 		inc.inc_fibnum = so->so_fibnum;
999 
1000 		/*
1001 		 * Check for an existing connection attempt in syncache if
1002 		 * the flag is only ACK.  A successful lookup creates a new
1003 		 * socket appended to the listen queue in SYN_RECEIVED state.
1004 		 */
1005 		if ((thflags & (TH_RST|TH_ACK|TH_SYN)) == TH_ACK) {
1006 
1007 			/*
1008 			 * Parse the TCP options here because
1009 			 * syncookies need access to the reflected
1010 			 * timestamp.
1011 			 */
1012 			tcp_dooptions(&to, optp, optlen, 0);
1013 			/*
1014 			 * NB: syncache_expand() doesn't unlock
1015 			 * inp and tcpinfo locks.
1016 			 */
1017 			rstreason = syncache_expand(&inc, &to, th, &so, m);
1018 			if (rstreason < 0) {
1019 				/*
1020 				 * A failing TCP MD5 signature comparison
1021 				 * must result in the segment being dropped
1022 				 * and must not produce any response back
1023 				 * to the sender.
1024 				 */
1025 				goto dropunlock;
1026 			} else if (rstreason == 0) {
1027 				/*
1028 				 * No syncache entry or ACK was not
1029 				 * for our SYN/ACK.  Send a RST.
1030 				 * NB: syncache did its own logging
1031 				 * of the failure cause.
1032 				 */
1033 				rstreason = BANDLIM_RST_OPENPORT;
1034 				goto dropwithreset;
1035 			}
1036 tfo_socket_result:
1037 			if (so == NULL) {
1038 				/*
1039 				 * We completed the 3-way handshake
1040 				 * but could not allocate a socket
1041 				 * either due to memory shortage,
1042 				 * listen queue length limits or
1043 				 * global socket limits.  Send RST
1044 				 * or wait and have the remote end
1045 				 * retransmit the ACK for another
1046 				 * try.
1047 				 */
1048 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1049 					log(LOG_DEBUG, "%s; %s: Listen socket: "
1050 					    "Socket allocation failed due to "
1051 					    "limits or memory shortage, %s\n",
1052 					    s, __func__,
1053 					    V_tcp_sc_rst_sock_fail ?
1054 					    "sending RST" : "try again");
1055 				if (V_tcp_sc_rst_sock_fail) {
1056 					rstreason = BANDLIM_UNLIMITED;
1057 					goto dropwithreset;
1058 				} else
1059 					goto dropunlock;
1060 			}
1061 			/*
1062 			 * Socket is created in state SYN_RECEIVED.
1063 			 * Unlock the listen socket, lock the newly
1064 			 * created socket and update the tp variable.
1065 			 */
1066 			INP_WUNLOCK(inp);	/* listen socket */
1067 			inp = sotoinpcb(so);
1068 			/*
1069 			 * New connection inpcb is already locked by
1070 			 * syncache_expand().
1071 			 */
1072 			INP_WLOCK_ASSERT(inp);
1073 			tp = intotcpcb(inp);
1074 			KASSERT(tp->t_state == TCPS_SYN_RECEIVED,
1075 			    ("%s: ", __func__));
1076 			/*
1077 			 * Process the segment and the data it
1078 			 * contains.  tcp_do_segment() consumes
1079 			 * the mbuf chain and unlocks the inpcb.
1080 			 */
1081 			TCP_PROBE5(receive, NULL, tp, m, tp, th);
1082 			tp->t_fb->tfb_tcp_do_segment(m, th, so, tp, drop_hdrlen, tlen,
1083 			    iptos);
1084 			return (IPPROTO_DONE);
1085 		}
1086 		/*
1087 		 * Segment flag validation for new connection attempts:
1088 		 *
1089 		 * Our (SYN|ACK) response was rejected.
1090 		 * Check with syncache and remove entry to prevent
1091 		 * retransmits.
1092 		 *
1093 		 * NB: syncache_chkrst does its own logging of failure
1094 		 * causes.
1095 		 */
1096 		if (thflags & TH_RST) {
1097 			syncache_chkrst(&inc, th, m);
1098 			goto dropunlock;
1099 		}
1100 		/*
1101 		 * We can't do anything without SYN.
1102 		 */
1103 		if ((thflags & TH_SYN) == 0) {
1104 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1105 				log(LOG_DEBUG, "%s; %s: Listen socket: "
1106 				    "SYN is missing, segment ignored\n",
1107 				    s, __func__);
1108 			TCPSTAT_INC(tcps_badsyn);
1109 			goto dropunlock;
1110 		}
1111 		/*
1112 		 * (SYN|ACK) is bogus on a listen socket.
1113 		 */
1114 		if (thflags & TH_ACK) {
1115 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1116 				log(LOG_DEBUG, "%s; %s: Listen socket: "
1117 				    "SYN|ACK invalid, segment rejected\n",
1118 				    s, __func__);
1119 			syncache_badack(&inc);	/* XXX: Not needed! */
1120 			TCPSTAT_INC(tcps_badsyn);
1121 			rstreason = BANDLIM_RST_OPENPORT;
1122 			goto dropwithreset;
1123 		}
1124 		/*
1125 		 * If the drop_synfin option is enabled, drop all
1126 		 * segments with both the SYN and FIN bits set.
1127 		 * This prevents e.g. nmap from identifying the
1128 		 * TCP/IP stack.
1129 		 * XXX: Poor reasoning.  nmap has other methods
1130 		 * and is constantly refining its stack detection
1131 		 * strategies.
1132 		 * XXX: This is a violation of the TCP specification
1133 		 * and was used by RFC1644.
1134 		 */
1135 		if ((thflags & TH_FIN) && V_drop_synfin) {
1136 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1137 				log(LOG_DEBUG, "%s; %s: Listen socket: "
1138 				    "SYN|FIN segment ignored (based on "
1139 				    "sysctl setting)\n", s, __func__);
1140 			TCPSTAT_INC(tcps_badsyn);
1141 			goto dropunlock;
1142 		}
1143 		/*
1144 		 * Segment's flags are (SYN) or (SYN|FIN).
1145 		 *
1146 		 * TH_PUSH, TH_URG, TH_ECE, TH_CWR are ignored
1147 		 * as they do not affect the state of the TCP FSM.
1148 		 * The data pointed to by TH_URG and th_urp is ignored.
1149 		 */
1150 		KASSERT((thflags & (TH_RST|TH_ACK)) == 0,
1151 		    ("%s: Listen socket: TH_RST or TH_ACK set", __func__));
1152 		KASSERT(thflags & (TH_SYN),
1153 		    ("%s: Listen socket: TH_SYN not set", __func__));
1154 #ifdef INET6
1155 		/*
1156 		 * If deprecated address is forbidden,
1157 		 * we do not accept SYN to deprecated interface
1158 		 * address to prevent any new inbound connection from
1159 		 * getting established.
1160 		 * When we do not accept SYN, we send a TCP RST,
1161 		 * with deprecated source address (instead of dropping
1162 		 * it).  We compromise it as it is much better for peer
1163 		 * to send a RST, and RST will be the final packet
1164 		 * for the exchange.
1165 		 *
1166 		 * If we do not forbid deprecated addresses, we accept
1167 		 * the SYN packet.  RFC2462 does not suggest dropping
1168 		 * SYN in this case.
1169 		 * If we decipher RFC2462 5.5.4, it says like this:
1170 		 * 1. use of deprecated addr with existing
1171 		 *    communication is okay - "SHOULD continue to be
1172 		 *    used"
1173 		 * 2. use of it with new communication:
1174 		 *   (2a) "SHOULD NOT be used if alternate address
1175 		 *        with sufficient scope is available"
1176 		 *   (2b) nothing mentioned otherwise.
1177 		 * Here we fall into (2b) case as we have no choice in
1178 		 * our source address selection - we must obey the peer.
1179 		 *
1180 		 * The wording in RFC2462 is confusing, and there are
1181 		 * multiple description text for deprecated address
1182 		 * handling - worse, they are not exactly the same.
1183 		 * I believe 5.5.4 is the best one, so we follow 5.5.4.
1184 		 */
1185 		if (isipv6 && !V_ip6_use_deprecated) {
1186 			struct in6_ifaddr *ia6;
1187 
1188 			ia6 = in6ifa_ifwithaddr(&ip6->ip6_dst, 0 /* XXX */);
1189 			if (ia6 != NULL &&
1190 			    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
1191 				ifa_free(&ia6->ia_ifa);
1192 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1193 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1194 					"Connection attempt to deprecated "
1195 					"IPv6 address rejected\n",
1196 					s, __func__);
1197 				rstreason = BANDLIM_RST_OPENPORT;
1198 				goto dropwithreset;
1199 			}
1200 			if (ia6)
1201 				ifa_free(&ia6->ia_ifa);
1202 		}
1203 #endif /* INET6 */
1204 		/*
1205 		 * Basic sanity checks on incoming SYN requests:
1206 		 *   Don't respond if the destination is a link layer
1207 		 *	broadcast according to RFC1122 4.2.3.10, p. 104.
1208 		 *   If it is from this socket it must be forged.
1209 		 *   Don't respond if the source or destination is a
1210 		 *	global or subnet broad- or multicast address.
1211 		 *   Note that it is quite possible to receive unicast
1212 		 *	link-layer packets with a broadcast IP address. Use
1213 		 *	in_broadcast() to find them.
1214 		 */
1215 		if (m->m_flags & (M_BCAST|M_MCAST)) {
1216 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1217 			    log(LOG_DEBUG, "%s; %s: Listen socket: "
1218 				"Connection attempt from broad- or multicast "
1219 				"link layer address ignored\n", s, __func__);
1220 			goto dropunlock;
1221 		}
1222 #ifdef INET6
1223 		if (isipv6) {
1224 			if (th->th_dport == th->th_sport &&
1225 			    IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst, &ip6->ip6_src)) {
1226 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1227 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1228 					"Connection attempt to/from self "
1229 					"ignored\n", s, __func__);
1230 				goto dropunlock;
1231 			}
1232 			if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
1233 			    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
1234 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1235 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1236 					"Connection attempt from/to multicast "
1237 					"address ignored\n", s, __func__);
1238 				goto dropunlock;
1239 			}
1240 		}
1241 #endif
1242 #if defined(INET) && defined(INET6)
1243 		else
1244 #endif
1245 #ifdef INET
1246 		{
1247 			if (th->th_dport == th->th_sport &&
1248 			    ip->ip_dst.s_addr == ip->ip_src.s_addr) {
1249 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1250 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1251 					"Connection attempt from/to self "
1252 					"ignored\n", s, __func__);
1253 				goto dropunlock;
1254 			}
1255 			if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
1256 			    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
1257 			    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
1258 			    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif)) {
1259 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1260 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1261 					"Connection attempt from/to broad- "
1262 					"or multicast address ignored\n",
1263 					s, __func__);
1264 				goto dropunlock;
1265 			}
1266 		}
1267 #endif
1268 		/*
1269 		 * SYN appears to be valid.  Create compressed TCP state
1270 		 * for syncache.
1271 		 */
1272 #ifdef TCPDEBUG
1273 		if (so->so_options & SO_DEBUG)
1274 			tcp_trace(TA_INPUT, ostate, tp,
1275 			    (void *)tcp_saveipgen, &tcp_savetcp, 0);
1276 #endif
1277 		TCP_PROBE3(debug__input, tp, th, m);
1278 		tcp_dooptions(&to, optp, optlen, TO_SYN);
1279 		if (syncache_add(&inc, &to, th, inp, &so, m, NULL, NULL))
1280 			goto tfo_socket_result;
1281 
1282 		/*
1283 		 * Entry added to syncache and mbuf consumed.
1284 		 * Only the listen socket is unlocked by syncache_add().
1285 		 */
1286 		INP_INFO_WUNLOCK_ASSERT(&V_tcbinfo);
1287 		return (IPPROTO_DONE);
1288 	} else if (tp->t_state == TCPS_LISTEN) {
1289 		/*
1290 		 * When a listen socket is torn down the SO_ACCEPTCONN
1291 		 * flag is removed first while connections are drained
1292 		 * from the accept queue in a unlock/lock cycle of the
1293 		 * ACCEPT_LOCK, opening a race condition allowing a SYN
1294 		 * attempt go through unhandled.
1295 		 */
1296 		goto dropunlock;
1297 	}
1298 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1299 	if (tp->t_flags & TF_SIGNATURE) {
1300 		tcp_dooptions(&to, optp, optlen, thflags);
1301 		if ((to.to_flags & TOF_SIGNATURE) == 0) {
1302 			TCPSTAT_INC(tcps_sig_err_nosigopt);
1303 			goto dropunlock;
1304 		}
1305 		if (!TCPMD5_ENABLED() ||
1306 		    TCPMD5_INPUT(m, th, to.to_signature) != 0)
1307 			goto dropunlock;
1308 	}
1309 #endif
1310 	TCP_PROBE5(receive, NULL, tp, m, tp, th);
1311 
1312 	/*
1313 	 * Segment belongs to a connection in SYN_SENT, ESTABLISHED or later
1314 	 * state.  tcp_do_segment() always consumes the mbuf chain, unlocks
1315 	 * the inpcb, and unlocks pcbinfo.
1316 	 */
1317 	tp->t_fb->tfb_tcp_do_segment(m, th, so, tp, drop_hdrlen, tlen, iptos);
1318 	return (IPPROTO_DONE);
1319 
1320 dropwithreset:
1321 	TCP_PROBE5(receive, NULL, tp, m, tp, th);
1322 
1323 	if (inp != NULL) {
1324 		tcp_dropwithreset(m, th, tp, tlen, rstreason);
1325 		INP_WUNLOCK(inp);
1326 	} else
1327 		tcp_dropwithreset(m, th, NULL, tlen, rstreason);
1328 	m = NULL;	/* mbuf chain got consumed. */
1329 	goto drop;
1330 
1331 dropunlock:
1332 	if (m != NULL)
1333 		TCP_PROBE5(receive, NULL, tp, m, tp, th);
1334 
1335 	if (inp != NULL)
1336 		INP_WUNLOCK(inp);
1337 
1338 drop:
1339 	INP_INFO_WUNLOCK_ASSERT(&V_tcbinfo);
1340 	if (s != NULL)
1341 		free(s, M_TCPLOG);
1342 	if (m != NULL)
1343 		m_freem(m);
1344 	return (IPPROTO_DONE);
1345 }
1346 
1347 /*
1348  * Automatic sizing of receive socket buffer.  Often the send
1349  * buffer size is not optimally adjusted to the actual network
1350  * conditions at hand (delay bandwidth product).  Setting the
1351  * buffer size too small limits throughput on links with high
1352  * bandwidth and high delay (eg. trans-continental/oceanic links).
1353  *
1354  * On the receive side the socket buffer memory is only rarely
1355  * used to any significant extent.  This allows us to be much
1356  * more aggressive in scaling the receive socket buffer.  For
1357  * the case that the buffer space is actually used to a large
1358  * extent and we run out of kernel memory we can simply drop
1359  * the new segments; TCP on the sender will just retransmit it
1360  * later.  Setting the buffer size too big may only consume too
1361  * much kernel memory if the application doesn't read() from
1362  * the socket or packet loss or reordering makes use of the
1363  * reassembly queue.
1364  *
1365  * The criteria to step up the receive buffer one notch are:
1366  *  1. Application has not set receive buffer size with
1367  *     SO_RCVBUF. Setting SO_RCVBUF clears SB_AUTOSIZE.
1368  *  2. the number of bytes received during 1/2 of an sRTT
1369  *     is at least 3/8 of the current socket buffer size.
1370  *  3. receive buffer size has not hit maximal automatic size;
1371  *
1372  * If all of the criteria are met we increaset the socket buffer
1373  * by a 1/2 (bounded by the max). This allows us to keep ahead
1374  * of slow-start but also makes it so our peer never gets limited
1375  * by our rwnd which we then open up causing a burst.
1376  *
1377  * This algorithm does two steps per RTT at most and only if
1378  * we receive a bulk stream w/o packet losses or reorderings.
1379  * Shrinking the buffer during idle times is not necessary as
1380  * it doesn't consume any memory when idle.
1381  *
1382  * TODO: Only step up if the application is actually serving
1383  * the buffer to better manage the socket buffer resources.
1384  */
1385 int
1386 tcp_autorcvbuf(struct mbuf *m, struct tcphdr *th, struct socket *so,
1387     struct tcpcb *tp, int tlen)
1388 {
1389 	int newsize = 0;
1390 
1391 	if (V_tcp_do_autorcvbuf && (so->so_rcv.sb_flags & SB_AUTOSIZE) &&
1392 	    tp->t_srtt != 0 && tp->rfbuf_ts != 0 &&
1393 	    TCP_TS_TO_TICKS(tcp_ts_getticks() - tp->rfbuf_ts) >
1394 	    ((tp->t_srtt >> TCP_RTT_SHIFT)/2)) {
1395 		if (tp->rfbuf_cnt > ((so->so_rcv.sb_hiwat / 2)/ 4 * 3) &&
1396 		    so->so_rcv.sb_hiwat < V_tcp_autorcvbuf_max) {
1397 			newsize = min((so->so_rcv.sb_hiwat + (so->so_rcv.sb_hiwat/2)), V_tcp_autorcvbuf_max);
1398 		}
1399 		TCP_PROBE6(receive__autoresize, NULL, tp, m, tp, th, newsize);
1400 
1401 		/* Start over with next RTT. */
1402 		tp->rfbuf_ts = 0;
1403 		tp->rfbuf_cnt = 0;
1404 	} else {
1405 		tp->rfbuf_cnt += tlen;	/* add up */
1406 	}
1407 	return (newsize);
1408 }
1409 
1410 void
1411 tcp_do_segment(struct mbuf *m, struct tcphdr *th, struct socket *so,
1412     struct tcpcb *tp, int drop_hdrlen, int tlen, uint8_t iptos)
1413 {
1414 	int thflags, acked, ourfinisacked, needoutput = 0, sack_changed;
1415 	int rstreason, todrop, win;
1416 	uint32_t tiwin;
1417 	uint16_t nsegs;
1418 	char *s;
1419 	struct in_conninfo *inc;
1420 	struct mbuf *mfree;
1421 	struct tcpopt to;
1422 	int tfo_syn;
1423 
1424 #ifdef TCPDEBUG
1425 	/*
1426 	 * The size of tcp_saveipgen must be the size of the max ip header,
1427 	 * now IPv6.
1428 	 */
1429 	u_char tcp_saveipgen[IP6_HDR_LEN];
1430 	struct tcphdr tcp_savetcp;
1431 	short ostate = 0;
1432 #endif
1433 	thflags = th->th_flags;
1434 	inc = &tp->t_inpcb->inp_inc;
1435 	tp->sackhint.last_sack_ack = 0;
1436 	sack_changed = 0;
1437 	nsegs = max(1, m->m_pkthdr.lro_nsegs);
1438 
1439 	NET_EPOCH_ASSERT();
1440 	INP_WLOCK_ASSERT(tp->t_inpcb);
1441 	KASSERT(tp->t_state > TCPS_LISTEN, ("%s: TCPS_LISTEN",
1442 	    __func__));
1443 	KASSERT(tp->t_state != TCPS_TIME_WAIT, ("%s: TCPS_TIME_WAIT",
1444 	    __func__));
1445 
1446 #ifdef TCPPCAP
1447 	/* Save segment, if requested. */
1448 	tcp_pcap_add(th, m, &(tp->t_inpkts));
1449 #endif
1450 	TCP_LOG_EVENT(tp, th, &so->so_rcv, &so->so_snd, TCP_LOG_IN, 0,
1451 	    tlen, NULL, true);
1452 
1453 	if ((thflags & TH_SYN) && (thflags & TH_FIN) && V_drop_synfin) {
1454 		if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1455 			log(LOG_DEBUG, "%s; %s: "
1456 			    "SYN|FIN segment ignored (based on "
1457 			    "sysctl setting)\n", s, __func__);
1458 			free(s, M_TCPLOG);
1459 		}
1460 		goto drop;
1461 	}
1462 
1463 	/*
1464 	 * If a segment with the ACK-bit set arrives in the SYN-SENT state
1465 	 * check SEQ.ACK first.
1466 	 */
1467 	if ((tp->t_state == TCPS_SYN_SENT) && (thflags & TH_ACK) &&
1468 	    (SEQ_LEQ(th->th_ack, tp->iss) || SEQ_GT(th->th_ack, tp->snd_max))) {
1469 		rstreason = BANDLIM_UNLIMITED;
1470 		goto dropwithreset;
1471 	}
1472 
1473 	/*
1474 	 * Segment received on connection.
1475 	 * Reset idle time and keep-alive timer.
1476 	 * XXX: This should be done after segment
1477 	 * validation to ignore broken/spoofed segs.
1478 	 */
1479 	tp->t_rcvtime = ticks;
1480 
1481 	/*
1482 	 * Scale up the window into a 32-bit value.
1483 	 * For the SYN_SENT state the scale is zero.
1484 	 */
1485 	tiwin = th->th_win << tp->snd_scale;
1486 
1487 	/*
1488 	 * TCP ECN processing.
1489 	 */
1490 	if (tp->t_flags & TF_ECN_PERMIT) {
1491 		if (thflags & TH_CWR)
1492 			tp->t_flags &= ~TF_ECN_SND_ECE;
1493 		switch (iptos & IPTOS_ECN_MASK) {
1494 		case IPTOS_ECN_CE:
1495 			tp->t_flags |= TF_ECN_SND_ECE;
1496 			TCPSTAT_INC(tcps_ecn_ce);
1497 			break;
1498 		case IPTOS_ECN_ECT0:
1499 			TCPSTAT_INC(tcps_ecn_ect0);
1500 			break;
1501 		case IPTOS_ECN_ECT1:
1502 			TCPSTAT_INC(tcps_ecn_ect1);
1503 			break;
1504 		}
1505 
1506 		/* Process a packet differently from RFC3168. */
1507 		cc_ecnpkt_handler(tp, th, iptos);
1508 
1509 		/* Congestion experienced. */
1510 		if (thflags & TH_ECE) {
1511 			cc_cong_signal(tp, th, CC_ECN);
1512 		}
1513 	}
1514 
1515 	/*
1516 	 * Parse options on any incoming segment.
1517 	 */
1518 	tcp_dooptions(&to, (u_char *)(th + 1),
1519 	    (th->th_off << 2) - sizeof(struct tcphdr),
1520 	    (thflags & TH_SYN) ? TO_SYN : 0);
1521 
1522 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1523 	if ((tp->t_flags & TF_SIGNATURE) != 0 &&
1524 	    (to.to_flags & TOF_SIGNATURE) == 0) {
1525 		TCPSTAT_INC(tcps_sig_err_sigopt);
1526 		/* XXX: should drop? */
1527 	}
1528 #endif
1529 	/*
1530 	 * If echoed timestamp is later than the current time,
1531 	 * fall back to non RFC1323 RTT calculation.  Normalize
1532 	 * timestamp if syncookies were used when this connection
1533 	 * was established.
1534 	 */
1535 	if ((to.to_flags & TOF_TS) && (to.to_tsecr != 0)) {
1536 		to.to_tsecr -= tp->ts_offset;
1537 		if (TSTMP_GT(to.to_tsecr, tcp_ts_getticks()))
1538 			to.to_tsecr = 0;
1539 		else if (tp->t_flags & TF_PREVVALID &&
1540 			 tp->t_badrxtwin != 0 && SEQ_LT(to.to_tsecr, tp->t_badrxtwin))
1541 			cc_cong_signal(tp, th, CC_RTO_ERR);
1542 	}
1543 	/*
1544 	 * Process options only when we get SYN/ACK back. The SYN case
1545 	 * for incoming connections is handled in tcp_syncache.
1546 	 * According to RFC1323 the window field in a SYN (i.e., a <SYN>
1547 	 * or <SYN,ACK>) segment itself is never scaled.
1548 	 * XXX this is traditional behavior, may need to be cleaned up.
1549 	 */
1550 	if (tp->t_state == TCPS_SYN_SENT && (thflags & TH_SYN)) {
1551 		if ((to.to_flags & TOF_SCALE) &&
1552 		    (tp->t_flags & TF_REQ_SCALE)) {
1553 			tp->t_flags |= TF_RCVD_SCALE;
1554 			tp->snd_scale = to.to_wscale;
1555 		}
1556 		/*
1557 		 * Initial send window.  It will be updated with
1558 		 * the next incoming segment to the scaled value.
1559 		 */
1560 		tp->snd_wnd = th->th_win;
1561 		if (to.to_flags & TOF_TS) {
1562 			tp->t_flags |= TF_RCVD_TSTMP;
1563 			tp->ts_recent = to.to_tsval;
1564 			tp->ts_recent_age = tcp_ts_getticks();
1565 		}
1566 		if (to.to_flags & TOF_MSS)
1567 			tcp_mss(tp, to.to_mss);
1568 		if ((tp->t_flags & TF_SACK_PERMIT) &&
1569 		    (to.to_flags & TOF_SACKPERM) == 0)
1570 			tp->t_flags &= ~TF_SACK_PERMIT;
1571 		if (IS_FASTOPEN(tp->t_flags)) {
1572 			if (to.to_flags & TOF_FASTOPEN) {
1573 				uint16_t mss;
1574 
1575 				if (to.to_flags & TOF_MSS)
1576 					mss = to.to_mss;
1577 				else
1578 					if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0)
1579 						mss = TCP6_MSS;
1580 					else
1581 						mss = TCP_MSS;
1582 				tcp_fastopen_update_cache(tp, mss,
1583 				    to.to_tfo_len, to.to_tfo_cookie);
1584 			} else
1585 				tcp_fastopen_disable_path(tp);
1586 		}
1587 	}
1588 
1589 	/*
1590 	 * If timestamps were negotiated during SYN/ACK they should
1591 	 * appear on every segment during this session and vice versa.
1592 	 */
1593 	if ((tp->t_flags & TF_RCVD_TSTMP) && !(to.to_flags & TOF_TS)) {
1594 		if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1595 			log(LOG_DEBUG, "%s; %s: Timestamp missing, "
1596 			    "no action\n", s, __func__);
1597 			free(s, M_TCPLOG);
1598 		}
1599 	}
1600 	if (!(tp->t_flags & TF_RCVD_TSTMP) && (to.to_flags & TOF_TS)) {
1601 		if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1602 			log(LOG_DEBUG, "%s; %s: Timestamp not expected, "
1603 			    "no action\n", s, __func__);
1604 			free(s, M_TCPLOG);
1605 		}
1606 	}
1607 
1608 	/*
1609 	 * Header prediction: check for the two common cases
1610 	 * of a uni-directional data xfer.  If the packet has
1611 	 * no control flags, is in-sequence, the window didn't
1612 	 * change and we're not retransmitting, it's a
1613 	 * candidate.  If the length is zero and the ack moved
1614 	 * forward, we're the sender side of the xfer.  Just
1615 	 * free the data acked & wake any higher level process
1616 	 * that was blocked waiting for space.  If the length
1617 	 * is non-zero and the ack didn't move, we're the
1618 	 * receiver side.  If we're getting packets in-order
1619 	 * (the reassembly queue is empty), add the data to
1620 	 * the socket buffer and note that we need a delayed ack.
1621 	 * Make sure that the hidden state-flags are also off.
1622 	 * Since we check for TCPS_ESTABLISHED first, it can only
1623 	 * be TH_NEEDSYN.
1624 	 */
1625 	if (tp->t_state == TCPS_ESTABLISHED &&
1626 	    th->th_seq == tp->rcv_nxt &&
1627 	    (thflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
1628 	    tp->snd_nxt == tp->snd_max &&
1629 	    tiwin && tiwin == tp->snd_wnd &&
1630 	    ((tp->t_flags & (TF_NEEDSYN|TF_NEEDFIN)) == 0) &&
1631 	    SEGQ_EMPTY(tp) &&
1632 	    ((to.to_flags & TOF_TS) == 0 ||
1633 	     TSTMP_GEQ(to.to_tsval, tp->ts_recent)) ) {
1634 
1635 		/*
1636 		 * If last ACK falls within this segment's sequence numbers,
1637 		 * record the timestamp.
1638 		 * NOTE that the test is modified according to the latest
1639 		 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
1640 		 */
1641 		if ((to.to_flags & TOF_TS) != 0 &&
1642 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1643 			tp->ts_recent_age = tcp_ts_getticks();
1644 			tp->ts_recent = to.to_tsval;
1645 		}
1646 
1647 		if (tlen == 0) {
1648 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
1649 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
1650 			    !IN_RECOVERY(tp->t_flags) &&
1651 			    (to.to_flags & TOF_SACK) == 0 &&
1652 			    TAILQ_EMPTY(&tp->snd_holes)) {
1653 				/*
1654 				 * This is a pure ack for outstanding data.
1655 				 */
1656 				TCPSTAT_INC(tcps_predack);
1657 
1658 				/*
1659 				 * "bad retransmit" recovery without timestamps.
1660 				 */
1661 				if ((to.to_flags & TOF_TS) == 0 &&
1662 				    tp->t_rxtshift == 1 &&
1663 				    tp->t_flags & TF_PREVVALID &&
1664 				    (int)(ticks - tp->t_badrxtwin) < 0) {
1665 					cc_cong_signal(tp, th, CC_RTO_ERR);
1666 				}
1667 
1668 				/*
1669 				 * Recalculate the transmit timer / rtt.
1670 				 *
1671 				 * Some boxes send broken timestamp replies
1672 				 * during the SYN+ACK phase, ignore
1673 				 * timestamps of 0 or we could calculate a
1674 				 * huge RTT and blow up the retransmit timer.
1675 				 */
1676 				if ((to.to_flags & TOF_TS) != 0 &&
1677 				    to.to_tsecr) {
1678 					uint32_t t;
1679 
1680 					t = tcp_ts_getticks() - to.to_tsecr;
1681 					if (!tp->t_rttlow || tp->t_rttlow > t)
1682 						tp->t_rttlow = t;
1683 					tcp_xmit_timer(tp,
1684 					    TCP_TS_TO_TICKS(t) + 1);
1685 				} else if (tp->t_rtttime &&
1686 				    SEQ_GT(th->th_ack, tp->t_rtseq)) {
1687 					if (!tp->t_rttlow ||
1688 					    tp->t_rttlow > ticks - tp->t_rtttime)
1689 						tp->t_rttlow = ticks - tp->t_rtttime;
1690 					tcp_xmit_timer(tp,
1691 							ticks - tp->t_rtttime);
1692 				}
1693 				acked = BYTES_THIS_ACK(tp, th);
1694 
1695 #ifdef TCP_HHOOK
1696 				/* Run HHOOK_TCP_ESTABLISHED_IN helper hooks. */
1697 				hhook_run_tcp_est_in(tp, th, &to);
1698 #endif
1699 
1700 				TCPSTAT_ADD(tcps_rcvackpack, nsegs);
1701 				TCPSTAT_ADD(tcps_rcvackbyte, acked);
1702 				sbdrop(&so->so_snd, acked);
1703 				if (SEQ_GT(tp->snd_una, tp->snd_recover) &&
1704 				    SEQ_LEQ(th->th_ack, tp->snd_recover))
1705 					tp->snd_recover = th->th_ack - 1;
1706 
1707 				/*
1708 				 * Let the congestion control algorithm update
1709 				 * congestion control related information. This
1710 				 * typically means increasing the congestion
1711 				 * window.
1712 				 */
1713 				cc_ack_received(tp, th, nsegs, CC_ACK);
1714 
1715 				tp->snd_una = th->th_ack;
1716 				/*
1717 				 * Pull snd_wl2 up to prevent seq wrap relative
1718 				 * to th_ack.
1719 				 */
1720 				tp->snd_wl2 = th->th_ack;
1721 				tp->t_dupacks = 0;
1722 				m_freem(m);
1723 
1724 				/*
1725 				 * If all outstanding data are acked, stop
1726 				 * retransmit timer, otherwise restart timer
1727 				 * using current (possibly backed-off) value.
1728 				 * If process is waiting for space,
1729 				 * wakeup/selwakeup/signal.  If data
1730 				 * are ready to send, let tcp_output
1731 				 * decide between more output or persist.
1732 				 */
1733 #ifdef TCPDEBUG
1734 				if (so->so_options & SO_DEBUG)
1735 					tcp_trace(TA_INPUT, ostate, tp,
1736 					    (void *)tcp_saveipgen,
1737 					    &tcp_savetcp, 0);
1738 #endif
1739 				TCP_PROBE3(debug__input, tp, th, m);
1740 				if (tp->snd_una == tp->snd_max)
1741 					tcp_timer_activate(tp, TT_REXMT, 0);
1742 				else if (!tcp_timer_active(tp, TT_PERSIST))
1743 					tcp_timer_activate(tp, TT_REXMT,
1744 						      tp->t_rxtcur);
1745 				sowwakeup(so);
1746 				if (sbavail(&so->so_snd))
1747 					(void) tp->t_fb->tfb_tcp_output(tp);
1748 				goto check_delack;
1749 			}
1750 		} else if (th->th_ack == tp->snd_una &&
1751 		    tlen <= sbspace(&so->so_rcv)) {
1752 			int newsize = 0;	/* automatic sockbuf scaling */
1753 
1754 			/*
1755 			 * This is a pure, in-sequence data packet with
1756 			 * nothing on the reassembly queue and we have enough
1757 			 * buffer space to take it.
1758 			 */
1759 			/* Clean receiver SACK report if present */
1760 			if ((tp->t_flags & TF_SACK_PERMIT) && tp->rcv_numsacks)
1761 				tcp_clean_sackreport(tp);
1762 			TCPSTAT_INC(tcps_preddat);
1763 			tp->rcv_nxt += tlen;
1764 			/*
1765 			 * Pull snd_wl1 up to prevent seq wrap relative to
1766 			 * th_seq.
1767 			 */
1768 			tp->snd_wl1 = th->th_seq;
1769 			/*
1770 			 * Pull rcv_up up to prevent seq wrap relative to
1771 			 * rcv_nxt.
1772 			 */
1773 			tp->rcv_up = tp->rcv_nxt;
1774 			TCPSTAT_ADD(tcps_rcvpack, nsegs);
1775 			TCPSTAT_ADD(tcps_rcvbyte, tlen);
1776 #ifdef TCPDEBUG
1777 			if (so->so_options & SO_DEBUG)
1778 				tcp_trace(TA_INPUT, ostate, tp,
1779 				    (void *)tcp_saveipgen, &tcp_savetcp, 0);
1780 #endif
1781 			TCP_PROBE3(debug__input, tp, th, m);
1782 
1783 			newsize = tcp_autorcvbuf(m, th, so, tp, tlen);
1784 
1785 			/* Add data to socket buffer. */
1786 			SOCKBUF_LOCK(&so->so_rcv);
1787 			if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
1788 				m_freem(m);
1789 			} else {
1790 				/*
1791 				 * Set new socket buffer size.
1792 				 * Give up when limit is reached.
1793 				 */
1794 				if (newsize)
1795 					if (!sbreserve_locked(&so->so_rcv,
1796 					    newsize, so, NULL))
1797 						so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
1798 				m_adj(m, drop_hdrlen);	/* delayed header drop */
1799 				sbappendstream_locked(&so->so_rcv, m, 0);
1800 			}
1801 			/* NB: sorwakeup_locked() does an implicit unlock. */
1802 			sorwakeup_locked(so);
1803 			if (DELAY_ACK(tp, tlen)) {
1804 				tp->t_flags |= TF_DELACK;
1805 			} else {
1806 				tp->t_flags |= TF_ACKNOW;
1807 				tp->t_fb->tfb_tcp_output(tp);
1808 			}
1809 			goto check_delack;
1810 		}
1811 	}
1812 
1813 	/*
1814 	 * Calculate amount of space in receive window,
1815 	 * and then do TCP input processing.
1816 	 * Receive window is amount of space in rcv queue,
1817 	 * but not less than advertised window.
1818 	 */
1819 	win = sbspace(&so->so_rcv);
1820 	if (win < 0)
1821 		win = 0;
1822 	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1823 
1824 	switch (tp->t_state) {
1825 
1826 	/*
1827 	 * If the state is SYN_RECEIVED:
1828 	 *	if seg contains an ACK, but not for our SYN/ACK, send a RST.
1829 	 */
1830 	case TCPS_SYN_RECEIVED:
1831 		if ((thflags & TH_ACK) &&
1832 		    (SEQ_LEQ(th->th_ack, tp->snd_una) ||
1833 		     SEQ_GT(th->th_ack, tp->snd_max))) {
1834 				rstreason = BANDLIM_RST_OPENPORT;
1835 				goto dropwithreset;
1836 		}
1837 		if (IS_FASTOPEN(tp->t_flags)) {
1838 			/*
1839 			 * When a TFO connection is in SYN_RECEIVED, the
1840 			 * only valid packets are the initial SYN, a
1841 			 * retransmit/copy of the initial SYN (possibly with
1842 			 * a subset of the original data), a valid ACK, a
1843 			 * FIN, or a RST.
1844 			 */
1845 			if ((thflags & (TH_SYN|TH_ACK)) == (TH_SYN|TH_ACK)) {
1846 				rstreason = BANDLIM_RST_OPENPORT;
1847 				goto dropwithreset;
1848 			} else if (thflags & TH_SYN) {
1849 				/* non-initial SYN is ignored */
1850 				if ((tcp_timer_active(tp, TT_DELACK) ||
1851 				     tcp_timer_active(tp, TT_REXMT)))
1852 					goto drop;
1853 			} else if (!(thflags & (TH_ACK|TH_FIN|TH_RST))) {
1854 				goto drop;
1855 			}
1856 		}
1857 		break;
1858 
1859 	/*
1860 	 * If the state is SYN_SENT:
1861 	 *	if seg contains a RST with valid ACK (SEQ.ACK has already
1862 	 *	    been verified), then drop the connection.
1863 	 *	if seg contains a RST without an ACK, drop the seg.
1864 	 *	if seg does not contain SYN, then drop the seg.
1865 	 * Otherwise this is an acceptable SYN segment
1866 	 *	initialize tp->rcv_nxt and tp->irs
1867 	 *	if seg contains ack then advance tp->snd_una
1868 	 *	if seg contains an ECE and ECN support is enabled, the stream
1869 	 *	    is ECN capable.
1870 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1871 	 *	arrange for segment to be acked (eventually)
1872 	 *	continue processing rest of data/controls, beginning with URG
1873 	 */
1874 	case TCPS_SYN_SENT:
1875 		if ((thflags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) {
1876 			TCP_PROBE5(connect__refused, NULL, tp,
1877 			    m, tp, th);
1878 			tp = tcp_drop(tp, ECONNREFUSED);
1879 		}
1880 		if (thflags & TH_RST)
1881 			goto drop;
1882 		if (!(thflags & TH_SYN))
1883 			goto drop;
1884 
1885 		tp->irs = th->th_seq;
1886 		tcp_rcvseqinit(tp);
1887 		if (thflags & TH_ACK) {
1888 			int tfo_partial_ack = 0;
1889 
1890 			TCPSTAT_INC(tcps_connects);
1891 			soisconnected(so);
1892 #ifdef MAC
1893 			mac_socketpeer_set_from_mbuf(m, so);
1894 #endif
1895 			/* Do window scaling on this connection? */
1896 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1897 				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1898 				tp->rcv_scale = tp->request_r_scale;
1899 			}
1900 			tp->rcv_adv += min(tp->rcv_wnd,
1901 			    TCP_MAXWIN << tp->rcv_scale);
1902 			tp->snd_una++;		/* SYN is acked */
1903 			/*
1904 			 * If not all the data that was sent in the TFO SYN
1905 			 * has been acked, resend the remainder right away.
1906 			 */
1907 			if (IS_FASTOPEN(tp->t_flags) &&
1908 			    (tp->snd_una != tp->snd_max)) {
1909 				tp->snd_nxt = th->th_ack;
1910 				tfo_partial_ack = 1;
1911 			}
1912 			/*
1913 			 * If there's data, delay ACK; if there's also a FIN
1914 			 * ACKNOW will be turned on later.
1915 			 */
1916 			if (DELAY_ACK(tp, tlen) && tlen != 0 && !tfo_partial_ack)
1917 				tcp_timer_activate(tp, TT_DELACK,
1918 				    tcp_delacktime);
1919 			else
1920 				tp->t_flags |= TF_ACKNOW;
1921 
1922 			if (((thflags & (TH_CWR | TH_ECE)) == TH_ECE) &&
1923 			    V_tcp_do_ecn) {
1924 				tp->t_flags |= TF_ECN_PERMIT;
1925 				TCPSTAT_INC(tcps_ecn_shs);
1926 			}
1927 
1928 			/*
1929 			 * Received <SYN,ACK> in SYN_SENT[*] state.
1930 			 * Transitions:
1931 			 *	SYN_SENT  --> ESTABLISHED
1932 			 *	SYN_SENT* --> FIN_WAIT_1
1933 			 */
1934 			tp->t_starttime = ticks;
1935 			if (tp->t_flags & TF_NEEDFIN) {
1936 				tcp_state_change(tp, TCPS_FIN_WAIT_1);
1937 				tp->t_flags &= ~TF_NEEDFIN;
1938 				thflags &= ~TH_SYN;
1939 			} else {
1940 				tcp_state_change(tp, TCPS_ESTABLISHED);
1941 				TCP_PROBE5(connect__established, NULL, tp,
1942 				    m, tp, th);
1943 				cc_conn_init(tp);
1944 				tcp_timer_activate(tp, TT_KEEP,
1945 				    TP_KEEPIDLE(tp));
1946 			}
1947 		} else {
1948 			/*
1949 			 * Received initial SYN in SYN-SENT[*] state =>
1950 			 * simultaneous open.
1951 			 * If it succeeds, connection is * half-synchronized.
1952 			 * Otherwise, do 3-way handshake:
1953 			 *        SYN-SENT -> SYN-RECEIVED
1954 			 *        SYN-SENT* -> SYN-RECEIVED*
1955 			 */
1956 			tp->t_flags |= (TF_ACKNOW | TF_NEEDSYN);
1957 			tcp_timer_activate(tp, TT_REXMT, 0);
1958 			tcp_state_change(tp, TCPS_SYN_RECEIVED);
1959 		}
1960 
1961 		INP_WLOCK_ASSERT(tp->t_inpcb);
1962 
1963 		/*
1964 		 * Advance th->th_seq to correspond to first data byte.
1965 		 * If data, trim to stay within window,
1966 		 * dropping FIN if necessary.
1967 		 */
1968 		th->th_seq++;
1969 		if (tlen > tp->rcv_wnd) {
1970 			todrop = tlen - tp->rcv_wnd;
1971 			m_adj(m, -todrop);
1972 			tlen = tp->rcv_wnd;
1973 			thflags &= ~TH_FIN;
1974 			TCPSTAT_INC(tcps_rcvpackafterwin);
1975 			TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop);
1976 		}
1977 		tp->snd_wl1 = th->th_seq - 1;
1978 		tp->rcv_up = th->th_seq;
1979 		/*
1980 		 * Client side of transaction: already sent SYN and data.
1981 		 * If the remote host used T/TCP to validate the SYN,
1982 		 * our data will be ACK'd; if so, enter normal data segment
1983 		 * processing in the middle of step 5, ack processing.
1984 		 * Otherwise, goto step 6.
1985 		 */
1986 		if (thflags & TH_ACK)
1987 			goto process_ACK;
1988 
1989 		goto step6;
1990 
1991 	/*
1992 	 * If the state is LAST_ACK or CLOSING or TIME_WAIT:
1993 	 *      do normal processing.
1994 	 *
1995 	 * NB: Leftover from RFC1644 T/TCP.  Cases to be reused later.
1996 	 */
1997 	case TCPS_LAST_ACK:
1998 	case TCPS_CLOSING:
1999 		break;  /* continue normal processing */
2000 	}
2001 
2002 	/*
2003 	 * States other than LISTEN or SYN_SENT.
2004 	 * First check the RST flag and sequence number since reset segments
2005 	 * are exempt from the timestamp and connection count tests.  This
2006 	 * fixes a bug introduced by the Stevens, vol. 2, p. 960 bugfix
2007 	 * below which allowed reset segments in half the sequence space
2008 	 * to fall though and be processed (which gives forged reset
2009 	 * segments with a random sequence number a 50 percent chance of
2010 	 * killing a connection).
2011 	 * Then check timestamp, if present.
2012 	 * Then check the connection count, if present.
2013 	 * Then check that at least some bytes of segment are within
2014 	 * receive window.  If segment begins before rcv_nxt,
2015 	 * drop leading data (and SYN); if nothing left, just ack.
2016 	 */
2017 	if (thflags & TH_RST) {
2018 		/*
2019 		 * RFC5961 Section 3.2
2020 		 *
2021 		 * - RST drops connection only if SEG.SEQ == RCV.NXT.
2022 		 * - If RST is in window, we send challenge ACK.
2023 		 *
2024 		 * Note: to take into account delayed ACKs, we should
2025 		 *   test against last_ack_sent instead of rcv_nxt.
2026 		 * Note 2: we handle special case of closed window, not
2027 		 *   covered by the RFC.
2028 		 */
2029 		if ((SEQ_GEQ(th->th_seq, tp->last_ack_sent) &&
2030 		    SEQ_LT(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) ||
2031 		    (tp->rcv_wnd == 0 && tp->last_ack_sent == th->th_seq)) {
2032 
2033 			KASSERT(tp->t_state != TCPS_SYN_SENT,
2034 			    ("%s: TH_RST for TCPS_SYN_SENT th %p tp %p",
2035 			    __func__, th, tp));
2036 
2037 			if (V_tcp_insecure_rst ||
2038 			    tp->last_ack_sent == th->th_seq) {
2039 				TCPSTAT_INC(tcps_drops);
2040 				/* Drop the connection. */
2041 				switch (tp->t_state) {
2042 				case TCPS_SYN_RECEIVED:
2043 					so->so_error = ECONNREFUSED;
2044 					goto close;
2045 				case TCPS_ESTABLISHED:
2046 				case TCPS_FIN_WAIT_1:
2047 				case TCPS_FIN_WAIT_2:
2048 				case TCPS_CLOSE_WAIT:
2049 				case TCPS_CLOSING:
2050 				case TCPS_LAST_ACK:
2051 					so->so_error = ECONNRESET;
2052 				close:
2053 					/* FALLTHROUGH */
2054 				default:
2055 					tp = tcp_close(tp);
2056 				}
2057 			} else {
2058 				TCPSTAT_INC(tcps_badrst);
2059 				/* Send challenge ACK. */
2060 				tcp_respond(tp, mtod(m, void *), th, m,
2061 				    tp->rcv_nxt, tp->snd_nxt, TH_ACK);
2062 				tp->last_ack_sent = tp->rcv_nxt;
2063 				m = NULL;
2064 			}
2065 		}
2066 		goto drop;
2067 	}
2068 
2069 	/*
2070 	 * RFC5961 Section 4.2
2071 	 * Send challenge ACK for any SYN in synchronized state.
2072 	 */
2073 	if ((thflags & TH_SYN) && tp->t_state != TCPS_SYN_SENT &&
2074 	    tp->t_state != TCPS_SYN_RECEIVED) {
2075 		TCPSTAT_INC(tcps_badsyn);
2076 		if (V_tcp_insecure_syn &&
2077 		    SEQ_GEQ(th->th_seq, tp->last_ack_sent) &&
2078 		    SEQ_LT(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) {
2079 			tp = tcp_drop(tp, ECONNRESET);
2080 			rstreason = BANDLIM_UNLIMITED;
2081 		} else {
2082 			/* Send challenge ACK. */
2083 			tcp_respond(tp, mtod(m, void *), th, m, tp->rcv_nxt,
2084 			    tp->snd_nxt, TH_ACK);
2085 			tp->last_ack_sent = tp->rcv_nxt;
2086 			m = NULL;
2087 		}
2088 		goto drop;
2089 	}
2090 
2091 	/*
2092 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
2093 	 * and it's less than ts_recent, drop it.
2094 	 */
2095 	if ((to.to_flags & TOF_TS) != 0 && tp->ts_recent &&
2096 	    TSTMP_LT(to.to_tsval, tp->ts_recent)) {
2097 
2098 		/* Check to see if ts_recent is over 24 days old.  */
2099 		if (tcp_ts_getticks() - tp->ts_recent_age > TCP_PAWS_IDLE) {
2100 			/*
2101 			 * Invalidate ts_recent.  If this segment updates
2102 			 * ts_recent, the age will be reset later and ts_recent
2103 			 * will get a valid value.  If it does not, setting
2104 			 * ts_recent to zero will at least satisfy the
2105 			 * requirement that zero be placed in the timestamp
2106 			 * echo reply when ts_recent isn't valid.  The
2107 			 * age isn't reset until we get a valid ts_recent
2108 			 * because we don't want out-of-order segments to be
2109 			 * dropped when ts_recent is old.
2110 			 */
2111 			tp->ts_recent = 0;
2112 		} else {
2113 			TCPSTAT_INC(tcps_rcvduppack);
2114 			TCPSTAT_ADD(tcps_rcvdupbyte, tlen);
2115 			TCPSTAT_INC(tcps_pawsdrop);
2116 			if (tlen)
2117 				goto dropafterack;
2118 			goto drop;
2119 		}
2120 	}
2121 
2122 	/*
2123 	 * In the SYN-RECEIVED state, validate that the packet belongs to
2124 	 * this connection before trimming the data to fit the receive
2125 	 * window.  Check the sequence number versus IRS since we know
2126 	 * the sequence numbers haven't wrapped.  This is a partial fix
2127 	 * for the "LAND" DoS attack.
2128 	 */
2129 	if (tp->t_state == TCPS_SYN_RECEIVED && SEQ_LT(th->th_seq, tp->irs)) {
2130 		rstreason = BANDLIM_RST_OPENPORT;
2131 		goto dropwithreset;
2132 	}
2133 
2134 	todrop = tp->rcv_nxt - th->th_seq;
2135 	if (todrop > 0) {
2136 		if (thflags & TH_SYN) {
2137 			thflags &= ~TH_SYN;
2138 			th->th_seq++;
2139 			if (th->th_urp > 1)
2140 				th->th_urp--;
2141 			else
2142 				thflags &= ~TH_URG;
2143 			todrop--;
2144 		}
2145 		/*
2146 		 * Following if statement from Stevens, vol. 2, p. 960.
2147 		 */
2148 		if (todrop > tlen
2149 		    || (todrop == tlen && (thflags & TH_FIN) == 0)) {
2150 			/*
2151 			 * Any valid FIN must be to the left of the window.
2152 			 * At this point the FIN must be a duplicate or out
2153 			 * of sequence; drop it.
2154 			 */
2155 			thflags &= ~TH_FIN;
2156 
2157 			/*
2158 			 * Send an ACK to resynchronize and drop any data.
2159 			 * But keep on processing for RST or ACK.
2160 			 */
2161 			tp->t_flags |= TF_ACKNOW;
2162 			todrop = tlen;
2163 			TCPSTAT_INC(tcps_rcvduppack);
2164 			TCPSTAT_ADD(tcps_rcvdupbyte, todrop);
2165 		} else {
2166 			TCPSTAT_INC(tcps_rcvpartduppack);
2167 			TCPSTAT_ADD(tcps_rcvpartdupbyte, todrop);
2168 		}
2169 		/*
2170 		 * DSACK - add SACK block for dropped range
2171 		 */
2172 		if (tp->t_flags & TF_SACK_PERMIT) {
2173 			tcp_update_sack_list(tp, th->th_seq,
2174 			    th->th_seq + todrop);
2175 			/*
2176 			 * ACK now, as the next in-sequence segment
2177 			 * will clear the DSACK block again
2178 			 */
2179 			tp->t_flags |= TF_ACKNOW;
2180 		}
2181 		drop_hdrlen += todrop;	/* drop from the top afterwards */
2182 		th->th_seq += todrop;
2183 		tlen -= todrop;
2184 		if (th->th_urp > todrop)
2185 			th->th_urp -= todrop;
2186 		else {
2187 			thflags &= ~TH_URG;
2188 			th->th_urp = 0;
2189 		}
2190 	}
2191 
2192 	/*
2193 	 * If new data are received on a connection after the
2194 	 * user processes are gone, then RST the other end.
2195 	 */
2196 	if ((so->so_state & SS_NOFDREF) &&
2197 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
2198 		if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
2199 			log(LOG_DEBUG, "%s; %s: %s: Received %d bytes of data "
2200 			    "after socket was closed, "
2201 			    "sending RST and removing tcpcb\n",
2202 			    s, __func__, tcpstates[tp->t_state], tlen);
2203 			free(s, M_TCPLOG);
2204 		}
2205 		tp = tcp_close(tp);
2206 		TCPSTAT_INC(tcps_rcvafterclose);
2207 		rstreason = BANDLIM_UNLIMITED;
2208 		goto dropwithreset;
2209 	}
2210 
2211 	/*
2212 	 * If segment ends after window, drop trailing data
2213 	 * (and PUSH and FIN); if nothing left, just ACK.
2214 	 */
2215 	todrop = (th->th_seq + tlen) - (tp->rcv_nxt + tp->rcv_wnd);
2216 	if (todrop > 0) {
2217 		TCPSTAT_INC(tcps_rcvpackafterwin);
2218 		if (todrop >= tlen) {
2219 			TCPSTAT_ADD(tcps_rcvbyteafterwin, tlen);
2220 			/*
2221 			 * If window is closed can only take segments at
2222 			 * window edge, and have to drop data and PUSH from
2223 			 * incoming segments.  Continue processing, but
2224 			 * remember to ack.  Otherwise, drop segment
2225 			 * and ack.
2226 			 */
2227 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
2228 				tp->t_flags |= TF_ACKNOW;
2229 				TCPSTAT_INC(tcps_rcvwinprobe);
2230 			} else
2231 				goto dropafterack;
2232 		} else
2233 			TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop);
2234 		m_adj(m, -todrop);
2235 		tlen -= todrop;
2236 		thflags &= ~(TH_PUSH|TH_FIN);
2237 	}
2238 
2239 	/*
2240 	 * If last ACK falls within this segment's sequence numbers,
2241 	 * record its timestamp.
2242 	 * NOTE:
2243 	 * 1) That the test incorporates suggestions from the latest
2244 	 *    proposal of the tcplw@cray.com list (Braden 1993/04/26).
2245 	 * 2) That updating only on newer timestamps interferes with
2246 	 *    our earlier PAWS tests, so this check should be solely
2247 	 *    predicated on the sequence space of this segment.
2248 	 * 3) That we modify the segment boundary check to be
2249 	 *        Last.ACK.Sent <= SEG.SEQ + SEG.Len
2250 	 *    instead of RFC1323's
2251 	 *        Last.ACK.Sent < SEG.SEQ + SEG.Len,
2252 	 *    This modified check allows us to overcome RFC1323's
2253 	 *    limitations as described in Stevens TCP/IP Illustrated
2254 	 *    Vol. 2 p.869. In such cases, we can still calculate the
2255 	 *    RTT correctly when RCV.NXT == Last.ACK.Sent.
2256 	 */
2257 	if ((to.to_flags & TOF_TS) != 0 &&
2258 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
2259 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
2260 		((thflags & (TH_SYN|TH_FIN)) != 0))) {
2261 		tp->ts_recent_age = tcp_ts_getticks();
2262 		tp->ts_recent = to.to_tsval;
2263 	}
2264 
2265 	/*
2266 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN
2267 	 * flag is on (half-synchronized state), then queue data for
2268 	 * later processing; else drop segment and return.
2269 	 */
2270 	if ((thflags & TH_ACK) == 0) {
2271 		if (tp->t_state == TCPS_SYN_RECEIVED ||
2272 		    (tp->t_flags & TF_NEEDSYN)) {
2273 			if (tp->t_state == TCPS_SYN_RECEIVED &&
2274 			    IS_FASTOPEN(tp->t_flags)) {
2275 				tp->snd_wnd = tiwin;
2276 				cc_conn_init(tp);
2277 			}
2278 			goto step6;
2279 		} else if (tp->t_flags & TF_ACKNOW)
2280 			goto dropafterack;
2281 		else
2282 			goto drop;
2283 	}
2284 
2285 	/*
2286 	 * Ack processing.
2287 	 */
2288 	switch (tp->t_state) {
2289 
2290 	/*
2291 	 * In SYN_RECEIVED state, the ack ACKs our SYN, so enter
2292 	 * ESTABLISHED state and continue processing.
2293 	 * The ACK was checked above.
2294 	 */
2295 	case TCPS_SYN_RECEIVED:
2296 
2297 		TCPSTAT_INC(tcps_connects);
2298 		soisconnected(so);
2299 		/* Do window scaling? */
2300 		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2301 			(TF_RCVD_SCALE|TF_REQ_SCALE)) {
2302 			tp->rcv_scale = tp->request_r_scale;
2303 		}
2304 		tp->snd_wnd = tiwin;
2305 		/*
2306 		 * Make transitions:
2307 		 *      SYN-RECEIVED  -> ESTABLISHED
2308 		 *      SYN-RECEIVED* -> FIN-WAIT-1
2309 		 */
2310 		tp->t_starttime = ticks;
2311 		if (IS_FASTOPEN(tp->t_flags) && tp->t_tfo_pending) {
2312 			tcp_fastopen_decrement_counter(tp->t_tfo_pending);
2313 			tp->t_tfo_pending = NULL;
2314 
2315 			/*
2316 			 * Account for the ACK of our SYN prior to
2317 			 * regular ACK processing below.
2318 			 */
2319 			tp->snd_una++;
2320 		}
2321 		if (tp->t_flags & TF_NEEDFIN) {
2322 			tcp_state_change(tp, TCPS_FIN_WAIT_1);
2323 			tp->t_flags &= ~TF_NEEDFIN;
2324 		} else {
2325 			tcp_state_change(tp, TCPS_ESTABLISHED);
2326 			TCP_PROBE5(accept__established, NULL, tp,
2327 			    m, tp, th);
2328 			/*
2329 			 * TFO connections call cc_conn_init() during SYN
2330 			 * processing.  Calling it again here for such
2331 			 * connections is not harmless as it would undo the
2332 			 * snd_cwnd reduction that occurs when a TFO SYN|ACK
2333 			 * is retransmitted.
2334 			 */
2335 			if (!IS_FASTOPEN(tp->t_flags))
2336 				cc_conn_init(tp);
2337 			tcp_timer_activate(tp, TT_KEEP, TP_KEEPIDLE(tp));
2338 		}
2339 		/*
2340 		 * If segment contains data or ACK, will call tcp_reass()
2341 		 * later; if not, do so now to pass queued data to user.
2342 		 */
2343 		if (tlen == 0 && (thflags & TH_FIN) == 0)
2344 			(void) tcp_reass(tp, (struct tcphdr *)0, NULL, 0,
2345 			    (struct mbuf *)0);
2346 		tp->snd_wl1 = th->th_seq - 1;
2347 		/* FALLTHROUGH */
2348 
2349 	/*
2350 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
2351 	 * ACKs.  If the ack is in the range
2352 	 *	tp->snd_una < th->th_ack <= tp->snd_max
2353 	 * then advance tp->snd_una to th->th_ack and drop
2354 	 * data from the retransmission queue.  If this ACK reflects
2355 	 * more up to date window information we update our window information.
2356 	 */
2357 	case TCPS_ESTABLISHED:
2358 	case TCPS_FIN_WAIT_1:
2359 	case TCPS_FIN_WAIT_2:
2360 	case TCPS_CLOSE_WAIT:
2361 	case TCPS_CLOSING:
2362 	case TCPS_LAST_ACK:
2363 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
2364 			TCPSTAT_INC(tcps_rcvacktoomuch);
2365 			goto dropafterack;
2366 		}
2367 		if ((tp->t_flags & TF_SACK_PERMIT) &&
2368 		    ((to.to_flags & TOF_SACK) ||
2369 		     !TAILQ_EMPTY(&tp->snd_holes)))
2370 			sack_changed = tcp_sack_doack(tp, &to, th->th_ack);
2371 		else
2372 			/*
2373 			 * Reset the value so that previous (valid) value
2374 			 * from the last ack with SACK doesn't get used.
2375 			 */
2376 			tp->sackhint.sacked_bytes = 0;
2377 
2378 #ifdef TCP_HHOOK
2379 		/* Run HHOOK_TCP_ESTABLISHED_IN helper hooks. */
2380 		hhook_run_tcp_est_in(tp, th, &to);
2381 #endif
2382 
2383 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
2384 			u_int maxseg;
2385 
2386 			maxseg = tcp_maxseg(tp);
2387 			if (tlen == 0 &&
2388 			    (tiwin == tp->snd_wnd ||
2389 			    (tp->t_flags & TF_SACK_PERMIT))) {
2390 				/*
2391 				 * If this is the first time we've seen a
2392 				 * FIN from the remote, this is not a
2393 				 * duplicate and it needs to be processed
2394 				 * normally.  This happens during a
2395 				 * simultaneous close.
2396 				 */
2397 				if ((thflags & TH_FIN) &&
2398 				    (TCPS_HAVERCVDFIN(tp->t_state) == 0)) {
2399 					tp->t_dupacks = 0;
2400 					break;
2401 				}
2402 				TCPSTAT_INC(tcps_rcvdupack);
2403 				/*
2404 				 * If we have outstanding data (other than
2405 				 * a window probe), this is a completely
2406 				 * duplicate ack (ie, window info didn't
2407 				 * change and FIN isn't set),
2408 				 * the ack is the biggest we've
2409 				 * seen and we've seen exactly our rexmt
2410 				 * threshold of them, assume a packet
2411 				 * has been dropped and retransmit it.
2412 				 * Kludge snd_nxt & the congestion
2413 				 * window so we send only this one
2414 				 * packet.
2415 				 *
2416 				 * We know we're losing at the current
2417 				 * window size so do congestion avoidance
2418 				 * (set ssthresh to half the current window
2419 				 * and pull our congestion window back to
2420 				 * the new ssthresh).
2421 				 *
2422 				 * Dup acks mean that packets have left the
2423 				 * network (they're now cached at the receiver)
2424 				 * so bump cwnd by the amount in the receiver
2425 				 * to keep a constant cwnd packets in the
2426 				 * network.
2427 				 *
2428 				 * When using TCP ECN, notify the peer that
2429 				 * we reduced the cwnd.
2430 				 */
2431 				/*
2432 				 * Following 2 kinds of acks should not affect
2433 				 * dupack counting:
2434 				 * 1) Old acks
2435 				 * 2) Acks with SACK but without any new SACK
2436 				 * information in them. These could result from
2437 				 * any anomaly in the network like a switch
2438 				 * duplicating packets or a possible DoS attack.
2439 				 */
2440 				if (th->th_ack != tp->snd_una ||
2441 				    ((tp->t_flags & TF_SACK_PERMIT) &&
2442 				    !sack_changed))
2443 					break;
2444 				else if (!tcp_timer_active(tp, TT_REXMT))
2445 					tp->t_dupacks = 0;
2446 				else if (++tp->t_dupacks > tcprexmtthresh ||
2447 				     IN_FASTRECOVERY(tp->t_flags)) {
2448 					cc_ack_received(tp, th, nsegs,
2449 					    CC_DUPACK);
2450 					if ((tp->t_flags & TF_SACK_PERMIT) &&
2451 					    IN_FASTRECOVERY(tp->t_flags)) {
2452 						int awnd;
2453 
2454 						/*
2455 						 * Compute the amount of data in flight first.
2456 						 * We can inject new data into the pipe iff
2457 						 * we have less than 1/2 the original window's
2458 						 * worth of data in flight.
2459 						 */
2460 						if (V_tcp_do_rfc6675_pipe)
2461 							awnd = tcp_compute_pipe(tp);
2462 						else
2463 							awnd = (tp->snd_nxt - tp->snd_fack) +
2464 								tp->sackhint.sack_bytes_rexmit;
2465 
2466 						if (awnd < tp->snd_ssthresh) {
2467 							tp->snd_cwnd += maxseg;
2468 							if (tp->snd_cwnd > tp->snd_ssthresh)
2469 								tp->snd_cwnd = tp->snd_ssthresh;
2470 						}
2471 					} else
2472 						tp->snd_cwnd += maxseg;
2473 					(void) tp->t_fb->tfb_tcp_output(tp);
2474 					goto drop;
2475 				} else if (tp->t_dupacks == tcprexmtthresh) {
2476 					tcp_seq onxt = tp->snd_nxt;
2477 
2478 					/*
2479 					 * If we're doing sack, check to
2480 					 * see if we're already in sack
2481 					 * recovery. If we're not doing sack,
2482 					 * check to see if we're in newreno
2483 					 * recovery.
2484 					 */
2485 					if (tp->t_flags & TF_SACK_PERMIT) {
2486 						if (IN_FASTRECOVERY(tp->t_flags)) {
2487 							tp->t_dupacks = 0;
2488 							break;
2489 						}
2490 					} else {
2491 						if (SEQ_LEQ(th->th_ack,
2492 						    tp->snd_recover)) {
2493 							tp->t_dupacks = 0;
2494 							break;
2495 						}
2496 					}
2497 					/* Congestion signal before ack. */
2498 					cc_cong_signal(tp, th, CC_NDUPACK);
2499 					cc_ack_received(tp, th, nsegs,
2500 					    CC_DUPACK);
2501 					tcp_timer_activate(tp, TT_REXMT, 0);
2502 					tp->t_rtttime = 0;
2503 					if (tp->t_flags & TF_SACK_PERMIT) {
2504 						TCPSTAT_INC(
2505 						    tcps_sack_recovery_episode);
2506 						tp->sack_newdata = tp->snd_nxt;
2507 						tp->snd_cwnd = maxseg;
2508 						(void) tp->t_fb->tfb_tcp_output(tp);
2509 						goto drop;
2510 					}
2511 					tp->snd_nxt = th->th_ack;
2512 					tp->snd_cwnd = maxseg;
2513 					(void) tp->t_fb->tfb_tcp_output(tp);
2514 					KASSERT(tp->snd_limited <= 2,
2515 					    ("%s: tp->snd_limited too big",
2516 					    __func__));
2517 					tp->snd_cwnd = tp->snd_ssthresh +
2518 					     maxseg *
2519 					     (tp->t_dupacks - tp->snd_limited);
2520 					if (SEQ_GT(onxt, tp->snd_nxt))
2521 						tp->snd_nxt = onxt;
2522 					goto drop;
2523 				} else if (V_tcp_do_rfc3042) {
2524 					/*
2525 					 * Process first and second duplicate
2526 					 * ACKs. Each indicates a segment
2527 					 * leaving the network, creating room
2528 					 * for more. Make sure we can send a
2529 					 * packet on reception of each duplicate
2530 					 * ACK by increasing snd_cwnd by one
2531 					 * segment. Restore the original
2532 					 * snd_cwnd after packet transmission.
2533 					 */
2534 					cc_ack_received(tp, th, nsegs,
2535 					    CC_DUPACK);
2536 					uint32_t oldcwnd = tp->snd_cwnd;
2537 					tcp_seq oldsndmax = tp->snd_max;
2538 					u_int sent;
2539 					int avail;
2540 
2541 					KASSERT(tp->t_dupacks == 1 ||
2542 					    tp->t_dupacks == 2,
2543 					    ("%s: dupacks not 1 or 2",
2544 					    __func__));
2545 					if (tp->t_dupacks == 1)
2546 						tp->snd_limited = 0;
2547 					tp->snd_cwnd =
2548 					    (tp->snd_nxt - tp->snd_una) +
2549 					    (tp->t_dupacks - tp->snd_limited) *
2550 					    maxseg;
2551 					/*
2552 					 * Only call tcp_output when there
2553 					 * is new data available to be sent.
2554 					 * Otherwise we would send pure ACKs.
2555 					 */
2556 					SOCKBUF_LOCK(&so->so_snd);
2557 					avail = sbavail(&so->so_snd) -
2558 					    (tp->snd_nxt - tp->snd_una);
2559 					SOCKBUF_UNLOCK(&so->so_snd);
2560 					if (avail > 0)
2561 						(void) tp->t_fb->tfb_tcp_output(tp);
2562 					sent = tp->snd_max - oldsndmax;
2563 					if (sent > maxseg) {
2564 						KASSERT((tp->t_dupacks == 2 &&
2565 						    tp->snd_limited == 0) ||
2566 						   (sent == maxseg + 1 &&
2567 						    tp->t_flags & TF_SENTFIN),
2568 						    ("%s: sent too much",
2569 						    __func__));
2570 						tp->snd_limited = 2;
2571 					} else if (sent > 0)
2572 						++tp->snd_limited;
2573 					tp->snd_cwnd = oldcwnd;
2574 					goto drop;
2575 				}
2576 			}
2577 			break;
2578 		} else {
2579 			/*
2580 			 * This ack is advancing the left edge, reset the
2581 			 * counter.
2582 			 */
2583 			tp->t_dupacks = 0;
2584 			/*
2585 			 * If this ack also has new SACK info, increment the
2586 			 * counter as per rfc6675.
2587 			 */
2588 			if ((tp->t_flags & TF_SACK_PERMIT) && sack_changed)
2589 				tp->t_dupacks++;
2590 		}
2591 
2592 		KASSERT(SEQ_GT(th->th_ack, tp->snd_una),
2593 		    ("%s: th_ack <= snd_una", __func__));
2594 
2595 		/*
2596 		 * If the congestion window was inflated to account
2597 		 * for the other side's cached packets, retract it.
2598 		 */
2599 		if (IN_FASTRECOVERY(tp->t_flags)) {
2600 			if (SEQ_LT(th->th_ack, tp->snd_recover)) {
2601 				if (tp->t_flags & TF_SACK_PERMIT)
2602 					tcp_sack_partialack(tp, th);
2603 				else
2604 					tcp_newreno_partial_ack(tp, th);
2605 			} else
2606 				cc_post_recovery(tp, th);
2607 		}
2608 		/*
2609 		 * If we reach this point, ACK is not a duplicate,
2610 		 *     i.e., it ACKs something we sent.
2611 		 */
2612 		if (tp->t_flags & TF_NEEDSYN) {
2613 			/*
2614 			 * T/TCP: Connection was half-synchronized, and our
2615 			 * SYN has been ACK'd (so connection is now fully
2616 			 * synchronized).  Go to non-starred state,
2617 			 * increment snd_una for ACK of SYN, and check if
2618 			 * we can do window scaling.
2619 			 */
2620 			tp->t_flags &= ~TF_NEEDSYN;
2621 			tp->snd_una++;
2622 			/* Do window scaling? */
2623 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2624 				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
2625 				tp->rcv_scale = tp->request_r_scale;
2626 				/* Send window already scaled. */
2627 			}
2628 		}
2629 
2630 process_ACK:
2631 		INP_WLOCK_ASSERT(tp->t_inpcb);
2632 
2633 		acked = BYTES_THIS_ACK(tp, th);
2634 		KASSERT(acked >= 0, ("%s: acked unexepectedly negative "
2635 		    "(tp->snd_una=%u, th->th_ack=%u, tp=%p, m=%p)", __func__,
2636 		    tp->snd_una, th->th_ack, tp, m));
2637 		TCPSTAT_ADD(tcps_rcvackpack, nsegs);
2638 		TCPSTAT_ADD(tcps_rcvackbyte, acked);
2639 
2640 		/*
2641 		 * If we just performed our first retransmit, and the ACK
2642 		 * arrives within our recovery window, then it was a mistake
2643 		 * to do the retransmit in the first place.  Recover our
2644 		 * original cwnd and ssthresh, and proceed to transmit where
2645 		 * we left off.
2646 		 */
2647 		if (tp->t_rxtshift == 1 &&
2648 		    tp->t_flags & TF_PREVVALID &&
2649 		    tp->t_badrxtwin &&
2650 		    SEQ_LT(to.to_tsecr, tp->t_badrxtwin))
2651 			cc_cong_signal(tp, th, CC_RTO_ERR);
2652 
2653 		/*
2654 		 * If we have a timestamp reply, update smoothed
2655 		 * round trip time.  If no timestamp is present but
2656 		 * transmit timer is running and timed sequence
2657 		 * number was acked, update smoothed round trip time.
2658 		 * Since we now have an rtt measurement, cancel the
2659 		 * timer backoff (cf., Phil Karn's retransmit alg.).
2660 		 * Recompute the initial retransmit timer.
2661 		 *
2662 		 * Some boxes send broken timestamp replies
2663 		 * during the SYN+ACK phase, ignore
2664 		 * timestamps of 0 or we could calculate a
2665 		 * huge RTT and blow up the retransmit timer.
2666 		 */
2667 		if ((to.to_flags & TOF_TS) != 0 && to.to_tsecr) {
2668 			uint32_t t;
2669 
2670 			t = tcp_ts_getticks() - to.to_tsecr;
2671 			if (!tp->t_rttlow || tp->t_rttlow > t)
2672 				tp->t_rttlow = t;
2673 			tcp_xmit_timer(tp, TCP_TS_TO_TICKS(t) + 1);
2674 		} else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq)) {
2675 			if (!tp->t_rttlow || tp->t_rttlow > ticks - tp->t_rtttime)
2676 				tp->t_rttlow = ticks - tp->t_rtttime;
2677 			tcp_xmit_timer(tp, ticks - tp->t_rtttime);
2678 		}
2679 
2680 		/*
2681 		 * If all outstanding data is acked, stop retransmit
2682 		 * timer and remember to restart (more output or persist).
2683 		 * If there is more data to be acked, restart retransmit
2684 		 * timer, using current (possibly backed-off) value.
2685 		 */
2686 		if (th->th_ack == tp->snd_max) {
2687 			tcp_timer_activate(tp, TT_REXMT, 0);
2688 			needoutput = 1;
2689 		} else if (!tcp_timer_active(tp, TT_PERSIST))
2690 			tcp_timer_activate(tp, TT_REXMT, tp->t_rxtcur);
2691 
2692 		/*
2693 		 * If no data (only SYN) was ACK'd,
2694 		 *    skip rest of ACK processing.
2695 		 */
2696 		if (acked == 0)
2697 			goto step6;
2698 
2699 		/*
2700 		 * Let the congestion control algorithm update congestion
2701 		 * control related information. This typically means increasing
2702 		 * the congestion window.
2703 		 */
2704 		cc_ack_received(tp, th, nsegs, CC_ACK);
2705 
2706 		SOCKBUF_LOCK(&so->so_snd);
2707 		if (acked > sbavail(&so->so_snd)) {
2708 			if (tp->snd_wnd >= sbavail(&so->so_snd))
2709 				tp->snd_wnd -= sbavail(&so->so_snd);
2710 			else
2711 				tp->snd_wnd = 0;
2712 			mfree = sbcut_locked(&so->so_snd,
2713 			    (int)sbavail(&so->so_snd));
2714 			ourfinisacked = 1;
2715 		} else {
2716 			mfree = sbcut_locked(&so->so_snd, acked);
2717 			if (tp->snd_wnd >= (uint32_t) acked)
2718 				tp->snd_wnd -= acked;
2719 			else
2720 				tp->snd_wnd = 0;
2721 			ourfinisacked = 0;
2722 		}
2723 		/* NB: sowwakeup_locked() does an implicit unlock. */
2724 		sowwakeup_locked(so);
2725 		m_freem(mfree);
2726 		/* Detect una wraparound. */
2727 		if (!IN_RECOVERY(tp->t_flags) &&
2728 		    SEQ_GT(tp->snd_una, tp->snd_recover) &&
2729 		    SEQ_LEQ(th->th_ack, tp->snd_recover))
2730 			tp->snd_recover = th->th_ack - 1;
2731 		/* XXXLAS: Can this be moved up into cc_post_recovery? */
2732 		if (IN_RECOVERY(tp->t_flags) &&
2733 		    SEQ_GEQ(th->th_ack, tp->snd_recover)) {
2734 			EXIT_RECOVERY(tp->t_flags);
2735 		}
2736 		tp->snd_una = th->th_ack;
2737 		if (tp->t_flags & TF_SACK_PERMIT) {
2738 			if (SEQ_GT(tp->snd_una, tp->snd_recover))
2739 				tp->snd_recover = tp->snd_una;
2740 		}
2741 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2742 			tp->snd_nxt = tp->snd_una;
2743 
2744 		switch (tp->t_state) {
2745 
2746 		/*
2747 		 * In FIN_WAIT_1 STATE in addition to the processing
2748 		 * for the ESTABLISHED state if our FIN is now acknowledged
2749 		 * then enter FIN_WAIT_2.
2750 		 */
2751 		case TCPS_FIN_WAIT_1:
2752 			if (ourfinisacked) {
2753 				/*
2754 				 * If we can't receive any more
2755 				 * data, then closing user can proceed.
2756 				 * Starting the timer is contrary to the
2757 				 * specification, but if we don't get a FIN
2758 				 * we'll hang forever.
2759 				 *
2760 				 * XXXjl:
2761 				 * we should release the tp also, and use a
2762 				 * compressed state.
2763 				 */
2764 				if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
2765 					soisdisconnected(so);
2766 					tcp_timer_activate(tp, TT_2MSL,
2767 					    (tcp_fast_finwait2_recycle ?
2768 					    tcp_finwait2_timeout :
2769 					    TP_MAXIDLE(tp)));
2770 				}
2771 				tcp_state_change(tp, TCPS_FIN_WAIT_2);
2772 			}
2773 			break;
2774 
2775 		/*
2776 		 * In CLOSING STATE in addition to the processing for
2777 		 * the ESTABLISHED state if the ACK acknowledges our FIN
2778 		 * then enter the TIME-WAIT state, otherwise ignore
2779 		 * the segment.
2780 		 */
2781 		case TCPS_CLOSING:
2782 			if (ourfinisacked) {
2783 				tcp_twstart(tp);
2784 				m_freem(m);
2785 				return;
2786 			}
2787 			break;
2788 
2789 		/*
2790 		 * In LAST_ACK, we may still be waiting for data to drain
2791 		 * and/or to be acked, as well as for the ack of our FIN.
2792 		 * If our FIN is now acknowledged, delete the TCB,
2793 		 * enter the closed state and return.
2794 		 */
2795 		case TCPS_LAST_ACK:
2796 			if (ourfinisacked) {
2797 				tp = tcp_close(tp);
2798 				goto drop;
2799 			}
2800 			break;
2801 		}
2802 	}
2803 
2804 step6:
2805 	INP_WLOCK_ASSERT(tp->t_inpcb);
2806 
2807 	/*
2808 	 * Update window information.
2809 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2810 	 */
2811 	if ((thflags & TH_ACK) &&
2812 	    (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2813 	    (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
2814 	     (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
2815 		/* keep track of pure window updates */
2816 		if (tlen == 0 &&
2817 		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2818 			TCPSTAT_INC(tcps_rcvwinupd);
2819 		tp->snd_wnd = tiwin;
2820 		tp->snd_wl1 = th->th_seq;
2821 		tp->snd_wl2 = th->th_ack;
2822 		if (tp->snd_wnd > tp->max_sndwnd)
2823 			tp->max_sndwnd = tp->snd_wnd;
2824 		needoutput = 1;
2825 	}
2826 
2827 	/*
2828 	 * Process segments with URG.
2829 	 */
2830 	if ((thflags & TH_URG) && th->th_urp &&
2831 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2832 		/*
2833 		 * This is a kludge, but if we receive and accept
2834 		 * random urgent pointers, we'll crash in
2835 		 * soreceive.  It's hard to imagine someone
2836 		 * actually wanting to send this much urgent data.
2837 		 */
2838 		SOCKBUF_LOCK(&so->so_rcv);
2839 		if (th->th_urp + sbavail(&so->so_rcv) > sb_max) {
2840 			th->th_urp = 0;			/* XXX */
2841 			thflags &= ~TH_URG;		/* XXX */
2842 			SOCKBUF_UNLOCK(&so->so_rcv);	/* XXX */
2843 			goto dodata;			/* XXX */
2844 		}
2845 		/*
2846 		 * If this segment advances the known urgent pointer,
2847 		 * then mark the data stream.  This should not happen
2848 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2849 		 * a FIN has been received from the remote side.
2850 		 * In these states we ignore the URG.
2851 		 *
2852 		 * According to RFC961 (Assigned Protocols),
2853 		 * the urgent pointer points to the last octet
2854 		 * of urgent data.  We continue, however,
2855 		 * to consider it to indicate the first octet
2856 		 * of data past the urgent section as the original
2857 		 * spec states (in one of two places).
2858 		 */
2859 		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2860 			tp->rcv_up = th->th_seq + th->th_urp;
2861 			so->so_oobmark = sbavail(&so->so_rcv) +
2862 			    (tp->rcv_up - tp->rcv_nxt) - 1;
2863 			if (so->so_oobmark == 0)
2864 				so->so_rcv.sb_state |= SBS_RCVATMARK;
2865 			sohasoutofband(so);
2866 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2867 		}
2868 		SOCKBUF_UNLOCK(&so->so_rcv);
2869 		/*
2870 		 * Remove out of band data so doesn't get presented to user.
2871 		 * This can happen independent of advancing the URG pointer,
2872 		 * but if two URG's are pending at once, some out-of-band
2873 		 * data may creep in... ick.
2874 		 */
2875 		if (th->th_urp <= (uint32_t)tlen &&
2876 		    !(so->so_options & SO_OOBINLINE)) {
2877 			/* hdr drop is delayed */
2878 			tcp_pulloutofband(so, th, m, drop_hdrlen);
2879 		}
2880 	} else {
2881 		/*
2882 		 * If no out of band data is expected,
2883 		 * pull receive urgent pointer along
2884 		 * with the receive window.
2885 		 */
2886 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2887 			tp->rcv_up = tp->rcv_nxt;
2888 	}
2889 dodata:							/* XXX */
2890 	INP_WLOCK_ASSERT(tp->t_inpcb);
2891 
2892 	/*
2893 	 * Process the segment text, merging it into the TCP sequencing queue,
2894 	 * and arranging for acknowledgment of receipt if necessary.
2895 	 * This process logically involves adjusting tp->rcv_wnd as data
2896 	 * is presented to the user (this happens in tcp_usrreq.c,
2897 	 * case PRU_RCVD).  If a FIN has already been received on this
2898 	 * connection then we just ignore the text.
2899 	 */
2900 	tfo_syn = ((tp->t_state == TCPS_SYN_RECEIVED) &&
2901 		   IS_FASTOPEN(tp->t_flags));
2902 	if ((tlen || (thflags & TH_FIN) || tfo_syn) &&
2903 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2904 		tcp_seq save_start = th->th_seq;
2905 		tcp_seq save_rnxt  = tp->rcv_nxt;
2906 		int     save_tlen  = tlen;
2907 		m_adj(m, drop_hdrlen);	/* delayed header drop */
2908 		/*
2909 		 * Insert segment which includes th into TCP reassembly queue
2910 		 * with control block tp.  Set thflags to whether reassembly now
2911 		 * includes a segment with FIN.  This handles the common case
2912 		 * inline (segment is the next to be received on an established
2913 		 * connection, and the queue is empty), avoiding linkage into
2914 		 * and removal from the queue and repetition of various
2915 		 * conversions.
2916 		 * Set DELACK for segments received in order, but ack
2917 		 * immediately when segments are out of order (so
2918 		 * fast retransmit can work).
2919 		 */
2920 		if (th->th_seq == tp->rcv_nxt &&
2921 		    SEGQ_EMPTY(tp) &&
2922 		    (TCPS_HAVEESTABLISHED(tp->t_state) ||
2923 		     tfo_syn)) {
2924 			if (DELAY_ACK(tp, tlen) || tfo_syn)
2925 				tp->t_flags |= TF_DELACK;
2926 			else
2927 				tp->t_flags |= TF_ACKNOW;
2928 			tp->rcv_nxt += tlen;
2929 			thflags = th->th_flags & TH_FIN;
2930 			TCPSTAT_INC(tcps_rcvpack);
2931 			TCPSTAT_ADD(tcps_rcvbyte, tlen);
2932 			SOCKBUF_LOCK(&so->so_rcv);
2933 			if (so->so_rcv.sb_state & SBS_CANTRCVMORE)
2934 				m_freem(m);
2935 			else
2936 				sbappendstream_locked(&so->so_rcv, m, 0);
2937 			/* NB: sorwakeup_locked() does an implicit unlock. */
2938 			sorwakeup_locked(so);
2939 		} else {
2940 			/*
2941 			 * XXX: Due to the header drop above "th" is
2942 			 * theoretically invalid by now.  Fortunately
2943 			 * m_adj() doesn't actually frees any mbufs
2944 			 * when trimming from the head.
2945 			 */
2946 			tcp_seq temp = save_start;
2947 			thflags = tcp_reass(tp, th, &temp, &tlen, m);
2948 			tp->t_flags |= TF_ACKNOW;
2949 		}
2950 		if ((tp->t_flags & TF_SACK_PERMIT) && (save_tlen > 0)) {
2951 			if ((tlen == 0) && (SEQ_LT(save_start, save_rnxt))) {
2952 				/*
2953 				 * DSACK actually handled in the fastpath
2954 				 * above.
2955 				 */
2956 				tcp_update_sack_list(tp, save_start,
2957 				    save_start + save_tlen);
2958 			} else if ((tlen > 0) && SEQ_GT(tp->rcv_nxt, save_rnxt)) {
2959 				if ((tp->rcv_numsacks >= 1) &&
2960 				    (tp->sackblks[0].end == save_start)) {
2961 					/*
2962 					 * Partial overlap, recorded at todrop
2963 					 * above.
2964 					 */
2965 					tcp_update_sack_list(tp,
2966 					    tp->sackblks[0].start,
2967 					    tp->sackblks[0].end);
2968 				} else {
2969 					tcp_update_dsack_list(tp, save_start,
2970 					    save_start + save_tlen);
2971 				}
2972 			} else if (tlen >= save_tlen) {
2973 				/* Update of sackblks. */
2974 				tcp_update_dsack_list(tp, save_start,
2975 				    save_start + save_tlen);
2976 			} else if (tlen > 0) {
2977 				tcp_update_dsack_list(tp, save_start,
2978 				    save_start + tlen);
2979 			}
2980 		}
2981 #if 0
2982 		/*
2983 		 * Note the amount of data that peer has sent into
2984 		 * our window, in order to estimate the sender's
2985 		 * buffer size.
2986 		 * XXX: Unused.
2987 		 */
2988 		if (SEQ_GT(tp->rcv_adv, tp->rcv_nxt))
2989 			len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2990 		else
2991 			len = so->so_rcv.sb_hiwat;
2992 #endif
2993 	} else {
2994 		m_freem(m);
2995 		thflags &= ~TH_FIN;
2996 	}
2997 
2998 	/*
2999 	 * If FIN is received ACK the FIN and let the user know
3000 	 * that the connection is closing.
3001 	 */
3002 	if (thflags & TH_FIN) {
3003 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
3004 			socantrcvmore(so);
3005 			/*
3006 			 * If connection is half-synchronized
3007 			 * (ie NEEDSYN flag on) then delay ACK,
3008 			 * so it may be piggybacked when SYN is sent.
3009 			 * Otherwise, since we received a FIN then no
3010 			 * more input can be expected, send ACK now.
3011 			 */
3012 			if (tp->t_flags & TF_NEEDSYN)
3013 				tp->t_flags |= TF_DELACK;
3014 			else
3015 				tp->t_flags |= TF_ACKNOW;
3016 			tp->rcv_nxt++;
3017 		}
3018 		switch (tp->t_state) {
3019 
3020 		/*
3021 		 * In SYN_RECEIVED and ESTABLISHED STATES
3022 		 * enter the CLOSE_WAIT state.
3023 		 */
3024 		case TCPS_SYN_RECEIVED:
3025 			tp->t_starttime = ticks;
3026 			/* FALLTHROUGH */
3027 		case TCPS_ESTABLISHED:
3028 			tcp_state_change(tp, TCPS_CLOSE_WAIT);
3029 			break;
3030 
3031 		/*
3032 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
3033 		 * enter the CLOSING state.
3034 		 */
3035 		case TCPS_FIN_WAIT_1:
3036 			tcp_state_change(tp, TCPS_CLOSING);
3037 			break;
3038 
3039 		/*
3040 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
3041 		 * starting the time-wait timer, turning off the other
3042 		 * standard timers.
3043 		 */
3044 		case TCPS_FIN_WAIT_2:
3045 			tcp_twstart(tp);
3046 			return;
3047 		}
3048 	}
3049 #ifdef TCPDEBUG
3050 	if (so->so_options & SO_DEBUG)
3051 		tcp_trace(TA_INPUT, ostate, tp, (void *)tcp_saveipgen,
3052 			  &tcp_savetcp, 0);
3053 #endif
3054 	TCP_PROBE3(debug__input, tp, th, m);
3055 
3056 	/*
3057 	 * Return any desired output.
3058 	 */
3059 	if (needoutput || (tp->t_flags & TF_ACKNOW))
3060 		(void) tp->t_fb->tfb_tcp_output(tp);
3061 
3062 check_delack:
3063 	INP_WLOCK_ASSERT(tp->t_inpcb);
3064 
3065 	if (tp->t_flags & TF_DELACK) {
3066 		tp->t_flags &= ~TF_DELACK;
3067 		tcp_timer_activate(tp, TT_DELACK, tcp_delacktime);
3068 	}
3069 	INP_WUNLOCK(tp->t_inpcb);
3070 	return;
3071 
3072 dropafterack:
3073 	/*
3074 	 * Generate an ACK dropping incoming segment if it occupies
3075 	 * sequence space, where the ACK reflects our state.
3076 	 *
3077 	 * We can now skip the test for the RST flag since all
3078 	 * paths to this code happen after packets containing
3079 	 * RST have been dropped.
3080 	 *
3081 	 * In the SYN-RECEIVED state, don't send an ACK unless the
3082 	 * segment we received passes the SYN-RECEIVED ACK test.
3083 	 * If it fails send a RST.  This breaks the loop in the
3084 	 * "LAND" DoS attack, and also prevents an ACK storm
3085 	 * between two listening ports that have been sent forged
3086 	 * SYN segments, each with the source address of the other.
3087 	 */
3088 	if (tp->t_state == TCPS_SYN_RECEIVED && (thflags & TH_ACK) &&
3089 	    (SEQ_GT(tp->snd_una, th->th_ack) ||
3090 	     SEQ_GT(th->th_ack, tp->snd_max)) ) {
3091 		rstreason = BANDLIM_RST_OPENPORT;
3092 		goto dropwithreset;
3093 	}
3094 #ifdef TCPDEBUG
3095 	if (so->so_options & SO_DEBUG)
3096 		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
3097 			  &tcp_savetcp, 0);
3098 #endif
3099 	TCP_PROBE3(debug__input, tp, th, m);
3100 	tp->t_flags |= TF_ACKNOW;
3101 	(void) tp->t_fb->tfb_tcp_output(tp);
3102 	INP_WUNLOCK(tp->t_inpcb);
3103 	m_freem(m);
3104 	return;
3105 
3106 dropwithreset:
3107 	if (tp != NULL) {
3108 		tcp_dropwithreset(m, th, tp, tlen, rstreason);
3109 		INP_WUNLOCK(tp->t_inpcb);
3110 	} else
3111 		tcp_dropwithreset(m, th, NULL, tlen, rstreason);
3112 	return;
3113 
3114 drop:
3115 	/*
3116 	 * Drop space held by incoming segment and return.
3117 	 */
3118 #ifdef TCPDEBUG
3119 	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
3120 		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
3121 			  &tcp_savetcp, 0);
3122 #endif
3123 	TCP_PROBE3(debug__input, tp, th, m);
3124 	if (tp != NULL)
3125 		INP_WUNLOCK(tp->t_inpcb);
3126 	m_freem(m);
3127 }
3128 
3129 /*
3130  * Issue RST and make ACK acceptable to originator of segment.
3131  * The mbuf must still include the original packet header.
3132  * tp may be NULL.
3133  */
3134 void
3135 tcp_dropwithreset(struct mbuf *m, struct tcphdr *th, struct tcpcb *tp,
3136     int tlen, int rstreason)
3137 {
3138 #ifdef INET
3139 	struct ip *ip;
3140 #endif
3141 #ifdef INET6
3142 	struct ip6_hdr *ip6;
3143 #endif
3144 
3145 	if (tp != NULL) {
3146 		INP_WLOCK_ASSERT(tp->t_inpcb);
3147 	}
3148 
3149 	/* Don't bother if destination was broadcast/multicast. */
3150 	if ((th->th_flags & TH_RST) || m->m_flags & (M_BCAST|M_MCAST))
3151 		goto drop;
3152 #ifdef INET6
3153 	if (mtod(m, struct ip *)->ip_v == 6) {
3154 		ip6 = mtod(m, struct ip6_hdr *);
3155 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
3156 		    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
3157 			goto drop;
3158 		/* IPv6 anycast check is done at tcp6_input() */
3159 	}
3160 #endif
3161 #if defined(INET) && defined(INET6)
3162 	else
3163 #endif
3164 #ifdef INET
3165 	{
3166 		ip = mtod(m, struct ip *);
3167 		if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
3168 		    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
3169 		    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
3170 		    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
3171 			goto drop;
3172 	}
3173 #endif
3174 
3175 	/* Perform bandwidth limiting. */
3176 	if (badport_bandlim(rstreason) < 0)
3177 		goto drop;
3178 
3179 	/* tcp_respond consumes the mbuf chain. */
3180 	if (th->th_flags & TH_ACK) {
3181 		tcp_respond(tp, mtod(m, void *), th, m, (tcp_seq)0,
3182 		    th->th_ack, TH_RST);
3183 	} else {
3184 		if (th->th_flags & TH_SYN)
3185 			tlen++;
3186 		if (th->th_flags & TH_FIN)
3187 			tlen++;
3188 		tcp_respond(tp, mtod(m, void *), th, m, th->th_seq+tlen,
3189 		    (tcp_seq)0, TH_RST|TH_ACK);
3190 	}
3191 	return;
3192 drop:
3193 	m_freem(m);
3194 }
3195 
3196 /*
3197  * Parse TCP options and place in tcpopt.
3198  */
3199 void
3200 tcp_dooptions(struct tcpopt *to, u_char *cp, int cnt, int flags)
3201 {
3202 	int opt, optlen;
3203 
3204 	to->to_flags = 0;
3205 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
3206 		opt = cp[0];
3207 		if (opt == TCPOPT_EOL)
3208 			break;
3209 		if (opt == TCPOPT_NOP)
3210 			optlen = 1;
3211 		else {
3212 			if (cnt < 2)
3213 				break;
3214 			optlen = cp[1];
3215 			if (optlen < 2 || optlen > cnt)
3216 				break;
3217 		}
3218 		switch (opt) {
3219 		case TCPOPT_MAXSEG:
3220 			if (optlen != TCPOLEN_MAXSEG)
3221 				continue;
3222 			if (!(flags & TO_SYN))
3223 				continue;
3224 			to->to_flags |= TOF_MSS;
3225 			bcopy((char *)cp + 2,
3226 			    (char *)&to->to_mss, sizeof(to->to_mss));
3227 			to->to_mss = ntohs(to->to_mss);
3228 			break;
3229 		case TCPOPT_WINDOW:
3230 			if (optlen != TCPOLEN_WINDOW)
3231 				continue;
3232 			if (!(flags & TO_SYN))
3233 				continue;
3234 			to->to_flags |= TOF_SCALE;
3235 			to->to_wscale = min(cp[2], TCP_MAX_WINSHIFT);
3236 			break;
3237 		case TCPOPT_TIMESTAMP:
3238 			if (optlen != TCPOLEN_TIMESTAMP)
3239 				continue;
3240 			to->to_flags |= TOF_TS;
3241 			bcopy((char *)cp + 2,
3242 			    (char *)&to->to_tsval, sizeof(to->to_tsval));
3243 			to->to_tsval = ntohl(to->to_tsval);
3244 			bcopy((char *)cp + 6,
3245 			    (char *)&to->to_tsecr, sizeof(to->to_tsecr));
3246 			to->to_tsecr = ntohl(to->to_tsecr);
3247 			break;
3248 		case TCPOPT_SIGNATURE:
3249 			/*
3250 			 * In order to reply to a host which has set the
3251 			 * TCP_SIGNATURE option in its initial SYN, we have
3252 			 * to record the fact that the option was observed
3253 			 * here for the syncache code to perform the correct
3254 			 * response.
3255 			 */
3256 			if (optlen != TCPOLEN_SIGNATURE)
3257 				continue;
3258 			to->to_flags |= TOF_SIGNATURE;
3259 			to->to_signature = cp + 2;
3260 			break;
3261 		case TCPOPT_SACK_PERMITTED:
3262 			if (optlen != TCPOLEN_SACK_PERMITTED)
3263 				continue;
3264 			if (!(flags & TO_SYN))
3265 				continue;
3266 			if (!V_tcp_do_sack)
3267 				continue;
3268 			to->to_flags |= TOF_SACKPERM;
3269 			break;
3270 		case TCPOPT_SACK:
3271 			if (optlen <= 2 || (optlen - 2) % TCPOLEN_SACK != 0)
3272 				continue;
3273 			if (flags & TO_SYN)
3274 				continue;
3275 			to->to_flags |= TOF_SACK;
3276 			to->to_nsacks = (optlen - 2) / TCPOLEN_SACK;
3277 			to->to_sacks = cp + 2;
3278 			TCPSTAT_INC(tcps_sack_rcv_blocks);
3279 			break;
3280 		case TCPOPT_FAST_OPEN:
3281 			/*
3282 			 * Cookie length validation is performed by the
3283 			 * server side cookie checking code or the client
3284 			 * side cookie cache update code.
3285 			 */
3286 			if (!(flags & TO_SYN))
3287 				continue;
3288 			if (!V_tcp_fastopen_client_enable &&
3289 			    !V_tcp_fastopen_server_enable)
3290 				continue;
3291 			to->to_flags |= TOF_FASTOPEN;
3292 			to->to_tfo_len = optlen - 2;
3293 			to->to_tfo_cookie = to->to_tfo_len ? cp + 2 : NULL;
3294 			break;
3295 		default:
3296 			continue;
3297 		}
3298 	}
3299 }
3300 
3301 /*
3302  * Pull out of band byte out of a segment so
3303  * it doesn't appear in the user's data queue.
3304  * It is still reflected in the segment length for
3305  * sequencing purposes.
3306  */
3307 void
3308 tcp_pulloutofband(struct socket *so, struct tcphdr *th, struct mbuf *m,
3309     int off)
3310 {
3311 	int cnt = off + th->th_urp - 1;
3312 
3313 	while (cnt >= 0) {
3314 		if (m->m_len > cnt) {
3315 			char *cp = mtod(m, caddr_t) + cnt;
3316 			struct tcpcb *tp = sototcpcb(so);
3317 
3318 			INP_WLOCK_ASSERT(tp->t_inpcb);
3319 
3320 			tp->t_iobc = *cp;
3321 			tp->t_oobflags |= TCPOOB_HAVEDATA;
3322 			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
3323 			m->m_len--;
3324 			if (m->m_flags & M_PKTHDR)
3325 				m->m_pkthdr.len--;
3326 			return;
3327 		}
3328 		cnt -= m->m_len;
3329 		m = m->m_next;
3330 		if (m == NULL)
3331 			break;
3332 	}
3333 	panic("tcp_pulloutofband");
3334 }
3335 
3336 /*
3337  * Collect new round-trip time estimate
3338  * and update averages and current timeout.
3339  */
3340 void
3341 tcp_xmit_timer(struct tcpcb *tp, int rtt)
3342 {
3343 	int delta;
3344 
3345 	INP_WLOCK_ASSERT(tp->t_inpcb);
3346 
3347 	TCPSTAT_INC(tcps_rttupdated);
3348 	tp->t_rttupdated++;
3349 	if ((tp->t_srtt != 0) && (tp->t_rxtshift <= TCP_RTT_INVALIDATE)) {
3350 		/*
3351 		 * srtt is stored as fixed point with 5 bits after the
3352 		 * binary point (i.e., scaled by 8).  The following magic
3353 		 * is equivalent to the smoothing algorithm in rfc793 with
3354 		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
3355 		 * point).  Adjust rtt to origin 0.
3356 		 */
3357 		delta = ((rtt - 1) << TCP_DELTA_SHIFT)
3358 			- (tp->t_srtt >> (TCP_RTT_SHIFT - TCP_DELTA_SHIFT));
3359 
3360 		if ((tp->t_srtt += delta) <= 0)
3361 			tp->t_srtt = 1;
3362 
3363 		/*
3364 		 * We accumulate a smoothed rtt variance (actually, a
3365 		 * smoothed mean difference), then set the retransmit
3366 		 * timer to smoothed rtt + 4 times the smoothed variance.
3367 		 * rttvar is stored as fixed point with 4 bits after the
3368 		 * binary point (scaled by 16).  The following is
3369 		 * equivalent to rfc793 smoothing with an alpha of .75
3370 		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
3371 		 * rfc793's wired-in beta.
3372 		 */
3373 		if (delta < 0)
3374 			delta = -delta;
3375 		delta -= tp->t_rttvar >> (TCP_RTTVAR_SHIFT - TCP_DELTA_SHIFT);
3376 		if ((tp->t_rttvar += delta) <= 0)
3377 			tp->t_rttvar = 1;
3378 		if (tp->t_rttbest > tp->t_srtt + tp->t_rttvar)
3379 		    tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
3380 	} else {
3381 		/*
3382 		 * No rtt measurement yet - use the unsmoothed rtt.
3383 		 * Set the variance to half the rtt (so our first
3384 		 * retransmit happens at 3*rtt).
3385 		 */
3386 		tp->t_srtt = rtt << TCP_RTT_SHIFT;
3387 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1);
3388 		tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
3389 	}
3390 	tp->t_rtttime = 0;
3391 	tp->t_rxtshift = 0;
3392 
3393 	/*
3394 	 * the retransmit should happen at rtt + 4 * rttvar.
3395 	 * Because of the way we do the smoothing, srtt and rttvar
3396 	 * will each average +1/2 tick of bias.  When we compute
3397 	 * the retransmit timer, we want 1/2 tick of rounding and
3398 	 * 1 extra tick because of +-1/2 tick uncertainty in the
3399 	 * firing of the timer.  The bias will give us exactly the
3400 	 * 1.5 tick we need.  But, because the bias is
3401 	 * statistical, we have to test that we don't drop below
3402 	 * the minimum feasible timer (which is 2 ticks).
3403 	 */
3404 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
3405 		      max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
3406 
3407 	/*
3408 	 * We received an ack for a packet that wasn't retransmitted;
3409 	 * it is probably safe to discard any error indications we've
3410 	 * received recently.  This isn't quite right, but close enough
3411 	 * for now (a route might have failed after we sent a segment,
3412 	 * and the return path might not be symmetrical).
3413 	 */
3414 	tp->t_softerror = 0;
3415 }
3416 
3417 /*
3418  * Determine a reasonable value for maxseg size.
3419  * If the route is known, check route for mtu.
3420  * If none, use an mss that can be handled on the outgoing interface
3421  * without forcing IP to fragment.  If no route is found, route has no mtu,
3422  * or the destination isn't local, use a default, hopefully conservative
3423  * size (usually 512 or the default IP max size, but no more than the mtu
3424  * of the interface), as we can't discover anything about intervening
3425  * gateways or networks.  We also initialize the congestion/slow start
3426  * window to be a single segment if the destination isn't local.
3427  * While looking at the routing entry, we also initialize other path-dependent
3428  * parameters from pre-set or cached values in the routing entry.
3429  *
3430  * NOTE that resulting t_maxseg doesn't include space for TCP options or
3431  * IP options, e.g. IPSEC data, since length of this data may vary, and
3432  * thus it is calculated for every segment separately in tcp_output().
3433  *
3434  * NOTE that this routine is only called when we process an incoming
3435  * segment, or an ICMP need fragmentation datagram. Outgoing SYN/ACK MSS
3436  * settings are handled in tcp_mssopt().
3437  */
3438 void
3439 tcp_mss_update(struct tcpcb *tp, int offer, int mtuoffer,
3440     struct hc_metrics_lite *metricptr, struct tcp_ifcap *cap)
3441 {
3442 	int mss = 0;
3443 	uint32_t maxmtu = 0;
3444 	struct inpcb *inp = tp->t_inpcb;
3445 	struct hc_metrics_lite metrics;
3446 #ifdef INET6
3447 	int isipv6 = ((inp->inp_vflag & INP_IPV6) != 0) ? 1 : 0;
3448 	size_t min_protoh = isipv6 ?
3449 			    sizeof (struct ip6_hdr) + sizeof (struct tcphdr) :
3450 			    sizeof (struct tcpiphdr);
3451 #else
3452 	const size_t min_protoh = sizeof(struct tcpiphdr);
3453 #endif
3454 
3455 	INP_WLOCK_ASSERT(tp->t_inpcb);
3456 
3457 	if (mtuoffer != -1) {
3458 		KASSERT(offer == -1, ("%s: conflict", __func__));
3459 		offer = mtuoffer - min_protoh;
3460 	}
3461 
3462 	/* Initialize. */
3463 #ifdef INET6
3464 	if (isipv6) {
3465 		maxmtu = tcp_maxmtu6(&inp->inp_inc, cap);
3466 		tp->t_maxseg = V_tcp_v6mssdflt;
3467 	}
3468 #endif
3469 #if defined(INET) && defined(INET6)
3470 	else
3471 #endif
3472 #ifdef INET
3473 	{
3474 		maxmtu = tcp_maxmtu(&inp->inp_inc, cap);
3475 		tp->t_maxseg = V_tcp_mssdflt;
3476 	}
3477 #endif
3478 
3479 	/*
3480 	 * No route to sender, stay with default mss and return.
3481 	 */
3482 	if (maxmtu == 0) {
3483 		/*
3484 		 * In case we return early we need to initialize metrics
3485 		 * to a defined state as tcp_hc_get() would do for us
3486 		 * if there was no cache hit.
3487 		 */
3488 		if (metricptr != NULL)
3489 			bzero(metricptr, sizeof(struct hc_metrics_lite));
3490 		return;
3491 	}
3492 
3493 	/* What have we got? */
3494 	switch (offer) {
3495 		case 0:
3496 			/*
3497 			 * Offer == 0 means that there was no MSS on the SYN
3498 			 * segment, in this case we use tcp_mssdflt as
3499 			 * already assigned to t_maxseg above.
3500 			 */
3501 			offer = tp->t_maxseg;
3502 			break;
3503 
3504 		case -1:
3505 			/*
3506 			 * Offer == -1 means that we didn't receive SYN yet.
3507 			 */
3508 			/* FALLTHROUGH */
3509 
3510 		default:
3511 			/*
3512 			 * Prevent DoS attack with too small MSS. Round up
3513 			 * to at least minmss.
3514 			 */
3515 			offer = max(offer, V_tcp_minmss);
3516 	}
3517 
3518 	/*
3519 	 * rmx information is now retrieved from tcp_hostcache.
3520 	 */
3521 	tcp_hc_get(&inp->inp_inc, &metrics);
3522 	if (metricptr != NULL)
3523 		bcopy(&metrics, metricptr, sizeof(struct hc_metrics_lite));
3524 
3525 	/*
3526 	 * If there's a discovered mtu in tcp hostcache, use it.
3527 	 * Else, use the link mtu.
3528 	 */
3529 	if (metrics.rmx_mtu)
3530 		mss = min(metrics.rmx_mtu, maxmtu) - min_protoh;
3531 	else {
3532 #ifdef INET6
3533 		if (isipv6) {
3534 			mss = maxmtu - min_protoh;
3535 			if (!V_path_mtu_discovery &&
3536 			    !in6_localaddr(&inp->in6p_faddr))
3537 				mss = min(mss, V_tcp_v6mssdflt);
3538 		}
3539 #endif
3540 #if defined(INET) && defined(INET6)
3541 		else
3542 #endif
3543 #ifdef INET
3544 		{
3545 			mss = maxmtu - min_protoh;
3546 			if (!V_path_mtu_discovery &&
3547 			    !in_localaddr(inp->inp_faddr))
3548 				mss = min(mss, V_tcp_mssdflt);
3549 		}
3550 #endif
3551 		/*
3552 		 * XXX - The above conditional (mss = maxmtu - min_protoh)
3553 		 * probably violates the TCP spec.
3554 		 * The problem is that, since we don't know the
3555 		 * other end's MSS, we are supposed to use a conservative
3556 		 * default.  But, if we do that, then MTU discovery will
3557 		 * never actually take place, because the conservative
3558 		 * default is much less than the MTUs typically seen
3559 		 * on the Internet today.  For the moment, we'll sweep
3560 		 * this under the carpet.
3561 		 *
3562 		 * The conservative default might not actually be a problem
3563 		 * if the only case this occurs is when sending an initial
3564 		 * SYN with options and data to a host we've never talked
3565 		 * to before.  Then, they will reply with an MSS value which
3566 		 * will get recorded and the new parameters should get
3567 		 * recomputed.  For Further Study.
3568 		 */
3569 	}
3570 	mss = min(mss, offer);
3571 
3572 	/*
3573 	 * Sanity check: make sure that maxseg will be large
3574 	 * enough to allow some data on segments even if the
3575 	 * all the option space is used (40bytes).  Otherwise
3576 	 * funny things may happen in tcp_output.
3577 	 *
3578 	 * XXXGL: shouldn't we reserve space for IP/IPv6 options?
3579 	 */
3580 	mss = max(mss, 64);
3581 
3582 	tp->t_maxseg = mss;
3583 }
3584 
3585 void
3586 tcp_mss(struct tcpcb *tp, int offer)
3587 {
3588 	int mss;
3589 	uint32_t bufsize;
3590 	struct inpcb *inp;
3591 	struct socket *so;
3592 	struct hc_metrics_lite metrics;
3593 	struct tcp_ifcap cap;
3594 
3595 	KASSERT(tp != NULL, ("%s: tp == NULL", __func__));
3596 
3597 	bzero(&cap, sizeof(cap));
3598 	tcp_mss_update(tp, offer, -1, &metrics, &cap);
3599 
3600 	mss = tp->t_maxseg;
3601 	inp = tp->t_inpcb;
3602 
3603 	/*
3604 	 * If there's a pipesize, change the socket buffer to that size,
3605 	 * don't change if sb_hiwat is different than default (then it
3606 	 * has been changed on purpose with setsockopt).
3607 	 * Make the socket buffers an integral number of mss units;
3608 	 * if the mss is larger than the socket buffer, decrease the mss.
3609 	 */
3610 	so = inp->inp_socket;
3611 	SOCKBUF_LOCK(&so->so_snd);
3612 	if ((so->so_snd.sb_hiwat == V_tcp_sendspace) && metrics.rmx_sendpipe)
3613 		bufsize = metrics.rmx_sendpipe;
3614 	else
3615 		bufsize = so->so_snd.sb_hiwat;
3616 	if (bufsize < mss)
3617 		mss = bufsize;
3618 	else {
3619 		bufsize = roundup(bufsize, mss);
3620 		if (bufsize > sb_max)
3621 			bufsize = sb_max;
3622 		if (bufsize > so->so_snd.sb_hiwat)
3623 			(void)sbreserve_locked(&so->so_snd, bufsize, so, NULL);
3624 	}
3625 	SOCKBUF_UNLOCK(&so->so_snd);
3626 	/*
3627 	 * Sanity check: make sure that maxseg will be large
3628 	 * enough to allow some data on segments even if the
3629 	 * all the option space is used (40bytes).  Otherwise
3630 	 * funny things may happen in tcp_output.
3631 	 *
3632 	 * XXXGL: shouldn't we reserve space for IP/IPv6 options?
3633 	 */
3634 	tp->t_maxseg = max(mss, 64);
3635 
3636 	SOCKBUF_LOCK(&so->so_rcv);
3637 	if ((so->so_rcv.sb_hiwat == V_tcp_recvspace) && metrics.rmx_recvpipe)
3638 		bufsize = metrics.rmx_recvpipe;
3639 	else
3640 		bufsize = so->so_rcv.sb_hiwat;
3641 	if (bufsize > mss) {
3642 		bufsize = roundup(bufsize, mss);
3643 		if (bufsize > sb_max)
3644 			bufsize = sb_max;
3645 		if (bufsize > so->so_rcv.sb_hiwat)
3646 			(void)sbreserve_locked(&so->so_rcv, bufsize, so, NULL);
3647 	}
3648 	SOCKBUF_UNLOCK(&so->so_rcv);
3649 
3650 	/* Check the interface for TSO capabilities. */
3651 	if (cap.ifcap & CSUM_TSO) {
3652 		tp->t_flags |= TF_TSO;
3653 		tp->t_tsomax = cap.tsomax;
3654 		tp->t_tsomaxsegcount = cap.tsomaxsegcount;
3655 		tp->t_tsomaxsegsize = cap.tsomaxsegsize;
3656 	}
3657 }
3658 
3659 /*
3660  * Determine the MSS option to send on an outgoing SYN.
3661  */
3662 int
3663 tcp_mssopt(struct in_conninfo *inc)
3664 {
3665 	int mss = 0;
3666 	uint32_t thcmtu = 0;
3667 	uint32_t maxmtu = 0;
3668 	size_t min_protoh;
3669 
3670 	KASSERT(inc != NULL, ("tcp_mssopt with NULL in_conninfo pointer"));
3671 
3672 #ifdef INET6
3673 	if (inc->inc_flags & INC_ISIPV6) {
3674 		mss = V_tcp_v6mssdflt;
3675 		maxmtu = tcp_maxmtu6(inc, NULL);
3676 		min_protoh = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
3677 	}
3678 #endif
3679 #if defined(INET) && defined(INET6)
3680 	else
3681 #endif
3682 #ifdef INET
3683 	{
3684 		mss = V_tcp_mssdflt;
3685 		maxmtu = tcp_maxmtu(inc, NULL);
3686 		min_protoh = sizeof(struct tcpiphdr);
3687 	}
3688 #endif
3689 #if defined(INET6) || defined(INET)
3690 	thcmtu = tcp_hc_getmtu(inc); /* IPv4 and IPv6 */
3691 #endif
3692 
3693 	if (maxmtu && thcmtu)
3694 		mss = min(maxmtu, thcmtu) - min_protoh;
3695 	else if (maxmtu || thcmtu)
3696 		mss = max(maxmtu, thcmtu) - min_protoh;
3697 
3698 	return (mss);
3699 }
3700 
3701 
3702 /*
3703  * On a partial ack arrives, force the retransmission of the
3704  * next unacknowledged segment.  Do not clear tp->t_dupacks.
3705  * By setting snd_nxt to ti_ack, this forces retransmission timer to
3706  * be started again.
3707  */
3708 void
3709 tcp_newreno_partial_ack(struct tcpcb *tp, struct tcphdr *th)
3710 {
3711 	tcp_seq onxt = tp->snd_nxt;
3712 	uint32_t ocwnd = tp->snd_cwnd;
3713 	u_int maxseg = tcp_maxseg(tp);
3714 
3715 	INP_WLOCK_ASSERT(tp->t_inpcb);
3716 
3717 	tcp_timer_activate(tp, TT_REXMT, 0);
3718 	tp->t_rtttime = 0;
3719 	tp->snd_nxt = th->th_ack;
3720 	/*
3721 	 * Set snd_cwnd to one segment beyond acknowledged offset.
3722 	 * (tp->snd_una has not yet been updated when this function is called.)
3723 	 */
3724 	tp->snd_cwnd = maxseg + BYTES_THIS_ACK(tp, th);
3725 	tp->t_flags |= TF_ACKNOW;
3726 	(void) tp->t_fb->tfb_tcp_output(tp);
3727 	tp->snd_cwnd = ocwnd;
3728 	if (SEQ_GT(onxt, tp->snd_nxt))
3729 		tp->snd_nxt = onxt;
3730 	/*
3731 	 * Partial window deflation.  Relies on fact that tp->snd_una
3732 	 * not updated yet.
3733 	 */
3734 	if (tp->snd_cwnd > BYTES_THIS_ACK(tp, th))
3735 		tp->snd_cwnd -= BYTES_THIS_ACK(tp, th);
3736 	else
3737 		tp->snd_cwnd = 0;
3738 	tp->snd_cwnd += maxseg;
3739 }
3740 
3741 int
3742 tcp_compute_pipe(struct tcpcb *tp)
3743 {
3744 	return (tp->snd_max - tp->snd_una +
3745 		tp->sackhint.sack_bytes_rexmit -
3746 		tp->sackhint.sacked_bytes);
3747 }
3748 
3749 uint32_t
3750 tcp_compute_initwnd(uint32_t maxseg)
3751 {
3752 	/*
3753 	 * Calculate the Initial Window, also used as Restart Window
3754 	 *
3755 	 * RFC5681 Section 3.1 specifies the default conservative values.
3756 	 * RFC3390 specifies slightly more aggressive values.
3757 	 * RFC6928 increases it to ten segments.
3758 	 * Support for user specified value for initial flight size.
3759 	 */
3760 	if (V_tcp_initcwnd_segments)
3761 		return min(V_tcp_initcwnd_segments * maxseg,
3762 		    max(2 * maxseg, V_tcp_initcwnd_segments * 1460));
3763 	else if (V_tcp_do_rfc3390)
3764 		return min(4 * maxseg, max(2 * maxseg, 4380));
3765 	else {
3766 		/* Per RFC5681 Section 3.1 */
3767 		if (maxseg > 2190)
3768 			return (2 * maxseg);
3769 		else if (maxseg > 1095)
3770 			return (3 * maxseg);
3771 		else
3772 			return (4 * maxseg);
3773 	}
3774 }
3775