xref: /freebsd/sys/netinet/tcp_input.c (revision 448897d366c218f9fd6208427eef1e6dd51f78d0)
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
3  *	The Regents of the University of California.  All rights reserved.
4  * Copyright (c) 2007-2008,2010
5  *	Swinburne University of Technology, Melbourne, Australia.
6  * Copyright (c) 2009-2010 Lawrence Stewart <lstewart@freebsd.org>
7  * Copyright (c) 2010 The FreeBSD Foundation
8  * Copyright (c) 2010-2011 Juniper Networks, Inc.
9  * All rights reserved.
10  *
11  * Portions of this software were developed at the Centre for Advanced Internet
12  * Architectures, Swinburne University of Technology, by Lawrence Stewart,
13  * James Healy and David Hayes, made possible in part by a grant from the Cisco
14  * University Research Program Fund at Community Foundation Silicon Valley.
15  *
16  * Portions of this software were developed at the Centre for Advanced
17  * Internet Architectures, Swinburne University of Technology, Melbourne,
18  * Australia by David Hayes under sponsorship from the FreeBSD Foundation.
19  *
20  * Portions of this software were developed by Robert N. M. Watson under
21  * contract to Juniper Networks, Inc.
22  *
23  * Redistribution and use in source and binary forms, with or without
24  * modification, are permitted provided that the following conditions
25  * are met:
26  * 1. Redistributions of source code must retain the above copyright
27  *    notice, this list of conditions and the following disclaimer.
28  * 2. Redistributions in binary form must reproduce the above copyright
29  *    notice, this list of conditions and the following disclaimer in the
30  *    documentation and/or other materials provided with the distribution.
31  * 4. Neither the name of the University nor the names of its contributors
32  *    may be used to endorse or promote products derived from this software
33  *    without specific prior written permission.
34  *
35  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
36  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
37  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
38  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
39  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
40  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
41  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
42  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
43  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
44  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
45  * SUCH DAMAGE.
46  *
47  *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
48  */
49 
50 #include <sys/cdefs.h>
51 __FBSDID("$FreeBSD$");
52 
53 #include "opt_inet.h"
54 #include "opt_inet6.h"
55 #include "opt_ipsec.h"
56 #include "opt_tcpdebug.h"
57 
58 #include <sys/param.h>
59 #include <sys/kernel.h>
60 #ifdef TCP_HHOOK
61 #include <sys/hhook.h>
62 #endif
63 #include <sys/malloc.h>
64 #include <sys/mbuf.h>
65 #include <sys/proc.h>		/* for proc0 declaration */
66 #include <sys/protosw.h>
67 #include <sys/sdt.h>
68 #include <sys/signalvar.h>
69 #include <sys/socket.h>
70 #include <sys/socketvar.h>
71 #include <sys/sysctl.h>
72 #include <sys/syslog.h>
73 #include <sys/systm.h>
74 
75 #include <machine/cpu.h>	/* before tcp_seq.h, for tcp_random18() */
76 
77 #include <vm/uma.h>
78 
79 #include <net/if.h>
80 #include <net/if_var.h>
81 #include <net/route.h>
82 #include <net/vnet.h>
83 
84 #define TCPSTATES		/* for logging */
85 
86 #include <netinet/in.h>
87 #include <netinet/in_kdtrace.h>
88 #include <netinet/in_pcb.h>
89 #include <netinet/in_systm.h>
90 #include <netinet/ip.h>
91 #include <netinet/ip_icmp.h>	/* required for icmp_var.h */
92 #include <netinet/icmp_var.h>	/* for ICMP_BANDLIM */
93 #include <netinet/ip_var.h>
94 #include <netinet/ip_options.h>
95 #include <netinet/ip6.h>
96 #include <netinet/icmp6.h>
97 #include <netinet6/in6_pcb.h>
98 #include <netinet6/in6_var.h>
99 #include <netinet6/ip6_var.h>
100 #include <netinet6/nd6.h>
101 #ifdef TCP_RFC7413
102 #include <netinet/tcp_fastopen.h>
103 #endif
104 #include <netinet/tcp.h>
105 #include <netinet/tcp_fsm.h>
106 #include <netinet/tcp_seq.h>
107 #include <netinet/tcp_timer.h>
108 #include <netinet/tcp_var.h>
109 #include <netinet6/tcp6_var.h>
110 #include <netinet/tcpip.h>
111 #include <netinet/cc/cc.h>
112 #ifdef TCPPCAP
113 #include <netinet/tcp_pcap.h>
114 #endif
115 #include <netinet/tcp_syncache.h>
116 #ifdef TCPDEBUG
117 #include <netinet/tcp_debug.h>
118 #endif /* TCPDEBUG */
119 #ifdef TCP_OFFLOAD
120 #include <netinet/tcp_offload.h>
121 #endif
122 
123 #ifdef IPSEC
124 #include <netipsec/ipsec.h>
125 #include <netipsec/ipsec6.h>
126 #endif /*IPSEC*/
127 
128 #include <machine/in_cksum.h>
129 
130 #include <security/mac/mac_framework.h>
131 
132 const int tcprexmtthresh = 3;
133 
134 int tcp_log_in_vain = 0;
135 SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_in_vain, CTLFLAG_RW,
136     &tcp_log_in_vain, 0,
137     "Log all incoming TCP segments to closed ports");
138 
139 VNET_DEFINE(int, blackhole) = 0;
140 #define	V_blackhole		VNET(blackhole)
141 SYSCTL_INT(_net_inet_tcp, OID_AUTO, blackhole, CTLFLAG_VNET | CTLFLAG_RW,
142     &VNET_NAME(blackhole), 0,
143     "Do not send RST on segments to closed ports");
144 
145 VNET_DEFINE(int, tcp_delack_enabled) = 1;
146 SYSCTL_INT(_net_inet_tcp, OID_AUTO, delayed_ack, CTLFLAG_VNET | CTLFLAG_RW,
147     &VNET_NAME(tcp_delack_enabled), 0,
148     "Delay ACK to try and piggyback it onto a data packet");
149 
150 VNET_DEFINE(int, drop_synfin) = 0;
151 #define	V_drop_synfin		VNET(drop_synfin)
152 SYSCTL_INT(_net_inet_tcp, OID_AUTO, drop_synfin, CTLFLAG_VNET | CTLFLAG_RW,
153     &VNET_NAME(drop_synfin), 0,
154     "Drop TCP packets with SYN+FIN set");
155 
156 VNET_DEFINE(int, tcp_do_rfc6675_pipe) = 0;
157 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc6675_pipe, CTLFLAG_VNET | CTLFLAG_RW,
158     &VNET_NAME(tcp_do_rfc6675_pipe), 0,
159     "Use calculated pipe/in-flight bytes per RFC 6675");
160 
161 VNET_DEFINE(int, tcp_do_rfc3042) = 1;
162 #define	V_tcp_do_rfc3042	VNET(tcp_do_rfc3042)
163 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3042, CTLFLAG_VNET | CTLFLAG_RW,
164     &VNET_NAME(tcp_do_rfc3042), 0,
165     "Enable RFC 3042 (Limited Transmit)");
166 
167 VNET_DEFINE(int, tcp_do_rfc3390) = 1;
168 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3390, CTLFLAG_VNET | CTLFLAG_RW,
169     &VNET_NAME(tcp_do_rfc3390), 0,
170     "Enable RFC 3390 (Increasing TCP's Initial Congestion Window)");
171 
172 VNET_DEFINE(int, tcp_initcwnd_segments) = 10;
173 SYSCTL_INT(_net_inet_tcp, OID_AUTO, initcwnd_segments,
174     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(tcp_initcwnd_segments), 0,
175     "Slow-start flight size (initial congestion window) in number of segments");
176 
177 VNET_DEFINE(int, tcp_do_rfc3465) = 1;
178 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3465, CTLFLAG_VNET | CTLFLAG_RW,
179     &VNET_NAME(tcp_do_rfc3465), 0,
180     "Enable RFC 3465 (Appropriate Byte Counting)");
181 
182 VNET_DEFINE(int, tcp_abc_l_var) = 2;
183 SYSCTL_INT(_net_inet_tcp, OID_AUTO, abc_l_var, CTLFLAG_VNET | CTLFLAG_RW,
184     &VNET_NAME(tcp_abc_l_var), 2,
185     "Cap the max cwnd increment during slow-start to this number of segments");
186 
187 static SYSCTL_NODE(_net_inet_tcp, OID_AUTO, ecn, CTLFLAG_RW, 0, "TCP ECN");
188 
189 VNET_DEFINE(int, tcp_do_ecn) = 2;
190 SYSCTL_INT(_net_inet_tcp_ecn, OID_AUTO, enable, CTLFLAG_VNET | CTLFLAG_RW,
191     &VNET_NAME(tcp_do_ecn), 0,
192     "TCP ECN support");
193 
194 VNET_DEFINE(int, tcp_ecn_maxretries) = 1;
195 SYSCTL_INT(_net_inet_tcp_ecn, OID_AUTO, maxretries, CTLFLAG_VNET | CTLFLAG_RW,
196     &VNET_NAME(tcp_ecn_maxretries), 0,
197     "Max retries before giving up on ECN");
198 
199 VNET_DEFINE(int, tcp_insecure_syn) = 0;
200 #define	V_tcp_insecure_syn	VNET(tcp_insecure_syn)
201 SYSCTL_INT(_net_inet_tcp, OID_AUTO, insecure_syn, CTLFLAG_VNET | CTLFLAG_RW,
202     &VNET_NAME(tcp_insecure_syn), 0,
203     "Follow RFC793 instead of RFC5961 criteria for accepting SYN packets");
204 
205 VNET_DEFINE(int, tcp_insecure_rst) = 0;
206 #define	V_tcp_insecure_rst	VNET(tcp_insecure_rst)
207 SYSCTL_INT(_net_inet_tcp, OID_AUTO, insecure_rst, CTLFLAG_VNET | CTLFLAG_RW,
208     &VNET_NAME(tcp_insecure_rst), 0,
209     "Follow RFC793 instead of RFC5961 criteria for accepting RST packets");
210 
211 VNET_DEFINE(int, tcp_recvspace) = 1024*64;
212 #define	V_tcp_recvspace	VNET(tcp_recvspace)
213 SYSCTL_INT(_net_inet_tcp, TCPCTL_RECVSPACE, recvspace, CTLFLAG_VNET | CTLFLAG_RW,
214     &VNET_NAME(tcp_recvspace), 0, "Initial receive socket buffer size");
215 
216 VNET_DEFINE(int, tcp_do_autorcvbuf) = 1;
217 #define	V_tcp_do_autorcvbuf	VNET(tcp_do_autorcvbuf)
218 SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbuf_auto, CTLFLAG_VNET | CTLFLAG_RW,
219     &VNET_NAME(tcp_do_autorcvbuf), 0,
220     "Enable automatic receive buffer sizing");
221 
222 VNET_DEFINE(int, tcp_autorcvbuf_inc) = 16*1024;
223 #define	V_tcp_autorcvbuf_inc	VNET(tcp_autorcvbuf_inc)
224 SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbuf_inc, CTLFLAG_VNET | CTLFLAG_RW,
225     &VNET_NAME(tcp_autorcvbuf_inc), 0,
226     "Incrementor step size of automatic receive buffer");
227 
228 VNET_DEFINE(int, tcp_autorcvbuf_max) = 2*1024*1024;
229 #define	V_tcp_autorcvbuf_max	VNET(tcp_autorcvbuf_max)
230 SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbuf_max, CTLFLAG_VNET | CTLFLAG_RW,
231     &VNET_NAME(tcp_autorcvbuf_max), 0,
232     "Max size of automatic receive buffer");
233 
234 VNET_DEFINE(struct inpcbhead, tcb);
235 #define	tcb6	tcb  /* for KAME src sync over BSD*'s */
236 VNET_DEFINE(struct inpcbinfo, tcbinfo);
237 
238 /*
239  * TCP statistics are stored in an array of counter(9)s, which size matches
240  * size of struct tcpstat.  TCP running connection count is a regular array.
241  */
242 VNET_PCPUSTAT_DEFINE(struct tcpstat, tcpstat);
243 SYSCTL_VNET_PCPUSTAT(_net_inet_tcp, TCPCTL_STATS, stats, struct tcpstat,
244     tcpstat, "TCP statistics (struct tcpstat, netinet/tcp_var.h)");
245 VNET_DEFINE(counter_u64_t, tcps_states[TCP_NSTATES]);
246 SYSCTL_COUNTER_U64_ARRAY(_net_inet_tcp, TCPCTL_STATES, states, CTLFLAG_RD |
247     CTLFLAG_VNET, &VNET_NAME(tcps_states)[0], TCP_NSTATES,
248     "TCP connection counts by TCP state");
249 
250 static void
251 tcp_vnet_init(const void *unused)
252 {
253 
254 	COUNTER_ARRAY_ALLOC(V_tcps_states, TCP_NSTATES, M_WAITOK);
255 	VNET_PCPUSTAT_ALLOC(tcpstat, M_WAITOK);
256 }
257 VNET_SYSINIT(tcp_vnet_init, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_ANY,
258     tcp_vnet_init, NULL);
259 
260 #ifdef VIMAGE
261 static void
262 tcp_vnet_uninit(const void *unused)
263 {
264 
265 	COUNTER_ARRAY_FREE(V_tcps_states, TCP_NSTATES);
266 	VNET_PCPUSTAT_FREE(tcpstat);
267 }
268 VNET_SYSUNINIT(tcp_vnet_uninit, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_ANY,
269     tcp_vnet_uninit, NULL);
270 #endif /* VIMAGE */
271 
272 /*
273  * Kernel module interface for updating tcpstat.  The argument is an index
274  * into tcpstat treated as an array.
275  */
276 void
277 kmod_tcpstat_inc(int statnum)
278 {
279 
280 	counter_u64_add(VNET(tcpstat)[statnum], 1);
281 }
282 
283 #ifdef TCP_HHOOK
284 /*
285  * Wrapper for the TCP established input helper hook.
286  */
287 void
288 hhook_run_tcp_est_in(struct tcpcb *tp, struct tcphdr *th, struct tcpopt *to)
289 {
290 	struct tcp_hhook_data hhook_data;
291 
292 	if (V_tcp_hhh[HHOOK_TCP_EST_IN]->hhh_nhooks > 0) {
293 		hhook_data.tp = tp;
294 		hhook_data.th = th;
295 		hhook_data.to = to;
296 
297 		hhook_run_hooks(V_tcp_hhh[HHOOK_TCP_EST_IN], &hhook_data,
298 		    tp->osd);
299 	}
300 }
301 #endif
302 
303 /*
304  * CC wrapper hook functions
305  */
306 void
307 cc_ack_received(struct tcpcb *tp, struct tcphdr *th, uint16_t nsegs,
308     uint16_t type)
309 {
310 	INP_WLOCK_ASSERT(tp->t_inpcb);
311 
312 	tp->ccv->nsegs = nsegs;
313 	tp->ccv->bytes_this_ack = BYTES_THIS_ACK(tp, th);
314 	if (tp->snd_cwnd <= tp->snd_wnd)
315 		tp->ccv->flags |= CCF_CWND_LIMITED;
316 	else
317 		tp->ccv->flags &= ~CCF_CWND_LIMITED;
318 
319 	if (type == CC_ACK) {
320 		if (tp->snd_cwnd > tp->snd_ssthresh) {
321 			tp->t_bytes_acked += min(tp->ccv->bytes_this_ack,
322 			     nsegs * V_tcp_abc_l_var * tcp_maxseg(tp));
323 			if (tp->t_bytes_acked >= tp->snd_cwnd) {
324 				tp->t_bytes_acked -= tp->snd_cwnd;
325 				tp->ccv->flags |= CCF_ABC_SENTAWND;
326 			}
327 		} else {
328 				tp->ccv->flags &= ~CCF_ABC_SENTAWND;
329 				tp->t_bytes_acked = 0;
330 		}
331 	}
332 
333 	if (CC_ALGO(tp)->ack_received != NULL) {
334 		/* XXXLAS: Find a way to live without this */
335 		tp->ccv->curack = th->th_ack;
336 		CC_ALGO(tp)->ack_received(tp->ccv, type);
337 	}
338 }
339 
340 void
341 cc_conn_init(struct tcpcb *tp)
342 {
343 	struct hc_metrics_lite metrics;
344 	struct inpcb *inp = tp->t_inpcb;
345 	u_int maxseg;
346 	int rtt;
347 
348 	INP_WLOCK_ASSERT(tp->t_inpcb);
349 
350 	tcp_hc_get(&inp->inp_inc, &metrics);
351 	maxseg = tcp_maxseg(tp);
352 
353 	if (tp->t_srtt == 0 && (rtt = metrics.rmx_rtt)) {
354 		tp->t_srtt = rtt;
355 		tp->t_rttbest = tp->t_srtt + TCP_RTT_SCALE;
356 		TCPSTAT_INC(tcps_usedrtt);
357 		if (metrics.rmx_rttvar) {
358 			tp->t_rttvar = metrics.rmx_rttvar;
359 			TCPSTAT_INC(tcps_usedrttvar);
360 		} else {
361 			/* default variation is +- 1 rtt */
362 			tp->t_rttvar =
363 			    tp->t_srtt * TCP_RTTVAR_SCALE / TCP_RTT_SCALE;
364 		}
365 		TCPT_RANGESET(tp->t_rxtcur,
366 		    ((tp->t_srtt >> 2) + tp->t_rttvar) >> 1,
367 		    tp->t_rttmin, TCPTV_REXMTMAX);
368 	}
369 	if (metrics.rmx_ssthresh) {
370 		/*
371 		 * There's some sort of gateway or interface
372 		 * buffer limit on the path.  Use this to set
373 		 * the slow start threshold, but set the
374 		 * threshold to no less than 2*mss.
375 		 */
376 		tp->snd_ssthresh = max(2 * maxseg, metrics.rmx_ssthresh);
377 		TCPSTAT_INC(tcps_usedssthresh);
378 	}
379 
380 	/*
381 	 * Set the initial slow-start flight size.
382 	 *
383 	 * RFC5681 Section 3.1 specifies the default conservative values.
384 	 * RFC3390 specifies slightly more aggressive values.
385 	 * RFC6928 increases it to ten segments.
386 	 * Support for user specified value for initial flight size.
387 	 *
388 	 * If a SYN or SYN/ACK was lost and retransmitted, we have to
389 	 * reduce the initial CWND to one segment as congestion is likely
390 	 * requiring us to be cautious.
391 	 */
392 	if (tp->snd_cwnd == 1)
393 		tp->snd_cwnd = maxseg;		/* SYN(-ACK) lost */
394 	else if (V_tcp_initcwnd_segments)
395 		tp->snd_cwnd = min(V_tcp_initcwnd_segments * maxseg,
396 		    max(2 * maxseg, V_tcp_initcwnd_segments * 1460));
397 	else if (V_tcp_do_rfc3390)
398 		tp->snd_cwnd = min(4 * maxseg, max(2 * maxseg, 4380));
399 	else {
400 		/* Per RFC5681 Section 3.1 */
401 		if (maxseg > 2190)
402 			tp->snd_cwnd = 2 * maxseg;
403 		else if (maxseg > 1095)
404 			tp->snd_cwnd = 3 * maxseg;
405 		else
406 			tp->snd_cwnd = 4 * maxseg;
407 	}
408 
409 	if (CC_ALGO(tp)->conn_init != NULL)
410 		CC_ALGO(tp)->conn_init(tp->ccv);
411 }
412 
413 void inline
414 cc_cong_signal(struct tcpcb *tp, struct tcphdr *th, uint32_t type)
415 {
416 	u_int maxseg;
417 
418 	INP_WLOCK_ASSERT(tp->t_inpcb);
419 
420 	switch(type) {
421 	case CC_NDUPACK:
422 		if (!IN_FASTRECOVERY(tp->t_flags)) {
423 			tp->snd_recover = tp->snd_max;
424 			if (tp->t_flags & TF_ECN_PERMIT)
425 				tp->t_flags |= TF_ECN_SND_CWR;
426 		}
427 		break;
428 	case CC_ECN:
429 		if (!IN_CONGRECOVERY(tp->t_flags)) {
430 			TCPSTAT_INC(tcps_ecn_rcwnd);
431 			tp->snd_recover = tp->snd_max;
432 			if (tp->t_flags & TF_ECN_PERMIT)
433 				tp->t_flags |= TF_ECN_SND_CWR;
434 		}
435 		break;
436 	case CC_RTO:
437 		maxseg = tcp_maxseg(tp);
438 		tp->t_dupacks = 0;
439 		tp->t_bytes_acked = 0;
440 		EXIT_RECOVERY(tp->t_flags);
441 		if (CC_ALGO(tp)->cong_signal == NULL) {
442 			/*
443 			 * RFC5681 Section 3.1
444 			 * ssthresh = max (FlightSize / 2, 2*SMSS) eq (4)
445 			 */
446 			tp->snd_ssthresh =
447 			    max((tp->snd_max - tp->snd_una) / 2, 2 * maxseg);
448 			tp->snd_cwnd = maxseg;
449 		}
450 		break;
451 	case CC_RTO_ERR:
452 		TCPSTAT_INC(tcps_sndrexmitbad);
453 		/* RTO was unnecessary, so reset everything. */
454 		tp->snd_cwnd = tp->snd_cwnd_prev;
455 		tp->snd_ssthresh = tp->snd_ssthresh_prev;
456 		tp->snd_recover = tp->snd_recover_prev;
457 		if (tp->t_flags & TF_WASFRECOVERY)
458 			ENTER_FASTRECOVERY(tp->t_flags);
459 		if (tp->t_flags & TF_WASCRECOVERY)
460 			ENTER_CONGRECOVERY(tp->t_flags);
461 		tp->snd_nxt = tp->snd_max;
462 		tp->t_flags &= ~TF_PREVVALID;
463 		tp->t_badrxtwin = 0;
464 		break;
465 	}
466 
467 	if (CC_ALGO(tp)->cong_signal != NULL) {
468 		if (th != NULL)
469 			tp->ccv->curack = th->th_ack;
470 		CC_ALGO(tp)->cong_signal(tp->ccv, type);
471 	}
472 }
473 
474 void inline
475 cc_post_recovery(struct tcpcb *tp, struct tcphdr *th)
476 {
477 	INP_WLOCK_ASSERT(tp->t_inpcb);
478 
479 	/* XXXLAS: KASSERT that we're in recovery? */
480 
481 	if (CC_ALGO(tp)->post_recovery != NULL) {
482 		tp->ccv->curack = th->th_ack;
483 		CC_ALGO(tp)->post_recovery(tp->ccv);
484 	}
485 	/* XXXLAS: EXIT_RECOVERY ? */
486 	tp->t_bytes_acked = 0;
487 }
488 
489 #ifdef TCP_SIGNATURE
490 static inline int
491 tcp_signature_verify_input(struct mbuf *m, int off0, int tlen, int optlen,
492     struct tcpopt *to, struct tcphdr *th, u_int tcpbflag)
493 {
494 	int ret;
495 
496 	tcp_fields_to_net(th);
497 	ret = tcp_signature_verify(m, off0, tlen, optlen, to, th, tcpbflag);
498 	tcp_fields_to_host(th);
499 	return (ret);
500 }
501 #endif
502 
503 /*
504  * Indicate whether this ack should be delayed.  We can delay the ack if
505  * following conditions are met:
506  *	- There is no delayed ack timer in progress.
507  *	- Our last ack wasn't a 0-sized window. We never want to delay
508  *	  the ack that opens up a 0-sized window.
509  *	- LRO wasn't used for this segment. We make sure by checking that the
510  *	  segment size is not larger than the MSS.
511  */
512 #define DELAY_ACK(tp, tlen)						\
513 	((!tcp_timer_active(tp, TT_DELACK) &&				\
514 	    (tp->t_flags & TF_RXWIN0SENT) == 0) &&			\
515 	    (tlen <= tp->t_maxseg) &&					\
516 	    (V_tcp_delack_enabled || (tp->t_flags & TF_NEEDSYN)))
517 
518 static void inline
519 cc_ecnpkt_handler(struct tcpcb *tp, struct tcphdr *th, uint8_t iptos)
520 {
521 	INP_WLOCK_ASSERT(tp->t_inpcb);
522 
523 	if (CC_ALGO(tp)->ecnpkt_handler != NULL) {
524 		switch (iptos & IPTOS_ECN_MASK) {
525 		case IPTOS_ECN_CE:
526 		    tp->ccv->flags |= CCF_IPHDR_CE;
527 		    break;
528 		case IPTOS_ECN_ECT0:
529 		    tp->ccv->flags &= ~CCF_IPHDR_CE;
530 		    break;
531 		case IPTOS_ECN_ECT1:
532 		    tp->ccv->flags &= ~CCF_IPHDR_CE;
533 		    break;
534 		}
535 
536 		if (th->th_flags & TH_CWR)
537 			tp->ccv->flags |= CCF_TCPHDR_CWR;
538 		else
539 			tp->ccv->flags &= ~CCF_TCPHDR_CWR;
540 
541 		if (tp->t_flags & TF_DELACK)
542 			tp->ccv->flags |= CCF_DELACK;
543 		else
544 			tp->ccv->flags &= ~CCF_DELACK;
545 
546 		CC_ALGO(tp)->ecnpkt_handler(tp->ccv);
547 
548 		if (tp->ccv->flags & CCF_ACKNOW)
549 			tcp_timer_activate(tp, TT_DELACK, tcp_delacktime);
550 	}
551 }
552 
553 /*
554  * TCP input handling is split into multiple parts:
555  *   tcp6_input is a thin wrapper around tcp_input for the extended
556  *	ip6_protox[] call format in ip6_input
557  *   tcp_input handles primary segment validation, inpcb lookup and
558  *	SYN processing on listen sockets
559  *   tcp_do_segment processes the ACK and text of the segment for
560  *	establishing, established and closing connections
561  */
562 #ifdef INET6
563 int
564 tcp6_input(struct mbuf **mp, int *offp, int proto)
565 {
566 	struct mbuf *m = *mp;
567 	struct in6_ifaddr *ia6;
568 	struct ip6_hdr *ip6;
569 
570 	IP6_EXTHDR_CHECK(m, *offp, sizeof(struct tcphdr), IPPROTO_DONE);
571 
572 	/*
573 	 * draft-itojun-ipv6-tcp-to-anycast
574 	 * better place to put this in?
575 	 */
576 	ip6 = mtod(m, struct ip6_hdr *);
577 	ia6 = in6ifa_ifwithaddr(&ip6->ip6_dst, 0 /* XXX */);
578 	if (ia6 && (ia6->ia6_flags & IN6_IFF_ANYCAST)) {
579 		struct ip6_hdr *ip6;
580 
581 		ifa_free(&ia6->ia_ifa);
582 		ip6 = mtod(m, struct ip6_hdr *);
583 		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
584 			    (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
585 		return (IPPROTO_DONE);
586 	}
587 	if (ia6)
588 		ifa_free(&ia6->ia_ifa);
589 
590 	return (tcp_input(mp, offp, proto));
591 }
592 #endif /* INET6 */
593 
594 int
595 tcp_input(struct mbuf **mp, int *offp, int proto)
596 {
597 	struct mbuf *m = *mp;
598 	struct tcphdr *th = NULL;
599 	struct ip *ip = NULL;
600 	struct inpcb *inp = NULL;
601 	struct tcpcb *tp = NULL;
602 	struct socket *so = NULL;
603 	u_char *optp = NULL;
604 	int off0;
605 	int optlen = 0;
606 #ifdef INET
607 	int len;
608 #endif
609 	int tlen = 0, off;
610 	int drop_hdrlen;
611 	int thflags;
612 	int rstreason = 0;	/* For badport_bandlim accounting purposes */
613 #ifdef TCP_SIGNATURE
614 	uint8_t sig_checked = 0;
615 #endif
616 	uint8_t iptos;
617 	struct m_tag *fwd_tag = NULL;
618 #ifdef INET6
619 	struct ip6_hdr *ip6 = NULL;
620 	int isipv6;
621 #else
622 	const void *ip6 = NULL;
623 #endif /* INET6 */
624 	struct tcpopt to;		/* options in this segment */
625 	char *s = NULL;			/* address and port logging */
626 	int ti_locked;
627 #ifdef TCPDEBUG
628 	/*
629 	 * The size of tcp_saveipgen must be the size of the max ip header,
630 	 * now IPv6.
631 	 */
632 	u_char tcp_saveipgen[IP6_HDR_LEN];
633 	struct tcphdr tcp_savetcp;
634 	short ostate = 0;
635 #endif
636 
637 #ifdef INET6
638 	isipv6 = (mtod(m, struct ip *)->ip_v == 6) ? 1 : 0;
639 #endif
640 
641 	off0 = *offp;
642 	m = *mp;
643 	*mp = NULL;
644 	to.to_flags = 0;
645 	TCPSTAT_INC(tcps_rcvtotal);
646 
647 #ifdef INET6
648 	if (isipv6) {
649 		/* IP6_EXTHDR_CHECK() is already done at tcp6_input(). */
650 
651 		if (m->m_len < (sizeof(*ip6) + sizeof(*th))) {
652 			m = m_pullup(m, sizeof(*ip6) + sizeof(*th));
653 			if (m == NULL) {
654 				TCPSTAT_INC(tcps_rcvshort);
655 				return (IPPROTO_DONE);
656 			}
657 		}
658 
659 		ip6 = mtod(m, struct ip6_hdr *);
660 		th = (struct tcphdr *)((caddr_t)ip6 + off0);
661 		tlen = sizeof(*ip6) + ntohs(ip6->ip6_plen) - off0;
662 		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID_IPV6) {
663 			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
664 				th->th_sum = m->m_pkthdr.csum_data;
665 			else
666 				th->th_sum = in6_cksum_pseudo(ip6, tlen,
667 				    IPPROTO_TCP, m->m_pkthdr.csum_data);
668 			th->th_sum ^= 0xffff;
669 		} else
670 			th->th_sum = in6_cksum(m, IPPROTO_TCP, off0, tlen);
671 		if (th->th_sum) {
672 			TCPSTAT_INC(tcps_rcvbadsum);
673 			goto drop;
674 		}
675 
676 		/*
677 		 * Be proactive about unspecified IPv6 address in source.
678 		 * As we use all-zero to indicate unbounded/unconnected pcb,
679 		 * unspecified IPv6 address can be used to confuse us.
680 		 *
681 		 * Note that packets with unspecified IPv6 destination is
682 		 * already dropped in ip6_input.
683 		 */
684 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
685 			/* XXX stat */
686 			goto drop;
687 		}
688 		iptos = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
689 	}
690 #endif
691 #if defined(INET) && defined(INET6)
692 	else
693 #endif
694 #ifdef INET
695 	{
696 		/*
697 		 * Get IP and TCP header together in first mbuf.
698 		 * Note: IP leaves IP header in first mbuf.
699 		 */
700 		if (off0 > sizeof (struct ip)) {
701 			ip_stripoptions(m);
702 			off0 = sizeof(struct ip);
703 		}
704 		if (m->m_len < sizeof (struct tcpiphdr)) {
705 			if ((m = m_pullup(m, sizeof (struct tcpiphdr)))
706 			    == NULL) {
707 				TCPSTAT_INC(tcps_rcvshort);
708 				return (IPPROTO_DONE);
709 			}
710 		}
711 		ip = mtod(m, struct ip *);
712 		th = (struct tcphdr *)((caddr_t)ip + off0);
713 		tlen = ntohs(ip->ip_len) - off0;
714 
715 		iptos = ip->ip_tos;
716 		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
717 			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
718 				th->th_sum = m->m_pkthdr.csum_data;
719 			else
720 				th->th_sum = in_pseudo(ip->ip_src.s_addr,
721 				    ip->ip_dst.s_addr,
722 				    htonl(m->m_pkthdr.csum_data + tlen +
723 				    IPPROTO_TCP));
724 			th->th_sum ^= 0xffff;
725 		} else {
726 			struct ipovly *ipov = (struct ipovly *)ip;
727 
728 			/*
729 			 * Checksum extended TCP header and data.
730 			 */
731 			len = off0 + tlen;
732 			bzero(ipov->ih_x1, sizeof(ipov->ih_x1));
733 			ipov->ih_len = htons(tlen);
734 			th->th_sum = in_cksum(m, len);
735 			/* Reset length for SDT probes. */
736 			ip->ip_len = htons(len);
737 			/* Reset TOS bits */
738 			ip->ip_tos = iptos;
739 			/* Re-initialization for later version check */
740 			ip->ip_v = IPVERSION;
741 		}
742 
743 		if (th->th_sum) {
744 			TCPSTAT_INC(tcps_rcvbadsum);
745 			goto drop;
746 		}
747 	}
748 #endif /* INET */
749 
750 	/*
751 	 * Check that TCP offset makes sense,
752 	 * pull out TCP options and adjust length.		XXX
753 	 */
754 	off = th->th_off << 2;
755 	if (off < sizeof (struct tcphdr) || off > tlen) {
756 		TCPSTAT_INC(tcps_rcvbadoff);
757 		goto drop;
758 	}
759 	tlen -= off;	/* tlen is used instead of ti->ti_len */
760 	if (off > sizeof (struct tcphdr)) {
761 #ifdef INET6
762 		if (isipv6) {
763 			IP6_EXTHDR_CHECK(m, off0, off, IPPROTO_DONE);
764 			ip6 = mtod(m, struct ip6_hdr *);
765 			th = (struct tcphdr *)((caddr_t)ip6 + off0);
766 		}
767 #endif
768 #if defined(INET) && defined(INET6)
769 		else
770 #endif
771 #ifdef INET
772 		{
773 			if (m->m_len < sizeof(struct ip) + off) {
774 				if ((m = m_pullup(m, sizeof (struct ip) + off))
775 				    == NULL) {
776 					TCPSTAT_INC(tcps_rcvshort);
777 					return (IPPROTO_DONE);
778 				}
779 				ip = mtod(m, struct ip *);
780 				th = (struct tcphdr *)((caddr_t)ip + off0);
781 			}
782 		}
783 #endif
784 		optlen = off - sizeof (struct tcphdr);
785 		optp = (u_char *)(th + 1);
786 	}
787 	thflags = th->th_flags;
788 
789 	/*
790 	 * Convert TCP protocol specific fields to host format.
791 	 */
792 	tcp_fields_to_host(th);
793 
794 	/*
795 	 * Delay dropping TCP, IP headers, IPv6 ext headers, and TCP options.
796 	 */
797 	drop_hdrlen = off0 + off;
798 
799 	/*
800 	 * Locate pcb for segment; if we're likely to add or remove a
801 	 * connection then first acquire pcbinfo lock.  There are three cases
802 	 * where we might discover later we need a write lock despite the
803 	 * flags: ACKs moving a connection out of the syncache, ACKs for a
804 	 * connection in TIMEWAIT and SYNs not targeting a listening socket.
805 	 */
806 	if ((thflags & (TH_FIN | TH_RST)) != 0) {
807 		INP_INFO_RLOCK(&V_tcbinfo);
808 		ti_locked = TI_RLOCKED;
809 	} else
810 		ti_locked = TI_UNLOCKED;
811 
812 	/*
813 	 * Grab info from PACKET_TAG_IPFORWARD tag prepended to the chain.
814 	 */
815         if (
816 #ifdef INET6
817 	    (isipv6 && (m->m_flags & M_IP6_NEXTHOP))
818 #ifdef INET
819 	    || (!isipv6 && (m->m_flags & M_IP_NEXTHOP))
820 #endif
821 #endif
822 #if defined(INET) && !defined(INET6)
823 	    (m->m_flags & M_IP_NEXTHOP)
824 #endif
825 	    )
826 		fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
827 
828 findpcb:
829 #ifdef INVARIANTS
830 	if (ti_locked == TI_RLOCKED) {
831 		INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
832 	} else {
833 		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
834 	}
835 #endif
836 #ifdef INET6
837 	if (isipv6 && fwd_tag != NULL) {
838 		struct sockaddr_in6 *next_hop6;
839 
840 		next_hop6 = (struct sockaddr_in6 *)(fwd_tag + 1);
841 		/*
842 		 * Transparently forwarded. Pretend to be the destination.
843 		 * Already got one like this?
844 		 */
845 		inp = in6_pcblookup_mbuf(&V_tcbinfo,
846 		    &ip6->ip6_src, th->th_sport, &ip6->ip6_dst, th->th_dport,
847 		    INPLOOKUP_WLOCKPCB, m->m_pkthdr.rcvif, m);
848 		if (!inp) {
849 			/*
850 			 * It's new.  Try to find the ambushing socket.
851 			 * Because we've rewritten the destination address,
852 			 * any hardware-generated hash is ignored.
853 			 */
854 			inp = in6_pcblookup(&V_tcbinfo, &ip6->ip6_src,
855 			    th->th_sport, &next_hop6->sin6_addr,
856 			    next_hop6->sin6_port ? ntohs(next_hop6->sin6_port) :
857 			    th->th_dport, INPLOOKUP_WILDCARD |
858 			    INPLOOKUP_WLOCKPCB, m->m_pkthdr.rcvif);
859 		}
860 	} else if (isipv6) {
861 		inp = in6_pcblookup_mbuf(&V_tcbinfo, &ip6->ip6_src,
862 		    th->th_sport, &ip6->ip6_dst, th->th_dport,
863 		    INPLOOKUP_WILDCARD | INPLOOKUP_WLOCKPCB,
864 		    m->m_pkthdr.rcvif, m);
865 	}
866 #endif /* INET6 */
867 #if defined(INET6) && defined(INET)
868 	else
869 #endif
870 #ifdef INET
871 	if (fwd_tag != NULL) {
872 		struct sockaddr_in *next_hop;
873 
874 		next_hop = (struct sockaddr_in *)(fwd_tag+1);
875 		/*
876 		 * Transparently forwarded. Pretend to be the destination.
877 		 * already got one like this?
878 		 */
879 		inp = in_pcblookup_mbuf(&V_tcbinfo, ip->ip_src, th->th_sport,
880 		    ip->ip_dst, th->th_dport, INPLOOKUP_WLOCKPCB,
881 		    m->m_pkthdr.rcvif, m);
882 		if (!inp) {
883 			/*
884 			 * It's new.  Try to find the ambushing socket.
885 			 * Because we've rewritten the destination address,
886 			 * any hardware-generated hash is ignored.
887 			 */
888 			inp = in_pcblookup(&V_tcbinfo, ip->ip_src,
889 			    th->th_sport, next_hop->sin_addr,
890 			    next_hop->sin_port ? ntohs(next_hop->sin_port) :
891 			    th->th_dport, INPLOOKUP_WILDCARD |
892 			    INPLOOKUP_WLOCKPCB, m->m_pkthdr.rcvif);
893 		}
894 	} else
895 		inp = in_pcblookup_mbuf(&V_tcbinfo, ip->ip_src,
896 		    th->th_sport, ip->ip_dst, th->th_dport,
897 		    INPLOOKUP_WILDCARD | INPLOOKUP_WLOCKPCB,
898 		    m->m_pkthdr.rcvif, m);
899 #endif /* INET */
900 
901 	/*
902 	 * If the INPCB does not exist then all data in the incoming
903 	 * segment is discarded and an appropriate RST is sent back.
904 	 * XXX MRT Send RST using which routing table?
905 	 */
906 	if (inp == NULL) {
907 		/*
908 		 * Log communication attempts to ports that are not
909 		 * in use.
910 		 */
911 		if ((tcp_log_in_vain == 1 && (thflags & TH_SYN)) ||
912 		    tcp_log_in_vain == 2) {
913 			if ((s = tcp_log_vain(NULL, th, (void *)ip, ip6)))
914 				log(LOG_INFO, "%s; %s: Connection attempt "
915 				    "to closed port\n", s, __func__);
916 		}
917 		/*
918 		 * When blackholing do not respond with a RST but
919 		 * completely ignore the segment and drop it.
920 		 */
921 		if ((V_blackhole == 1 && (thflags & TH_SYN)) ||
922 		    V_blackhole == 2)
923 			goto dropunlock;
924 
925 		rstreason = BANDLIM_RST_CLOSEDPORT;
926 		goto dropwithreset;
927 	}
928 	INP_WLOCK_ASSERT(inp);
929 	/*
930 	 * While waiting for inp lock during the lookup, another thread
931 	 * can have dropped the inpcb, in which case we need to loop back
932 	 * and try to find a new inpcb to deliver to.
933 	 */
934 	if (inp->inp_flags & INP_DROPPED) {
935 		INP_WUNLOCK(inp);
936 		inp = NULL;
937 		goto findpcb;
938 	}
939 	if ((inp->inp_flowtype == M_HASHTYPE_NONE) &&
940 	    (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) &&
941 	    ((inp->inp_socket == NULL) ||
942 	    (inp->inp_socket->so_options & SO_ACCEPTCONN) == 0)) {
943 		inp->inp_flowid = m->m_pkthdr.flowid;
944 		inp->inp_flowtype = M_HASHTYPE_GET(m);
945 	}
946 #ifdef IPSEC
947 #ifdef INET6
948 	if (isipv6 && ipsec6_in_reject(m, inp)) {
949 		goto dropunlock;
950 	} else
951 #endif /* INET6 */
952 	if (ipsec4_in_reject(m, inp) != 0) {
953 		goto dropunlock;
954 	}
955 #endif /* IPSEC */
956 
957 	/*
958 	 * Check the minimum TTL for socket.
959 	 */
960 	if (inp->inp_ip_minttl != 0) {
961 #ifdef INET6
962 		if (isipv6) {
963 			if (inp->inp_ip_minttl > ip6->ip6_hlim)
964 				goto dropunlock;
965 		} else
966 #endif
967 		if (inp->inp_ip_minttl > ip->ip_ttl)
968 			goto dropunlock;
969 	}
970 
971 	/*
972 	 * A previous connection in TIMEWAIT state is supposed to catch stray
973 	 * or duplicate segments arriving late.  If this segment was a
974 	 * legitimate new connection attempt, the old INPCB gets removed and
975 	 * we can try again to find a listening socket.
976 	 *
977 	 * At this point, due to earlier optimism, we may hold only an inpcb
978 	 * lock, and not the inpcbinfo write lock.  If so, we need to try to
979 	 * acquire it, or if that fails, acquire a reference on the inpcb,
980 	 * drop all locks, acquire a global write lock, and then re-acquire
981 	 * the inpcb lock.  We may at that point discover that another thread
982 	 * has tried to free the inpcb, in which case we need to loop back
983 	 * and try to find a new inpcb to deliver to.
984 	 *
985 	 * XXXRW: It may be time to rethink timewait locking.
986 	 */
987 relocked:
988 	if (inp->inp_flags & INP_TIMEWAIT) {
989 		if (ti_locked == TI_UNLOCKED) {
990 			if (INP_INFO_TRY_RLOCK(&V_tcbinfo) == 0) {
991 				in_pcbref(inp);
992 				INP_WUNLOCK(inp);
993 				INP_INFO_RLOCK(&V_tcbinfo);
994 				ti_locked = TI_RLOCKED;
995 				INP_WLOCK(inp);
996 				if (in_pcbrele_wlocked(inp)) {
997 					inp = NULL;
998 					goto findpcb;
999 				} else if (inp->inp_flags & INP_DROPPED) {
1000 					INP_WUNLOCK(inp);
1001 					inp = NULL;
1002 					goto findpcb;
1003 				}
1004 			} else
1005 				ti_locked = TI_RLOCKED;
1006 		}
1007 		INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
1008 
1009 		if (thflags & TH_SYN)
1010 			tcp_dooptions(&to, optp, optlen, TO_SYN);
1011 		/*
1012 		 * NB: tcp_twcheck unlocks the INP and frees the mbuf.
1013 		 */
1014 		if (tcp_twcheck(inp, &to, th, m, tlen))
1015 			goto findpcb;
1016 		INP_INFO_RUNLOCK(&V_tcbinfo);
1017 		return (IPPROTO_DONE);
1018 	}
1019 	/*
1020 	 * The TCPCB may no longer exist if the connection is winding
1021 	 * down or it is in the CLOSED state.  Either way we drop the
1022 	 * segment and send an appropriate response.
1023 	 */
1024 	tp = intotcpcb(inp);
1025 	if (tp == NULL || tp->t_state == TCPS_CLOSED) {
1026 		rstreason = BANDLIM_RST_CLOSEDPORT;
1027 		goto dropwithreset;
1028 	}
1029 
1030 #ifdef TCP_OFFLOAD
1031 	if (tp->t_flags & TF_TOE) {
1032 		tcp_offload_input(tp, m);
1033 		m = NULL;	/* consumed by the TOE driver */
1034 		goto dropunlock;
1035 	}
1036 #endif
1037 
1038 	/*
1039 	 * We've identified a valid inpcb, but it could be that we need an
1040 	 * inpcbinfo write lock but don't hold it.  In this case, attempt to
1041 	 * acquire using the same strategy as the TIMEWAIT case above.  If we
1042 	 * relock, we have to jump back to 'relocked' as the connection might
1043 	 * now be in TIMEWAIT.
1044 	 */
1045 #ifdef INVARIANTS
1046 	if ((thflags & (TH_FIN | TH_RST)) != 0)
1047 		INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
1048 #endif
1049 	if (!((tp->t_state == TCPS_ESTABLISHED && (thflags & TH_SYN) == 0) ||
1050 	      (tp->t_state == TCPS_LISTEN && (thflags & TH_SYN) &&
1051 	       !IS_FASTOPEN(tp->t_flags)))) {
1052 		if (ti_locked == TI_UNLOCKED) {
1053 			if (INP_INFO_TRY_RLOCK(&V_tcbinfo) == 0) {
1054 				in_pcbref(inp);
1055 				INP_WUNLOCK(inp);
1056 				INP_INFO_RLOCK(&V_tcbinfo);
1057 				ti_locked = TI_RLOCKED;
1058 				INP_WLOCK(inp);
1059 				if (in_pcbrele_wlocked(inp)) {
1060 					inp = NULL;
1061 					goto findpcb;
1062 				} else if (inp->inp_flags & INP_DROPPED) {
1063 					INP_WUNLOCK(inp);
1064 					inp = NULL;
1065 					goto findpcb;
1066 				}
1067 				goto relocked;
1068 			} else
1069 				ti_locked = TI_RLOCKED;
1070 		}
1071 		INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
1072 	}
1073 
1074 #ifdef MAC
1075 	INP_WLOCK_ASSERT(inp);
1076 	if (mac_inpcb_check_deliver(inp, m))
1077 		goto dropunlock;
1078 #endif
1079 	so = inp->inp_socket;
1080 	KASSERT(so != NULL, ("%s: so == NULL", __func__));
1081 #ifdef TCPDEBUG
1082 	if (so->so_options & SO_DEBUG) {
1083 		ostate = tp->t_state;
1084 #ifdef INET6
1085 		if (isipv6) {
1086 			bcopy((char *)ip6, (char *)tcp_saveipgen, sizeof(*ip6));
1087 		} else
1088 #endif
1089 			bcopy((char *)ip, (char *)tcp_saveipgen, sizeof(*ip));
1090 		tcp_savetcp = *th;
1091 	}
1092 #endif /* TCPDEBUG */
1093 	/*
1094 	 * When the socket is accepting connections (the INPCB is in LISTEN
1095 	 * state) we look into the SYN cache if this is a new connection
1096 	 * attempt or the completion of a previous one.
1097 	 */
1098 	KASSERT(tp->t_state == TCPS_LISTEN || !(so->so_options & SO_ACCEPTCONN),
1099 	    ("%s: so accepting but tp %p not listening", __func__, tp));
1100 	if (tp->t_state == TCPS_LISTEN && (so->so_options & SO_ACCEPTCONN)) {
1101 		struct in_conninfo inc;
1102 
1103 		bzero(&inc, sizeof(inc));
1104 #ifdef INET6
1105 		if (isipv6) {
1106 			inc.inc_flags |= INC_ISIPV6;
1107 			inc.inc6_faddr = ip6->ip6_src;
1108 			inc.inc6_laddr = ip6->ip6_dst;
1109 		} else
1110 #endif
1111 		{
1112 			inc.inc_faddr = ip->ip_src;
1113 			inc.inc_laddr = ip->ip_dst;
1114 		}
1115 		inc.inc_fport = th->th_sport;
1116 		inc.inc_lport = th->th_dport;
1117 		inc.inc_fibnum = so->so_fibnum;
1118 
1119 		/*
1120 		 * Check for an existing connection attempt in syncache if
1121 		 * the flag is only ACK.  A successful lookup creates a new
1122 		 * socket appended to the listen queue in SYN_RECEIVED state.
1123 		 */
1124 		if ((thflags & (TH_RST|TH_ACK|TH_SYN)) == TH_ACK) {
1125 
1126 			INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
1127 			/*
1128 			 * Parse the TCP options here because
1129 			 * syncookies need access to the reflected
1130 			 * timestamp.
1131 			 */
1132 			tcp_dooptions(&to, optp, optlen, 0);
1133 			/*
1134 			 * NB: syncache_expand() doesn't unlock
1135 			 * inp and tcpinfo locks.
1136 			 */
1137 			if (!syncache_expand(&inc, &to, th, &so, m)) {
1138 				/*
1139 				 * No syncache entry or ACK was not
1140 				 * for our SYN/ACK.  Send a RST.
1141 				 * NB: syncache did its own logging
1142 				 * of the failure cause.
1143 				 */
1144 				rstreason = BANDLIM_RST_OPENPORT;
1145 				goto dropwithreset;
1146 			}
1147 #ifdef TCP_RFC7413
1148 tfo_socket_result:
1149 #endif
1150 			if (so == NULL) {
1151 				/*
1152 				 * We completed the 3-way handshake
1153 				 * but could not allocate a socket
1154 				 * either due to memory shortage,
1155 				 * listen queue length limits or
1156 				 * global socket limits.  Send RST
1157 				 * or wait and have the remote end
1158 				 * retransmit the ACK for another
1159 				 * try.
1160 				 */
1161 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1162 					log(LOG_DEBUG, "%s; %s: Listen socket: "
1163 					    "Socket allocation failed due to "
1164 					    "limits or memory shortage, %s\n",
1165 					    s, __func__,
1166 					    V_tcp_sc_rst_sock_fail ?
1167 					    "sending RST" : "try again");
1168 				if (V_tcp_sc_rst_sock_fail) {
1169 					rstreason = BANDLIM_UNLIMITED;
1170 					goto dropwithreset;
1171 				} else
1172 					goto dropunlock;
1173 			}
1174 			/*
1175 			 * Socket is created in state SYN_RECEIVED.
1176 			 * Unlock the listen socket, lock the newly
1177 			 * created socket and update the tp variable.
1178 			 */
1179 			INP_WUNLOCK(inp);	/* listen socket */
1180 			inp = sotoinpcb(so);
1181 			/*
1182 			 * New connection inpcb is already locked by
1183 			 * syncache_expand().
1184 			 */
1185 			INP_WLOCK_ASSERT(inp);
1186 			tp = intotcpcb(inp);
1187 			KASSERT(tp->t_state == TCPS_SYN_RECEIVED,
1188 			    ("%s: ", __func__));
1189 #ifdef TCP_SIGNATURE
1190 			if (sig_checked == 0)  {
1191 				tcp_dooptions(&to, optp, optlen,
1192 				    (thflags & TH_SYN) ? TO_SYN : 0);
1193 				if (!tcp_signature_verify_input(m, off0, tlen,
1194 				    optlen, &to, th, tp->t_flags)) {
1195 
1196 					/*
1197 					 * In SYN_SENT state if it receives an
1198 					 * RST, it is allowed for further
1199 					 * processing.
1200 					 */
1201 					if ((thflags & TH_RST) == 0 ||
1202 					    (tp->t_state == TCPS_SYN_SENT) == 0)
1203 						goto dropunlock;
1204 				}
1205 				sig_checked = 1;
1206 			}
1207 #endif
1208 
1209 			/*
1210 			 * Process the segment and the data it
1211 			 * contains.  tcp_do_segment() consumes
1212 			 * the mbuf chain and unlocks the inpcb.
1213 			 */
1214 			tp->t_fb->tfb_tcp_do_segment(m, th, so, tp, drop_hdrlen, tlen,
1215 			    iptos, ti_locked);
1216 			INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1217 			return (IPPROTO_DONE);
1218 		}
1219 		/*
1220 		 * Segment flag validation for new connection attempts:
1221 		 *
1222 		 * Our (SYN|ACK) response was rejected.
1223 		 * Check with syncache and remove entry to prevent
1224 		 * retransmits.
1225 		 *
1226 		 * NB: syncache_chkrst does its own logging of failure
1227 		 * causes.
1228 		 */
1229 		if (thflags & TH_RST) {
1230 			syncache_chkrst(&inc, th);
1231 			goto dropunlock;
1232 		}
1233 		/*
1234 		 * We can't do anything without SYN.
1235 		 */
1236 		if ((thflags & TH_SYN) == 0) {
1237 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1238 				log(LOG_DEBUG, "%s; %s: Listen socket: "
1239 				    "SYN is missing, segment ignored\n",
1240 				    s, __func__);
1241 			TCPSTAT_INC(tcps_badsyn);
1242 			goto dropunlock;
1243 		}
1244 		/*
1245 		 * (SYN|ACK) is bogus on a listen socket.
1246 		 */
1247 		if (thflags & TH_ACK) {
1248 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1249 				log(LOG_DEBUG, "%s; %s: Listen socket: "
1250 				    "SYN|ACK invalid, segment rejected\n",
1251 				    s, __func__);
1252 			syncache_badack(&inc);	/* XXX: Not needed! */
1253 			TCPSTAT_INC(tcps_badsyn);
1254 			rstreason = BANDLIM_RST_OPENPORT;
1255 			goto dropwithreset;
1256 		}
1257 		/*
1258 		 * If the drop_synfin option is enabled, drop all
1259 		 * segments with both the SYN and FIN bits set.
1260 		 * This prevents e.g. nmap from identifying the
1261 		 * TCP/IP stack.
1262 		 * XXX: Poor reasoning.  nmap has other methods
1263 		 * and is constantly refining its stack detection
1264 		 * strategies.
1265 		 * XXX: This is a violation of the TCP specification
1266 		 * and was used by RFC1644.
1267 		 */
1268 		if ((thflags & TH_FIN) && V_drop_synfin) {
1269 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1270 				log(LOG_DEBUG, "%s; %s: Listen socket: "
1271 				    "SYN|FIN segment ignored (based on "
1272 				    "sysctl setting)\n", s, __func__);
1273 			TCPSTAT_INC(tcps_badsyn);
1274 			goto dropunlock;
1275 		}
1276 		/*
1277 		 * Segment's flags are (SYN) or (SYN|FIN).
1278 		 *
1279 		 * TH_PUSH, TH_URG, TH_ECE, TH_CWR are ignored
1280 		 * as they do not affect the state of the TCP FSM.
1281 		 * The data pointed to by TH_URG and th_urp is ignored.
1282 		 */
1283 		KASSERT((thflags & (TH_RST|TH_ACK)) == 0,
1284 		    ("%s: Listen socket: TH_RST or TH_ACK set", __func__));
1285 		KASSERT(thflags & (TH_SYN),
1286 		    ("%s: Listen socket: TH_SYN not set", __func__));
1287 #ifdef INET6
1288 		/*
1289 		 * If deprecated address is forbidden,
1290 		 * we do not accept SYN to deprecated interface
1291 		 * address to prevent any new inbound connection from
1292 		 * getting established.
1293 		 * When we do not accept SYN, we send a TCP RST,
1294 		 * with deprecated source address (instead of dropping
1295 		 * it).  We compromise it as it is much better for peer
1296 		 * to send a RST, and RST will be the final packet
1297 		 * for the exchange.
1298 		 *
1299 		 * If we do not forbid deprecated addresses, we accept
1300 		 * the SYN packet.  RFC2462 does not suggest dropping
1301 		 * SYN in this case.
1302 		 * If we decipher RFC2462 5.5.4, it says like this:
1303 		 * 1. use of deprecated addr with existing
1304 		 *    communication is okay - "SHOULD continue to be
1305 		 *    used"
1306 		 * 2. use of it with new communication:
1307 		 *   (2a) "SHOULD NOT be used if alternate address
1308 		 *        with sufficient scope is available"
1309 		 *   (2b) nothing mentioned otherwise.
1310 		 * Here we fall into (2b) case as we have no choice in
1311 		 * our source address selection - we must obey the peer.
1312 		 *
1313 		 * The wording in RFC2462 is confusing, and there are
1314 		 * multiple description text for deprecated address
1315 		 * handling - worse, they are not exactly the same.
1316 		 * I believe 5.5.4 is the best one, so we follow 5.5.4.
1317 		 */
1318 		if (isipv6 && !V_ip6_use_deprecated) {
1319 			struct in6_ifaddr *ia6;
1320 
1321 			ia6 = in6ifa_ifwithaddr(&ip6->ip6_dst, 0 /* XXX */);
1322 			if (ia6 != NULL &&
1323 			    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
1324 				ifa_free(&ia6->ia_ifa);
1325 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1326 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1327 					"Connection attempt to deprecated "
1328 					"IPv6 address rejected\n",
1329 					s, __func__);
1330 				rstreason = BANDLIM_RST_OPENPORT;
1331 				goto dropwithreset;
1332 			}
1333 			if (ia6)
1334 				ifa_free(&ia6->ia_ifa);
1335 		}
1336 #endif /* INET6 */
1337 		/*
1338 		 * Basic sanity checks on incoming SYN requests:
1339 		 *   Don't respond if the destination is a link layer
1340 		 *	broadcast according to RFC1122 4.2.3.10, p. 104.
1341 		 *   If it is from this socket it must be forged.
1342 		 *   Don't respond if the source or destination is a
1343 		 *	global or subnet broad- or multicast address.
1344 		 *   Note that it is quite possible to receive unicast
1345 		 *	link-layer packets with a broadcast IP address. Use
1346 		 *	in_broadcast() to find them.
1347 		 */
1348 		if (m->m_flags & (M_BCAST|M_MCAST)) {
1349 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1350 			    log(LOG_DEBUG, "%s; %s: Listen socket: "
1351 				"Connection attempt from broad- or multicast "
1352 				"link layer address ignored\n", s, __func__);
1353 			goto dropunlock;
1354 		}
1355 #ifdef INET6
1356 		if (isipv6) {
1357 			if (th->th_dport == th->th_sport &&
1358 			    IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst, &ip6->ip6_src)) {
1359 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1360 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1361 					"Connection attempt to/from self "
1362 					"ignored\n", s, __func__);
1363 				goto dropunlock;
1364 			}
1365 			if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
1366 			    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
1367 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1368 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1369 					"Connection attempt from/to multicast "
1370 					"address ignored\n", s, __func__);
1371 				goto dropunlock;
1372 			}
1373 		}
1374 #endif
1375 #if defined(INET) && defined(INET6)
1376 		else
1377 #endif
1378 #ifdef INET
1379 		{
1380 			if (th->th_dport == th->th_sport &&
1381 			    ip->ip_dst.s_addr == ip->ip_src.s_addr) {
1382 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1383 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1384 					"Connection attempt from/to self "
1385 					"ignored\n", s, __func__);
1386 				goto dropunlock;
1387 			}
1388 			if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
1389 			    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
1390 			    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
1391 			    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif)) {
1392 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1393 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1394 					"Connection attempt from/to broad- "
1395 					"or multicast address ignored\n",
1396 					s, __func__);
1397 				goto dropunlock;
1398 			}
1399 		}
1400 #endif
1401 		/*
1402 		 * SYN appears to be valid.  Create compressed TCP state
1403 		 * for syncache.
1404 		 */
1405 #ifdef TCPDEBUG
1406 		if (so->so_options & SO_DEBUG)
1407 			tcp_trace(TA_INPUT, ostate, tp,
1408 			    (void *)tcp_saveipgen, &tcp_savetcp, 0);
1409 #endif
1410 		TCP_PROBE3(debug__input, tp, th, mtod(m, const char *));
1411 		tcp_dooptions(&to, optp, optlen, TO_SYN);
1412 #ifdef TCP_RFC7413
1413 		if (syncache_add(&inc, &to, th, inp, &so, m, NULL, NULL))
1414 			goto tfo_socket_result;
1415 #else
1416 		syncache_add(&inc, &to, th, inp, &so, m, NULL, NULL);
1417 #endif
1418 		/*
1419 		 * Entry added to syncache and mbuf consumed.
1420 		 * Only the listen socket is unlocked by syncache_add().
1421 		 */
1422 		if (ti_locked == TI_RLOCKED) {
1423 			INP_INFO_RUNLOCK(&V_tcbinfo);
1424 			ti_locked = TI_UNLOCKED;
1425 		}
1426 		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1427 		return (IPPROTO_DONE);
1428 	} else if (tp->t_state == TCPS_LISTEN) {
1429 		/*
1430 		 * When a listen socket is torn down the SO_ACCEPTCONN
1431 		 * flag is removed first while connections are drained
1432 		 * from the accept queue in a unlock/lock cycle of the
1433 		 * ACCEPT_LOCK, opening a race condition allowing a SYN
1434 		 * attempt go through unhandled.
1435 		 */
1436 		goto dropunlock;
1437 	}
1438 
1439 #ifdef TCP_SIGNATURE
1440 	if (sig_checked == 0)  {
1441 		tcp_dooptions(&to, optp, optlen,
1442 		    (thflags & TH_SYN) ? TO_SYN : 0);
1443 		if (!tcp_signature_verify_input(m, off0, tlen, optlen, &to,
1444 		    th, tp->t_flags)) {
1445 
1446 			/*
1447 			 * In SYN_SENT state if it receives an RST, it is
1448 			 * allowed for further processing.
1449 			 */
1450 			if ((thflags & TH_RST) == 0 ||
1451 			    (tp->t_state == TCPS_SYN_SENT) == 0)
1452 				goto dropunlock;
1453 		}
1454 		sig_checked = 1;
1455 	}
1456 #endif
1457 
1458 	TCP_PROBE5(receive, NULL, tp, mtod(m, const char *), tp, th);
1459 
1460 	/*
1461 	 * Segment belongs to a connection in SYN_SENT, ESTABLISHED or later
1462 	 * state.  tcp_do_segment() always consumes the mbuf chain, unlocks
1463 	 * the inpcb, and unlocks pcbinfo.
1464 	 */
1465 	tp->t_fb->tfb_tcp_do_segment(m, th, so, tp, drop_hdrlen, tlen, iptos, ti_locked);
1466 	INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1467 	return (IPPROTO_DONE);
1468 
1469 dropwithreset:
1470 	TCP_PROBE5(receive, NULL, tp, mtod(m, const char *), tp, th);
1471 
1472 	if (ti_locked == TI_RLOCKED) {
1473 		INP_INFO_RUNLOCK(&V_tcbinfo);
1474 		ti_locked = TI_UNLOCKED;
1475 	}
1476 #ifdef INVARIANTS
1477 	else {
1478 		KASSERT(ti_locked == TI_UNLOCKED, ("%s: dropwithreset "
1479 		    "ti_locked: %d", __func__, ti_locked));
1480 		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1481 	}
1482 #endif
1483 
1484 	if (inp != NULL) {
1485 		tcp_dropwithreset(m, th, tp, tlen, rstreason);
1486 		INP_WUNLOCK(inp);
1487 	} else
1488 		tcp_dropwithreset(m, th, NULL, tlen, rstreason);
1489 	m = NULL;	/* mbuf chain got consumed. */
1490 	goto drop;
1491 
1492 dropunlock:
1493 	if (m != NULL)
1494 		TCP_PROBE5(receive, NULL, tp, mtod(m, const char *), tp, th);
1495 
1496 	if (ti_locked == TI_RLOCKED) {
1497 		INP_INFO_RUNLOCK(&V_tcbinfo);
1498 		ti_locked = TI_UNLOCKED;
1499 	}
1500 #ifdef INVARIANTS
1501 	else {
1502 		KASSERT(ti_locked == TI_UNLOCKED, ("%s: dropunlock "
1503 		    "ti_locked: %d", __func__, ti_locked));
1504 		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1505 	}
1506 #endif
1507 
1508 	if (inp != NULL)
1509 		INP_WUNLOCK(inp);
1510 
1511 drop:
1512 	INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1513 	if (s != NULL)
1514 		free(s, M_TCPLOG);
1515 	if (m != NULL)
1516 		m_freem(m);
1517 	return (IPPROTO_DONE);
1518 }
1519 
1520 void
1521 tcp_do_segment(struct mbuf *m, struct tcphdr *th, struct socket *so,
1522     struct tcpcb *tp, int drop_hdrlen, int tlen, uint8_t iptos,
1523     int ti_locked)
1524 {
1525 	int thflags, acked, ourfinisacked, needoutput = 0, sack_changed;
1526 	int rstreason, todrop, win;
1527 	uint32_t tiwin;
1528 	uint16_t nsegs;
1529 	char *s;
1530 	struct in_conninfo *inc;
1531 	struct mbuf *mfree;
1532 	struct tcpopt to;
1533 #ifdef TCP_RFC7413
1534 	int tfo_syn;
1535 #endif
1536 
1537 #ifdef TCPDEBUG
1538 	/*
1539 	 * The size of tcp_saveipgen must be the size of the max ip header,
1540 	 * now IPv6.
1541 	 */
1542 	u_char tcp_saveipgen[IP6_HDR_LEN];
1543 	struct tcphdr tcp_savetcp;
1544 	short ostate = 0;
1545 #endif
1546 	thflags = th->th_flags;
1547 	inc = &tp->t_inpcb->inp_inc;
1548 	tp->sackhint.last_sack_ack = 0;
1549 	sack_changed = 0;
1550 	nsegs = max(1, m->m_pkthdr.lro_nsegs);
1551 
1552 	/*
1553 	 * If this is either a state-changing packet or current state isn't
1554 	 * established, we require a write lock on tcbinfo.  Otherwise, we
1555 	 * allow the tcbinfo to be in either alocked or unlocked, as the
1556 	 * caller may have unnecessarily acquired a write lock due to a race.
1557 	 */
1558 	if ((thflags & (TH_SYN | TH_FIN | TH_RST)) != 0 ||
1559 	    tp->t_state != TCPS_ESTABLISHED) {
1560 		KASSERT(ti_locked == TI_RLOCKED, ("%s ti_locked %d for "
1561 		    "SYN/FIN/RST/!EST", __func__, ti_locked));
1562 		INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
1563 	} else {
1564 #ifdef INVARIANTS
1565 		if (ti_locked == TI_RLOCKED)
1566 			INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
1567 		else {
1568 			KASSERT(ti_locked == TI_UNLOCKED, ("%s: EST "
1569 			    "ti_locked: %d", __func__, ti_locked));
1570 			INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1571 		}
1572 #endif
1573 	}
1574 	INP_WLOCK_ASSERT(tp->t_inpcb);
1575 	KASSERT(tp->t_state > TCPS_LISTEN, ("%s: TCPS_LISTEN",
1576 	    __func__));
1577 	KASSERT(tp->t_state != TCPS_TIME_WAIT, ("%s: TCPS_TIME_WAIT",
1578 	    __func__));
1579 
1580 #ifdef TCPPCAP
1581 	/* Save segment, if requested. */
1582 	tcp_pcap_add(th, m, &(tp->t_inpkts));
1583 #endif
1584 
1585 	/*
1586 	 * Segment received on connection.
1587 	 * Reset idle time and keep-alive timer.
1588 	 * XXX: This should be done after segment
1589 	 * validation to ignore broken/spoofed segs.
1590 	 */
1591 	tp->t_rcvtime = ticks;
1592 
1593 	/*
1594 	 * Scale up the window into a 32-bit value.
1595 	 * For the SYN_SENT state the scale is zero.
1596 	 */
1597 	tiwin = th->th_win << tp->snd_scale;
1598 
1599 	/*
1600 	 * TCP ECN processing.
1601 	 */
1602 	if (tp->t_flags & TF_ECN_PERMIT) {
1603 		if (thflags & TH_CWR)
1604 			tp->t_flags &= ~TF_ECN_SND_ECE;
1605 		switch (iptos & IPTOS_ECN_MASK) {
1606 		case IPTOS_ECN_CE:
1607 			tp->t_flags |= TF_ECN_SND_ECE;
1608 			TCPSTAT_INC(tcps_ecn_ce);
1609 			break;
1610 		case IPTOS_ECN_ECT0:
1611 			TCPSTAT_INC(tcps_ecn_ect0);
1612 			break;
1613 		case IPTOS_ECN_ECT1:
1614 			TCPSTAT_INC(tcps_ecn_ect1);
1615 			break;
1616 		}
1617 
1618 		/* Process a packet differently from RFC3168. */
1619 		cc_ecnpkt_handler(tp, th, iptos);
1620 
1621 		/* Congestion experienced. */
1622 		if (thflags & TH_ECE) {
1623 			cc_cong_signal(tp, th, CC_ECN);
1624 		}
1625 	}
1626 
1627 	/*
1628 	 * Parse options on any incoming segment.
1629 	 */
1630 	tcp_dooptions(&to, (u_char *)(th + 1),
1631 	    (th->th_off << 2) - sizeof(struct tcphdr),
1632 	    (thflags & TH_SYN) ? TO_SYN : 0);
1633 
1634 	/*
1635 	 * If echoed timestamp is later than the current time,
1636 	 * fall back to non RFC1323 RTT calculation.  Normalize
1637 	 * timestamp if syncookies were used when this connection
1638 	 * was established.
1639 	 */
1640 	if ((to.to_flags & TOF_TS) && (to.to_tsecr != 0)) {
1641 		to.to_tsecr -= tp->ts_offset;
1642 		if (TSTMP_GT(to.to_tsecr, tcp_ts_getticks()))
1643 			to.to_tsecr = 0;
1644 	}
1645 	/*
1646 	 * If timestamps were negotiated during SYN/ACK they should
1647 	 * appear on every segment during this session and vice versa.
1648 	 */
1649 	if ((tp->t_flags & TF_RCVD_TSTMP) && !(to.to_flags & TOF_TS)) {
1650 		if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1651 			log(LOG_DEBUG, "%s; %s: Timestamp missing, "
1652 			    "no action\n", s, __func__);
1653 			free(s, M_TCPLOG);
1654 		}
1655 	}
1656 	if (!(tp->t_flags & TF_RCVD_TSTMP) && (to.to_flags & TOF_TS)) {
1657 		if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1658 			log(LOG_DEBUG, "%s; %s: Timestamp not expected, "
1659 			    "no action\n", s, __func__);
1660 			free(s, M_TCPLOG);
1661 		}
1662 	}
1663 
1664 	/*
1665 	 * Process options only when we get SYN/ACK back. The SYN case
1666 	 * for incoming connections is handled in tcp_syncache.
1667 	 * According to RFC1323 the window field in a SYN (i.e., a <SYN>
1668 	 * or <SYN,ACK>) segment itself is never scaled.
1669 	 * XXX this is traditional behavior, may need to be cleaned up.
1670 	 */
1671 	if (tp->t_state == TCPS_SYN_SENT && (thflags & TH_SYN)) {
1672 		if ((to.to_flags & TOF_SCALE) &&
1673 		    (tp->t_flags & TF_REQ_SCALE)) {
1674 			tp->t_flags |= TF_RCVD_SCALE;
1675 			tp->snd_scale = to.to_wscale;
1676 		}
1677 		/*
1678 		 * Initial send window.  It will be updated with
1679 		 * the next incoming segment to the scaled value.
1680 		 */
1681 		tp->snd_wnd = th->th_win;
1682 		if (to.to_flags & TOF_TS) {
1683 			tp->t_flags |= TF_RCVD_TSTMP;
1684 			tp->ts_recent = to.to_tsval;
1685 			tp->ts_recent_age = tcp_ts_getticks();
1686 		}
1687 		if (to.to_flags & TOF_MSS)
1688 			tcp_mss(tp, to.to_mss);
1689 		if ((tp->t_flags & TF_SACK_PERMIT) &&
1690 		    (to.to_flags & TOF_SACKPERM) == 0)
1691 			tp->t_flags &= ~TF_SACK_PERMIT;
1692 	}
1693 
1694 	/*
1695 	 * Header prediction: check for the two common cases
1696 	 * of a uni-directional data xfer.  If the packet has
1697 	 * no control flags, is in-sequence, the window didn't
1698 	 * change and we're not retransmitting, it's a
1699 	 * candidate.  If the length is zero and the ack moved
1700 	 * forward, we're the sender side of the xfer.  Just
1701 	 * free the data acked & wake any higher level process
1702 	 * that was blocked waiting for space.  If the length
1703 	 * is non-zero and the ack didn't move, we're the
1704 	 * receiver side.  If we're getting packets in-order
1705 	 * (the reassembly queue is empty), add the data to
1706 	 * the socket buffer and note that we need a delayed ack.
1707 	 * Make sure that the hidden state-flags are also off.
1708 	 * Since we check for TCPS_ESTABLISHED first, it can only
1709 	 * be TH_NEEDSYN.
1710 	 */
1711 	if (tp->t_state == TCPS_ESTABLISHED &&
1712 	    th->th_seq == tp->rcv_nxt &&
1713 	    (thflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
1714 	    tp->snd_nxt == tp->snd_max &&
1715 	    tiwin && tiwin == tp->snd_wnd &&
1716 	    ((tp->t_flags & (TF_NEEDSYN|TF_NEEDFIN)) == 0) &&
1717 	    LIST_EMPTY(&tp->t_segq) &&
1718 	    ((to.to_flags & TOF_TS) == 0 ||
1719 	     TSTMP_GEQ(to.to_tsval, tp->ts_recent)) ) {
1720 
1721 		/*
1722 		 * If last ACK falls within this segment's sequence numbers,
1723 		 * record the timestamp.
1724 		 * NOTE that the test is modified according to the latest
1725 		 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
1726 		 */
1727 		if ((to.to_flags & TOF_TS) != 0 &&
1728 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1729 			tp->ts_recent_age = tcp_ts_getticks();
1730 			tp->ts_recent = to.to_tsval;
1731 		}
1732 
1733 		if (tlen == 0) {
1734 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
1735 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
1736 			    !IN_RECOVERY(tp->t_flags) &&
1737 			    (to.to_flags & TOF_SACK) == 0 &&
1738 			    TAILQ_EMPTY(&tp->snd_holes)) {
1739 				/*
1740 				 * This is a pure ack for outstanding data.
1741 				 */
1742 				if (ti_locked == TI_RLOCKED)
1743 					INP_INFO_RUNLOCK(&V_tcbinfo);
1744 				ti_locked = TI_UNLOCKED;
1745 
1746 				TCPSTAT_INC(tcps_predack);
1747 
1748 				/*
1749 				 * "bad retransmit" recovery.
1750 				 */
1751 				if (tp->t_rxtshift == 1 &&
1752 				    tp->t_flags & TF_PREVVALID &&
1753 				    (int)(ticks - tp->t_badrxtwin) < 0) {
1754 					cc_cong_signal(tp, th, CC_RTO_ERR);
1755 				}
1756 
1757 				/*
1758 				 * Recalculate the transmit timer / rtt.
1759 				 *
1760 				 * Some boxes send broken timestamp replies
1761 				 * during the SYN+ACK phase, ignore
1762 				 * timestamps of 0 or we could calculate a
1763 				 * huge RTT and blow up the retransmit timer.
1764 				 */
1765 				if ((to.to_flags & TOF_TS) != 0 &&
1766 				    to.to_tsecr) {
1767 					uint32_t t;
1768 
1769 					t = tcp_ts_getticks() - to.to_tsecr;
1770 					if (!tp->t_rttlow || tp->t_rttlow > t)
1771 						tp->t_rttlow = t;
1772 					tcp_xmit_timer(tp,
1773 					    TCP_TS_TO_TICKS(t) + 1);
1774 				} else if (tp->t_rtttime &&
1775 				    SEQ_GT(th->th_ack, tp->t_rtseq)) {
1776 					if (!tp->t_rttlow ||
1777 					    tp->t_rttlow > ticks - tp->t_rtttime)
1778 						tp->t_rttlow = ticks - tp->t_rtttime;
1779 					tcp_xmit_timer(tp,
1780 							ticks - tp->t_rtttime);
1781 				}
1782 				acked = BYTES_THIS_ACK(tp, th);
1783 
1784 #ifdef TCP_HHOOK
1785 				/* Run HHOOK_TCP_ESTABLISHED_IN helper hooks. */
1786 				hhook_run_tcp_est_in(tp, th, &to);
1787 #endif
1788 
1789 				TCPSTAT_ADD(tcps_rcvackpack, nsegs);
1790 				TCPSTAT_ADD(tcps_rcvackbyte, acked);
1791 				sbdrop(&so->so_snd, acked);
1792 				if (SEQ_GT(tp->snd_una, tp->snd_recover) &&
1793 				    SEQ_LEQ(th->th_ack, tp->snd_recover))
1794 					tp->snd_recover = th->th_ack - 1;
1795 
1796 				/*
1797 				 * Let the congestion control algorithm update
1798 				 * congestion control related information. This
1799 				 * typically means increasing the congestion
1800 				 * window.
1801 				 */
1802 				cc_ack_received(tp, th, nsegs, CC_ACK);
1803 
1804 				tp->snd_una = th->th_ack;
1805 				/*
1806 				 * Pull snd_wl2 up to prevent seq wrap relative
1807 				 * to th_ack.
1808 				 */
1809 				tp->snd_wl2 = th->th_ack;
1810 				tp->t_dupacks = 0;
1811 				m_freem(m);
1812 
1813 				/*
1814 				 * If all outstanding data are acked, stop
1815 				 * retransmit timer, otherwise restart timer
1816 				 * using current (possibly backed-off) value.
1817 				 * If process is waiting for space,
1818 				 * wakeup/selwakeup/signal.  If data
1819 				 * are ready to send, let tcp_output
1820 				 * decide between more output or persist.
1821 				 */
1822 #ifdef TCPDEBUG
1823 				if (so->so_options & SO_DEBUG)
1824 					tcp_trace(TA_INPUT, ostate, tp,
1825 					    (void *)tcp_saveipgen,
1826 					    &tcp_savetcp, 0);
1827 #endif
1828 				TCP_PROBE3(debug__input, tp, th,
1829 					mtod(m, const char *));
1830 				if (tp->snd_una == tp->snd_max)
1831 					tcp_timer_activate(tp, TT_REXMT, 0);
1832 				else if (!tcp_timer_active(tp, TT_PERSIST))
1833 					tcp_timer_activate(tp, TT_REXMT,
1834 						      tp->t_rxtcur);
1835 				sowwakeup(so);
1836 				if (sbavail(&so->so_snd))
1837 					(void) tp->t_fb->tfb_tcp_output(tp);
1838 				goto check_delack;
1839 			}
1840 		} else if (th->th_ack == tp->snd_una &&
1841 		    tlen <= sbspace(&so->so_rcv)) {
1842 			int newsize = 0;	/* automatic sockbuf scaling */
1843 
1844 			/*
1845 			 * This is a pure, in-sequence data packet with
1846 			 * nothing on the reassembly queue and we have enough
1847 			 * buffer space to take it.
1848 			 */
1849 			if (ti_locked == TI_RLOCKED)
1850 				INP_INFO_RUNLOCK(&V_tcbinfo);
1851 			ti_locked = TI_UNLOCKED;
1852 
1853 			/* Clean receiver SACK report if present */
1854 			if ((tp->t_flags & TF_SACK_PERMIT) && tp->rcv_numsacks)
1855 				tcp_clean_sackreport(tp);
1856 			TCPSTAT_INC(tcps_preddat);
1857 			tp->rcv_nxt += tlen;
1858 			/*
1859 			 * Pull snd_wl1 up to prevent seq wrap relative to
1860 			 * th_seq.
1861 			 */
1862 			tp->snd_wl1 = th->th_seq;
1863 			/*
1864 			 * Pull rcv_up up to prevent seq wrap relative to
1865 			 * rcv_nxt.
1866 			 */
1867 			tp->rcv_up = tp->rcv_nxt;
1868 			TCPSTAT_ADD(tcps_rcvpack, nsegs);
1869 			TCPSTAT_ADD(tcps_rcvbyte, tlen);
1870 #ifdef TCPDEBUG
1871 			if (so->so_options & SO_DEBUG)
1872 				tcp_trace(TA_INPUT, ostate, tp,
1873 				    (void *)tcp_saveipgen, &tcp_savetcp, 0);
1874 #endif
1875 			TCP_PROBE3(debug__input, tp, th, mtod(m, const char *));
1876 
1877 		/*
1878 		 * Automatic sizing of receive socket buffer.  Often the send
1879 		 * buffer size is not optimally adjusted to the actual network
1880 		 * conditions at hand (delay bandwidth product).  Setting the
1881 		 * buffer size too small limits throughput on links with high
1882 		 * bandwidth and high delay (eg. trans-continental/oceanic links).
1883 		 *
1884 		 * On the receive side the socket buffer memory is only rarely
1885 		 * used to any significant extent.  This allows us to be much
1886 		 * more aggressive in scaling the receive socket buffer.  For
1887 		 * the case that the buffer space is actually used to a large
1888 		 * extent and we run out of kernel memory we can simply drop
1889 		 * the new segments; TCP on the sender will just retransmit it
1890 		 * later.  Setting the buffer size too big may only consume too
1891 		 * much kernel memory if the application doesn't read() from
1892 		 * the socket or packet loss or reordering makes use of the
1893 		 * reassembly queue.
1894 		 *
1895 		 * The criteria to step up the receive buffer one notch are:
1896 		 *  1. Application has not set receive buffer size with
1897 		 *     SO_RCVBUF. Setting SO_RCVBUF clears SB_AUTOSIZE.
1898 		 *  2. the number of bytes received during the time it takes
1899 		 *     one timestamp to be reflected back to us (the RTT);
1900 		 *  3. received bytes per RTT is within seven eighth of the
1901 		 *     current socket buffer size;
1902 		 *  4. receive buffer size has not hit maximal automatic size;
1903 		 *
1904 		 * This algorithm does one step per RTT at most and only if
1905 		 * we receive a bulk stream w/o packet losses or reorderings.
1906 		 * Shrinking the buffer during idle times is not necessary as
1907 		 * it doesn't consume any memory when idle.
1908 		 *
1909 		 * TODO: Only step up if the application is actually serving
1910 		 * the buffer to better manage the socket buffer resources.
1911 		 */
1912 			if (V_tcp_do_autorcvbuf &&
1913 			    (to.to_flags & TOF_TS) &&
1914 			    to.to_tsecr &&
1915 			    (so->so_rcv.sb_flags & SB_AUTOSIZE)) {
1916 				if (TSTMP_GT(to.to_tsecr, tp->rfbuf_ts) &&
1917 				    to.to_tsecr - tp->rfbuf_ts < hz) {
1918 					if (tp->rfbuf_cnt >
1919 					    (so->so_rcv.sb_hiwat / 8 * 7) &&
1920 					    so->so_rcv.sb_hiwat <
1921 					    V_tcp_autorcvbuf_max) {
1922 						newsize =
1923 						    min(so->so_rcv.sb_hiwat +
1924 						    V_tcp_autorcvbuf_inc,
1925 						    V_tcp_autorcvbuf_max);
1926 					}
1927 					/* Start over with next RTT. */
1928 					tp->rfbuf_ts = 0;
1929 					tp->rfbuf_cnt = 0;
1930 				} else
1931 					tp->rfbuf_cnt += tlen;	/* add up */
1932 			}
1933 
1934 			/* Add data to socket buffer. */
1935 			SOCKBUF_LOCK(&so->so_rcv);
1936 			if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
1937 				m_freem(m);
1938 			} else {
1939 				/*
1940 				 * Set new socket buffer size.
1941 				 * Give up when limit is reached.
1942 				 */
1943 				if (newsize)
1944 					if (!sbreserve_locked(&so->so_rcv,
1945 					    newsize, so, NULL))
1946 						so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
1947 				m_adj(m, drop_hdrlen);	/* delayed header drop */
1948 				sbappendstream_locked(&so->so_rcv, m, 0);
1949 			}
1950 			/* NB: sorwakeup_locked() does an implicit unlock. */
1951 			sorwakeup_locked(so);
1952 			if (DELAY_ACK(tp, tlen)) {
1953 				tp->t_flags |= TF_DELACK;
1954 			} else {
1955 				tp->t_flags |= TF_ACKNOW;
1956 				tp->t_fb->tfb_tcp_output(tp);
1957 			}
1958 			goto check_delack;
1959 		}
1960 	}
1961 
1962 	/*
1963 	 * Calculate amount of space in receive window,
1964 	 * and then do TCP input processing.
1965 	 * Receive window is amount of space in rcv queue,
1966 	 * but not less than advertised window.
1967 	 */
1968 	win = sbspace(&so->so_rcv);
1969 	if (win < 0)
1970 		win = 0;
1971 	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1972 
1973 	/* Reset receive buffer auto scaling when not in bulk receive mode. */
1974 	tp->rfbuf_ts = 0;
1975 	tp->rfbuf_cnt = 0;
1976 
1977 	switch (tp->t_state) {
1978 
1979 	/*
1980 	 * If the state is SYN_RECEIVED:
1981 	 *	if seg contains an ACK, but not for our SYN/ACK, send a RST.
1982 	 */
1983 	case TCPS_SYN_RECEIVED:
1984 		if ((thflags & TH_ACK) &&
1985 		    (SEQ_LEQ(th->th_ack, tp->snd_una) ||
1986 		     SEQ_GT(th->th_ack, tp->snd_max))) {
1987 				rstreason = BANDLIM_RST_OPENPORT;
1988 				goto dropwithreset;
1989 		}
1990 #ifdef TCP_RFC7413
1991 		if (IS_FASTOPEN(tp->t_flags)) {
1992 			/*
1993 			 * When a TFO connection is in SYN_RECEIVED, the
1994 			 * only valid packets are the initial SYN, a
1995 			 * retransmit/copy of the initial SYN (possibly with
1996 			 * a subset of the original data), a valid ACK, a
1997 			 * FIN, or a RST.
1998 			 */
1999 			if ((thflags & (TH_SYN|TH_ACK)) == (TH_SYN|TH_ACK)) {
2000 				rstreason = BANDLIM_RST_OPENPORT;
2001 				goto dropwithreset;
2002 			} else if (thflags & TH_SYN) {
2003 				/* non-initial SYN is ignored */
2004 				if ((tcp_timer_active(tp, TT_DELACK) ||
2005 				     tcp_timer_active(tp, TT_REXMT)))
2006 					goto drop;
2007 			} else if (!(thflags & (TH_ACK|TH_FIN|TH_RST))) {
2008 				goto drop;
2009 			}
2010 		}
2011 #endif
2012 		break;
2013 
2014 	/*
2015 	 * If the state is SYN_SENT:
2016 	 *	if seg contains an ACK, but not for our SYN, drop the input.
2017 	 *	if seg contains a RST, then drop the connection.
2018 	 *	if seg does not contain SYN, then drop it.
2019 	 * Otherwise this is an acceptable SYN segment
2020 	 *	initialize tp->rcv_nxt and tp->irs
2021 	 *	if seg contains ack then advance tp->snd_una
2022 	 *	if seg contains an ECE and ECN support is enabled, the stream
2023 	 *	    is ECN capable.
2024 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
2025 	 *	arrange for segment to be acked (eventually)
2026 	 *	continue processing rest of data/controls, beginning with URG
2027 	 */
2028 	case TCPS_SYN_SENT:
2029 		if ((thflags & TH_ACK) &&
2030 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
2031 		     SEQ_GT(th->th_ack, tp->snd_max))) {
2032 			rstreason = BANDLIM_UNLIMITED;
2033 			goto dropwithreset;
2034 		}
2035 		if ((thflags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) {
2036 			TCP_PROBE5(connect__refused, NULL, tp,
2037 			    mtod(m, const char *), tp, th);
2038 			tp = tcp_drop(tp, ECONNREFUSED);
2039 		}
2040 		if (thflags & TH_RST)
2041 			goto drop;
2042 		if (!(thflags & TH_SYN))
2043 			goto drop;
2044 
2045 		tp->irs = th->th_seq;
2046 		tcp_rcvseqinit(tp);
2047 		if (thflags & TH_ACK) {
2048 			TCPSTAT_INC(tcps_connects);
2049 			soisconnected(so);
2050 #ifdef MAC
2051 			mac_socketpeer_set_from_mbuf(m, so);
2052 #endif
2053 			/* Do window scaling on this connection? */
2054 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2055 				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
2056 				tp->rcv_scale = tp->request_r_scale;
2057 			}
2058 			tp->rcv_adv += min(tp->rcv_wnd,
2059 			    TCP_MAXWIN << tp->rcv_scale);
2060 			tp->snd_una++;		/* SYN is acked */
2061 			/*
2062 			 * If there's data, delay ACK; if there's also a FIN
2063 			 * ACKNOW will be turned on later.
2064 			 */
2065 			if (DELAY_ACK(tp, tlen) && tlen != 0)
2066 				tcp_timer_activate(tp, TT_DELACK,
2067 				    tcp_delacktime);
2068 			else
2069 				tp->t_flags |= TF_ACKNOW;
2070 
2071 			if ((thflags & TH_ECE) && V_tcp_do_ecn) {
2072 				tp->t_flags |= TF_ECN_PERMIT;
2073 				TCPSTAT_INC(tcps_ecn_shs);
2074 			}
2075 
2076 			/*
2077 			 * Received <SYN,ACK> in SYN_SENT[*] state.
2078 			 * Transitions:
2079 			 *	SYN_SENT  --> ESTABLISHED
2080 			 *	SYN_SENT* --> FIN_WAIT_1
2081 			 */
2082 			tp->t_starttime = ticks;
2083 			if (tp->t_flags & TF_NEEDFIN) {
2084 				tcp_state_change(tp, TCPS_FIN_WAIT_1);
2085 				tp->t_flags &= ~TF_NEEDFIN;
2086 				thflags &= ~TH_SYN;
2087 			} else {
2088 				tcp_state_change(tp, TCPS_ESTABLISHED);
2089 				TCP_PROBE5(connect__established, NULL, tp,
2090 				    mtod(m, const char *), tp, th);
2091 				cc_conn_init(tp);
2092 				tcp_timer_activate(tp, TT_KEEP,
2093 				    TP_KEEPIDLE(tp));
2094 			}
2095 		} else {
2096 			/*
2097 			 * Received initial SYN in SYN-SENT[*] state =>
2098 			 * simultaneous open.
2099 			 * If it succeeds, connection is * half-synchronized.
2100 			 * Otherwise, do 3-way handshake:
2101 			 *        SYN-SENT -> SYN-RECEIVED
2102 			 *        SYN-SENT* -> SYN-RECEIVED*
2103 			 */
2104 			tp->t_flags |= (TF_ACKNOW | TF_NEEDSYN);
2105 			tcp_timer_activate(tp, TT_REXMT, 0);
2106 			tcp_state_change(tp, TCPS_SYN_RECEIVED);
2107 		}
2108 
2109 		KASSERT(ti_locked == TI_RLOCKED, ("%s: trimthenstep6: "
2110 		    "ti_locked %d", __func__, ti_locked));
2111 		INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
2112 		INP_WLOCK_ASSERT(tp->t_inpcb);
2113 
2114 		/*
2115 		 * Advance th->th_seq to correspond to first data byte.
2116 		 * If data, trim to stay within window,
2117 		 * dropping FIN if necessary.
2118 		 */
2119 		th->th_seq++;
2120 		if (tlen > tp->rcv_wnd) {
2121 			todrop = tlen - tp->rcv_wnd;
2122 			m_adj(m, -todrop);
2123 			tlen = tp->rcv_wnd;
2124 			thflags &= ~TH_FIN;
2125 			TCPSTAT_INC(tcps_rcvpackafterwin);
2126 			TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop);
2127 		}
2128 		tp->snd_wl1 = th->th_seq - 1;
2129 		tp->rcv_up = th->th_seq;
2130 		/*
2131 		 * Client side of transaction: already sent SYN and data.
2132 		 * If the remote host used T/TCP to validate the SYN,
2133 		 * our data will be ACK'd; if so, enter normal data segment
2134 		 * processing in the middle of step 5, ack processing.
2135 		 * Otherwise, goto step 6.
2136 		 */
2137 		if (thflags & TH_ACK)
2138 			goto process_ACK;
2139 
2140 		goto step6;
2141 
2142 	/*
2143 	 * If the state is LAST_ACK or CLOSING or TIME_WAIT:
2144 	 *      do normal processing.
2145 	 *
2146 	 * NB: Leftover from RFC1644 T/TCP.  Cases to be reused later.
2147 	 */
2148 	case TCPS_LAST_ACK:
2149 	case TCPS_CLOSING:
2150 		break;  /* continue normal processing */
2151 	}
2152 
2153 	/*
2154 	 * States other than LISTEN or SYN_SENT.
2155 	 * First check the RST flag and sequence number since reset segments
2156 	 * are exempt from the timestamp and connection count tests.  This
2157 	 * fixes a bug introduced by the Stevens, vol. 2, p. 960 bugfix
2158 	 * below which allowed reset segments in half the sequence space
2159 	 * to fall though and be processed (which gives forged reset
2160 	 * segments with a random sequence number a 50 percent chance of
2161 	 * killing a connection).
2162 	 * Then check timestamp, if present.
2163 	 * Then check the connection count, if present.
2164 	 * Then check that at least some bytes of segment are within
2165 	 * receive window.  If segment begins before rcv_nxt,
2166 	 * drop leading data (and SYN); if nothing left, just ack.
2167 	 */
2168 	if (thflags & TH_RST) {
2169 		/*
2170 		 * RFC5961 Section 3.2
2171 		 *
2172 		 * - RST drops connection only if SEG.SEQ == RCV.NXT.
2173 		 * - If RST is in window, we send challenge ACK.
2174 		 *
2175 		 * Note: to take into account delayed ACKs, we should
2176 		 *   test against last_ack_sent instead of rcv_nxt.
2177 		 * Note 2: we handle special case of closed window, not
2178 		 *   covered by the RFC.
2179 		 */
2180 		if ((SEQ_GEQ(th->th_seq, tp->last_ack_sent) &&
2181 		    SEQ_LT(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) ||
2182 		    (tp->rcv_wnd == 0 && tp->last_ack_sent == th->th_seq)) {
2183 
2184 			INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
2185 			KASSERT(ti_locked == TI_RLOCKED,
2186 			    ("%s: TH_RST ti_locked %d, th %p tp %p",
2187 			    __func__, ti_locked, th, tp));
2188 			KASSERT(tp->t_state != TCPS_SYN_SENT,
2189 			    ("%s: TH_RST for TCPS_SYN_SENT th %p tp %p",
2190 			    __func__, th, tp));
2191 
2192 			if (V_tcp_insecure_rst ||
2193 			    tp->last_ack_sent == th->th_seq) {
2194 				TCPSTAT_INC(tcps_drops);
2195 				/* Drop the connection. */
2196 				switch (tp->t_state) {
2197 				case TCPS_SYN_RECEIVED:
2198 					so->so_error = ECONNREFUSED;
2199 					goto close;
2200 				case TCPS_ESTABLISHED:
2201 				case TCPS_FIN_WAIT_1:
2202 				case TCPS_FIN_WAIT_2:
2203 				case TCPS_CLOSE_WAIT:
2204 					so->so_error = ECONNRESET;
2205 				close:
2206 					tcp_state_change(tp, TCPS_CLOSED);
2207 					/* FALLTHROUGH */
2208 				default:
2209 					tp = tcp_close(tp);
2210 				}
2211 			} else {
2212 				TCPSTAT_INC(tcps_badrst);
2213 				/* Send challenge ACK. */
2214 				tcp_respond(tp, mtod(m, void *), th, m,
2215 				    tp->rcv_nxt, tp->snd_nxt, TH_ACK);
2216 				tp->last_ack_sent = tp->rcv_nxt;
2217 				m = NULL;
2218 			}
2219 		}
2220 		goto drop;
2221 	}
2222 
2223 	/*
2224 	 * RFC5961 Section 4.2
2225 	 * Send challenge ACK for any SYN in synchronized state.
2226 	 */
2227 	if ((thflags & TH_SYN) && tp->t_state != TCPS_SYN_SENT &&
2228 	    tp->t_state != TCPS_SYN_RECEIVED) {
2229 		KASSERT(ti_locked == TI_RLOCKED,
2230 		    ("tcp_do_segment: TH_SYN ti_locked %d", ti_locked));
2231 		INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
2232 
2233 		TCPSTAT_INC(tcps_badsyn);
2234 		if (V_tcp_insecure_syn &&
2235 		    SEQ_GEQ(th->th_seq, tp->last_ack_sent) &&
2236 		    SEQ_LT(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) {
2237 			tp = tcp_drop(tp, ECONNRESET);
2238 			rstreason = BANDLIM_UNLIMITED;
2239 		} else {
2240 			/* Send challenge ACK. */
2241 			tcp_respond(tp, mtod(m, void *), th, m, tp->rcv_nxt,
2242 			    tp->snd_nxt, TH_ACK);
2243 			tp->last_ack_sent = tp->rcv_nxt;
2244 			m = NULL;
2245 		}
2246 		goto drop;
2247 	}
2248 
2249 	/*
2250 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
2251 	 * and it's less than ts_recent, drop it.
2252 	 */
2253 	if ((to.to_flags & TOF_TS) != 0 && tp->ts_recent &&
2254 	    TSTMP_LT(to.to_tsval, tp->ts_recent)) {
2255 
2256 		/* Check to see if ts_recent is over 24 days old.  */
2257 		if (tcp_ts_getticks() - tp->ts_recent_age > TCP_PAWS_IDLE) {
2258 			/*
2259 			 * Invalidate ts_recent.  If this segment updates
2260 			 * ts_recent, the age will be reset later and ts_recent
2261 			 * will get a valid value.  If it does not, setting
2262 			 * ts_recent to zero will at least satisfy the
2263 			 * requirement that zero be placed in the timestamp
2264 			 * echo reply when ts_recent isn't valid.  The
2265 			 * age isn't reset until we get a valid ts_recent
2266 			 * because we don't want out-of-order segments to be
2267 			 * dropped when ts_recent is old.
2268 			 */
2269 			tp->ts_recent = 0;
2270 		} else {
2271 			TCPSTAT_INC(tcps_rcvduppack);
2272 			TCPSTAT_ADD(tcps_rcvdupbyte, tlen);
2273 			TCPSTAT_INC(tcps_pawsdrop);
2274 			if (tlen)
2275 				goto dropafterack;
2276 			goto drop;
2277 		}
2278 	}
2279 
2280 	/*
2281 	 * In the SYN-RECEIVED state, validate that the packet belongs to
2282 	 * this connection before trimming the data to fit the receive
2283 	 * window.  Check the sequence number versus IRS since we know
2284 	 * the sequence numbers haven't wrapped.  This is a partial fix
2285 	 * for the "LAND" DoS attack.
2286 	 */
2287 	if (tp->t_state == TCPS_SYN_RECEIVED && SEQ_LT(th->th_seq, tp->irs)) {
2288 		rstreason = BANDLIM_RST_OPENPORT;
2289 		goto dropwithreset;
2290 	}
2291 
2292 	todrop = tp->rcv_nxt - th->th_seq;
2293 	if (todrop > 0) {
2294 		if (thflags & TH_SYN) {
2295 			thflags &= ~TH_SYN;
2296 			th->th_seq++;
2297 			if (th->th_urp > 1)
2298 				th->th_urp--;
2299 			else
2300 				thflags &= ~TH_URG;
2301 			todrop--;
2302 		}
2303 		/*
2304 		 * Following if statement from Stevens, vol. 2, p. 960.
2305 		 */
2306 		if (todrop > tlen
2307 		    || (todrop == tlen && (thflags & TH_FIN) == 0)) {
2308 			/*
2309 			 * Any valid FIN must be to the left of the window.
2310 			 * At this point the FIN must be a duplicate or out
2311 			 * of sequence; drop it.
2312 			 */
2313 			thflags &= ~TH_FIN;
2314 
2315 			/*
2316 			 * Send an ACK to resynchronize and drop any data.
2317 			 * But keep on processing for RST or ACK.
2318 			 */
2319 			tp->t_flags |= TF_ACKNOW;
2320 			todrop = tlen;
2321 			TCPSTAT_INC(tcps_rcvduppack);
2322 			TCPSTAT_ADD(tcps_rcvdupbyte, todrop);
2323 		} else {
2324 			TCPSTAT_INC(tcps_rcvpartduppack);
2325 			TCPSTAT_ADD(tcps_rcvpartdupbyte, todrop);
2326 		}
2327 		drop_hdrlen += todrop;	/* drop from the top afterwards */
2328 		th->th_seq += todrop;
2329 		tlen -= todrop;
2330 		if (th->th_urp > todrop)
2331 			th->th_urp -= todrop;
2332 		else {
2333 			thflags &= ~TH_URG;
2334 			th->th_urp = 0;
2335 		}
2336 	}
2337 
2338 	/*
2339 	 * If new data are received on a connection after the
2340 	 * user processes are gone, then RST the other end.
2341 	 */
2342 	if ((so->so_state & SS_NOFDREF) &&
2343 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
2344 		KASSERT(ti_locked == TI_RLOCKED, ("%s: SS_NOFDEREF && "
2345 		    "CLOSE_WAIT && tlen ti_locked %d", __func__, ti_locked));
2346 		INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
2347 
2348 		if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
2349 			log(LOG_DEBUG, "%s; %s: %s: Received %d bytes of data "
2350 			    "after socket was closed, "
2351 			    "sending RST and removing tcpcb\n",
2352 			    s, __func__, tcpstates[tp->t_state], tlen);
2353 			free(s, M_TCPLOG);
2354 		}
2355 		tp = tcp_close(tp);
2356 		TCPSTAT_INC(tcps_rcvafterclose);
2357 		rstreason = BANDLIM_UNLIMITED;
2358 		goto dropwithreset;
2359 	}
2360 
2361 	/*
2362 	 * If segment ends after window, drop trailing data
2363 	 * (and PUSH and FIN); if nothing left, just ACK.
2364 	 */
2365 	todrop = (th->th_seq + tlen) - (tp->rcv_nxt + tp->rcv_wnd);
2366 	if (todrop > 0) {
2367 		TCPSTAT_INC(tcps_rcvpackafterwin);
2368 		if (todrop >= tlen) {
2369 			TCPSTAT_ADD(tcps_rcvbyteafterwin, tlen);
2370 			/*
2371 			 * If window is closed can only take segments at
2372 			 * window edge, and have to drop data and PUSH from
2373 			 * incoming segments.  Continue processing, but
2374 			 * remember to ack.  Otherwise, drop segment
2375 			 * and ack.
2376 			 */
2377 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
2378 				tp->t_flags |= TF_ACKNOW;
2379 				TCPSTAT_INC(tcps_rcvwinprobe);
2380 			} else
2381 				goto dropafterack;
2382 		} else
2383 			TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop);
2384 		m_adj(m, -todrop);
2385 		tlen -= todrop;
2386 		thflags &= ~(TH_PUSH|TH_FIN);
2387 	}
2388 
2389 	/*
2390 	 * If last ACK falls within this segment's sequence numbers,
2391 	 * record its timestamp.
2392 	 * NOTE:
2393 	 * 1) That the test incorporates suggestions from the latest
2394 	 *    proposal of the tcplw@cray.com list (Braden 1993/04/26).
2395 	 * 2) That updating only on newer timestamps interferes with
2396 	 *    our earlier PAWS tests, so this check should be solely
2397 	 *    predicated on the sequence space of this segment.
2398 	 * 3) That we modify the segment boundary check to be
2399 	 *        Last.ACK.Sent <= SEG.SEQ + SEG.Len
2400 	 *    instead of RFC1323's
2401 	 *        Last.ACK.Sent < SEG.SEQ + SEG.Len,
2402 	 *    This modified check allows us to overcome RFC1323's
2403 	 *    limitations as described in Stevens TCP/IP Illustrated
2404 	 *    Vol. 2 p.869. In such cases, we can still calculate the
2405 	 *    RTT correctly when RCV.NXT == Last.ACK.Sent.
2406 	 */
2407 	if ((to.to_flags & TOF_TS) != 0 &&
2408 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
2409 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
2410 		((thflags & (TH_SYN|TH_FIN)) != 0))) {
2411 		tp->ts_recent_age = tcp_ts_getticks();
2412 		tp->ts_recent = to.to_tsval;
2413 	}
2414 
2415 	/*
2416 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN
2417 	 * flag is on (half-synchronized state), then queue data for
2418 	 * later processing; else drop segment and return.
2419 	 */
2420 	if ((thflags & TH_ACK) == 0) {
2421 		if (tp->t_state == TCPS_SYN_RECEIVED ||
2422 		    (tp->t_flags & TF_NEEDSYN)) {
2423 #ifdef TCP_RFC7413
2424 			if (tp->t_state == TCPS_SYN_RECEIVED &&
2425 			    IS_FASTOPEN(tp->t_flags)) {
2426 				tp->snd_wnd = tiwin;
2427 				cc_conn_init(tp);
2428 			}
2429 #endif
2430 			goto step6;
2431 		} else if (tp->t_flags & TF_ACKNOW)
2432 			goto dropafterack;
2433 		else
2434 			goto drop;
2435 	}
2436 
2437 	/*
2438 	 * Ack processing.
2439 	 */
2440 	switch (tp->t_state) {
2441 
2442 	/*
2443 	 * In SYN_RECEIVED state, the ack ACKs our SYN, so enter
2444 	 * ESTABLISHED state and continue processing.
2445 	 * The ACK was checked above.
2446 	 */
2447 	case TCPS_SYN_RECEIVED:
2448 
2449 		TCPSTAT_INC(tcps_connects);
2450 		soisconnected(so);
2451 		/* Do window scaling? */
2452 		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2453 			(TF_RCVD_SCALE|TF_REQ_SCALE)) {
2454 			tp->rcv_scale = tp->request_r_scale;
2455 			tp->snd_wnd = tiwin;
2456 		}
2457 		/*
2458 		 * Make transitions:
2459 		 *      SYN-RECEIVED  -> ESTABLISHED
2460 		 *      SYN-RECEIVED* -> FIN-WAIT-1
2461 		 */
2462 		tp->t_starttime = ticks;
2463 		if (tp->t_flags & TF_NEEDFIN) {
2464 			tcp_state_change(tp, TCPS_FIN_WAIT_1);
2465 			tp->t_flags &= ~TF_NEEDFIN;
2466 		} else {
2467 			tcp_state_change(tp, TCPS_ESTABLISHED);
2468 			TCP_PROBE5(accept__established, NULL, tp,
2469 			    mtod(m, const char *), tp, th);
2470 #ifdef TCP_RFC7413
2471 			if (tp->t_tfo_pending) {
2472 				tcp_fastopen_decrement_counter(tp->t_tfo_pending);
2473 				tp->t_tfo_pending = NULL;
2474 
2475 				/*
2476 				 * Account for the ACK of our SYN prior to
2477 				 * regular ACK processing below.
2478 				 */
2479 				tp->snd_una++;
2480 			}
2481 			/*
2482 			 * TFO connections call cc_conn_init() during SYN
2483 			 * processing.  Calling it again here for such
2484 			 * connections is not harmless as it would undo the
2485 			 * snd_cwnd reduction that occurs when a TFO SYN|ACK
2486 			 * is retransmitted.
2487 			 */
2488 			if (!IS_FASTOPEN(tp->t_flags))
2489 #endif
2490 				cc_conn_init(tp);
2491 			tcp_timer_activate(tp, TT_KEEP, TP_KEEPIDLE(tp));
2492 		}
2493 		/*
2494 		 * If segment contains data or ACK, will call tcp_reass()
2495 		 * later; if not, do so now to pass queued data to user.
2496 		 */
2497 		if (tlen == 0 && (thflags & TH_FIN) == 0)
2498 			(void) tcp_reass(tp, (struct tcphdr *)0, 0,
2499 			    (struct mbuf *)0);
2500 		tp->snd_wl1 = th->th_seq - 1;
2501 		/* FALLTHROUGH */
2502 
2503 	/*
2504 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
2505 	 * ACKs.  If the ack is in the range
2506 	 *	tp->snd_una < th->th_ack <= tp->snd_max
2507 	 * then advance tp->snd_una to th->th_ack and drop
2508 	 * data from the retransmission queue.  If this ACK reflects
2509 	 * more up to date window information we update our window information.
2510 	 */
2511 	case TCPS_ESTABLISHED:
2512 	case TCPS_FIN_WAIT_1:
2513 	case TCPS_FIN_WAIT_2:
2514 	case TCPS_CLOSE_WAIT:
2515 	case TCPS_CLOSING:
2516 	case TCPS_LAST_ACK:
2517 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
2518 			TCPSTAT_INC(tcps_rcvacktoomuch);
2519 			goto dropafterack;
2520 		}
2521 		if ((tp->t_flags & TF_SACK_PERMIT) &&
2522 		    ((to.to_flags & TOF_SACK) ||
2523 		     !TAILQ_EMPTY(&tp->snd_holes)))
2524 			sack_changed = tcp_sack_doack(tp, &to, th->th_ack);
2525 		else
2526 			/*
2527 			 * Reset the value so that previous (valid) value
2528 			 * from the last ack with SACK doesn't get used.
2529 			 */
2530 			tp->sackhint.sacked_bytes = 0;
2531 
2532 #ifdef TCP_HHOOK
2533 		/* Run HHOOK_TCP_ESTABLISHED_IN helper hooks. */
2534 		hhook_run_tcp_est_in(tp, th, &to);
2535 #endif
2536 
2537 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
2538 			u_int maxseg;
2539 
2540 			maxseg = tcp_maxseg(tp);
2541 			if (tlen == 0 &&
2542 			    (tiwin == tp->snd_wnd ||
2543 			    (tp->t_flags & TF_SACK_PERMIT))) {
2544 				/*
2545 				 * If this is the first time we've seen a
2546 				 * FIN from the remote, this is not a
2547 				 * duplicate and it needs to be processed
2548 				 * normally.  This happens during a
2549 				 * simultaneous close.
2550 				 */
2551 				if ((thflags & TH_FIN) &&
2552 				    (TCPS_HAVERCVDFIN(tp->t_state) == 0)) {
2553 					tp->t_dupacks = 0;
2554 					break;
2555 				}
2556 				TCPSTAT_INC(tcps_rcvdupack);
2557 				/*
2558 				 * If we have outstanding data (other than
2559 				 * a window probe), this is a completely
2560 				 * duplicate ack (ie, window info didn't
2561 				 * change and FIN isn't set),
2562 				 * the ack is the biggest we've
2563 				 * seen and we've seen exactly our rexmt
2564 				 * threshold of them, assume a packet
2565 				 * has been dropped and retransmit it.
2566 				 * Kludge snd_nxt & the congestion
2567 				 * window so we send only this one
2568 				 * packet.
2569 				 *
2570 				 * We know we're losing at the current
2571 				 * window size so do congestion avoidance
2572 				 * (set ssthresh to half the current window
2573 				 * and pull our congestion window back to
2574 				 * the new ssthresh).
2575 				 *
2576 				 * Dup acks mean that packets have left the
2577 				 * network (they're now cached at the receiver)
2578 				 * so bump cwnd by the amount in the receiver
2579 				 * to keep a constant cwnd packets in the
2580 				 * network.
2581 				 *
2582 				 * When using TCP ECN, notify the peer that
2583 				 * we reduced the cwnd.
2584 				 */
2585 				/*
2586 				 * Following 2 kinds of acks should not affect
2587 				 * dupack counting:
2588 				 * 1) Old acks
2589 				 * 2) Acks with SACK but without any new SACK
2590 				 * information in them. These could result from
2591 				 * any anomaly in the network like a switch
2592 				 * duplicating packets or a possible DoS attack.
2593 				 */
2594 				if (th->th_ack != tp->snd_una ||
2595 				    ((tp->t_flags & TF_SACK_PERMIT) &&
2596 				    !sack_changed))
2597 					break;
2598 				else if (!tcp_timer_active(tp, TT_REXMT))
2599 					tp->t_dupacks = 0;
2600 				else if (++tp->t_dupacks > tcprexmtthresh ||
2601 				     IN_FASTRECOVERY(tp->t_flags)) {
2602 					cc_ack_received(tp, th, nsegs,
2603 					    CC_DUPACK);
2604 					if ((tp->t_flags & TF_SACK_PERMIT) &&
2605 					    IN_FASTRECOVERY(tp->t_flags)) {
2606 						int awnd;
2607 
2608 						/*
2609 						 * Compute the amount of data in flight first.
2610 						 * We can inject new data into the pipe iff
2611 						 * we have less than 1/2 the original window's
2612 						 * worth of data in flight.
2613 						 */
2614 						if (V_tcp_do_rfc6675_pipe)
2615 							awnd = tcp_compute_pipe(tp);
2616 						else
2617 							awnd = (tp->snd_nxt - tp->snd_fack) +
2618 								tp->sackhint.sack_bytes_rexmit;
2619 
2620 						if (awnd < tp->snd_ssthresh) {
2621 							tp->snd_cwnd += maxseg;
2622 							/*
2623 							 * RFC5681 Section 3.2 talks about cwnd
2624 							 * inflation on additional dupacks and
2625 							 * deflation on recovering from loss.
2626 							 *
2627 							 * We keep cwnd into check so that
2628 							 * we don't have to 'deflate' it when we
2629 							 * get out of recovery.
2630 							 */
2631 							if (tp->snd_cwnd > tp->snd_ssthresh)
2632 								tp->snd_cwnd = tp->snd_ssthresh;
2633 						}
2634 					} else
2635 						tp->snd_cwnd += maxseg;
2636 					(void) tp->t_fb->tfb_tcp_output(tp);
2637 					goto drop;
2638 				} else if (tp->t_dupacks == tcprexmtthresh) {
2639 					tcp_seq onxt = tp->snd_nxt;
2640 
2641 					/*
2642 					 * If we're doing sack, check to
2643 					 * see if we're already in sack
2644 					 * recovery. If we're not doing sack,
2645 					 * check to see if we're in newreno
2646 					 * recovery.
2647 					 */
2648 					if (tp->t_flags & TF_SACK_PERMIT) {
2649 						if (IN_FASTRECOVERY(tp->t_flags)) {
2650 							tp->t_dupacks = 0;
2651 							break;
2652 						}
2653 					} else {
2654 						if (SEQ_LEQ(th->th_ack,
2655 						    tp->snd_recover)) {
2656 							tp->t_dupacks = 0;
2657 							break;
2658 						}
2659 					}
2660 					/* Congestion signal before ack. */
2661 					cc_cong_signal(tp, th, CC_NDUPACK);
2662 					cc_ack_received(tp, th, nsegs,
2663 					    CC_DUPACK);
2664 					tcp_timer_activate(tp, TT_REXMT, 0);
2665 					tp->t_rtttime = 0;
2666 					if (tp->t_flags & TF_SACK_PERMIT) {
2667 						TCPSTAT_INC(
2668 						    tcps_sack_recovery_episode);
2669 						tp->sack_newdata = tp->snd_nxt;
2670 						if (CC_ALGO(tp)->cong_signal == NULL)
2671 							tp->snd_cwnd = maxseg;
2672 						(void) tp->t_fb->tfb_tcp_output(tp);
2673 						goto drop;
2674 					}
2675 					tp->snd_nxt = th->th_ack;
2676 					if (CC_ALGO(tp)->cong_signal == NULL)
2677 						tp->snd_cwnd = maxseg;
2678 					(void) tp->t_fb->tfb_tcp_output(tp);
2679 					KASSERT(tp->snd_limited <= 2,
2680 					    ("%s: tp->snd_limited too big",
2681 					    __func__));
2682 					if (CC_ALGO(tp)->cong_signal == NULL)
2683 						tp->snd_cwnd = tp->snd_ssthresh +
2684 						    maxseg *
2685 						    (tp->t_dupacks - tp->snd_limited);
2686 					if (SEQ_GT(onxt, tp->snd_nxt))
2687 						tp->snd_nxt = onxt;
2688 					goto drop;
2689 				} else if (V_tcp_do_rfc3042) {
2690 					/*
2691 					 * Process first and second duplicate
2692 					 * ACKs. Each indicates a segment
2693 					 * leaving the network, creating room
2694 					 * for more. Make sure we can send a
2695 					 * packet on reception of each duplicate
2696 					 * ACK by increasing snd_cwnd by one
2697 					 * segment. Restore the original
2698 					 * snd_cwnd after packet transmission.
2699 					 */
2700 					cc_ack_received(tp, th, nsegs,
2701 					    CC_DUPACK);
2702 					uint32_t oldcwnd = tp->snd_cwnd;
2703 					tcp_seq oldsndmax = tp->snd_max;
2704 					u_int sent;
2705 					int avail;
2706 
2707 					KASSERT(tp->t_dupacks == 1 ||
2708 					    tp->t_dupacks == 2,
2709 					    ("%s: dupacks not 1 or 2",
2710 					    __func__));
2711 					if (tp->t_dupacks == 1)
2712 						tp->snd_limited = 0;
2713 					tp->snd_cwnd =
2714 					    (tp->snd_nxt - tp->snd_una) +
2715 					    (tp->t_dupacks - tp->snd_limited) *
2716 					    maxseg;
2717 					/*
2718 					 * Only call tcp_output when there
2719 					 * is new data available to be sent.
2720 					 * Otherwise we would send pure ACKs.
2721 					 */
2722 					SOCKBUF_LOCK(&so->so_snd);
2723 					avail = sbavail(&so->so_snd) -
2724 					    (tp->snd_nxt - tp->snd_una);
2725 					SOCKBUF_UNLOCK(&so->so_snd);
2726 					if (avail > 0)
2727 						(void) tp->t_fb->tfb_tcp_output(tp);
2728 					sent = tp->snd_max - oldsndmax;
2729 					if (sent > maxseg) {
2730 						KASSERT((tp->t_dupacks == 2 &&
2731 						    tp->snd_limited == 0) ||
2732 						   (sent == maxseg + 1 &&
2733 						    tp->t_flags & TF_SENTFIN),
2734 						    ("%s: sent too much",
2735 						    __func__));
2736 						tp->snd_limited = 2;
2737 					} else if (sent > 0)
2738 						++tp->snd_limited;
2739 					tp->snd_cwnd = oldcwnd;
2740 					goto drop;
2741 				}
2742 			}
2743 			break;
2744 		} else {
2745 			/*
2746 			 * This ack is advancing the left edge, reset the
2747 			 * counter.
2748 			 */
2749 			tp->t_dupacks = 0;
2750 			/*
2751 			 * If this ack also has new SACK info, increment the
2752 			 * counter as per rfc6675.
2753 			 */
2754 			if ((tp->t_flags & TF_SACK_PERMIT) && sack_changed)
2755 				tp->t_dupacks++;
2756 		}
2757 
2758 		KASSERT(SEQ_GT(th->th_ack, tp->snd_una),
2759 		    ("%s: th_ack <= snd_una", __func__));
2760 
2761 		/*
2762 		 * If the congestion window was inflated to account
2763 		 * for the other side's cached packets, retract it.
2764 		 */
2765 		if (IN_FASTRECOVERY(tp->t_flags)) {
2766 			if (SEQ_LT(th->th_ack, tp->snd_recover)) {
2767 				if (tp->t_flags & TF_SACK_PERMIT)
2768 					tcp_sack_partialack(tp, th);
2769 				else
2770 					tcp_newreno_partial_ack(tp, th);
2771 			} else
2772 				cc_post_recovery(tp, th);
2773 		}
2774 		/*
2775 		 * If we reach this point, ACK is not a duplicate,
2776 		 *     i.e., it ACKs something we sent.
2777 		 */
2778 		if (tp->t_flags & TF_NEEDSYN) {
2779 			/*
2780 			 * T/TCP: Connection was half-synchronized, and our
2781 			 * SYN has been ACK'd (so connection is now fully
2782 			 * synchronized).  Go to non-starred state,
2783 			 * increment snd_una for ACK of SYN, and check if
2784 			 * we can do window scaling.
2785 			 */
2786 			tp->t_flags &= ~TF_NEEDSYN;
2787 			tp->snd_una++;
2788 			/* Do window scaling? */
2789 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2790 				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
2791 				tp->rcv_scale = tp->request_r_scale;
2792 				/* Send window already scaled. */
2793 			}
2794 		}
2795 
2796 process_ACK:
2797 		INP_WLOCK_ASSERT(tp->t_inpcb);
2798 
2799 		acked = BYTES_THIS_ACK(tp, th);
2800 		KASSERT(acked >= 0, ("%s: acked unexepectedly negative "
2801 		    "(tp->snd_una=%u, th->th_ack=%u, tp=%p, m=%p)", __func__,
2802 		    tp->snd_una, th->th_ack, tp, m));
2803 		TCPSTAT_ADD(tcps_rcvackpack, nsegs);
2804 		TCPSTAT_ADD(tcps_rcvackbyte, acked);
2805 
2806 		/*
2807 		 * If we just performed our first retransmit, and the ACK
2808 		 * arrives within our recovery window, then it was a mistake
2809 		 * to do the retransmit in the first place.  Recover our
2810 		 * original cwnd and ssthresh, and proceed to transmit where
2811 		 * we left off.
2812 		 */
2813 		if (tp->t_rxtshift == 1 && tp->t_flags & TF_PREVVALID &&
2814 		    (int)(ticks - tp->t_badrxtwin) < 0)
2815 			cc_cong_signal(tp, th, CC_RTO_ERR);
2816 
2817 		/*
2818 		 * If we have a timestamp reply, update smoothed
2819 		 * round trip time.  If no timestamp is present but
2820 		 * transmit timer is running and timed sequence
2821 		 * number was acked, update smoothed round trip time.
2822 		 * Since we now have an rtt measurement, cancel the
2823 		 * timer backoff (cf., Phil Karn's retransmit alg.).
2824 		 * Recompute the initial retransmit timer.
2825 		 *
2826 		 * Some boxes send broken timestamp replies
2827 		 * during the SYN+ACK phase, ignore
2828 		 * timestamps of 0 or we could calculate a
2829 		 * huge RTT and blow up the retransmit timer.
2830 		 */
2831 		if ((to.to_flags & TOF_TS) != 0 && to.to_tsecr) {
2832 			uint32_t t;
2833 
2834 			t = tcp_ts_getticks() - to.to_tsecr;
2835 			if (!tp->t_rttlow || tp->t_rttlow > t)
2836 				tp->t_rttlow = t;
2837 			tcp_xmit_timer(tp, TCP_TS_TO_TICKS(t) + 1);
2838 		} else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq)) {
2839 			if (!tp->t_rttlow || tp->t_rttlow > ticks - tp->t_rtttime)
2840 				tp->t_rttlow = ticks - tp->t_rtttime;
2841 			tcp_xmit_timer(tp, ticks - tp->t_rtttime);
2842 		}
2843 
2844 		/*
2845 		 * If all outstanding data is acked, stop retransmit
2846 		 * timer and remember to restart (more output or persist).
2847 		 * If there is more data to be acked, restart retransmit
2848 		 * timer, using current (possibly backed-off) value.
2849 		 */
2850 		if (th->th_ack == tp->snd_max) {
2851 			tcp_timer_activate(tp, TT_REXMT, 0);
2852 			needoutput = 1;
2853 		} else if (!tcp_timer_active(tp, TT_PERSIST))
2854 			tcp_timer_activate(tp, TT_REXMT, tp->t_rxtcur);
2855 
2856 		/*
2857 		 * If no data (only SYN) was ACK'd,
2858 		 *    skip rest of ACK processing.
2859 		 */
2860 		if (acked == 0)
2861 			goto step6;
2862 
2863 		/*
2864 		 * Let the congestion control algorithm update congestion
2865 		 * control related information. This typically means increasing
2866 		 * the congestion window.
2867 		 */
2868 		cc_ack_received(tp, th, nsegs, CC_ACK);
2869 
2870 		SOCKBUF_LOCK(&so->so_snd);
2871 		if (acked > sbavail(&so->so_snd)) {
2872 			if (tp->snd_wnd >= sbavail(&so->so_snd))
2873 				tp->snd_wnd -= sbavail(&so->so_snd);
2874 			else
2875 				tp->snd_wnd = 0;
2876 			mfree = sbcut_locked(&so->so_snd,
2877 			    (int)sbavail(&so->so_snd));
2878 			ourfinisacked = 1;
2879 		} else {
2880 			mfree = sbcut_locked(&so->so_snd, acked);
2881 			if (tp->snd_wnd >= (uint32_t) acked)
2882 				tp->snd_wnd -= acked;
2883 			else
2884 				tp->snd_wnd = 0;
2885 			ourfinisacked = 0;
2886 		}
2887 		/* NB: sowwakeup_locked() does an implicit unlock. */
2888 		sowwakeup_locked(so);
2889 		m_freem(mfree);
2890 		/* Detect una wraparound. */
2891 		if (!IN_RECOVERY(tp->t_flags) &&
2892 		    SEQ_GT(tp->snd_una, tp->snd_recover) &&
2893 		    SEQ_LEQ(th->th_ack, tp->snd_recover))
2894 			tp->snd_recover = th->th_ack - 1;
2895 		/* XXXLAS: Can this be moved up into cc_post_recovery? */
2896 		if (IN_RECOVERY(tp->t_flags) &&
2897 		    SEQ_GEQ(th->th_ack, tp->snd_recover)) {
2898 			EXIT_RECOVERY(tp->t_flags);
2899 		}
2900 		tp->snd_una = th->th_ack;
2901 		if (tp->t_flags & TF_SACK_PERMIT) {
2902 			if (SEQ_GT(tp->snd_una, tp->snd_recover))
2903 				tp->snd_recover = tp->snd_una;
2904 		}
2905 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2906 			tp->snd_nxt = tp->snd_una;
2907 
2908 		switch (tp->t_state) {
2909 
2910 		/*
2911 		 * In FIN_WAIT_1 STATE in addition to the processing
2912 		 * for the ESTABLISHED state if our FIN is now acknowledged
2913 		 * then enter FIN_WAIT_2.
2914 		 */
2915 		case TCPS_FIN_WAIT_1:
2916 			if (ourfinisacked) {
2917 				/*
2918 				 * If we can't receive any more
2919 				 * data, then closing user can proceed.
2920 				 * Starting the timer is contrary to the
2921 				 * specification, but if we don't get a FIN
2922 				 * we'll hang forever.
2923 				 *
2924 				 * XXXjl:
2925 				 * we should release the tp also, and use a
2926 				 * compressed state.
2927 				 */
2928 				if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
2929 					soisdisconnected(so);
2930 					tcp_timer_activate(tp, TT_2MSL,
2931 					    (tcp_fast_finwait2_recycle ?
2932 					    tcp_finwait2_timeout :
2933 					    TP_MAXIDLE(tp)));
2934 				}
2935 				tcp_state_change(tp, TCPS_FIN_WAIT_2);
2936 			}
2937 			break;
2938 
2939 		/*
2940 		 * In CLOSING STATE in addition to the processing for
2941 		 * the ESTABLISHED state if the ACK acknowledges our FIN
2942 		 * then enter the TIME-WAIT state, otherwise ignore
2943 		 * the segment.
2944 		 */
2945 		case TCPS_CLOSING:
2946 			if (ourfinisacked) {
2947 				INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
2948 				tcp_twstart(tp);
2949 				INP_INFO_RUNLOCK(&V_tcbinfo);
2950 				m_freem(m);
2951 				return;
2952 			}
2953 			break;
2954 
2955 		/*
2956 		 * In LAST_ACK, we may still be waiting for data to drain
2957 		 * and/or to be acked, as well as for the ack of our FIN.
2958 		 * If our FIN is now acknowledged, delete the TCB,
2959 		 * enter the closed state and return.
2960 		 */
2961 		case TCPS_LAST_ACK:
2962 			if (ourfinisacked) {
2963 				INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
2964 				tp = tcp_close(tp);
2965 				goto drop;
2966 			}
2967 			break;
2968 		}
2969 	}
2970 
2971 step6:
2972 	INP_WLOCK_ASSERT(tp->t_inpcb);
2973 
2974 	/*
2975 	 * Update window information.
2976 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2977 	 */
2978 	if ((thflags & TH_ACK) &&
2979 	    (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2980 	    (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
2981 	     (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
2982 		/* keep track of pure window updates */
2983 		if (tlen == 0 &&
2984 		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2985 			TCPSTAT_INC(tcps_rcvwinupd);
2986 		tp->snd_wnd = tiwin;
2987 		tp->snd_wl1 = th->th_seq;
2988 		tp->snd_wl2 = th->th_ack;
2989 		if (tp->snd_wnd > tp->max_sndwnd)
2990 			tp->max_sndwnd = tp->snd_wnd;
2991 		needoutput = 1;
2992 	}
2993 
2994 	/*
2995 	 * Process segments with URG.
2996 	 */
2997 	if ((thflags & TH_URG) && th->th_urp &&
2998 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2999 		/*
3000 		 * This is a kludge, but if we receive and accept
3001 		 * random urgent pointers, we'll crash in
3002 		 * soreceive.  It's hard to imagine someone
3003 		 * actually wanting to send this much urgent data.
3004 		 */
3005 		SOCKBUF_LOCK(&so->so_rcv);
3006 		if (th->th_urp + sbavail(&so->so_rcv) > sb_max) {
3007 			th->th_urp = 0;			/* XXX */
3008 			thflags &= ~TH_URG;		/* XXX */
3009 			SOCKBUF_UNLOCK(&so->so_rcv);	/* XXX */
3010 			goto dodata;			/* XXX */
3011 		}
3012 		/*
3013 		 * If this segment advances the known urgent pointer,
3014 		 * then mark the data stream.  This should not happen
3015 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
3016 		 * a FIN has been received from the remote side.
3017 		 * In these states we ignore the URG.
3018 		 *
3019 		 * According to RFC961 (Assigned Protocols),
3020 		 * the urgent pointer points to the last octet
3021 		 * of urgent data.  We continue, however,
3022 		 * to consider it to indicate the first octet
3023 		 * of data past the urgent section as the original
3024 		 * spec states (in one of two places).
3025 		 */
3026 		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
3027 			tp->rcv_up = th->th_seq + th->th_urp;
3028 			so->so_oobmark = sbavail(&so->so_rcv) +
3029 			    (tp->rcv_up - tp->rcv_nxt) - 1;
3030 			if (so->so_oobmark == 0)
3031 				so->so_rcv.sb_state |= SBS_RCVATMARK;
3032 			sohasoutofband(so);
3033 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
3034 		}
3035 		SOCKBUF_UNLOCK(&so->so_rcv);
3036 		/*
3037 		 * Remove out of band data so doesn't get presented to user.
3038 		 * This can happen independent of advancing the URG pointer,
3039 		 * but if two URG's are pending at once, some out-of-band
3040 		 * data may creep in... ick.
3041 		 */
3042 		if (th->th_urp <= (uint32_t)tlen &&
3043 		    !(so->so_options & SO_OOBINLINE)) {
3044 			/* hdr drop is delayed */
3045 			tcp_pulloutofband(so, th, m, drop_hdrlen);
3046 		}
3047 	} else {
3048 		/*
3049 		 * If no out of band data is expected,
3050 		 * pull receive urgent pointer along
3051 		 * with the receive window.
3052 		 */
3053 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
3054 			tp->rcv_up = tp->rcv_nxt;
3055 	}
3056 dodata:							/* XXX */
3057 	INP_WLOCK_ASSERT(tp->t_inpcb);
3058 
3059 	/*
3060 	 * Process the segment text, merging it into the TCP sequencing queue,
3061 	 * and arranging for acknowledgment of receipt if necessary.
3062 	 * This process logically involves adjusting tp->rcv_wnd as data
3063 	 * is presented to the user (this happens in tcp_usrreq.c,
3064 	 * case PRU_RCVD).  If a FIN has already been received on this
3065 	 * connection then we just ignore the text.
3066 	 */
3067 #ifdef TCP_RFC7413
3068 	tfo_syn = ((tp->t_state == TCPS_SYN_RECEIVED) &&
3069 		   IS_FASTOPEN(tp->t_flags));
3070 #else
3071 #define	tfo_syn	(false)
3072 #endif
3073 	if ((tlen || (thflags & TH_FIN) || tfo_syn) &&
3074 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
3075 		tcp_seq save_start = th->th_seq;
3076 		m_adj(m, drop_hdrlen);	/* delayed header drop */
3077 		/*
3078 		 * Insert segment which includes th into TCP reassembly queue
3079 		 * with control block tp.  Set thflags to whether reassembly now
3080 		 * includes a segment with FIN.  This handles the common case
3081 		 * inline (segment is the next to be received on an established
3082 		 * connection, and the queue is empty), avoiding linkage into
3083 		 * and removal from the queue and repetition of various
3084 		 * conversions.
3085 		 * Set DELACK for segments received in order, but ack
3086 		 * immediately when segments are out of order (so
3087 		 * fast retransmit can work).
3088 		 */
3089 		if (th->th_seq == tp->rcv_nxt &&
3090 		    LIST_EMPTY(&tp->t_segq) &&
3091 		    (TCPS_HAVEESTABLISHED(tp->t_state) ||
3092 		     tfo_syn)) {
3093 			if (DELAY_ACK(tp, tlen) || tfo_syn)
3094 				tp->t_flags |= TF_DELACK;
3095 			else
3096 				tp->t_flags |= TF_ACKNOW;
3097 			tp->rcv_nxt += tlen;
3098 			thflags = th->th_flags & TH_FIN;
3099 			TCPSTAT_INC(tcps_rcvpack);
3100 			TCPSTAT_ADD(tcps_rcvbyte, tlen);
3101 			SOCKBUF_LOCK(&so->so_rcv);
3102 			if (so->so_rcv.sb_state & SBS_CANTRCVMORE)
3103 				m_freem(m);
3104 			else
3105 				sbappendstream_locked(&so->so_rcv, m, 0);
3106 			/* NB: sorwakeup_locked() does an implicit unlock. */
3107 			sorwakeup_locked(so);
3108 		} else {
3109 			/*
3110 			 * XXX: Due to the header drop above "th" is
3111 			 * theoretically invalid by now.  Fortunately
3112 			 * m_adj() doesn't actually frees any mbufs
3113 			 * when trimming from the head.
3114 			 */
3115 			thflags = tcp_reass(tp, th, &tlen, m);
3116 			tp->t_flags |= TF_ACKNOW;
3117 		}
3118 		if (tlen > 0 && (tp->t_flags & TF_SACK_PERMIT))
3119 			tcp_update_sack_list(tp, save_start, save_start + tlen);
3120 #if 0
3121 		/*
3122 		 * Note the amount of data that peer has sent into
3123 		 * our window, in order to estimate the sender's
3124 		 * buffer size.
3125 		 * XXX: Unused.
3126 		 */
3127 		if (SEQ_GT(tp->rcv_adv, tp->rcv_nxt))
3128 			len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
3129 		else
3130 			len = so->so_rcv.sb_hiwat;
3131 #endif
3132 	} else {
3133 		m_freem(m);
3134 		thflags &= ~TH_FIN;
3135 	}
3136 
3137 	/*
3138 	 * If FIN is received ACK the FIN and let the user know
3139 	 * that the connection is closing.
3140 	 */
3141 	if (thflags & TH_FIN) {
3142 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
3143 			socantrcvmore(so);
3144 			/*
3145 			 * If connection is half-synchronized
3146 			 * (ie NEEDSYN flag on) then delay ACK,
3147 			 * so it may be piggybacked when SYN is sent.
3148 			 * Otherwise, since we received a FIN then no
3149 			 * more input can be expected, send ACK now.
3150 			 */
3151 			if (tp->t_flags & TF_NEEDSYN)
3152 				tp->t_flags |= TF_DELACK;
3153 			else
3154 				tp->t_flags |= TF_ACKNOW;
3155 			tp->rcv_nxt++;
3156 		}
3157 		switch (tp->t_state) {
3158 
3159 		/*
3160 		 * In SYN_RECEIVED and ESTABLISHED STATES
3161 		 * enter the CLOSE_WAIT state.
3162 		 */
3163 		case TCPS_SYN_RECEIVED:
3164 			tp->t_starttime = ticks;
3165 			/* FALLTHROUGH */
3166 		case TCPS_ESTABLISHED:
3167 			tcp_state_change(tp, TCPS_CLOSE_WAIT);
3168 			break;
3169 
3170 		/*
3171 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
3172 		 * enter the CLOSING state.
3173 		 */
3174 		case TCPS_FIN_WAIT_1:
3175 			tcp_state_change(tp, TCPS_CLOSING);
3176 			break;
3177 
3178 		/*
3179 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
3180 		 * starting the time-wait timer, turning off the other
3181 		 * standard timers.
3182 		 */
3183 		case TCPS_FIN_WAIT_2:
3184 			INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
3185 			KASSERT(ti_locked == TI_RLOCKED, ("%s: dodata "
3186 			    "TCP_FIN_WAIT_2 ti_locked: %d", __func__,
3187 			    ti_locked));
3188 
3189 			tcp_twstart(tp);
3190 			INP_INFO_RUNLOCK(&V_tcbinfo);
3191 			return;
3192 		}
3193 	}
3194 	if (ti_locked == TI_RLOCKED)
3195 		INP_INFO_RUNLOCK(&V_tcbinfo);
3196 	ti_locked = TI_UNLOCKED;
3197 
3198 #ifdef TCPDEBUG
3199 	if (so->so_options & SO_DEBUG)
3200 		tcp_trace(TA_INPUT, ostate, tp, (void *)tcp_saveipgen,
3201 			  &tcp_savetcp, 0);
3202 #endif
3203 	TCP_PROBE3(debug__input, tp, th, mtod(m, const char *));
3204 
3205 	/*
3206 	 * Return any desired output.
3207 	 */
3208 	if (needoutput || (tp->t_flags & TF_ACKNOW))
3209 		(void) tp->t_fb->tfb_tcp_output(tp);
3210 
3211 check_delack:
3212 	KASSERT(ti_locked == TI_UNLOCKED, ("%s: check_delack ti_locked %d",
3213 	    __func__, ti_locked));
3214 	INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
3215 	INP_WLOCK_ASSERT(tp->t_inpcb);
3216 
3217 	if (tp->t_flags & TF_DELACK) {
3218 		tp->t_flags &= ~TF_DELACK;
3219 		tcp_timer_activate(tp, TT_DELACK, tcp_delacktime);
3220 	}
3221 	INP_WUNLOCK(tp->t_inpcb);
3222 	return;
3223 
3224 dropafterack:
3225 	/*
3226 	 * Generate an ACK dropping incoming segment if it occupies
3227 	 * sequence space, where the ACK reflects our state.
3228 	 *
3229 	 * We can now skip the test for the RST flag since all
3230 	 * paths to this code happen after packets containing
3231 	 * RST have been dropped.
3232 	 *
3233 	 * In the SYN-RECEIVED state, don't send an ACK unless the
3234 	 * segment we received passes the SYN-RECEIVED ACK test.
3235 	 * If it fails send a RST.  This breaks the loop in the
3236 	 * "LAND" DoS attack, and also prevents an ACK storm
3237 	 * between two listening ports that have been sent forged
3238 	 * SYN segments, each with the source address of the other.
3239 	 */
3240 	if (tp->t_state == TCPS_SYN_RECEIVED && (thflags & TH_ACK) &&
3241 	    (SEQ_GT(tp->snd_una, th->th_ack) ||
3242 	     SEQ_GT(th->th_ack, tp->snd_max)) ) {
3243 		rstreason = BANDLIM_RST_OPENPORT;
3244 		goto dropwithreset;
3245 	}
3246 #ifdef TCPDEBUG
3247 	if (so->so_options & SO_DEBUG)
3248 		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
3249 			  &tcp_savetcp, 0);
3250 #endif
3251 	TCP_PROBE3(debug__input, tp, th, mtod(m, const char *));
3252 	if (ti_locked == TI_RLOCKED)
3253 		INP_INFO_RUNLOCK(&V_tcbinfo);
3254 	ti_locked = TI_UNLOCKED;
3255 
3256 	tp->t_flags |= TF_ACKNOW;
3257 	(void) tp->t_fb->tfb_tcp_output(tp);
3258 	INP_WUNLOCK(tp->t_inpcb);
3259 	m_freem(m);
3260 	return;
3261 
3262 dropwithreset:
3263 	if (ti_locked == TI_RLOCKED)
3264 		INP_INFO_RUNLOCK(&V_tcbinfo);
3265 	ti_locked = TI_UNLOCKED;
3266 
3267 	if (tp != NULL) {
3268 		tcp_dropwithreset(m, th, tp, tlen, rstreason);
3269 		INP_WUNLOCK(tp->t_inpcb);
3270 	} else
3271 		tcp_dropwithreset(m, th, NULL, tlen, rstreason);
3272 	return;
3273 
3274 drop:
3275 	if (ti_locked == TI_RLOCKED) {
3276 		INP_INFO_RUNLOCK(&V_tcbinfo);
3277 		ti_locked = TI_UNLOCKED;
3278 	}
3279 #ifdef INVARIANTS
3280 	else
3281 		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
3282 #endif
3283 
3284 	/*
3285 	 * Drop space held by incoming segment and return.
3286 	 */
3287 #ifdef TCPDEBUG
3288 	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
3289 		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
3290 			  &tcp_savetcp, 0);
3291 #endif
3292 	TCP_PROBE3(debug__input, tp, th, mtod(m, const char *));
3293 	if (tp != NULL)
3294 		INP_WUNLOCK(tp->t_inpcb);
3295 	m_freem(m);
3296 #ifndef TCP_RFC7413
3297 #undef	tfo_syn
3298 #endif
3299 }
3300 
3301 /*
3302  * Issue RST and make ACK acceptable to originator of segment.
3303  * The mbuf must still include the original packet header.
3304  * tp may be NULL.
3305  */
3306 void
3307 tcp_dropwithreset(struct mbuf *m, struct tcphdr *th, struct tcpcb *tp,
3308     int tlen, int rstreason)
3309 {
3310 #ifdef INET
3311 	struct ip *ip;
3312 #endif
3313 #ifdef INET6
3314 	struct ip6_hdr *ip6;
3315 #endif
3316 
3317 	if (tp != NULL) {
3318 		INP_WLOCK_ASSERT(tp->t_inpcb);
3319 	}
3320 
3321 	/* Don't bother if destination was broadcast/multicast. */
3322 	if ((th->th_flags & TH_RST) || m->m_flags & (M_BCAST|M_MCAST))
3323 		goto drop;
3324 #ifdef INET6
3325 	if (mtod(m, struct ip *)->ip_v == 6) {
3326 		ip6 = mtod(m, struct ip6_hdr *);
3327 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
3328 		    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
3329 			goto drop;
3330 		/* IPv6 anycast check is done at tcp6_input() */
3331 	}
3332 #endif
3333 #if defined(INET) && defined(INET6)
3334 	else
3335 #endif
3336 #ifdef INET
3337 	{
3338 		ip = mtod(m, struct ip *);
3339 		if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
3340 		    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
3341 		    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
3342 		    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
3343 			goto drop;
3344 	}
3345 #endif
3346 
3347 	/* Perform bandwidth limiting. */
3348 	if (badport_bandlim(rstreason) < 0)
3349 		goto drop;
3350 
3351 	/* tcp_respond consumes the mbuf chain. */
3352 	if (th->th_flags & TH_ACK) {
3353 		tcp_respond(tp, mtod(m, void *), th, m, (tcp_seq)0,
3354 		    th->th_ack, TH_RST);
3355 	} else {
3356 		if (th->th_flags & TH_SYN)
3357 			tlen++;
3358 		tcp_respond(tp, mtod(m, void *), th, m, th->th_seq+tlen,
3359 		    (tcp_seq)0, TH_RST|TH_ACK);
3360 	}
3361 	return;
3362 drop:
3363 	m_freem(m);
3364 }
3365 
3366 /*
3367  * Parse TCP options and place in tcpopt.
3368  */
3369 void
3370 tcp_dooptions(struct tcpopt *to, u_char *cp, int cnt, int flags)
3371 {
3372 	int opt, optlen;
3373 
3374 	to->to_flags = 0;
3375 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
3376 		opt = cp[0];
3377 		if (opt == TCPOPT_EOL)
3378 			break;
3379 		if (opt == TCPOPT_NOP)
3380 			optlen = 1;
3381 		else {
3382 			if (cnt < 2)
3383 				break;
3384 			optlen = cp[1];
3385 			if (optlen < 2 || optlen > cnt)
3386 				break;
3387 		}
3388 		switch (opt) {
3389 		case TCPOPT_MAXSEG:
3390 			if (optlen != TCPOLEN_MAXSEG)
3391 				continue;
3392 			if (!(flags & TO_SYN))
3393 				continue;
3394 			to->to_flags |= TOF_MSS;
3395 			bcopy((char *)cp + 2,
3396 			    (char *)&to->to_mss, sizeof(to->to_mss));
3397 			to->to_mss = ntohs(to->to_mss);
3398 			break;
3399 		case TCPOPT_WINDOW:
3400 			if (optlen != TCPOLEN_WINDOW)
3401 				continue;
3402 			if (!(flags & TO_SYN))
3403 				continue;
3404 			to->to_flags |= TOF_SCALE;
3405 			to->to_wscale = min(cp[2], TCP_MAX_WINSHIFT);
3406 			break;
3407 		case TCPOPT_TIMESTAMP:
3408 			if (optlen != TCPOLEN_TIMESTAMP)
3409 				continue;
3410 			to->to_flags |= TOF_TS;
3411 			bcopy((char *)cp + 2,
3412 			    (char *)&to->to_tsval, sizeof(to->to_tsval));
3413 			to->to_tsval = ntohl(to->to_tsval);
3414 			bcopy((char *)cp + 6,
3415 			    (char *)&to->to_tsecr, sizeof(to->to_tsecr));
3416 			to->to_tsecr = ntohl(to->to_tsecr);
3417 			break;
3418 #ifdef TCP_SIGNATURE
3419 		/*
3420 		 * XXX In order to reply to a host which has set the
3421 		 * TCP_SIGNATURE option in its initial SYN, we have to
3422 		 * record the fact that the option was observed here
3423 		 * for the syncache code to perform the correct response.
3424 		 */
3425 		case TCPOPT_SIGNATURE:
3426 			if (optlen != TCPOLEN_SIGNATURE)
3427 				continue;
3428 			to->to_flags |= TOF_SIGNATURE;
3429 			to->to_signature = cp + 2;
3430 			break;
3431 #endif
3432 		case TCPOPT_SACK_PERMITTED:
3433 			if (optlen != TCPOLEN_SACK_PERMITTED)
3434 				continue;
3435 			if (!(flags & TO_SYN))
3436 				continue;
3437 			if (!V_tcp_do_sack)
3438 				continue;
3439 			to->to_flags |= TOF_SACKPERM;
3440 			break;
3441 		case TCPOPT_SACK:
3442 			if (optlen <= 2 || (optlen - 2) % TCPOLEN_SACK != 0)
3443 				continue;
3444 			if (flags & TO_SYN)
3445 				continue;
3446 			to->to_flags |= TOF_SACK;
3447 			to->to_nsacks = (optlen - 2) / TCPOLEN_SACK;
3448 			to->to_sacks = cp + 2;
3449 			TCPSTAT_INC(tcps_sack_rcv_blocks);
3450 			break;
3451 #ifdef TCP_RFC7413
3452 		case TCPOPT_FAST_OPEN:
3453 			if ((optlen != TCPOLEN_FAST_OPEN_EMPTY) &&
3454 			    (optlen < TCPOLEN_FAST_OPEN_MIN) &&
3455 			    (optlen > TCPOLEN_FAST_OPEN_MAX))
3456 				continue;
3457 			if (!(flags & TO_SYN))
3458 				continue;
3459 			if (!V_tcp_fastopen_enabled)
3460 				continue;
3461 			to->to_flags |= TOF_FASTOPEN;
3462 			to->to_tfo_len = optlen - 2;
3463 			to->to_tfo_cookie = to->to_tfo_len ? cp + 2 : NULL;
3464 			break;
3465 #endif
3466 		default:
3467 			continue;
3468 		}
3469 	}
3470 }
3471 
3472 /*
3473  * Pull out of band byte out of a segment so
3474  * it doesn't appear in the user's data queue.
3475  * It is still reflected in the segment length for
3476  * sequencing purposes.
3477  */
3478 void
3479 tcp_pulloutofband(struct socket *so, struct tcphdr *th, struct mbuf *m,
3480     int off)
3481 {
3482 	int cnt = off + th->th_urp - 1;
3483 
3484 	while (cnt >= 0) {
3485 		if (m->m_len > cnt) {
3486 			char *cp = mtod(m, caddr_t) + cnt;
3487 			struct tcpcb *tp = sototcpcb(so);
3488 
3489 			INP_WLOCK_ASSERT(tp->t_inpcb);
3490 
3491 			tp->t_iobc = *cp;
3492 			tp->t_oobflags |= TCPOOB_HAVEDATA;
3493 			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
3494 			m->m_len--;
3495 			if (m->m_flags & M_PKTHDR)
3496 				m->m_pkthdr.len--;
3497 			return;
3498 		}
3499 		cnt -= m->m_len;
3500 		m = m->m_next;
3501 		if (m == NULL)
3502 			break;
3503 	}
3504 	panic("tcp_pulloutofband");
3505 }
3506 
3507 /*
3508  * Collect new round-trip time estimate
3509  * and update averages and current timeout.
3510  */
3511 void
3512 tcp_xmit_timer(struct tcpcb *tp, int rtt)
3513 {
3514 	int delta;
3515 
3516 	INP_WLOCK_ASSERT(tp->t_inpcb);
3517 
3518 	TCPSTAT_INC(tcps_rttupdated);
3519 	tp->t_rttupdated++;
3520 	if (tp->t_srtt != 0) {
3521 		/*
3522 		 * srtt is stored as fixed point with 5 bits after the
3523 		 * binary point (i.e., scaled by 8).  The following magic
3524 		 * is equivalent to the smoothing algorithm in rfc793 with
3525 		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
3526 		 * point).  Adjust rtt to origin 0.
3527 		 */
3528 		delta = ((rtt - 1) << TCP_DELTA_SHIFT)
3529 			- (tp->t_srtt >> (TCP_RTT_SHIFT - TCP_DELTA_SHIFT));
3530 
3531 		if ((tp->t_srtt += delta) <= 0)
3532 			tp->t_srtt = 1;
3533 
3534 		/*
3535 		 * We accumulate a smoothed rtt variance (actually, a
3536 		 * smoothed mean difference), then set the retransmit
3537 		 * timer to smoothed rtt + 4 times the smoothed variance.
3538 		 * rttvar is stored as fixed point with 4 bits after the
3539 		 * binary point (scaled by 16).  The following is
3540 		 * equivalent to rfc793 smoothing with an alpha of .75
3541 		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
3542 		 * rfc793's wired-in beta.
3543 		 */
3544 		if (delta < 0)
3545 			delta = -delta;
3546 		delta -= tp->t_rttvar >> (TCP_RTTVAR_SHIFT - TCP_DELTA_SHIFT);
3547 		if ((tp->t_rttvar += delta) <= 0)
3548 			tp->t_rttvar = 1;
3549 		if (tp->t_rttbest > tp->t_srtt + tp->t_rttvar)
3550 		    tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
3551 	} else {
3552 		/*
3553 		 * No rtt measurement yet - use the unsmoothed rtt.
3554 		 * Set the variance to half the rtt (so our first
3555 		 * retransmit happens at 3*rtt).
3556 		 */
3557 		tp->t_srtt = rtt << TCP_RTT_SHIFT;
3558 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1);
3559 		tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
3560 	}
3561 	tp->t_rtttime = 0;
3562 	tp->t_rxtshift = 0;
3563 
3564 	/*
3565 	 * the retransmit should happen at rtt + 4 * rttvar.
3566 	 * Because of the way we do the smoothing, srtt and rttvar
3567 	 * will each average +1/2 tick of bias.  When we compute
3568 	 * the retransmit timer, we want 1/2 tick of rounding and
3569 	 * 1 extra tick because of +-1/2 tick uncertainty in the
3570 	 * firing of the timer.  The bias will give us exactly the
3571 	 * 1.5 tick we need.  But, because the bias is
3572 	 * statistical, we have to test that we don't drop below
3573 	 * the minimum feasible timer (which is 2 ticks).
3574 	 */
3575 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
3576 		      max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
3577 
3578 	/*
3579 	 * We received an ack for a packet that wasn't retransmitted;
3580 	 * it is probably safe to discard any error indications we've
3581 	 * received recently.  This isn't quite right, but close enough
3582 	 * for now (a route might have failed after we sent a segment,
3583 	 * and the return path might not be symmetrical).
3584 	 */
3585 	tp->t_softerror = 0;
3586 }
3587 
3588 /*
3589  * Determine a reasonable value for maxseg size.
3590  * If the route is known, check route for mtu.
3591  * If none, use an mss that can be handled on the outgoing interface
3592  * without forcing IP to fragment.  If no route is found, route has no mtu,
3593  * or the destination isn't local, use a default, hopefully conservative
3594  * size (usually 512 or the default IP max size, but no more than the mtu
3595  * of the interface), as we can't discover anything about intervening
3596  * gateways or networks.  We also initialize the congestion/slow start
3597  * window to be a single segment if the destination isn't local.
3598  * While looking at the routing entry, we also initialize other path-dependent
3599  * parameters from pre-set or cached values in the routing entry.
3600  *
3601  * NOTE that resulting t_maxseg doesn't include space for TCP options or
3602  * IP options, e.g. IPSEC data, since length of this data may vary, and
3603  * thus it is calculated for every segment separately in tcp_output().
3604  *
3605  * NOTE that this routine is only called when we process an incoming
3606  * segment, or an ICMP need fragmentation datagram. Outgoing SYN/ACK MSS
3607  * settings are handled in tcp_mssopt().
3608  */
3609 void
3610 tcp_mss_update(struct tcpcb *tp, int offer, int mtuoffer,
3611     struct hc_metrics_lite *metricptr, struct tcp_ifcap *cap)
3612 {
3613 	int mss = 0;
3614 	uint32_t maxmtu = 0;
3615 	struct inpcb *inp = tp->t_inpcb;
3616 	struct hc_metrics_lite metrics;
3617 #ifdef INET6
3618 	int isipv6 = ((inp->inp_vflag & INP_IPV6) != 0) ? 1 : 0;
3619 	size_t min_protoh = isipv6 ?
3620 			    sizeof (struct ip6_hdr) + sizeof (struct tcphdr) :
3621 			    sizeof (struct tcpiphdr);
3622 #else
3623 	const size_t min_protoh = sizeof(struct tcpiphdr);
3624 #endif
3625 
3626 	INP_WLOCK_ASSERT(tp->t_inpcb);
3627 
3628 	if (mtuoffer != -1) {
3629 		KASSERT(offer == -1, ("%s: conflict", __func__));
3630 		offer = mtuoffer - min_protoh;
3631 	}
3632 
3633 	/* Initialize. */
3634 #ifdef INET6
3635 	if (isipv6) {
3636 		maxmtu = tcp_maxmtu6(&inp->inp_inc, cap);
3637 		tp->t_maxseg = V_tcp_v6mssdflt;
3638 	}
3639 #endif
3640 #if defined(INET) && defined(INET6)
3641 	else
3642 #endif
3643 #ifdef INET
3644 	{
3645 		maxmtu = tcp_maxmtu(&inp->inp_inc, cap);
3646 		tp->t_maxseg = V_tcp_mssdflt;
3647 	}
3648 #endif
3649 
3650 	/*
3651 	 * No route to sender, stay with default mss and return.
3652 	 */
3653 	if (maxmtu == 0) {
3654 		/*
3655 		 * In case we return early we need to initialize metrics
3656 		 * to a defined state as tcp_hc_get() would do for us
3657 		 * if there was no cache hit.
3658 		 */
3659 		if (metricptr != NULL)
3660 			bzero(metricptr, sizeof(struct hc_metrics_lite));
3661 		return;
3662 	}
3663 
3664 	/* What have we got? */
3665 	switch (offer) {
3666 		case 0:
3667 			/*
3668 			 * Offer == 0 means that there was no MSS on the SYN
3669 			 * segment, in this case we use tcp_mssdflt as
3670 			 * already assigned to t_maxseg above.
3671 			 */
3672 			offer = tp->t_maxseg;
3673 			break;
3674 
3675 		case -1:
3676 			/*
3677 			 * Offer == -1 means that we didn't receive SYN yet.
3678 			 */
3679 			/* FALLTHROUGH */
3680 
3681 		default:
3682 			/*
3683 			 * Prevent DoS attack with too small MSS. Round up
3684 			 * to at least minmss.
3685 			 */
3686 			offer = max(offer, V_tcp_minmss);
3687 	}
3688 
3689 	/*
3690 	 * rmx information is now retrieved from tcp_hostcache.
3691 	 */
3692 	tcp_hc_get(&inp->inp_inc, &metrics);
3693 	if (metricptr != NULL)
3694 		bcopy(&metrics, metricptr, sizeof(struct hc_metrics_lite));
3695 
3696 	/*
3697 	 * If there's a discovered mtu in tcp hostcache, use it.
3698 	 * Else, use the link mtu.
3699 	 */
3700 	if (metrics.rmx_mtu)
3701 		mss = min(metrics.rmx_mtu, maxmtu) - min_protoh;
3702 	else {
3703 #ifdef INET6
3704 		if (isipv6) {
3705 			mss = maxmtu - min_protoh;
3706 			if (!V_path_mtu_discovery &&
3707 			    !in6_localaddr(&inp->in6p_faddr))
3708 				mss = min(mss, V_tcp_v6mssdflt);
3709 		}
3710 #endif
3711 #if defined(INET) && defined(INET6)
3712 		else
3713 #endif
3714 #ifdef INET
3715 		{
3716 			mss = maxmtu - min_protoh;
3717 			if (!V_path_mtu_discovery &&
3718 			    !in_localaddr(inp->inp_faddr))
3719 				mss = min(mss, V_tcp_mssdflt);
3720 		}
3721 #endif
3722 		/*
3723 		 * XXX - The above conditional (mss = maxmtu - min_protoh)
3724 		 * probably violates the TCP spec.
3725 		 * The problem is that, since we don't know the
3726 		 * other end's MSS, we are supposed to use a conservative
3727 		 * default.  But, if we do that, then MTU discovery will
3728 		 * never actually take place, because the conservative
3729 		 * default is much less than the MTUs typically seen
3730 		 * on the Internet today.  For the moment, we'll sweep
3731 		 * this under the carpet.
3732 		 *
3733 		 * The conservative default might not actually be a problem
3734 		 * if the only case this occurs is when sending an initial
3735 		 * SYN with options and data to a host we've never talked
3736 		 * to before.  Then, they will reply with an MSS value which
3737 		 * will get recorded and the new parameters should get
3738 		 * recomputed.  For Further Study.
3739 		 */
3740 	}
3741 	mss = min(mss, offer);
3742 
3743 	/*
3744 	 * Sanity check: make sure that maxseg will be large
3745 	 * enough to allow some data on segments even if the
3746 	 * all the option space is used (40bytes).  Otherwise
3747 	 * funny things may happen in tcp_output.
3748 	 *
3749 	 * XXXGL: shouldn't we reserve space for IP/IPv6 options?
3750 	 */
3751 	mss = max(mss, 64);
3752 
3753 	tp->t_maxseg = mss;
3754 }
3755 
3756 void
3757 tcp_mss(struct tcpcb *tp, int offer)
3758 {
3759 	int mss;
3760 	uint32_t bufsize;
3761 	struct inpcb *inp;
3762 	struct socket *so;
3763 	struct hc_metrics_lite metrics;
3764 	struct tcp_ifcap cap;
3765 
3766 	KASSERT(tp != NULL, ("%s: tp == NULL", __func__));
3767 
3768 	bzero(&cap, sizeof(cap));
3769 	tcp_mss_update(tp, offer, -1, &metrics, &cap);
3770 
3771 	mss = tp->t_maxseg;
3772 	inp = tp->t_inpcb;
3773 
3774 	/*
3775 	 * If there's a pipesize, change the socket buffer to that size,
3776 	 * don't change if sb_hiwat is different than default (then it
3777 	 * has been changed on purpose with setsockopt).
3778 	 * Make the socket buffers an integral number of mss units;
3779 	 * if the mss is larger than the socket buffer, decrease the mss.
3780 	 */
3781 	so = inp->inp_socket;
3782 	SOCKBUF_LOCK(&so->so_snd);
3783 	if ((so->so_snd.sb_hiwat == V_tcp_sendspace) && metrics.rmx_sendpipe)
3784 		bufsize = metrics.rmx_sendpipe;
3785 	else
3786 		bufsize = so->so_snd.sb_hiwat;
3787 	if (bufsize < mss)
3788 		mss = bufsize;
3789 	else {
3790 		bufsize = roundup(bufsize, mss);
3791 		if (bufsize > sb_max)
3792 			bufsize = sb_max;
3793 		if (bufsize > so->so_snd.sb_hiwat)
3794 			(void)sbreserve_locked(&so->so_snd, bufsize, so, NULL);
3795 	}
3796 	SOCKBUF_UNLOCK(&so->so_snd);
3797 	/*
3798 	 * Sanity check: make sure that maxseg will be large
3799 	 * enough to allow some data on segments even if the
3800 	 * all the option space is used (40bytes).  Otherwise
3801 	 * funny things may happen in tcp_output.
3802 	 *
3803 	 * XXXGL: shouldn't we reserve space for IP/IPv6 options?
3804 	 */
3805 	tp->t_maxseg = max(mss, 64);
3806 
3807 	SOCKBUF_LOCK(&so->so_rcv);
3808 	if ((so->so_rcv.sb_hiwat == V_tcp_recvspace) && metrics.rmx_recvpipe)
3809 		bufsize = metrics.rmx_recvpipe;
3810 	else
3811 		bufsize = so->so_rcv.sb_hiwat;
3812 	if (bufsize > mss) {
3813 		bufsize = roundup(bufsize, mss);
3814 		if (bufsize > sb_max)
3815 			bufsize = sb_max;
3816 		if (bufsize > so->so_rcv.sb_hiwat)
3817 			(void)sbreserve_locked(&so->so_rcv, bufsize, so, NULL);
3818 	}
3819 	SOCKBUF_UNLOCK(&so->so_rcv);
3820 
3821 	/* Check the interface for TSO capabilities. */
3822 	if (cap.ifcap & CSUM_TSO) {
3823 		tp->t_flags |= TF_TSO;
3824 		tp->t_tsomax = cap.tsomax;
3825 		tp->t_tsomaxsegcount = cap.tsomaxsegcount;
3826 		tp->t_tsomaxsegsize = cap.tsomaxsegsize;
3827 	}
3828 }
3829 
3830 /*
3831  * Determine the MSS option to send on an outgoing SYN.
3832  */
3833 int
3834 tcp_mssopt(struct in_conninfo *inc)
3835 {
3836 	int mss = 0;
3837 	uint32_t thcmtu = 0;
3838 	uint32_t maxmtu = 0;
3839 	size_t min_protoh;
3840 
3841 	KASSERT(inc != NULL, ("tcp_mssopt with NULL in_conninfo pointer"));
3842 
3843 #ifdef INET6
3844 	if (inc->inc_flags & INC_ISIPV6) {
3845 		mss = V_tcp_v6mssdflt;
3846 		maxmtu = tcp_maxmtu6(inc, NULL);
3847 		min_protoh = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
3848 	}
3849 #endif
3850 #if defined(INET) && defined(INET6)
3851 	else
3852 #endif
3853 #ifdef INET
3854 	{
3855 		mss = V_tcp_mssdflt;
3856 		maxmtu = tcp_maxmtu(inc, NULL);
3857 		min_protoh = sizeof(struct tcpiphdr);
3858 	}
3859 #endif
3860 #if defined(INET6) || defined(INET)
3861 	thcmtu = tcp_hc_getmtu(inc); /* IPv4 and IPv6 */
3862 #endif
3863 
3864 	if (maxmtu && thcmtu)
3865 		mss = min(maxmtu, thcmtu) - min_protoh;
3866 	else if (maxmtu || thcmtu)
3867 		mss = max(maxmtu, thcmtu) - min_protoh;
3868 
3869 	return (mss);
3870 }
3871 
3872 
3873 /*
3874  * On a partial ack arrives, force the retransmission of the
3875  * next unacknowledged segment.  Do not clear tp->t_dupacks.
3876  * By setting snd_nxt to ti_ack, this forces retransmission timer to
3877  * be started again.
3878  */
3879 void
3880 tcp_newreno_partial_ack(struct tcpcb *tp, struct tcphdr *th)
3881 {
3882 	tcp_seq onxt = tp->snd_nxt;
3883 	uint32_t ocwnd = tp->snd_cwnd;
3884 	u_int maxseg = tcp_maxseg(tp);
3885 
3886 	INP_WLOCK_ASSERT(tp->t_inpcb);
3887 
3888 	tcp_timer_activate(tp, TT_REXMT, 0);
3889 	tp->t_rtttime = 0;
3890 	tp->snd_nxt = th->th_ack;
3891 	/*
3892 	 * Set snd_cwnd to one segment beyond acknowledged offset.
3893 	 * (tp->snd_una has not yet been updated when this function is called.)
3894 	 */
3895 	tp->snd_cwnd = maxseg + BYTES_THIS_ACK(tp, th);
3896 	tp->t_flags |= TF_ACKNOW;
3897 	(void) tp->t_fb->tfb_tcp_output(tp);
3898 	tp->snd_cwnd = ocwnd;
3899 	if (SEQ_GT(onxt, tp->snd_nxt))
3900 		tp->snd_nxt = onxt;
3901 	/*
3902 	 * Partial window deflation.  Relies on fact that tp->snd_una
3903 	 * not updated yet.
3904 	 */
3905 	if (tp->snd_cwnd > BYTES_THIS_ACK(tp, th))
3906 		tp->snd_cwnd -= BYTES_THIS_ACK(tp, th);
3907 	else
3908 		tp->snd_cwnd = 0;
3909 	tp->snd_cwnd += maxseg;
3910 }
3911 
3912 int
3913 tcp_compute_pipe(struct tcpcb *tp)
3914 {
3915 	return (tp->snd_max - tp->snd_una +
3916 		tp->sackhint.sack_bytes_rexmit -
3917 		tp->sackhint.sacked_bytes);
3918 }
3919