xref: /freebsd/sys/netinet/tcp_input.c (revision 41ce62251c1ed0003fc13b8735de5f9eff4c5c03)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
5  *	The Regents of the University of California.  All rights reserved.
6  * Copyright (c) 2007-2008,2010
7  *	Swinburne University of Technology, Melbourne, Australia.
8  * Copyright (c) 2009-2010 Lawrence Stewart <lstewart@freebsd.org>
9  * Copyright (c) 2010 The FreeBSD Foundation
10  * Copyright (c) 2010-2011 Juniper Networks, Inc.
11  * All rights reserved.
12  *
13  * Portions of this software were developed at the Centre for Advanced Internet
14  * Architectures, Swinburne University of Technology, by Lawrence Stewart,
15  * James Healy and David Hayes, made possible in part by a grant from the Cisco
16  * University Research Program Fund at Community Foundation Silicon Valley.
17  *
18  * Portions of this software were developed at the Centre for Advanced
19  * Internet Architectures, Swinburne University of Technology, Melbourne,
20  * Australia by David Hayes under sponsorship from the FreeBSD Foundation.
21  *
22  * Portions of this software were developed by Robert N. M. Watson under
23  * contract to Juniper Networks, Inc.
24  *
25  * Redistribution and use in source and binary forms, with or without
26  * modification, are permitted provided that the following conditions
27  * are met:
28  * 1. Redistributions of source code must retain the above copyright
29  *    notice, this list of conditions and the following disclaimer.
30  * 2. Redistributions in binary form must reproduce the above copyright
31  *    notice, this list of conditions and the following disclaimer in the
32  *    documentation and/or other materials provided with the distribution.
33  * 3. Neither the name of the University nor the names of its contributors
34  *    may be used to endorse or promote products derived from this software
35  *    without specific prior written permission.
36  *
37  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
38  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
39  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
40  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
41  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
42  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
43  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
45  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
46  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
47  * SUCH DAMAGE.
48  *
49  *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
50  */
51 
52 #include <sys/cdefs.h>
53 __FBSDID("$FreeBSD$");
54 
55 #include "opt_inet.h"
56 #include "opt_inet6.h"
57 #include "opt_ipsec.h"
58 #include "opt_tcpdebug.h"
59 
60 #include <sys/param.h>
61 #include <sys/arb.h>
62 #include <sys/kernel.h>
63 #ifdef TCP_HHOOK
64 #include <sys/hhook.h>
65 #endif
66 #include <sys/malloc.h>
67 #include <sys/mbuf.h>
68 #include <sys/proc.h>		/* for proc0 declaration */
69 #include <sys/protosw.h>
70 #include <sys/qmath.h>
71 #include <sys/sdt.h>
72 #include <sys/signalvar.h>
73 #include <sys/socket.h>
74 #include <sys/socketvar.h>
75 #include <sys/sysctl.h>
76 #include <sys/syslog.h>
77 #include <sys/systm.h>
78 #include <sys/stats.h>
79 
80 #include <machine/cpu.h>	/* before tcp_seq.h, for tcp_random18() */
81 
82 #include <vm/uma.h>
83 
84 #include <net/if.h>
85 #include <net/if_var.h>
86 #include <net/route.h>
87 #include <net/vnet.h>
88 
89 #define TCPSTATES		/* for logging */
90 
91 #include <netinet/in.h>
92 #include <netinet/in_kdtrace.h>
93 #include <netinet/in_pcb.h>
94 #include <netinet/in_systm.h>
95 #include <netinet/ip.h>
96 #include <netinet/ip_icmp.h>	/* required for icmp_var.h */
97 #include <netinet/icmp_var.h>	/* for ICMP_BANDLIM */
98 #include <netinet/ip_var.h>
99 #include <netinet/ip_options.h>
100 #include <netinet/ip6.h>
101 #include <netinet/icmp6.h>
102 #include <netinet6/in6_pcb.h>
103 #include <netinet6/in6_var.h>
104 #include <netinet6/ip6_var.h>
105 #include <netinet6/nd6.h>
106 #include <netinet/tcp.h>
107 #include <netinet/tcp_fsm.h>
108 #include <netinet/tcp_log_buf.h>
109 #include <netinet/tcp_seq.h>
110 #include <netinet/tcp_timer.h>
111 #include <netinet/tcp_var.h>
112 #include <netinet6/tcp6_var.h>
113 #include <netinet/tcpip.h>
114 #include <netinet/cc/cc.h>
115 #include <netinet/tcp_fastopen.h>
116 #ifdef TCPPCAP
117 #include <netinet/tcp_pcap.h>
118 #endif
119 #include <netinet/tcp_syncache.h>
120 #ifdef TCPDEBUG
121 #include <netinet/tcp_debug.h>
122 #endif /* TCPDEBUG */
123 #ifdef TCP_OFFLOAD
124 #include <netinet/tcp_offload.h>
125 #endif
126 
127 #include <netipsec/ipsec_support.h>
128 
129 #include <machine/in_cksum.h>
130 
131 #include <security/mac/mac_framework.h>
132 
133 const int tcprexmtthresh = 3;
134 
135 VNET_DEFINE(int, tcp_log_in_vain) = 0;
136 SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_in_vain, CTLFLAG_VNET | CTLFLAG_RW,
137     &VNET_NAME(tcp_log_in_vain), 0,
138     "Log all incoming TCP segments to closed ports");
139 
140 VNET_DEFINE(int, blackhole) = 0;
141 #define	V_blackhole		VNET(blackhole)
142 SYSCTL_INT(_net_inet_tcp, OID_AUTO, blackhole, CTLFLAG_VNET | CTLFLAG_RW,
143     &VNET_NAME(blackhole), 0,
144     "Do not send RST on segments to closed ports");
145 
146 VNET_DEFINE(int, tcp_delack_enabled) = 1;
147 SYSCTL_INT(_net_inet_tcp, OID_AUTO, delayed_ack, CTLFLAG_VNET | CTLFLAG_RW,
148     &VNET_NAME(tcp_delack_enabled), 0,
149     "Delay ACK to try and piggyback it onto a data packet");
150 
151 VNET_DEFINE(int, drop_synfin) = 0;
152 SYSCTL_INT(_net_inet_tcp, OID_AUTO, drop_synfin, CTLFLAG_VNET | CTLFLAG_RW,
153     &VNET_NAME(drop_synfin), 0,
154     "Drop TCP packets with SYN+FIN set");
155 
156 VNET_DEFINE(int, tcp_do_newcwv) = 0;
157 SYSCTL_INT(_net_inet_tcp, OID_AUTO, newcwv, CTLFLAG_VNET | CTLFLAG_RW,
158     &VNET_NAME(tcp_do_newcwv), 0,
159     "Enable New Congestion Window Validation per RFC7661");
160 
161 VNET_DEFINE(int, tcp_do_rfc6675_pipe) = 0;
162 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc6675_pipe, CTLFLAG_VNET | CTLFLAG_RW,
163     &VNET_NAME(tcp_do_rfc6675_pipe), 0,
164     "Use calculated pipe/in-flight bytes per RFC 6675");
165 
166 VNET_DEFINE(int, tcp_do_rfc3042) = 1;
167 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3042, CTLFLAG_VNET | CTLFLAG_RW,
168     &VNET_NAME(tcp_do_rfc3042), 0,
169     "Enable RFC 3042 (Limited Transmit)");
170 
171 VNET_DEFINE(int, tcp_do_rfc3390) = 1;
172 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3390, CTLFLAG_VNET | CTLFLAG_RW,
173     &VNET_NAME(tcp_do_rfc3390), 0,
174     "Enable RFC 3390 (Increasing TCP's Initial Congestion Window)");
175 
176 VNET_DEFINE(int, tcp_initcwnd_segments) = 10;
177 SYSCTL_INT(_net_inet_tcp, OID_AUTO, initcwnd_segments,
178     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(tcp_initcwnd_segments), 0,
179     "Slow-start flight size (initial congestion window) in number of segments");
180 
181 VNET_DEFINE(int, tcp_do_rfc3465) = 1;
182 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3465, CTLFLAG_VNET | CTLFLAG_RW,
183     &VNET_NAME(tcp_do_rfc3465), 0,
184     "Enable RFC 3465 (Appropriate Byte Counting)");
185 
186 VNET_DEFINE(int, tcp_abc_l_var) = 2;
187 SYSCTL_INT(_net_inet_tcp, OID_AUTO, abc_l_var, CTLFLAG_VNET | CTLFLAG_RW,
188     &VNET_NAME(tcp_abc_l_var), 2,
189     "Cap the max cwnd increment during slow-start to this number of segments");
190 
191 static SYSCTL_NODE(_net_inet_tcp, OID_AUTO, ecn,
192     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
193     "TCP ECN");
194 
195 VNET_DEFINE(int, tcp_do_ecn) = 2;
196 SYSCTL_INT(_net_inet_tcp_ecn, OID_AUTO, enable, CTLFLAG_VNET | CTLFLAG_RW,
197     &VNET_NAME(tcp_do_ecn), 0,
198     "TCP ECN support");
199 
200 VNET_DEFINE(int, tcp_ecn_maxretries) = 1;
201 SYSCTL_INT(_net_inet_tcp_ecn, OID_AUTO, maxretries, CTLFLAG_VNET | CTLFLAG_RW,
202     &VNET_NAME(tcp_ecn_maxretries), 0,
203     "Max retries before giving up on ECN");
204 
205 VNET_DEFINE(int, tcp_insecure_syn) = 0;
206 SYSCTL_INT(_net_inet_tcp, OID_AUTO, insecure_syn, CTLFLAG_VNET | CTLFLAG_RW,
207     &VNET_NAME(tcp_insecure_syn), 0,
208     "Follow RFC793 instead of RFC5961 criteria for accepting SYN packets");
209 
210 VNET_DEFINE(int, tcp_insecure_rst) = 0;
211 SYSCTL_INT(_net_inet_tcp, OID_AUTO, insecure_rst, CTLFLAG_VNET | CTLFLAG_RW,
212     &VNET_NAME(tcp_insecure_rst), 0,
213     "Follow RFC793 instead of RFC5961 criteria for accepting RST packets");
214 
215 VNET_DEFINE(int, tcp_recvspace) = 1024*64;
216 #define	V_tcp_recvspace	VNET(tcp_recvspace)
217 SYSCTL_INT(_net_inet_tcp, TCPCTL_RECVSPACE, recvspace, CTLFLAG_VNET | CTLFLAG_RW,
218     &VNET_NAME(tcp_recvspace), 0, "Initial receive socket buffer size");
219 
220 VNET_DEFINE(int, tcp_do_autorcvbuf) = 1;
221 SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbuf_auto, CTLFLAG_VNET | CTLFLAG_RW,
222     &VNET_NAME(tcp_do_autorcvbuf), 0,
223     "Enable automatic receive buffer sizing");
224 
225 VNET_DEFINE(int, tcp_autorcvbuf_max) = 2*1024*1024;
226 SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbuf_max, CTLFLAG_VNET | CTLFLAG_RW,
227     &VNET_NAME(tcp_autorcvbuf_max), 0,
228     "Max size of automatic receive buffer");
229 
230 VNET_DEFINE(struct inpcbhead, tcb);
231 #define	tcb6	tcb  /* for KAME src sync over BSD*'s */
232 VNET_DEFINE(struct inpcbinfo, tcbinfo);
233 
234 /*
235  * TCP statistics are stored in an array of counter(9)s, which size matches
236  * size of struct tcpstat.  TCP running connection count is a regular array.
237  */
238 VNET_PCPUSTAT_DEFINE(struct tcpstat, tcpstat);
239 SYSCTL_VNET_PCPUSTAT(_net_inet_tcp, TCPCTL_STATS, stats, struct tcpstat,
240     tcpstat, "TCP statistics (struct tcpstat, netinet/tcp_var.h)");
241 VNET_DEFINE(counter_u64_t, tcps_states[TCP_NSTATES]);
242 SYSCTL_COUNTER_U64_ARRAY(_net_inet_tcp, TCPCTL_STATES, states, CTLFLAG_RD |
243     CTLFLAG_VNET, &VNET_NAME(tcps_states)[0], TCP_NSTATES,
244     "TCP connection counts by TCP state");
245 
246 static void
247 tcp_vnet_init(const void *unused)
248 {
249 
250 	COUNTER_ARRAY_ALLOC(V_tcps_states, TCP_NSTATES, M_WAITOK);
251 	VNET_PCPUSTAT_ALLOC(tcpstat, M_WAITOK);
252 }
253 VNET_SYSINIT(tcp_vnet_init, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_ANY,
254     tcp_vnet_init, NULL);
255 
256 #ifdef VIMAGE
257 static void
258 tcp_vnet_uninit(const void *unused)
259 {
260 
261 	COUNTER_ARRAY_FREE(V_tcps_states, TCP_NSTATES);
262 	VNET_PCPUSTAT_FREE(tcpstat);
263 }
264 VNET_SYSUNINIT(tcp_vnet_uninit, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_ANY,
265     tcp_vnet_uninit, NULL);
266 #endif /* VIMAGE */
267 
268 /*
269  * Kernel module interface for updating tcpstat.  The first argument is an index
270  * into tcpstat treated as an array.
271  */
272 void
273 kmod_tcpstat_add(int statnum, int val)
274 {
275 
276 	counter_u64_add(VNET(tcpstat)[statnum], val);
277 }
278 
279 #ifdef TCP_HHOOK
280 /*
281  * Wrapper for the TCP established input helper hook.
282  */
283 void
284 hhook_run_tcp_est_in(struct tcpcb *tp, struct tcphdr *th, struct tcpopt *to)
285 {
286 	struct tcp_hhook_data hhook_data;
287 
288 	if (V_tcp_hhh[HHOOK_TCP_EST_IN]->hhh_nhooks > 0) {
289 		hhook_data.tp = tp;
290 		hhook_data.th = th;
291 		hhook_data.to = to;
292 
293 		hhook_run_hooks(V_tcp_hhh[HHOOK_TCP_EST_IN], &hhook_data,
294 		    tp->osd);
295 	}
296 }
297 #endif
298 
299 /*
300  * CC wrapper hook functions
301  */
302 void
303 cc_ack_received(struct tcpcb *tp, struct tcphdr *th, uint16_t nsegs,
304     uint16_t type)
305 {
306 #ifdef STATS
307 	int32_t gput;
308 #endif
309 
310 	INP_WLOCK_ASSERT(tp->t_inpcb);
311 
312 	tp->ccv->nsegs = nsegs;
313 	tp->ccv->bytes_this_ack = BYTES_THIS_ACK(tp, th);
314 	if ((!V_tcp_do_newcwv && (tp->snd_cwnd <= tp->snd_wnd)) ||
315 	    (V_tcp_do_newcwv && (tp->snd_cwnd <= tp->snd_wnd) &&
316 	     (tp->snd_cwnd < (tcp_compute_pipe(tp) * 2))))
317 		tp->ccv->flags |= CCF_CWND_LIMITED;
318 	else
319 		tp->ccv->flags &= ~CCF_CWND_LIMITED;
320 
321 	if (type == CC_ACK) {
322 #ifdef STATS
323 		stats_voi_update_abs_s32(tp->t_stats, VOI_TCP_CALCFRWINDIFF,
324 		    ((int32_t)tp->snd_cwnd) - tp->snd_wnd);
325 		if (!IN_RECOVERY(tp->t_flags))
326 			stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_ACKLEN,
327 			   tp->ccv->bytes_this_ack / (tcp_maxseg(tp) * nsegs));
328 		if ((tp->t_flags & TF_GPUTINPROG) &&
329 		    SEQ_GEQ(th->th_ack, tp->gput_ack)) {
330 			/*
331 			 * Compute goodput in bits per millisecond.
332 			 */
333 			gput = (((int64_t)(th->th_ack - tp->gput_seq)) << 3) /
334 			    max(1, tcp_ts_getticks() - tp->gput_ts);
335 			stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_GPUT,
336 			    gput);
337 			/*
338 			 * XXXLAS: This is a temporary hack, and should be
339 			 * chained off VOI_TCP_GPUT when stats(9) grows an API
340 			 * to deal with chained VOIs.
341 			 */
342 			if (tp->t_stats_gput_prev > 0)
343 				stats_voi_update_abs_s32(tp->t_stats,
344 				    VOI_TCP_GPUT_ND,
345 				    ((gput - tp->t_stats_gput_prev) * 100) /
346 				    tp->t_stats_gput_prev);
347 			tp->t_flags &= ~TF_GPUTINPROG;
348 			tp->t_stats_gput_prev = gput;
349 		}
350 #endif /* STATS */
351 		if (tp->snd_cwnd > tp->snd_ssthresh) {
352 			tp->t_bytes_acked += tp->ccv->bytes_this_ack;
353 			if (tp->t_bytes_acked >= tp->snd_cwnd) {
354 				tp->t_bytes_acked -= tp->snd_cwnd;
355 				tp->ccv->flags |= CCF_ABC_SENTAWND;
356 			}
357 		} else {
358 				tp->ccv->flags &= ~CCF_ABC_SENTAWND;
359 				tp->t_bytes_acked = 0;
360 		}
361 	}
362 
363 	if (CC_ALGO(tp)->ack_received != NULL) {
364 		/* XXXLAS: Find a way to live without this */
365 		tp->ccv->curack = th->th_ack;
366 		CC_ALGO(tp)->ack_received(tp->ccv, type);
367 	}
368 #ifdef STATS
369 	stats_voi_update_abs_ulong(tp->t_stats, VOI_TCP_LCWIN, tp->snd_cwnd);
370 #endif
371 }
372 
373 void
374 cc_conn_init(struct tcpcb *tp)
375 {
376 	struct hc_metrics_lite metrics;
377 	struct inpcb *inp = tp->t_inpcb;
378 	u_int maxseg;
379 	int rtt;
380 
381 	INP_WLOCK_ASSERT(tp->t_inpcb);
382 
383 	tcp_hc_get(&inp->inp_inc, &metrics);
384 	maxseg = tcp_maxseg(tp);
385 
386 	if (tp->t_srtt == 0 && (rtt = metrics.rmx_rtt)) {
387 		tp->t_srtt = rtt;
388 		tp->t_rttbest = tp->t_srtt + TCP_RTT_SCALE;
389 		TCPSTAT_INC(tcps_usedrtt);
390 		if (metrics.rmx_rttvar) {
391 			tp->t_rttvar = metrics.rmx_rttvar;
392 			TCPSTAT_INC(tcps_usedrttvar);
393 		} else {
394 			/* default variation is +- 1 rtt */
395 			tp->t_rttvar =
396 			    tp->t_srtt * TCP_RTTVAR_SCALE / TCP_RTT_SCALE;
397 		}
398 		TCPT_RANGESET(tp->t_rxtcur,
399 		    ((tp->t_srtt >> 2) + tp->t_rttvar) >> 1,
400 		    tp->t_rttmin, TCPTV_REXMTMAX);
401 	}
402 	if (metrics.rmx_ssthresh) {
403 		/*
404 		 * There's some sort of gateway or interface
405 		 * buffer limit on the path.  Use this to set
406 		 * the slow start threshold, but set the
407 		 * threshold to no less than 2*mss.
408 		 */
409 		tp->snd_ssthresh = max(2 * maxseg, metrics.rmx_ssthresh);
410 		TCPSTAT_INC(tcps_usedssthresh);
411 	}
412 
413 	/*
414 	 * Set the initial slow-start flight size.
415 	 *
416 	 * If a SYN or SYN/ACK was lost and retransmitted, we have to
417 	 * reduce the initial CWND to one segment as congestion is likely
418 	 * requiring us to be cautious.
419 	 */
420 	if (tp->snd_cwnd == 1)
421 		tp->snd_cwnd = maxseg;		/* SYN(-ACK) lost */
422 	else
423 		tp->snd_cwnd = tcp_compute_initwnd(maxseg);
424 
425 	if (CC_ALGO(tp)->conn_init != NULL)
426 		CC_ALGO(tp)->conn_init(tp->ccv);
427 }
428 
429 void inline
430 cc_cong_signal(struct tcpcb *tp, struct tcphdr *th, uint32_t type)
431 {
432 	INP_WLOCK_ASSERT(tp->t_inpcb);
433 
434 #ifdef STATS
435 	stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_CSIG, type);
436 #endif
437 
438 	switch(type) {
439 	case CC_NDUPACK:
440 		if (!IN_FASTRECOVERY(tp->t_flags)) {
441 			tp->snd_recover = tp->snd_max;
442 			if (tp->t_flags2 & TF2_ECN_PERMIT)
443 				tp->t_flags2 |= TF2_ECN_SND_CWR;
444 		}
445 		break;
446 	case CC_ECN:
447 		if (!IN_CONGRECOVERY(tp->t_flags) ||
448 		    /*
449 		     * Allow ECN reaction on ACK to CWR, if
450 		     * that data segment was also CE marked.
451 		     */
452 		    SEQ_GEQ(th->th_ack, tp->snd_recover)) {
453 			EXIT_CONGRECOVERY(tp->t_flags);
454 			TCPSTAT_INC(tcps_ecn_rcwnd);
455 			tp->snd_recover = tp->snd_max + 1;
456 			if (tp->t_flags2 & TF2_ECN_PERMIT)
457 				tp->t_flags2 |= TF2_ECN_SND_CWR;
458 		}
459 		break;
460 	case CC_RTO:
461 		tp->t_dupacks = 0;
462 		tp->t_bytes_acked = 0;
463 		EXIT_RECOVERY(tp->t_flags);
464 		if (tp->t_flags2 & TF2_ECN_PERMIT)
465 			tp->t_flags2 |= TF2_ECN_SND_CWR;
466 		break;
467 	case CC_RTO_ERR:
468 		TCPSTAT_INC(tcps_sndrexmitbad);
469 		/* RTO was unnecessary, so reset everything. */
470 		tp->snd_cwnd = tp->snd_cwnd_prev;
471 		tp->snd_ssthresh = tp->snd_ssthresh_prev;
472 		tp->snd_recover = tp->snd_recover_prev;
473 		if (tp->t_flags & TF_WASFRECOVERY)
474 			ENTER_FASTRECOVERY(tp->t_flags);
475 		if (tp->t_flags & TF_WASCRECOVERY)
476 			ENTER_CONGRECOVERY(tp->t_flags);
477 		tp->snd_nxt = tp->snd_max;
478 		tp->t_flags &= ~TF_PREVVALID;
479 		tp->t_badrxtwin = 0;
480 		break;
481 	}
482 
483 	if (CC_ALGO(tp)->cong_signal != NULL) {
484 		if (th != NULL)
485 			tp->ccv->curack = th->th_ack;
486 		CC_ALGO(tp)->cong_signal(tp->ccv, type);
487 	}
488 }
489 
490 void inline
491 cc_post_recovery(struct tcpcb *tp, struct tcphdr *th)
492 {
493 	INP_WLOCK_ASSERT(tp->t_inpcb);
494 
495 	/* XXXLAS: KASSERT that we're in recovery? */
496 
497 	if (CC_ALGO(tp)->post_recovery != NULL) {
498 		tp->ccv->curack = th->th_ack;
499 		CC_ALGO(tp)->post_recovery(tp->ccv);
500 	}
501 	/* XXXLAS: EXIT_RECOVERY ? */
502 	tp->t_bytes_acked = 0;
503 }
504 
505 /*
506  * Indicate whether this ack should be delayed.  We can delay the ack if
507  * following conditions are met:
508  *	- There is no delayed ack timer in progress.
509  *	- Our last ack wasn't a 0-sized window. We never want to delay
510  *	  the ack that opens up a 0-sized window.
511  *	- LRO wasn't used for this segment. We make sure by checking that the
512  *	  segment size is not larger than the MSS.
513  */
514 #define DELAY_ACK(tp, tlen)						\
515 	((!tcp_timer_active(tp, TT_DELACK) &&				\
516 	    (tp->t_flags & TF_RXWIN0SENT) == 0) &&			\
517 	    (tlen <= tp->t_maxseg) &&					\
518 	    (V_tcp_delack_enabled || (tp->t_flags & TF_NEEDSYN)))
519 
520 void inline
521 cc_ecnpkt_handler(struct tcpcb *tp, struct tcphdr *th, uint8_t iptos)
522 {
523 	INP_WLOCK_ASSERT(tp->t_inpcb);
524 
525 	if (CC_ALGO(tp)->ecnpkt_handler != NULL) {
526 		switch (iptos & IPTOS_ECN_MASK) {
527 		case IPTOS_ECN_CE:
528 			tp->ccv->flags |= CCF_IPHDR_CE;
529 			break;
530 		case IPTOS_ECN_ECT0:
531 			/* FALLTHROUGH */
532 		case IPTOS_ECN_ECT1:
533 			/* FALLTHROUGH */
534 		case IPTOS_ECN_NOTECT:
535 			tp->ccv->flags &= ~CCF_IPHDR_CE;
536 			break;
537 		}
538 
539 		if (th->th_flags & TH_CWR)
540 			tp->ccv->flags |= CCF_TCPHDR_CWR;
541 		else
542 			tp->ccv->flags &= ~CCF_TCPHDR_CWR;
543 
544 		CC_ALGO(tp)->ecnpkt_handler(tp->ccv);
545 
546 		if (tp->ccv->flags & CCF_ACKNOW) {
547 			tcp_timer_activate(tp, TT_DELACK, tcp_delacktime);
548 			tp->t_flags |= TF_ACKNOW;
549 		}
550 	}
551 }
552 
553 /*
554  * TCP input handling is split into multiple parts:
555  *   tcp6_input is a thin wrapper around tcp_input for the extended
556  *	ip6_protox[] call format in ip6_input
557  *   tcp_input handles primary segment validation, inpcb lookup and
558  *	SYN processing on listen sockets
559  *   tcp_do_segment processes the ACK and text of the segment for
560  *	establishing, established and closing connections
561  */
562 #ifdef INET6
563 int
564 tcp6_input(struct mbuf **mp, int *offp, int proto)
565 {
566 	struct mbuf *m;
567 	struct in6_ifaddr *ia6;
568 	struct ip6_hdr *ip6;
569 
570 	m = *mp;
571 	if (m->m_len < *offp + sizeof(struct tcphdr)) {
572 		m = m_pullup(m, *offp + sizeof(struct tcphdr));
573 		if (m == NULL) {
574 			*mp = m;
575 			TCPSTAT_INC(tcps_rcvshort);
576 			return (IPPROTO_DONE);
577 		}
578 	}
579 
580 	/*
581 	 * draft-itojun-ipv6-tcp-to-anycast
582 	 * better place to put this in?
583 	 */
584 	ip6 = mtod(m, struct ip6_hdr *);
585 	ia6 = in6ifa_ifwithaddr(&ip6->ip6_dst, 0 /* XXX */);
586 	if (ia6 && (ia6->ia6_flags & IN6_IFF_ANYCAST)) {
587 		ifa_free(&ia6->ia_ifa);
588 		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
589 			    (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
590 		*mp = NULL;
591 		return (IPPROTO_DONE);
592 	}
593 	if (ia6)
594 		ifa_free(&ia6->ia_ifa);
595 
596 	*mp = m;
597 	return (tcp_input(mp, offp, proto));
598 }
599 #endif /* INET6 */
600 
601 int
602 tcp_input(struct mbuf **mp, int *offp, int proto)
603 {
604 	struct mbuf *m = *mp;
605 	struct tcphdr *th = NULL;
606 	struct ip *ip = NULL;
607 	struct inpcb *inp = NULL;
608 	struct tcpcb *tp = NULL;
609 	struct socket *so = NULL;
610 	u_char *optp = NULL;
611 	int off0;
612 	int optlen = 0;
613 #ifdef INET
614 	int len;
615 	uint8_t ipttl;
616 #endif
617 	int tlen = 0, off;
618 	int drop_hdrlen;
619 	int thflags;
620 	int rstreason = 0;	/* For badport_bandlim accounting purposes */
621 	uint8_t iptos;
622 	struct m_tag *fwd_tag = NULL;
623 #ifdef INET6
624 	struct ip6_hdr *ip6 = NULL;
625 	int isipv6;
626 #else
627 	const void *ip6 = NULL;
628 #endif /* INET6 */
629 	struct tcpopt to;		/* options in this segment */
630 	char *s = NULL;			/* address and port logging */
631 #ifdef TCPDEBUG
632 	/*
633 	 * The size of tcp_saveipgen must be the size of the max ip header,
634 	 * now IPv6.
635 	 */
636 	u_char tcp_saveipgen[IP6_HDR_LEN];
637 	struct tcphdr tcp_savetcp;
638 	short ostate = 0;
639 #endif
640 
641 	NET_EPOCH_ASSERT();
642 
643 #ifdef INET6
644 	isipv6 = (mtod(m, struct ip *)->ip_v == 6) ? 1 : 0;
645 #endif
646 
647 	off0 = *offp;
648 	m = *mp;
649 	*mp = NULL;
650 	to.to_flags = 0;
651 	TCPSTAT_INC(tcps_rcvtotal);
652 
653 #ifdef INET6
654 	if (isipv6) {
655 		ip6 = mtod(m, struct ip6_hdr *);
656 		th = (struct tcphdr *)((caddr_t)ip6 + off0);
657 		tlen = sizeof(*ip6) + ntohs(ip6->ip6_plen) - off0;
658 		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID_IPV6) {
659 			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
660 				th->th_sum = m->m_pkthdr.csum_data;
661 			else
662 				th->th_sum = in6_cksum_pseudo(ip6, tlen,
663 				    IPPROTO_TCP, m->m_pkthdr.csum_data);
664 			th->th_sum ^= 0xffff;
665 		} else
666 			th->th_sum = in6_cksum(m, IPPROTO_TCP, off0, tlen);
667 		if (th->th_sum) {
668 			TCPSTAT_INC(tcps_rcvbadsum);
669 			goto drop;
670 		}
671 
672 		/*
673 		 * Be proactive about unspecified IPv6 address in source.
674 		 * As we use all-zero to indicate unbounded/unconnected pcb,
675 		 * unspecified IPv6 address can be used to confuse us.
676 		 *
677 		 * Note that packets with unspecified IPv6 destination is
678 		 * already dropped in ip6_input.
679 		 */
680 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
681 			/* XXX stat */
682 			goto drop;
683 		}
684 		iptos = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
685 	}
686 #endif
687 #if defined(INET) && defined(INET6)
688 	else
689 #endif
690 #ifdef INET
691 	{
692 		/*
693 		 * Get IP and TCP header together in first mbuf.
694 		 * Note: IP leaves IP header in first mbuf.
695 		 */
696 		if (off0 > sizeof (struct ip)) {
697 			ip_stripoptions(m);
698 			off0 = sizeof(struct ip);
699 		}
700 		if (m->m_len < sizeof (struct tcpiphdr)) {
701 			if ((m = m_pullup(m, sizeof (struct tcpiphdr)))
702 			    == NULL) {
703 				TCPSTAT_INC(tcps_rcvshort);
704 				return (IPPROTO_DONE);
705 			}
706 		}
707 		ip = mtod(m, struct ip *);
708 		th = (struct tcphdr *)((caddr_t)ip + off0);
709 		tlen = ntohs(ip->ip_len) - off0;
710 
711 		iptos = ip->ip_tos;
712 		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
713 			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
714 				th->th_sum = m->m_pkthdr.csum_data;
715 			else
716 				th->th_sum = in_pseudo(ip->ip_src.s_addr,
717 				    ip->ip_dst.s_addr,
718 				    htonl(m->m_pkthdr.csum_data + tlen +
719 				    IPPROTO_TCP));
720 			th->th_sum ^= 0xffff;
721 		} else {
722 			struct ipovly *ipov = (struct ipovly *)ip;
723 
724 			/*
725 			 * Checksum extended TCP header and data.
726 			 */
727 			len = off0 + tlen;
728 			ipttl = ip->ip_ttl;
729 			bzero(ipov->ih_x1, sizeof(ipov->ih_x1));
730 			ipov->ih_len = htons(tlen);
731 			th->th_sum = in_cksum(m, len);
732 			/* Reset length for SDT probes. */
733 			ip->ip_len = htons(len);
734 			/* Reset TOS bits */
735 			ip->ip_tos = iptos;
736 			/* Re-initialization for later version check */
737 			ip->ip_ttl = ipttl;
738 			ip->ip_v = IPVERSION;
739 			ip->ip_hl = off0 >> 2;
740 		}
741 
742 		if (th->th_sum) {
743 			TCPSTAT_INC(tcps_rcvbadsum);
744 			goto drop;
745 		}
746 	}
747 #endif /* INET */
748 
749 	/*
750 	 * Check that TCP offset makes sense,
751 	 * pull out TCP options and adjust length.		XXX
752 	 */
753 	off = th->th_off << 2;
754 	if (off < sizeof (struct tcphdr) || off > tlen) {
755 		TCPSTAT_INC(tcps_rcvbadoff);
756 		goto drop;
757 	}
758 	tlen -= off;	/* tlen is used instead of ti->ti_len */
759 	if (off > sizeof (struct tcphdr)) {
760 #ifdef INET6
761 		if (isipv6) {
762 			if (m->m_len < off0 + off) {
763 				m = m_pullup(m, off0 + off);
764 				if (m == NULL) {
765 					TCPSTAT_INC(tcps_rcvshort);
766 					return (IPPROTO_DONE);
767 				}
768 			}
769 			ip6 = mtod(m, struct ip6_hdr *);
770 			th = (struct tcphdr *)((caddr_t)ip6 + off0);
771 		}
772 #endif
773 #if defined(INET) && defined(INET6)
774 		else
775 #endif
776 #ifdef INET
777 		{
778 			if (m->m_len < sizeof(struct ip) + off) {
779 				if ((m = m_pullup(m, sizeof (struct ip) + off))
780 				    == NULL) {
781 					TCPSTAT_INC(tcps_rcvshort);
782 					return (IPPROTO_DONE);
783 				}
784 				ip = mtod(m, struct ip *);
785 				th = (struct tcphdr *)((caddr_t)ip + off0);
786 			}
787 		}
788 #endif
789 		optlen = off - sizeof (struct tcphdr);
790 		optp = (u_char *)(th + 1);
791 	}
792 	thflags = th->th_flags;
793 
794 	/*
795 	 * Convert TCP protocol specific fields to host format.
796 	 */
797 	tcp_fields_to_host(th);
798 
799 	/*
800 	 * Delay dropping TCP, IP headers, IPv6 ext headers, and TCP options.
801 	 */
802 	drop_hdrlen = off0 + off;
803 
804 	/*
805 	 * Grab info from PACKET_TAG_IPFORWARD tag prepended to the chain.
806 	 */
807         if (
808 #ifdef INET6
809 	    (isipv6 && (m->m_flags & M_IP6_NEXTHOP))
810 #ifdef INET
811 	    || (!isipv6 && (m->m_flags & M_IP_NEXTHOP))
812 #endif
813 #endif
814 #if defined(INET) && !defined(INET6)
815 	    (m->m_flags & M_IP_NEXTHOP)
816 #endif
817 	    )
818 		fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
819 
820 findpcb:
821 #ifdef INET6
822 	if (isipv6 && fwd_tag != NULL) {
823 		struct sockaddr_in6 *next_hop6;
824 
825 		next_hop6 = (struct sockaddr_in6 *)(fwd_tag + 1);
826 		/*
827 		 * Transparently forwarded. Pretend to be the destination.
828 		 * Already got one like this?
829 		 */
830 		inp = in6_pcblookup_mbuf(&V_tcbinfo,
831 		    &ip6->ip6_src, th->th_sport, &ip6->ip6_dst, th->th_dport,
832 		    INPLOOKUP_WLOCKPCB, m->m_pkthdr.rcvif, m);
833 		if (!inp) {
834 			/*
835 			 * It's new.  Try to find the ambushing socket.
836 			 * Because we've rewritten the destination address,
837 			 * any hardware-generated hash is ignored.
838 			 */
839 			inp = in6_pcblookup(&V_tcbinfo, &ip6->ip6_src,
840 			    th->th_sport, &next_hop6->sin6_addr,
841 			    next_hop6->sin6_port ? ntohs(next_hop6->sin6_port) :
842 			    th->th_dport, INPLOOKUP_WILDCARD |
843 			    INPLOOKUP_WLOCKPCB, m->m_pkthdr.rcvif);
844 		}
845 	} else if (isipv6) {
846 		inp = in6_pcblookup_mbuf(&V_tcbinfo, &ip6->ip6_src,
847 		    th->th_sport, &ip6->ip6_dst, th->th_dport,
848 		    INPLOOKUP_WILDCARD | INPLOOKUP_WLOCKPCB,
849 		    m->m_pkthdr.rcvif, m);
850 	}
851 #endif /* INET6 */
852 #if defined(INET6) && defined(INET)
853 	else
854 #endif
855 #ifdef INET
856 	if (fwd_tag != NULL) {
857 		struct sockaddr_in *next_hop;
858 
859 		next_hop = (struct sockaddr_in *)(fwd_tag+1);
860 		/*
861 		 * Transparently forwarded. Pretend to be the destination.
862 		 * already got one like this?
863 		 */
864 		inp = in_pcblookup_mbuf(&V_tcbinfo, ip->ip_src, th->th_sport,
865 		    ip->ip_dst, th->th_dport, INPLOOKUP_WLOCKPCB,
866 		    m->m_pkthdr.rcvif, m);
867 		if (!inp) {
868 			/*
869 			 * It's new.  Try to find the ambushing socket.
870 			 * Because we've rewritten the destination address,
871 			 * any hardware-generated hash is ignored.
872 			 */
873 			inp = in_pcblookup(&V_tcbinfo, ip->ip_src,
874 			    th->th_sport, next_hop->sin_addr,
875 			    next_hop->sin_port ? ntohs(next_hop->sin_port) :
876 			    th->th_dport, INPLOOKUP_WILDCARD |
877 			    INPLOOKUP_WLOCKPCB, m->m_pkthdr.rcvif);
878 		}
879 	} else
880 		inp = in_pcblookup_mbuf(&V_tcbinfo, ip->ip_src,
881 		    th->th_sport, ip->ip_dst, th->th_dport,
882 		    INPLOOKUP_WILDCARD | INPLOOKUP_WLOCKPCB,
883 		    m->m_pkthdr.rcvif, m);
884 #endif /* INET */
885 
886 	/*
887 	 * If the INPCB does not exist then all data in the incoming
888 	 * segment is discarded and an appropriate RST is sent back.
889 	 * XXX MRT Send RST using which routing table?
890 	 */
891 	if (inp == NULL) {
892 		/*
893 		 * Log communication attempts to ports that are not
894 		 * in use.
895 		 */
896 		if ((V_tcp_log_in_vain == 1 && (thflags & TH_SYN)) ||
897 		    V_tcp_log_in_vain == 2) {
898 			if ((s = tcp_log_vain(NULL, th, (void *)ip, ip6)))
899 				log(LOG_INFO, "%s; %s: Connection attempt "
900 				    "to closed port\n", s, __func__);
901 		}
902 		/*
903 		 * When blackholing do not respond with a RST but
904 		 * completely ignore the segment and drop it.
905 		 */
906 		if ((V_blackhole == 1 && (thflags & TH_SYN)) ||
907 		    V_blackhole == 2)
908 			goto dropunlock;
909 
910 		rstreason = BANDLIM_RST_CLOSEDPORT;
911 		goto dropwithreset;
912 	}
913 	INP_WLOCK_ASSERT(inp);
914 	/*
915 	 * While waiting for inp lock during the lookup, another thread
916 	 * can have dropped the inpcb, in which case we need to loop back
917 	 * and try to find a new inpcb to deliver to.
918 	 */
919 	if (inp->inp_flags & INP_DROPPED) {
920 		INP_WUNLOCK(inp);
921 		inp = NULL;
922 		goto findpcb;
923 	}
924 	if ((inp->inp_flowtype == M_HASHTYPE_NONE) &&
925 	    (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) &&
926 	    ((inp->inp_socket == NULL) ||
927 	    (inp->inp_socket->so_options & SO_ACCEPTCONN) == 0)) {
928 		inp->inp_flowid = m->m_pkthdr.flowid;
929 		inp->inp_flowtype = M_HASHTYPE_GET(m);
930 	}
931 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
932 #ifdef INET6
933 	if (isipv6 && IPSEC_ENABLED(ipv6) &&
934 	    IPSEC_CHECK_POLICY(ipv6, m, inp) != 0) {
935 		goto dropunlock;
936 	}
937 #ifdef INET
938 	else
939 #endif
940 #endif /* INET6 */
941 #ifdef INET
942 	if (IPSEC_ENABLED(ipv4) &&
943 	    IPSEC_CHECK_POLICY(ipv4, m, inp) != 0) {
944 		goto dropunlock;
945 	}
946 #endif /* INET */
947 #endif /* IPSEC */
948 
949 	/*
950 	 * Check the minimum TTL for socket.
951 	 */
952 	if (inp->inp_ip_minttl != 0) {
953 #ifdef INET6
954 		if (isipv6) {
955 			if (inp->inp_ip_minttl > ip6->ip6_hlim)
956 				goto dropunlock;
957 		} else
958 #endif
959 		if (inp->inp_ip_minttl > ip->ip_ttl)
960 			goto dropunlock;
961 	}
962 
963 	/*
964 	 * A previous connection in TIMEWAIT state is supposed to catch stray
965 	 * or duplicate segments arriving late.  If this segment was a
966 	 * legitimate new connection attempt, the old INPCB gets removed and
967 	 * we can try again to find a listening socket.
968 	 *
969 	 * At this point, due to earlier optimism, we may hold only an inpcb
970 	 * lock, and not the inpcbinfo write lock.  If so, we need to try to
971 	 * acquire it, or if that fails, acquire a reference on the inpcb,
972 	 * drop all locks, acquire a global write lock, and then re-acquire
973 	 * the inpcb lock.  We may at that point discover that another thread
974 	 * has tried to free the inpcb, in which case we need to loop back
975 	 * and try to find a new inpcb to deliver to.
976 	 *
977 	 * XXXRW: It may be time to rethink timewait locking.
978 	 */
979 	if (inp->inp_flags & INP_TIMEWAIT) {
980 		tcp_dooptions(&to, optp, optlen,
981 		    (thflags & TH_SYN) ? TO_SYN : 0);
982 		/*
983 		 * NB: tcp_twcheck unlocks the INP and frees the mbuf.
984 		 */
985 		if (tcp_twcheck(inp, &to, th, m, tlen))
986 			goto findpcb;
987 		return (IPPROTO_DONE);
988 	}
989 	/*
990 	 * The TCPCB may no longer exist if the connection is winding
991 	 * down or it is in the CLOSED state.  Either way we drop the
992 	 * segment and send an appropriate response.
993 	 */
994 	tp = intotcpcb(inp);
995 	if (tp == NULL || tp->t_state == TCPS_CLOSED) {
996 		rstreason = BANDLIM_RST_CLOSEDPORT;
997 		goto dropwithreset;
998 	}
999 
1000 #ifdef TCP_OFFLOAD
1001 	if (tp->t_flags & TF_TOE) {
1002 		tcp_offload_input(tp, m);
1003 		m = NULL;	/* consumed by the TOE driver */
1004 		goto dropunlock;
1005 	}
1006 #endif
1007 
1008 #ifdef MAC
1009 	INP_WLOCK_ASSERT(inp);
1010 	if (mac_inpcb_check_deliver(inp, m))
1011 		goto dropunlock;
1012 #endif
1013 	so = inp->inp_socket;
1014 	KASSERT(so != NULL, ("%s: so == NULL", __func__));
1015 #ifdef TCPDEBUG
1016 	if (so->so_options & SO_DEBUG) {
1017 		ostate = tp->t_state;
1018 #ifdef INET6
1019 		if (isipv6) {
1020 			bcopy((char *)ip6, (char *)tcp_saveipgen, sizeof(*ip6));
1021 		} else
1022 #endif
1023 			bcopy((char *)ip, (char *)tcp_saveipgen, sizeof(*ip));
1024 		tcp_savetcp = *th;
1025 	}
1026 #endif /* TCPDEBUG */
1027 	/*
1028 	 * When the socket is accepting connections (the INPCB is in LISTEN
1029 	 * state) we look into the SYN cache if this is a new connection
1030 	 * attempt or the completion of a previous one.
1031 	 */
1032 	KASSERT(tp->t_state == TCPS_LISTEN || !(so->so_options & SO_ACCEPTCONN),
1033 	    ("%s: so accepting but tp %p not listening", __func__, tp));
1034 	if (tp->t_state == TCPS_LISTEN && (so->so_options & SO_ACCEPTCONN)) {
1035 		struct in_conninfo inc;
1036 
1037 		bzero(&inc, sizeof(inc));
1038 #ifdef INET6
1039 		if (isipv6) {
1040 			inc.inc_flags |= INC_ISIPV6;
1041 			if (inp->inp_inc.inc_flags & INC_IPV6MINMTU)
1042 				inc.inc_flags |= INC_IPV6MINMTU;
1043 			inc.inc6_faddr = ip6->ip6_src;
1044 			inc.inc6_laddr = ip6->ip6_dst;
1045 		} else
1046 #endif
1047 		{
1048 			inc.inc_faddr = ip->ip_src;
1049 			inc.inc_laddr = ip->ip_dst;
1050 		}
1051 		inc.inc_fport = th->th_sport;
1052 		inc.inc_lport = th->th_dport;
1053 		inc.inc_fibnum = so->so_fibnum;
1054 
1055 		/*
1056 		 * Check for an existing connection attempt in syncache if
1057 		 * the flag is only ACK.  A successful lookup creates a new
1058 		 * socket appended to the listen queue in SYN_RECEIVED state.
1059 		 */
1060 		if ((thflags & (TH_RST|TH_ACK|TH_SYN)) == TH_ACK) {
1061 			/*
1062 			 * Parse the TCP options here because
1063 			 * syncookies need access to the reflected
1064 			 * timestamp.
1065 			 */
1066 			tcp_dooptions(&to, optp, optlen, 0);
1067 			/*
1068 			 * NB: syncache_expand() doesn't unlock
1069 			 * inp and tcpinfo locks.
1070 			 */
1071 			rstreason = syncache_expand(&inc, &to, th, &so, m);
1072 			if (rstreason < 0) {
1073 				/*
1074 				 * A failing TCP MD5 signature comparison
1075 				 * must result in the segment being dropped
1076 				 * and must not produce any response back
1077 				 * to the sender.
1078 				 */
1079 				goto dropunlock;
1080 			} else if (rstreason == 0) {
1081 				/*
1082 				 * No syncache entry or ACK was not
1083 				 * for our SYN/ACK.  Send a RST.
1084 				 * NB: syncache did its own logging
1085 				 * of the failure cause.
1086 				 */
1087 				rstreason = BANDLIM_RST_OPENPORT;
1088 				goto dropwithreset;
1089 			}
1090 tfo_socket_result:
1091 			if (so == NULL) {
1092 				/*
1093 				 * We completed the 3-way handshake
1094 				 * but could not allocate a socket
1095 				 * either due to memory shortage,
1096 				 * listen queue length limits or
1097 				 * global socket limits.  Send RST
1098 				 * or wait and have the remote end
1099 				 * retransmit the ACK for another
1100 				 * try.
1101 				 */
1102 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1103 					log(LOG_DEBUG, "%s; %s: Listen socket: "
1104 					    "Socket allocation failed due to "
1105 					    "limits or memory shortage, %s\n",
1106 					    s, __func__,
1107 					    V_tcp_sc_rst_sock_fail ?
1108 					    "sending RST" : "try again");
1109 				if (V_tcp_sc_rst_sock_fail) {
1110 					rstreason = BANDLIM_UNLIMITED;
1111 					goto dropwithreset;
1112 				} else
1113 					goto dropunlock;
1114 			}
1115 			/*
1116 			 * Socket is created in state SYN_RECEIVED.
1117 			 * Unlock the listen socket, lock the newly
1118 			 * created socket and update the tp variable.
1119 			 */
1120 			INP_WUNLOCK(inp);	/* listen socket */
1121 			inp = sotoinpcb(so);
1122 			/*
1123 			 * New connection inpcb is already locked by
1124 			 * syncache_expand().
1125 			 */
1126 			INP_WLOCK_ASSERT(inp);
1127 			tp = intotcpcb(inp);
1128 			KASSERT(tp->t_state == TCPS_SYN_RECEIVED,
1129 			    ("%s: ", __func__));
1130 			/*
1131 			 * Process the segment and the data it
1132 			 * contains.  tcp_do_segment() consumes
1133 			 * the mbuf chain and unlocks the inpcb.
1134 			 */
1135 			TCP_PROBE5(receive, NULL, tp, m, tp, th);
1136 			tp->t_fb->tfb_tcp_do_segment(m, th, so, tp, drop_hdrlen, tlen,
1137 			    iptos);
1138 			return (IPPROTO_DONE);
1139 		}
1140 		/*
1141 		 * Segment flag validation for new connection attempts:
1142 		 *
1143 		 * Our (SYN|ACK) response was rejected.
1144 		 * Check with syncache and remove entry to prevent
1145 		 * retransmits.
1146 		 *
1147 		 * NB: syncache_chkrst does its own logging of failure
1148 		 * causes.
1149 		 */
1150 		if (thflags & TH_RST) {
1151 			syncache_chkrst(&inc, th, m);
1152 			goto dropunlock;
1153 		}
1154 		/*
1155 		 * We can't do anything without SYN.
1156 		 */
1157 		if ((thflags & TH_SYN) == 0) {
1158 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1159 				log(LOG_DEBUG, "%s; %s: Listen socket: "
1160 				    "SYN is missing, segment ignored\n",
1161 				    s, __func__);
1162 			TCPSTAT_INC(tcps_badsyn);
1163 			goto dropunlock;
1164 		}
1165 		/*
1166 		 * (SYN|ACK) is bogus on a listen socket.
1167 		 */
1168 		if (thflags & TH_ACK) {
1169 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1170 				log(LOG_DEBUG, "%s; %s: Listen socket: "
1171 				    "SYN|ACK invalid, segment rejected\n",
1172 				    s, __func__);
1173 			syncache_badack(&inc);	/* XXX: Not needed! */
1174 			TCPSTAT_INC(tcps_badsyn);
1175 			rstreason = BANDLIM_RST_OPENPORT;
1176 			goto dropwithreset;
1177 		}
1178 		/*
1179 		 * If the drop_synfin option is enabled, drop all
1180 		 * segments with both the SYN and FIN bits set.
1181 		 * This prevents e.g. nmap from identifying the
1182 		 * TCP/IP stack.
1183 		 * XXX: Poor reasoning.  nmap has other methods
1184 		 * and is constantly refining its stack detection
1185 		 * strategies.
1186 		 * XXX: This is a violation of the TCP specification
1187 		 * and was used by RFC1644.
1188 		 */
1189 		if ((thflags & TH_FIN) && V_drop_synfin) {
1190 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1191 				log(LOG_DEBUG, "%s; %s: Listen socket: "
1192 				    "SYN|FIN segment ignored (based on "
1193 				    "sysctl setting)\n", s, __func__);
1194 			TCPSTAT_INC(tcps_badsyn);
1195 			goto dropunlock;
1196 		}
1197 		/*
1198 		 * Segment's flags are (SYN) or (SYN|FIN).
1199 		 *
1200 		 * TH_PUSH, TH_URG, TH_ECE, TH_CWR are ignored
1201 		 * as they do not affect the state of the TCP FSM.
1202 		 * The data pointed to by TH_URG and th_urp is ignored.
1203 		 */
1204 		KASSERT((thflags & (TH_RST|TH_ACK)) == 0,
1205 		    ("%s: Listen socket: TH_RST or TH_ACK set", __func__));
1206 		KASSERT(thflags & (TH_SYN),
1207 		    ("%s: Listen socket: TH_SYN not set", __func__));
1208 #ifdef INET6
1209 		/*
1210 		 * If deprecated address is forbidden,
1211 		 * we do not accept SYN to deprecated interface
1212 		 * address to prevent any new inbound connection from
1213 		 * getting established.
1214 		 * When we do not accept SYN, we send a TCP RST,
1215 		 * with deprecated source address (instead of dropping
1216 		 * it).  We compromise it as it is much better for peer
1217 		 * to send a RST, and RST will be the final packet
1218 		 * for the exchange.
1219 		 *
1220 		 * If we do not forbid deprecated addresses, we accept
1221 		 * the SYN packet.  RFC2462 does not suggest dropping
1222 		 * SYN in this case.
1223 		 * If we decipher RFC2462 5.5.4, it says like this:
1224 		 * 1. use of deprecated addr with existing
1225 		 *    communication is okay - "SHOULD continue to be
1226 		 *    used"
1227 		 * 2. use of it with new communication:
1228 		 *   (2a) "SHOULD NOT be used if alternate address
1229 		 *        with sufficient scope is available"
1230 		 *   (2b) nothing mentioned otherwise.
1231 		 * Here we fall into (2b) case as we have no choice in
1232 		 * our source address selection - we must obey the peer.
1233 		 *
1234 		 * The wording in RFC2462 is confusing, and there are
1235 		 * multiple description text for deprecated address
1236 		 * handling - worse, they are not exactly the same.
1237 		 * I believe 5.5.4 is the best one, so we follow 5.5.4.
1238 		 */
1239 		if (isipv6 && !V_ip6_use_deprecated) {
1240 			struct in6_ifaddr *ia6;
1241 
1242 			ia6 = in6ifa_ifwithaddr(&ip6->ip6_dst, 0 /* XXX */);
1243 			if (ia6 != NULL &&
1244 			    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
1245 				ifa_free(&ia6->ia_ifa);
1246 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1247 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1248 					"Connection attempt to deprecated "
1249 					"IPv6 address rejected\n",
1250 					s, __func__);
1251 				rstreason = BANDLIM_RST_OPENPORT;
1252 				goto dropwithreset;
1253 			}
1254 			if (ia6)
1255 				ifa_free(&ia6->ia_ifa);
1256 		}
1257 #endif /* INET6 */
1258 		/*
1259 		 * Basic sanity checks on incoming SYN requests:
1260 		 *   Don't respond if the destination is a link layer
1261 		 *	broadcast according to RFC1122 4.2.3.10, p. 104.
1262 		 *   If it is from this socket it must be forged.
1263 		 *   Don't respond if the source or destination is a
1264 		 *	global or subnet broad- or multicast address.
1265 		 *   Note that it is quite possible to receive unicast
1266 		 *	link-layer packets with a broadcast IP address. Use
1267 		 *	in_broadcast() to find them.
1268 		 */
1269 		if (m->m_flags & (M_BCAST|M_MCAST)) {
1270 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1271 			    log(LOG_DEBUG, "%s; %s: Listen socket: "
1272 				"Connection attempt from broad- or multicast "
1273 				"link layer address ignored\n", s, __func__);
1274 			goto dropunlock;
1275 		}
1276 #ifdef INET6
1277 		if (isipv6) {
1278 			if (th->th_dport == th->th_sport &&
1279 			    IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst, &ip6->ip6_src)) {
1280 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1281 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1282 					"Connection attempt to/from self "
1283 					"ignored\n", s, __func__);
1284 				goto dropunlock;
1285 			}
1286 			if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
1287 			    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
1288 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1289 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1290 					"Connection attempt from/to multicast "
1291 					"address ignored\n", s, __func__);
1292 				goto dropunlock;
1293 			}
1294 		}
1295 #endif
1296 #if defined(INET) && defined(INET6)
1297 		else
1298 #endif
1299 #ifdef INET
1300 		{
1301 			if (th->th_dport == th->th_sport &&
1302 			    ip->ip_dst.s_addr == ip->ip_src.s_addr) {
1303 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1304 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1305 					"Connection attempt from/to self "
1306 					"ignored\n", s, __func__);
1307 				goto dropunlock;
1308 			}
1309 			if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
1310 			    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
1311 			    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
1312 			    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif)) {
1313 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1314 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1315 					"Connection attempt from/to broad- "
1316 					"or multicast address ignored\n",
1317 					s, __func__);
1318 				goto dropunlock;
1319 			}
1320 		}
1321 #endif
1322 		/*
1323 		 * SYN appears to be valid.  Create compressed TCP state
1324 		 * for syncache.
1325 		 */
1326 #ifdef TCPDEBUG
1327 		if (so->so_options & SO_DEBUG)
1328 			tcp_trace(TA_INPUT, ostate, tp,
1329 			    (void *)tcp_saveipgen, &tcp_savetcp, 0);
1330 #endif
1331 		TCP_PROBE3(debug__input, tp, th, m);
1332 		tcp_dooptions(&to, optp, optlen, TO_SYN);
1333 		if (syncache_add(&inc, &to, th, inp, &so, m, NULL, NULL, iptos))
1334 			goto tfo_socket_result;
1335 
1336 		/*
1337 		 * Entry added to syncache and mbuf consumed.
1338 		 * Only the listen socket is unlocked by syncache_add().
1339 		 */
1340 		INP_INFO_WUNLOCK_ASSERT(&V_tcbinfo);
1341 		return (IPPROTO_DONE);
1342 	} else if (tp->t_state == TCPS_LISTEN) {
1343 		/*
1344 		 * When a listen socket is torn down the SO_ACCEPTCONN
1345 		 * flag is removed first while connections are drained
1346 		 * from the accept queue in a unlock/lock cycle of the
1347 		 * ACCEPT_LOCK, opening a race condition allowing a SYN
1348 		 * attempt go through unhandled.
1349 		 */
1350 		goto dropunlock;
1351 	}
1352 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1353 	if (tp->t_flags & TF_SIGNATURE) {
1354 		tcp_dooptions(&to, optp, optlen, thflags);
1355 		if ((to.to_flags & TOF_SIGNATURE) == 0) {
1356 			TCPSTAT_INC(tcps_sig_err_nosigopt);
1357 			goto dropunlock;
1358 		}
1359 		if (!TCPMD5_ENABLED() ||
1360 		    TCPMD5_INPUT(m, th, to.to_signature) != 0)
1361 			goto dropunlock;
1362 	}
1363 #endif
1364 	TCP_PROBE5(receive, NULL, tp, m, tp, th);
1365 
1366 	/*
1367 	 * Segment belongs to a connection in SYN_SENT, ESTABLISHED or later
1368 	 * state.  tcp_do_segment() always consumes the mbuf chain, unlocks
1369 	 * the inpcb, and unlocks pcbinfo.
1370 	 */
1371 	tp->t_fb->tfb_tcp_do_segment(m, th, so, tp, drop_hdrlen, tlen, iptos);
1372 	return (IPPROTO_DONE);
1373 
1374 dropwithreset:
1375 	TCP_PROBE5(receive, NULL, tp, m, tp, th);
1376 
1377 	if (inp != NULL) {
1378 		tcp_dropwithreset(m, th, tp, tlen, rstreason);
1379 		INP_WUNLOCK(inp);
1380 	} else
1381 		tcp_dropwithreset(m, th, NULL, tlen, rstreason);
1382 	m = NULL;	/* mbuf chain got consumed. */
1383 	goto drop;
1384 
1385 dropunlock:
1386 	if (m != NULL)
1387 		TCP_PROBE5(receive, NULL, tp, m, tp, th);
1388 
1389 	if (inp != NULL)
1390 		INP_WUNLOCK(inp);
1391 
1392 drop:
1393 	INP_INFO_WUNLOCK_ASSERT(&V_tcbinfo);
1394 	if (s != NULL)
1395 		free(s, M_TCPLOG);
1396 	if (m != NULL)
1397 		m_freem(m);
1398 	return (IPPROTO_DONE);
1399 }
1400 
1401 /*
1402  * Automatic sizing of receive socket buffer.  Often the send
1403  * buffer size is not optimally adjusted to the actual network
1404  * conditions at hand (delay bandwidth product).  Setting the
1405  * buffer size too small limits throughput on links with high
1406  * bandwidth and high delay (eg. trans-continental/oceanic links).
1407  *
1408  * On the receive side the socket buffer memory is only rarely
1409  * used to any significant extent.  This allows us to be much
1410  * more aggressive in scaling the receive socket buffer.  For
1411  * the case that the buffer space is actually used to a large
1412  * extent and we run out of kernel memory we can simply drop
1413  * the new segments; TCP on the sender will just retransmit it
1414  * later.  Setting the buffer size too big may only consume too
1415  * much kernel memory if the application doesn't read() from
1416  * the socket or packet loss or reordering makes use of the
1417  * reassembly queue.
1418  *
1419  * The criteria to step up the receive buffer one notch are:
1420  *  1. Application has not set receive buffer size with
1421  *     SO_RCVBUF. Setting SO_RCVBUF clears SB_AUTOSIZE.
1422  *  2. the number of bytes received during 1/2 of an sRTT
1423  *     is at least 3/8 of the current socket buffer size.
1424  *  3. receive buffer size has not hit maximal automatic size;
1425  *
1426  * If all of the criteria are met we increaset the socket buffer
1427  * by a 1/2 (bounded by the max). This allows us to keep ahead
1428  * of slow-start but also makes it so our peer never gets limited
1429  * by our rwnd which we then open up causing a burst.
1430  *
1431  * This algorithm does two steps per RTT at most and only if
1432  * we receive a bulk stream w/o packet losses or reorderings.
1433  * Shrinking the buffer during idle times is not necessary as
1434  * it doesn't consume any memory when idle.
1435  *
1436  * TODO: Only step up if the application is actually serving
1437  * the buffer to better manage the socket buffer resources.
1438  */
1439 int
1440 tcp_autorcvbuf(struct mbuf *m, struct tcphdr *th, struct socket *so,
1441     struct tcpcb *tp, int tlen)
1442 {
1443 	int newsize = 0;
1444 
1445 	if (V_tcp_do_autorcvbuf && (so->so_rcv.sb_flags & SB_AUTOSIZE) &&
1446 	    tp->t_srtt != 0 && tp->rfbuf_ts != 0 &&
1447 	    TCP_TS_TO_TICKS(tcp_ts_getticks() - tp->rfbuf_ts) >
1448 	    ((tp->t_srtt >> TCP_RTT_SHIFT)/2)) {
1449 		if (tp->rfbuf_cnt > ((so->so_rcv.sb_hiwat / 2)/ 4 * 3) &&
1450 		    so->so_rcv.sb_hiwat < V_tcp_autorcvbuf_max) {
1451 			newsize = min((so->so_rcv.sb_hiwat + (so->so_rcv.sb_hiwat/2)), V_tcp_autorcvbuf_max);
1452 		}
1453 		TCP_PROBE6(receive__autoresize, NULL, tp, m, tp, th, newsize);
1454 
1455 		/* Start over with next RTT. */
1456 		tp->rfbuf_ts = 0;
1457 		tp->rfbuf_cnt = 0;
1458 	} else {
1459 		tp->rfbuf_cnt += tlen;	/* add up */
1460 	}
1461 	return (newsize);
1462 }
1463 
1464 void
1465 tcp_handle_wakeup(struct tcpcb *tp, struct socket *so)
1466 {
1467 	/*
1468 	 * Since tp might be gone if the session entered
1469 	 * the TIME_WAIT state before coming here, we need
1470 	 * to check if the socket is still connected.
1471 	 */
1472 	if ((so->so_state & SS_ISCONNECTED) == 0)
1473 		return;
1474 	INP_LOCK_ASSERT(tp->t_inpcb);
1475 	if (tp->t_flags & TF_WAKESOR) {
1476 		tp->t_flags &= ~TF_WAKESOR;
1477 		SOCKBUF_UNLOCK_ASSERT(&so->so_rcv);
1478 		sorwakeup(so);
1479 	}
1480 	if (tp->t_flags & TF_WAKESOW) {
1481 		tp->t_flags &= ~TF_WAKESOW;
1482 		SOCKBUF_UNLOCK_ASSERT(&so->so_snd);
1483 		sowwakeup(so);
1484 	}
1485 }
1486 
1487 void
1488 tcp_do_segment(struct mbuf *m, struct tcphdr *th, struct socket *so,
1489     struct tcpcb *tp, int drop_hdrlen, int tlen, uint8_t iptos)
1490 {
1491 	int thflags, acked, ourfinisacked, needoutput = 0, sack_changed;
1492 	int rstreason, todrop, win, incforsyn = 0;
1493 	uint32_t tiwin;
1494 	uint16_t nsegs;
1495 	char *s;
1496 	struct in_conninfo *inc;
1497 	struct mbuf *mfree;
1498 	struct tcpopt to;
1499 	int tfo_syn;
1500 
1501 #ifdef TCPDEBUG
1502 	/*
1503 	 * The size of tcp_saveipgen must be the size of the max ip header,
1504 	 * now IPv6.
1505 	 */
1506 	u_char tcp_saveipgen[IP6_HDR_LEN];
1507 	struct tcphdr tcp_savetcp;
1508 	short ostate = 0;
1509 #endif
1510 	thflags = th->th_flags;
1511 	inc = &tp->t_inpcb->inp_inc;
1512 	tp->sackhint.last_sack_ack = 0;
1513 	sack_changed = 0;
1514 	nsegs = max(1, m->m_pkthdr.lro_nsegs);
1515 
1516 	NET_EPOCH_ASSERT();
1517 	INP_WLOCK_ASSERT(tp->t_inpcb);
1518 	KASSERT(tp->t_state > TCPS_LISTEN, ("%s: TCPS_LISTEN",
1519 	    __func__));
1520 	KASSERT(tp->t_state != TCPS_TIME_WAIT, ("%s: TCPS_TIME_WAIT",
1521 	    __func__));
1522 
1523 #ifdef TCPPCAP
1524 	/* Save segment, if requested. */
1525 	tcp_pcap_add(th, m, &(tp->t_inpkts));
1526 #endif
1527 	TCP_LOG_EVENT(tp, th, &so->so_rcv, &so->so_snd, TCP_LOG_IN, 0,
1528 	    tlen, NULL, true);
1529 
1530 	if ((thflags & TH_SYN) && (thflags & TH_FIN) && V_drop_synfin) {
1531 		if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1532 			log(LOG_DEBUG, "%s; %s: "
1533 			    "SYN|FIN segment ignored (based on "
1534 			    "sysctl setting)\n", s, __func__);
1535 			free(s, M_TCPLOG);
1536 		}
1537 		goto drop;
1538 	}
1539 
1540 	/*
1541 	 * If a segment with the ACK-bit set arrives in the SYN-SENT state
1542 	 * check SEQ.ACK first.
1543 	 */
1544 	if ((tp->t_state == TCPS_SYN_SENT) && (thflags & TH_ACK) &&
1545 	    (SEQ_LEQ(th->th_ack, tp->iss) || SEQ_GT(th->th_ack, tp->snd_max))) {
1546 		rstreason = BANDLIM_UNLIMITED;
1547 		goto dropwithreset;
1548 	}
1549 
1550 	/*
1551 	 * Segment received on connection.
1552 	 * Reset idle time and keep-alive timer.
1553 	 * XXX: This should be done after segment
1554 	 * validation to ignore broken/spoofed segs.
1555 	 */
1556 	tp->t_rcvtime = ticks;
1557 
1558 	/*
1559 	 * Scale up the window into a 32-bit value.
1560 	 * For the SYN_SENT state the scale is zero.
1561 	 */
1562 	tiwin = th->th_win << tp->snd_scale;
1563 #ifdef STATS
1564 	stats_voi_update_abs_ulong(tp->t_stats, VOI_TCP_FRWIN, tiwin);
1565 #endif
1566 
1567 	/*
1568 	 * TCP ECN processing.
1569 	 */
1570 	if (tp->t_flags2 & TF2_ECN_PERMIT) {
1571 		if (thflags & TH_CWR) {
1572 			tp->t_flags2 &= ~TF2_ECN_SND_ECE;
1573 			tp->t_flags |= TF_ACKNOW;
1574 		}
1575 		switch (iptos & IPTOS_ECN_MASK) {
1576 		case IPTOS_ECN_CE:
1577 			tp->t_flags2 |= TF2_ECN_SND_ECE;
1578 			TCPSTAT_INC(tcps_ecn_ce);
1579 			break;
1580 		case IPTOS_ECN_ECT0:
1581 			TCPSTAT_INC(tcps_ecn_ect0);
1582 			break;
1583 		case IPTOS_ECN_ECT1:
1584 			TCPSTAT_INC(tcps_ecn_ect1);
1585 			break;
1586 		}
1587 
1588 		/* Process a packet differently from RFC3168. */
1589 		cc_ecnpkt_handler(tp, th, iptos);
1590 
1591 		/* Congestion experienced. */
1592 		if (thflags & TH_ECE) {
1593 			cc_cong_signal(tp, th, CC_ECN);
1594 		}
1595 	}
1596 
1597 	/*
1598 	 * Parse options on any incoming segment.
1599 	 */
1600 	tcp_dooptions(&to, (u_char *)(th + 1),
1601 	    (th->th_off << 2) - sizeof(struct tcphdr),
1602 	    (thflags & TH_SYN) ? TO_SYN : 0);
1603 
1604 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1605 	if ((tp->t_flags & TF_SIGNATURE) != 0 &&
1606 	    (to.to_flags & TOF_SIGNATURE) == 0) {
1607 		TCPSTAT_INC(tcps_sig_err_sigopt);
1608 		/* XXX: should drop? */
1609 	}
1610 #endif
1611 	/*
1612 	 * If echoed timestamp is later than the current time,
1613 	 * fall back to non RFC1323 RTT calculation.  Normalize
1614 	 * timestamp if syncookies were used when this connection
1615 	 * was established.
1616 	 */
1617 	if ((to.to_flags & TOF_TS) && (to.to_tsecr != 0)) {
1618 		to.to_tsecr -= tp->ts_offset;
1619 		if (TSTMP_GT(to.to_tsecr, tcp_ts_getticks()))
1620 			to.to_tsecr = 0;
1621 		else if (tp->t_flags & TF_PREVVALID &&
1622 			 tp->t_badrxtwin != 0 && SEQ_LT(to.to_tsecr, tp->t_badrxtwin))
1623 			cc_cong_signal(tp, th, CC_RTO_ERR);
1624 	}
1625 	/*
1626 	 * Process options only when we get SYN/ACK back. The SYN case
1627 	 * for incoming connections is handled in tcp_syncache.
1628 	 * According to RFC1323 the window field in a SYN (i.e., a <SYN>
1629 	 * or <SYN,ACK>) segment itself is never scaled.
1630 	 * XXX this is traditional behavior, may need to be cleaned up.
1631 	 */
1632 	if (tp->t_state == TCPS_SYN_SENT && (thflags & TH_SYN)) {
1633 		/* Handle parallel SYN for ECN */
1634 		if (!(thflags & TH_ACK) &&
1635 		    ((thflags & (TH_CWR | TH_ECE)) == (TH_CWR | TH_ECE)) &&
1636 		    ((V_tcp_do_ecn == 1) || (V_tcp_do_ecn == 2))) {
1637 			tp->t_flags2 |= TF2_ECN_PERMIT;
1638 			tp->t_flags2 |= TF2_ECN_SND_ECE;
1639 			TCPSTAT_INC(tcps_ecn_shs);
1640 		}
1641 		if ((to.to_flags & TOF_SCALE) &&
1642 		    (tp->t_flags & TF_REQ_SCALE)) {
1643 			tp->t_flags |= TF_RCVD_SCALE;
1644 			tp->snd_scale = to.to_wscale;
1645 		} else
1646 			tp->t_flags &= ~TF_REQ_SCALE;
1647 		/*
1648 		 * Initial send window.  It will be updated with
1649 		 * the next incoming segment to the scaled value.
1650 		 */
1651 		tp->snd_wnd = th->th_win;
1652 		if ((to.to_flags & TOF_TS) &&
1653 		    (tp->t_flags & TF_REQ_TSTMP)) {
1654 			tp->t_flags |= TF_RCVD_TSTMP;
1655 			tp->ts_recent = to.to_tsval;
1656 			tp->ts_recent_age = tcp_ts_getticks();
1657 		} else
1658 			tp->t_flags &= ~TF_REQ_TSTMP;
1659 		if (to.to_flags & TOF_MSS)
1660 			tcp_mss(tp, to.to_mss);
1661 		if ((tp->t_flags & TF_SACK_PERMIT) &&
1662 		    (to.to_flags & TOF_SACKPERM) == 0)
1663 			tp->t_flags &= ~TF_SACK_PERMIT;
1664 		if (IS_FASTOPEN(tp->t_flags)) {
1665 			if (to.to_flags & TOF_FASTOPEN) {
1666 				uint16_t mss;
1667 
1668 				if (to.to_flags & TOF_MSS)
1669 					mss = to.to_mss;
1670 				else
1671 					if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0)
1672 						mss = TCP6_MSS;
1673 					else
1674 						mss = TCP_MSS;
1675 				tcp_fastopen_update_cache(tp, mss,
1676 				    to.to_tfo_len, to.to_tfo_cookie);
1677 			} else
1678 				tcp_fastopen_disable_path(tp);
1679 		}
1680 	}
1681 
1682 	/*
1683 	 * If timestamps were negotiated during SYN/ACK and a
1684 	 * segment without a timestamp is received, silently drop
1685 	 * the segment.
1686 	 * See section 3.2 of RFC 7323.
1687 	 */
1688 	if ((tp->t_flags & TF_RCVD_TSTMP) && !(to.to_flags & TOF_TS)) {
1689 		if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1690 			log(LOG_DEBUG, "%s; %s: Timestamp missing, "
1691 			    "segment silently dropped\n", s, __func__);
1692 			free(s, M_TCPLOG);
1693 		}
1694 		goto drop;
1695 	}
1696 	/*
1697 	 * If timestamps were not negotiated during SYN/ACK and a
1698 	 * segment without a timestamp is received, ignore the
1699 	 * timestamp and process the packet normally.
1700 	 * See section 3.2 of RFC 7323.
1701 	 */
1702 	if (!(tp->t_flags & TF_RCVD_TSTMP) && (to.to_flags & TOF_TS)) {
1703 		if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1704 			log(LOG_DEBUG, "%s; %s: Timestamp not expected, "
1705 			    "segment processed normally\n", s, __func__);
1706 			free(s, M_TCPLOG);
1707 		}
1708 	}
1709 
1710 	/*
1711 	 * Header prediction: check for the two common cases
1712 	 * of a uni-directional data xfer.  If the packet has
1713 	 * no control flags, is in-sequence, the window didn't
1714 	 * change and we're not retransmitting, it's a
1715 	 * candidate.  If the length is zero and the ack moved
1716 	 * forward, we're the sender side of the xfer.  Just
1717 	 * free the data acked & wake any higher level process
1718 	 * that was blocked waiting for space.  If the length
1719 	 * is non-zero and the ack didn't move, we're the
1720 	 * receiver side.  If we're getting packets in-order
1721 	 * (the reassembly queue is empty), add the data to
1722 	 * the socket buffer and note that we need a delayed ack.
1723 	 * Make sure that the hidden state-flags are also off.
1724 	 * Since we check for TCPS_ESTABLISHED first, it can only
1725 	 * be TH_NEEDSYN.
1726 	 */
1727 	if (tp->t_state == TCPS_ESTABLISHED &&
1728 	    th->th_seq == tp->rcv_nxt &&
1729 	    (thflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
1730 	    tp->snd_nxt == tp->snd_max &&
1731 	    tiwin && tiwin == tp->snd_wnd &&
1732 	    ((tp->t_flags & (TF_NEEDSYN|TF_NEEDFIN)) == 0) &&
1733 	    SEGQ_EMPTY(tp) &&
1734 	    ((to.to_flags & TOF_TS) == 0 ||
1735 	     TSTMP_GEQ(to.to_tsval, tp->ts_recent)) ) {
1736 		/*
1737 		 * If last ACK falls within this segment's sequence numbers,
1738 		 * record the timestamp.
1739 		 * NOTE that the test is modified according to the latest
1740 		 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
1741 		 */
1742 		if ((to.to_flags & TOF_TS) != 0 &&
1743 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1744 			tp->ts_recent_age = tcp_ts_getticks();
1745 			tp->ts_recent = to.to_tsval;
1746 		}
1747 
1748 		if (tlen == 0) {
1749 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
1750 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
1751 			    !IN_RECOVERY(tp->t_flags) &&
1752 			    (to.to_flags & TOF_SACK) == 0 &&
1753 			    TAILQ_EMPTY(&tp->snd_holes)) {
1754 				/*
1755 				 * This is a pure ack for outstanding data.
1756 				 */
1757 				TCPSTAT_INC(tcps_predack);
1758 
1759 				/*
1760 				 * "bad retransmit" recovery without timestamps.
1761 				 */
1762 				if ((to.to_flags & TOF_TS) == 0 &&
1763 				    tp->t_rxtshift == 1 &&
1764 				    tp->t_flags & TF_PREVVALID &&
1765 				    (int)(ticks - tp->t_badrxtwin) < 0) {
1766 					cc_cong_signal(tp, th, CC_RTO_ERR);
1767 				}
1768 
1769 				/*
1770 				 * Recalculate the transmit timer / rtt.
1771 				 *
1772 				 * Some boxes send broken timestamp replies
1773 				 * during the SYN+ACK phase, ignore
1774 				 * timestamps of 0 or we could calculate a
1775 				 * huge RTT and blow up the retransmit timer.
1776 				 */
1777 				if ((to.to_flags & TOF_TS) != 0 &&
1778 				    to.to_tsecr) {
1779 					uint32_t t;
1780 
1781 					t = tcp_ts_getticks() - to.to_tsecr;
1782 					if (!tp->t_rttlow || tp->t_rttlow > t)
1783 						tp->t_rttlow = t;
1784 					tcp_xmit_timer(tp,
1785 					    TCP_TS_TO_TICKS(t) + 1);
1786 				} else if (tp->t_rtttime &&
1787 				    SEQ_GT(th->th_ack, tp->t_rtseq)) {
1788 					if (!tp->t_rttlow ||
1789 					    tp->t_rttlow > ticks - tp->t_rtttime)
1790 						tp->t_rttlow = ticks - tp->t_rtttime;
1791 					tcp_xmit_timer(tp,
1792 							ticks - tp->t_rtttime);
1793 				}
1794 				acked = BYTES_THIS_ACK(tp, th);
1795 
1796 #ifdef TCP_HHOOK
1797 				/* Run HHOOK_TCP_ESTABLISHED_IN helper hooks. */
1798 				hhook_run_tcp_est_in(tp, th, &to);
1799 #endif
1800 
1801 				TCPSTAT_ADD(tcps_rcvackpack, nsegs);
1802 				TCPSTAT_ADD(tcps_rcvackbyte, acked);
1803 				sbdrop(&so->so_snd, acked);
1804 				if (SEQ_GT(tp->snd_una, tp->snd_recover) &&
1805 				    SEQ_LEQ(th->th_ack, tp->snd_recover))
1806 					tp->snd_recover = th->th_ack - 1;
1807 
1808 				/*
1809 				 * Let the congestion control algorithm update
1810 				 * congestion control related information. This
1811 				 * typically means increasing the congestion
1812 				 * window.
1813 				 */
1814 				cc_ack_received(tp, th, nsegs, CC_ACK);
1815 
1816 				tp->snd_una = th->th_ack;
1817 				/*
1818 				 * Pull snd_wl2 up to prevent seq wrap relative
1819 				 * to th_ack.
1820 				 */
1821 				tp->snd_wl2 = th->th_ack;
1822 				tp->t_dupacks = 0;
1823 				m_freem(m);
1824 
1825 				/*
1826 				 * If all outstanding data are acked, stop
1827 				 * retransmit timer, otherwise restart timer
1828 				 * using current (possibly backed-off) value.
1829 				 * If process is waiting for space,
1830 				 * wakeup/selwakeup/signal.  If data
1831 				 * are ready to send, let tcp_output
1832 				 * decide between more output or persist.
1833 				 */
1834 #ifdef TCPDEBUG
1835 				if (so->so_options & SO_DEBUG)
1836 					tcp_trace(TA_INPUT, ostate, tp,
1837 					    (void *)tcp_saveipgen,
1838 					    &tcp_savetcp, 0);
1839 #endif
1840 				TCP_PROBE3(debug__input, tp, th, m);
1841 				if (tp->snd_una == tp->snd_max)
1842 					tcp_timer_activate(tp, TT_REXMT, 0);
1843 				else if (!tcp_timer_active(tp, TT_PERSIST))
1844 					tcp_timer_activate(tp, TT_REXMT,
1845 						      tp->t_rxtcur);
1846 				tp->t_flags |= TF_WAKESOW;
1847 				if (sbavail(&so->so_snd))
1848 					(void) tp->t_fb->tfb_tcp_output(tp);
1849 				goto check_delack;
1850 			}
1851 		} else if (th->th_ack == tp->snd_una &&
1852 		    tlen <= sbspace(&so->so_rcv)) {
1853 			int newsize = 0;	/* automatic sockbuf scaling */
1854 
1855 			/*
1856 			 * This is a pure, in-sequence data packet with
1857 			 * nothing on the reassembly queue and we have enough
1858 			 * buffer space to take it.
1859 			 */
1860 			/* Clean receiver SACK report if present */
1861 			if ((tp->t_flags & TF_SACK_PERMIT) && tp->rcv_numsacks)
1862 				tcp_clean_sackreport(tp);
1863 			TCPSTAT_INC(tcps_preddat);
1864 			tp->rcv_nxt += tlen;
1865 			if (tlen &&
1866 			    ((tp->t_flags2 & TF2_FBYTES_COMPLETE) == 0) &&
1867 			    (tp->t_fbyte_in == 0)) {
1868 				tp->t_fbyte_in = ticks;
1869 				if (tp->t_fbyte_in == 0)
1870 					tp->t_fbyte_in = 1;
1871 				if (tp->t_fbyte_out && tp->t_fbyte_in)
1872 					tp->t_flags2 |= TF2_FBYTES_COMPLETE;
1873 			}
1874 			/*
1875 			 * Pull snd_wl1 up to prevent seq wrap relative to
1876 			 * th_seq.
1877 			 */
1878 			tp->snd_wl1 = th->th_seq;
1879 			/*
1880 			 * Pull rcv_up up to prevent seq wrap relative to
1881 			 * rcv_nxt.
1882 			 */
1883 			tp->rcv_up = tp->rcv_nxt;
1884 			TCPSTAT_ADD(tcps_rcvpack, nsegs);
1885 			TCPSTAT_ADD(tcps_rcvbyte, tlen);
1886 #ifdef TCPDEBUG
1887 			if (so->so_options & SO_DEBUG)
1888 				tcp_trace(TA_INPUT, ostate, tp,
1889 				    (void *)tcp_saveipgen, &tcp_savetcp, 0);
1890 #endif
1891 			TCP_PROBE3(debug__input, tp, th, m);
1892 
1893 			newsize = tcp_autorcvbuf(m, th, so, tp, tlen);
1894 
1895 			/* Add data to socket buffer. */
1896 			SOCKBUF_LOCK(&so->so_rcv);
1897 			if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
1898 				m_freem(m);
1899 			} else {
1900 				/*
1901 				 * Set new socket buffer size.
1902 				 * Give up when limit is reached.
1903 				 */
1904 				if (newsize)
1905 					if (!sbreserve_locked(&so->so_rcv,
1906 					    newsize, so, NULL))
1907 						so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
1908 				m_adj(m, drop_hdrlen);	/* delayed header drop */
1909 				sbappendstream_locked(&so->so_rcv, m, 0);
1910 			}
1911 			SOCKBUF_UNLOCK(&so->so_rcv);
1912 			tp->t_flags |= TF_WAKESOR;
1913 			if (DELAY_ACK(tp, tlen)) {
1914 				tp->t_flags |= TF_DELACK;
1915 			} else {
1916 				tp->t_flags |= TF_ACKNOW;
1917 				tp->t_fb->tfb_tcp_output(tp);
1918 			}
1919 			goto check_delack;
1920 		}
1921 	}
1922 
1923 	/*
1924 	 * Calculate amount of space in receive window,
1925 	 * and then do TCP input processing.
1926 	 * Receive window is amount of space in rcv queue,
1927 	 * but not less than advertised window.
1928 	 */
1929 	win = sbspace(&so->so_rcv);
1930 	if (win < 0)
1931 		win = 0;
1932 	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1933 
1934 	switch (tp->t_state) {
1935 	/*
1936 	 * If the state is SYN_RECEIVED:
1937 	 *	if seg contains an ACK, but not for our SYN/ACK, send a RST.
1938 	 */
1939 	case TCPS_SYN_RECEIVED:
1940 		if ((thflags & TH_ACK) &&
1941 		    (SEQ_LEQ(th->th_ack, tp->snd_una) ||
1942 		     SEQ_GT(th->th_ack, tp->snd_max))) {
1943 				rstreason = BANDLIM_RST_OPENPORT;
1944 				goto dropwithreset;
1945 		}
1946 		if (IS_FASTOPEN(tp->t_flags)) {
1947 			/*
1948 			 * When a TFO connection is in SYN_RECEIVED, the
1949 			 * only valid packets are the initial SYN, a
1950 			 * retransmit/copy of the initial SYN (possibly with
1951 			 * a subset of the original data), a valid ACK, a
1952 			 * FIN, or a RST.
1953 			 */
1954 			if ((thflags & (TH_SYN|TH_ACK)) == (TH_SYN|TH_ACK)) {
1955 				rstreason = BANDLIM_RST_OPENPORT;
1956 				goto dropwithreset;
1957 			} else if (thflags & TH_SYN) {
1958 				/* non-initial SYN is ignored */
1959 				if ((tcp_timer_active(tp, TT_DELACK) ||
1960 				     tcp_timer_active(tp, TT_REXMT)))
1961 					goto drop;
1962 			} else if (!(thflags & (TH_ACK|TH_FIN|TH_RST))) {
1963 				goto drop;
1964 			}
1965 		}
1966 		break;
1967 
1968 	/*
1969 	 * If the state is SYN_SENT:
1970 	 *	if seg contains a RST with valid ACK (SEQ.ACK has already
1971 	 *	    been verified), then drop the connection.
1972 	 *	if seg contains a RST without an ACK, drop the seg.
1973 	 *	if seg does not contain SYN, then drop the seg.
1974 	 * Otherwise this is an acceptable SYN segment
1975 	 *	initialize tp->rcv_nxt and tp->irs
1976 	 *	if seg contains ack then advance tp->snd_una
1977 	 *	if seg contains an ECE and ECN support is enabled, the stream
1978 	 *	    is ECN capable.
1979 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1980 	 *	arrange for segment to be acked (eventually)
1981 	 *	continue processing rest of data/controls, beginning with URG
1982 	 */
1983 	case TCPS_SYN_SENT:
1984 		if ((thflags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) {
1985 			TCP_PROBE5(connect__refused, NULL, tp,
1986 			    m, tp, th);
1987 			tp = tcp_drop(tp, ECONNREFUSED);
1988 		}
1989 		if (thflags & TH_RST)
1990 			goto drop;
1991 		if (!(thflags & TH_SYN))
1992 			goto drop;
1993 
1994 		tp->irs = th->th_seq;
1995 		tcp_rcvseqinit(tp);
1996 		if (thflags & TH_ACK) {
1997 			int tfo_partial_ack = 0;
1998 
1999 			TCPSTAT_INC(tcps_connects);
2000 			soisconnected(so);
2001 #ifdef MAC
2002 			mac_socketpeer_set_from_mbuf(m, so);
2003 #endif
2004 			/* Do window scaling on this connection? */
2005 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2006 				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
2007 				tp->rcv_scale = tp->request_r_scale;
2008 			}
2009 			tp->rcv_adv += min(tp->rcv_wnd,
2010 			    TCP_MAXWIN << tp->rcv_scale);
2011 			tp->snd_una++;		/* SYN is acked */
2012 			/*
2013 			 * If not all the data that was sent in the TFO SYN
2014 			 * has been acked, resend the remainder right away.
2015 			 */
2016 			if (IS_FASTOPEN(tp->t_flags) &&
2017 			    (tp->snd_una != tp->snd_max)) {
2018 				tp->snd_nxt = th->th_ack;
2019 				tfo_partial_ack = 1;
2020 			}
2021 			/*
2022 			 * If there's data, delay ACK; if there's also a FIN
2023 			 * ACKNOW will be turned on later.
2024 			 */
2025 			if (DELAY_ACK(tp, tlen) && tlen != 0 && !tfo_partial_ack)
2026 				tcp_timer_activate(tp, TT_DELACK,
2027 				    tcp_delacktime);
2028 			else
2029 				tp->t_flags |= TF_ACKNOW;
2030 
2031 			if (((thflags & (TH_CWR | TH_ECE)) == TH_ECE) &&
2032 			    (V_tcp_do_ecn == 1)) {
2033 				tp->t_flags2 |= TF2_ECN_PERMIT;
2034 				TCPSTAT_INC(tcps_ecn_shs);
2035 			}
2036 
2037 			/*
2038 			 * Received <SYN,ACK> in SYN_SENT[*] state.
2039 			 * Transitions:
2040 			 *	SYN_SENT  --> ESTABLISHED
2041 			 *	SYN_SENT* --> FIN_WAIT_1
2042 			 */
2043 			tp->t_starttime = ticks;
2044 			if (tp->t_flags & TF_NEEDFIN) {
2045 				tcp_state_change(tp, TCPS_FIN_WAIT_1);
2046 				tp->t_flags &= ~TF_NEEDFIN;
2047 				thflags &= ~TH_SYN;
2048 			} else {
2049 				tcp_state_change(tp, TCPS_ESTABLISHED);
2050 				TCP_PROBE5(connect__established, NULL, tp,
2051 				    m, tp, th);
2052 				cc_conn_init(tp);
2053 				tcp_timer_activate(tp, TT_KEEP,
2054 				    TP_KEEPIDLE(tp));
2055 			}
2056 		} else {
2057 			/*
2058 			 * Received initial SYN in SYN-SENT[*] state =>
2059 			 * simultaneous open.
2060 			 * If it succeeds, connection is * half-synchronized.
2061 			 * Otherwise, do 3-way handshake:
2062 			 *        SYN-SENT -> SYN-RECEIVED
2063 			 *        SYN-SENT* -> SYN-RECEIVED*
2064 			 */
2065 			tp->t_flags |= (TF_ACKNOW | TF_NEEDSYN);
2066 			tcp_timer_activate(tp, TT_REXMT, 0);
2067 			tcp_state_change(tp, TCPS_SYN_RECEIVED);
2068 		}
2069 
2070 		INP_WLOCK_ASSERT(tp->t_inpcb);
2071 
2072 		/*
2073 		 * Advance th->th_seq to correspond to first data byte.
2074 		 * If data, trim to stay within window,
2075 		 * dropping FIN if necessary.
2076 		 */
2077 		th->th_seq++;
2078 		if (tlen > tp->rcv_wnd) {
2079 			todrop = tlen - tp->rcv_wnd;
2080 			m_adj(m, -todrop);
2081 			tlen = tp->rcv_wnd;
2082 			thflags &= ~TH_FIN;
2083 			TCPSTAT_INC(tcps_rcvpackafterwin);
2084 			TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop);
2085 		}
2086 		tp->snd_wl1 = th->th_seq - 1;
2087 		tp->rcv_up = th->th_seq;
2088 		/*
2089 		 * Client side of transaction: already sent SYN and data.
2090 		 * If the remote host used T/TCP to validate the SYN,
2091 		 * our data will be ACK'd; if so, enter normal data segment
2092 		 * processing in the middle of step 5, ack processing.
2093 		 * Otherwise, goto step 6.
2094 		 */
2095 		if (thflags & TH_ACK)
2096 			goto process_ACK;
2097 
2098 		goto step6;
2099 
2100 	/*
2101 	 * If the state is LAST_ACK or CLOSING or TIME_WAIT:
2102 	 *      do normal processing.
2103 	 *
2104 	 * NB: Leftover from RFC1644 T/TCP.  Cases to be reused later.
2105 	 */
2106 	case TCPS_LAST_ACK:
2107 	case TCPS_CLOSING:
2108 		break;  /* continue normal processing */
2109 	}
2110 
2111 	/*
2112 	 * States other than LISTEN or SYN_SENT.
2113 	 * First check the RST flag and sequence number since reset segments
2114 	 * are exempt from the timestamp and connection count tests.  This
2115 	 * fixes a bug introduced by the Stevens, vol. 2, p. 960 bugfix
2116 	 * below which allowed reset segments in half the sequence space
2117 	 * to fall though and be processed (which gives forged reset
2118 	 * segments with a random sequence number a 50 percent chance of
2119 	 * killing a connection).
2120 	 * Then check timestamp, if present.
2121 	 * Then check the connection count, if present.
2122 	 * Then check that at least some bytes of segment are within
2123 	 * receive window.  If segment begins before rcv_nxt,
2124 	 * drop leading data (and SYN); if nothing left, just ack.
2125 	 */
2126 	if (thflags & TH_RST) {
2127 		/*
2128 		 * RFC5961 Section 3.2
2129 		 *
2130 		 * - RST drops connection only if SEG.SEQ == RCV.NXT.
2131 		 * - If RST is in window, we send challenge ACK.
2132 		 *
2133 		 * Note: to take into account delayed ACKs, we should
2134 		 *   test against last_ack_sent instead of rcv_nxt.
2135 		 * Note 2: we handle special case of closed window, not
2136 		 *   covered by the RFC.
2137 		 */
2138 		if ((SEQ_GEQ(th->th_seq, tp->last_ack_sent) &&
2139 		    SEQ_LT(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) ||
2140 		    (tp->rcv_wnd == 0 && tp->last_ack_sent == th->th_seq)) {
2141 			KASSERT(tp->t_state != TCPS_SYN_SENT,
2142 			    ("%s: TH_RST for TCPS_SYN_SENT th %p tp %p",
2143 			    __func__, th, tp));
2144 
2145 			if (V_tcp_insecure_rst ||
2146 			    tp->last_ack_sent == th->th_seq) {
2147 				TCPSTAT_INC(tcps_drops);
2148 				/* Drop the connection. */
2149 				switch (tp->t_state) {
2150 				case TCPS_SYN_RECEIVED:
2151 					so->so_error = ECONNREFUSED;
2152 					goto close;
2153 				case TCPS_ESTABLISHED:
2154 				case TCPS_FIN_WAIT_1:
2155 				case TCPS_FIN_WAIT_2:
2156 				case TCPS_CLOSE_WAIT:
2157 				case TCPS_CLOSING:
2158 				case TCPS_LAST_ACK:
2159 					so->so_error = ECONNRESET;
2160 				close:
2161 					/* FALLTHROUGH */
2162 				default:
2163 					tp = tcp_close(tp);
2164 				}
2165 			} else {
2166 				TCPSTAT_INC(tcps_badrst);
2167 				/* Send challenge ACK. */
2168 				tcp_respond(tp, mtod(m, void *), th, m,
2169 				    tp->rcv_nxt, tp->snd_nxt, TH_ACK);
2170 				tp->last_ack_sent = tp->rcv_nxt;
2171 				m = NULL;
2172 			}
2173 		}
2174 		goto drop;
2175 	}
2176 
2177 	/*
2178 	 * RFC5961 Section 4.2
2179 	 * Send challenge ACK for any SYN in synchronized state.
2180 	 */
2181 	if ((thflags & TH_SYN) && tp->t_state != TCPS_SYN_SENT &&
2182 	    tp->t_state != TCPS_SYN_RECEIVED) {
2183 		TCPSTAT_INC(tcps_badsyn);
2184 		if (V_tcp_insecure_syn &&
2185 		    SEQ_GEQ(th->th_seq, tp->last_ack_sent) &&
2186 		    SEQ_LT(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) {
2187 			tp = tcp_drop(tp, ECONNRESET);
2188 			rstreason = BANDLIM_UNLIMITED;
2189 		} else {
2190 			/* Send challenge ACK. */
2191 			tcp_respond(tp, mtod(m, void *), th, m, tp->rcv_nxt,
2192 			    tp->snd_nxt, TH_ACK);
2193 			tp->last_ack_sent = tp->rcv_nxt;
2194 			m = NULL;
2195 		}
2196 		goto drop;
2197 	}
2198 
2199 	/*
2200 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
2201 	 * and it's less than ts_recent, drop it.
2202 	 */
2203 	if ((to.to_flags & TOF_TS) != 0 && tp->ts_recent &&
2204 	    TSTMP_LT(to.to_tsval, tp->ts_recent)) {
2205 		/* Check to see if ts_recent is over 24 days old.  */
2206 		if (tcp_ts_getticks() - tp->ts_recent_age > TCP_PAWS_IDLE) {
2207 			/*
2208 			 * Invalidate ts_recent.  If this segment updates
2209 			 * ts_recent, the age will be reset later and ts_recent
2210 			 * will get a valid value.  If it does not, setting
2211 			 * ts_recent to zero will at least satisfy the
2212 			 * requirement that zero be placed in the timestamp
2213 			 * echo reply when ts_recent isn't valid.  The
2214 			 * age isn't reset until we get a valid ts_recent
2215 			 * because we don't want out-of-order segments to be
2216 			 * dropped when ts_recent is old.
2217 			 */
2218 			tp->ts_recent = 0;
2219 		} else {
2220 			TCPSTAT_INC(tcps_rcvduppack);
2221 			TCPSTAT_ADD(tcps_rcvdupbyte, tlen);
2222 			TCPSTAT_INC(tcps_pawsdrop);
2223 			if (tlen)
2224 				goto dropafterack;
2225 			goto drop;
2226 		}
2227 	}
2228 
2229 	/*
2230 	 * In the SYN-RECEIVED state, validate that the packet belongs to
2231 	 * this connection before trimming the data to fit the receive
2232 	 * window.  Check the sequence number versus IRS since we know
2233 	 * the sequence numbers haven't wrapped.  This is a partial fix
2234 	 * for the "LAND" DoS attack.
2235 	 */
2236 	if (tp->t_state == TCPS_SYN_RECEIVED && SEQ_LT(th->th_seq, tp->irs)) {
2237 		rstreason = BANDLIM_RST_OPENPORT;
2238 		goto dropwithreset;
2239 	}
2240 
2241 	todrop = tp->rcv_nxt - th->th_seq;
2242 	if (todrop > 0) {
2243 		if (thflags & TH_SYN) {
2244 			thflags &= ~TH_SYN;
2245 			th->th_seq++;
2246 			if (th->th_urp > 1)
2247 				th->th_urp--;
2248 			else
2249 				thflags &= ~TH_URG;
2250 			todrop--;
2251 		}
2252 		/*
2253 		 * Following if statement from Stevens, vol. 2, p. 960.
2254 		 */
2255 		if (todrop > tlen
2256 		    || (todrop == tlen && (thflags & TH_FIN) == 0)) {
2257 			/*
2258 			 * Any valid FIN must be to the left of the window.
2259 			 * At this point the FIN must be a duplicate or out
2260 			 * of sequence; drop it.
2261 			 */
2262 			thflags &= ~TH_FIN;
2263 
2264 			/*
2265 			 * Send an ACK to resynchronize and drop any data.
2266 			 * But keep on processing for RST or ACK.
2267 			 */
2268 			tp->t_flags |= TF_ACKNOW;
2269 			todrop = tlen;
2270 			TCPSTAT_INC(tcps_rcvduppack);
2271 			TCPSTAT_ADD(tcps_rcvdupbyte, todrop);
2272 		} else {
2273 			TCPSTAT_INC(tcps_rcvpartduppack);
2274 			TCPSTAT_ADD(tcps_rcvpartdupbyte, todrop);
2275 		}
2276 		/*
2277 		 * DSACK - add SACK block for dropped range
2278 		 */
2279 		if ((todrop > 0) && (tp->t_flags & TF_SACK_PERMIT)) {
2280 			tcp_update_sack_list(tp, th->th_seq,
2281 			    th->th_seq + todrop);
2282 			/*
2283 			 * ACK now, as the next in-sequence segment
2284 			 * will clear the DSACK block again
2285 			 */
2286 			tp->t_flags |= TF_ACKNOW;
2287 		}
2288 		drop_hdrlen += todrop;	/* drop from the top afterwards */
2289 		th->th_seq += todrop;
2290 		tlen -= todrop;
2291 		if (th->th_urp > todrop)
2292 			th->th_urp -= todrop;
2293 		else {
2294 			thflags &= ~TH_URG;
2295 			th->th_urp = 0;
2296 		}
2297 	}
2298 
2299 	/*
2300 	 * If new data are received on a connection after the
2301 	 * user processes are gone, then RST the other end.
2302 	 */
2303 	if ((so->so_state & SS_NOFDREF) &&
2304 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
2305 		if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
2306 			log(LOG_DEBUG, "%s; %s: %s: Received %d bytes of data "
2307 			    "after socket was closed, "
2308 			    "sending RST and removing tcpcb\n",
2309 			    s, __func__, tcpstates[tp->t_state], tlen);
2310 			free(s, M_TCPLOG);
2311 		}
2312 		tp = tcp_close(tp);
2313 		TCPSTAT_INC(tcps_rcvafterclose);
2314 		rstreason = BANDLIM_UNLIMITED;
2315 		goto dropwithreset;
2316 	}
2317 
2318 	/*
2319 	 * If segment ends after window, drop trailing data
2320 	 * (and PUSH and FIN); if nothing left, just ACK.
2321 	 */
2322 	todrop = (th->th_seq + tlen) - (tp->rcv_nxt + tp->rcv_wnd);
2323 	if (todrop > 0) {
2324 		TCPSTAT_INC(tcps_rcvpackafterwin);
2325 		if (todrop >= tlen) {
2326 			TCPSTAT_ADD(tcps_rcvbyteafterwin, tlen);
2327 			/*
2328 			 * If window is closed can only take segments at
2329 			 * window edge, and have to drop data and PUSH from
2330 			 * incoming segments.  Continue processing, but
2331 			 * remember to ack.  Otherwise, drop segment
2332 			 * and ack.
2333 			 */
2334 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
2335 				tp->t_flags |= TF_ACKNOW;
2336 				TCPSTAT_INC(tcps_rcvwinprobe);
2337 			} else
2338 				goto dropafterack;
2339 		} else
2340 			TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop);
2341 		m_adj(m, -todrop);
2342 		tlen -= todrop;
2343 		thflags &= ~(TH_PUSH|TH_FIN);
2344 	}
2345 
2346 	/*
2347 	 * If last ACK falls within this segment's sequence numbers,
2348 	 * record its timestamp.
2349 	 * NOTE:
2350 	 * 1) That the test incorporates suggestions from the latest
2351 	 *    proposal of the tcplw@cray.com list (Braden 1993/04/26).
2352 	 * 2) That updating only on newer timestamps interferes with
2353 	 *    our earlier PAWS tests, so this check should be solely
2354 	 *    predicated on the sequence space of this segment.
2355 	 * 3) That we modify the segment boundary check to be
2356 	 *        Last.ACK.Sent <= SEG.SEQ + SEG.Len
2357 	 *    instead of RFC1323's
2358 	 *        Last.ACK.Sent < SEG.SEQ + SEG.Len,
2359 	 *    This modified check allows us to overcome RFC1323's
2360 	 *    limitations as described in Stevens TCP/IP Illustrated
2361 	 *    Vol. 2 p.869. In such cases, we can still calculate the
2362 	 *    RTT correctly when RCV.NXT == Last.ACK.Sent.
2363 	 */
2364 	if ((to.to_flags & TOF_TS) != 0 &&
2365 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
2366 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
2367 		((thflags & (TH_SYN|TH_FIN)) != 0))) {
2368 		tp->ts_recent_age = tcp_ts_getticks();
2369 		tp->ts_recent = to.to_tsval;
2370 	}
2371 
2372 	/*
2373 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN
2374 	 * flag is on (half-synchronized state), then queue data for
2375 	 * later processing; else drop segment and return.
2376 	 */
2377 	if ((thflags & TH_ACK) == 0) {
2378 		if (tp->t_state == TCPS_SYN_RECEIVED ||
2379 		    (tp->t_flags & TF_NEEDSYN)) {
2380 			if (tp->t_state == TCPS_SYN_RECEIVED &&
2381 			    IS_FASTOPEN(tp->t_flags)) {
2382 				tp->snd_wnd = tiwin;
2383 				cc_conn_init(tp);
2384 			}
2385 			goto step6;
2386 		} else if (tp->t_flags & TF_ACKNOW)
2387 			goto dropafterack;
2388 		else
2389 			goto drop;
2390 	}
2391 
2392 	/*
2393 	 * Ack processing.
2394 	 */
2395 	switch (tp->t_state) {
2396 	/*
2397 	 * In SYN_RECEIVED state, the ack ACKs our SYN, so enter
2398 	 * ESTABLISHED state and continue processing.
2399 	 * The ACK was checked above.
2400 	 */
2401 	case TCPS_SYN_RECEIVED:
2402 
2403 		TCPSTAT_INC(tcps_connects);
2404 		soisconnected(so);
2405 		/* Do window scaling? */
2406 		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2407 			(TF_RCVD_SCALE|TF_REQ_SCALE)) {
2408 			tp->rcv_scale = tp->request_r_scale;
2409 		}
2410 		tp->snd_wnd = tiwin;
2411 		/*
2412 		 * Make transitions:
2413 		 *      SYN-RECEIVED  -> ESTABLISHED
2414 		 *      SYN-RECEIVED* -> FIN-WAIT-1
2415 		 */
2416 		tp->t_starttime = ticks;
2417 		if (IS_FASTOPEN(tp->t_flags) && tp->t_tfo_pending) {
2418 			tcp_fastopen_decrement_counter(tp->t_tfo_pending);
2419 			tp->t_tfo_pending = NULL;
2420 		}
2421 		if (tp->t_flags & TF_NEEDFIN) {
2422 			tcp_state_change(tp, TCPS_FIN_WAIT_1);
2423 			tp->t_flags &= ~TF_NEEDFIN;
2424 		} else {
2425 			tcp_state_change(tp, TCPS_ESTABLISHED);
2426 			TCP_PROBE5(accept__established, NULL, tp,
2427 			    m, tp, th);
2428 			/*
2429 			 * TFO connections call cc_conn_init() during SYN
2430 			 * processing.  Calling it again here for such
2431 			 * connections is not harmless as it would undo the
2432 			 * snd_cwnd reduction that occurs when a TFO SYN|ACK
2433 			 * is retransmitted.
2434 			 */
2435 			if (!IS_FASTOPEN(tp->t_flags))
2436 				cc_conn_init(tp);
2437 			tcp_timer_activate(tp, TT_KEEP, TP_KEEPIDLE(tp));
2438 		}
2439 		/*
2440 		 * Account for the ACK of our SYN prior to
2441 		 * regular ACK processing below, except for
2442 		 * simultaneous SYN, which is handled later.
2443 		 */
2444 		if (SEQ_GT(th->th_ack, tp->snd_una) && !(tp->t_flags & TF_NEEDSYN))
2445 			incforsyn = 1;
2446 		/*
2447 		 * If segment contains data or ACK, will call tcp_reass()
2448 		 * later; if not, do so now to pass queued data to user.
2449 		 */
2450 		if (tlen == 0 && (thflags & TH_FIN) == 0)
2451 			(void) tcp_reass(tp, (struct tcphdr *)0, NULL, 0,
2452 			    (struct mbuf *)0);
2453 		tp->snd_wl1 = th->th_seq - 1;
2454 		/* FALLTHROUGH */
2455 
2456 	/*
2457 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
2458 	 * ACKs.  If the ack is in the range
2459 	 *	tp->snd_una < th->th_ack <= tp->snd_max
2460 	 * then advance tp->snd_una to th->th_ack and drop
2461 	 * data from the retransmission queue.  If this ACK reflects
2462 	 * more up to date window information we update our window information.
2463 	 */
2464 	case TCPS_ESTABLISHED:
2465 	case TCPS_FIN_WAIT_1:
2466 	case TCPS_FIN_WAIT_2:
2467 	case TCPS_CLOSE_WAIT:
2468 	case TCPS_CLOSING:
2469 	case TCPS_LAST_ACK:
2470 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
2471 			TCPSTAT_INC(tcps_rcvacktoomuch);
2472 			goto dropafterack;
2473 		}
2474 		if ((tp->t_flags & TF_SACK_PERMIT) &&
2475 		    ((to.to_flags & TOF_SACK) ||
2476 		     !TAILQ_EMPTY(&tp->snd_holes)))
2477 			sack_changed = tcp_sack_doack(tp, &to, th->th_ack);
2478 		else
2479 			/*
2480 			 * Reset the value so that previous (valid) value
2481 			 * from the last ack with SACK doesn't get used.
2482 			 */
2483 			tp->sackhint.sacked_bytes = 0;
2484 
2485 #ifdef TCP_HHOOK
2486 		/* Run HHOOK_TCP_ESTABLISHED_IN helper hooks. */
2487 		hhook_run_tcp_est_in(tp, th, &to);
2488 #endif
2489 
2490 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
2491 			u_int maxseg;
2492 
2493 			maxseg = tcp_maxseg(tp);
2494 			if (tlen == 0 &&
2495 			    (tiwin == tp->snd_wnd ||
2496 			    (tp->t_flags & TF_SACK_PERMIT))) {
2497 				/*
2498 				 * If this is the first time we've seen a
2499 				 * FIN from the remote, this is not a
2500 				 * duplicate and it needs to be processed
2501 				 * normally.  This happens during a
2502 				 * simultaneous close.
2503 				 */
2504 				if ((thflags & TH_FIN) &&
2505 				    (TCPS_HAVERCVDFIN(tp->t_state) == 0)) {
2506 					tp->t_dupacks = 0;
2507 					break;
2508 				}
2509 				TCPSTAT_INC(tcps_rcvdupack);
2510 				/*
2511 				 * If we have outstanding data (other than
2512 				 * a window probe), this is a completely
2513 				 * duplicate ack (ie, window info didn't
2514 				 * change and FIN isn't set),
2515 				 * the ack is the biggest we've
2516 				 * seen and we've seen exactly our rexmt
2517 				 * threshold of them, assume a packet
2518 				 * has been dropped and retransmit it.
2519 				 * Kludge snd_nxt & the congestion
2520 				 * window so we send only this one
2521 				 * packet.
2522 				 *
2523 				 * We know we're losing at the current
2524 				 * window size so do congestion avoidance
2525 				 * (set ssthresh to half the current window
2526 				 * and pull our congestion window back to
2527 				 * the new ssthresh).
2528 				 *
2529 				 * Dup acks mean that packets have left the
2530 				 * network (they're now cached at the receiver)
2531 				 * so bump cwnd by the amount in the receiver
2532 				 * to keep a constant cwnd packets in the
2533 				 * network.
2534 				 *
2535 				 * When using TCP ECN, notify the peer that
2536 				 * we reduced the cwnd.
2537 				 */
2538 				/*
2539 				 * Following 2 kinds of acks should not affect
2540 				 * dupack counting:
2541 				 * 1) Old acks
2542 				 * 2) Acks with SACK but without any new SACK
2543 				 * information in them. These could result from
2544 				 * any anomaly in the network like a switch
2545 				 * duplicating packets or a possible DoS attack.
2546 				 */
2547 				if (th->th_ack != tp->snd_una ||
2548 				    ((tp->t_flags & TF_SACK_PERMIT) &&
2549 				    !sack_changed))
2550 					break;
2551 				else if (!tcp_timer_active(tp, TT_REXMT))
2552 					tp->t_dupacks = 0;
2553 				else if (++tp->t_dupacks > tcprexmtthresh ||
2554 				     IN_FASTRECOVERY(tp->t_flags)) {
2555 					cc_ack_received(tp, th, nsegs,
2556 					    CC_DUPACK);
2557 					if ((tp->t_flags & TF_SACK_PERMIT) &&
2558 					    IN_FASTRECOVERY(tp->t_flags)) {
2559 						int awnd;
2560 
2561 						/*
2562 						 * Compute the amount of data in flight first.
2563 						 * We can inject new data into the pipe iff
2564 						 * we have less than 1/2 the original window's
2565 						 * worth of data in flight.
2566 						 */
2567 						if (V_tcp_do_rfc6675_pipe)
2568 							awnd = tcp_compute_pipe(tp);
2569 						else
2570 							awnd = (tp->snd_nxt - tp->snd_fack) +
2571 								tp->sackhint.sack_bytes_rexmit;
2572 
2573 						if (awnd < tp->snd_ssthresh) {
2574 							tp->snd_cwnd += maxseg;
2575 							if (tp->snd_cwnd > tp->snd_ssthresh)
2576 								tp->snd_cwnd = tp->snd_ssthresh;
2577 						}
2578 					} else
2579 						tp->snd_cwnd += maxseg;
2580 					(void) tp->t_fb->tfb_tcp_output(tp);
2581 					goto drop;
2582 				} else if (tp->t_dupacks == tcprexmtthresh) {
2583 					tcp_seq onxt = tp->snd_nxt;
2584 
2585 					/*
2586 					 * If we're doing sack, check to
2587 					 * see if we're already in sack
2588 					 * recovery. If we're not doing sack,
2589 					 * check to see if we're in newreno
2590 					 * recovery.
2591 					 */
2592 					if (tp->t_flags & TF_SACK_PERMIT) {
2593 						if (IN_FASTRECOVERY(tp->t_flags)) {
2594 							tp->t_dupacks = 0;
2595 							break;
2596 						}
2597 					} else {
2598 						if (SEQ_LEQ(th->th_ack,
2599 						    tp->snd_recover)) {
2600 							tp->t_dupacks = 0;
2601 							break;
2602 						}
2603 					}
2604 					/* Congestion signal before ack. */
2605 					cc_cong_signal(tp, th, CC_NDUPACK);
2606 					cc_ack_received(tp, th, nsegs,
2607 					    CC_DUPACK);
2608 					tcp_timer_activate(tp, TT_REXMT, 0);
2609 					tp->t_rtttime = 0;
2610 					if (tp->t_flags & TF_SACK_PERMIT) {
2611 						TCPSTAT_INC(
2612 						    tcps_sack_recovery_episode);
2613 						tp->snd_recover = tp->snd_nxt;
2614 						tp->snd_cwnd = maxseg;
2615 						(void) tp->t_fb->tfb_tcp_output(tp);
2616 						goto drop;
2617 					}
2618 					tp->snd_nxt = th->th_ack;
2619 					tp->snd_cwnd = maxseg;
2620 					(void) tp->t_fb->tfb_tcp_output(tp);
2621 					KASSERT(tp->snd_limited <= 2,
2622 					    ("%s: tp->snd_limited too big",
2623 					    __func__));
2624 					tp->snd_cwnd = tp->snd_ssthresh +
2625 					     maxseg *
2626 					     (tp->t_dupacks - tp->snd_limited);
2627 					if (SEQ_GT(onxt, tp->snd_nxt))
2628 						tp->snd_nxt = onxt;
2629 					goto drop;
2630 				} else if (V_tcp_do_rfc3042) {
2631 					/*
2632 					 * Process first and second duplicate
2633 					 * ACKs. Each indicates a segment
2634 					 * leaving the network, creating room
2635 					 * for more. Make sure we can send a
2636 					 * packet on reception of each duplicate
2637 					 * ACK by increasing snd_cwnd by one
2638 					 * segment. Restore the original
2639 					 * snd_cwnd after packet transmission.
2640 					 */
2641 					cc_ack_received(tp, th, nsegs,
2642 					    CC_DUPACK);
2643 					uint32_t oldcwnd = tp->snd_cwnd;
2644 					tcp_seq oldsndmax = tp->snd_max;
2645 					u_int sent;
2646 					int avail;
2647 
2648 					KASSERT(tp->t_dupacks == 1 ||
2649 					    tp->t_dupacks == 2,
2650 					    ("%s: dupacks not 1 or 2",
2651 					    __func__));
2652 					if (tp->t_dupacks == 1)
2653 						tp->snd_limited = 0;
2654 					tp->snd_cwnd =
2655 					    (tp->snd_nxt - tp->snd_una) +
2656 					    (tp->t_dupacks - tp->snd_limited) *
2657 					    maxseg;
2658 					/*
2659 					 * Only call tcp_output when there
2660 					 * is new data available to be sent.
2661 					 * Otherwise we would send pure ACKs.
2662 					 */
2663 					SOCKBUF_LOCK(&so->so_snd);
2664 					avail = sbavail(&so->so_snd) -
2665 					    (tp->snd_nxt - tp->snd_una);
2666 					SOCKBUF_UNLOCK(&so->so_snd);
2667 					if (avail > 0)
2668 						(void) tp->t_fb->tfb_tcp_output(tp);
2669 					sent = tp->snd_max - oldsndmax;
2670 					if (sent > maxseg) {
2671 						KASSERT((tp->t_dupacks == 2 &&
2672 						    tp->snd_limited == 0) ||
2673 						   (sent == maxseg + 1 &&
2674 						    tp->t_flags & TF_SENTFIN),
2675 						    ("%s: sent too much",
2676 						    __func__));
2677 						tp->snd_limited = 2;
2678 					} else if (sent > 0)
2679 						++tp->snd_limited;
2680 					tp->snd_cwnd = oldcwnd;
2681 					goto drop;
2682 				}
2683 			}
2684 			break;
2685 		} else {
2686 			/*
2687 			 * This ack is advancing the left edge, reset the
2688 			 * counter.
2689 			 */
2690 			tp->t_dupacks = 0;
2691 			/*
2692 			 * If this ack also has new SACK info, increment the
2693 			 * counter as per rfc6675. The variable
2694 			 * sack_changed tracks all changes to the SACK
2695 			 * scoreboard, including when partial ACKs without
2696 			 * SACK options are received, and clear the scoreboard
2697 			 * from the left side. Such partial ACKs should not be
2698 			 * counted as dupacks here.
2699 			 */
2700 			if ((tp->t_flags & TF_SACK_PERMIT) &&
2701 			    (to.to_flags & TOF_SACK) &&
2702 			    sack_changed)
2703 				tp->t_dupacks++;
2704 		}
2705 
2706 		KASSERT(SEQ_GT(th->th_ack, tp->snd_una),
2707 		    ("%s: th_ack <= snd_una", __func__));
2708 
2709 		/*
2710 		 * If the congestion window was inflated to account
2711 		 * for the other side's cached packets, retract it.
2712 		 */
2713 		if (IN_FASTRECOVERY(tp->t_flags)) {
2714 			if (SEQ_LT(th->th_ack, tp->snd_recover)) {
2715 				if (tp->t_flags & TF_SACK_PERMIT)
2716 					tcp_sack_partialack(tp, th);
2717 				else
2718 					tcp_newreno_partial_ack(tp, th);
2719 			} else
2720 				cc_post_recovery(tp, th);
2721 		}
2722 		/*
2723 		 * If we reach this point, ACK is not a duplicate,
2724 		 *     i.e., it ACKs something we sent.
2725 		 */
2726 		if (tp->t_flags & TF_NEEDSYN) {
2727 			/*
2728 			 * T/TCP: Connection was half-synchronized, and our
2729 			 * SYN has been ACK'd (so connection is now fully
2730 			 * synchronized).  Go to non-starred state,
2731 			 * increment snd_una for ACK of SYN, and check if
2732 			 * we can do window scaling.
2733 			 */
2734 			tp->t_flags &= ~TF_NEEDSYN;
2735 			tp->snd_una++;
2736 			/* Do window scaling? */
2737 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2738 				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
2739 				tp->rcv_scale = tp->request_r_scale;
2740 				/* Send window already scaled. */
2741 			}
2742 		}
2743 
2744 process_ACK:
2745 		INP_WLOCK_ASSERT(tp->t_inpcb);
2746 
2747 		/*
2748 		 * Adjust for the SYN bit in sequence space,
2749 		 * but don't account for it in cwnd calculations.
2750 		 * This is for the SYN_RECEIVED, non-simultaneous
2751 		 * SYN case. SYN_SENT and simultaneous SYN are
2752 		 * treated elsewhere.
2753 		 */
2754 		if (incforsyn)
2755 			tp->snd_una++;
2756 		acked = BYTES_THIS_ACK(tp, th);
2757 		KASSERT(acked >= 0, ("%s: acked unexepectedly negative "
2758 		    "(tp->snd_una=%u, th->th_ack=%u, tp=%p, m=%p)", __func__,
2759 		    tp->snd_una, th->th_ack, tp, m));
2760 		TCPSTAT_ADD(tcps_rcvackpack, nsegs);
2761 		TCPSTAT_ADD(tcps_rcvackbyte, acked);
2762 
2763 		/*
2764 		 * If we just performed our first retransmit, and the ACK
2765 		 * arrives within our recovery window, then it was a mistake
2766 		 * to do the retransmit in the first place.  Recover our
2767 		 * original cwnd and ssthresh, and proceed to transmit where
2768 		 * we left off.
2769 		 */
2770 		if (tp->t_rxtshift == 1 &&
2771 		    tp->t_flags & TF_PREVVALID &&
2772 		    tp->t_badrxtwin &&
2773 		    SEQ_LT(to.to_tsecr, tp->t_badrxtwin))
2774 			cc_cong_signal(tp, th, CC_RTO_ERR);
2775 
2776 		/*
2777 		 * If we have a timestamp reply, update smoothed
2778 		 * round trip time.  If no timestamp is present but
2779 		 * transmit timer is running and timed sequence
2780 		 * number was acked, update smoothed round trip time.
2781 		 * Since we now have an rtt measurement, cancel the
2782 		 * timer backoff (cf., Phil Karn's retransmit alg.).
2783 		 * Recompute the initial retransmit timer.
2784 		 *
2785 		 * Some boxes send broken timestamp replies
2786 		 * during the SYN+ACK phase, ignore
2787 		 * timestamps of 0 or we could calculate a
2788 		 * huge RTT and blow up the retransmit timer.
2789 		 */
2790 		if ((to.to_flags & TOF_TS) != 0 && to.to_tsecr) {
2791 			uint32_t t;
2792 
2793 			t = tcp_ts_getticks() - to.to_tsecr;
2794 			if (!tp->t_rttlow || tp->t_rttlow > t)
2795 				tp->t_rttlow = t;
2796 			tcp_xmit_timer(tp, TCP_TS_TO_TICKS(t) + 1);
2797 		} else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq)) {
2798 			if (!tp->t_rttlow || tp->t_rttlow > ticks - tp->t_rtttime)
2799 				tp->t_rttlow = ticks - tp->t_rtttime;
2800 			tcp_xmit_timer(tp, ticks - tp->t_rtttime);
2801 		}
2802 
2803 		/*
2804 		 * If all outstanding data is acked, stop retransmit
2805 		 * timer and remember to restart (more output or persist).
2806 		 * If there is more data to be acked, restart retransmit
2807 		 * timer, using current (possibly backed-off) value.
2808 		 */
2809 		if (th->th_ack == tp->snd_max) {
2810 			tcp_timer_activate(tp, TT_REXMT, 0);
2811 			needoutput = 1;
2812 		} else if (!tcp_timer_active(tp, TT_PERSIST))
2813 			tcp_timer_activate(tp, TT_REXMT, tp->t_rxtcur);
2814 
2815 		/*
2816 		 * If no data (only SYN) was ACK'd,
2817 		 *    skip rest of ACK processing.
2818 		 */
2819 		if (acked == 0)
2820 			goto step6;
2821 
2822 		/*
2823 		 * Let the congestion control algorithm update congestion
2824 		 * control related information. This typically means increasing
2825 		 * the congestion window.
2826 		 */
2827 		cc_ack_received(tp, th, nsegs, CC_ACK);
2828 
2829 		SOCKBUF_LOCK(&so->so_snd);
2830 		if (acked > sbavail(&so->so_snd)) {
2831 			if (tp->snd_wnd >= sbavail(&so->so_snd))
2832 				tp->snd_wnd -= sbavail(&so->so_snd);
2833 			else
2834 				tp->snd_wnd = 0;
2835 			mfree = sbcut_locked(&so->so_snd,
2836 			    (int)sbavail(&so->so_snd));
2837 			ourfinisacked = 1;
2838 		} else {
2839 			mfree = sbcut_locked(&so->so_snd, acked);
2840 			if (tp->snd_wnd >= (uint32_t) acked)
2841 				tp->snd_wnd -= acked;
2842 			else
2843 				tp->snd_wnd = 0;
2844 			ourfinisacked = 0;
2845 		}
2846 		SOCKBUF_UNLOCK(&so->so_snd);
2847 		tp->t_flags |= TF_WAKESOW;
2848 		m_freem(mfree);
2849 		/* Detect una wraparound. */
2850 		if (!IN_RECOVERY(tp->t_flags) &&
2851 		    SEQ_GT(tp->snd_una, tp->snd_recover) &&
2852 		    SEQ_LEQ(th->th_ack, tp->snd_recover))
2853 			tp->snd_recover = th->th_ack - 1;
2854 		/* XXXLAS: Can this be moved up into cc_post_recovery? */
2855 		if (IN_RECOVERY(tp->t_flags) &&
2856 		    SEQ_GEQ(th->th_ack, tp->snd_recover)) {
2857 			EXIT_RECOVERY(tp->t_flags);
2858 		}
2859 		tp->snd_una = th->th_ack;
2860 		if (tp->t_flags & TF_SACK_PERMIT) {
2861 			if (SEQ_GT(tp->snd_una, tp->snd_recover))
2862 				tp->snd_recover = tp->snd_una;
2863 		}
2864 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2865 			tp->snd_nxt = tp->snd_una;
2866 
2867 		switch (tp->t_state) {
2868 		/*
2869 		 * In FIN_WAIT_1 STATE in addition to the processing
2870 		 * for the ESTABLISHED state if our FIN is now acknowledged
2871 		 * then enter FIN_WAIT_2.
2872 		 */
2873 		case TCPS_FIN_WAIT_1:
2874 			if (ourfinisacked) {
2875 				/*
2876 				 * If we can't receive any more
2877 				 * data, then closing user can proceed.
2878 				 * Starting the timer is contrary to the
2879 				 * specification, but if we don't get a FIN
2880 				 * we'll hang forever.
2881 				 *
2882 				 * XXXjl:
2883 				 * we should release the tp also, and use a
2884 				 * compressed state.
2885 				 */
2886 				if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
2887 					soisdisconnected(so);
2888 					tcp_timer_activate(tp, TT_2MSL,
2889 					    (tcp_fast_finwait2_recycle ?
2890 					    tcp_finwait2_timeout :
2891 					    TP_MAXIDLE(tp)));
2892 				}
2893 				tcp_state_change(tp, TCPS_FIN_WAIT_2);
2894 			}
2895 			break;
2896 
2897 		/*
2898 		 * In CLOSING STATE in addition to the processing for
2899 		 * the ESTABLISHED state if the ACK acknowledges our FIN
2900 		 * then enter the TIME-WAIT state, otherwise ignore
2901 		 * the segment.
2902 		 */
2903 		case TCPS_CLOSING:
2904 			if (ourfinisacked) {
2905 				tcp_twstart(tp);
2906 				m_freem(m);
2907 				return;
2908 			}
2909 			break;
2910 
2911 		/*
2912 		 * In LAST_ACK, we may still be waiting for data to drain
2913 		 * and/or to be acked, as well as for the ack of our FIN.
2914 		 * If our FIN is now acknowledged, delete the TCB,
2915 		 * enter the closed state and return.
2916 		 */
2917 		case TCPS_LAST_ACK:
2918 			if (ourfinisacked) {
2919 				tp = tcp_close(tp);
2920 				goto drop;
2921 			}
2922 			break;
2923 		}
2924 	}
2925 
2926 step6:
2927 	INP_WLOCK_ASSERT(tp->t_inpcb);
2928 
2929 	/*
2930 	 * Update window information.
2931 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2932 	 */
2933 	if ((thflags & TH_ACK) &&
2934 	    (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2935 	    (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
2936 	     (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
2937 		/* keep track of pure window updates */
2938 		if (tlen == 0 &&
2939 		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2940 			TCPSTAT_INC(tcps_rcvwinupd);
2941 		tp->snd_wnd = tiwin;
2942 		tp->snd_wl1 = th->th_seq;
2943 		tp->snd_wl2 = th->th_ack;
2944 		if (tp->snd_wnd > tp->max_sndwnd)
2945 			tp->max_sndwnd = tp->snd_wnd;
2946 		needoutput = 1;
2947 	}
2948 
2949 	/*
2950 	 * Process segments with URG.
2951 	 */
2952 	if ((thflags & TH_URG) && th->th_urp &&
2953 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2954 		/*
2955 		 * This is a kludge, but if we receive and accept
2956 		 * random urgent pointers, we'll crash in
2957 		 * soreceive.  It's hard to imagine someone
2958 		 * actually wanting to send this much urgent data.
2959 		 */
2960 		SOCKBUF_LOCK(&so->so_rcv);
2961 		if (th->th_urp + sbavail(&so->so_rcv) > sb_max) {
2962 			th->th_urp = 0;			/* XXX */
2963 			thflags &= ~TH_URG;		/* XXX */
2964 			SOCKBUF_UNLOCK(&so->so_rcv);	/* XXX */
2965 			goto dodata;			/* XXX */
2966 		}
2967 		/*
2968 		 * If this segment advances the known urgent pointer,
2969 		 * then mark the data stream.  This should not happen
2970 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2971 		 * a FIN has been received from the remote side.
2972 		 * In these states we ignore the URG.
2973 		 *
2974 		 * According to RFC961 (Assigned Protocols),
2975 		 * the urgent pointer points to the last octet
2976 		 * of urgent data.  We continue, however,
2977 		 * to consider it to indicate the first octet
2978 		 * of data past the urgent section as the original
2979 		 * spec states (in one of two places).
2980 		 */
2981 		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2982 			tp->rcv_up = th->th_seq + th->th_urp;
2983 			so->so_oobmark = sbavail(&so->so_rcv) +
2984 			    (tp->rcv_up - tp->rcv_nxt) - 1;
2985 			if (so->so_oobmark == 0)
2986 				so->so_rcv.sb_state |= SBS_RCVATMARK;
2987 			sohasoutofband(so);
2988 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2989 		}
2990 		SOCKBUF_UNLOCK(&so->so_rcv);
2991 		/*
2992 		 * Remove out of band data so doesn't get presented to user.
2993 		 * This can happen independent of advancing the URG pointer,
2994 		 * but if two URG's are pending at once, some out-of-band
2995 		 * data may creep in... ick.
2996 		 */
2997 		if (th->th_urp <= (uint32_t)tlen &&
2998 		    !(so->so_options & SO_OOBINLINE)) {
2999 			/* hdr drop is delayed */
3000 			tcp_pulloutofband(so, th, m, drop_hdrlen);
3001 		}
3002 	} else {
3003 		/*
3004 		 * If no out of band data is expected,
3005 		 * pull receive urgent pointer along
3006 		 * with the receive window.
3007 		 */
3008 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
3009 			tp->rcv_up = tp->rcv_nxt;
3010 	}
3011 dodata:							/* XXX */
3012 	INP_WLOCK_ASSERT(tp->t_inpcb);
3013 
3014 	/*
3015 	 * Process the segment text, merging it into the TCP sequencing queue,
3016 	 * and arranging for acknowledgment of receipt if necessary.
3017 	 * This process logically involves adjusting tp->rcv_wnd as data
3018 	 * is presented to the user (this happens in tcp_usrreq.c,
3019 	 * case PRU_RCVD).  If a FIN has already been received on this
3020 	 * connection then we just ignore the text.
3021 	 */
3022 	tfo_syn = ((tp->t_state == TCPS_SYN_RECEIVED) &&
3023 		   IS_FASTOPEN(tp->t_flags));
3024 	if ((tlen || (thflags & TH_FIN) || (tfo_syn && tlen > 0)) &&
3025 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
3026 		tcp_seq save_start = th->th_seq;
3027 		tcp_seq save_rnxt  = tp->rcv_nxt;
3028 		int     save_tlen  = tlen;
3029 		m_adj(m, drop_hdrlen);	/* delayed header drop */
3030 		/*
3031 		 * Insert segment which includes th into TCP reassembly queue
3032 		 * with control block tp.  Set thflags to whether reassembly now
3033 		 * includes a segment with FIN.  This handles the common case
3034 		 * inline (segment is the next to be received on an established
3035 		 * connection, and the queue is empty), avoiding linkage into
3036 		 * and removal from the queue and repetition of various
3037 		 * conversions.
3038 		 * Set DELACK for segments received in order, but ack
3039 		 * immediately when segments are out of order (so
3040 		 * fast retransmit can work).
3041 		 */
3042 		if (th->th_seq == tp->rcv_nxt &&
3043 		    SEGQ_EMPTY(tp) &&
3044 		    (TCPS_HAVEESTABLISHED(tp->t_state) ||
3045 		     tfo_syn)) {
3046 			if (DELAY_ACK(tp, tlen) || tfo_syn)
3047 				tp->t_flags |= TF_DELACK;
3048 			else
3049 				tp->t_flags |= TF_ACKNOW;
3050 			tp->rcv_nxt += tlen;
3051 			if (tlen &&
3052 			    ((tp->t_flags2 & TF2_FBYTES_COMPLETE) == 0) &&
3053 			    (tp->t_fbyte_in == 0)) {
3054 				tp->t_fbyte_in = ticks;
3055 				if (tp->t_fbyte_in == 0)
3056 					tp->t_fbyte_in = 1;
3057 				if (tp->t_fbyte_out && tp->t_fbyte_in)
3058 					tp->t_flags2 |= TF2_FBYTES_COMPLETE;
3059 			}
3060 			thflags = th->th_flags & TH_FIN;
3061 			TCPSTAT_INC(tcps_rcvpack);
3062 			TCPSTAT_ADD(tcps_rcvbyte, tlen);
3063 			SOCKBUF_LOCK(&so->so_rcv);
3064 			if (so->so_rcv.sb_state & SBS_CANTRCVMORE)
3065 				m_freem(m);
3066 			else
3067 				sbappendstream_locked(&so->so_rcv, m, 0);
3068 			SOCKBUF_UNLOCK(&so->so_rcv);
3069 			tp->t_flags |= TF_WAKESOR;
3070 		} else {
3071 			/*
3072 			 * XXX: Due to the header drop above "th" is
3073 			 * theoretically invalid by now.  Fortunately
3074 			 * m_adj() doesn't actually frees any mbufs
3075 			 * when trimming from the head.
3076 			 */
3077 			tcp_seq temp = save_start;
3078 			thflags = tcp_reass(tp, th, &temp, &tlen, m);
3079 			tp->t_flags |= TF_ACKNOW;
3080 		}
3081 		if ((tp->t_flags & TF_SACK_PERMIT) && (save_tlen > 0)) {
3082 			if ((tlen == 0) && (SEQ_LT(save_start, save_rnxt))) {
3083 				/*
3084 				 * DSACK actually handled in the fastpath
3085 				 * above.
3086 				 */
3087 				tcp_update_sack_list(tp, save_start,
3088 				    save_start + save_tlen);
3089 			} else if ((tlen > 0) && SEQ_GT(tp->rcv_nxt, save_rnxt)) {
3090 				if ((tp->rcv_numsacks >= 1) &&
3091 				    (tp->sackblks[0].end == save_start)) {
3092 					/*
3093 					 * Partial overlap, recorded at todrop
3094 					 * above.
3095 					 */
3096 					tcp_update_sack_list(tp,
3097 					    tp->sackblks[0].start,
3098 					    tp->sackblks[0].end);
3099 				} else {
3100 					tcp_update_dsack_list(tp, save_start,
3101 					    save_start + save_tlen);
3102 				}
3103 			} else if (tlen >= save_tlen) {
3104 				/* Update of sackblks. */
3105 				tcp_update_dsack_list(tp, save_start,
3106 				    save_start + save_tlen);
3107 			} else if (tlen > 0) {
3108 				tcp_update_dsack_list(tp, save_start,
3109 				    save_start + tlen);
3110 			}
3111 		}
3112 #if 0
3113 		/*
3114 		 * Note the amount of data that peer has sent into
3115 		 * our window, in order to estimate the sender's
3116 		 * buffer size.
3117 		 * XXX: Unused.
3118 		 */
3119 		if (SEQ_GT(tp->rcv_adv, tp->rcv_nxt))
3120 			len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
3121 		else
3122 			len = so->so_rcv.sb_hiwat;
3123 #endif
3124 	} else {
3125 		m_freem(m);
3126 		thflags &= ~TH_FIN;
3127 	}
3128 
3129 	/*
3130 	 * If FIN is received ACK the FIN and let the user know
3131 	 * that the connection is closing.
3132 	 */
3133 	if (thflags & TH_FIN) {
3134 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
3135 			socantrcvmore(so);
3136 			/* The socket upcall is handled by socantrcvmore. */
3137 			tp->t_flags &= ~TF_WAKESOR;
3138 			/*
3139 			 * If connection is half-synchronized
3140 			 * (ie NEEDSYN flag on) then delay ACK,
3141 			 * so it may be piggybacked when SYN is sent.
3142 			 * Otherwise, since we received a FIN then no
3143 			 * more input can be expected, send ACK now.
3144 			 */
3145 			if (tp->t_flags & TF_NEEDSYN)
3146 				tp->t_flags |= TF_DELACK;
3147 			else
3148 				tp->t_flags |= TF_ACKNOW;
3149 			tp->rcv_nxt++;
3150 		}
3151 		switch (tp->t_state) {
3152 		/*
3153 		 * In SYN_RECEIVED and ESTABLISHED STATES
3154 		 * enter the CLOSE_WAIT state.
3155 		 */
3156 		case TCPS_SYN_RECEIVED:
3157 			tp->t_starttime = ticks;
3158 			/* FALLTHROUGH */
3159 		case TCPS_ESTABLISHED:
3160 			tcp_state_change(tp, TCPS_CLOSE_WAIT);
3161 			break;
3162 
3163 		/*
3164 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
3165 		 * enter the CLOSING state.
3166 		 */
3167 		case TCPS_FIN_WAIT_1:
3168 			tcp_state_change(tp, TCPS_CLOSING);
3169 			break;
3170 
3171 		/*
3172 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
3173 		 * starting the time-wait timer, turning off the other
3174 		 * standard timers.
3175 		 */
3176 		case TCPS_FIN_WAIT_2:
3177 			tcp_twstart(tp);
3178 			return;
3179 		}
3180 	}
3181 #ifdef TCPDEBUG
3182 	if (so->so_options & SO_DEBUG)
3183 		tcp_trace(TA_INPUT, ostate, tp, (void *)tcp_saveipgen,
3184 			  &tcp_savetcp, 0);
3185 #endif
3186 	TCP_PROBE3(debug__input, tp, th, m);
3187 
3188 	/*
3189 	 * Return any desired output.
3190 	 */
3191 	if (needoutput || (tp->t_flags & TF_ACKNOW))
3192 		(void) tp->t_fb->tfb_tcp_output(tp);
3193 
3194 check_delack:
3195 	INP_WLOCK_ASSERT(tp->t_inpcb);
3196 
3197 	if (tp->t_flags & TF_DELACK) {
3198 		tp->t_flags &= ~TF_DELACK;
3199 		tcp_timer_activate(tp, TT_DELACK, tcp_delacktime);
3200 	}
3201 	tcp_handle_wakeup(tp, so);
3202 	INP_WUNLOCK(tp->t_inpcb);
3203 	return;
3204 
3205 dropafterack:
3206 	/*
3207 	 * Generate an ACK dropping incoming segment if it occupies
3208 	 * sequence space, where the ACK reflects our state.
3209 	 *
3210 	 * We can now skip the test for the RST flag since all
3211 	 * paths to this code happen after packets containing
3212 	 * RST have been dropped.
3213 	 *
3214 	 * In the SYN-RECEIVED state, don't send an ACK unless the
3215 	 * segment we received passes the SYN-RECEIVED ACK test.
3216 	 * If it fails send a RST.  This breaks the loop in the
3217 	 * "LAND" DoS attack, and also prevents an ACK storm
3218 	 * between two listening ports that have been sent forged
3219 	 * SYN segments, each with the source address of the other.
3220 	 */
3221 	if (tp->t_state == TCPS_SYN_RECEIVED && (thflags & TH_ACK) &&
3222 	    (SEQ_GT(tp->snd_una, th->th_ack) ||
3223 	     SEQ_GT(th->th_ack, tp->snd_max)) ) {
3224 		rstreason = BANDLIM_RST_OPENPORT;
3225 		goto dropwithreset;
3226 	}
3227 #ifdef TCPDEBUG
3228 	if (so->so_options & SO_DEBUG)
3229 		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
3230 			  &tcp_savetcp, 0);
3231 #endif
3232 	TCP_PROBE3(debug__input, tp, th, m);
3233 	tp->t_flags |= TF_ACKNOW;
3234 	(void) tp->t_fb->tfb_tcp_output(tp);
3235 	tcp_handle_wakeup(tp, so);
3236 	INP_WUNLOCK(tp->t_inpcb);
3237 	m_freem(m);
3238 	return;
3239 
3240 dropwithreset:
3241 	if (tp != NULL) {
3242 		tcp_dropwithreset(m, th, tp, tlen, rstreason);
3243 		tcp_handle_wakeup(tp, so);
3244 		INP_WUNLOCK(tp->t_inpcb);
3245 	} else
3246 		tcp_dropwithreset(m, th, NULL, tlen, rstreason);
3247 	return;
3248 
3249 drop:
3250 	/*
3251 	 * Drop space held by incoming segment and return.
3252 	 */
3253 #ifdef TCPDEBUG
3254 	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
3255 		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
3256 			  &tcp_savetcp, 0);
3257 #endif
3258 	TCP_PROBE3(debug__input, tp, th, m);
3259 	if (tp != NULL) {
3260 		tcp_handle_wakeup(tp, so);
3261 		INP_WUNLOCK(tp->t_inpcb);
3262 	}
3263 	m_freem(m);
3264 }
3265 
3266 /*
3267  * Issue RST and make ACK acceptable to originator of segment.
3268  * The mbuf must still include the original packet header.
3269  * tp may be NULL.
3270  */
3271 void
3272 tcp_dropwithreset(struct mbuf *m, struct tcphdr *th, struct tcpcb *tp,
3273     int tlen, int rstreason)
3274 {
3275 #ifdef INET
3276 	struct ip *ip;
3277 #endif
3278 #ifdef INET6
3279 	struct ip6_hdr *ip6;
3280 #endif
3281 
3282 	if (tp != NULL) {
3283 		INP_WLOCK_ASSERT(tp->t_inpcb);
3284 	}
3285 
3286 	/* Don't bother if destination was broadcast/multicast. */
3287 	if ((th->th_flags & TH_RST) || m->m_flags & (M_BCAST|M_MCAST))
3288 		goto drop;
3289 #ifdef INET6
3290 	if (mtod(m, struct ip *)->ip_v == 6) {
3291 		ip6 = mtod(m, struct ip6_hdr *);
3292 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
3293 		    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
3294 			goto drop;
3295 		/* IPv6 anycast check is done at tcp6_input() */
3296 	}
3297 #endif
3298 #if defined(INET) && defined(INET6)
3299 	else
3300 #endif
3301 #ifdef INET
3302 	{
3303 		ip = mtod(m, struct ip *);
3304 		if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
3305 		    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
3306 		    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
3307 		    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
3308 			goto drop;
3309 	}
3310 #endif
3311 
3312 	/* Perform bandwidth limiting. */
3313 	if (badport_bandlim(rstreason) < 0)
3314 		goto drop;
3315 
3316 	/* tcp_respond consumes the mbuf chain. */
3317 	if (th->th_flags & TH_ACK) {
3318 		tcp_respond(tp, mtod(m, void *), th, m, (tcp_seq)0,
3319 		    th->th_ack, TH_RST);
3320 	} else {
3321 		if (th->th_flags & TH_SYN)
3322 			tlen++;
3323 		if (th->th_flags & TH_FIN)
3324 			tlen++;
3325 		tcp_respond(tp, mtod(m, void *), th, m, th->th_seq+tlen,
3326 		    (tcp_seq)0, TH_RST|TH_ACK);
3327 	}
3328 	return;
3329 drop:
3330 	m_freem(m);
3331 }
3332 
3333 /*
3334  * Parse TCP options and place in tcpopt.
3335  */
3336 void
3337 tcp_dooptions(struct tcpopt *to, u_char *cp, int cnt, int flags)
3338 {
3339 	int opt, optlen;
3340 
3341 	to->to_flags = 0;
3342 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
3343 		opt = cp[0];
3344 		if (opt == TCPOPT_EOL)
3345 			break;
3346 		if (opt == TCPOPT_NOP)
3347 			optlen = 1;
3348 		else {
3349 			if (cnt < 2)
3350 				break;
3351 			optlen = cp[1];
3352 			if (optlen < 2 || optlen > cnt)
3353 				break;
3354 		}
3355 		switch (opt) {
3356 		case TCPOPT_MAXSEG:
3357 			if (optlen != TCPOLEN_MAXSEG)
3358 				continue;
3359 			if (!(flags & TO_SYN))
3360 				continue;
3361 			to->to_flags |= TOF_MSS;
3362 			bcopy((char *)cp + 2,
3363 			    (char *)&to->to_mss, sizeof(to->to_mss));
3364 			to->to_mss = ntohs(to->to_mss);
3365 			break;
3366 		case TCPOPT_WINDOW:
3367 			if (optlen != TCPOLEN_WINDOW)
3368 				continue;
3369 			if (!(flags & TO_SYN))
3370 				continue;
3371 			to->to_flags |= TOF_SCALE;
3372 			to->to_wscale = min(cp[2], TCP_MAX_WINSHIFT);
3373 			break;
3374 		case TCPOPT_TIMESTAMP:
3375 			if (optlen != TCPOLEN_TIMESTAMP)
3376 				continue;
3377 			to->to_flags |= TOF_TS;
3378 			bcopy((char *)cp + 2,
3379 			    (char *)&to->to_tsval, sizeof(to->to_tsval));
3380 			to->to_tsval = ntohl(to->to_tsval);
3381 			bcopy((char *)cp + 6,
3382 			    (char *)&to->to_tsecr, sizeof(to->to_tsecr));
3383 			to->to_tsecr = ntohl(to->to_tsecr);
3384 			break;
3385 		case TCPOPT_SIGNATURE:
3386 			/*
3387 			 * In order to reply to a host which has set the
3388 			 * TCP_SIGNATURE option in its initial SYN, we have
3389 			 * to record the fact that the option was observed
3390 			 * here for the syncache code to perform the correct
3391 			 * response.
3392 			 */
3393 			if (optlen != TCPOLEN_SIGNATURE)
3394 				continue;
3395 			to->to_flags |= TOF_SIGNATURE;
3396 			to->to_signature = cp + 2;
3397 			break;
3398 		case TCPOPT_SACK_PERMITTED:
3399 			if (optlen != TCPOLEN_SACK_PERMITTED)
3400 				continue;
3401 			if (!(flags & TO_SYN))
3402 				continue;
3403 			if (!V_tcp_do_sack)
3404 				continue;
3405 			to->to_flags |= TOF_SACKPERM;
3406 			break;
3407 		case TCPOPT_SACK:
3408 			if (optlen <= 2 || (optlen - 2) % TCPOLEN_SACK != 0)
3409 				continue;
3410 			if (flags & TO_SYN)
3411 				continue;
3412 			to->to_flags |= TOF_SACK;
3413 			to->to_nsacks = (optlen - 2) / TCPOLEN_SACK;
3414 			to->to_sacks = cp + 2;
3415 			TCPSTAT_INC(tcps_sack_rcv_blocks);
3416 			break;
3417 		case TCPOPT_FAST_OPEN:
3418 			/*
3419 			 * Cookie length validation is performed by the
3420 			 * server side cookie checking code or the client
3421 			 * side cookie cache update code.
3422 			 */
3423 			if (!(flags & TO_SYN))
3424 				continue;
3425 			if (!V_tcp_fastopen_client_enable &&
3426 			    !V_tcp_fastopen_server_enable)
3427 				continue;
3428 			to->to_flags |= TOF_FASTOPEN;
3429 			to->to_tfo_len = optlen - 2;
3430 			to->to_tfo_cookie = to->to_tfo_len ? cp + 2 : NULL;
3431 			break;
3432 		default:
3433 			continue;
3434 		}
3435 	}
3436 }
3437 
3438 /*
3439  * Pull out of band byte out of a segment so
3440  * it doesn't appear in the user's data queue.
3441  * It is still reflected in the segment length for
3442  * sequencing purposes.
3443  */
3444 void
3445 tcp_pulloutofband(struct socket *so, struct tcphdr *th, struct mbuf *m,
3446     int off)
3447 {
3448 	int cnt = off + th->th_urp - 1;
3449 
3450 	while (cnt >= 0) {
3451 		if (m->m_len > cnt) {
3452 			char *cp = mtod(m, caddr_t) + cnt;
3453 			struct tcpcb *tp = sototcpcb(so);
3454 
3455 			INP_WLOCK_ASSERT(tp->t_inpcb);
3456 
3457 			tp->t_iobc = *cp;
3458 			tp->t_oobflags |= TCPOOB_HAVEDATA;
3459 			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
3460 			m->m_len--;
3461 			if (m->m_flags & M_PKTHDR)
3462 				m->m_pkthdr.len--;
3463 			return;
3464 		}
3465 		cnt -= m->m_len;
3466 		m = m->m_next;
3467 		if (m == NULL)
3468 			break;
3469 	}
3470 	panic("tcp_pulloutofband");
3471 }
3472 
3473 /*
3474  * Collect new round-trip time estimate
3475  * and update averages and current timeout.
3476  */
3477 void
3478 tcp_xmit_timer(struct tcpcb *tp, int rtt)
3479 {
3480 	int delta;
3481 
3482 	INP_WLOCK_ASSERT(tp->t_inpcb);
3483 
3484 	TCPSTAT_INC(tcps_rttupdated);
3485 	tp->t_rttupdated++;
3486 #ifdef STATS
3487 	stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_RTT,
3488 	    imax(0, rtt * 1000 / hz));
3489 #endif
3490 	if ((tp->t_srtt != 0) && (tp->t_rxtshift <= TCP_RTT_INVALIDATE)) {
3491 		/*
3492 		 * srtt is stored as fixed point with 5 bits after the
3493 		 * binary point (i.e., scaled by 8).  The following magic
3494 		 * is equivalent to the smoothing algorithm in rfc793 with
3495 		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
3496 		 * point).  Adjust rtt to origin 0.
3497 		 */
3498 		delta = ((rtt - 1) << TCP_DELTA_SHIFT)
3499 			- (tp->t_srtt >> (TCP_RTT_SHIFT - TCP_DELTA_SHIFT));
3500 
3501 		if ((tp->t_srtt += delta) <= 0)
3502 			tp->t_srtt = 1;
3503 
3504 		/*
3505 		 * We accumulate a smoothed rtt variance (actually, a
3506 		 * smoothed mean difference), then set the retransmit
3507 		 * timer to smoothed rtt + 4 times the smoothed variance.
3508 		 * rttvar is stored as fixed point with 4 bits after the
3509 		 * binary point (scaled by 16).  The following is
3510 		 * equivalent to rfc793 smoothing with an alpha of .75
3511 		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
3512 		 * rfc793's wired-in beta.
3513 		 */
3514 		if (delta < 0)
3515 			delta = -delta;
3516 		delta -= tp->t_rttvar >> (TCP_RTTVAR_SHIFT - TCP_DELTA_SHIFT);
3517 		if ((tp->t_rttvar += delta) <= 0)
3518 			tp->t_rttvar = 1;
3519 		if (tp->t_rttbest > tp->t_srtt + tp->t_rttvar)
3520 		    tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
3521 	} else {
3522 		/*
3523 		 * No rtt measurement yet - use the unsmoothed rtt.
3524 		 * Set the variance to half the rtt (so our first
3525 		 * retransmit happens at 3*rtt).
3526 		 */
3527 		tp->t_srtt = rtt << TCP_RTT_SHIFT;
3528 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1);
3529 		tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
3530 	}
3531 	tp->t_rtttime = 0;
3532 	tp->t_rxtshift = 0;
3533 
3534 	/*
3535 	 * the retransmit should happen at rtt + 4 * rttvar.
3536 	 * Because of the way we do the smoothing, srtt and rttvar
3537 	 * will each average +1/2 tick of bias.  When we compute
3538 	 * the retransmit timer, we want 1/2 tick of rounding and
3539 	 * 1 extra tick because of +-1/2 tick uncertainty in the
3540 	 * firing of the timer.  The bias will give us exactly the
3541 	 * 1.5 tick we need.  But, because the bias is
3542 	 * statistical, we have to test that we don't drop below
3543 	 * the minimum feasible timer (which is 2 ticks).
3544 	 */
3545 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
3546 		      max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
3547 
3548 	/*
3549 	 * We received an ack for a packet that wasn't retransmitted;
3550 	 * it is probably safe to discard any error indications we've
3551 	 * received recently.  This isn't quite right, but close enough
3552 	 * for now (a route might have failed after we sent a segment,
3553 	 * and the return path might not be symmetrical).
3554 	 */
3555 	tp->t_softerror = 0;
3556 }
3557 
3558 /*
3559  * Determine a reasonable value for maxseg size.
3560  * If the route is known, check route for mtu.
3561  * If none, use an mss that can be handled on the outgoing interface
3562  * without forcing IP to fragment.  If no route is found, route has no mtu,
3563  * or the destination isn't local, use a default, hopefully conservative
3564  * size (usually 512 or the default IP max size, but no more than the mtu
3565  * of the interface), as we can't discover anything about intervening
3566  * gateways or networks.  We also initialize the congestion/slow start
3567  * window to be a single segment if the destination isn't local.
3568  * While looking at the routing entry, we also initialize other path-dependent
3569  * parameters from pre-set or cached values in the routing entry.
3570  *
3571  * NOTE that resulting t_maxseg doesn't include space for TCP options or
3572  * IP options, e.g. IPSEC data, since length of this data may vary, and
3573  * thus it is calculated for every segment separately in tcp_output().
3574  *
3575  * NOTE that this routine is only called when we process an incoming
3576  * segment, or an ICMP need fragmentation datagram. Outgoing SYN/ACK MSS
3577  * settings are handled in tcp_mssopt().
3578  */
3579 void
3580 tcp_mss_update(struct tcpcb *tp, int offer, int mtuoffer,
3581     struct hc_metrics_lite *metricptr, struct tcp_ifcap *cap)
3582 {
3583 	int mss = 0;
3584 	uint32_t maxmtu = 0;
3585 	struct inpcb *inp = tp->t_inpcb;
3586 	struct hc_metrics_lite metrics;
3587 #ifdef INET6
3588 	int isipv6 = ((inp->inp_vflag & INP_IPV6) != 0) ? 1 : 0;
3589 	size_t min_protoh = isipv6 ?
3590 			    sizeof (struct ip6_hdr) + sizeof (struct tcphdr) :
3591 			    sizeof (struct tcpiphdr);
3592 #else
3593 	const size_t min_protoh = sizeof(struct tcpiphdr);
3594 #endif
3595 
3596 	INP_WLOCK_ASSERT(tp->t_inpcb);
3597 
3598 	if (mtuoffer != -1) {
3599 		KASSERT(offer == -1, ("%s: conflict", __func__));
3600 		offer = mtuoffer - min_protoh;
3601 	}
3602 
3603 	/* Initialize. */
3604 #ifdef INET6
3605 	if (isipv6) {
3606 		maxmtu = tcp_maxmtu6(&inp->inp_inc, cap);
3607 		tp->t_maxseg = V_tcp_v6mssdflt;
3608 	}
3609 #endif
3610 #if defined(INET) && defined(INET6)
3611 	else
3612 #endif
3613 #ifdef INET
3614 	{
3615 		maxmtu = tcp_maxmtu(&inp->inp_inc, cap);
3616 		tp->t_maxseg = V_tcp_mssdflt;
3617 	}
3618 #endif
3619 
3620 	/*
3621 	 * No route to sender, stay with default mss and return.
3622 	 */
3623 	if (maxmtu == 0) {
3624 		/*
3625 		 * In case we return early we need to initialize metrics
3626 		 * to a defined state as tcp_hc_get() would do for us
3627 		 * if there was no cache hit.
3628 		 */
3629 		if (metricptr != NULL)
3630 			bzero(metricptr, sizeof(struct hc_metrics_lite));
3631 		return;
3632 	}
3633 
3634 	/* What have we got? */
3635 	switch (offer) {
3636 		case 0:
3637 			/*
3638 			 * Offer == 0 means that there was no MSS on the SYN
3639 			 * segment, in this case we use tcp_mssdflt as
3640 			 * already assigned to t_maxseg above.
3641 			 */
3642 			offer = tp->t_maxseg;
3643 			break;
3644 
3645 		case -1:
3646 			/*
3647 			 * Offer == -1 means that we didn't receive SYN yet.
3648 			 */
3649 			/* FALLTHROUGH */
3650 
3651 		default:
3652 			/*
3653 			 * Prevent DoS attack with too small MSS. Round up
3654 			 * to at least minmss.
3655 			 */
3656 			offer = max(offer, V_tcp_minmss);
3657 	}
3658 
3659 	/*
3660 	 * rmx information is now retrieved from tcp_hostcache.
3661 	 */
3662 	tcp_hc_get(&inp->inp_inc, &metrics);
3663 	if (metricptr != NULL)
3664 		bcopy(&metrics, metricptr, sizeof(struct hc_metrics_lite));
3665 
3666 	/*
3667 	 * If there's a discovered mtu in tcp hostcache, use it.
3668 	 * Else, use the link mtu.
3669 	 */
3670 	if (metrics.rmx_mtu)
3671 		mss = min(metrics.rmx_mtu, maxmtu) - min_protoh;
3672 	else {
3673 #ifdef INET6
3674 		if (isipv6) {
3675 			mss = maxmtu - min_protoh;
3676 			if (!V_path_mtu_discovery &&
3677 			    !in6_localaddr(&inp->in6p_faddr))
3678 				mss = min(mss, V_tcp_v6mssdflt);
3679 		}
3680 #endif
3681 #if defined(INET) && defined(INET6)
3682 		else
3683 #endif
3684 #ifdef INET
3685 		{
3686 			mss = maxmtu - min_protoh;
3687 			if (!V_path_mtu_discovery &&
3688 			    !in_localaddr(inp->inp_faddr))
3689 				mss = min(mss, V_tcp_mssdflt);
3690 		}
3691 #endif
3692 		/*
3693 		 * XXX - The above conditional (mss = maxmtu - min_protoh)
3694 		 * probably violates the TCP spec.
3695 		 * The problem is that, since we don't know the
3696 		 * other end's MSS, we are supposed to use a conservative
3697 		 * default.  But, if we do that, then MTU discovery will
3698 		 * never actually take place, because the conservative
3699 		 * default is much less than the MTUs typically seen
3700 		 * on the Internet today.  For the moment, we'll sweep
3701 		 * this under the carpet.
3702 		 *
3703 		 * The conservative default might not actually be a problem
3704 		 * if the only case this occurs is when sending an initial
3705 		 * SYN with options and data to a host we've never talked
3706 		 * to before.  Then, they will reply with an MSS value which
3707 		 * will get recorded and the new parameters should get
3708 		 * recomputed.  For Further Study.
3709 		 */
3710 	}
3711 	mss = min(mss, offer);
3712 
3713 	/*
3714 	 * Sanity check: make sure that maxseg will be large
3715 	 * enough to allow some data on segments even if the
3716 	 * all the option space is used (40bytes).  Otherwise
3717 	 * funny things may happen in tcp_output.
3718 	 *
3719 	 * XXXGL: shouldn't we reserve space for IP/IPv6 options?
3720 	 */
3721 	mss = max(mss, 64);
3722 
3723 	tp->t_maxseg = mss;
3724 }
3725 
3726 void
3727 tcp_mss(struct tcpcb *tp, int offer)
3728 {
3729 	int mss;
3730 	uint32_t bufsize;
3731 	struct inpcb *inp;
3732 	struct socket *so;
3733 	struct hc_metrics_lite metrics;
3734 	struct tcp_ifcap cap;
3735 
3736 	KASSERT(tp != NULL, ("%s: tp == NULL", __func__));
3737 
3738 	bzero(&cap, sizeof(cap));
3739 	tcp_mss_update(tp, offer, -1, &metrics, &cap);
3740 
3741 	mss = tp->t_maxseg;
3742 	inp = tp->t_inpcb;
3743 
3744 	/*
3745 	 * If there's a pipesize, change the socket buffer to that size,
3746 	 * don't change if sb_hiwat is different than default (then it
3747 	 * has been changed on purpose with setsockopt).
3748 	 * Make the socket buffers an integral number of mss units;
3749 	 * if the mss is larger than the socket buffer, decrease the mss.
3750 	 */
3751 	so = inp->inp_socket;
3752 	SOCKBUF_LOCK(&so->so_snd);
3753 	if ((so->so_snd.sb_hiwat == V_tcp_sendspace) && metrics.rmx_sendpipe)
3754 		bufsize = metrics.rmx_sendpipe;
3755 	else
3756 		bufsize = so->so_snd.sb_hiwat;
3757 	if (bufsize < mss)
3758 		mss = bufsize;
3759 	else {
3760 		bufsize = roundup(bufsize, mss);
3761 		if (bufsize > sb_max)
3762 			bufsize = sb_max;
3763 		if (bufsize > so->so_snd.sb_hiwat)
3764 			(void)sbreserve_locked(&so->so_snd, bufsize, so, NULL);
3765 	}
3766 	SOCKBUF_UNLOCK(&so->so_snd);
3767 	/*
3768 	 * Sanity check: make sure that maxseg will be large
3769 	 * enough to allow some data on segments even if the
3770 	 * all the option space is used (40bytes).  Otherwise
3771 	 * funny things may happen in tcp_output.
3772 	 *
3773 	 * XXXGL: shouldn't we reserve space for IP/IPv6 options?
3774 	 */
3775 	tp->t_maxseg = max(mss, 64);
3776 
3777 	SOCKBUF_LOCK(&so->so_rcv);
3778 	if ((so->so_rcv.sb_hiwat == V_tcp_recvspace) && metrics.rmx_recvpipe)
3779 		bufsize = metrics.rmx_recvpipe;
3780 	else
3781 		bufsize = so->so_rcv.sb_hiwat;
3782 	if (bufsize > mss) {
3783 		bufsize = roundup(bufsize, mss);
3784 		if (bufsize > sb_max)
3785 			bufsize = sb_max;
3786 		if (bufsize > so->so_rcv.sb_hiwat)
3787 			(void)sbreserve_locked(&so->so_rcv, bufsize, so, NULL);
3788 	}
3789 	SOCKBUF_UNLOCK(&so->so_rcv);
3790 
3791 	/* Check the interface for TSO capabilities. */
3792 	if (cap.ifcap & CSUM_TSO) {
3793 		tp->t_flags |= TF_TSO;
3794 		tp->t_tsomax = cap.tsomax;
3795 		tp->t_tsomaxsegcount = cap.tsomaxsegcount;
3796 		tp->t_tsomaxsegsize = cap.tsomaxsegsize;
3797 	}
3798 }
3799 
3800 /*
3801  * Determine the MSS option to send on an outgoing SYN.
3802  */
3803 int
3804 tcp_mssopt(struct in_conninfo *inc)
3805 {
3806 	int mss = 0;
3807 	uint32_t thcmtu = 0;
3808 	uint32_t maxmtu = 0;
3809 	size_t min_protoh;
3810 
3811 	KASSERT(inc != NULL, ("tcp_mssopt with NULL in_conninfo pointer"));
3812 
3813 #ifdef INET6
3814 	if (inc->inc_flags & INC_ISIPV6) {
3815 		mss = V_tcp_v6mssdflt;
3816 		maxmtu = tcp_maxmtu6(inc, NULL);
3817 		min_protoh = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
3818 	}
3819 #endif
3820 #if defined(INET) && defined(INET6)
3821 	else
3822 #endif
3823 #ifdef INET
3824 	{
3825 		mss = V_tcp_mssdflt;
3826 		maxmtu = tcp_maxmtu(inc, NULL);
3827 		min_protoh = sizeof(struct tcpiphdr);
3828 	}
3829 #endif
3830 #if defined(INET6) || defined(INET)
3831 	thcmtu = tcp_hc_getmtu(inc); /* IPv4 and IPv6 */
3832 #endif
3833 
3834 	if (maxmtu && thcmtu)
3835 		mss = min(maxmtu, thcmtu) - min_protoh;
3836 	else if (maxmtu || thcmtu)
3837 		mss = max(maxmtu, thcmtu) - min_protoh;
3838 
3839 	return (mss);
3840 }
3841 
3842 /*
3843  * On a partial ack arrives, force the retransmission of the
3844  * next unacknowledged segment.  Do not clear tp->t_dupacks.
3845  * By setting snd_nxt to ti_ack, this forces retransmission timer to
3846  * be started again.
3847  */
3848 void
3849 tcp_newreno_partial_ack(struct tcpcb *tp, struct tcphdr *th)
3850 {
3851 	tcp_seq onxt = tp->snd_nxt;
3852 	uint32_t ocwnd = tp->snd_cwnd;
3853 	u_int maxseg = tcp_maxseg(tp);
3854 
3855 	INP_WLOCK_ASSERT(tp->t_inpcb);
3856 
3857 	tcp_timer_activate(tp, TT_REXMT, 0);
3858 	tp->t_rtttime = 0;
3859 	tp->snd_nxt = th->th_ack;
3860 	/*
3861 	 * Set snd_cwnd to one segment beyond acknowledged offset.
3862 	 * (tp->snd_una has not yet been updated when this function is called.)
3863 	 */
3864 	tp->snd_cwnd = maxseg + BYTES_THIS_ACK(tp, th);
3865 	tp->t_flags |= TF_ACKNOW;
3866 	(void) tp->t_fb->tfb_tcp_output(tp);
3867 	tp->snd_cwnd = ocwnd;
3868 	if (SEQ_GT(onxt, tp->snd_nxt))
3869 		tp->snd_nxt = onxt;
3870 	/*
3871 	 * Partial window deflation.  Relies on fact that tp->snd_una
3872 	 * not updated yet.
3873 	 */
3874 	if (tp->snd_cwnd > BYTES_THIS_ACK(tp, th))
3875 		tp->snd_cwnd -= BYTES_THIS_ACK(tp, th);
3876 	else
3877 		tp->snd_cwnd = 0;
3878 	tp->snd_cwnd += maxseg;
3879 }
3880 
3881 int
3882 tcp_compute_pipe(struct tcpcb *tp)
3883 {
3884 	return (tp->snd_max - tp->snd_una +
3885 		tp->sackhint.sack_bytes_rexmit -
3886 		tp->sackhint.sacked_bytes);
3887 }
3888 
3889 uint32_t
3890 tcp_compute_initwnd(uint32_t maxseg)
3891 {
3892 	/*
3893 	 * Calculate the Initial Window, also used as Restart Window
3894 	 *
3895 	 * RFC5681 Section 3.1 specifies the default conservative values.
3896 	 * RFC3390 specifies slightly more aggressive values.
3897 	 * RFC6928 increases it to ten segments.
3898 	 * Support for user specified value for initial flight size.
3899 	 */
3900 	if (V_tcp_initcwnd_segments)
3901 		return min(V_tcp_initcwnd_segments * maxseg,
3902 		    max(2 * maxseg, V_tcp_initcwnd_segments * 1460));
3903 	else if (V_tcp_do_rfc3390)
3904 		return min(4 * maxseg, max(2 * maxseg, 4380));
3905 	else {
3906 		/* Per RFC5681 Section 3.1 */
3907 		if (maxseg > 2190)
3908 			return (2 * maxseg);
3909 		else if (maxseg > 1095)
3910 			return (3 * maxseg);
3911 		else
3912 			return (4 * maxseg);
3913 	}
3914 }
3915