xref: /freebsd/sys/netinet/tcp_input.c (revision 3fc9e2c36555140de248a0b4def91bbfa44d7c2c)
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
3  *	The Regents of the University of California.  All rights reserved.
4  * Copyright (c) 2007-2008,2010
5  *	Swinburne University of Technology, Melbourne, Australia.
6  * Copyright (c) 2009-2010 Lawrence Stewart <lstewart@freebsd.org>
7  * Copyright (c) 2010 The FreeBSD Foundation
8  * Copyright (c) 2010-2011 Juniper Networks, Inc.
9  * All rights reserved.
10  *
11  * Portions of this software were developed at the Centre for Advanced Internet
12  * Architectures, Swinburne University of Technology, by Lawrence Stewart,
13  * James Healy and David Hayes, made possible in part by a grant from the Cisco
14  * University Research Program Fund at Community Foundation Silicon Valley.
15  *
16  * Portions of this software were developed at the Centre for Advanced
17  * Internet Architectures, Swinburne University of Technology, Melbourne,
18  * Australia by David Hayes under sponsorship from the FreeBSD Foundation.
19  *
20  * Portions of this software were developed by Robert N. M. Watson under
21  * contract to Juniper Networks, Inc.
22  *
23  * Redistribution and use in source and binary forms, with or without
24  * modification, are permitted provided that the following conditions
25  * are met:
26  * 1. Redistributions of source code must retain the above copyright
27  *    notice, this list of conditions and the following disclaimer.
28  * 2. Redistributions in binary form must reproduce the above copyright
29  *    notice, this list of conditions and the following disclaimer in the
30  *    documentation and/or other materials provided with the distribution.
31  * 4. Neither the name of the University nor the names of its contributors
32  *    may be used to endorse or promote products derived from this software
33  *    without specific prior written permission.
34  *
35  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
36  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
37  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
38  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
39  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
40  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
41  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
42  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
43  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
44  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
45  * SUCH DAMAGE.
46  *
47  *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
48  */
49 
50 #include <sys/cdefs.h>
51 __FBSDID("$FreeBSD$");
52 
53 #include "opt_ipfw.h"		/* for ipfw_fwd	*/
54 #include "opt_inet.h"
55 #include "opt_inet6.h"
56 #include "opt_ipsec.h"
57 #include "opt_kdtrace.h"
58 #include "opt_tcpdebug.h"
59 
60 #include <sys/param.h>
61 #include <sys/kernel.h>
62 #include <sys/hhook.h>
63 #include <sys/malloc.h>
64 #include <sys/mbuf.h>
65 #include <sys/proc.h>		/* for proc0 declaration */
66 #include <sys/protosw.h>
67 #include <sys/sdt.h>
68 #include <sys/signalvar.h>
69 #include <sys/socket.h>
70 #include <sys/socketvar.h>
71 #include <sys/sysctl.h>
72 #include <sys/syslog.h>
73 #include <sys/systm.h>
74 
75 #include <machine/cpu.h>	/* before tcp_seq.h, for tcp_random18() */
76 
77 #include <vm/uma.h>
78 
79 #include <net/if.h>
80 #include <net/route.h>
81 #include <net/vnet.h>
82 
83 #define TCPSTATES		/* for logging */
84 
85 #include <netinet/cc.h>
86 #include <netinet/in.h>
87 #include <netinet/in_kdtrace.h>
88 #include <netinet/in_pcb.h>
89 #include <netinet/in_systm.h>
90 #include <netinet/in_var.h>
91 #include <netinet/ip.h>
92 #include <netinet/ip_icmp.h>	/* required for icmp_var.h */
93 #include <netinet/icmp_var.h>	/* for ICMP_BANDLIM */
94 #include <netinet/ip_var.h>
95 #include <netinet/ip_options.h>
96 #include <netinet/ip6.h>
97 #include <netinet/icmp6.h>
98 #include <netinet6/in6_pcb.h>
99 #include <netinet6/ip6_var.h>
100 #include <netinet6/nd6.h>
101 #include <netinet/tcp_fsm.h>
102 #include <netinet/tcp_seq.h>
103 #include <netinet/tcp_timer.h>
104 #include <netinet/tcp_var.h>
105 #include <netinet6/tcp6_var.h>
106 #include <netinet/tcpip.h>
107 #include <netinet/tcp_syncache.h>
108 #ifdef TCPDEBUG
109 #include <netinet/tcp_debug.h>
110 #endif /* TCPDEBUG */
111 #ifdef TCP_OFFLOAD
112 #include <netinet/tcp_offload.h>
113 #endif
114 
115 #ifdef IPSEC
116 #include <netipsec/ipsec.h>
117 #include <netipsec/ipsec6.h>
118 #endif /*IPSEC*/
119 
120 #include <machine/in_cksum.h>
121 
122 #include <security/mac/mac_framework.h>
123 
124 const int tcprexmtthresh = 3;
125 
126 int tcp_log_in_vain = 0;
127 SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_in_vain, CTLFLAG_RW,
128     &tcp_log_in_vain, 0,
129     "Log all incoming TCP segments to closed ports");
130 
131 VNET_DEFINE(int, blackhole) = 0;
132 #define	V_blackhole		VNET(blackhole)
133 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, blackhole, CTLFLAG_RW,
134     &VNET_NAME(blackhole), 0,
135     "Do not send RST on segments to closed ports");
136 
137 VNET_DEFINE(int, tcp_delack_enabled) = 1;
138 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, delayed_ack, CTLFLAG_RW,
139     &VNET_NAME(tcp_delack_enabled), 0,
140     "Delay ACK to try and piggyback it onto a data packet");
141 
142 VNET_DEFINE(int, drop_synfin) = 0;
143 #define	V_drop_synfin		VNET(drop_synfin)
144 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, drop_synfin, CTLFLAG_RW,
145     &VNET_NAME(drop_synfin), 0,
146     "Drop TCP packets with SYN+FIN set");
147 
148 VNET_DEFINE(int, tcp_do_rfc3042) = 1;
149 #define	V_tcp_do_rfc3042	VNET(tcp_do_rfc3042)
150 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, rfc3042, CTLFLAG_RW,
151     &VNET_NAME(tcp_do_rfc3042), 0,
152     "Enable RFC 3042 (Limited Transmit)");
153 
154 VNET_DEFINE(int, tcp_do_rfc3390) = 1;
155 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, rfc3390, CTLFLAG_RW,
156     &VNET_NAME(tcp_do_rfc3390), 0,
157     "Enable RFC 3390 (Increasing TCP's Initial Congestion Window)");
158 
159 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, experimental, CTLFLAG_RW, 0,
160     "Experimental TCP extensions");
161 
162 VNET_DEFINE(int, tcp_do_initcwnd10) = 1;
163 SYSCTL_VNET_INT(_net_inet_tcp_experimental, OID_AUTO, initcwnd10, CTLFLAG_RW,
164     &VNET_NAME(tcp_do_initcwnd10), 0,
165     "Enable draft-ietf-tcpm-initcwnd-05 (Increasing initial CWND to 10)");
166 
167 VNET_DEFINE(int, tcp_do_rfc3465) = 1;
168 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, rfc3465, CTLFLAG_RW,
169     &VNET_NAME(tcp_do_rfc3465), 0,
170     "Enable RFC 3465 (Appropriate Byte Counting)");
171 
172 VNET_DEFINE(int, tcp_abc_l_var) = 2;
173 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, abc_l_var, CTLFLAG_RW,
174     &VNET_NAME(tcp_abc_l_var), 2,
175     "Cap the max cwnd increment during slow-start to this number of segments");
176 
177 static SYSCTL_NODE(_net_inet_tcp, OID_AUTO, ecn, CTLFLAG_RW, 0, "TCP ECN");
178 
179 VNET_DEFINE(int, tcp_do_ecn) = 0;
180 SYSCTL_VNET_INT(_net_inet_tcp_ecn, OID_AUTO, enable, CTLFLAG_RW,
181     &VNET_NAME(tcp_do_ecn), 0,
182     "TCP ECN support");
183 
184 VNET_DEFINE(int, tcp_ecn_maxretries) = 1;
185 SYSCTL_VNET_INT(_net_inet_tcp_ecn, OID_AUTO, maxretries, CTLFLAG_RW,
186     &VNET_NAME(tcp_ecn_maxretries), 0,
187     "Max retries before giving up on ECN");
188 
189 VNET_DEFINE(int, tcp_insecure_rst) = 0;
190 #define	V_tcp_insecure_rst	VNET(tcp_insecure_rst)
191 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, insecure_rst, CTLFLAG_RW,
192     &VNET_NAME(tcp_insecure_rst), 0,
193     "Follow the old (insecure) criteria for accepting RST packets");
194 
195 VNET_DEFINE(int, tcp_recvspace) = 1024*64;
196 #define	V_tcp_recvspace	VNET(tcp_recvspace)
197 SYSCTL_VNET_INT(_net_inet_tcp, TCPCTL_RECVSPACE, recvspace, CTLFLAG_RW,
198     &VNET_NAME(tcp_recvspace), 0, "Initial receive socket buffer size");
199 
200 VNET_DEFINE(int, tcp_do_autorcvbuf) = 1;
201 #define	V_tcp_do_autorcvbuf	VNET(tcp_do_autorcvbuf)
202 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, recvbuf_auto, CTLFLAG_RW,
203     &VNET_NAME(tcp_do_autorcvbuf), 0,
204     "Enable automatic receive buffer sizing");
205 
206 VNET_DEFINE(int, tcp_autorcvbuf_inc) = 16*1024;
207 #define	V_tcp_autorcvbuf_inc	VNET(tcp_autorcvbuf_inc)
208 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, recvbuf_inc, CTLFLAG_RW,
209     &VNET_NAME(tcp_autorcvbuf_inc), 0,
210     "Incrementor step size of automatic receive buffer");
211 
212 VNET_DEFINE(int, tcp_autorcvbuf_max) = 2*1024*1024;
213 #define	V_tcp_autorcvbuf_max	VNET(tcp_autorcvbuf_max)
214 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, recvbuf_max, CTLFLAG_RW,
215     &VNET_NAME(tcp_autorcvbuf_max), 0,
216     "Max size of automatic receive buffer");
217 
218 VNET_DEFINE(struct inpcbhead, tcb);
219 #define	tcb6	tcb  /* for KAME src sync over BSD*'s */
220 VNET_DEFINE(struct inpcbinfo, tcbinfo);
221 
222 static void	 tcp_dooptions(struct tcpopt *, u_char *, int, int);
223 static void	 tcp_do_segment(struct mbuf *, struct tcphdr *,
224 		     struct socket *, struct tcpcb *, int, int, uint8_t,
225 		     int);
226 static void	 tcp_dropwithreset(struct mbuf *, struct tcphdr *,
227 		     struct tcpcb *, int, int);
228 static void	 tcp_pulloutofband(struct socket *,
229 		     struct tcphdr *, struct mbuf *, int);
230 static void	 tcp_xmit_timer(struct tcpcb *, int);
231 static void	 tcp_newreno_partial_ack(struct tcpcb *, struct tcphdr *);
232 static void inline 	tcp_fields_to_host(struct tcphdr *);
233 #ifdef TCP_SIGNATURE
234 static void inline 	tcp_fields_to_net(struct tcphdr *);
235 static int inline	tcp_signature_verify_input(struct mbuf *, int, int,
236 			    int, struct tcpopt *, struct tcphdr *, u_int);
237 #endif
238 static void inline	cc_ack_received(struct tcpcb *tp, struct tcphdr *th,
239 			    uint16_t type);
240 static void inline	cc_conn_init(struct tcpcb *tp);
241 static void inline	cc_post_recovery(struct tcpcb *tp, struct tcphdr *th);
242 static void inline	hhook_run_tcp_est_in(struct tcpcb *tp,
243 			    struct tcphdr *th, struct tcpopt *to);
244 
245 /*
246  * TCP statistics are stored in an "array" of counter(9)s.
247  */
248 VNET_PCPUSTAT_DEFINE(struct tcpstat, tcpstat);
249 VNET_PCPUSTAT_SYSINIT(tcpstat);
250 SYSCTL_VNET_PCPUSTAT(_net_inet_tcp, TCPCTL_STATS, stats, struct tcpstat,
251     tcpstat, "TCP statistics (struct tcpstat, netinet/tcp_var.h)");
252 
253 #ifdef VIMAGE
254 VNET_PCPUSTAT_SYSUNINIT(tcpstat);
255 #endif /* VIMAGE */
256 /*
257  * Kernel module interface for updating tcpstat.  The argument is an index
258  * into tcpstat treated as an array.
259  */
260 void
261 kmod_tcpstat_inc(int statnum)
262 {
263 
264 	counter_u64_add(VNET(tcpstat)[statnum], 1);
265 }
266 
267 /*
268  * Wrapper for the TCP established input helper hook.
269  */
270 static void inline
271 hhook_run_tcp_est_in(struct tcpcb *tp, struct tcphdr *th, struct tcpopt *to)
272 {
273 	struct tcp_hhook_data hhook_data;
274 
275 	if (V_tcp_hhh[HHOOK_TCP_EST_IN]->hhh_nhooks > 0) {
276 		hhook_data.tp = tp;
277 		hhook_data.th = th;
278 		hhook_data.to = to;
279 
280 		hhook_run_hooks(V_tcp_hhh[HHOOK_TCP_EST_IN], &hhook_data,
281 		    tp->osd);
282 	}
283 }
284 
285 /*
286  * CC wrapper hook functions
287  */
288 static void inline
289 cc_ack_received(struct tcpcb *tp, struct tcphdr *th, uint16_t type)
290 {
291 	INP_WLOCK_ASSERT(tp->t_inpcb);
292 
293 	tp->ccv->bytes_this_ack = BYTES_THIS_ACK(tp, th);
294 	if (tp->snd_cwnd <= tp->snd_wnd)
295 		tp->ccv->flags |= CCF_CWND_LIMITED;
296 	else
297 		tp->ccv->flags &= ~CCF_CWND_LIMITED;
298 
299 	if (type == CC_ACK) {
300 		if (tp->snd_cwnd > tp->snd_ssthresh) {
301 			tp->t_bytes_acked += min(tp->ccv->bytes_this_ack,
302 			     V_tcp_abc_l_var * tp->t_maxseg);
303 			if (tp->t_bytes_acked >= tp->snd_cwnd) {
304 				tp->t_bytes_acked -= tp->snd_cwnd;
305 				tp->ccv->flags |= CCF_ABC_SENTAWND;
306 			}
307 		} else {
308 				tp->ccv->flags &= ~CCF_ABC_SENTAWND;
309 				tp->t_bytes_acked = 0;
310 		}
311 	}
312 
313 	if (CC_ALGO(tp)->ack_received != NULL) {
314 		/* XXXLAS: Find a way to live without this */
315 		tp->ccv->curack = th->th_ack;
316 		CC_ALGO(tp)->ack_received(tp->ccv, type);
317 	}
318 }
319 
320 static void inline
321 cc_conn_init(struct tcpcb *tp)
322 {
323 	struct hc_metrics_lite metrics;
324 	struct inpcb *inp = tp->t_inpcb;
325 	int rtt;
326 
327 	INP_WLOCK_ASSERT(tp->t_inpcb);
328 
329 	tcp_hc_get(&inp->inp_inc, &metrics);
330 
331 	if (tp->t_srtt == 0 && (rtt = metrics.rmx_rtt)) {
332 		tp->t_srtt = rtt;
333 		tp->t_rttbest = tp->t_srtt + TCP_RTT_SCALE;
334 		TCPSTAT_INC(tcps_usedrtt);
335 		if (metrics.rmx_rttvar) {
336 			tp->t_rttvar = metrics.rmx_rttvar;
337 			TCPSTAT_INC(tcps_usedrttvar);
338 		} else {
339 			/* default variation is +- 1 rtt */
340 			tp->t_rttvar =
341 			    tp->t_srtt * TCP_RTTVAR_SCALE / TCP_RTT_SCALE;
342 		}
343 		TCPT_RANGESET(tp->t_rxtcur,
344 		    ((tp->t_srtt >> 2) + tp->t_rttvar) >> 1,
345 		    tp->t_rttmin, TCPTV_REXMTMAX);
346 	}
347 	if (metrics.rmx_ssthresh) {
348 		/*
349 		 * There's some sort of gateway or interface
350 		 * buffer limit on the path.  Use this to set
351 		 * the slow start threshhold, but set the
352 		 * threshold to no less than 2*mss.
353 		 */
354 		tp->snd_ssthresh = max(2 * tp->t_maxseg, metrics.rmx_ssthresh);
355 		TCPSTAT_INC(tcps_usedssthresh);
356 	}
357 
358 	/*
359 	 * Set the initial slow-start flight size.
360 	 *
361 	 * RFC5681 Section 3.1 specifies the default conservative values.
362 	 * RFC3390 specifies slightly more aggressive values.
363 	 * Draft-ietf-tcpm-initcwnd-05 increases it to ten segments.
364 	 *
365 	 * If a SYN or SYN/ACK was lost and retransmitted, we have to
366 	 * reduce the initial CWND to one segment as congestion is likely
367 	 * requiring us to be cautious.
368 	 */
369 	if (tp->snd_cwnd == 1)
370 		tp->snd_cwnd = tp->t_maxseg;		/* SYN(-ACK) lost */
371 	else if (V_tcp_do_initcwnd10)
372 		tp->snd_cwnd = min(10 * tp->t_maxseg,
373 		    max(2 * tp->t_maxseg, 14600));
374 	else if (V_tcp_do_rfc3390)
375 		tp->snd_cwnd = min(4 * tp->t_maxseg,
376 		    max(2 * tp->t_maxseg, 4380));
377 	else {
378 		/* Per RFC5681 Section 3.1 */
379 		if (tp->t_maxseg > 2190)
380 			tp->snd_cwnd = 2 * tp->t_maxseg;
381 		else if (tp->t_maxseg > 1095)
382 			tp->snd_cwnd = 3 * tp->t_maxseg;
383 		else
384 			tp->snd_cwnd = 4 * tp->t_maxseg;
385 	}
386 
387 	if (CC_ALGO(tp)->conn_init != NULL)
388 		CC_ALGO(tp)->conn_init(tp->ccv);
389 }
390 
391 void inline
392 cc_cong_signal(struct tcpcb *tp, struct tcphdr *th, uint32_t type)
393 {
394 	INP_WLOCK_ASSERT(tp->t_inpcb);
395 
396 	switch(type) {
397 	case CC_NDUPACK:
398 		if (!IN_FASTRECOVERY(tp->t_flags)) {
399 			tp->snd_recover = tp->snd_max;
400 			if (tp->t_flags & TF_ECN_PERMIT)
401 				tp->t_flags |= TF_ECN_SND_CWR;
402 		}
403 		break;
404 	case CC_ECN:
405 		if (!IN_CONGRECOVERY(tp->t_flags)) {
406 			TCPSTAT_INC(tcps_ecn_rcwnd);
407 			tp->snd_recover = tp->snd_max;
408 			if (tp->t_flags & TF_ECN_PERMIT)
409 				tp->t_flags |= TF_ECN_SND_CWR;
410 		}
411 		break;
412 	case CC_RTO:
413 		tp->t_dupacks = 0;
414 		tp->t_bytes_acked = 0;
415 		EXIT_RECOVERY(tp->t_flags);
416 		tp->snd_ssthresh = max(2, min(tp->snd_wnd, tp->snd_cwnd) / 2 /
417 		    tp->t_maxseg) * tp->t_maxseg;
418 		tp->snd_cwnd = tp->t_maxseg;
419 		break;
420 	case CC_RTO_ERR:
421 		TCPSTAT_INC(tcps_sndrexmitbad);
422 		/* RTO was unnecessary, so reset everything. */
423 		tp->snd_cwnd = tp->snd_cwnd_prev;
424 		tp->snd_ssthresh = tp->snd_ssthresh_prev;
425 		tp->snd_recover = tp->snd_recover_prev;
426 		if (tp->t_flags & TF_WASFRECOVERY)
427 			ENTER_FASTRECOVERY(tp->t_flags);
428 		if (tp->t_flags & TF_WASCRECOVERY)
429 			ENTER_CONGRECOVERY(tp->t_flags);
430 		tp->snd_nxt = tp->snd_max;
431 		tp->t_flags &= ~TF_PREVVALID;
432 		tp->t_badrxtwin = 0;
433 		break;
434 	}
435 
436 	if (CC_ALGO(tp)->cong_signal != NULL) {
437 		if (th != NULL)
438 			tp->ccv->curack = th->th_ack;
439 		CC_ALGO(tp)->cong_signal(tp->ccv, type);
440 	}
441 }
442 
443 static void inline
444 cc_post_recovery(struct tcpcb *tp, struct tcphdr *th)
445 {
446 	INP_WLOCK_ASSERT(tp->t_inpcb);
447 
448 	/* XXXLAS: KASSERT that we're in recovery? */
449 
450 	if (CC_ALGO(tp)->post_recovery != NULL) {
451 		tp->ccv->curack = th->th_ack;
452 		CC_ALGO(tp)->post_recovery(tp->ccv);
453 	}
454 	/* XXXLAS: EXIT_RECOVERY ? */
455 	tp->t_bytes_acked = 0;
456 }
457 
458 static inline void
459 tcp_fields_to_host(struct tcphdr *th)
460 {
461 
462 	th->th_seq = ntohl(th->th_seq);
463 	th->th_ack = ntohl(th->th_ack);
464 	th->th_win = ntohs(th->th_win);
465 	th->th_urp = ntohs(th->th_urp);
466 }
467 
468 #ifdef TCP_SIGNATURE
469 static inline void
470 tcp_fields_to_net(struct tcphdr *th)
471 {
472 
473 	th->th_seq = htonl(th->th_seq);
474 	th->th_ack = htonl(th->th_ack);
475 	th->th_win = htons(th->th_win);
476 	th->th_urp = htons(th->th_urp);
477 }
478 
479 static inline int
480 tcp_signature_verify_input(struct mbuf *m, int off0, int tlen, int optlen,
481     struct tcpopt *to, struct tcphdr *th, u_int tcpbflag)
482 {
483 	int ret;
484 
485 	tcp_fields_to_net(th);
486 	ret = tcp_signature_verify(m, off0, tlen, optlen, to, th, tcpbflag);
487 	tcp_fields_to_host(th);
488 	return (ret);
489 }
490 #endif
491 
492 /* Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint. */
493 #ifdef INET6
494 #define ND6_HINT(tp) \
495 do { \
496 	if ((tp) && (tp)->t_inpcb && \
497 	    ((tp)->t_inpcb->inp_vflag & INP_IPV6) != 0) \
498 		nd6_nud_hint(NULL, NULL, 0); \
499 } while (0)
500 #else
501 #define ND6_HINT(tp)
502 #endif
503 
504 /*
505  * Indicate whether this ack should be delayed.  We can delay the ack if
506  *	- there is no delayed ack timer in progress and
507  *	- our last ack wasn't a 0-sized window.  We never want to delay
508  *	  the ack that opens up a 0-sized window and
509  *		- delayed acks are enabled or
510  *		- this is a half-synchronized T/TCP connection.
511  */
512 #define DELAY_ACK(tp)							\
513 	((!tcp_timer_active(tp, TT_DELACK) &&				\
514 	    (tp->t_flags & TF_RXWIN0SENT) == 0) &&			\
515 	    (V_tcp_delack_enabled || (tp->t_flags & TF_NEEDSYN)))
516 
517 /*
518  * TCP input handling is split into multiple parts:
519  *   tcp6_input is a thin wrapper around tcp_input for the extended
520  *	ip6_protox[] call format in ip6_input
521  *   tcp_input handles primary segment validation, inpcb lookup and
522  *	SYN processing on listen sockets
523  *   tcp_do_segment processes the ACK and text of the segment for
524  *	establishing, established and closing connections
525  */
526 #ifdef INET6
527 int
528 tcp6_input(struct mbuf **mp, int *offp, int proto)
529 {
530 	struct mbuf *m = *mp;
531 	struct in6_ifaddr *ia6;
532 
533 	IP6_EXTHDR_CHECK(m, *offp, sizeof(struct tcphdr), IPPROTO_DONE);
534 
535 	/*
536 	 * draft-itojun-ipv6-tcp-to-anycast
537 	 * better place to put this in?
538 	 */
539 	ia6 = ip6_getdstifaddr(m);
540 	if (ia6 && (ia6->ia6_flags & IN6_IFF_ANYCAST)) {
541 		struct ip6_hdr *ip6;
542 
543 		ifa_free(&ia6->ia_ifa);
544 		ip6 = mtod(m, struct ip6_hdr *);
545 		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
546 			    (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
547 		return IPPROTO_DONE;
548 	}
549 	if (ia6)
550 		ifa_free(&ia6->ia_ifa);
551 
552 	tcp_input(m, *offp);
553 	return IPPROTO_DONE;
554 }
555 #endif /* INET6 */
556 
557 void
558 tcp_input(struct mbuf *m, int off0)
559 {
560 	struct tcphdr *th = NULL;
561 	struct ip *ip = NULL;
562 	struct inpcb *inp = NULL;
563 	struct tcpcb *tp = NULL;
564 	struct socket *so = NULL;
565 	u_char *optp = NULL;
566 	int optlen = 0;
567 #ifdef INET
568 	int len;
569 #endif
570 	int tlen = 0, off;
571 	int drop_hdrlen;
572 	int thflags;
573 	int rstreason = 0;	/* For badport_bandlim accounting purposes */
574 #ifdef TCP_SIGNATURE
575 	uint8_t sig_checked = 0;
576 #endif
577 	uint8_t iptos = 0;
578 	struct m_tag *fwd_tag = NULL;
579 #ifdef INET6
580 	struct ip6_hdr *ip6 = NULL;
581 	int isipv6;
582 #else
583 	const void *ip6 = NULL;
584 #endif /* INET6 */
585 	struct tcpopt to;		/* options in this segment */
586 	char *s = NULL;			/* address and port logging */
587 	int ti_locked;
588 #define	TI_UNLOCKED	1
589 #define	TI_WLOCKED	2
590 
591 #ifdef TCPDEBUG
592 	/*
593 	 * The size of tcp_saveipgen must be the size of the max ip header,
594 	 * now IPv6.
595 	 */
596 	u_char tcp_saveipgen[IP6_HDR_LEN];
597 	struct tcphdr tcp_savetcp;
598 	short ostate = 0;
599 #endif
600 
601 #ifdef INET6
602 	isipv6 = (mtod(m, struct ip *)->ip_v == 6) ? 1 : 0;
603 #endif
604 
605 	to.to_flags = 0;
606 	TCPSTAT_INC(tcps_rcvtotal);
607 
608 #ifdef INET6
609 	if (isipv6) {
610 		/* IP6_EXTHDR_CHECK() is already done at tcp6_input(). */
611 
612 		if (m->m_len < (sizeof(*ip6) + sizeof(*th))) {
613 			m = m_pullup(m, sizeof(*ip6) + sizeof(*th));
614 			if (m == NULL) {
615 				TCPSTAT_INC(tcps_rcvshort);
616 				return;
617 			}
618 		}
619 
620 		ip6 = mtod(m, struct ip6_hdr *);
621 		th = (struct tcphdr *)((caddr_t)ip6 + off0);
622 		tlen = sizeof(*ip6) + ntohs(ip6->ip6_plen) - off0;
623 		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID_IPV6) {
624 			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
625 				th->th_sum = m->m_pkthdr.csum_data;
626 			else
627 				th->th_sum = in6_cksum_pseudo(ip6, tlen,
628 				    IPPROTO_TCP, m->m_pkthdr.csum_data);
629 			th->th_sum ^= 0xffff;
630 		} else
631 			th->th_sum = in6_cksum(m, IPPROTO_TCP, off0, tlen);
632 		if (th->th_sum) {
633 			TCPSTAT_INC(tcps_rcvbadsum);
634 			goto drop;
635 		}
636 
637 		/*
638 		 * Be proactive about unspecified IPv6 address in source.
639 		 * As we use all-zero to indicate unbounded/unconnected pcb,
640 		 * unspecified IPv6 address can be used to confuse us.
641 		 *
642 		 * Note that packets with unspecified IPv6 destination is
643 		 * already dropped in ip6_input.
644 		 */
645 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
646 			/* XXX stat */
647 			goto drop;
648 		}
649 	}
650 #endif
651 #if defined(INET) && defined(INET6)
652 	else
653 #endif
654 #ifdef INET
655 	{
656 		/*
657 		 * Get IP and TCP header together in first mbuf.
658 		 * Note: IP leaves IP header in first mbuf.
659 		 */
660 		if (off0 > sizeof (struct ip)) {
661 			ip_stripoptions(m);
662 			off0 = sizeof(struct ip);
663 		}
664 		if (m->m_len < sizeof (struct tcpiphdr)) {
665 			if ((m = m_pullup(m, sizeof (struct tcpiphdr)))
666 			    == NULL) {
667 				TCPSTAT_INC(tcps_rcvshort);
668 				return;
669 			}
670 		}
671 		ip = mtod(m, struct ip *);
672 		th = (struct tcphdr *)((caddr_t)ip + off0);
673 		tlen = ntohs(ip->ip_len) - off0;
674 
675 		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
676 			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
677 				th->th_sum = m->m_pkthdr.csum_data;
678 			else
679 				th->th_sum = in_pseudo(ip->ip_src.s_addr,
680 				    ip->ip_dst.s_addr,
681 				    htonl(m->m_pkthdr.csum_data + tlen +
682 				    IPPROTO_TCP));
683 			th->th_sum ^= 0xffff;
684 		} else {
685 			struct ipovly *ipov = (struct ipovly *)ip;
686 
687 			/*
688 			 * Checksum extended TCP header and data.
689 			 */
690 			len = off0 + tlen;
691 			bzero(ipov->ih_x1, sizeof(ipov->ih_x1));
692 			ipov->ih_len = htons(tlen);
693 			th->th_sum = in_cksum(m, len);
694 			/* Reset length for SDT probes. */
695 			ip->ip_len = htons(tlen + off0);
696 		}
697 
698 		if (th->th_sum) {
699 			TCPSTAT_INC(tcps_rcvbadsum);
700 			goto drop;
701 		}
702 		/* Re-initialization for later version check */
703 		ip->ip_v = IPVERSION;
704 	}
705 #endif /* INET */
706 
707 #ifdef INET6
708 	if (isipv6)
709 		iptos = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
710 #endif
711 #if defined(INET) && defined(INET6)
712 	else
713 #endif
714 #ifdef INET
715 		iptos = ip->ip_tos;
716 #endif
717 
718 	/*
719 	 * Check that TCP offset makes sense,
720 	 * pull out TCP options and adjust length.		XXX
721 	 */
722 	off = th->th_off << 2;
723 	if (off < sizeof (struct tcphdr) || off > tlen) {
724 		TCPSTAT_INC(tcps_rcvbadoff);
725 		goto drop;
726 	}
727 	tlen -= off;	/* tlen is used instead of ti->ti_len */
728 	if (off > sizeof (struct tcphdr)) {
729 #ifdef INET6
730 		if (isipv6) {
731 			IP6_EXTHDR_CHECK(m, off0, off, );
732 			ip6 = mtod(m, struct ip6_hdr *);
733 			th = (struct tcphdr *)((caddr_t)ip6 + off0);
734 		}
735 #endif
736 #if defined(INET) && defined(INET6)
737 		else
738 #endif
739 #ifdef INET
740 		{
741 			if (m->m_len < sizeof(struct ip) + off) {
742 				if ((m = m_pullup(m, sizeof (struct ip) + off))
743 				    == NULL) {
744 					TCPSTAT_INC(tcps_rcvshort);
745 					return;
746 				}
747 				ip = mtod(m, struct ip *);
748 				th = (struct tcphdr *)((caddr_t)ip + off0);
749 			}
750 		}
751 #endif
752 		optlen = off - sizeof (struct tcphdr);
753 		optp = (u_char *)(th + 1);
754 	}
755 	thflags = th->th_flags;
756 
757 	/*
758 	 * Convert TCP protocol specific fields to host format.
759 	 */
760 	tcp_fields_to_host(th);
761 
762 	/*
763 	 * Delay dropping TCP, IP headers, IPv6 ext headers, and TCP options.
764 	 */
765 	drop_hdrlen = off0 + off;
766 
767 	/*
768 	 * Locate pcb for segment; if we're likely to add or remove a
769 	 * connection then first acquire pcbinfo lock.  There are two cases
770 	 * where we might discover later we need a write lock despite the
771 	 * flags: ACKs moving a connection out of the syncache, and ACKs for
772 	 * a connection in TIMEWAIT.
773 	 */
774 	if ((thflags & (TH_SYN | TH_FIN | TH_RST)) != 0) {
775 		INP_INFO_WLOCK(&V_tcbinfo);
776 		ti_locked = TI_WLOCKED;
777 	} else
778 		ti_locked = TI_UNLOCKED;
779 
780 	/*
781 	 * Grab info from PACKET_TAG_IPFORWARD tag prepended to the chain.
782 	 */
783         if (
784 #ifdef INET6
785 	    (isipv6 && (m->m_flags & M_IP6_NEXTHOP))
786 #ifdef INET
787 	    || (!isipv6 && (m->m_flags & M_IP_NEXTHOP))
788 #endif
789 #endif
790 #if defined(INET) && !defined(INET6)
791 	    (m->m_flags & M_IP_NEXTHOP)
792 #endif
793 	    )
794 		fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
795 
796 findpcb:
797 #ifdef INVARIANTS
798 	if (ti_locked == TI_WLOCKED) {
799 		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
800 	} else {
801 		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
802 	}
803 #endif
804 #ifdef INET6
805 	if (isipv6 && fwd_tag != NULL) {
806 		struct sockaddr_in6 *next_hop6;
807 
808 		next_hop6 = (struct sockaddr_in6 *)(fwd_tag + 1);
809 		/*
810 		 * Transparently forwarded. Pretend to be the destination.
811 		 * Already got one like this?
812 		 */
813 		inp = in6_pcblookup_mbuf(&V_tcbinfo,
814 		    &ip6->ip6_src, th->th_sport, &ip6->ip6_dst, th->th_dport,
815 		    INPLOOKUP_WLOCKPCB, m->m_pkthdr.rcvif, m);
816 		if (!inp) {
817 			/*
818 			 * It's new.  Try to find the ambushing socket.
819 			 * Because we've rewritten the destination address,
820 			 * any hardware-generated hash is ignored.
821 			 */
822 			inp = in6_pcblookup(&V_tcbinfo, &ip6->ip6_src,
823 			    th->th_sport, &next_hop6->sin6_addr,
824 			    next_hop6->sin6_port ? ntohs(next_hop6->sin6_port) :
825 			    th->th_dport, INPLOOKUP_WILDCARD |
826 			    INPLOOKUP_WLOCKPCB, m->m_pkthdr.rcvif);
827 		}
828 	} else if (isipv6) {
829 		inp = in6_pcblookup_mbuf(&V_tcbinfo, &ip6->ip6_src,
830 		    th->th_sport, &ip6->ip6_dst, th->th_dport,
831 		    INPLOOKUP_WILDCARD | INPLOOKUP_WLOCKPCB,
832 		    m->m_pkthdr.rcvif, m);
833 	}
834 #endif /* INET6 */
835 #if defined(INET6) && defined(INET)
836 	else
837 #endif
838 #ifdef INET
839 	if (fwd_tag != NULL) {
840 		struct sockaddr_in *next_hop;
841 
842 		next_hop = (struct sockaddr_in *)(fwd_tag+1);
843 		/*
844 		 * Transparently forwarded. Pretend to be the destination.
845 		 * already got one like this?
846 		 */
847 		inp = in_pcblookup_mbuf(&V_tcbinfo, ip->ip_src, th->th_sport,
848 		    ip->ip_dst, th->th_dport, INPLOOKUP_WLOCKPCB,
849 		    m->m_pkthdr.rcvif, m);
850 		if (!inp) {
851 			/*
852 			 * It's new.  Try to find the ambushing socket.
853 			 * Because we've rewritten the destination address,
854 			 * any hardware-generated hash is ignored.
855 			 */
856 			inp = in_pcblookup(&V_tcbinfo, ip->ip_src,
857 			    th->th_sport, next_hop->sin_addr,
858 			    next_hop->sin_port ? ntohs(next_hop->sin_port) :
859 			    th->th_dport, INPLOOKUP_WILDCARD |
860 			    INPLOOKUP_WLOCKPCB, m->m_pkthdr.rcvif);
861 		}
862 	} else
863 		inp = in_pcblookup_mbuf(&V_tcbinfo, ip->ip_src,
864 		    th->th_sport, ip->ip_dst, th->th_dport,
865 		    INPLOOKUP_WILDCARD | INPLOOKUP_WLOCKPCB,
866 		    m->m_pkthdr.rcvif, m);
867 #endif /* INET */
868 
869 	/*
870 	 * If the INPCB does not exist then all data in the incoming
871 	 * segment is discarded and an appropriate RST is sent back.
872 	 * XXX MRT Send RST using which routing table?
873 	 */
874 	if (inp == NULL) {
875 		/*
876 		 * Log communication attempts to ports that are not
877 		 * in use.
878 		 */
879 		if ((tcp_log_in_vain == 1 && (thflags & TH_SYN)) ||
880 		    tcp_log_in_vain == 2) {
881 			if ((s = tcp_log_vain(NULL, th, (void *)ip, ip6)))
882 				log(LOG_INFO, "%s; %s: Connection attempt "
883 				    "to closed port\n", s, __func__);
884 		}
885 		/*
886 		 * When blackholing do not respond with a RST but
887 		 * completely ignore the segment and drop it.
888 		 */
889 		if ((V_blackhole == 1 && (thflags & TH_SYN)) ||
890 		    V_blackhole == 2)
891 			goto dropunlock;
892 
893 		rstreason = BANDLIM_RST_CLOSEDPORT;
894 		goto dropwithreset;
895 	}
896 	INP_WLOCK_ASSERT(inp);
897 	if (!(inp->inp_flags & INP_HW_FLOWID)
898 	    && (m->m_flags & M_FLOWID)
899 	    && ((inp->inp_socket == NULL)
900 		|| !(inp->inp_socket->so_options & SO_ACCEPTCONN))) {
901 		inp->inp_flags |= INP_HW_FLOWID;
902 		inp->inp_flags &= ~INP_SW_FLOWID;
903 		inp->inp_flowid = m->m_pkthdr.flowid;
904 	}
905 #ifdef IPSEC
906 #ifdef INET6
907 	if (isipv6 && ipsec6_in_reject(m, inp)) {
908 		IPSEC6STAT_INC(ips_in_polvio);
909 		goto dropunlock;
910 	} else
911 #endif /* INET6 */
912 	if (ipsec4_in_reject(m, inp) != 0) {
913 		IPSECSTAT_INC(ips_in_polvio);
914 		goto dropunlock;
915 	}
916 #endif /* IPSEC */
917 
918 	/*
919 	 * Check the minimum TTL for socket.
920 	 */
921 	if (inp->inp_ip_minttl != 0) {
922 #ifdef INET6
923 		if (isipv6 && inp->inp_ip_minttl > ip6->ip6_hlim)
924 			goto dropunlock;
925 		else
926 #endif
927 		if (inp->inp_ip_minttl > ip->ip_ttl)
928 			goto dropunlock;
929 	}
930 
931 	/*
932 	 * A previous connection in TIMEWAIT state is supposed to catch stray
933 	 * or duplicate segments arriving late.  If this segment was a
934 	 * legitimate new connection attempt, the old INPCB gets removed and
935 	 * we can try again to find a listening socket.
936 	 *
937 	 * At this point, due to earlier optimism, we may hold only an inpcb
938 	 * lock, and not the inpcbinfo write lock.  If so, we need to try to
939 	 * acquire it, or if that fails, acquire a reference on the inpcb,
940 	 * drop all locks, acquire a global write lock, and then re-acquire
941 	 * the inpcb lock.  We may at that point discover that another thread
942 	 * has tried to free the inpcb, in which case we need to loop back
943 	 * and try to find a new inpcb to deliver to.
944 	 *
945 	 * XXXRW: It may be time to rethink timewait locking.
946 	 */
947 relocked:
948 	if (inp->inp_flags & INP_TIMEWAIT) {
949 		if (ti_locked == TI_UNLOCKED) {
950 			if (INP_INFO_TRY_WLOCK(&V_tcbinfo) == 0) {
951 				in_pcbref(inp);
952 				INP_WUNLOCK(inp);
953 				INP_INFO_WLOCK(&V_tcbinfo);
954 				ti_locked = TI_WLOCKED;
955 				INP_WLOCK(inp);
956 				if (in_pcbrele_wlocked(inp)) {
957 					inp = NULL;
958 					goto findpcb;
959 				}
960 			} else
961 				ti_locked = TI_WLOCKED;
962 		}
963 		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
964 
965 		if (thflags & TH_SYN)
966 			tcp_dooptions(&to, optp, optlen, TO_SYN);
967 		/*
968 		 * NB: tcp_twcheck unlocks the INP and frees the mbuf.
969 		 */
970 		if (tcp_twcheck(inp, &to, th, m, tlen))
971 			goto findpcb;
972 		INP_INFO_WUNLOCK(&V_tcbinfo);
973 		return;
974 	}
975 	/*
976 	 * The TCPCB may no longer exist if the connection is winding
977 	 * down or it is in the CLOSED state.  Either way we drop the
978 	 * segment and send an appropriate response.
979 	 */
980 	tp = intotcpcb(inp);
981 	if (tp == NULL || tp->t_state == TCPS_CLOSED) {
982 		rstreason = BANDLIM_RST_CLOSEDPORT;
983 		goto dropwithreset;
984 	}
985 
986 #ifdef TCP_OFFLOAD
987 	if (tp->t_flags & TF_TOE) {
988 		tcp_offload_input(tp, m);
989 		m = NULL;	/* consumed by the TOE driver */
990 		goto dropunlock;
991 	}
992 #endif
993 
994 	/*
995 	 * We've identified a valid inpcb, but it could be that we need an
996 	 * inpcbinfo write lock but don't hold it.  In this case, attempt to
997 	 * acquire using the same strategy as the TIMEWAIT case above.  If we
998 	 * relock, we have to jump back to 'relocked' as the connection might
999 	 * now be in TIMEWAIT.
1000 	 */
1001 #ifdef INVARIANTS
1002 	if ((thflags & (TH_SYN | TH_FIN | TH_RST)) != 0)
1003 		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1004 #endif
1005 	if (tp->t_state != TCPS_ESTABLISHED) {
1006 		if (ti_locked == TI_UNLOCKED) {
1007 			if (INP_INFO_TRY_WLOCK(&V_tcbinfo) == 0) {
1008 				in_pcbref(inp);
1009 				INP_WUNLOCK(inp);
1010 				INP_INFO_WLOCK(&V_tcbinfo);
1011 				ti_locked = TI_WLOCKED;
1012 				INP_WLOCK(inp);
1013 				if (in_pcbrele_wlocked(inp)) {
1014 					inp = NULL;
1015 					goto findpcb;
1016 				}
1017 				goto relocked;
1018 			} else
1019 				ti_locked = TI_WLOCKED;
1020 		}
1021 		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1022 	}
1023 
1024 #ifdef MAC
1025 	INP_WLOCK_ASSERT(inp);
1026 	if (mac_inpcb_check_deliver(inp, m))
1027 		goto dropunlock;
1028 #endif
1029 	so = inp->inp_socket;
1030 	KASSERT(so != NULL, ("%s: so == NULL", __func__));
1031 #ifdef TCPDEBUG
1032 	if (so->so_options & SO_DEBUG) {
1033 		ostate = tp->t_state;
1034 #ifdef INET6
1035 		if (isipv6) {
1036 			bcopy((char *)ip6, (char *)tcp_saveipgen, sizeof(*ip6));
1037 		} else
1038 #endif
1039 			bcopy((char *)ip, (char *)tcp_saveipgen, sizeof(*ip));
1040 		tcp_savetcp = *th;
1041 	}
1042 #endif /* TCPDEBUG */
1043 	/*
1044 	 * When the socket is accepting connections (the INPCB is in LISTEN
1045 	 * state) we look into the SYN cache if this is a new connection
1046 	 * attempt or the completion of a previous one.  Because listen
1047 	 * sockets are never in TCPS_ESTABLISHED, the V_tcbinfo lock will be
1048 	 * held in this case.
1049 	 */
1050 	if (so->so_options & SO_ACCEPTCONN) {
1051 		struct in_conninfo inc;
1052 
1053 		KASSERT(tp->t_state == TCPS_LISTEN, ("%s: so accepting but "
1054 		    "tp not listening", __func__));
1055 		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1056 
1057 		bzero(&inc, sizeof(inc));
1058 #ifdef INET6
1059 		if (isipv6) {
1060 			inc.inc_flags |= INC_ISIPV6;
1061 			inc.inc6_faddr = ip6->ip6_src;
1062 			inc.inc6_laddr = ip6->ip6_dst;
1063 		} else
1064 #endif
1065 		{
1066 			inc.inc_faddr = ip->ip_src;
1067 			inc.inc_laddr = ip->ip_dst;
1068 		}
1069 		inc.inc_fport = th->th_sport;
1070 		inc.inc_lport = th->th_dport;
1071 		inc.inc_fibnum = so->so_fibnum;
1072 
1073 		/*
1074 		 * Check for an existing connection attempt in syncache if
1075 		 * the flag is only ACK.  A successful lookup creates a new
1076 		 * socket appended to the listen queue in SYN_RECEIVED state.
1077 		 */
1078 		if ((thflags & (TH_RST|TH_ACK|TH_SYN)) == TH_ACK) {
1079 			/*
1080 			 * Parse the TCP options here because
1081 			 * syncookies need access to the reflected
1082 			 * timestamp.
1083 			 */
1084 			tcp_dooptions(&to, optp, optlen, 0);
1085 			/*
1086 			 * NB: syncache_expand() doesn't unlock
1087 			 * inp and tcpinfo locks.
1088 			 */
1089 			if (!syncache_expand(&inc, &to, th, &so, m)) {
1090 				/*
1091 				 * No syncache entry or ACK was not
1092 				 * for our SYN/ACK.  Send a RST.
1093 				 * NB: syncache did its own logging
1094 				 * of the failure cause.
1095 				 */
1096 				rstreason = BANDLIM_RST_OPENPORT;
1097 				goto dropwithreset;
1098 			}
1099 			if (so == NULL) {
1100 				/*
1101 				 * We completed the 3-way handshake
1102 				 * but could not allocate a socket
1103 				 * either due to memory shortage,
1104 				 * listen queue length limits or
1105 				 * global socket limits.  Send RST
1106 				 * or wait and have the remote end
1107 				 * retransmit the ACK for another
1108 				 * try.
1109 				 */
1110 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1111 					log(LOG_DEBUG, "%s; %s: Listen socket: "
1112 					    "Socket allocation failed due to "
1113 					    "limits or memory shortage, %s\n",
1114 					    s, __func__,
1115 					    V_tcp_sc_rst_sock_fail ?
1116 					    "sending RST" : "try again");
1117 				if (V_tcp_sc_rst_sock_fail) {
1118 					rstreason = BANDLIM_UNLIMITED;
1119 					goto dropwithreset;
1120 				} else
1121 					goto dropunlock;
1122 			}
1123 			/*
1124 			 * Socket is created in state SYN_RECEIVED.
1125 			 * Unlock the listen socket, lock the newly
1126 			 * created socket and update the tp variable.
1127 			 */
1128 			INP_WUNLOCK(inp);	/* listen socket */
1129 			inp = sotoinpcb(so);
1130 			INP_WLOCK(inp);		/* new connection */
1131 			tp = intotcpcb(inp);
1132 			KASSERT(tp->t_state == TCPS_SYN_RECEIVED,
1133 			    ("%s: ", __func__));
1134 #ifdef TCP_SIGNATURE
1135 			if (sig_checked == 0)  {
1136 				tcp_dooptions(&to, optp, optlen,
1137 				    (thflags & TH_SYN) ? TO_SYN : 0);
1138 				if (!tcp_signature_verify_input(m, off0, tlen,
1139 				    optlen, &to, th, tp->t_flags)) {
1140 
1141 					/*
1142 					 * In SYN_SENT state if it receives an
1143 					 * RST, it is allowed for further
1144 					 * processing.
1145 					 */
1146 					if ((thflags & TH_RST) == 0 ||
1147 					    (tp->t_state == TCPS_SYN_SENT) == 0)
1148 						goto dropunlock;
1149 				}
1150 				sig_checked = 1;
1151 			}
1152 #endif
1153 
1154 			/*
1155 			 * Process the segment and the data it
1156 			 * contains.  tcp_do_segment() consumes
1157 			 * the mbuf chain and unlocks the inpcb.
1158 			 */
1159 			tcp_do_segment(m, th, so, tp, drop_hdrlen, tlen,
1160 			    iptos, ti_locked);
1161 			INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1162 			return;
1163 		}
1164 		/*
1165 		 * Segment flag validation for new connection attempts:
1166 		 *
1167 		 * Our (SYN|ACK) response was rejected.
1168 		 * Check with syncache and remove entry to prevent
1169 		 * retransmits.
1170 		 *
1171 		 * NB: syncache_chkrst does its own logging of failure
1172 		 * causes.
1173 		 */
1174 		if (thflags & TH_RST) {
1175 			syncache_chkrst(&inc, th);
1176 			goto dropunlock;
1177 		}
1178 		/*
1179 		 * We can't do anything without SYN.
1180 		 */
1181 		if ((thflags & TH_SYN) == 0) {
1182 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1183 				log(LOG_DEBUG, "%s; %s: Listen socket: "
1184 				    "SYN is missing, segment ignored\n",
1185 				    s, __func__);
1186 			TCPSTAT_INC(tcps_badsyn);
1187 			goto dropunlock;
1188 		}
1189 		/*
1190 		 * (SYN|ACK) is bogus on a listen socket.
1191 		 */
1192 		if (thflags & TH_ACK) {
1193 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1194 				log(LOG_DEBUG, "%s; %s: Listen socket: "
1195 				    "SYN|ACK invalid, segment rejected\n",
1196 				    s, __func__);
1197 			syncache_badack(&inc);	/* XXX: Not needed! */
1198 			TCPSTAT_INC(tcps_badsyn);
1199 			rstreason = BANDLIM_RST_OPENPORT;
1200 			goto dropwithreset;
1201 		}
1202 		/*
1203 		 * If the drop_synfin option is enabled, drop all
1204 		 * segments with both the SYN and FIN bits set.
1205 		 * This prevents e.g. nmap from identifying the
1206 		 * TCP/IP stack.
1207 		 * XXX: Poor reasoning.  nmap has other methods
1208 		 * and is constantly refining its stack detection
1209 		 * strategies.
1210 		 * XXX: This is a violation of the TCP specification
1211 		 * and was used by RFC1644.
1212 		 */
1213 		if ((thflags & TH_FIN) && V_drop_synfin) {
1214 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1215 				log(LOG_DEBUG, "%s; %s: Listen socket: "
1216 				    "SYN|FIN segment ignored (based on "
1217 				    "sysctl setting)\n", s, __func__);
1218 			TCPSTAT_INC(tcps_badsyn);
1219 			goto dropunlock;
1220 		}
1221 		/*
1222 		 * Segment's flags are (SYN) or (SYN|FIN).
1223 		 *
1224 		 * TH_PUSH, TH_URG, TH_ECE, TH_CWR are ignored
1225 		 * as they do not affect the state of the TCP FSM.
1226 		 * The data pointed to by TH_URG and th_urp is ignored.
1227 		 */
1228 		KASSERT((thflags & (TH_RST|TH_ACK)) == 0,
1229 		    ("%s: Listen socket: TH_RST or TH_ACK set", __func__));
1230 		KASSERT(thflags & (TH_SYN),
1231 		    ("%s: Listen socket: TH_SYN not set", __func__));
1232 #ifdef INET6
1233 		/*
1234 		 * If deprecated address is forbidden,
1235 		 * we do not accept SYN to deprecated interface
1236 		 * address to prevent any new inbound connection from
1237 		 * getting established.
1238 		 * When we do not accept SYN, we send a TCP RST,
1239 		 * with deprecated source address (instead of dropping
1240 		 * it).  We compromise it as it is much better for peer
1241 		 * to send a RST, and RST will be the final packet
1242 		 * for the exchange.
1243 		 *
1244 		 * If we do not forbid deprecated addresses, we accept
1245 		 * the SYN packet.  RFC2462 does not suggest dropping
1246 		 * SYN in this case.
1247 		 * If we decipher RFC2462 5.5.4, it says like this:
1248 		 * 1. use of deprecated addr with existing
1249 		 *    communication is okay - "SHOULD continue to be
1250 		 *    used"
1251 		 * 2. use of it with new communication:
1252 		 *   (2a) "SHOULD NOT be used if alternate address
1253 		 *        with sufficient scope is available"
1254 		 *   (2b) nothing mentioned otherwise.
1255 		 * Here we fall into (2b) case as we have no choice in
1256 		 * our source address selection - we must obey the peer.
1257 		 *
1258 		 * The wording in RFC2462 is confusing, and there are
1259 		 * multiple description text for deprecated address
1260 		 * handling - worse, they are not exactly the same.
1261 		 * I believe 5.5.4 is the best one, so we follow 5.5.4.
1262 		 */
1263 		if (isipv6 && !V_ip6_use_deprecated) {
1264 			struct in6_ifaddr *ia6;
1265 
1266 			ia6 = ip6_getdstifaddr(m);
1267 			if (ia6 != NULL &&
1268 			    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
1269 				ifa_free(&ia6->ia_ifa);
1270 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1271 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1272 					"Connection attempt to deprecated "
1273 					"IPv6 address rejected\n",
1274 					s, __func__);
1275 				rstreason = BANDLIM_RST_OPENPORT;
1276 				goto dropwithreset;
1277 			}
1278 			if (ia6)
1279 				ifa_free(&ia6->ia_ifa);
1280 		}
1281 #endif /* INET6 */
1282 		/*
1283 		 * Basic sanity checks on incoming SYN requests:
1284 		 *   Don't respond if the destination is a link layer
1285 		 *	broadcast according to RFC1122 4.2.3.10, p. 104.
1286 		 *   If it is from this socket it must be forged.
1287 		 *   Don't respond if the source or destination is a
1288 		 *	global or subnet broad- or multicast address.
1289 		 *   Note that it is quite possible to receive unicast
1290 		 *	link-layer packets with a broadcast IP address. Use
1291 		 *	in_broadcast() to find them.
1292 		 */
1293 		if (m->m_flags & (M_BCAST|M_MCAST)) {
1294 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1295 			    log(LOG_DEBUG, "%s; %s: Listen socket: "
1296 				"Connection attempt from broad- or multicast "
1297 				"link layer address ignored\n", s, __func__);
1298 			goto dropunlock;
1299 		}
1300 #ifdef INET6
1301 		if (isipv6) {
1302 			if (th->th_dport == th->th_sport &&
1303 			    IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst, &ip6->ip6_src)) {
1304 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1305 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1306 					"Connection attempt to/from self "
1307 					"ignored\n", s, __func__);
1308 				goto dropunlock;
1309 			}
1310 			if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
1311 			    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
1312 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1313 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1314 					"Connection attempt from/to multicast "
1315 					"address ignored\n", s, __func__);
1316 				goto dropunlock;
1317 			}
1318 		}
1319 #endif
1320 #if defined(INET) && defined(INET6)
1321 		else
1322 #endif
1323 #ifdef INET
1324 		{
1325 			if (th->th_dport == th->th_sport &&
1326 			    ip->ip_dst.s_addr == ip->ip_src.s_addr) {
1327 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1328 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1329 					"Connection attempt from/to self "
1330 					"ignored\n", s, __func__);
1331 				goto dropunlock;
1332 			}
1333 			if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
1334 			    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
1335 			    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
1336 			    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif)) {
1337 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1338 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1339 					"Connection attempt from/to broad- "
1340 					"or multicast address ignored\n",
1341 					s, __func__);
1342 				goto dropunlock;
1343 			}
1344 		}
1345 #endif
1346 		/*
1347 		 * SYN appears to be valid.  Create compressed TCP state
1348 		 * for syncache.
1349 		 */
1350 #ifdef TCPDEBUG
1351 		if (so->so_options & SO_DEBUG)
1352 			tcp_trace(TA_INPUT, ostate, tp,
1353 			    (void *)tcp_saveipgen, &tcp_savetcp, 0);
1354 #endif
1355 		tcp_dooptions(&to, optp, optlen, TO_SYN);
1356 		syncache_add(&inc, &to, th, inp, &so, m, NULL, NULL);
1357 		/*
1358 		 * Entry added to syncache and mbuf consumed.
1359 		 * Everything already unlocked by syncache_add().
1360 		 */
1361 		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1362 		return;
1363 	} else if (tp->t_state == TCPS_LISTEN) {
1364 		/*
1365 		 * When a listen socket is torn down the SO_ACCEPTCONN
1366 		 * flag is removed first while connections are drained
1367 		 * from the accept queue in a unlock/lock cycle of the
1368 		 * ACCEPT_LOCK, opening a race condition allowing a SYN
1369 		 * attempt go through unhandled.
1370 		 */
1371 		goto dropunlock;
1372 	}
1373 
1374 #ifdef TCP_SIGNATURE
1375 	if (sig_checked == 0)  {
1376 		tcp_dooptions(&to, optp, optlen,
1377 		    (thflags & TH_SYN) ? TO_SYN : 0);
1378 		if (!tcp_signature_verify_input(m, off0, tlen, optlen, &to,
1379 		    th, tp->t_flags)) {
1380 
1381 			/*
1382 			 * In SYN_SENT state if it receives an RST, it is
1383 			 * allowed for further processing.
1384 			 */
1385 			if ((thflags & TH_RST) == 0 ||
1386 			    (tp->t_state == TCPS_SYN_SENT) == 0)
1387 				goto dropunlock;
1388 		}
1389 		sig_checked = 1;
1390 	}
1391 #endif
1392 
1393 	TCP_PROBE5(receive, NULL, tp, m->m_data, tp, th);
1394 
1395 	/*
1396 	 * Segment belongs to a connection in SYN_SENT, ESTABLISHED or later
1397 	 * state.  tcp_do_segment() always consumes the mbuf chain, unlocks
1398 	 * the inpcb, and unlocks pcbinfo.
1399 	 */
1400 	tcp_do_segment(m, th, so, tp, drop_hdrlen, tlen, iptos, ti_locked);
1401 	INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1402 	return;
1403 
1404 dropwithreset:
1405 	TCP_PROBE5(receive, NULL, tp, m->m_data, tp, th);
1406 
1407 	if (ti_locked == TI_WLOCKED) {
1408 		INP_INFO_WUNLOCK(&V_tcbinfo);
1409 		ti_locked = TI_UNLOCKED;
1410 	}
1411 #ifdef INVARIANTS
1412 	else {
1413 		KASSERT(ti_locked == TI_UNLOCKED, ("%s: dropwithreset "
1414 		    "ti_locked: %d", __func__, ti_locked));
1415 		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1416 	}
1417 #endif
1418 
1419 	if (inp != NULL) {
1420 		tcp_dropwithreset(m, th, tp, tlen, rstreason);
1421 		INP_WUNLOCK(inp);
1422 	} else
1423 		tcp_dropwithreset(m, th, NULL, tlen, rstreason);
1424 	m = NULL;	/* mbuf chain got consumed. */
1425 	goto drop;
1426 
1427 dropunlock:
1428 	if (m != NULL)
1429 		TCP_PROBE5(receive, NULL, tp, m->m_data, tp, th);
1430 
1431 	if (ti_locked == TI_WLOCKED) {
1432 		INP_INFO_WUNLOCK(&V_tcbinfo);
1433 		ti_locked = TI_UNLOCKED;
1434 	}
1435 #ifdef INVARIANTS
1436 	else {
1437 		KASSERT(ti_locked == TI_UNLOCKED, ("%s: dropunlock "
1438 		    "ti_locked: %d", __func__, ti_locked));
1439 		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1440 	}
1441 #endif
1442 
1443 	if (inp != NULL)
1444 		INP_WUNLOCK(inp);
1445 
1446 drop:
1447 	INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1448 	if (s != NULL)
1449 		free(s, M_TCPLOG);
1450 	if (m != NULL)
1451 		m_freem(m);
1452 }
1453 
1454 static void
1455 tcp_do_segment(struct mbuf *m, struct tcphdr *th, struct socket *so,
1456     struct tcpcb *tp, int drop_hdrlen, int tlen, uint8_t iptos,
1457     int ti_locked)
1458 {
1459 	int thflags, acked, ourfinisacked, needoutput = 0;
1460 	int rstreason, todrop, win;
1461 	u_long tiwin;
1462 	char *s;
1463 	struct in_conninfo *inc;
1464 	struct tcpopt to;
1465 
1466 #ifdef TCPDEBUG
1467 	/*
1468 	 * The size of tcp_saveipgen must be the size of the max ip header,
1469 	 * now IPv6.
1470 	 */
1471 	u_char tcp_saveipgen[IP6_HDR_LEN];
1472 	struct tcphdr tcp_savetcp;
1473 	short ostate = 0;
1474 #endif
1475 	thflags = th->th_flags;
1476 	inc = &tp->t_inpcb->inp_inc;
1477 	tp->sackhint.last_sack_ack = 0;
1478 
1479 	/*
1480 	 * If this is either a state-changing packet or current state isn't
1481 	 * established, we require a write lock on tcbinfo.  Otherwise, we
1482 	 * allow the tcbinfo to be in either alocked or unlocked, as the
1483 	 * caller may have unnecessarily acquired a write lock due to a race.
1484 	 */
1485 	if ((thflags & (TH_SYN | TH_FIN | TH_RST)) != 0 ||
1486 	    tp->t_state != TCPS_ESTABLISHED) {
1487 		KASSERT(ti_locked == TI_WLOCKED, ("%s ti_locked %d for "
1488 		    "SYN/FIN/RST/!EST", __func__, ti_locked));
1489 		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1490 	} else {
1491 #ifdef INVARIANTS
1492 		if (ti_locked == TI_WLOCKED)
1493 			INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1494 		else {
1495 			KASSERT(ti_locked == TI_UNLOCKED, ("%s: EST "
1496 			    "ti_locked: %d", __func__, ti_locked));
1497 			INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1498 		}
1499 #endif
1500 	}
1501 	INP_WLOCK_ASSERT(tp->t_inpcb);
1502 	KASSERT(tp->t_state > TCPS_LISTEN, ("%s: TCPS_LISTEN",
1503 	    __func__));
1504 	KASSERT(tp->t_state != TCPS_TIME_WAIT, ("%s: TCPS_TIME_WAIT",
1505 	    __func__));
1506 
1507 	/*
1508 	 * Segment received on connection.
1509 	 * Reset idle time and keep-alive timer.
1510 	 * XXX: This should be done after segment
1511 	 * validation to ignore broken/spoofed segs.
1512 	 */
1513 	tp->t_rcvtime = ticks;
1514 	if (TCPS_HAVEESTABLISHED(tp->t_state))
1515 		tcp_timer_activate(tp, TT_KEEP, TP_KEEPIDLE(tp));
1516 
1517 	/*
1518 	 * Unscale the window into a 32-bit value.
1519 	 * For the SYN_SENT state the scale is zero.
1520 	 */
1521 	tiwin = th->th_win << tp->snd_scale;
1522 
1523 	/*
1524 	 * TCP ECN processing.
1525 	 */
1526 	if (tp->t_flags & TF_ECN_PERMIT) {
1527 		if (thflags & TH_CWR)
1528 			tp->t_flags &= ~TF_ECN_SND_ECE;
1529 		switch (iptos & IPTOS_ECN_MASK) {
1530 		case IPTOS_ECN_CE:
1531 			tp->t_flags |= TF_ECN_SND_ECE;
1532 			TCPSTAT_INC(tcps_ecn_ce);
1533 			break;
1534 		case IPTOS_ECN_ECT0:
1535 			TCPSTAT_INC(tcps_ecn_ect0);
1536 			break;
1537 		case IPTOS_ECN_ECT1:
1538 			TCPSTAT_INC(tcps_ecn_ect1);
1539 			break;
1540 		}
1541 		/* Congestion experienced. */
1542 		if (thflags & TH_ECE) {
1543 			cc_cong_signal(tp, th, CC_ECN);
1544 		}
1545 	}
1546 
1547 	/*
1548 	 * Parse options on any incoming segment.
1549 	 */
1550 	tcp_dooptions(&to, (u_char *)(th + 1),
1551 	    (th->th_off << 2) - sizeof(struct tcphdr),
1552 	    (thflags & TH_SYN) ? TO_SYN : 0);
1553 
1554 	/*
1555 	 * If echoed timestamp is later than the current time,
1556 	 * fall back to non RFC1323 RTT calculation.  Normalize
1557 	 * timestamp if syncookies were used when this connection
1558 	 * was established.
1559 	 */
1560 	if ((to.to_flags & TOF_TS) && (to.to_tsecr != 0)) {
1561 		to.to_tsecr -= tp->ts_offset;
1562 		if (TSTMP_GT(to.to_tsecr, tcp_ts_getticks()))
1563 			to.to_tsecr = 0;
1564 	}
1565 	/*
1566 	 * If timestamps were negotiated during SYN/ACK they should
1567 	 * appear on every segment during this session and vice versa.
1568 	 */
1569 	if ((tp->t_flags & TF_RCVD_TSTMP) && !(to.to_flags & TOF_TS)) {
1570 		if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1571 			log(LOG_DEBUG, "%s; %s: Timestamp missing, "
1572 			    "no action\n", s, __func__);
1573 			free(s, M_TCPLOG);
1574 		}
1575 	}
1576 	if (!(tp->t_flags & TF_RCVD_TSTMP) && (to.to_flags & TOF_TS)) {
1577 		if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1578 			log(LOG_DEBUG, "%s; %s: Timestamp not expected, "
1579 			    "no action\n", s, __func__);
1580 			free(s, M_TCPLOG);
1581 		}
1582 	}
1583 
1584 	/*
1585 	 * Process options only when we get SYN/ACK back. The SYN case
1586 	 * for incoming connections is handled in tcp_syncache.
1587 	 * According to RFC1323 the window field in a SYN (i.e., a <SYN>
1588 	 * or <SYN,ACK>) segment itself is never scaled.
1589 	 * XXX this is traditional behavior, may need to be cleaned up.
1590 	 */
1591 	if (tp->t_state == TCPS_SYN_SENT && (thflags & TH_SYN)) {
1592 		if ((to.to_flags & TOF_SCALE) &&
1593 		    (tp->t_flags & TF_REQ_SCALE)) {
1594 			tp->t_flags |= TF_RCVD_SCALE;
1595 			tp->snd_scale = to.to_wscale;
1596 		}
1597 		/*
1598 		 * Initial send window.  It will be updated with
1599 		 * the next incoming segment to the scaled value.
1600 		 */
1601 		tp->snd_wnd = th->th_win;
1602 		if (to.to_flags & TOF_TS) {
1603 			tp->t_flags |= TF_RCVD_TSTMP;
1604 			tp->ts_recent = to.to_tsval;
1605 			tp->ts_recent_age = tcp_ts_getticks();
1606 		}
1607 		if (to.to_flags & TOF_MSS)
1608 			tcp_mss(tp, to.to_mss);
1609 		if ((tp->t_flags & TF_SACK_PERMIT) &&
1610 		    (to.to_flags & TOF_SACKPERM) == 0)
1611 			tp->t_flags &= ~TF_SACK_PERMIT;
1612 	}
1613 
1614 	/*
1615 	 * Header prediction: check for the two common cases
1616 	 * of a uni-directional data xfer.  If the packet has
1617 	 * no control flags, is in-sequence, the window didn't
1618 	 * change and we're not retransmitting, it's a
1619 	 * candidate.  If the length is zero and the ack moved
1620 	 * forward, we're the sender side of the xfer.  Just
1621 	 * free the data acked & wake any higher level process
1622 	 * that was blocked waiting for space.  If the length
1623 	 * is non-zero and the ack didn't move, we're the
1624 	 * receiver side.  If we're getting packets in-order
1625 	 * (the reassembly queue is empty), add the data to
1626 	 * the socket buffer and note that we need a delayed ack.
1627 	 * Make sure that the hidden state-flags are also off.
1628 	 * Since we check for TCPS_ESTABLISHED first, it can only
1629 	 * be TH_NEEDSYN.
1630 	 */
1631 	if (tp->t_state == TCPS_ESTABLISHED &&
1632 	    th->th_seq == tp->rcv_nxt &&
1633 	    (thflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
1634 	    tp->snd_nxt == tp->snd_max &&
1635 	    tiwin && tiwin == tp->snd_wnd &&
1636 	    ((tp->t_flags & (TF_NEEDSYN|TF_NEEDFIN)) == 0) &&
1637 	    LIST_EMPTY(&tp->t_segq) &&
1638 	    ((to.to_flags & TOF_TS) == 0 ||
1639 	     TSTMP_GEQ(to.to_tsval, tp->ts_recent)) ) {
1640 
1641 		/*
1642 		 * If last ACK falls within this segment's sequence numbers,
1643 		 * record the timestamp.
1644 		 * NOTE that the test is modified according to the latest
1645 		 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
1646 		 */
1647 		if ((to.to_flags & TOF_TS) != 0 &&
1648 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1649 			tp->ts_recent_age = tcp_ts_getticks();
1650 			tp->ts_recent = to.to_tsval;
1651 		}
1652 
1653 		if (tlen == 0) {
1654 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
1655 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
1656 			    !IN_RECOVERY(tp->t_flags) &&
1657 			    (to.to_flags & TOF_SACK) == 0 &&
1658 			    TAILQ_EMPTY(&tp->snd_holes)) {
1659 				/*
1660 				 * This is a pure ack for outstanding data.
1661 				 */
1662 				if (ti_locked == TI_WLOCKED)
1663 					INP_INFO_WUNLOCK(&V_tcbinfo);
1664 				ti_locked = TI_UNLOCKED;
1665 
1666 				TCPSTAT_INC(tcps_predack);
1667 
1668 				/*
1669 				 * "bad retransmit" recovery.
1670 				 */
1671 				if (tp->t_rxtshift == 1 &&
1672 				    tp->t_flags & TF_PREVVALID &&
1673 				    (int)(ticks - tp->t_badrxtwin) < 0) {
1674 					cc_cong_signal(tp, th, CC_RTO_ERR);
1675 				}
1676 
1677 				/*
1678 				 * Recalculate the transmit timer / rtt.
1679 				 *
1680 				 * Some boxes send broken timestamp replies
1681 				 * during the SYN+ACK phase, ignore
1682 				 * timestamps of 0 or we could calculate a
1683 				 * huge RTT and blow up the retransmit timer.
1684 				 */
1685 				if ((to.to_flags & TOF_TS) != 0 &&
1686 				    to.to_tsecr) {
1687 					u_int t;
1688 
1689 					t = tcp_ts_getticks() - to.to_tsecr;
1690 					if (!tp->t_rttlow || tp->t_rttlow > t)
1691 						tp->t_rttlow = t;
1692 					tcp_xmit_timer(tp,
1693 					    TCP_TS_TO_TICKS(t) + 1);
1694 				} else if (tp->t_rtttime &&
1695 				    SEQ_GT(th->th_ack, tp->t_rtseq)) {
1696 					if (!tp->t_rttlow ||
1697 					    tp->t_rttlow > ticks - tp->t_rtttime)
1698 						tp->t_rttlow = ticks - tp->t_rtttime;
1699 					tcp_xmit_timer(tp,
1700 							ticks - tp->t_rtttime);
1701 				}
1702 				acked = BYTES_THIS_ACK(tp, th);
1703 
1704 				/* Run HHOOK_TCP_ESTABLISHED_IN helper hooks. */
1705 				hhook_run_tcp_est_in(tp, th, &to);
1706 
1707 				TCPSTAT_INC(tcps_rcvackpack);
1708 				TCPSTAT_ADD(tcps_rcvackbyte, acked);
1709 				sbdrop(&so->so_snd, acked);
1710 				if (SEQ_GT(tp->snd_una, tp->snd_recover) &&
1711 				    SEQ_LEQ(th->th_ack, tp->snd_recover))
1712 					tp->snd_recover = th->th_ack - 1;
1713 
1714 				/*
1715 				 * Let the congestion control algorithm update
1716 				 * congestion control related information. This
1717 				 * typically means increasing the congestion
1718 				 * window.
1719 				 */
1720 				cc_ack_received(tp, th, CC_ACK);
1721 
1722 				tp->snd_una = th->th_ack;
1723 				/*
1724 				 * Pull snd_wl2 up to prevent seq wrap relative
1725 				 * to th_ack.
1726 				 */
1727 				tp->snd_wl2 = th->th_ack;
1728 				tp->t_dupacks = 0;
1729 				m_freem(m);
1730 				ND6_HINT(tp); /* Some progress has been made. */
1731 
1732 				/*
1733 				 * If all outstanding data are acked, stop
1734 				 * retransmit timer, otherwise restart timer
1735 				 * using current (possibly backed-off) value.
1736 				 * If process is waiting for space,
1737 				 * wakeup/selwakeup/signal.  If data
1738 				 * are ready to send, let tcp_output
1739 				 * decide between more output or persist.
1740 				 */
1741 #ifdef TCPDEBUG
1742 				if (so->so_options & SO_DEBUG)
1743 					tcp_trace(TA_INPUT, ostate, tp,
1744 					    (void *)tcp_saveipgen,
1745 					    &tcp_savetcp, 0);
1746 #endif
1747 				if (tp->snd_una == tp->snd_max)
1748 					tcp_timer_activate(tp, TT_REXMT, 0);
1749 				else if (!tcp_timer_active(tp, TT_PERSIST))
1750 					tcp_timer_activate(tp, TT_REXMT,
1751 						      tp->t_rxtcur);
1752 				sowwakeup(so);
1753 				if (so->so_snd.sb_cc)
1754 					(void) tcp_output(tp);
1755 				goto check_delack;
1756 			}
1757 		} else if (th->th_ack == tp->snd_una &&
1758 		    tlen <= sbspace(&so->so_rcv)) {
1759 			int newsize = 0;	/* automatic sockbuf scaling */
1760 
1761 			/*
1762 			 * This is a pure, in-sequence data packet with
1763 			 * nothing on the reassembly queue and we have enough
1764 			 * buffer space to take it.
1765 			 */
1766 			if (ti_locked == TI_WLOCKED)
1767 				INP_INFO_WUNLOCK(&V_tcbinfo);
1768 			ti_locked = TI_UNLOCKED;
1769 
1770 			/* Clean receiver SACK report if present */
1771 			if ((tp->t_flags & TF_SACK_PERMIT) && tp->rcv_numsacks)
1772 				tcp_clean_sackreport(tp);
1773 			TCPSTAT_INC(tcps_preddat);
1774 			tp->rcv_nxt += tlen;
1775 			/*
1776 			 * Pull snd_wl1 up to prevent seq wrap relative to
1777 			 * th_seq.
1778 			 */
1779 			tp->snd_wl1 = th->th_seq;
1780 			/*
1781 			 * Pull rcv_up up to prevent seq wrap relative to
1782 			 * rcv_nxt.
1783 			 */
1784 			tp->rcv_up = tp->rcv_nxt;
1785 			TCPSTAT_INC(tcps_rcvpack);
1786 			TCPSTAT_ADD(tcps_rcvbyte, tlen);
1787 			ND6_HINT(tp);	/* Some progress has been made */
1788 #ifdef TCPDEBUG
1789 			if (so->so_options & SO_DEBUG)
1790 				tcp_trace(TA_INPUT, ostate, tp,
1791 				    (void *)tcp_saveipgen, &tcp_savetcp, 0);
1792 #endif
1793 		/*
1794 		 * Automatic sizing of receive socket buffer.  Often the send
1795 		 * buffer size is not optimally adjusted to the actual network
1796 		 * conditions at hand (delay bandwidth product).  Setting the
1797 		 * buffer size too small limits throughput on links with high
1798 		 * bandwidth and high delay (eg. trans-continental/oceanic links).
1799 		 *
1800 		 * On the receive side the socket buffer memory is only rarely
1801 		 * used to any significant extent.  This allows us to be much
1802 		 * more aggressive in scaling the receive socket buffer.  For
1803 		 * the case that the buffer space is actually used to a large
1804 		 * extent and we run out of kernel memory we can simply drop
1805 		 * the new segments; TCP on the sender will just retransmit it
1806 		 * later.  Setting the buffer size too big may only consume too
1807 		 * much kernel memory if the application doesn't read() from
1808 		 * the socket or packet loss or reordering makes use of the
1809 		 * reassembly queue.
1810 		 *
1811 		 * The criteria to step up the receive buffer one notch are:
1812 		 *  1. the number of bytes received during the time it takes
1813 		 *     one timestamp to be reflected back to us (the RTT);
1814 		 *  2. received bytes per RTT is within seven eighth of the
1815 		 *     current socket buffer size;
1816 		 *  3. receive buffer size has not hit maximal automatic size;
1817 		 *
1818 		 * This algorithm does one step per RTT at most and only if
1819 		 * we receive a bulk stream w/o packet losses or reorderings.
1820 		 * Shrinking the buffer during idle times is not necessary as
1821 		 * it doesn't consume any memory when idle.
1822 		 *
1823 		 * TODO: Only step up if the application is actually serving
1824 		 * the buffer to better manage the socket buffer resources.
1825 		 */
1826 			if (V_tcp_do_autorcvbuf &&
1827 			    to.to_tsecr &&
1828 			    (so->so_rcv.sb_flags & SB_AUTOSIZE)) {
1829 				if (TSTMP_GT(to.to_tsecr, tp->rfbuf_ts) &&
1830 				    to.to_tsecr - tp->rfbuf_ts < hz) {
1831 					if (tp->rfbuf_cnt >
1832 					    (so->so_rcv.sb_hiwat / 8 * 7) &&
1833 					    so->so_rcv.sb_hiwat <
1834 					    V_tcp_autorcvbuf_max) {
1835 						newsize =
1836 						    min(so->so_rcv.sb_hiwat +
1837 						    V_tcp_autorcvbuf_inc,
1838 						    V_tcp_autorcvbuf_max);
1839 					}
1840 					/* Start over with next RTT. */
1841 					tp->rfbuf_ts = 0;
1842 					tp->rfbuf_cnt = 0;
1843 				} else
1844 					tp->rfbuf_cnt += tlen;	/* add up */
1845 			}
1846 
1847 			/* Add data to socket buffer. */
1848 			SOCKBUF_LOCK(&so->so_rcv);
1849 			if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
1850 				m_freem(m);
1851 			} else {
1852 				/*
1853 				 * Set new socket buffer size.
1854 				 * Give up when limit is reached.
1855 				 */
1856 				if (newsize)
1857 					if (!sbreserve_locked(&so->so_rcv,
1858 					    newsize, so, NULL))
1859 						so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
1860 				m_adj(m, drop_hdrlen);	/* delayed header drop */
1861 				sbappendstream_locked(&so->so_rcv, m);
1862 			}
1863 			/* NB: sorwakeup_locked() does an implicit unlock. */
1864 			sorwakeup_locked(so);
1865 			if (DELAY_ACK(tp)) {
1866 				tp->t_flags |= TF_DELACK;
1867 			} else {
1868 				tp->t_flags |= TF_ACKNOW;
1869 				tcp_output(tp);
1870 			}
1871 			goto check_delack;
1872 		}
1873 	}
1874 
1875 	/*
1876 	 * Calculate amount of space in receive window,
1877 	 * and then do TCP input processing.
1878 	 * Receive window is amount of space in rcv queue,
1879 	 * but not less than advertised window.
1880 	 */
1881 	win = sbspace(&so->so_rcv);
1882 	if (win < 0)
1883 		win = 0;
1884 	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1885 
1886 	/* Reset receive buffer auto scaling when not in bulk receive mode. */
1887 	tp->rfbuf_ts = 0;
1888 	tp->rfbuf_cnt = 0;
1889 
1890 	switch (tp->t_state) {
1891 
1892 	/*
1893 	 * If the state is SYN_RECEIVED:
1894 	 *	if seg contains an ACK, but not for our SYN/ACK, send a RST.
1895 	 */
1896 	case TCPS_SYN_RECEIVED:
1897 		if ((thflags & TH_ACK) &&
1898 		    (SEQ_LEQ(th->th_ack, tp->snd_una) ||
1899 		     SEQ_GT(th->th_ack, tp->snd_max))) {
1900 				rstreason = BANDLIM_RST_OPENPORT;
1901 				goto dropwithreset;
1902 		}
1903 		break;
1904 
1905 	/*
1906 	 * If the state is SYN_SENT:
1907 	 *	if seg contains an ACK, but not for our SYN, drop the input.
1908 	 *	if seg contains a RST, then drop the connection.
1909 	 *	if seg does not contain SYN, then drop it.
1910 	 * Otherwise this is an acceptable SYN segment
1911 	 *	initialize tp->rcv_nxt and tp->irs
1912 	 *	if seg contains ack then advance tp->snd_una
1913 	 *	if seg contains an ECE and ECN support is enabled, the stream
1914 	 *	    is ECN capable.
1915 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1916 	 *	arrange for segment to be acked (eventually)
1917 	 *	continue processing rest of data/controls, beginning with URG
1918 	 */
1919 	case TCPS_SYN_SENT:
1920 		if ((thflags & TH_ACK) &&
1921 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
1922 		     SEQ_GT(th->th_ack, tp->snd_max))) {
1923 			rstreason = BANDLIM_UNLIMITED;
1924 			goto dropwithreset;
1925 		}
1926 		if ((thflags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) {
1927 			TCP_PROBE5(connect_refused, NULL, tp, m->m_data, tp,
1928 			    th);
1929 			tp = tcp_drop(tp, ECONNREFUSED);
1930 		}
1931 		if (thflags & TH_RST)
1932 			goto drop;
1933 		if (!(thflags & TH_SYN))
1934 			goto drop;
1935 
1936 		tp->irs = th->th_seq;
1937 		tcp_rcvseqinit(tp);
1938 		if (thflags & TH_ACK) {
1939 			TCPSTAT_INC(tcps_connects);
1940 			soisconnected(so);
1941 #ifdef MAC
1942 			mac_socketpeer_set_from_mbuf(m, so);
1943 #endif
1944 			/* Do window scaling on this connection? */
1945 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1946 				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1947 				tp->rcv_scale = tp->request_r_scale;
1948 			}
1949 			tp->rcv_adv += imin(tp->rcv_wnd,
1950 			    TCP_MAXWIN << tp->rcv_scale);
1951 			tp->snd_una++;		/* SYN is acked */
1952 			/*
1953 			 * If there's data, delay ACK; if there's also a FIN
1954 			 * ACKNOW will be turned on later.
1955 			 */
1956 			if (DELAY_ACK(tp) && tlen != 0)
1957 				tcp_timer_activate(tp, TT_DELACK,
1958 				    tcp_delacktime);
1959 			else
1960 				tp->t_flags |= TF_ACKNOW;
1961 
1962 			if ((thflags & TH_ECE) && V_tcp_do_ecn) {
1963 				tp->t_flags |= TF_ECN_PERMIT;
1964 				TCPSTAT_INC(tcps_ecn_shs);
1965 			}
1966 
1967 			/*
1968 			 * Received <SYN,ACK> in SYN_SENT[*] state.
1969 			 * Transitions:
1970 			 *	SYN_SENT  --> ESTABLISHED
1971 			 *	SYN_SENT* --> FIN_WAIT_1
1972 			 */
1973 			tp->t_starttime = ticks;
1974 			if (tp->t_flags & TF_NEEDFIN) {
1975 				tcp_state_change(tp, TCPS_FIN_WAIT_1);
1976 				tp->t_flags &= ~TF_NEEDFIN;
1977 				thflags &= ~TH_SYN;
1978 			} else {
1979 				tcp_state_change(tp, TCPS_ESTABLISHED);
1980 				TCP_PROBE5(connect_established, NULL, tp,
1981 				    m->m_data, tp, th);
1982 				cc_conn_init(tp);
1983 				tcp_timer_activate(tp, TT_KEEP,
1984 				    TP_KEEPIDLE(tp));
1985 			}
1986 		} else {
1987 			/*
1988 			 * Received initial SYN in SYN-SENT[*] state =>
1989 			 * simultaneous open.  If segment contains CC option
1990 			 * and there is a cached CC, apply TAO test.
1991 			 * If it succeeds, connection is * half-synchronized.
1992 			 * Otherwise, do 3-way handshake:
1993 			 *        SYN-SENT -> SYN-RECEIVED
1994 			 *        SYN-SENT* -> SYN-RECEIVED*
1995 			 * If there was no CC option, clear cached CC value.
1996 			 */
1997 			tp->t_flags |= (TF_ACKNOW | TF_NEEDSYN);
1998 			tcp_timer_activate(tp, TT_REXMT, 0);
1999 			tcp_state_change(tp, TCPS_SYN_RECEIVED);
2000 		}
2001 
2002 		KASSERT(ti_locked == TI_WLOCKED, ("%s: trimthenstep6: "
2003 		    "ti_locked %d", __func__, ti_locked));
2004 		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2005 		INP_WLOCK_ASSERT(tp->t_inpcb);
2006 
2007 		/*
2008 		 * Advance th->th_seq to correspond to first data byte.
2009 		 * If data, trim to stay within window,
2010 		 * dropping FIN if necessary.
2011 		 */
2012 		th->th_seq++;
2013 		if (tlen > tp->rcv_wnd) {
2014 			todrop = tlen - tp->rcv_wnd;
2015 			m_adj(m, -todrop);
2016 			tlen = tp->rcv_wnd;
2017 			thflags &= ~TH_FIN;
2018 			TCPSTAT_INC(tcps_rcvpackafterwin);
2019 			TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop);
2020 		}
2021 		tp->snd_wl1 = th->th_seq - 1;
2022 		tp->rcv_up = th->th_seq;
2023 		/*
2024 		 * Client side of transaction: already sent SYN and data.
2025 		 * If the remote host used T/TCP to validate the SYN,
2026 		 * our data will be ACK'd; if so, enter normal data segment
2027 		 * processing in the middle of step 5, ack processing.
2028 		 * Otherwise, goto step 6.
2029 		 */
2030 		if (thflags & TH_ACK)
2031 			goto process_ACK;
2032 
2033 		goto step6;
2034 
2035 	/*
2036 	 * If the state is LAST_ACK or CLOSING or TIME_WAIT:
2037 	 *      do normal processing.
2038 	 *
2039 	 * NB: Leftover from RFC1644 T/TCP.  Cases to be reused later.
2040 	 */
2041 	case TCPS_LAST_ACK:
2042 	case TCPS_CLOSING:
2043 		break;  /* continue normal processing */
2044 	}
2045 
2046 	/*
2047 	 * States other than LISTEN or SYN_SENT.
2048 	 * First check the RST flag and sequence number since reset segments
2049 	 * are exempt from the timestamp and connection count tests.  This
2050 	 * fixes a bug introduced by the Stevens, vol. 2, p. 960 bugfix
2051 	 * below which allowed reset segments in half the sequence space
2052 	 * to fall though and be processed (which gives forged reset
2053 	 * segments with a random sequence number a 50 percent chance of
2054 	 * killing a connection).
2055 	 * Then check timestamp, if present.
2056 	 * Then check the connection count, if present.
2057 	 * Then check that at least some bytes of segment are within
2058 	 * receive window.  If segment begins before rcv_nxt,
2059 	 * drop leading data (and SYN); if nothing left, just ack.
2060 	 *
2061 	 *
2062 	 * If the RST bit is set, check the sequence number to see
2063 	 * if this is a valid reset segment.
2064 	 * RFC 793 page 37:
2065 	 *   In all states except SYN-SENT, all reset (RST) segments
2066 	 *   are validated by checking their SEQ-fields.  A reset is
2067 	 *   valid if its sequence number is in the window.
2068 	 * Note: this does not take into account delayed ACKs, so
2069 	 *   we should test against last_ack_sent instead of rcv_nxt.
2070 	 *   The sequence number in the reset segment is normally an
2071 	 *   echo of our outgoing acknowlegement numbers, but some hosts
2072 	 *   send a reset with the sequence number at the rightmost edge
2073 	 *   of our receive window, and we have to handle this case.
2074 	 * Note 2: Paul Watson's paper "Slipping in the Window" has shown
2075 	 *   that brute force RST attacks are possible.  To combat this,
2076 	 *   we use a much stricter check while in the ESTABLISHED state,
2077 	 *   only accepting RSTs where the sequence number is equal to
2078 	 *   last_ack_sent.  In all other states (the states in which a
2079 	 *   RST is more likely), the more permissive check is used.
2080 	 * If we have multiple segments in flight, the initial reset
2081 	 * segment sequence numbers will be to the left of last_ack_sent,
2082 	 * but they will eventually catch up.
2083 	 * In any case, it never made sense to trim reset segments to
2084 	 * fit the receive window since RFC 1122 says:
2085 	 *   4.2.2.12  RST Segment: RFC-793 Section 3.4
2086 	 *
2087 	 *    A TCP SHOULD allow a received RST segment to include data.
2088 	 *
2089 	 *    DISCUSSION
2090 	 *         It has been suggested that a RST segment could contain
2091 	 *         ASCII text that encoded and explained the cause of the
2092 	 *         RST.  No standard has yet been established for such
2093 	 *         data.
2094 	 *
2095 	 * If the reset segment passes the sequence number test examine
2096 	 * the state:
2097 	 *    SYN_RECEIVED STATE:
2098 	 *	If passive open, return to LISTEN state.
2099 	 *	If active open, inform user that connection was refused.
2100 	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT_2, CLOSE_WAIT STATES:
2101 	 *	Inform user that connection was reset, and close tcb.
2102 	 *    CLOSING, LAST_ACK STATES:
2103 	 *	Close the tcb.
2104 	 *    TIME_WAIT STATE:
2105 	 *	Drop the segment - see Stevens, vol. 2, p. 964 and
2106 	 *      RFC 1337.
2107 	 */
2108 	if (thflags & TH_RST) {
2109 		if (SEQ_GEQ(th->th_seq, tp->last_ack_sent - 1) &&
2110 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) {
2111 			switch (tp->t_state) {
2112 
2113 			case TCPS_SYN_RECEIVED:
2114 				so->so_error = ECONNREFUSED;
2115 				goto close;
2116 
2117 			case TCPS_ESTABLISHED:
2118 				if (V_tcp_insecure_rst == 0 &&
2119 				    !(SEQ_GEQ(th->th_seq, tp->rcv_nxt - 1) &&
2120 				    SEQ_LEQ(th->th_seq, tp->rcv_nxt + 1)) &&
2121 				    !(SEQ_GEQ(th->th_seq, tp->last_ack_sent - 1) &&
2122 				    SEQ_LEQ(th->th_seq, tp->last_ack_sent + 1))) {
2123 					TCPSTAT_INC(tcps_badrst);
2124 					goto drop;
2125 				}
2126 				/* FALLTHROUGH */
2127 			case TCPS_FIN_WAIT_1:
2128 			case TCPS_FIN_WAIT_2:
2129 			case TCPS_CLOSE_WAIT:
2130 				so->so_error = ECONNRESET;
2131 			close:
2132 				KASSERT(ti_locked == TI_WLOCKED,
2133 				    ("tcp_do_segment: TH_RST 1 ti_locked %d",
2134 				    ti_locked));
2135 				INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2136 
2137 				tcp_state_change(tp, TCPS_CLOSED);
2138 				TCPSTAT_INC(tcps_drops);
2139 				tp = tcp_close(tp);
2140 				break;
2141 
2142 			case TCPS_CLOSING:
2143 			case TCPS_LAST_ACK:
2144 				KASSERT(ti_locked == TI_WLOCKED,
2145 				    ("tcp_do_segment: TH_RST 2 ti_locked %d",
2146 				    ti_locked));
2147 				INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2148 
2149 				tp = tcp_close(tp);
2150 				break;
2151 			}
2152 		}
2153 		goto drop;
2154 	}
2155 
2156 	/*
2157 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
2158 	 * and it's less than ts_recent, drop it.
2159 	 */
2160 	if ((to.to_flags & TOF_TS) != 0 && tp->ts_recent &&
2161 	    TSTMP_LT(to.to_tsval, tp->ts_recent)) {
2162 
2163 		/* Check to see if ts_recent is over 24 days old.  */
2164 		if (tcp_ts_getticks() - tp->ts_recent_age > TCP_PAWS_IDLE) {
2165 			/*
2166 			 * Invalidate ts_recent.  If this segment updates
2167 			 * ts_recent, the age will be reset later and ts_recent
2168 			 * will get a valid value.  If it does not, setting
2169 			 * ts_recent to zero will at least satisfy the
2170 			 * requirement that zero be placed in the timestamp
2171 			 * echo reply when ts_recent isn't valid.  The
2172 			 * age isn't reset until we get a valid ts_recent
2173 			 * because we don't want out-of-order segments to be
2174 			 * dropped when ts_recent is old.
2175 			 */
2176 			tp->ts_recent = 0;
2177 		} else {
2178 			TCPSTAT_INC(tcps_rcvduppack);
2179 			TCPSTAT_ADD(tcps_rcvdupbyte, tlen);
2180 			TCPSTAT_INC(tcps_pawsdrop);
2181 			if (tlen)
2182 				goto dropafterack;
2183 			goto drop;
2184 		}
2185 	}
2186 
2187 	/*
2188 	 * In the SYN-RECEIVED state, validate that the packet belongs to
2189 	 * this connection before trimming the data to fit the receive
2190 	 * window.  Check the sequence number versus IRS since we know
2191 	 * the sequence numbers haven't wrapped.  This is a partial fix
2192 	 * for the "LAND" DoS attack.
2193 	 */
2194 	if (tp->t_state == TCPS_SYN_RECEIVED && SEQ_LT(th->th_seq, tp->irs)) {
2195 		rstreason = BANDLIM_RST_OPENPORT;
2196 		goto dropwithreset;
2197 	}
2198 
2199 	todrop = tp->rcv_nxt - th->th_seq;
2200 	if (todrop > 0) {
2201 		/*
2202 		 * If this is a duplicate SYN for our current connection,
2203 		 * advance over it and pretend and it's not a SYN.
2204 		 */
2205 		if (thflags & TH_SYN && th->th_seq == tp->irs) {
2206 			thflags &= ~TH_SYN;
2207 			th->th_seq++;
2208 			if (th->th_urp > 1)
2209 				th->th_urp--;
2210 			else
2211 				thflags &= ~TH_URG;
2212 			todrop--;
2213 		}
2214 		/*
2215 		 * Following if statement from Stevens, vol. 2, p. 960.
2216 		 */
2217 		if (todrop > tlen
2218 		    || (todrop == tlen && (thflags & TH_FIN) == 0)) {
2219 			/*
2220 			 * Any valid FIN must be to the left of the window.
2221 			 * At this point the FIN must be a duplicate or out
2222 			 * of sequence; drop it.
2223 			 */
2224 			thflags &= ~TH_FIN;
2225 
2226 			/*
2227 			 * Send an ACK to resynchronize and drop any data.
2228 			 * But keep on processing for RST or ACK.
2229 			 */
2230 			tp->t_flags |= TF_ACKNOW;
2231 			todrop = tlen;
2232 			TCPSTAT_INC(tcps_rcvduppack);
2233 			TCPSTAT_ADD(tcps_rcvdupbyte, todrop);
2234 		} else {
2235 			TCPSTAT_INC(tcps_rcvpartduppack);
2236 			TCPSTAT_ADD(tcps_rcvpartdupbyte, todrop);
2237 		}
2238 		drop_hdrlen += todrop;	/* drop from the top afterwards */
2239 		th->th_seq += todrop;
2240 		tlen -= todrop;
2241 		if (th->th_urp > todrop)
2242 			th->th_urp -= todrop;
2243 		else {
2244 			thflags &= ~TH_URG;
2245 			th->th_urp = 0;
2246 		}
2247 	}
2248 
2249 	/*
2250 	 * If new data are received on a connection after the
2251 	 * user processes are gone, then RST the other end.
2252 	 */
2253 	if ((so->so_state & SS_NOFDREF) &&
2254 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
2255 		KASSERT(ti_locked == TI_WLOCKED, ("%s: SS_NOFDEREF && "
2256 		    "CLOSE_WAIT && tlen ti_locked %d", __func__, ti_locked));
2257 		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2258 
2259 		if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
2260 			log(LOG_DEBUG, "%s; %s: %s: Received %d bytes of data "
2261 			    "after socket was closed, "
2262 			    "sending RST and removing tcpcb\n",
2263 			    s, __func__, tcpstates[tp->t_state], tlen);
2264 			free(s, M_TCPLOG);
2265 		}
2266 		tp = tcp_close(tp);
2267 		TCPSTAT_INC(tcps_rcvafterclose);
2268 		rstreason = BANDLIM_UNLIMITED;
2269 		goto dropwithreset;
2270 	}
2271 
2272 	/*
2273 	 * If segment ends after window, drop trailing data
2274 	 * (and PUSH and FIN); if nothing left, just ACK.
2275 	 */
2276 	todrop = (th->th_seq + tlen) - (tp->rcv_nxt + tp->rcv_wnd);
2277 	if (todrop > 0) {
2278 		TCPSTAT_INC(tcps_rcvpackafterwin);
2279 		if (todrop >= tlen) {
2280 			TCPSTAT_ADD(tcps_rcvbyteafterwin, tlen);
2281 			/*
2282 			 * If window is closed can only take segments at
2283 			 * window edge, and have to drop data and PUSH from
2284 			 * incoming segments.  Continue processing, but
2285 			 * remember to ack.  Otherwise, drop segment
2286 			 * and ack.
2287 			 */
2288 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
2289 				tp->t_flags |= TF_ACKNOW;
2290 				TCPSTAT_INC(tcps_rcvwinprobe);
2291 			} else
2292 				goto dropafterack;
2293 		} else
2294 			TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop);
2295 		m_adj(m, -todrop);
2296 		tlen -= todrop;
2297 		thflags &= ~(TH_PUSH|TH_FIN);
2298 	}
2299 
2300 	/*
2301 	 * If last ACK falls within this segment's sequence numbers,
2302 	 * record its timestamp.
2303 	 * NOTE:
2304 	 * 1) That the test incorporates suggestions from the latest
2305 	 *    proposal of the tcplw@cray.com list (Braden 1993/04/26).
2306 	 * 2) That updating only on newer timestamps interferes with
2307 	 *    our earlier PAWS tests, so this check should be solely
2308 	 *    predicated on the sequence space of this segment.
2309 	 * 3) That we modify the segment boundary check to be
2310 	 *        Last.ACK.Sent <= SEG.SEQ + SEG.Len
2311 	 *    instead of RFC1323's
2312 	 *        Last.ACK.Sent < SEG.SEQ + SEG.Len,
2313 	 *    This modified check allows us to overcome RFC1323's
2314 	 *    limitations as described in Stevens TCP/IP Illustrated
2315 	 *    Vol. 2 p.869. In such cases, we can still calculate the
2316 	 *    RTT correctly when RCV.NXT == Last.ACK.Sent.
2317 	 */
2318 	if ((to.to_flags & TOF_TS) != 0 &&
2319 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
2320 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
2321 		((thflags & (TH_SYN|TH_FIN)) != 0))) {
2322 		tp->ts_recent_age = tcp_ts_getticks();
2323 		tp->ts_recent = to.to_tsval;
2324 	}
2325 
2326 	/*
2327 	 * If a SYN is in the window, then this is an
2328 	 * error and we send an RST and drop the connection.
2329 	 */
2330 	if (thflags & TH_SYN) {
2331 		KASSERT(ti_locked == TI_WLOCKED,
2332 		    ("tcp_do_segment: TH_SYN ti_locked %d", ti_locked));
2333 		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2334 
2335 		tp = tcp_drop(tp, ECONNRESET);
2336 		rstreason = BANDLIM_UNLIMITED;
2337 		goto drop;
2338 	}
2339 
2340 	/*
2341 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN
2342 	 * flag is on (half-synchronized state), then queue data for
2343 	 * later processing; else drop segment and return.
2344 	 */
2345 	if ((thflags & TH_ACK) == 0) {
2346 		if (tp->t_state == TCPS_SYN_RECEIVED ||
2347 		    (tp->t_flags & TF_NEEDSYN))
2348 			goto step6;
2349 		else if (tp->t_flags & TF_ACKNOW)
2350 			goto dropafterack;
2351 		else
2352 			goto drop;
2353 	}
2354 
2355 	/*
2356 	 * Ack processing.
2357 	 */
2358 	switch (tp->t_state) {
2359 
2360 	/*
2361 	 * In SYN_RECEIVED state, the ack ACKs our SYN, so enter
2362 	 * ESTABLISHED state and continue processing.
2363 	 * The ACK was checked above.
2364 	 */
2365 	case TCPS_SYN_RECEIVED:
2366 
2367 		TCPSTAT_INC(tcps_connects);
2368 		soisconnected(so);
2369 		/* Do window scaling? */
2370 		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2371 			(TF_RCVD_SCALE|TF_REQ_SCALE)) {
2372 			tp->rcv_scale = tp->request_r_scale;
2373 			tp->snd_wnd = tiwin;
2374 		}
2375 		/*
2376 		 * Make transitions:
2377 		 *      SYN-RECEIVED  -> ESTABLISHED
2378 		 *      SYN-RECEIVED* -> FIN-WAIT-1
2379 		 */
2380 		tp->t_starttime = ticks;
2381 		if (tp->t_flags & TF_NEEDFIN) {
2382 			tcp_state_change(tp, TCPS_FIN_WAIT_1);
2383 			tp->t_flags &= ~TF_NEEDFIN;
2384 		} else {
2385 			tcp_state_change(tp, TCPS_ESTABLISHED);
2386 			TCP_PROBE5(accept_established, NULL, tp, m->m_data, tp,
2387 			    th);
2388 			cc_conn_init(tp);
2389 			tcp_timer_activate(tp, TT_KEEP, TP_KEEPIDLE(tp));
2390 		}
2391 		/*
2392 		 * If segment contains data or ACK, will call tcp_reass()
2393 		 * later; if not, do so now to pass queued data to user.
2394 		 */
2395 		if (tlen == 0 && (thflags & TH_FIN) == 0)
2396 			(void) tcp_reass(tp, (struct tcphdr *)0, 0,
2397 			    (struct mbuf *)0);
2398 		tp->snd_wl1 = th->th_seq - 1;
2399 		/* FALLTHROUGH */
2400 
2401 	/*
2402 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
2403 	 * ACKs.  If the ack is in the range
2404 	 *	tp->snd_una < th->th_ack <= tp->snd_max
2405 	 * then advance tp->snd_una to th->th_ack and drop
2406 	 * data from the retransmission queue.  If this ACK reflects
2407 	 * more up to date window information we update our window information.
2408 	 */
2409 	case TCPS_ESTABLISHED:
2410 	case TCPS_FIN_WAIT_1:
2411 	case TCPS_FIN_WAIT_2:
2412 	case TCPS_CLOSE_WAIT:
2413 	case TCPS_CLOSING:
2414 	case TCPS_LAST_ACK:
2415 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
2416 			TCPSTAT_INC(tcps_rcvacktoomuch);
2417 			goto dropafterack;
2418 		}
2419 		if ((tp->t_flags & TF_SACK_PERMIT) &&
2420 		    ((to.to_flags & TOF_SACK) ||
2421 		     !TAILQ_EMPTY(&tp->snd_holes)))
2422 			tcp_sack_doack(tp, &to, th->th_ack);
2423 
2424 		/* Run HHOOK_TCP_ESTABLISHED_IN helper hooks. */
2425 		hhook_run_tcp_est_in(tp, th, &to);
2426 
2427 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
2428 			if (tlen == 0 && tiwin == tp->snd_wnd) {
2429 				TCPSTAT_INC(tcps_rcvdupack);
2430 				/*
2431 				 * If we have outstanding data (other than
2432 				 * a window probe), this is a completely
2433 				 * duplicate ack (ie, window info didn't
2434 				 * change), the ack is the biggest we've
2435 				 * seen and we've seen exactly our rexmt
2436 				 * threshhold of them, assume a packet
2437 				 * has been dropped and retransmit it.
2438 				 * Kludge snd_nxt & the congestion
2439 				 * window so we send only this one
2440 				 * packet.
2441 				 *
2442 				 * We know we're losing at the current
2443 				 * window size so do congestion avoidance
2444 				 * (set ssthresh to half the current window
2445 				 * and pull our congestion window back to
2446 				 * the new ssthresh).
2447 				 *
2448 				 * Dup acks mean that packets have left the
2449 				 * network (they're now cached at the receiver)
2450 				 * so bump cwnd by the amount in the receiver
2451 				 * to keep a constant cwnd packets in the
2452 				 * network.
2453 				 *
2454 				 * When using TCP ECN, notify the peer that
2455 				 * we reduced the cwnd.
2456 				 */
2457 				if (!tcp_timer_active(tp, TT_REXMT) ||
2458 				    th->th_ack != tp->snd_una)
2459 					tp->t_dupacks = 0;
2460 				else if (++tp->t_dupacks > tcprexmtthresh ||
2461 				     IN_FASTRECOVERY(tp->t_flags)) {
2462 					cc_ack_received(tp, th, CC_DUPACK);
2463 					if ((tp->t_flags & TF_SACK_PERMIT) &&
2464 					    IN_FASTRECOVERY(tp->t_flags)) {
2465 						int awnd;
2466 
2467 						/*
2468 						 * Compute the amount of data in flight first.
2469 						 * We can inject new data into the pipe iff
2470 						 * we have less than 1/2 the original window's
2471 						 * worth of data in flight.
2472 						 */
2473 						awnd = (tp->snd_nxt - tp->snd_fack) +
2474 							tp->sackhint.sack_bytes_rexmit;
2475 						if (awnd < tp->snd_ssthresh) {
2476 							tp->snd_cwnd += tp->t_maxseg;
2477 							if (tp->snd_cwnd > tp->snd_ssthresh)
2478 								tp->snd_cwnd = tp->snd_ssthresh;
2479 						}
2480 					} else
2481 						tp->snd_cwnd += tp->t_maxseg;
2482 					if ((thflags & TH_FIN) &&
2483 					    (TCPS_HAVERCVDFIN(tp->t_state) == 0)) {
2484 						/*
2485 						 * If its a fin we need to process
2486 						 * it to avoid a race where both
2487 						 * sides enter FIN-WAIT and send FIN|ACK
2488 						 * at the same time.
2489 						 */
2490 						break;
2491 					}
2492 					(void) tcp_output(tp);
2493 					goto drop;
2494 				} else if (tp->t_dupacks == tcprexmtthresh) {
2495 					tcp_seq onxt = tp->snd_nxt;
2496 
2497 					/*
2498 					 * If we're doing sack, check to
2499 					 * see if we're already in sack
2500 					 * recovery. If we're not doing sack,
2501 					 * check to see if we're in newreno
2502 					 * recovery.
2503 					 */
2504 					if (tp->t_flags & TF_SACK_PERMIT) {
2505 						if (IN_FASTRECOVERY(tp->t_flags)) {
2506 							tp->t_dupacks = 0;
2507 							break;
2508 						}
2509 					} else {
2510 						if (SEQ_LEQ(th->th_ack,
2511 						    tp->snd_recover)) {
2512 							tp->t_dupacks = 0;
2513 							break;
2514 						}
2515 					}
2516 					/* Congestion signal before ack. */
2517 					cc_cong_signal(tp, th, CC_NDUPACK);
2518 					cc_ack_received(tp, th, CC_DUPACK);
2519 					tcp_timer_activate(tp, TT_REXMT, 0);
2520 					tp->t_rtttime = 0;
2521 					if (tp->t_flags & TF_SACK_PERMIT) {
2522 						TCPSTAT_INC(
2523 						    tcps_sack_recovery_episode);
2524 						tp->sack_newdata = tp->snd_nxt;
2525 						tp->snd_cwnd = tp->t_maxseg;
2526 						(void) tcp_output(tp);
2527 						goto drop;
2528 					}
2529 					tp->snd_nxt = th->th_ack;
2530 					tp->snd_cwnd = tp->t_maxseg;
2531 					if ((thflags & TH_FIN) &&
2532 					    (TCPS_HAVERCVDFIN(tp->t_state) == 0)) {
2533 						/*
2534 						 * If its a fin we need to process
2535 						 * it to avoid a race where both
2536 						 * sides enter FIN-WAIT and send FIN|ACK
2537 						 * at the same time.
2538 						 */
2539 						break;
2540 					}
2541 					(void) tcp_output(tp);
2542 					KASSERT(tp->snd_limited <= 2,
2543 					    ("%s: tp->snd_limited too big",
2544 					    __func__));
2545 					tp->snd_cwnd = tp->snd_ssthresh +
2546 					     tp->t_maxseg *
2547 					     (tp->t_dupacks - tp->snd_limited);
2548 					if (SEQ_GT(onxt, tp->snd_nxt))
2549 						tp->snd_nxt = onxt;
2550 					goto drop;
2551 				} else if (V_tcp_do_rfc3042) {
2552 					cc_ack_received(tp, th, CC_DUPACK);
2553 					u_long oldcwnd = tp->snd_cwnd;
2554 					tcp_seq oldsndmax = tp->snd_max;
2555 					u_int sent;
2556 					int avail;
2557 
2558 					KASSERT(tp->t_dupacks == 1 ||
2559 					    tp->t_dupacks == 2,
2560 					    ("%s: dupacks not 1 or 2",
2561 					    __func__));
2562 					if (tp->t_dupacks == 1)
2563 						tp->snd_limited = 0;
2564 					tp->snd_cwnd =
2565 					    (tp->snd_nxt - tp->snd_una) +
2566 					    (tp->t_dupacks - tp->snd_limited) *
2567 					    tp->t_maxseg;
2568 					if ((thflags & TH_FIN) &&
2569 					    (TCPS_HAVERCVDFIN(tp->t_state) == 0)) {
2570 						/*
2571 						 * If its a fin we need to process
2572 						 * it to avoid a race where both
2573 						 * sides enter FIN-WAIT and send FIN|ACK
2574 						 * at the same time.
2575 						 */
2576 						break;
2577 					}
2578 					/*
2579 					 * Only call tcp_output when there
2580 					 * is new data available to be sent.
2581 					 * Otherwise we would send pure ACKs.
2582 					 */
2583 					SOCKBUF_LOCK(&so->so_snd);
2584 					avail = so->so_snd.sb_cc -
2585 					    (tp->snd_nxt - tp->snd_una);
2586 					SOCKBUF_UNLOCK(&so->so_snd);
2587 					if (avail > 0)
2588 						(void) tcp_output(tp);
2589 					sent = tp->snd_max - oldsndmax;
2590 					if (sent > tp->t_maxseg) {
2591 						KASSERT((tp->t_dupacks == 2 &&
2592 						    tp->snd_limited == 0) ||
2593 						   (sent == tp->t_maxseg + 1 &&
2594 						    tp->t_flags & TF_SENTFIN),
2595 						    ("%s: sent too much",
2596 						    __func__));
2597 						tp->snd_limited = 2;
2598 					} else if (sent > 0)
2599 						++tp->snd_limited;
2600 					tp->snd_cwnd = oldcwnd;
2601 					goto drop;
2602 				}
2603 			} else
2604 				tp->t_dupacks = 0;
2605 			break;
2606 		}
2607 
2608 		KASSERT(SEQ_GT(th->th_ack, tp->snd_una),
2609 		    ("%s: th_ack <= snd_una", __func__));
2610 
2611 		/*
2612 		 * If the congestion window was inflated to account
2613 		 * for the other side's cached packets, retract it.
2614 		 */
2615 		if (IN_FASTRECOVERY(tp->t_flags)) {
2616 			if (SEQ_LT(th->th_ack, tp->snd_recover)) {
2617 				if (tp->t_flags & TF_SACK_PERMIT)
2618 					tcp_sack_partialack(tp, th);
2619 				else
2620 					tcp_newreno_partial_ack(tp, th);
2621 			} else
2622 				cc_post_recovery(tp, th);
2623 		}
2624 		tp->t_dupacks = 0;
2625 		/*
2626 		 * If we reach this point, ACK is not a duplicate,
2627 		 *     i.e., it ACKs something we sent.
2628 		 */
2629 		if (tp->t_flags & TF_NEEDSYN) {
2630 			/*
2631 			 * T/TCP: Connection was half-synchronized, and our
2632 			 * SYN has been ACK'd (so connection is now fully
2633 			 * synchronized).  Go to non-starred state,
2634 			 * increment snd_una for ACK of SYN, and check if
2635 			 * we can do window scaling.
2636 			 */
2637 			tp->t_flags &= ~TF_NEEDSYN;
2638 			tp->snd_una++;
2639 			/* Do window scaling? */
2640 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2641 				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
2642 				tp->rcv_scale = tp->request_r_scale;
2643 				/* Send window already scaled. */
2644 			}
2645 		}
2646 
2647 process_ACK:
2648 		INP_WLOCK_ASSERT(tp->t_inpcb);
2649 
2650 		acked = BYTES_THIS_ACK(tp, th);
2651 		TCPSTAT_INC(tcps_rcvackpack);
2652 		TCPSTAT_ADD(tcps_rcvackbyte, acked);
2653 
2654 		/*
2655 		 * If we just performed our first retransmit, and the ACK
2656 		 * arrives within our recovery window, then it was a mistake
2657 		 * to do the retransmit in the first place.  Recover our
2658 		 * original cwnd and ssthresh, and proceed to transmit where
2659 		 * we left off.
2660 		 */
2661 		if (tp->t_rxtshift == 1 && tp->t_flags & TF_PREVVALID &&
2662 		    (int)(ticks - tp->t_badrxtwin) < 0)
2663 			cc_cong_signal(tp, th, CC_RTO_ERR);
2664 
2665 		/*
2666 		 * If we have a timestamp reply, update smoothed
2667 		 * round trip time.  If no timestamp is present but
2668 		 * transmit timer is running and timed sequence
2669 		 * number was acked, update smoothed round trip time.
2670 		 * Since we now have an rtt measurement, cancel the
2671 		 * timer backoff (cf., Phil Karn's retransmit alg.).
2672 		 * Recompute the initial retransmit timer.
2673 		 *
2674 		 * Some boxes send broken timestamp replies
2675 		 * during the SYN+ACK phase, ignore
2676 		 * timestamps of 0 or we could calculate a
2677 		 * huge RTT and blow up the retransmit timer.
2678 		 */
2679 		if ((to.to_flags & TOF_TS) != 0 && to.to_tsecr) {
2680 			u_int t;
2681 
2682 			t = tcp_ts_getticks() - to.to_tsecr;
2683 			if (!tp->t_rttlow || tp->t_rttlow > t)
2684 				tp->t_rttlow = t;
2685 			tcp_xmit_timer(tp, TCP_TS_TO_TICKS(t) + 1);
2686 		} else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq)) {
2687 			if (!tp->t_rttlow || tp->t_rttlow > ticks - tp->t_rtttime)
2688 				tp->t_rttlow = ticks - tp->t_rtttime;
2689 			tcp_xmit_timer(tp, ticks - tp->t_rtttime);
2690 		}
2691 
2692 		/*
2693 		 * If all outstanding data is acked, stop retransmit
2694 		 * timer and remember to restart (more output or persist).
2695 		 * If there is more data to be acked, restart retransmit
2696 		 * timer, using current (possibly backed-off) value.
2697 		 */
2698 		if (th->th_ack == tp->snd_max) {
2699 			tcp_timer_activate(tp, TT_REXMT, 0);
2700 			needoutput = 1;
2701 		} else if (!tcp_timer_active(tp, TT_PERSIST))
2702 			tcp_timer_activate(tp, TT_REXMT, tp->t_rxtcur);
2703 
2704 		/*
2705 		 * If no data (only SYN) was ACK'd,
2706 		 *    skip rest of ACK processing.
2707 		 */
2708 		if (acked == 0)
2709 			goto step6;
2710 
2711 		/*
2712 		 * Let the congestion control algorithm update congestion
2713 		 * control related information. This typically means increasing
2714 		 * the congestion window.
2715 		 */
2716 		cc_ack_received(tp, th, CC_ACK);
2717 
2718 		SOCKBUF_LOCK(&so->so_snd);
2719 		if (acked > so->so_snd.sb_cc) {
2720 			tp->snd_wnd -= so->so_snd.sb_cc;
2721 			sbdrop_locked(&so->so_snd, (int)so->so_snd.sb_cc);
2722 			ourfinisacked = 1;
2723 		} else {
2724 			sbdrop_locked(&so->so_snd, acked);
2725 			tp->snd_wnd -= acked;
2726 			ourfinisacked = 0;
2727 		}
2728 		/* NB: sowwakeup_locked() does an implicit unlock. */
2729 		sowwakeup_locked(so);
2730 		/* Detect una wraparound. */
2731 		if (!IN_RECOVERY(tp->t_flags) &&
2732 		    SEQ_GT(tp->snd_una, tp->snd_recover) &&
2733 		    SEQ_LEQ(th->th_ack, tp->snd_recover))
2734 			tp->snd_recover = th->th_ack - 1;
2735 		/* XXXLAS: Can this be moved up into cc_post_recovery? */
2736 		if (IN_RECOVERY(tp->t_flags) &&
2737 		    SEQ_GEQ(th->th_ack, tp->snd_recover)) {
2738 			EXIT_RECOVERY(tp->t_flags);
2739 		}
2740 		tp->snd_una = th->th_ack;
2741 		if (tp->t_flags & TF_SACK_PERMIT) {
2742 			if (SEQ_GT(tp->snd_una, tp->snd_recover))
2743 				tp->snd_recover = tp->snd_una;
2744 		}
2745 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2746 			tp->snd_nxt = tp->snd_una;
2747 
2748 		switch (tp->t_state) {
2749 
2750 		/*
2751 		 * In FIN_WAIT_1 STATE in addition to the processing
2752 		 * for the ESTABLISHED state if our FIN is now acknowledged
2753 		 * then enter FIN_WAIT_2.
2754 		 */
2755 		case TCPS_FIN_WAIT_1:
2756 			if (ourfinisacked) {
2757 				/*
2758 				 * If we can't receive any more
2759 				 * data, then closing user can proceed.
2760 				 * Starting the timer is contrary to the
2761 				 * specification, but if we don't get a FIN
2762 				 * we'll hang forever.
2763 				 *
2764 				 * XXXjl:
2765 				 * we should release the tp also, and use a
2766 				 * compressed state.
2767 				 */
2768 				if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
2769 					soisdisconnected(so);
2770 					tcp_timer_activate(tp, TT_2MSL,
2771 					    (tcp_fast_finwait2_recycle ?
2772 					    tcp_finwait2_timeout :
2773 					    TP_MAXIDLE(tp)));
2774 				}
2775 				tcp_state_change(tp, TCPS_FIN_WAIT_2);
2776 			}
2777 			break;
2778 
2779 		/*
2780 		 * In CLOSING STATE in addition to the processing for
2781 		 * the ESTABLISHED state if the ACK acknowledges our FIN
2782 		 * then enter the TIME-WAIT state, otherwise ignore
2783 		 * the segment.
2784 		 */
2785 		case TCPS_CLOSING:
2786 			if (ourfinisacked) {
2787 				INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2788 				tcp_twstart(tp);
2789 				INP_INFO_WUNLOCK(&V_tcbinfo);
2790 				m_freem(m);
2791 				return;
2792 			}
2793 			break;
2794 
2795 		/*
2796 		 * In LAST_ACK, we may still be waiting for data to drain
2797 		 * and/or to be acked, as well as for the ack of our FIN.
2798 		 * If our FIN is now acknowledged, delete the TCB,
2799 		 * enter the closed state and return.
2800 		 */
2801 		case TCPS_LAST_ACK:
2802 			if (ourfinisacked) {
2803 				INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2804 				tp = tcp_close(tp);
2805 				goto drop;
2806 			}
2807 			break;
2808 		}
2809 	}
2810 
2811 step6:
2812 	INP_WLOCK_ASSERT(tp->t_inpcb);
2813 
2814 	/*
2815 	 * Update window information.
2816 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2817 	 */
2818 	if ((thflags & TH_ACK) &&
2819 	    (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2820 	    (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
2821 	     (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
2822 		/* keep track of pure window updates */
2823 		if (tlen == 0 &&
2824 		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2825 			TCPSTAT_INC(tcps_rcvwinupd);
2826 		tp->snd_wnd = tiwin;
2827 		tp->snd_wl1 = th->th_seq;
2828 		tp->snd_wl2 = th->th_ack;
2829 		if (tp->snd_wnd > tp->max_sndwnd)
2830 			tp->max_sndwnd = tp->snd_wnd;
2831 		needoutput = 1;
2832 	}
2833 
2834 	/*
2835 	 * Process segments with URG.
2836 	 */
2837 	if ((thflags & TH_URG) && th->th_urp &&
2838 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2839 		/*
2840 		 * This is a kludge, but if we receive and accept
2841 		 * random urgent pointers, we'll crash in
2842 		 * soreceive.  It's hard to imagine someone
2843 		 * actually wanting to send this much urgent data.
2844 		 */
2845 		SOCKBUF_LOCK(&so->so_rcv);
2846 		if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2847 			th->th_urp = 0;			/* XXX */
2848 			thflags &= ~TH_URG;		/* XXX */
2849 			SOCKBUF_UNLOCK(&so->so_rcv);	/* XXX */
2850 			goto dodata;			/* XXX */
2851 		}
2852 		/*
2853 		 * If this segment advances the known urgent pointer,
2854 		 * then mark the data stream.  This should not happen
2855 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2856 		 * a FIN has been received from the remote side.
2857 		 * In these states we ignore the URG.
2858 		 *
2859 		 * According to RFC961 (Assigned Protocols),
2860 		 * the urgent pointer points to the last octet
2861 		 * of urgent data.  We continue, however,
2862 		 * to consider it to indicate the first octet
2863 		 * of data past the urgent section as the original
2864 		 * spec states (in one of two places).
2865 		 */
2866 		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2867 			tp->rcv_up = th->th_seq + th->th_urp;
2868 			so->so_oobmark = so->so_rcv.sb_cc +
2869 			    (tp->rcv_up - tp->rcv_nxt) - 1;
2870 			if (so->so_oobmark == 0)
2871 				so->so_rcv.sb_state |= SBS_RCVATMARK;
2872 			sohasoutofband(so);
2873 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2874 		}
2875 		SOCKBUF_UNLOCK(&so->so_rcv);
2876 		/*
2877 		 * Remove out of band data so doesn't get presented to user.
2878 		 * This can happen independent of advancing the URG pointer,
2879 		 * but if two URG's are pending at once, some out-of-band
2880 		 * data may creep in... ick.
2881 		 */
2882 		if (th->th_urp <= (u_long)tlen &&
2883 		    !(so->so_options & SO_OOBINLINE)) {
2884 			/* hdr drop is delayed */
2885 			tcp_pulloutofband(so, th, m, drop_hdrlen);
2886 		}
2887 	} else {
2888 		/*
2889 		 * If no out of band data is expected,
2890 		 * pull receive urgent pointer along
2891 		 * with the receive window.
2892 		 */
2893 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2894 			tp->rcv_up = tp->rcv_nxt;
2895 	}
2896 dodata:							/* XXX */
2897 	INP_WLOCK_ASSERT(tp->t_inpcb);
2898 
2899 	/*
2900 	 * Process the segment text, merging it into the TCP sequencing queue,
2901 	 * and arranging for acknowledgment of receipt if necessary.
2902 	 * This process logically involves adjusting tp->rcv_wnd as data
2903 	 * is presented to the user (this happens in tcp_usrreq.c,
2904 	 * case PRU_RCVD).  If a FIN has already been received on this
2905 	 * connection then we just ignore the text.
2906 	 */
2907 	if ((tlen || (thflags & TH_FIN)) &&
2908 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2909 		tcp_seq save_start = th->th_seq;
2910 		m_adj(m, drop_hdrlen);	/* delayed header drop */
2911 		/*
2912 		 * Insert segment which includes th into TCP reassembly queue
2913 		 * with control block tp.  Set thflags to whether reassembly now
2914 		 * includes a segment with FIN.  This handles the common case
2915 		 * inline (segment is the next to be received on an established
2916 		 * connection, and the queue is empty), avoiding linkage into
2917 		 * and removal from the queue and repetition of various
2918 		 * conversions.
2919 		 * Set DELACK for segments received in order, but ack
2920 		 * immediately when segments are out of order (so
2921 		 * fast retransmit can work).
2922 		 */
2923 		if (th->th_seq == tp->rcv_nxt &&
2924 		    LIST_EMPTY(&tp->t_segq) &&
2925 		    TCPS_HAVEESTABLISHED(tp->t_state)) {
2926 			if (DELAY_ACK(tp))
2927 				tp->t_flags |= TF_DELACK;
2928 			else
2929 				tp->t_flags |= TF_ACKNOW;
2930 			tp->rcv_nxt += tlen;
2931 			thflags = th->th_flags & TH_FIN;
2932 			TCPSTAT_INC(tcps_rcvpack);
2933 			TCPSTAT_ADD(tcps_rcvbyte, tlen);
2934 			ND6_HINT(tp);
2935 			SOCKBUF_LOCK(&so->so_rcv);
2936 			if (so->so_rcv.sb_state & SBS_CANTRCVMORE)
2937 				m_freem(m);
2938 			else
2939 				sbappendstream_locked(&so->so_rcv, m);
2940 			/* NB: sorwakeup_locked() does an implicit unlock. */
2941 			sorwakeup_locked(so);
2942 		} else {
2943 			/*
2944 			 * XXX: Due to the header drop above "th" is
2945 			 * theoretically invalid by now.  Fortunately
2946 			 * m_adj() doesn't actually frees any mbufs
2947 			 * when trimming from the head.
2948 			 */
2949 			thflags = tcp_reass(tp, th, &tlen, m);
2950 			tp->t_flags |= TF_ACKNOW;
2951 		}
2952 		if (tlen > 0 && (tp->t_flags & TF_SACK_PERMIT))
2953 			tcp_update_sack_list(tp, save_start, save_start + tlen);
2954 #if 0
2955 		/*
2956 		 * Note the amount of data that peer has sent into
2957 		 * our window, in order to estimate the sender's
2958 		 * buffer size.
2959 		 * XXX: Unused.
2960 		 */
2961 		if (SEQ_GT(tp->rcv_adv, tp->rcv_nxt))
2962 			len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2963 		else
2964 			len = so->so_rcv.sb_hiwat;
2965 #endif
2966 	} else {
2967 		m_freem(m);
2968 		thflags &= ~TH_FIN;
2969 	}
2970 
2971 	/*
2972 	 * If FIN is received ACK the FIN and let the user know
2973 	 * that the connection is closing.
2974 	 */
2975 	if (thflags & TH_FIN) {
2976 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2977 			socantrcvmore(so);
2978 			/*
2979 			 * If connection is half-synchronized
2980 			 * (ie NEEDSYN flag on) then delay ACK,
2981 			 * so it may be piggybacked when SYN is sent.
2982 			 * Otherwise, since we received a FIN then no
2983 			 * more input can be expected, send ACK now.
2984 			 */
2985 			if (tp->t_flags & TF_NEEDSYN)
2986 				tp->t_flags |= TF_DELACK;
2987 			else
2988 				tp->t_flags |= TF_ACKNOW;
2989 			tp->rcv_nxt++;
2990 		}
2991 		switch (tp->t_state) {
2992 
2993 		/*
2994 		 * In SYN_RECEIVED and ESTABLISHED STATES
2995 		 * enter the CLOSE_WAIT state.
2996 		 */
2997 		case TCPS_SYN_RECEIVED:
2998 			tp->t_starttime = ticks;
2999 			/* FALLTHROUGH */
3000 		case TCPS_ESTABLISHED:
3001 			tcp_state_change(tp, TCPS_CLOSE_WAIT);
3002 			break;
3003 
3004 		/*
3005 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
3006 		 * enter the CLOSING state.
3007 		 */
3008 		case TCPS_FIN_WAIT_1:
3009 			tcp_state_change(tp, TCPS_CLOSING);
3010 			break;
3011 
3012 		/*
3013 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
3014 		 * starting the time-wait timer, turning off the other
3015 		 * standard timers.
3016 		 */
3017 		case TCPS_FIN_WAIT_2:
3018 			INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
3019 			KASSERT(ti_locked == TI_WLOCKED, ("%s: dodata "
3020 			    "TCP_FIN_WAIT_2 ti_locked: %d", __func__,
3021 			    ti_locked));
3022 
3023 			tcp_twstart(tp);
3024 			INP_INFO_WUNLOCK(&V_tcbinfo);
3025 			return;
3026 		}
3027 	}
3028 	if (ti_locked == TI_WLOCKED)
3029 		INP_INFO_WUNLOCK(&V_tcbinfo);
3030 	ti_locked = TI_UNLOCKED;
3031 
3032 #ifdef TCPDEBUG
3033 	if (so->so_options & SO_DEBUG)
3034 		tcp_trace(TA_INPUT, ostate, tp, (void *)tcp_saveipgen,
3035 			  &tcp_savetcp, 0);
3036 #endif
3037 
3038 	/*
3039 	 * Return any desired output.
3040 	 */
3041 	if (needoutput || (tp->t_flags & TF_ACKNOW))
3042 		(void) tcp_output(tp);
3043 
3044 check_delack:
3045 	KASSERT(ti_locked == TI_UNLOCKED, ("%s: check_delack ti_locked %d",
3046 	    __func__, ti_locked));
3047 	INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
3048 	INP_WLOCK_ASSERT(tp->t_inpcb);
3049 
3050 	if (tp->t_flags & TF_DELACK) {
3051 		tp->t_flags &= ~TF_DELACK;
3052 		tcp_timer_activate(tp, TT_DELACK, tcp_delacktime);
3053 	}
3054 	INP_WUNLOCK(tp->t_inpcb);
3055 	return;
3056 
3057 dropafterack:
3058 	/*
3059 	 * Generate an ACK dropping incoming segment if it occupies
3060 	 * sequence space, where the ACK reflects our state.
3061 	 *
3062 	 * We can now skip the test for the RST flag since all
3063 	 * paths to this code happen after packets containing
3064 	 * RST have been dropped.
3065 	 *
3066 	 * In the SYN-RECEIVED state, don't send an ACK unless the
3067 	 * segment we received passes the SYN-RECEIVED ACK test.
3068 	 * If it fails send a RST.  This breaks the loop in the
3069 	 * "LAND" DoS attack, and also prevents an ACK storm
3070 	 * between two listening ports that have been sent forged
3071 	 * SYN segments, each with the source address of the other.
3072 	 */
3073 	if (tp->t_state == TCPS_SYN_RECEIVED && (thflags & TH_ACK) &&
3074 	    (SEQ_GT(tp->snd_una, th->th_ack) ||
3075 	     SEQ_GT(th->th_ack, tp->snd_max)) ) {
3076 		rstreason = BANDLIM_RST_OPENPORT;
3077 		goto dropwithreset;
3078 	}
3079 #ifdef TCPDEBUG
3080 	if (so->so_options & SO_DEBUG)
3081 		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
3082 			  &tcp_savetcp, 0);
3083 #endif
3084 	if (ti_locked == TI_WLOCKED)
3085 		INP_INFO_WUNLOCK(&V_tcbinfo);
3086 	ti_locked = TI_UNLOCKED;
3087 
3088 	tp->t_flags |= TF_ACKNOW;
3089 	(void) tcp_output(tp);
3090 	INP_WUNLOCK(tp->t_inpcb);
3091 	m_freem(m);
3092 	return;
3093 
3094 dropwithreset:
3095 	if (ti_locked == TI_WLOCKED)
3096 		INP_INFO_WUNLOCK(&V_tcbinfo);
3097 	ti_locked = TI_UNLOCKED;
3098 
3099 	if (tp != NULL) {
3100 		tcp_dropwithreset(m, th, tp, tlen, rstreason);
3101 		INP_WUNLOCK(tp->t_inpcb);
3102 	} else
3103 		tcp_dropwithreset(m, th, NULL, tlen, rstreason);
3104 	return;
3105 
3106 drop:
3107 	if (ti_locked == TI_WLOCKED) {
3108 		INP_INFO_WUNLOCK(&V_tcbinfo);
3109 		ti_locked = TI_UNLOCKED;
3110 	}
3111 #ifdef INVARIANTS
3112 	else
3113 		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
3114 #endif
3115 
3116 	/*
3117 	 * Drop space held by incoming segment and return.
3118 	 */
3119 #ifdef TCPDEBUG
3120 	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
3121 		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
3122 			  &tcp_savetcp, 0);
3123 #endif
3124 	if (tp != NULL)
3125 		INP_WUNLOCK(tp->t_inpcb);
3126 	m_freem(m);
3127 }
3128 
3129 /*
3130  * Issue RST and make ACK acceptable to originator of segment.
3131  * The mbuf must still include the original packet header.
3132  * tp may be NULL.
3133  */
3134 static void
3135 tcp_dropwithreset(struct mbuf *m, struct tcphdr *th, struct tcpcb *tp,
3136     int tlen, int rstreason)
3137 {
3138 #ifdef INET
3139 	struct ip *ip;
3140 #endif
3141 #ifdef INET6
3142 	struct ip6_hdr *ip6;
3143 #endif
3144 
3145 	if (tp != NULL) {
3146 		INP_WLOCK_ASSERT(tp->t_inpcb);
3147 	}
3148 
3149 	/* Don't bother if destination was broadcast/multicast. */
3150 	if ((th->th_flags & TH_RST) || m->m_flags & (M_BCAST|M_MCAST))
3151 		goto drop;
3152 #ifdef INET6
3153 	if (mtod(m, struct ip *)->ip_v == 6) {
3154 		ip6 = mtod(m, struct ip6_hdr *);
3155 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
3156 		    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
3157 			goto drop;
3158 		/* IPv6 anycast check is done at tcp6_input() */
3159 	}
3160 #endif
3161 #if defined(INET) && defined(INET6)
3162 	else
3163 #endif
3164 #ifdef INET
3165 	{
3166 		ip = mtod(m, struct ip *);
3167 		if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
3168 		    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
3169 		    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
3170 		    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
3171 			goto drop;
3172 	}
3173 #endif
3174 
3175 	/* Perform bandwidth limiting. */
3176 	if (badport_bandlim(rstreason) < 0)
3177 		goto drop;
3178 
3179 	/* tcp_respond consumes the mbuf chain. */
3180 	if (th->th_flags & TH_ACK) {
3181 		tcp_respond(tp, mtod(m, void *), th, m, (tcp_seq)0,
3182 		    th->th_ack, TH_RST);
3183 	} else {
3184 		if (th->th_flags & TH_SYN)
3185 			tlen++;
3186 		tcp_respond(tp, mtod(m, void *), th, m, th->th_seq+tlen,
3187 		    (tcp_seq)0, TH_RST|TH_ACK);
3188 	}
3189 	return;
3190 drop:
3191 	m_freem(m);
3192 }
3193 
3194 /*
3195  * Parse TCP options and place in tcpopt.
3196  */
3197 static void
3198 tcp_dooptions(struct tcpopt *to, u_char *cp, int cnt, int flags)
3199 {
3200 	int opt, optlen;
3201 
3202 	to->to_flags = 0;
3203 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
3204 		opt = cp[0];
3205 		if (opt == TCPOPT_EOL)
3206 			break;
3207 		if (opt == TCPOPT_NOP)
3208 			optlen = 1;
3209 		else {
3210 			if (cnt < 2)
3211 				break;
3212 			optlen = cp[1];
3213 			if (optlen < 2 || optlen > cnt)
3214 				break;
3215 		}
3216 		switch (opt) {
3217 		case TCPOPT_MAXSEG:
3218 			if (optlen != TCPOLEN_MAXSEG)
3219 				continue;
3220 			if (!(flags & TO_SYN))
3221 				continue;
3222 			to->to_flags |= TOF_MSS;
3223 			bcopy((char *)cp + 2,
3224 			    (char *)&to->to_mss, sizeof(to->to_mss));
3225 			to->to_mss = ntohs(to->to_mss);
3226 			break;
3227 		case TCPOPT_WINDOW:
3228 			if (optlen != TCPOLEN_WINDOW)
3229 				continue;
3230 			if (!(flags & TO_SYN))
3231 				continue;
3232 			to->to_flags |= TOF_SCALE;
3233 			to->to_wscale = min(cp[2], TCP_MAX_WINSHIFT);
3234 			break;
3235 		case TCPOPT_TIMESTAMP:
3236 			if (optlen != TCPOLEN_TIMESTAMP)
3237 				continue;
3238 			to->to_flags |= TOF_TS;
3239 			bcopy((char *)cp + 2,
3240 			    (char *)&to->to_tsval, sizeof(to->to_tsval));
3241 			to->to_tsval = ntohl(to->to_tsval);
3242 			bcopy((char *)cp + 6,
3243 			    (char *)&to->to_tsecr, sizeof(to->to_tsecr));
3244 			to->to_tsecr = ntohl(to->to_tsecr);
3245 			break;
3246 #ifdef TCP_SIGNATURE
3247 		/*
3248 		 * XXX In order to reply to a host which has set the
3249 		 * TCP_SIGNATURE option in its initial SYN, we have to
3250 		 * record the fact that the option was observed here
3251 		 * for the syncache code to perform the correct response.
3252 		 */
3253 		case TCPOPT_SIGNATURE:
3254 			if (optlen != TCPOLEN_SIGNATURE)
3255 				continue;
3256 			to->to_flags |= TOF_SIGNATURE;
3257 			to->to_signature = cp + 2;
3258 			break;
3259 #endif
3260 		case TCPOPT_SACK_PERMITTED:
3261 			if (optlen != TCPOLEN_SACK_PERMITTED)
3262 				continue;
3263 			if (!(flags & TO_SYN))
3264 				continue;
3265 			if (!V_tcp_do_sack)
3266 				continue;
3267 			to->to_flags |= TOF_SACKPERM;
3268 			break;
3269 		case TCPOPT_SACK:
3270 			if (optlen <= 2 || (optlen - 2) % TCPOLEN_SACK != 0)
3271 				continue;
3272 			if (flags & TO_SYN)
3273 				continue;
3274 			to->to_flags |= TOF_SACK;
3275 			to->to_nsacks = (optlen - 2) / TCPOLEN_SACK;
3276 			to->to_sacks = cp + 2;
3277 			TCPSTAT_INC(tcps_sack_rcv_blocks);
3278 			break;
3279 		default:
3280 			continue;
3281 		}
3282 	}
3283 }
3284 
3285 /*
3286  * Pull out of band byte out of a segment so
3287  * it doesn't appear in the user's data queue.
3288  * It is still reflected in the segment length for
3289  * sequencing purposes.
3290  */
3291 static void
3292 tcp_pulloutofband(struct socket *so, struct tcphdr *th, struct mbuf *m,
3293     int off)
3294 {
3295 	int cnt = off + th->th_urp - 1;
3296 
3297 	while (cnt >= 0) {
3298 		if (m->m_len > cnt) {
3299 			char *cp = mtod(m, caddr_t) + cnt;
3300 			struct tcpcb *tp = sototcpcb(so);
3301 
3302 			INP_WLOCK_ASSERT(tp->t_inpcb);
3303 
3304 			tp->t_iobc = *cp;
3305 			tp->t_oobflags |= TCPOOB_HAVEDATA;
3306 			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
3307 			m->m_len--;
3308 			if (m->m_flags & M_PKTHDR)
3309 				m->m_pkthdr.len--;
3310 			return;
3311 		}
3312 		cnt -= m->m_len;
3313 		m = m->m_next;
3314 		if (m == NULL)
3315 			break;
3316 	}
3317 	panic("tcp_pulloutofband");
3318 }
3319 
3320 /*
3321  * Collect new round-trip time estimate
3322  * and update averages and current timeout.
3323  */
3324 static void
3325 tcp_xmit_timer(struct tcpcb *tp, int rtt)
3326 {
3327 	int delta;
3328 
3329 	INP_WLOCK_ASSERT(tp->t_inpcb);
3330 
3331 	TCPSTAT_INC(tcps_rttupdated);
3332 	tp->t_rttupdated++;
3333 	if (tp->t_srtt != 0) {
3334 		/*
3335 		 * srtt is stored as fixed point with 5 bits after the
3336 		 * binary point (i.e., scaled by 8).  The following magic
3337 		 * is equivalent to the smoothing algorithm in rfc793 with
3338 		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
3339 		 * point).  Adjust rtt to origin 0.
3340 		 */
3341 		delta = ((rtt - 1) << TCP_DELTA_SHIFT)
3342 			- (tp->t_srtt >> (TCP_RTT_SHIFT - TCP_DELTA_SHIFT));
3343 
3344 		if ((tp->t_srtt += delta) <= 0)
3345 			tp->t_srtt = 1;
3346 
3347 		/*
3348 		 * We accumulate a smoothed rtt variance (actually, a
3349 		 * smoothed mean difference), then set the retransmit
3350 		 * timer to smoothed rtt + 4 times the smoothed variance.
3351 		 * rttvar is stored as fixed point with 4 bits after the
3352 		 * binary point (scaled by 16).  The following is
3353 		 * equivalent to rfc793 smoothing with an alpha of .75
3354 		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
3355 		 * rfc793's wired-in beta.
3356 		 */
3357 		if (delta < 0)
3358 			delta = -delta;
3359 		delta -= tp->t_rttvar >> (TCP_RTTVAR_SHIFT - TCP_DELTA_SHIFT);
3360 		if ((tp->t_rttvar += delta) <= 0)
3361 			tp->t_rttvar = 1;
3362 		if (tp->t_rttbest > tp->t_srtt + tp->t_rttvar)
3363 		    tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
3364 	} else {
3365 		/*
3366 		 * No rtt measurement yet - use the unsmoothed rtt.
3367 		 * Set the variance to half the rtt (so our first
3368 		 * retransmit happens at 3*rtt).
3369 		 */
3370 		tp->t_srtt = rtt << TCP_RTT_SHIFT;
3371 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1);
3372 		tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
3373 	}
3374 	tp->t_rtttime = 0;
3375 	tp->t_rxtshift = 0;
3376 
3377 	/*
3378 	 * the retransmit should happen at rtt + 4 * rttvar.
3379 	 * Because of the way we do the smoothing, srtt and rttvar
3380 	 * will each average +1/2 tick of bias.  When we compute
3381 	 * the retransmit timer, we want 1/2 tick of rounding and
3382 	 * 1 extra tick because of +-1/2 tick uncertainty in the
3383 	 * firing of the timer.  The bias will give us exactly the
3384 	 * 1.5 tick we need.  But, because the bias is
3385 	 * statistical, we have to test that we don't drop below
3386 	 * the minimum feasible timer (which is 2 ticks).
3387 	 */
3388 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
3389 		      max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
3390 
3391 	/*
3392 	 * We received an ack for a packet that wasn't retransmitted;
3393 	 * it is probably safe to discard any error indications we've
3394 	 * received recently.  This isn't quite right, but close enough
3395 	 * for now (a route might have failed after we sent a segment,
3396 	 * and the return path might not be symmetrical).
3397 	 */
3398 	tp->t_softerror = 0;
3399 }
3400 
3401 /*
3402  * Determine a reasonable value for maxseg size.
3403  * If the route is known, check route for mtu.
3404  * If none, use an mss that can be handled on the outgoing interface
3405  * without forcing IP to fragment.  If no route is found, route has no mtu,
3406  * or the destination isn't local, use a default, hopefully conservative
3407  * size (usually 512 or the default IP max size, but no more than the mtu
3408  * of the interface), as we can't discover anything about intervening
3409  * gateways or networks.  We also initialize the congestion/slow start
3410  * window to be a single segment if the destination isn't local.
3411  * While looking at the routing entry, we also initialize other path-dependent
3412  * parameters from pre-set or cached values in the routing entry.
3413  *
3414  * Also take into account the space needed for options that we
3415  * send regularly.  Make maxseg shorter by that amount to assure
3416  * that we can send maxseg amount of data even when the options
3417  * are present.  Store the upper limit of the length of options plus
3418  * data in maxopd.
3419  *
3420  * NOTE that this routine is only called when we process an incoming
3421  * segment, or an ICMP need fragmentation datagram. Outgoing SYN/ACK MSS
3422  * settings are handled in tcp_mssopt().
3423  */
3424 void
3425 tcp_mss_update(struct tcpcb *tp, int offer, int mtuoffer,
3426     struct hc_metrics_lite *metricptr, struct tcp_ifcap *cap)
3427 {
3428 	int mss = 0;
3429 	u_long maxmtu = 0;
3430 	struct inpcb *inp = tp->t_inpcb;
3431 	struct hc_metrics_lite metrics;
3432 	int origoffer;
3433 #ifdef INET6
3434 	int isipv6 = ((inp->inp_vflag & INP_IPV6) != 0) ? 1 : 0;
3435 	size_t min_protoh = isipv6 ?
3436 			    sizeof (struct ip6_hdr) + sizeof (struct tcphdr) :
3437 			    sizeof (struct tcpiphdr);
3438 #else
3439 	const size_t min_protoh = sizeof(struct tcpiphdr);
3440 #endif
3441 
3442 	INP_WLOCK_ASSERT(tp->t_inpcb);
3443 
3444 	if (mtuoffer != -1) {
3445 		KASSERT(offer == -1, ("%s: conflict", __func__));
3446 		offer = mtuoffer - min_protoh;
3447 	}
3448 	origoffer = offer;
3449 
3450 	/* Initialize. */
3451 #ifdef INET6
3452 	if (isipv6) {
3453 		maxmtu = tcp_maxmtu6(&inp->inp_inc, cap);
3454 		tp->t_maxopd = tp->t_maxseg = V_tcp_v6mssdflt;
3455 	}
3456 #endif
3457 #if defined(INET) && defined(INET6)
3458 	else
3459 #endif
3460 #ifdef INET
3461 	{
3462 		maxmtu = tcp_maxmtu(&inp->inp_inc, cap);
3463 		tp->t_maxopd = tp->t_maxseg = V_tcp_mssdflt;
3464 	}
3465 #endif
3466 
3467 	/*
3468 	 * No route to sender, stay with default mss and return.
3469 	 */
3470 	if (maxmtu == 0) {
3471 		/*
3472 		 * In case we return early we need to initialize metrics
3473 		 * to a defined state as tcp_hc_get() would do for us
3474 		 * if there was no cache hit.
3475 		 */
3476 		if (metricptr != NULL)
3477 			bzero(metricptr, sizeof(struct hc_metrics_lite));
3478 		return;
3479 	}
3480 
3481 	/* What have we got? */
3482 	switch (offer) {
3483 		case 0:
3484 			/*
3485 			 * Offer == 0 means that there was no MSS on the SYN
3486 			 * segment, in this case we use tcp_mssdflt as
3487 			 * already assigned to t_maxopd above.
3488 			 */
3489 			offer = tp->t_maxopd;
3490 			break;
3491 
3492 		case -1:
3493 			/*
3494 			 * Offer == -1 means that we didn't receive SYN yet.
3495 			 */
3496 			/* FALLTHROUGH */
3497 
3498 		default:
3499 			/*
3500 			 * Prevent DoS attack with too small MSS. Round up
3501 			 * to at least minmss.
3502 			 */
3503 			offer = max(offer, V_tcp_minmss);
3504 	}
3505 
3506 	/*
3507 	 * rmx information is now retrieved from tcp_hostcache.
3508 	 */
3509 	tcp_hc_get(&inp->inp_inc, &metrics);
3510 	if (metricptr != NULL)
3511 		bcopy(&metrics, metricptr, sizeof(struct hc_metrics_lite));
3512 
3513 	/*
3514 	 * If there's a discovered mtu int tcp hostcache, use it
3515 	 * else, use the link mtu.
3516 	 */
3517 	if (metrics.rmx_mtu)
3518 		mss = min(metrics.rmx_mtu, maxmtu) - min_protoh;
3519 	else {
3520 #ifdef INET6
3521 		if (isipv6) {
3522 			mss = maxmtu - min_protoh;
3523 			if (!V_path_mtu_discovery &&
3524 			    !in6_localaddr(&inp->in6p_faddr))
3525 				mss = min(mss, V_tcp_v6mssdflt);
3526 		}
3527 #endif
3528 #if defined(INET) && defined(INET6)
3529 		else
3530 #endif
3531 #ifdef INET
3532 		{
3533 			mss = maxmtu - min_protoh;
3534 			if (!V_path_mtu_discovery &&
3535 			    !in_localaddr(inp->inp_faddr))
3536 				mss = min(mss, V_tcp_mssdflt);
3537 		}
3538 #endif
3539 		/*
3540 		 * XXX - The above conditional (mss = maxmtu - min_protoh)
3541 		 * probably violates the TCP spec.
3542 		 * The problem is that, since we don't know the
3543 		 * other end's MSS, we are supposed to use a conservative
3544 		 * default.  But, if we do that, then MTU discovery will
3545 		 * never actually take place, because the conservative
3546 		 * default is much less than the MTUs typically seen
3547 		 * on the Internet today.  For the moment, we'll sweep
3548 		 * this under the carpet.
3549 		 *
3550 		 * The conservative default might not actually be a problem
3551 		 * if the only case this occurs is when sending an initial
3552 		 * SYN with options and data to a host we've never talked
3553 		 * to before.  Then, they will reply with an MSS value which
3554 		 * will get recorded and the new parameters should get
3555 		 * recomputed.  For Further Study.
3556 		 */
3557 	}
3558 	mss = min(mss, offer);
3559 
3560 	/*
3561 	 * Sanity check: make sure that maxopd will be large
3562 	 * enough to allow some data on segments even if the
3563 	 * all the option space is used (40bytes).  Otherwise
3564 	 * funny things may happen in tcp_output.
3565 	 */
3566 	mss = max(mss, 64);
3567 
3568 	/*
3569 	 * maxopd stores the maximum length of data AND options
3570 	 * in a segment; maxseg is the amount of data in a normal
3571 	 * segment.  We need to store this value (maxopd) apart
3572 	 * from maxseg, because now every segment carries options
3573 	 * and thus we normally have somewhat less data in segments.
3574 	 */
3575 	tp->t_maxopd = mss;
3576 
3577 	/*
3578 	 * origoffer==-1 indicates that no segments were received yet.
3579 	 * In this case we just guess.
3580 	 */
3581 	if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
3582 	    (origoffer == -1 ||
3583 	     (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP))
3584 		mss -= TCPOLEN_TSTAMP_APPA;
3585 
3586 	tp->t_maxseg = mss;
3587 }
3588 
3589 void
3590 tcp_mss(struct tcpcb *tp, int offer)
3591 {
3592 	int mss;
3593 	u_long bufsize;
3594 	struct inpcb *inp;
3595 	struct socket *so;
3596 	struct hc_metrics_lite metrics;
3597 	struct tcp_ifcap cap;
3598 
3599 	KASSERT(tp != NULL, ("%s: tp == NULL", __func__));
3600 
3601 	bzero(&cap, sizeof(cap));
3602 	tcp_mss_update(tp, offer, -1, &metrics, &cap);
3603 
3604 	mss = tp->t_maxseg;
3605 	inp = tp->t_inpcb;
3606 
3607 	/*
3608 	 * If there's a pipesize, change the socket buffer to that size,
3609 	 * don't change if sb_hiwat is different than default (then it
3610 	 * has been changed on purpose with setsockopt).
3611 	 * Make the socket buffers an integral number of mss units;
3612 	 * if the mss is larger than the socket buffer, decrease the mss.
3613 	 */
3614 	so = inp->inp_socket;
3615 	SOCKBUF_LOCK(&so->so_snd);
3616 	if ((so->so_snd.sb_hiwat == V_tcp_sendspace) && metrics.rmx_sendpipe)
3617 		bufsize = metrics.rmx_sendpipe;
3618 	else
3619 		bufsize = so->so_snd.sb_hiwat;
3620 	if (bufsize < mss)
3621 		mss = bufsize;
3622 	else {
3623 		bufsize = roundup(bufsize, mss);
3624 		if (bufsize > sb_max)
3625 			bufsize = sb_max;
3626 		if (bufsize > so->so_snd.sb_hiwat)
3627 			(void)sbreserve_locked(&so->so_snd, bufsize, so, NULL);
3628 	}
3629 	SOCKBUF_UNLOCK(&so->so_snd);
3630 	tp->t_maxseg = mss;
3631 
3632 	SOCKBUF_LOCK(&so->so_rcv);
3633 	if ((so->so_rcv.sb_hiwat == V_tcp_recvspace) && metrics.rmx_recvpipe)
3634 		bufsize = metrics.rmx_recvpipe;
3635 	else
3636 		bufsize = so->so_rcv.sb_hiwat;
3637 	if (bufsize > mss) {
3638 		bufsize = roundup(bufsize, mss);
3639 		if (bufsize > sb_max)
3640 			bufsize = sb_max;
3641 		if (bufsize > so->so_rcv.sb_hiwat)
3642 			(void)sbreserve_locked(&so->so_rcv, bufsize, so, NULL);
3643 	}
3644 	SOCKBUF_UNLOCK(&so->so_rcv);
3645 
3646 	/* Check the interface for TSO capabilities. */
3647 	if (cap.ifcap & CSUM_TSO) {
3648 		tp->t_flags |= TF_TSO;
3649 		tp->t_tsomax = cap.tsomax;
3650 	}
3651 }
3652 
3653 /*
3654  * Determine the MSS option to send on an outgoing SYN.
3655  */
3656 int
3657 tcp_mssopt(struct in_conninfo *inc)
3658 {
3659 	int mss = 0;
3660 	u_long maxmtu = 0;
3661 	u_long thcmtu = 0;
3662 	size_t min_protoh;
3663 
3664 	KASSERT(inc != NULL, ("tcp_mssopt with NULL in_conninfo pointer"));
3665 
3666 #ifdef INET6
3667 	if (inc->inc_flags & INC_ISIPV6) {
3668 		mss = V_tcp_v6mssdflt;
3669 		maxmtu = tcp_maxmtu6(inc, NULL);
3670 		min_protoh = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
3671 	}
3672 #endif
3673 #if defined(INET) && defined(INET6)
3674 	else
3675 #endif
3676 #ifdef INET
3677 	{
3678 		mss = V_tcp_mssdflt;
3679 		maxmtu = tcp_maxmtu(inc, NULL);
3680 		min_protoh = sizeof(struct tcpiphdr);
3681 	}
3682 #endif
3683 #if defined(INET6) || defined(INET)
3684 	thcmtu = tcp_hc_getmtu(inc); /* IPv4 and IPv6 */
3685 #endif
3686 
3687 	if (maxmtu && thcmtu)
3688 		mss = min(maxmtu, thcmtu) - min_protoh;
3689 	else if (maxmtu || thcmtu)
3690 		mss = max(maxmtu, thcmtu) - min_protoh;
3691 
3692 	return (mss);
3693 }
3694 
3695 
3696 /*
3697  * On a partial ack arrives, force the retransmission of the
3698  * next unacknowledged segment.  Do not clear tp->t_dupacks.
3699  * By setting snd_nxt to ti_ack, this forces retransmission timer to
3700  * be started again.
3701  */
3702 static void
3703 tcp_newreno_partial_ack(struct tcpcb *tp, struct tcphdr *th)
3704 {
3705 	tcp_seq onxt = tp->snd_nxt;
3706 	u_long  ocwnd = tp->snd_cwnd;
3707 
3708 	INP_WLOCK_ASSERT(tp->t_inpcb);
3709 
3710 	tcp_timer_activate(tp, TT_REXMT, 0);
3711 	tp->t_rtttime = 0;
3712 	tp->snd_nxt = th->th_ack;
3713 	/*
3714 	 * Set snd_cwnd to one segment beyond acknowledged offset.
3715 	 * (tp->snd_una has not yet been updated when this function is called.)
3716 	 */
3717 	tp->snd_cwnd = tp->t_maxseg + BYTES_THIS_ACK(tp, th);
3718 	tp->t_flags |= TF_ACKNOW;
3719 	(void) tcp_output(tp);
3720 	tp->snd_cwnd = ocwnd;
3721 	if (SEQ_GT(onxt, tp->snd_nxt))
3722 		tp->snd_nxt = onxt;
3723 	/*
3724 	 * Partial window deflation.  Relies on fact that tp->snd_una
3725 	 * not updated yet.
3726 	 */
3727 	if (tp->snd_cwnd > BYTES_THIS_ACK(tp, th))
3728 		tp->snd_cwnd -= BYTES_THIS_ACK(tp, th);
3729 	else
3730 		tp->snd_cwnd = 0;
3731 	tp->snd_cwnd += tp->t_maxseg;
3732 }
3733