xref: /freebsd/sys/netinet/tcp_input.c (revision 39ee7a7a6bdd1557b1c3532abf60d139798ac88b)
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
3  *	The Regents of the University of California.  All rights reserved.
4  * Copyright (c) 2007-2008,2010
5  *	Swinburne University of Technology, Melbourne, Australia.
6  * Copyright (c) 2009-2010 Lawrence Stewart <lstewart@freebsd.org>
7  * Copyright (c) 2010 The FreeBSD Foundation
8  * Copyright (c) 2010-2011 Juniper Networks, Inc.
9  * All rights reserved.
10  *
11  * Portions of this software were developed at the Centre for Advanced Internet
12  * Architectures, Swinburne University of Technology, by Lawrence Stewart,
13  * James Healy and David Hayes, made possible in part by a grant from the Cisco
14  * University Research Program Fund at Community Foundation Silicon Valley.
15  *
16  * Portions of this software were developed at the Centre for Advanced
17  * Internet Architectures, Swinburne University of Technology, Melbourne,
18  * Australia by David Hayes under sponsorship from the FreeBSD Foundation.
19  *
20  * Portions of this software were developed by Robert N. M. Watson under
21  * contract to Juniper Networks, Inc.
22  *
23  * Redistribution and use in source and binary forms, with or without
24  * modification, are permitted provided that the following conditions
25  * are met:
26  * 1. Redistributions of source code must retain the above copyright
27  *    notice, this list of conditions and the following disclaimer.
28  * 2. Redistributions in binary form must reproduce the above copyright
29  *    notice, this list of conditions and the following disclaimer in the
30  *    documentation and/or other materials provided with the distribution.
31  * 4. Neither the name of the University nor the names of its contributors
32  *    may be used to endorse or promote products derived from this software
33  *    without specific prior written permission.
34  *
35  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
36  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
37  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
38  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
39  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
40  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
41  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
42  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
43  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
44  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
45  * SUCH DAMAGE.
46  *
47  *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
48  */
49 
50 #include <sys/cdefs.h>
51 __FBSDID("$FreeBSD$");
52 
53 #include "opt_ipfw.h"		/* for ipfw_fwd	*/
54 #include "opt_inet.h"
55 #include "opt_inet6.h"
56 #include "opt_ipsec.h"
57 #include "opt_tcpdebug.h"
58 
59 #include <sys/param.h>
60 #include <sys/kernel.h>
61 #include <sys/hhook.h>
62 #include <sys/malloc.h>
63 #include <sys/mbuf.h>
64 #include <sys/proc.h>		/* for proc0 declaration */
65 #include <sys/protosw.h>
66 #include <sys/sdt.h>
67 #include <sys/signalvar.h>
68 #include <sys/socket.h>
69 #include <sys/socketvar.h>
70 #include <sys/sysctl.h>
71 #include <sys/syslog.h>
72 #include <sys/systm.h>
73 
74 #include <machine/cpu.h>	/* before tcp_seq.h, for tcp_random18() */
75 
76 #include <vm/uma.h>
77 
78 #include <net/if.h>
79 #include <net/if_var.h>
80 #include <net/route.h>
81 #include <net/vnet.h>
82 
83 #define TCPSTATES		/* for logging */
84 
85 #include <netinet/cc.h>
86 #include <netinet/in.h>
87 #include <netinet/in_kdtrace.h>
88 #include <netinet/in_pcb.h>
89 #include <netinet/in_systm.h>
90 #include <netinet/in_var.h>
91 #include <netinet/ip.h>
92 #include <netinet/ip_icmp.h>	/* required for icmp_var.h */
93 #include <netinet/icmp_var.h>	/* for ICMP_BANDLIM */
94 #include <netinet/ip_var.h>
95 #include <netinet/ip_options.h>
96 #include <netinet/ip6.h>
97 #include <netinet/icmp6.h>
98 #include <netinet6/in6_pcb.h>
99 #include <netinet6/ip6_var.h>
100 #include <netinet6/nd6.h>
101 #include <netinet/tcp_fsm.h>
102 #include <netinet/tcp_seq.h>
103 #include <netinet/tcp_timer.h>
104 #include <netinet/tcp_var.h>
105 #include <netinet6/tcp6_var.h>
106 #include <netinet/tcpip.h>
107 #ifdef TCPPCAP
108 #include <netinet/tcp_pcap.h>
109 #endif
110 #include <netinet/tcp_syncache.h>
111 #ifdef TCPDEBUG
112 #include <netinet/tcp_debug.h>
113 #endif /* TCPDEBUG */
114 #ifdef TCP_OFFLOAD
115 #include <netinet/tcp_offload.h>
116 #endif
117 
118 #ifdef IPSEC
119 #include <netipsec/ipsec.h>
120 #include <netipsec/ipsec6.h>
121 #endif /*IPSEC*/
122 
123 #include <machine/in_cksum.h>
124 
125 #include <security/mac/mac_framework.h>
126 
127 const int tcprexmtthresh = 3;
128 
129 int tcp_log_in_vain = 0;
130 SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_in_vain, CTLFLAG_RW,
131     &tcp_log_in_vain, 0,
132     "Log all incoming TCP segments to closed ports");
133 
134 VNET_DEFINE(int, blackhole) = 0;
135 #define	V_blackhole		VNET(blackhole)
136 SYSCTL_INT(_net_inet_tcp, OID_AUTO, blackhole, CTLFLAG_VNET | CTLFLAG_RW,
137     &VNET_NAME(blackhole), 0,
138     "Do not send RST on segments to closed ports");
139 
140 VNET_DEFINE(int, tcp_delack_enabled) = 1;
141 SYSCTL_INT(_net_inet_tcp, OID_AUTO, delayed_ack, CTLFLAG_VNET | CTLFLAG_RW,
142     &VNET_NAME(tcp_delack_enabled), 0,
143     "Delay ACK to try and piggyback it onto a data packet");
144 
145 VNET_DEFINE(int, drop_synfin) = 0;
146 #define	V_drop_synfin		VNET(drop_synfin)
147 SYSCTL_INT(_net_inet_tcp, OID_AUTO, drop_synfin, CTLFLAG_VNET | CTLFLAG_RW,
148     &VNET_NAME(drop_synfin), 0,
149     "Drop TCP packets with SYN+FIN set");
150 
151 VNET_DEFINE(int, tcp_do_rfc3042) = 1;
152 #define	V_tcp_do_rfc3042	VNET(tcp_do_rfc3042)
153 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3042, CTLFLAG_VNET | CTLFLAG_RW,
154     &VNET_NAME(tcp_do_rfc3042), 0,
155     "Enable RFC 3042 (Limited Transmit)");
156 
157 VNET_DEFINE(int, tcp_do_rfc3390) = 1;
158 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3390, CTLFLAG_VNET | CTLFLAG_RW,
159     &VNET_NAME(tcp_do_rfc3390), 0,
160     "Enable RFC 3390 (Increasing TCP's Initial Congestion Window)");
161 
162 VNET_DEFINE(int, tcp_initcwnd_segments) = 10;
163 SYSCTL_INT(_net_inet_tcp, OID_AUTO, initcwnd_segments,
164     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(tcp_initcwnd_segments), 0,
165     "Slow-start flight size (initial congestion window) in number of segments");
166 
167 VNET_DEFINE(int, tcp_do_rfc3465) = 1;
168 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3465, CTLFLAG_VNET | CTLFLAG_RW,
169     &VNET_NAME(tcp_do_rfc3465), 0,
170     "Enable RFC 3465 (Appropriate Byte Counting)");
171 
172 VNET_DEFINE(int, tcp_abc_l_var) = 2;
173 SYSCTL_INT(_net_inet_tcp, OID_AUTO, abc_l_var, CTLFLAG_VNET | CTLFLAG_RW,
174     &VNET_NAME(tcp_abc_l_var), 2,
175     "Cap the max cwnd increment during slow-start to this number of segments");
176 
177 static SYSCTL_NODE(_net_inet_tcp, OID_AUTO, ecn, CTLFLAG_RW, 0, "TCP ECN");
178 
179 VNET_DEFINE(int, tcp_do_ecn) = 0;
180 SYSCTL_INT(_net_inet_tcp_ecn, OID_AUTO, enable, CTLFLAG_VNET | CTLFLAG_RW,
181     &VNET_NAME(tcp_do_ecn), 0,
182     "TCP ECN support");
183 
184 VNET_DEFINE(int, tcp_ecn_maxretries) = 1;
185 SYSCTL_INT(_net_inet_tcp_ecn, OID_AUTO, maxretries, CTLFLAG_VNET | CTLFLAG_RW,
186     &VNET_NAME(tcp_ecn_maxretries), 0,
187     "Max retries before giving up on ECN");
188 
189 VNET_DEFINE(int, tcp_insecure_syn) = 0;
190 #define	V_tcp_insecure_syn	VNET(tcp_insecure_syn)
191 SYSCTL_INT(_net_inet_tcp, OID_AUTO, insecure_syn, CTLFLAG_VNET | CTLFLAG_RW,
192     &VNET_NAME(tcp_insecure_syn), 0,
193     "Follow RFC793 instead of RFC5961 criteria for accepting SYN packets");
194 
195 VNET_DEFINE(int, tcp_insecure_rst) = 0;
196 #define	V_tcp_insecure_rst	VNET(tcp_insecure_rst)
197 SYSCTL_INT(_net_inet_tcp, OID_AUTO, insecure_rst, CTLFLAG_VNET | CTLFLAG_RW,
198     &VNET_NAME(tcp_insecure_rst), 0,
199     "Follow RFC793 instead of RFC5961 criteria for accepting RST packets");
200 
201 VNET_DEFINE(int, tcp_recvspace) = 1024*64;
202 #define	V_tcp_recvspace	VNET(tcp_recvspace)
203 SYSCTL_INT(_net_inet_tcp, TCPCTL_RECVSPACE, recvspace, CTLFLAG_VNET | CTLFLAG_RW,
204     &VNET_NAME(tcp_recvspace), 0, "Initial receive socket buffer size");
205 
206 VNET_DEFINE(int, tcp_do_autorcvbuf) = 1;
207 #define	V_tcp_do_autorcvbuf	VNET(tcp_do_autorcvbuf)
208 SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbuf_auto, CTLFLAG_VNET | CTLFLAG_RW,
209     &VNET_NAME(tcp_do_autorcvbuf), 0,
210     "Enable automatic receive buffer sizing");
211 
212 VNET_DEFINE(int, tcp_autorcvbuf_inc) = 16*1024;
213 #define	V_tcp_autorcvbuf_inc	VNET(tcp_autorcvbuf_inc)
214 SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbuf_inc, CTLFLAG_VNET | CTLFLAG_RW,
215     &VNET_NAME(tcp_autorcvbuf_inc), 0,
216     "Incrementor step size of automatic receive buffer");
217 
218 VNET_DEFINE(int, tcp_autorcvbuf_max) = 2*1024*1024;
219 #define	V_tcp_autorcvbuf_max	VNET(tcp_autorcvbuf_max)
220 SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbuf_max, CTLFLAG_VNET | CTLFLAG_RW,
221     &VNET_NAME(tcp_autorcvbuf_max), 0,
222     "Max size of automatic receive buffer");
223 
224 VNET_DEFINE(struct inpcbhead, tcb);
225 #define	tcb6	tcb  /* for KAME src sync over BSD*'s */
226 VNET_DEFINE(struct inpcbinfo, tcbinfo);
227 
228 static void	 tcp_dooptions(struct tcpopt *, u_char *, int, int);
229 static void	 tcp_do_segment(struct mbuf *, struct tcphdr *,
230 		     struct socket *, struct tcpcb *, int, int, uint8_t,
231 		     int);
232 static void	 tcp_dropwithreset(struct mbuf *, struct tcphdr *,
233 		     struct tcpcb *, int, int);
234 static void	 tcp_pulloutofband(struct socket *,
235 		     struct tcphdr *, struct mbuf *, int);
236 static void	 tcp_xmit_timer(struct tcpcb *, int);
237 static void	 tcp_newreno_partial_ack(struct tcpcb *, struct tcphdr *);
238 static void inline	cc_ack_received(struct tcpcb *tp, struct tcphdr *th,
239 			    uint16_t type);
240 static void inline	cc_conn_init(struct tcpcb *tp);
241 static void inline	cc_post_recovery(struct tcpcb *tp, struct tcphdr *th);
242 static void inline	hhook_run_tcp_est_in(struct tcpcb *tp,
243 			    struct tcphdr *th, struct tcpopt *to);
244 
245 /*
246  * TCP statistics are stored in an "array" of counter(9)s.
247  */
248 VNET_PCPUSTAT_DEFINE(struct tcpstat, tcpstat);
249 VNET_PCPUSTAT_SYSINIT(tcpstat);
250 SYSCTL_VNET_PCPUSTAT(_net_inet_tcp, TCPCTL_STATS, stats, struct tcpstat,
251     tcpstat, "TCP statistics (struct tcpstat, netinet/tcp_var.h)");
252 
253 #ifdef VIMAGE
254 VNET_PCPUSTAT_SYSUNINIT(tcpstat);
255 #endif /* VIMAGE */
256 /*
257  * Kernel module interface for updating tcpstat.  The argument is an index
258  * into tcpstat treated as an array.
259  */
260 void
261 kmod_tcpstat_inc(int statnum)
262 {
263 
264 	counter_u64_add(VNET(tcpstat)[statnum], 1);
265 }
266 
267 /*
268  * Wrapper for the TCP established input helper hook.
269  */
270 static void inline
271 hhook_run_tcp_est_in(struct tcpcb *tp, struct tcphdr *th, struct tcpopt *to)
272 {
273 	struct tcp_hhook_data hhook_data;
274 
275 	if (V_tcp_hhh[HHOOK_TCP_EST_IN]->hhh_nhooks > 0) {
276 		hhook_data.tp = tp;
277 		hhook_data.th = th;
278 		hhook_data.to = to;
279 
280 		hhook_run_hooks(V_tcp_hhh[HHOOK_TCP_EST_IN], &hhook_data,
281 		    tp->osd);
282 	}
283 }
284 
285 /*
286  * CC wrapper hook functions
287  */
288 static void inline
289 cc_ack_received(struct tcpcb *tp, struct tcphdr *th, uint16_t type)
290 {
291 	INP_WLOCK_ASSERT(tp->t_inpcb);
292 
293 	tp->ccv->bytes_this_ack = BYTES_THIS_ACK(tp, th);
294 	if (tp->snd_cwnd <= tp->snd_wnd)
295 		tp->ccv->flags |= CCF_CWND_LIMITED;
296 	else
297 		tp->ccv->flags &= ~CCF_CWND_LIMITED;
298 
299 	if (type == CC_ACK) {
300 		if (tp->snd_cwnd > tp->snd_ssthresh) {
301 			tp->t_bytes_acked += min(tp->ccv->bytes_this_ack,
302 			     V_tcp_abc_l_var * tp->t_maxseg);
303 			if (tp->t_bytes_acked >= tp->snd_cwnd) {
304 				tp->t_bytes_acked -= tp->snd_cwnd;
305 				tp->ccv->flags |= CCF_ABC_SENTAWND;
306 			}
307 		} else {
308 				tp->ccv->flags &= ~CCF_ABC_SENTAWND;
309 				tp->t_bytes_acked = 0;
310 		}
311 	}
312 
313 	if (CC_ALGO(tp)->ack_received != NULL) {
314 		/* XXXLAS: Find a way to live without this */
315 		tp->ccv->curack = th->th_ack;
316 		CC_ALGO(tp)->ack_received(tp->ccv, type);
317 	}
318 }
319 
320 static void inline
321 cc_conn_init(struct tcpcb *tp)
322 {
323 	struct hc_metrics_lite metrics;
324 	struct inpcb *inp = tp->t_inpcb;
325 	int rtt;
326 
327 	INP_WLOCK_ASSERT(tp->t_inpcb);
328 
329 	tcp_hc_get(&inp->inp_inc, &metrics);
330 
331 	if (tp->t_srtt == 0 && (rtt = metrics.rmx_rtt)) {
332 		tp->t_srtt = rtt;
333 		tp->t_rttbest = tp->t_srtt + TCP_RTT_SCALE;
334 		TCPSTAT_INC(tcps_usedrtt);
335 		if (metrics.rmx_rttvar) {
336 			tp->t_rttvar = metrics.rmx_rttvar;
337 			TCPSTAT_INC(tcps_usedrttvar);
338 		} else {
339 			/* default variation is +- 1 rtt */
340 			tp->t_rttvar =
341 			    tp->t_srtt * TCP_RTTVAR_SCALE / TCP_RTT_SCALE;
342 		}
343 		TCPT_RANGESET(tp->t_rxtcur,
344 		    ((tp->t_srtt >> 2) + tp->t_rttvar) >> 1,
345 		    tp->t_rttmin, TCPTV_REXMTMAX);
346 	}
347 	if (metrics.rmx_ssthresh) {
348 		/*
349 		 * There's some sort of gateway or interface
350 		 * buffer limit on the path.  Use this to set
351 		 * the slow start threshhold, but set the
352 		 * threshold to no less than 2*mss.
353 		 */
354 		tp->snd_ssthresh = max(2 * tp->t_maxseg, metrics.rmx_ssthresh);
355 		TCPSTAT_INC(tcps_usedssthresh);
356 	}
357 
358 	/*
359 	 * Set the initial slow-start flight size.
360 	 *
361 	 * RFC5681 Section 3.1 specifies the default conservative values.
362 	 * RFC3390 specifies slightly more aggressive values.
363 	 * RFC6928 increases it to ten segments.
364 	 * Support for user specified value for initial flight size.
365 	 *
366 	 * If a SYN or SYN/ACK was lost and retransmitted, we have to
367 	 * reduce the initial CWND to one segment as congestion is likely
368 	 * requiring us to be cautious.
369 	 */
370 	if (tp->snd_cwnd == 1)
371 		tp->snd_cwnd = tp->t_maxseg;		/* SYN(-ACK) lost */
372 	else if (V_tcp_initcwnd_segments)
373 		tp->snd_cwnd = min(V_tcp_initcwnd_segments * tp->t_maxseg,
374 		    max(2 * tp->t_maxseg, V_tcp_initcwnd_segments * 1460));
375 	else if (V_tcp_do_rfc3390)
376 		tp->snd_cwnd = min(4 * tp->t_maxseg,
377 		    max(2 * tp->t_maxseg, 4380));
378 	else {
379 		/* Per RFC5681 Section 3.1 */
380 		if (tp->t_maxseg > 2190)
381 			tp->snd_cwnd = 2 * tp->t_maxseg;
382 		else if (tp->t_maxseg > 1095)
383 			tp->snd_cwnd = 3 * tp->t_maxseg;
384 		else
385 			tp->snd_cwnd = 4 * tp->t_maxseg;
386 	}
387 
388 	if (CC_ALGO(tp)->conn_init != NULL)
389 		CC_ALGO(tp)->conn_init(tp->ccv);
390 }
391 
392 void inline
393 cc_cong_signal(struct tcpcb *tp, struct tcphdr *th, uint32_t type)
394 {
395 	INP_WLOCK_ASSERT(tp->t_inpcb);
396 
397 	switch(type) {
398 	case CC_NDUPACK:
399 		if (!IN_FASTRECOVERY(tp->t_flags)) {
400 			tp->snd_recover = tp->snd_max;
401 			if (tp->t_flags & TF_ECN_PERMIT)
402 				tp->t_flags |= TF_ECN_SND_CWR;
403 		}
404 		break;
405 	case CC_ECN:
406 		if (!IN_CONGRECOVERY(tp->t_flags)) {
407 			TCPSTAT_INC(tcps_ecn_rcwnd);
408 			tp->snd_recover = tp->snd_max;
409 			if (tp->t_flags & TF_ECN_PERMIT)
410 				tp->t_flags |= TF_ECN_SND_CWR;
411 		}
412 		break;
413 	case CC_RTO:
414 		tp->t_dupacks = 0;
415 		tp->t_bytes_acked = 0;
416 		EXIT_RECOVERY(tp->t_flags);
417 		tp->snd_ssthresh = max(2, min(tp->snd_wnd, tp->snd_cwnd) / 2 /
418 		    tp->t_maxseg) * tp->t_maxseg;
419 		tp->snd_cwnd = tp->t_maxseg;
420 		break;
421 	case CC_RTO_ERR:
422 		TCPSTAT_INC(tcps_sndrexmitbad);
423 		/* RTO was unnecessary, so reset everything. */
424 		tp->snd_cwnd = tp->snd_cwnd_prev;
425 		tp->snd_ssthresh = tp->snd_ssthresh_prev;
426 		tp->snd_recover = tp->snd_recover_prev;
427 		if (tp->t_flags & TF_WASFRECOVERY)
428 			ENTER_FASTRECOVERY(tp->t_flags);
429 		if (tp->t_flags & TF_WASCRECOVERY)
430 			ENTER_CONGRECOVERY(tp->t_flags);
431 		tp->snd_nxt = tp->snd_max;
432 		tp->t_flags &= ~TF_PREVVALID;
433 		tp->t_badrxtwin = 0;
434 		break;
435 	}
436 
437 	if (CC_ALGO(tp)->cong_signal != NULL) {
438 		if (th != NULL)
439 			tp->ccv->curack = th->th_ack;
440 		CC_ALGO(tp)->cong_signal(tp->ccv, type);
441 	}
442 }
443 
444 static void inline
445 cc_post_recovery(struct tcpcb *tp, struct tcphdr *th)
446 {
447 	INP_WLOCK_ASSERT(tp->t_inpcb);
448 
449 	/* XXXLAS: KASSERT that we're in recovery? */
450 
451 	if (CC_ALGO(tp)->post_recovery != NULL) {
452 		tp->ccv->curack = th->th_ack;
453 		CC_ALGO(tp)->post_recovery(tp->ccv);
454 	}
455 	/* XXXLAS: EXIT_RECOVERY ? */
456 	tp->t_bytes_acked = 0;
457 }
458 
459 #ifdef TCP_SIGNATURE
460 static inline int
461 tcp_signature_verify_input(struct mbuf *m, int off0, int tlen, int optlen,
462     struct tcpopt *to, struct tcphdr *th, u_int tcpbflag)
463 {
464 	int ret;
465 
466 	tcp_fields_to_net(th);
467 	ret = tcp_signature_verify(m, off0, tlen, optlen, to, th, tcpbflag);
468 	tcp_fields_to_host(th);
469 	return (ret);
470 }
471 #endif
472 
473 /*
474  * Indicate whether this ack should be delayed.  We can delay the ack if
475  * following conditions are met:
476  *	- There is no delayed ack timer in progress.
477  *	- Our last ack wasn't a 0-sized window. We never want to delay
478  *	  the ack that opens up a 0-sized window.
479  *	- LRO wasn't used for this segment. We make sure by checking that the
480  *	  segment size is not larger than the MSS.
481  *	- Delayed acks are enabled or this is a half-synchronized T/TCP
482  *	  connection.
483  */
484 #define DELAY_ACK(tp, tlen)						\
485 	((!tcp_timer_active(tp, TT_DELACK) &&				\
486 	    (tp->t_flags & TF_RXWIN0SENT) == 0) &&			\
487 	    (tlen <= tp->t_maxopd) &&					\
488 	    (V_tcp_delack_enabled || (tp->t_flags & TF_NEEDSYN)))
489 
490 static void inline
491 cc_ecnpkt_handler(struct tcpcb *tp, struct tcphdr *th, uint8_t iptos)
492 {
493 	INP_WLOCK_ASSERT(tp->t_inpcb);
494 
495 	if (CC_ALGO(tp)->ecnpkt_handler != NULL) {
496 		switch (iptos & IPTOS_ECN_MASK) {
497 		case IPTOS_ECN_CE:
498 		    tp->ccv->flags |= CCF_IPHDR_CE;
499 		    break;
500 		case IPTOS_ECN_ECT0:
501 		    tp->ccv->flags &= ~CCF_IPHDR_CE;
502 		    break;
503 		case IPTOS_ECN_ECT1:
504 		    tp->ccv->flags &= ~CCF_IPHDR_CE;
505 		    break;
506 		}
507 
508 		if (th->th_flags & TH_CWR)
509 			tp->ccv->flags |= CCF_TCPHDR_CWR;
510 		else
511 			tp->ccv->flags &= ~CCF_TCPHDR_CWR;
512 
513 		if (tp->t_flags & TF_DELACK)
514 			tp->ccv->flags |= CCF_DELACK;
515 		else
516 			tp->ccv->flags &= ~CCF_DELACK;
517 
518 		CC_ALGO(tp)->ecnpkt_handler(tp->ccv);
519 
520 		if (tp->ccv->flags & CCF_ACKNOW)
521 			tcp_timer_activate(tp, TT_DELACK, tcp_delacktime);
522 	}
523 }
524 
525 /*
526  * TCP input handling is split into multiple parts:
527  *   tcp6_input is a thin wrapper around tcp_input for the extended
528  *	ip6_protox[] call format in ip6_input
529  *   tcp_input handles primary segment validation, inpcb lookup and
530  *	SYN processing on listen sockets
531  *   tcp_do_segment processes the ACK and text of the segment for
532  *	establishing, established and closing connections
533  */
534 #ifdef INET6
535 int
536 tcp6_input(struct mbuf **mp, int *offp, int proto)
537 {
538 	struct mbuf *m = *mp;
539 	struct in6_ifaddr *ia6;
540 	struct ip6_hdr *ip6;
541 
542 	IP6_EXTHDR_CHECK(m, *offp, sizeof(struct tcphdr), IPPROTO_DONE);
543 
544 	/*
545 	 * draft-itojun-ipv6-tcp-to-anycast
546 	 * better place to put this in?
547 	 */
548 	ip6 = mtod(m, struct ip6_hdr *);
549 	ia6 = in6ifa_ifwithaddr(&ip6->ip6_dst, 0 /* XXX */);
550 	if (ia6 && (ia6->ia6_flags & IN6_IFF_ANYCAST)) {
551 		struct ip6_hdr *ip6;
552 
553 		ifa_free(&ia6->ia_ifa);
554 		ip6 = mtod(m, struct ip6_hdr *);
555 		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
556 			    (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
557 		return (IPPROTO_DONE);
558 	}
559 	if (ia6)
560 		ifa_free(&ia6->ia_ifa);
561 
562 	return (tcp_input(mp, offp, proto));
563 }
564 #endif /* INET6 */
565 
566 int
567 tcp_input(struct mbuf **mp, int *offp, int proto)
568 {
569 	struct mbuf *m = *mp;
570 	struct tcphdr *th = NULL;
571 	struct ip *ip = NULL;
572 	struct inpcb *inp = NULL;
573 	struct tcpcb *tp = NULL;
574 	struct socket *so = NULL;
575 	u_char *optp = NULL;
576 	int off0;
577 	int optlen = 0;
578 #ifdef INET
579 	int len;
580 #endif
581 	int tlen = 0, off;
582 	int drop_hdrlen;
583 	int thflags;
584 	int rstreason = 0;	/* For badport_bandlim accounting purposes */
585 #ifdef TCP_SIGNATURE
586 	uint8_t sig_checked = 0;
587 #endif
588 	uint8_t iptos = 0;
589 	struct m_tag *fwd_tag = NULL;
590 #ifdef INET6
591 	struct ip6_hdr *ip6 = NULL;
592 	int isipv6;
593 #else
594 	const void *ip6 = NULL;
595 #endif /* INET6 */
596 	struct tcpopt to;		/* options in this segment */
597 	char *s = NULL;			/* address and port logging */
598 	int ti_locked;
599 #define	TI_UNLOCKED	1
600 #define	TI_RLOCKED	2
601 
602 #ifdef TCPDEBUG
603 	/*
604 	 * The size of tcp_saveipgen must be the size of the max ip header,
605 	 * now IPv6.
606 	 */
607 	u_char tcp_saveipgen[IP6_HDR_LEN];
608 	struct tcphdr tcp_savetcp;
609 	short ostate = 0;
610 #endif
611 
612 #ifdef INET6
613 	isipv6 = (mtod(m, struct ip *)->ip_v == 6) ? 1 : 0;
614 #endif
615 
616 	off0 = *offp;
617 	m = *mp;
618 	*mp = NULL;
619 	to.to_flags = 0;
620 	TCPSTAT_INC(tcps_rcvtotal);
621 
622 #ifdef INET6
623 	if (isipv6) {
624 		/* IP6_EXTHDR_CHECK() is already done at tcp6_input(). */
625 
626 		if (m->m_len < (sizeof(*ip6) + sizeof(*th))) {
627 			m = m_pullup(m, sizeof(*ip6) + sizeof(*th));
628 			if (m == NULL) {
629 				TCPSTAT_INC(tcps_rcvshort);
630 				return (IPPROTO_DONE);
631 			}
632 		}
633 
634 		ip6 = mtod(m, struct ip6_hdr *);
635 		th = (struct tcphdr *)((caddr_t)ip6 + off0);
636 		tlen = sizeof(*ip6) + ntohs(ip6->ip6_plen) - off0;
637 		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID_IPV6) {
638 			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
639 				th->th_sum = m->m_pkthdr.csum_data;
640 			else
641 				th->th_sum = in6_cksum_pseudo(ip6, tlen,
642 				    IPPROTO_TCP, m->m_pkthdr.csum_data);
643 			th->th_sum ^= 0xffff;
644 		} else
645 			th->th_sum = in6_cksum(m, IPPROTO_TCP, off0, tlen);
646 		if (th->th_sum) {
647 			TCPSTAT_INC(tcps_rcvbadsum);
648 			goto drop;
649 		}
650 
651 		/*
652 		 * Be proactive about unspecified IPv6 address in source.
653 		 * As we use all-zero to indicate unbounded/unconnected pcb,
654 		 * unspecified IPv6 address can be used to confuse us.
655 		 *
656 		 * Note that packets with unspecified IPv6 destination is
657 		 * already dropped in ip6_input.
658 		 */
659 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
660 			/* XXX stat */
661 			goto drop;
662 		}
663 	}
664 #endif
665 #if defined(INET) && defined(INET6)
666 	else
667 #endif
668 #ifdef INET
669 	{
670 		/*
671 		 * Get IP and TCP header together in first mbuf.
672 		 * Note: IP leaves IP header in first mbuf.
673 		 */
674 		if (off0 > sizeof (struct ip)) {
675 			ip_stripoptions(m);
676 			off0 = sizeof(struct ip);
677 		}
678 		if (m->m_len < sizeof (struct tcpiphdr)) {
679 			if ((m = m_pullup(m, sizeof (struct tcpiphdr)))
680 			    == NULL) {
681 				TCPSTAT_INC(tcps_rcvshort);
682 				return (IPPROTO_DONE);
683 			}
684 		}
685 		ip = mtod(m, struct ip *);
686 		th = (struct tcphdr *)((caddr_t)ip + off0);
687 		tlen = ntohs(ip->ip_len) - off0;
688 
689 		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
690 			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
691 				th->th_sum = m->m_pkthdr.csum_data;
692 			else
693 				th->th_sum = in_pseudo(ip->ip_src.s_addr,
694 				    ip->ip_dst.s_addr,
695 				    htonl(m->m_pkthdr.csum_data + tlen +
696 				    IPPROTO_TCP));
697 			th->th_sum ^= 0xffff;
698 		} else {
699 			struct ipovly *ipov = (struct ipovly *)ip;
700 
701 			/*
702 			 * Checksum extended TCP header and data.
703 			 */
704 			len = off0 + tlen;
705 			bzero(ipov->ih_x1, sizeof(ipov->ih_x1));
706 			ipov->ih_len = htons(tlen);
707 			th->th_sum = in_cksum(m, len);
708 			/* Reset length for SDT probes. */
709 			ip->ip_len = htons(tlen + off0);
710 		}
711 
712 		if (th->th_sum) {
713 			TCPSTAT_INC(tcps_rcvbadsum);
714 			goto drop;
715 		}
716 		/* Re-initialization for later version check */
717 		ip->ip_v = IPVERSION;
718 	}
719 #endif /* INET */
720 
721 #ifdef INET6
722 	if (isipv6)
723 		iptos = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
724 #endif
725 #if defined(INET) && defined(INET6)
726 	else
727 #endif
728 #ifdef INET
729 		iptos = ip->ip_tos;
730 #endif
731 
732 	/*
733 	 * Check that TCP offset makes sense,
734 	 * pull out TCP options and adjust length.		XXX
735 	 */
736 	off = th->th_off << 2;
737 	if (off < sizeof (struct tcphdr) || off > tlen) {
738 		TCPSTAT_INC(tcps_rcvbadoff);
739 		goto drop;
740 	}
741 	tlen -= off;	/* tlen is used instead of ti->ti_len */
742 	if (off > sizeof (struct tcphdr)) {
743 #ifdef INET6
744 		if (isipv6) {
745 			IP6_EXTHDR_CHECK(m, off0, off, IPPROTO_DONE);
746 			ip6 = mtod(m, struct ip6_hdr *);
747 			th = (struct tcphdr *)((caddr_t)ip6 + off0);
748 		}
749 #endif
750 #if defined(INET) && defined(INET6)
751 		else
752 #endif
753 #ifdef INET
754 		{
755 			if (m->m_len < sizeof(struct ip) + off) {
756 				if ((m = m_pullup(m, sizeof (struct ip) + off))
757 				    == NULL) {
758 					TCPSTAT_INC(tcps_rcvshort);
759 					return (IPPROTO_DONE);
760 				}
761 				ip = mtod(m, struct ip *);
762 				th = (struct tcphdr *)((caddr_t)ip + off0);
763 			}
764 		}
765 #endif
766 		optlen = off - sizeof (struct tcphdr);
767 		optp = (u_char *)(th + 1);
768 	}
769 	thflags = th->th_flags;
770 
771 	/*
772 	 * Convert TCP protocol specific fields to host format.
773 	 */
774 	tcp_fields_to_host(th);
775 
776 	/*
777 	 * Delay dropping TCP, IP headers, IPv6 ext headers, and TCP options.
778 	 */
779 	drop_hdrlen = off0 + off;
780 
781 	/*
782 	 * Locate pcb for segment; if we're likely to add or remove a
783 	 * connection then first acquire pcbinfo lock.  There are three cases
784 	 * where we might discover later we need a write lock despite the
785 	 * flags: ACKs moving a connection out of the syncache, ACKs for a
786 	 * connection in TIMEWAIT and SYNs not targeting a listening socket.
787 	 */
788 	if ((thflags & (TH_FIN | TH_RST)) != 0) {
789 		INP_INFO_RLOCK(&V_tcbinfo);
790 		ti_locked = TI_RLOCKED;
791 	} else
792 		ti_locked = TI_UNLOCKED;
793 
794 	/*
795 	 * Grab info from PACKET_TAG_IPFORWARD tag prepended to the chain.
796 	 */
797         if (
798 #ifdef INET6
799 	    (isipv6 && (m->m_flags & M_IP6_NEXTHOP))
800 #ifdef INET
801 	    || (!isipv6 && (m->m_flags & M_IP_NEXTHOP))
802 #endif
803 #endif
804 #if defined(INET) && !defined(INET6)
805 	    (m->m_flags & M_IP_NEXTHOP)
806 #endif
807 	    )
808 		fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
809 
810 findpcb:
811 #ifdef INVARIANTS
812 	if (ti_locked == TI_RLOCKED) {
813 		INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
814 	} else {
815 		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
816 	}
817 #endif
818 #ifdef INET6
819 	if (isipv6 && fwd_tag != NULL) {
820 		struct sockaddr_in6 *next_hop6;
821 
822 		next_hop6 = (struct sockaddr_in6 *)(fwd_tag + 1);
823 		/*
824 		 * Transparently forwarded. Pretend to be the destination.
825 		 * Already got one like this?
826 		 */
827 		inp = in6_pcblookup_mbuf(&V_tcbinfo,
828 		    &ip6->ip6_src, th->th_sport, &ip6->ip6_dst, th->th_dport,
829 		    INPLOOKUP_WLOCKPCB, m->m_pkthdr.rcvif, m);
830 		if (!inp) {
831 			/*
832 			 * It's new.  Try to find the ambushing socket.
833 			 * Because we've rewritten the destination address,
834 			 * any hardware-generated hash is ignored.
835 			 */
836 			inp = in6_pcblookup(&V_tcbinfo, &ip6->ip6_src,
837 			    th->th_sport, &next_hop6->sin6_addr,
838 			    next_hop6->sin6_port ? ntohs(next_hop6->sin6_port) :
839 			    th->th_dport, INPLOOKUP_WILDCARD |
840 			    INPLOOKUP_WLOCKPCB, m->m_pkthdr.rcvif);
841 		}
842 	} else if (isipv6) {
843 		inp = in6_pcblookup_mbuf(&V_tcbinfo, &ip6->ip6_src,
844 		    th->th_sport, &ip6->ip6_dst, th->th_dport,
845 		    INPLOOKUP_WILDCARD | INPLOOKUP_WLOCKPCB,
846 		    m->m_pkthdr.rcvif, m);
847 	}
848 #endif /* INET6 */
849 #if defined(INET6) && defined(INET)
850 	else
851 #endif
852 #ifdef INET
853 	if (fwd_tag != NULL) {
854 		struct sockaddr_in *next_hop;
855 
856 		next_hop = (struct sockaddr_in *)(fwd_tag+1);
857 		/*
858 		 * Transparently forwarded. Pretend to be the destination.
859 		 * already got one like this?
860 		 */
861 		inp = in_pcblookup_mbuf(&V_tcbinfo, ip->ip_src, th->th_sport,
862 		    ip->ip_dst, th->th_dport, INPLOOKUP_WLOCKPCB,
863 		    m->m_pkthdr.rcvif, m);
864 		if (!inp) {
865 			/*
866 			 * It's new.  Try to find the ambushing socket.
867 			 * Because we've rewritten the destination address,
868 			 * any hardware-generated hash is ignored.
869 			 */
870 			inp = in_pcblookup(&V_tcbinfo, ip->ip_src,
871 			    th->th_sport, next_hop->sin_addr,
872 			    next_hop->sin_port ? ntohs(next_hop->sin_port) :
873 			    th->th_dport, INPLOOKUP_WILDCARD |
874 			    INPLOOKUP_WLOCKPCB, m->m_pkthdr.rcvif);
875 		}
876 	} else
877 		inp = in_pcblookup_mbuf(&V_tcbinfo, ip->ip_src,
878 		    th->th_sport, ip->ip_dst, th->th_dport,
879 		    INPLOOKUP_WILDCARD | INPLOOKUP_WLOCKPCB,
880 		    m->m_pkthdr.rcvif, m);
881 #endif /* INET */
882 
883 	/*
884 	 * If the INPCB does not exist then all data in the incoming
885 	 * segment is discarded and an appropriate RST is sent back.
886 	 * XXX MRT Send RST using which routing table?
887 	 */
888 	if (inp == NULL) {
889 		/*
890 		 * Log communication attempts to ports that are not
891 		 * in use.
892 		 */
893 		if ((tcp_log_in_vain == 1 && (thflags & TH_SYN)) ||
894 		    tcp_log_in_vain == 2) {
895 			if ((s = tcp_log_vain(NULL, th, (void *)ip, ip6)))
896 				log(LOG_INFO, "%s; %s: Connection attempt "
897 				    "to closed port\n", s, __func__);
898 		}
899 		/*
900 		 * When blackholing do not respond with a RST but
901 		 * completely ignore the segment and drop it.
902 		 */
903 		if ((V_blackhole == 1 && (thflags & TH_SYN)) ||
904 		    V_blackhole == 2)
905 			goto dropunlock;
906 
907 		rstreason = BANDLIM_RST_CLOSEDPORT;
908 		goto dropwithreset;
909 	}
910 	INP_WLOCK_ASSERT(inp);
911 	if ((inp->inp_flowtype == M_HASHTYPE_NONE) &&
912 	    (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) &&
913 	    ((inp->inp_socket == NULL) ||
914 	    (inp->inp_socket->so_options & SO_ACCEPTCONN) == 0)) {
915 		inp->inp_flowid = m->m_pkthdr.flowid;
916 		inp->inp_flowtype = M_HASHTYPE_GET(m);
917 	}
918 #ifdef IPSEC
919 #ifdef INET6
920 	if (isipv6 && ipsec6_in_reject(m, inp)) {
921 		goto dropunlock;
922 	} else
923 #endif /* INET6 */
924 	if (ipsec4_in_reject(m, inp) != 0) {
925 		goto dropunlock;
926 	}
927 #endif /* IPSEC */
928 
929 	/*
930 	 * Check the minimum TTL for socket.
931 	 */
932 	if (inp->inp_ip_minttl != 0) {
933 #ifdef INET6
934 		if (isipv6 && inp->inp_ip_minttl > ip6->ip6_hlim)
935 			goto dropunlock;
936 		else
937 #endif
938 		if (inp->inp_ip_minttl > ip->ip_ttl)
939 			goto dropunlock;
940 	}
941 
942 	/*
943 	 * A previous connection in TIMEWAIT state is supposed to catch stray
944 	 * or duplicate segments arriving late.  If this segment was a
945 	 * legitimate new connection attempt, the old INPCB gets removed and
946 	 * we can try again to find a listening socket.
947 	 *
948 	 * At this point, due to earlier optimism, we may hold only an inpcb
949 	 * lock, and not the inpcbinfo write lock.  If so, we need to try to
950 	 * acquire it, or if that fails, acquire a reference on the inpcb,
951 	 * drop all locks, acquire a global write lock, and then re-acquire
952 	 * the inpcb lock.  We may at that point discover that another thread
953 	 * has tried to free the inpcb, in which case we need to loop back
954 	 * and try to find a new inpcb to deliver to.
955 	 *
956 	 * XXXRW: It may be time to rethink timewait locking.
957 	 */
958 relocked:
959 	if (inp->inp_flags & INP_TIMEWAIT) {
960 		if (ti_locked == TI_UNLOCKED) {
961 			if (INP_INFO_TRY_RLOCK(&V_tcbinfo) == 0) {
962 				in_pcbref(inp);
963 				INP_WUNLOCK(inp);
964 				INP_INFO_RLOCK(&V_tcbinfo);
965 				ti_locked = TI_RLOCKED;
966 				INP_WLOCK(inp);
967 				if (in_pcbrele_wlocked(inp)) {
968 					inp = NULL;
969 					goto findpcb;
970 				}
971 			} else
972 				ti_locked = TI_RLOCKED;
973 		}
974 		INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
975 
976 		if (thflags & TH_SYN)
977 			tcp_dooptions(&to, optp, optlen, TO_SYN);
978 		/*
979 		 * NB: tcp_twcheck unlocks the INP and frees the mbuf.
980 		 */
981 		if (tcp_twcheck(inp, &to, th, m, tlen))
982 			goto findpcb;
983 		INP_INFO_RUNLOCK(&V_tcbinfo);
984 		return (IPPROTO_DONE);
985 	}
986 	/*
987 	 * The TCPCB may no longer exist if the connection is winding
988 	 * down or it is in the CLOSED state.  Either way we drop the
989 	 * segment and send an appropriate response.
990 	 */
991 	tp = intotcpcb(inp);
992 	if (tp == NULL || tp->t_state == TCPS_CLOSED) {
993 		rstreason = BANDLIM_RST_CLOSEDPORT;
994 		goto dropwithreset;
995 	}
996 
997 #ifdef TCP_OFFLOAD
998 	if (tp->t_flags & TF_TOE) {
999 		tcp_offload_input(tp, m);
1000 		m = NULL;	/* consumed by the TOE driver */
1001 		goto dropunlock;
1002 	}
1003 #endif
1004 
1005 	/*
1006 	 * We've identified a valid inpcb, but it could be that we need an
1007 	 * inpcbinfo write lock but don't hold it.  In this case, attempt to
1008 	 * acquire using the same strategy as the TIMEWAIT case above.  If we
1009 	 * relock, we have to jump back to 'relocked' as the connection might
1010 	 * now be in TIMEWAIT.
1011 	 */
1012 #ifdef INVARIANTS
1013 	if ((thflags & (TH_FIN | TH_RST)) != 0)
1014 		INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
1015 #endif
1016 	if (!((tp->t_state == TCPS_ESTABLISHED && (thflags & TH_SYN) == 0) ||
1017 	    (tp->t_state == TCPS_LISTEN && (thflags & TH_SYN)))) {
1018 		if (ti_locked == TI_UNLOCKED) {
1019 			if (INP_INFO_TRY_RLOCK(&V_tcbinfo) == 0) {
1020 				in_pcbref(inp);
1021 				INP_WUNLOCK(inp);
1022 				INP_INFO_RLOCK(&V_tcbinfo);
1023 				ti_locked = TI_RLOCKED;
1024 				INP_WLOCK(inp);
1025 				if (in_pcbrele_wlocked(inp)) {
1026 					inp = NULL;
1027 					goto findpcb;
1028 				}
1029 				goto relocked;
1030 			} else
1031 				ti_locked = TI_RLOCKED;
1032 		}
1033 		INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
1034 	}
1035 
1036 #ifdef MAC
1037 	INP_WLOCK_ASSERT(inp);
1038 	if (mac_inpcb_check_deliver(inp, m))
1039 		goto dropunlock;
1040 #endif
1041 	so = inp->inp_socket;
1042 	KASSERT(so != NULL, ("%s: so == NULL", __func__));
1043 #ifdef TCPDEBUG
1044 	if (so->so_options & SO_DEBUG) {
1045 		ostate = tp->t_state;
1046 #ifdef INET6
1047 		if (isipv6) {
1048 			bcopy((char *)ip6, (char *)tcp_saveipgen, sizeof(*ip6));
1049 		} else
1050 #endif
1051 			bcopy((char *)ip, (char *)tcp_saveipgen, sizeof(*ip));
1052 		tcp_savetcp = *th;
1053 	}
1054 #endif /* TCPDEBUG */
1055 	/*
1056 	 * When the socket is accepting connections (the INPCB is in LISTEN
1057 	 * state) we look into the SYN cache if this is a new connection
1058 	 * attempt or the completion of a previous one.
1059 	 */
1060 	if (so->so_options & SO_ACCEPTCONN) {
1061 		struct in_conninfo inc;
1062 
1063 		KASSERT(tp->t_state == TCPS_LISTEN, ("%s: so accepting but "
1064 		    "tp not listening", __func__));
1065 		bzero(&inc, sizeof(inc));
1066 #ifdef INET6
1067 		if (isipv6) {
1068 			inc.inc_flags |= INC_ISIPV6;
1069 			inc.inc6_faddr = ip6->ip6_src;
1070 			inc.inc6_laddr = ip6->ip6_dst;
1071 		} else
1072 #endif
1073 		{
1074 			inc.inc_faddr = ip->ip_src;
1075 			inc.inc_laddr = ip->ip_dst;
1076 		}
1077 		inc.inc_fport = th->th_sport;
1078 		inc.inc_lport = th->th_dport;
1079 		inc.inc_fibnum = so->so_fibnum;
1080 
1081 		/*
1082 		 * Check for an existing connection attempt in syncache if
1083 		 * the flag is only ACK.  A successful lookup creates a new
1084 		 * socket appended to the listen queue in SYN_RECEIVED state.
1085 		 */
1086 		if ((thflags & (TH_RST|TH_ACK|TH_SYN)) == TH_ACK) {
1087 
1088 			INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
1089 			/*
1090 			 * Parse the TCP options here because
1091 			 * syncookies need access to the reflected
1092 			 * timestamp.
1093 			 */
1094 			tcp_dooptions(&to, optp, optlen, 0);
1095 			/*
1096 			 * NB: syncache_expand() doesn't unlock
1097 			 * inp and tcpinfo locks.
1098 			 */
1099 			if (!syncache_expand(&inc, &to, th, &so, m)) {
1100 				/*
1101 				 * No syncache entry or ACK was not
1102 				 * for our SYN/ACK.  Send a RST.
1103 				 * NB: syncache did its own logging
1104 				 * of the failure cause.
1105 				 */
1106 				rstreason = BANDLIM_RST_OPENPORT;
1107 				goto dropwithreset;
1108 			}
1109 			if (so == NULL) {
1110 				/*
1111 				 * We completed the 3-way handshake
1112 				 * but could not allocate a socket
1113 				 * either due to memory shortage,
1114 				 * listen queue length limits or
1115 				 * global socket limits.  Send RST
1116 				 * or wait and have the remote end
1117 				 * retransmit the ACK for another
1118 				 * try.
1119 				 */
1120 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1121 					log(LOG_DEBUG, "%s; %s: Listen socket: "
1122 					    "Socket allocation failed due to "
1123 					    "limits or memory shortage, %s\n",
1124 					    s, __func__,
1125 					    V_tcp_sc_rst_sock_fail ?
1126 					    "sending RST" : "try again");
1127 				if (V_tcp_sc_rst_sock_fail) {
1128 					rstreason = BANDLIM_UNLIMITED;
1129 					goto dropwithreset;
1130 				} else
1131 					goto dropunlock;
1132 			}
1133 			/*
1134 			 * Socket is created in state SYN_RECEIVED.
1135 			 * Unlock the listen socket, lock the newly
1136 			 * created socket and update the tp variable.
1137 			 */
1138 			INP_WUNLOCK(inp);	/* listen socket */
1139 			inp = sotoinpcb(so);
1140 			/*
1141 			 * New connection inpcb is already locked by
1142 			 * syncache_expand().
1143 			 */
1144 			INP_WLOCK_ASSERT(inp);
1145 			tp = intotcpcb(inp);
1146 			KASSERT(tp->t_state == TCPS_SYN_RECEIVED,
1147 			    ("%s: ", __func__));
1148 #ifdef TCP_SIGNATURE
1149 			if (sig_checked == 0)  {
1150 				tcp_dooptions(&to, optp, optlen,
1151 				    (thflags & TH_SYN) ? TO_SYN : 0);
1152 				if (!tcp_signature_verify_input(m, off0, tlen,
1153 				    optlen, &to, th, tp->t_flags)) {
1154 
1155 					/*
1156 					 * In SYN_SENT state if it receives an
1157 					 * RST, it is allowed for further
1158 					 * processing.
1159 					 */
1160 					if ((thflags & TH_RST) == 0 ||
1161 					    (tp->t_state == TCPS_SYN_SENT) == 0)
1162 						goto dropunlock;
1163 				}
1164 				sig_checked = 1;
1165 			}
1166 #endif
1167 
1168 			/*
1169 			 * Process the segment and the data it
1170 			 * contains.  tcp_do_segment() consumes
1171 			 * the mbuf chain and unlocks the inpcb.
1172 			 */
1173 			tcp_do_segment(m, th, so, tp, drop_hdrlen, tlen,
1174 			    iptos, ti_locked);
1175 			INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1176 			return (IPPROTO_DONE);
1177 		}
1178 		/*
1179 		 * Segment flag validation for new connection attempts:
1180 		 *
1181 		 * Our (SYN|ACK) response was rejected.
1182 		 * Check with syncache and remove entry to prevent
1183 		 * retransmits.
1184 		 *
1185 		 * NB: syncache_chkrst does its own logging of failure
1186 		 * causes.
1187 		 */
1188 		if (thflags & TH_RST) {
1189 			syncache_chkrst(&inc, th);
1190 			goto dropunlock;
1191 		}
1192 		/*
1193 		 * We can't do anything without SYN.
1194 		 */
1195 		if ((thflags & TH_SYN) == 0) {
1196 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1197 				log(LOG_DEBUG, "%s; %s: Listen socket: "
1198 				    "SYN is missing, segment ignored\n",
1199 				    s, __func__);
1200 			TCPSTAT_INC(tcps_badsyn);
1201 			goto dropunlock;
1202 		}
1203 		/*
1204 		 * (SYN|ACK) is bogus on a listen socket.
1205 		 */
1206 		if (thflags & TH_ACK) {
1207 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1208 				log(LOG_DEBUG, "%s; %s: Listen socket: "
1209 				    "SYN|ACK invalid, segment rejected\n",
1210 				    s, __func__);
1211 			syncache_badack(&inc);	/* XXX: Not needed! */
1212 			TCPSTAT_INC(tcps_badsyn);
1213 			rstreason = BANDLIM_RST_OPENPORT;
1214 			goto dropwithreset;
1215 		}
1216 		/*
1217 		 * If the drop_synfin option is enabled, drop all
1218 		 * segments with both the SYN and FIN bits set.
1219 		 * This prevents e.g. nmap from identifying the
1220 		 * TCP/IP stack.
1221 		 * XXX: Poor reasoning.  nmap has other methods
1222 		 * and is constantly refining its stack detection
1223 		 * strategies.
1224 		 * XXX: This is a violation of the TCP specification
1225 		 * and was used by RFC1644.
1226 		 */
1227 		if ((thflags & TH_FIN) && V_drop_synfin) {
1228 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1229 				log(LOG_DEBUG, "%s; %s: Listen socket: "
1230 				    "SYN|FIN segment ignored (based on "
1231 				    "sysctl setting)\n", s, __func__);
1232 			TCPSTAT_INC(tcps_badsyn);
1233 			goto dropunlock;
1234 		}
1235 		/*
1236 		 * Segment's flags are (SYN) or (SYN|FIN).
1237 		 *
1238 		 * TH_PUSH, TH_URG, TH_ECE, TH_CWR are ignored
1239 		 * as they do not affect the state of the TCP FSM.
1240 		 * The data pointed to by TH_URG and th_urp is ignored.
1241 		 */
1242 		KASSERT((thflags & (TH_RST|TH_ACK)) == 0,
1243 		    ("%s: Listen socket: TH_RST or TH_ACK set", __func__));
1244 		KASSERT(thflags & (TH_SYN),
1245 		    ("%s: Listen socket: TH_SYN not set", __func__));
1246 #ifdef INET6
1247 		/*
1248 		 * If deprecated address is forbidden,
1249 		 * we do not accept SYN to deprecated interface
1250 		 * address to prevent any new inbound connection from
1251 		 * getting established.
1252 		 * When we do not accept SYN, we send a TCP RST,
1253 		 * with deprecated source address (instead of dropping
1254 		 * it).  We compromise it as it is much better for peer
1255 		 * to send a RST, and RST will be the final packet
1256 		 * for the exchange.
1257 		 *
1258 		 * If we do not forbid deprecated addresses, we accept
1259 		 * the SYN packet.  RFC2462 does not suggest dropping
1260 		 * SYN in this case.
1261 		 * If we decipher RFC2462 5.5.4, it says like this:
1262 		 * 1. use of deprecated addr with existing
1263 		 *    communication is okay - "SHOULD continue to be
1264 		 *    used"
1265 		 * 2. use of it with new communication:
1266 		 *   (2a) "SHOULD NOT be used if alternate address
1267 		 *        with sufficient scope is available"
1268 		 *   (2b) nothing mentioned otherwise.
1269 		 * Here we fall into (2b) case as we have no choice in
1270 		 * our source address selection - we must obey the peer.
1271 		 *
1272 		 * The wording in RFC2462 is confusing, and there are
1273 		 * multiple description text for deprecated address
1274 		 * handling - worse, they are not exactly the same.
1275 		 * I believe 5.5.4 is the best one, so we follow 5.5.4.
1276 		 */
1277 		if (isipv6 && !V_ip6_use_deprecated) {
1278 			struct in6_ifaddr *ia6;
1279 
1280 			ia6 = in6ifa_ifwithaddr(&ip6->ip6_dst, 0 /* XXX */);
1281 			if (ia6 != NULL &&
1282 			    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
1283 				ifa_free(&ia6->ia_ifa);
1284 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1285 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1286 					"Connection attempt to deprecated "
1287 					"IPv6 address rejected\n",
1288 					s, __func__);
1289 				rstreason = BANDLIM_RST_OPENPORT;
1290 				goto dropwithreset;
1291 			}
1292 			if (ia6)
1293 				ifa_free(&ia6->ia_ifa);
1294 		}
1295 #endif /* INET6 */
1296 		/*
1297 		 * Basic sanity checks on incoming SYN requests:
1298 		 *   Don't respond if the destination is a link layer
1299 		 *	broadcast according to RFC1122 4.2.3.10, p. 104.
1300 		 *   If it is from this socket it must be forged.
1301 		 *   Don't respond if the source or destination is a
1302 		 *	global or subnet broad- or multicast address.
1303 		 *   Note that it is quite possible to receive unicast
1304 		 *	link-layer packets with a broadcast IP address. Use
1305 		 *	in_broadcast() to find them.
1306 		 */
1307 		if (m->m_flags & (M_BCAST|M_MCAST)) {
1308 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1309 			    log(LOG_DEBUG, "%s; %s: Listen socket: "
1310 				"Connection attempt from broad- or multicast "
1311 				"link layer address ignored\n", s, __func__);
1312 			goto dropunlock;
1313 		}
1314 #ifdef INET6
1315 		if (isipv6) {
1316 			if (th->th_dport == th->th_sport &&
1317 			    IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst, &ip6->ip6_src)) {
1318 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1319 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1320 					"Connection attempt to/from self "
1321 					"ignored\n", s, __func__);
1322 				goto dropunlock;
1323 			}
1324 			if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
1325 			    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
1326 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1327 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1328 					"Connection attempt from/to multicast "
1329 					"address ignored\n", s, __func__);
1330 				goto dropunlock;
1331 			}
1332 		}
1333 #endif
1334 #if defined(INET) && defined(INET6)
1335 		else
1336 #endif
1337 #ifdef INET
1338 		{
1339 			if (th->th_dport == th->th_sport &&
1340 			    ip->ip_dst.s_addr == ip->ip_src.s_addr) {
1341 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1342 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1343 					"Connection attempt from/to self "
1344 					"ignored\n", s, __func__);
1345 				goto dropunlock;
1346 			}
1347 			if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
1348 			    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
1349 			    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
1350 			    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif)) {
1351 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1352 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1353 					"Connection attempt from/to broad- "
1354 					"or multicast address ignored\n",
1355 					s, __func__);
1356 				goto dropunlock;
1357 			}
1358 		}
1359 #endif
1360 		/*
1361 		 * SYN appears to be valid.  Create compressed TCP state
1362 		 * for syncache.
1363 		 */
1364 #ifdef TCPDEBUG
1365 		if (so->so_options & SO_DEBUG)
1366 			tcp_trace(TA_INPUT, ostate, tp,
1367 			    (void *)tcp_saveipgen, &tcp_savetcp, 0);
1368 #endif
1369 		TCP_PROBE3(debug__input, tp, th, mtod(m, const char *));
1370 		tcp_dooptions(&to, optp, optlen, TO_SYN);
1371 		syncache_add(&inc, &to, th, inp, &so, m, NULL, NULL);
1372 		/*
1373 		 * Entry added to syncache and mbuf consumed.
1374 		 * Only the listen socket is unlocked by syncache_add().
1375 		 */
1376 		if (ti_locked == TI_RLOCKED) {
1377 			INP_INFO_RUNLOCK(&V_tcbinfo);
1378 			ti_locked = TI_UNLOCKED;
1379 		}
1380 		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1381 		return (IPPROTO_DONE);
1382 	} else if (tp->t_state == TCPS_LISTEN) {
1383 		/*
1384 		 * When a listen socket is torn down the SO_ACCEPTCONN
1385 		 * flag is removed first while connections are drained
1386 		 * from the accept queue in a unlock/lock cycle of the
1387 		 * ACCEPT_LOCK, opening a race condition allowing a SYN
1388 		 * attempt go through unhandled.
1389 		 */
1390 		goto dropunlock;
1391 	}
1392 
1393 #ifdef TCP_SIGNATURE
1394 	if (sig_checked == 0)  {
1395 		tcp_dooptions(&to, optp, optlen,
1396 		    (thflags & TH_SYN) ? TO_SYN : 0);
1397 		if (!tcp_signature_verify_input(m, off0, tlen, optlen, &to,
1398 		    th, tp->t_flags)) {
1399 
1400 			/*
1401 			 * In SYN_SENT state if it receives an RST, it is
1402 			 * allowed for further processing.
1403 			 */
1404 			if ((thflags & TH_RST) == 0 ||
1405 			    (tp->t_state == TCPS_SYN_SENT) == 0)
1406 				goto dropunlock;
1407 		}
1408 		sig_checked = 1;
1409 	}
1410 #endif
1411 
1412 	TCP_PROBE5(receive, NULL, tp, mtod(m, const char *), tp, th);
1413 
1414 	/*
1415 	 * Segment belongs to a connection in SYN_SENT, ESTABLISHED or later
1416 	 * state.  tcp_do_segment() always consumes the mbuf chain, unlocks
1417 	 * the inpcb, and unlocks pcbinfo.
1418 	 */
1419 	tcp_do_segment(m, th, so, tp, drop_hdrlen, tlen, iptos, ti_locked);
1420 	INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1421 	return (IPPROTO_DONE);
1422 
1423 dropwithreset:
1424 	TCP_PROBE5(receive, NULL, tp, mtod(m, const char *), tp, th);
1425 
1426 	if (ti_locked == TI_RLOCKED) {
1427 		INP_INFO_RUNLOCK(&V_tcbinfo);
1428 		ti_locked = TI_UNLOCKED;
1429 	}
1430 #ifdef INVARIANTS
1431 	else {
1432 		KASSERT(ti_locked == TI_UNLOCKED, ("%s: dropwithreset "
1433 		    "ti_locked: %d", __func__, ti_locked));
1434 		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1435 	}
1436 #endif
1437 
1438 	if (inp != NULL) {
1439 		tcp_dropwithreset(m, th, tp, tlen, rstreason);
1440 		INP_WUNLOCK(inp);
1441 	} else
1442 		tcp_dropwithreset(m, th, NULL, tlen, rstreason);
1443 	m = NULL;	/* mbuf chain got consumed. */
1444 	goto drop;
1445 
1446 dropunlock:
1447 	if (m != NULL)
1448 		TCP_PROBE5(receive, NULL, tp, mtod(m, const char *), tp, th);
1449 
1450 	if (ti_locked == TI_RLOCKED) {
1451 		INP_INFO_RUNLOCK(&V_tcbinfo);
1452 		ti_locked = TI_UNLOCKED;
1453 	}
1454 #ifdef INVARIANTS
1455 	else {
1456 		KASSERT(ti_locked == TI_UNLOCKED, ("%s: dropunlock "
1457 		    "ti_locked: %d", __func__, ti_locked));
1458 		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1459 	}
1460 #endif
1461 
1462 	if (inp != NULL)
1463 		INP_WUNLOCK(inp);
1464 
1465 drop:
1466 	INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1467 	if (s != NULL)
1468 		free(s, M_TCPLOG);
1469 	if (m != NULL)
1470 		m_freem(m);
1471 	return (IPPROTO_DONE);
1472 }
1473 
1474 static void
1475 tcp_do_segment(struct mbuf *m, struct tcphdr *th, struct socket *so,
1476     struct tcpcb *tp, int drop_hdrlen, int tlen, uint8_t iptos,
1477     int ti_locked)
1478 {
1479 	int thflags, acked, ourfinisacked, needoutput = 0;
1480 	int rstreason, todrop, win;
1481 	u_long tiwin;
1482 	char *s;
1483 	struct in_conninfo *inc;
1484 	struct mbuf *mfree;
1485 	struct tcpopt to;
1486 
1487 #ifdef TCPDEBUG
1488 	/*
1489 	 * The size of tcp_saveipgen must be the size of the max ip header,
1490 	 * now IPv6.
1491 	 */
1492 	u_char tcp_saveipgen[IP6_HDR_LEN];
1493 	struct tcphdr tcp_savetcp;
1494 	short ostate = 0;
1495 #endif
1496 	thflags = th->th_flags;
1497 	inc = &tp->t_inpcb->inp_inc;
1498 	tp->sackhint.last_sack_ack = 0;
1499 
1500 	/*
1501 	 * If this is either a state-changing packet or current state isn't
1502 	 * established, we require a write lock on tcbinfo.  Otherwise, we
1503 	 * allow the tcbinfo to be in either alocked or unlocked, as the
1504 	 * caller may have unnecessarily acquired a write lock due to a race.
1505 	 */
1506 	if ((thflags & (TH_SYN | TH_FIN | TH_RST)) != 0 ||
1507 	    tp->t_state != TCPS_ESTABLISHED) {
1508 		KASSERT(ti_locked == TI_RLOCKED, ("%s ti_locked %d for "
1509 		    "SYN/FIN/RST/!EST", __func__, ti_locked));
1510 		INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
1511 	} else {
1512 #ifdef INVARIANTS
1513 		if (ti_locked == TI_RLOCKED)
1514 			INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
1515 		else {
1516 			KASSERT(ti_locked == TI_UNLOCKED, ("%s: EST "
1517 			    "ti_locked: %d", __func__, ti_locked));
1518 			INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1519 		}
1520 #endif
1521 	}
1522 	INP_WLOCK_ASSERT(tp->t_inpcb);
1523 	KASSERT(tp->t_state > TCPS_LISTEN, ("%s: TCPS_LISTEN",
1524 	    __func__));
1525 	KASSERT(tp->t_state != TCPS_TIME_WAIT, ("%s: TCPS_TIME_WAIT",
1526 	    __func__));
1527 
1528 #ifdef TCPPCAP
1529 	/* Save segment, if requested. */
1530 	tcp_pcap_add(th, m, &(tp->t_inpkts));
1531 #endif
1532 
1533 	/*
1534 	 * Segment received on connection.
1535 	 * Reset idle time and keep-alive timer.
1536 	 * XXX: This should be done after segment
1537 	 * validation to ignore broken/spoofed segs.
1538 	 */
1539 	tp->t_rcvtime = ticks;
1540 	if (TCPS_HAVEESTABLISHED(tp->t_state))
1541 		tcp_timer_activate(tp, TT_KEEP, TP_KEEPIDLE(tp));
1542 
1543 	/*
1544 	 * Scale up the window into a 32-bit value.
1545 	 * For the SYN_SENT state the scale is zero.
1546 	 */
1547 	tiwin = th->th_win << tp->snd_scale;
1548 
1549 	/*
1550 	 * TCP ECN processing.
1551 	 */
1552 	if (tp->t_flags & TF_ECN_PERMIT) {
1553 		if (thflags & TH_CWR)
1554 			tp->t_flags &= ~TF_ECN_SND_ECE;
1555 		switch (iptos & IPTOS_ECN_MASK) {
1556 		case IPTOS_ECN_CE:
1557 			tp->t_flags |= TF_ECN_SND_ECE;
1558 			TCPSTAT_INC(tcps_ecn_ce);
1559 			break;
1560 		case IPTOS_ECN_ECT0:
1561 			TCPSTAT_INC(tcps_ecn_ect0);
1562 			break;
1563 		case IPTOS_ECN_ECT1:
1564 			TCPSTAT_INC(tcps_ecn_ect1);
1565 			break;
1566 		}
1567 
1568 		/* Process a packet differently from RFC3168. */
1569 		cc_ecnpkt_handler(tp, th, iptos);
1570 
1571 		/* Congestion experienced. */
1572 		if (thflags & TH_ECE) {
1573 			cc_cong_signal(tp, th, CC_ECN);
1574 		}
1575 	}
1576 
1577 	/*
1578 	 * Parse options on any incoming segment.
1579 	 */
1580 	tcp_dooptions(&to, (u_char *)(th + 1),
1581 	    (th->th_off << 2) - sizeof(struct tcphdr),
1582 	    (thflags & TH_SYN) ? TO_SYN : 0);
1583 
1584 	/*
1585 	 * If echoed timestamp is later than the current time,
1586 	 * fall back to non RFC1323 RTT calculation.  Normalize
1587 	 * timestamp if syncookies were used when this connection
1588 	 * was established.
1589 	 */
1590 	if ((to.to_flags & TOF_TS) && (to.to_tsecr != 0)) {
1591 		to.to_tsecr -= tp->ts_offset;
1592 		if (TSTMP_GT(to.to_tsecr, tcp_ts_getticks()))
1593 			to.to_tsecr = 0;
1594 	}
1595 	/*
1596 	 * If timestamps were negotiated during SYN/ACK they should
1597 	 * appear on every segment during this session and vice versa.
1598 	 */
1599 	if ((tp->t_flags & TF_RCVD_TSTMP) && !(to.to_flags & TOF_TS)) {
1600 		if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1601 			log(LOG_DEBUG, "%s; %s: Timestamp missing, "
1602 			    "no action\n", s, __func__);
1603 			free(s, M_TCPLOG);
1604 		}
1605 	}
1606 	if (!(tp->t_flags & TF_RCVD_TSTMP) && (to.to_flags & TOF_TS)) {
1607 		if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1608 			log(LOG_DEBUG, "%s; %s: Timestamp not expected, "
1609 			    "no action\n", s, __func__);
1610 			free(s, M_TCPLOG);
1611 		}
1612 	}
1613 
1614 	/*
1615 	 * Process options only when we get SYN/ACK back. The SYN case
1616 	 * for incoming connections is handled in tcp_syncache.
1617 	 * According to RFC1323 the window field in a SYN (i.e., a <SYN>
1618 	 * or <SYN,ACK>) segment itself is never scaled.
1619 	 * XXX this is traditional behavior, may need to be cleaned up.
1620 	 */
1621 	if (tp->t_state == TCPS_SYN_SENT && (thflags & TH_SYN)) {
1622 		if ((to.to_flags & TOF_SCALE) &&
1623 		    (tp->t_flags & TF_REQ_SCALE)) {
1624 			tp->t_flags |= TF_RCVD_SCALE;
1625 			tp->snd_scale = to.to_wscale;
1626 		}
1627 		/*
1628 		 * Initial send window.  It will be updated with
1629 		 * the next incoming segment to the scaled value.
1630 		 */
1631 		tp->snd_wnd = th->th_win;
1632 		if (to.to_flags & TOF_TS) {
1633 			tp->t_flags |= TF_RCVD_TSTMP;
1634 			tp->ts_recent = to.to_tsval;
1635 			tp->ts_recent_age = tcp_ts_getticks();
1636 		}
1637 		if (to.to_flags & TOF_MSS)
1638 			tcp_mss(tp, to.to_mss);
1639 		if ((tp->t_flags & TF_SACK_PERMIT) &&
1640 		    (to.to_flags & TOF_SACKPERM) == 0)
1641 			tp->t_flags &= ~TF_SACK_PERMIT;
1642 	}
1643 
1644 	/*
1645 	 * Header prediction: check for the two common cases
1646 	 * of a uni-directional data xfer.  If the packet has
1647 	 * no control flags, is in-sequence, the window didn't
1648 	 * change and we're not retransmitting, it's a
1649 	 * candidate.  If the length is zero and the ack moved
1650 	 * forward, we're the sender side of the xfer.  Just
1651 	 * free the data acked & wake any higher level process
1652 	 * that was blocked waiting for space.  If the length
1653 	 * is non-zero and the ack didn't move, we're the
1654 	 * receiver side.  If we're getting packets in-order
1655 	 * (the reassembly queue is empty), add the data to
1656 	 * the socket buffer and note that we need a delayed ack.
1657 	 * Make sure that the hidden state-flags are also off.
1658 	 * Since we check for TCPS_ESTABLISHED first, it can only
1659 	 * be TH_NEEDSYN.
1660 	 */
1661 	if (tp->t_state == TCPS_ESTABLISHED &&
1662 	    th->th_seq == tp->rcv_nxt &&
1663 	    (thflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
1664 	    tp->snd_nxt == tp->snd_max &&
1665 	    tiwin && tiwin == tp->snd_wnd &&
1666 	    ((tp->t_flags & (TF_NEEDSYN|TF_NEEDFIN)) == 0) &&
1667 	    LIST_EMPTY(&tp->t_segq) &&
1668 	    ((to.to_flags & TOF_TS) == 0 ||
1669 	     TSTMP_GEQ(to.to_tsval, tp->ts_recent)) ) {
1670 
1671 		/*
1672 		 * If last ACK falls within this segment's sequence numbers,
1673 		 * record the timestamp.
1674 		 * NOTE that the test is modified according to the latest
1675 		 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
1676 		 */
1677 		if ((to.to_flags & TOF_TS) != 0 &&
1678 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1679 			tp->ts_recent_age = tcp_ts_getticks();
1680 			tp->ts_recent = to.to_tsval;
1681 		}
1682 
1683 		if (tlen == 0) {
1684 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
1685 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
1686 			    !IN_RECOVERY(tp->t_flags) &&
1687 			    (to.to_flags & TOF_SACK) == 0 &&
1688 			    TAILQ_EMPTY(&tp->snd_holes)) {
1689 				/*
1690 				 * This is a pure ack for outstanding data.
1691 				 */
1692 				if (ti_locked == TI_RLOCKED)
1693 					INP_INFO_RUNLOCK(&V_tcbinfo);
1694 				ti_locked = TI_UNLOCKED;
1695 
1696 				TCPSTAT_INC(tcps_predack);
1697 
1698 				/*
1699 				 * "bad retransmit" recovery.
1700 				 */
1701 				if (tp->t_rxtshift == 1 &&
1702 				    tp->t_flags & TF_PREVVALID &&
1703 				    (int)(ticks - tp->t_badrxtwin) < 0) {
1704 					cc_cong_signal(tp, th, CC_RTO_ERR);
1705 				}
1706 
1707 				/*
1708 				 * Recalculate the transmit timer / rtt.
1709 				 *
1710 				 * Some boxes send broken timestamp replies
1711 				 * during the SYN+ACK phase, ignore
1712 				 * timestamps of 0 or we could calculate a
1713 				 * huge RTT and blow up the retransmit timer.
1714 				 */
1715 				if ((to.to_flags & TOF_TS) != 0 &&
1716 				    to.to_tsecr) {
1717 					u_int t;
1718 
1719 					t = tcp_ts_getticks() - to.to_tsecr;
1720 					if (!tp->t_rttlow || tp->t_rttlow > t)
1721 						tp->t_rttlow = t;
1722 					tcp_xmit_timer(tp,
1723 					    TCP_TS_TO_TICKS(t) + 1);
1724 				} else if (tp->t_rtttime &&
1725 				    SEQ_GT(th->th_ack, tp->t_rtseq)) {
1726 					if (!tp->t_rttlow ||
1727 					    tp->t_rttlow > ticks - tp->t_rtttime)
1728 						tp->t_rttlow = ticks - tp->t_rtttime;
1729 					tcp_xmit_timer(tp,
1730 							ticks - tp->t_rtttime);
1731 				}
1732 				acked = BYTES_THIS_ACK(tp, th);
1733 
1734 				/* Run HHOOK_TCP_ESTABLISHED_IN helper hooks. */
1735 				hhook_run_tcp_est_in(tp, th, &to);
1736 
1737 				TCPSTAT_INC(tcps_rcvackpack);
1738 				TCPSTAT_ADD(tcps_rcvackbyte, acked);
1739 				sbdrop(&so->so_snd, acked);
1740 				if (SEQ_GT(tp->snd_una, tp->snd_recover) &&
1741 				    SEQ_LEQ(th->th_ack, tp->snd_recover))
1742 					tp->snd_recover = th->th_ack - 1;
1743 
1744 				/*
1745 				 * Let the congestion control algorithm update
1746 				 * congestion control related information. This
1747 				 * typically means increasing the congestion
1748 				 * window.
1749 				 */
1750 				cc_ack_received(tp, th, CC_ACK);
1751 
1752 				tp->snd_una = th->th_ack;
1753 				/*
1754 				 * Pull snd_wl2 up to prevent seq wrap relative
1755 				 * to th_ack.
1756 				 */
1757 				tp->snd_wl2 = th->th_ack;
1758 				tp->t_dupacks = 0;
1759 				m_freem(m);
1760 
1761 				/*
1762 				 * If all outstanding data are acked, stop
1763 				 * retransmit timer, otherwise restart timer
1764 				 * using current (possibly backed-off) value.
1765 				 * If process is waiting for space,
1766 				 * wakeup/selwakeup/signal.  If data
1767 				 * are ready to send, let tcp_output
1768 				 * decide between more output or persist.
1769 				 */
1770 #ifdef TCPDEBUG
1771 				if (so->so_options & SO_DEBUG)
1772 					tcp_trace(TA_INPUT, ostate, tp,
1773 					    (void *)tcp_saveipgen,
1774 					    &tcp_savetcp, 0);
1775 #endif
1776 				TCP_PROBE3(debug__input, tp, th,
1777 					mtod(m, const char *));
1778 				if (tp->snd_una == tp->snd_max)
1779 					tcp_timer_activate(tp, TT_REXMT, 0);
1780 				else if (!tcp_timer_active(tp, TT_PERSIST))
1781 					tcp_timer_activate(tp, TT_REXMT,
1782 						      tp->t_rxtcur);
1783 				sowwakeup(so);
1784 				if (sbavail(&so->so_snd))
1785 					(void) tcp_output(tp);
1786 				goto check_delack;
1787 			}
1788 		} else if (th->th_ack == tp->snd_una &&
1789 		    tlen <= sbspace(&so->so_rcv)) {
1790 			int newsize = 0;	/* automatic sockbuf scaling */
1791 
1792 			/*
1793 			 * This is a pure, in-sequence data packet with
1794 			 * nothing on the reassembly queue and we have enough
1795 			 * buffer space to take it.
1796 			 */
1797 			if (ti_locked == TI_RLOCKED)
1798 				INP_INFO_RUNLOCK(&V_tcbinfo);
1799 			ti_locked = TI_UNLOCKED;
1800 
1801 			/* Clean receiver SACK report if present */
1802 			if ((tp->t_flags & TF_SACK_PERMIT) && tp->rcv_numsacks)
1803 				tcp_clean_sackreport(tp);
1804 			TCPSTAT_INC(tcps_preddat);
1805 			tp->rcv_nxt += tlen;
1806 			/*
1807 			 * Pull snd_wl1 up to prevent seq wrap relative to
1808 			 * th_seq.
1809 			 */
1810 			tp->snd_wl1 = th->th_seq;
1811 			/*
1812 			 * Pull rcv_up up to prevent seq wrap relative to
1813 			 * rcv_nxt.
1814 			 */
1815 			tp->rcv_up = tp->rcv_nxt;
1816 			TCPSTAT_INC(tcps_rcvpack);
1817 			TCPSTAT_ADD(tcps_rcvbyte, tlen);
1818 #ifdef TCPDEBUG
1819 			if (so->so_options & SO_DEBUG)
1820 				tcp_trace(TA_INPUT, ostate, tp,
1821 				    (void *)tcp_saveipgen, &tcp_savetcp, 0);
1822 #endif
1823 			TCP_PROBE3(debug__input, tp, th, mtod(m, const char *));
1824 
1825 		/*
1826 		 * Automatic sizing of receive socket buffer.  Often the send
1827 		 * buffer size is not optimally adjusted to the actual network
1828 		 * conditions at hand (delay bandwidth product).  Setting the
1829 		 * buffer size too small limits throughput on links with high
1830 		 * bandwidth and high delay (eg. trans-continental/oceanic links).
1831 		 *
1832 		 * On the receive side the socket buffer memory is only rarely
1833 		 * used to any significant extent.  This allows us to be much
1834 		 * more aggressive in scaling the receive socket buffer.  For
1835 		 * the case that the buffer space is actually used to a large
1836 		 * extent and we run out of kernel memory we can simply drop
1837 		 * the new segments; TCP on the sender will just retransmit it
1838 		 * later.  Setting the buffer size too big may only consume too
1839 		 * much kernel memory if the application doesn't read() from
1840 		 * the socket or packet loss or reordering makes use of the
1841 		 * reassembly queue.
1842 		 *
1843 		 * The criteria to step up the receive buffer one notch are:
1844 		 *  1. Application has not set receive buffer size with
1845 		 *     SO_RCVBUF. Setting SO_RCVBUF clears SB_AUTOSIZE.
1846 		 *  2. the number of bytes received during the time it takes
1847 		 *     one timestamp to be reflected back to us (the RTT);
1848 		 *  3. received bytes per RTT is within seven eighth of the
1849 		 *     current socket buffer size;
1850 		 *  4. receive buffer size has not hit maximal automatic size;
1851 		 *
1852 		 * This algorithm does one step per RTT at most and only if
1853 		 * we receive a bulk stream w/o packet losses or reorderings.
1854 		 * Shrinking the buffer during idle times is not necessary as
1855 		 * it doesn't consume any memory when idle.
1856 		 *
1857 		 * TODO: Only step up if the application is actually serving
1858 		 * the buffer to better manage the socket buffer resources.
1859 		 */
1860 			if (V_tcp_do_autorcvbuf &&
1861 			    (to.to_flags & TOF_TS) &&
1862 			    to.to_tsecr &&
1863 			    (so->so_rcv.sb_flags & SB_AUTOSIZE)) {
1864 				if (TSTMP_GT(to.to_tsecr, tp->rfbuf_ts) &&
1865 				    to.to_tsecr - tp->rfbuf_ts < hz) {
1866 					if (tp->rfbuf_cnt >
1867 					    (so->so_rcv.sb_hiwat / 8 * 7) &&
1868 					    so->so_rcv.sb_hiwat <
1869 					    V_tcp_autorcvbuf_max) {
1870 						newsize =
1871 						    min(so->so_rcv.sb_hiwat +
1872 						    V_tcp_autorcvbuf_inc,
1873 						    V_tcp_autorcvbuf_max);
1874 					}
1875 					/* Start over with next RTT. */
1876 					tp->rfbuf_ts = 0;
1877 					tp->rfbuf_cnt = 0;
1878 				} else
1879 					tp->rfbuf_cnt += tlen;	/* add up */
1880 			}
1881 
1882 			/* Add data to socket buffer. */
1883 			SOCKBUF_LOCK(&so->so_rcv);
1884 			if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
1885 				m_freem(m);
1886 			} else {
1887 				/*
1888 				 * Set new socket buffer size.
1889 				 * Give up when limit is reached.
1890 				 */
1891 				if (newsize)
1892 					if (!sbreserve_locked(&so->so_rcv,
1893 					    newsize, so, NULL))
1894 						so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
1895 				m_adj(m, drop_hdrlen);	/* delayed header drop */
1896 				sbappendstream_locked(&so->so_rcv, m, 0);
1897 			}
1898 			/* NB: sorwakeup_locked() does an implicit unlock. */
1899 			sorwakeup_locked(so);
1900 			if (DELAY_ACK(tp, tlen)) {
1901 				tp->t_flags |= TF_DELACK;
1902 			} else {
1903 				tp->t_flags |= TF_ACKNOW;
1904 				tcp_output(tp);
1905 			}
1906 			goto check_delack;
1907 		}
1908 	}
1909 
1910 	/*
1911 	 * Calculate amount of space in receive window,
1912 	 * and then do TCP input processing.
1913 	 * Receive window is amount of space in rcv queue,
1914 	 * but not less than advertised window.
1915 	 */
1916 	win = sbspace(&so->so_rcv);
1917 	if (win < 0)
1918 		win = 0;
1919 	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1920 
1921 	/* Reset receive buffer auto scaling when not in bulk receive mode. */
1922 	tp->rfbuf_ts = 0;
1923 	tp->rfbuf_cnt = 0;
1924 
1925 	switch (tp->t_state) {
1926 
1927 	/*
1928 	 * If the state is SYN_RECEIVED:
1929 	 *	if seg contains an ACK, but not for our SYN/ACK, send a RST.
1930 	 */
1931 	case TCPS_SYN_RECEIVED:
1932 		if ((thflags & TH_ACK) &&
1933 		    (SEQ_LEQ(th->th_ack, tp->snd_una) ||
1934 		     SEQ_GT(th->th_ack, tp->snd_max))) {
1935 				rstreason = BANDLIM_RST_OPENPORT;
1936 				goto dropwithreset;
1937 		}
1938 		break;
1939 
1940 	/*
1941 	 * If the state is SYN_SENT:
1942 	 *	if seg contains an ACK, but not for our SYN, drop the input.
1943 	 *	if seg contains a RST, then drop the connection.
1944 	 *	if seg does not contain SYN, then drop it.
1945 	 * Otherwise this is an acceptable SYN segment
1946 	 *	initialize tp->rcv_nxt and tp->irs
1947 	 *	if seg contains ack then advance tp->snd_una
1948 	 *	if seg contains an ECE and ECN support is enabled, the stream
1949 	 *	    is ECN capable.
1950 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1951 	 *	arrange for segment to be acked (eventually)
1952 	 *	continue processing rest of data/controls, beginning with URG
1953 	 */
1954 	case TCPS_SYN_SENT:
1955 		if ((thflags & TH_ACK) &&
1956 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
1957 		     SEQ_GT(th->th_ack, tp->snd_max))) {
1958 			rstreason = BANDLIM_UNLIMITED;
1959 			goto dropwithreset;
1960 		}
1961 		if ((thflags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) {
1962 			TCP_PROBE5(connect__refused, NULL, tp,
1963 			    mtod(m, const char *), tp, th);
1964 			tp = tcp_drop(tp, ECONNREFUSED);
1965 		}
1966 		if (thflags & TH_RST)
1967 			goto drop;
1968 		if (!(thflags & TH_SYN))
1969 			goto drop;
1970 
1971 		tp->irs = th->th_seq;
1972 		tcp_rcvseqinit(tp);
1973 		if (thflags & TH_ACK) {
1974 			TCPSTAT_INC(tcps_connects);
1975 			soisconnected(so);
1976 #ifdef MAC
1977 			mac_socketpeer_set_from_mbuf(m, so);
1978 #endif
1979 			/* Do window scaling on this connection? */
1980 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1981 				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1982 				tp->rcv_scale = tp->request_r_scale;
1983 			}
1984 			tp->rcv_adv += imin(tp->rcv_wnd,
1985 			    TCP_MAXWIN << tp->rcv_scale);
1986 			tp->snd_una++;		/* SYN is acked */
1987 			/*
1988 			 * If there's data, delay ACK; if there's also a FIN
1989 			 * ACKNOW will be turned on later.
1990 			 */
1991 			if (DELAY_ACK(tp, tlen) && tlen != 0)
1992 				tcp_timer_activate(tp, TT_DELACK,
1993 				    tcp_delacktime);
1994 			else
1995 				tp->t_flags |= TF_ACKNOW;
1996 
1997 			if ((thflags & TH_ECE) && V_tcp_do_ecn) {
1998 				tp->t_flags |= TF_ECN_PERMIT;
1999 				TCPSTAT_INC(tcps_ecn_shs);
2000 			}
2001 
2002 			/*
2003 			 * Received <SYN,ACK> in SYN_SENT[*] state.
2004 			 * Transitions:
2005 			 *	SYN_SENT  --> ESTABLISHED
2006 			 *	SYN_SENT* --> FIN_WAIT_1
2007 			 */
2008 			tp->t_starttime = ticks;
2009 			if (tp->t_flags & TF_NEEDFIN) {
2010 				tcp_state_change(tp, TCPS_FIN_WAIT_1);
2011 				tp->t_flags &= ~TF_NEEDFIN;
2012 				thflags &= ~TH_SYN;
2013 			} else {
2014 				tcp_state_change(tp, TCPS_ESTABLISHED);
2015 				TCP_PROBE5(connect__established, NULL, tp,
2016 				    mtod(m, const char *), tp, th);
2017 				cc_conn_init(tp);
2018 				tcp_timer_activate(tp, TT_KEEP,
2019 				    TP_KEEPIDLE(tp));
2020 			}
2021 		} else {
2022 			/*
2023 			 * Received initial SYN in SYN-SENT[*] state =>
2024 			 * simultaneous open.
2025 			 * If it succeeds, connection is * half-synchronized.
2026 			 * Otherwise, do 3-way handshake:
2027 			 *        SYN-SENT -> SYN-RECEIVED
2028 			 *        SYN-SENT* -> SYN-RECEIVED*
2029 			 */
2030 			tp->t_flags |= (TF_ACKNOW | TF_NEEDSYN);
2031 			tcp_timer_activate(tp, TT_REXMT, 0);
2032 			tcp_state_change(tp, TCPS_SYN_RECEIVED);
2033 		}
2034 
2035 		KASSERT(ti_locked == TI_RLOCKED, ("%s: trimthenstep6: "
2036 		    "ti_locked %d", __func__, ti_locked));
2037 		INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
2038 		INP_WLOCK_ASSERT(tp->t_inpcb);
2039 
2040 		/*
2041 		 * Advance th->th_seq to correspond to first data byte.
2042 		 * If data, trim to stay within window,
2043 		 * dropping FIN if necessary.
2044 		 */
2045 		th->th_seq++;
2046 		if (tlen > tp->rcv_wnd) {
2047 			todrop = tlen - tp->rcv_wnd;
2048 			m_adj(m, -todrop);
2049 			tlen = tp->rcv_wnd;
2050 			thflags &= ~TH_FIN;
2051 			TCPSTAT_INC(tcps_rcvpackafterwin);
2052 			TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop);
2053 		}
2054 		tp->snd_wl1 = th->th_seq - 1;
2055 		tp->rcv_up = th->th_seq;
2056 		/*
2057 		 * Client side of transaction: already sent SYN and data.
2058 		 * If the remote host used T/TCP to validate the SYN,
2059 		 * our data will be ACK'd; if so, enter normal data segment
2060 		 * processing in the middle of step 5, ack processing.
2061 		 * Otherwise, goto step 6.
2062 		 */
2063 		if (thflags & TH_ACK)
2064 			goto process_ACK;
2065 
2066 		goto step6;
2067 
2068 	/*
2069 	 * If the state is LAST_ACK or CLOSING or TIME_WAIT:
2070 	 *      do normal processing.
2071 	 *
2072 	 * NB: Leftover from RFC1644 T/TCP.  Cases to be reused later.
2073 	 */
2074 	case TCPS_LAST_ACK:
2075 	case TCPS_CLOSING:
2076 		break;  /* continue normal processing */
2077 	}
2078 
2079 	/*
2080 	 * States other than LISTEN or SYN_SENT.
2081 	 * First check the RST flag and sequence number since reset segments
2082 	 * are exempt from the timestamp and connection count tests.  This
2083 	 * fixes a bug introduced by the Stevens, vol. 2, p. 960 bugfix
2084 	 * below which allowed reset segments in half the sequence space
2085 	 * to fall though and be processed (which gives forged reset
2086 	 * segments with a random sequence number a 50 percent chance of
2087 	 * killing a connection).
2088 	 * Then check timestamp, if present.
2089 	 * Then check the connection count, if present.
2090 	 * Then check that at least some bytes of segment are within
2091 	 * receive window.  If segment begins before rcv_nxt,
2092 	 * drop leading data (and SYN); if nothing left, just ack.
2093 	 */
2094 	if (thflags & TH_RST) {
2095 		/*
2096 		 * RFC5961 Section 3.2
2097 		 *
2098 		 * - RST drops connection only if SEG.SEQ == RCV.NXT.
2099 		 * - If RST is in window, we send challenge ACK.
2100 		 *
2101 		 * Note: to take into account delayed ACKs, we should
2102 		 *   test against last_ack_sent instead of rcv_nxt.
2103 		 * Note 2: we handle special case of closed window, not
2104 		 *   covered by the RFC.
2105 		 */
2106 		if ((SEQ_GEQ(th->th_seq, tp->last_ack_sent) &&
2107 		    SEQ_LT(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) ||
2108 		    (tp->rcv_wnd == 0 && tp->last_ack_sent == th->th_seq)) {
2109 
2110 			INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
2111 			KASSERT(ti_locked == TI_RLOCKED,
2112 			    ("%s: TH_RST ti_locked %d, th %p tp %p",
2113 			    __func__, ti_locked, th, tp));
2114 			KASSERT(tp->t_state != TCPS_SYN_SENT,
2115 			    ("%s: TH_RST for TCPS_SYN_SENT th %p tp %p",
2116 			    __func__, th, tp));
2117 
2118 			if (V_tcp_insecure_rst ||
2119 			    tp->last_ack_sent == th->th_seq) {
2120 				TCPSTAT_INC(tcps_drops);
2121 				/* Drop the connection. */
2122 				switch (tp->t_state) {
2123 				case TCPS_SYN_RECEIVED:
2124 					so->so_error = ECONNREFUSED;
2125 					goto close;
2126 				case TCPS_ESTABLISHED:
2127 				case TCPS_FIN_WAIT_1:
2128 				case TCPS_FIN_WAIT_2:
2129 				case TCPS_CLOSE_WAIT:
2130 					so->so_error = ECONNRESET;
2131 				close:
2132 					tcp_state_change(tp, TCPS_CLOSED);
2133 					/* FALLTHROUGH */
2134 				default:
2135 					tp = tcp_close(tp);
2136 				}
2137 			} else {
2138 				TCPSTAT_INC(tcps_badrst);
2139 				/* Send challenge ACK. */
2140 				tcp_respond(tp, mtod(m, void *), th, m,
2141 				    tp->rcv_nxt, tp->snd_nxt, TH_ACK);
2142 				tp->last_ack_sent = tp->rcv_nxt;
2143 				m = NULL;
2144 			}
2145 		}
2146 		goto drop;
2147 	}
2148 
2149 	/*
2150 	 * RFC5961 Section 4.2
2151 	 * Send challenge ACK for any SYN in synchronized state.
2152 	 */
2153 	if ((thflags & TH_SYN) && tp->t_state != TCPS_SYN_SENT) {
2154 		KASSERT(ti_locked == TI_RLOCKED,
2155 		    ("tcp_do_segment: TH_SYN ti_locked %d", ti_locked));
2156 		INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
2157 
2158 		TCPSTAT_INC(tcps_badsyn);
2159 		if (V_tcp_insecure_syn &&
2160 		    SEQ_GEQ(th->th_seq, tp->last_ack_sent) &&
2161 		    SEQ_LT(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) {
2162 			tp = tcp_drop(tp, ECONNRESET);
2163 			rstreason = BANDLIM_UNLIMITED;
2164 		} else {
2165 			/* Send challenge ACK. */
2166 			tcp_respond(tp, mtod(m, void *), th, m, tp->rcv_nxt,
2167 			    tp->snd_nxt, TH_ACK);
2168 			tp->last_ack_sent = tp->rcv_nxt;
2169 			m = NULL;
2170 		}
2171 		goto drop;
2172 	}
2173 
2174 	/*
2175 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
2176 	 * and it's less than ts_recent, drop it.
2177 	 */
2178 	if ((to.to_flags & TOF_TS) != 0 && tp->ts_recent &&
2179 	    TSTMP_LT(to.to_tsval, tp->ts_recent)) {
2180 
2181 		/* Check to see if ts_recent is over 24 days old.  */
2182 		if (tcp_ts_getticks() - tp->ts_recent_age > TCP_PAWS_IDLE) {
2183 			/*
2184 			 * Invalidate ts_recent.  If this segment updates
2185 			 * ts_recent, the age will be reset later and ts_recent
2186 			 * will get a valid value.  If it does not, setting
2187 			 * ts_recent to zero will at least satisfy the
2188 			 * requirement that zero be placed in the timestamp
2189 			 * echo reply when ts_recent isn't valid.  The
2190 			 * age isn't reset until we get a valid ts_recent
2191 			 * because we don't want out-of-order segments to be
2192 			 * dropped when ts_recent is old.
2193 			 */
2194 			tp->ts_recent = 0;
2195 		} else {
2196 			TCPSTAT_INC(tcps_rcvduppack);
2197 			TCPSTAT_ADD(tcps_rcvdupbyte, tlen);
2198 			TCPSTAT_INC(tcps_pawsdrop);
2199 			if (tlen)
2200 				goto dropafterack;
2201 			goto drop;
2202 		}
2203 	}
2204 
2205 	/*
2206 	 * In the SYN-RECEIVED state, validate that the packet belongs to
2207 	 * this connection before trimming the data to fit the receive
2208 	 * window.  Check the sequence number versus IRS since we know
2209 	 * the sequence numbers haven't wrapped.  This is a partial fix
2210 	 * for the "LAND" DoS attack.
2211 	 */
2212 	if (tp->t_state == TCPS_SYN_RECEIVED && SEQ_LT(th->th_seq, tp->irs)) {
2213 		rstreason = BANDLIM_RST_OPENPORT;
2214 		goto dropwithreset;
2215 	}
2216 
2217 	todrop = tp->rcv_nxt - th->th_seq;
2218 	if (todrop > 0) {
2219 		if (thflags & TH_SYN) {
2220 			thflags &= ~TH_SYN;
2221 			th->th_seq++;
2222 			if (th->th_urp > 1)
2223 				th->th_urp--;
2224 			else
2225 				thflags &= ~TH_URG;
2226 			todrop--;
2227 		}
2228 		/*
2229 		 * Following if statement from Stevens, vol. 2, p. 960.
2230 		 */
2231 		if (todrop > tlen
2232 		    || (todrop == tlen && (thflags & TH_FIN) == 0)) {
2233 			/*
2234 			 * Any valid FIN must be to the left of the window.
2235 			 * At this point the FIN must be a duplicate or out
2236 			 * of sequence; drop it.
2237 			 */
2238 			thflags &= ~TH_FIN;
2239 
2240 			/*
2241 			 * Send an ACK to resynchronize and drop any data.
2242 			 * But keep on processing for RST or ACK.
2243 			 */
2244 			tp->t_flags |= TF_ACKNOW;
2245 			todrop = tlen;
2246 			TCPSTAT_INC(tcps_rcvduppack);
2247 			TCPSTAT_ADD(tcps_rcvdupbyte, todrop);
2248 		} else {
2249 			TCPSTAT_INC(tcps_rcvpartduppack);
2250 			TCPSTAT_ADD(tcps_rcvpartdupbyte, todrop);
2251 		}
2252 		drop_hdrlen += todrop;	/* drop from the top afterwards */
2253 		th->th_seq += todrop;
2254 		tlen -= todrop;
2255 		if (th->th_urp > todrop)
2256 			th->th_urp -= todrop;
2257 		else {
2258 			thflags &= ~TH_URG;
2259 			th->th_urp = 0;
2260 		}
2261 	}
2262 
2263 	/*
2264 	 * If new data are received on a connection after the
2265 	 * user processes are gone, then RST the other end.
2266 	 */
2267 	if ((so->so_state & SS_NOFDREF) &&
2268 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
2269 		KASSERT(ti_locked == TI_RLOCKED, ("%s: SS_NOFDEREF && "
2270 		    "CLOSE_WAIT && tlen ti_locked %d", __func__, ti_locked));
2271 		INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
2272 
2273 		if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
2274 			log(LOG_DEBUG, "%s; %s: %s: Received %d bytes of data "
2275 			    "after socket was closed, "
2276 			    "sending RST and removing tcpcb\n",
2277 			    s, __func__, tcpstates[tp->t_state], tlen);
2278 			free(s, M_TCPLOG);
2279 		}
2280 		tp = tcp_close(tp);
2281 		TCPSTAT_INC(tcps_rcvafterclose);
2282 		rstreason = BANDLIM_UNLIMITED;
2283 		goto dropwithreset;
2284 	}
2285 
2286 	/*
2287 	 * If segment ends after window, drop trailing data
2288 	 * (and PUSH and FIN); if nothing left, just ACK.
2289 	 */
2290 	todrop = (th->th_seq + tlen) - (tp->rcv_nxt + tp->rcv_wnd);
2291 	if (todrop > 0) {
2292 		TCPSTAT_INC(tcps_rcvpackafterwin);
2293 		if (todrop >= tlen) {
2294 			TCPSTAT_ADD(tcps_rcvbyteafterwin, tlen);
2295 			/*
2296 			 * If window is closed can only take segments at
2297 			 * window edge, and have to drop data and PUSH from
2298 			 * incoming segments.  Continue processing, but
2299 			 * remember to ack.  Otherwise, drop segment
2300 			 * and ack.
2301 			 */
2302 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
2303 				tp->t_flags |= TF_ACKNOW;
2304 				TCPSTAT_INC(tcps_rcvwinprobe);
2305 			} else
2306 				goto dropafterack;
2307 		} else
2308 			TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop);
2309 		m_adj(m, -todrop);
2310 		tlen -= todrop;
2311 		thflags &= ~(TH_PUSH|TH_FIN);
2312 	}
2313 
2314 	/*
2315 	 * If last ACK falls within this segment's sequence numbers,
2316 	 * record its timestamp.
2317 	 * NOTE:
2318 	 * 1) That the test incorporates suggestions from the latest
2319 	 *    proposal of the tcplw@cray.com list (Braden 1993/04/26).
2320 	 * 2) That updating only on newer timestamps interferes with
2321 	 *    our earlier PAWS tests, so this check should be solely
2322 	 *    predicated on the sequence space of this segment.
2323 	 * 3) That we modify the segment boundary check to be
2324 	 *        Last.ACK.Sent <= SEG.SEQ + SEG.Len
2325 	 *    instead of RFC1323's
2326 	 *        Last.ACK.Sent < SEG.SEQ + SEG.Len,
2327 	 *    This modified check allows us to overcome RFC1323's
2328 	 *    limitations as described in Stevens TCP/IP Illustrated
2329 	 *    Vol. 2 p.869. In such cases, we can still calculate the
2330 	 *    RTT correctly when RCV.NXT == Last.ACK.Sent.
2331 	 */
2332 	if ((to.to_flags & TOF_TS) != 0 &&
2333 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
2334 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
2335 		((thflags & (TH_SYN|TH_FIN)) != 0))) {
2336 		tp->ts_recent_age = tcp_ts_getticks();
2337 		tp->ts_recent = to.to_tsval;
2338 	}
2339 
2340 	/*
2341 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN
2342 	 * flag is on (half-synchronized state), then queue data for
2343 	 * later processing; else drop segment and return.
2344 	 */
2345 	if ((thflags & TH_ACK) == 0) {
2346 		if (tp->t_state == TCPS_SYN_RECEIVED ||
2347 		    (tp->t_flags & TF_NEEDSYN))
2348 			goto step6;
2349 		else if (tp->t_flags & TF_ACKNOW)
2350 			goto dropafterack;
2351 		else
2352 			goto drop;
2353 	}
2354 
2355 	/*
2356 	 * Ack processing.
2357 	 */
2358 	switch (tp->t_state) {
2359 
2360 	/*
2361 	 * In SYN_RECEIVED state, the ack ACKs our SYN, so enter
2362 	 * ESTABLISHED state and continue processing.
2363 	 * The ACK was checked above.
2364 	 */
2365 	case TCPS_SYN_RECEIVED:
2366 
2367 		TCPSTAT_INC(tcps_connects);
2368 		soisconnected(so);
2369 		/* Do window scaling? */
2370 		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2371 			(TF_RCVD_SCALE|TF_REQ_SCALE)) {
2372 			tp->rcv_scale = tp->request_r_scale;
2373 			tp->snd_wnd = tiwin;
2374 		}
2375 		/*
2376 		 * Make transitions:
2377 		 *      SYN-RECEIVED  -> ESTABLISHED
2378 		 *      SYN-RECEIVED* -> FIN-WAIT-1
2379 		 */
2380 		tp->t_starttime = ticks;
2381 		if (tp->t_flags & TF_NEEDFIN) {
2382 			tcp_state_change(tp, TCPS_FIN_WAIT_1);
2383 			tp->t_flags &= ~TF_NEEDFIN;
2384 		} else {
2385 			tcp_state_change(tp, TCPS_ESTABLISHED);
2386 			TCP_PROBE5(accept__established, NULL, tp,
2387 			    mtod(m, const char *), tp, th);
2388 			cc_conn_init(tp);
2389 			tcp_timer_activate(tp, TT_KEEP, TP_KEEPIDLE(tp));
2390 		}
2391 		/*
2392 		 * If segment contains data or ACK, will call tcp_reass()
2393 		 * later; if not, do so now to pass queued data to user.
2394 		 */
2395 		if (tlen == 0 && (thflags & TH_FIN) == 0)
2396 			(void) tcp_reass(tp, (struct tcphdr *)0, 0,
2397 			    (struct mbuf *)0);
2398 		tp->snd_wl1 = th->th_seq - 1;
2399 		/* FALLTHROUGH */
2400 
2401 	/*
2402 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
2403 	 * ACKs.  If the ack is in the range
2404 	 *	tp->snd_una < th->th_ack <= tp->snd_max
2405 	 * then advance tp->snd_una to th->th_ack and drop
2406 	 * data from the retransmission queue.  If this ACK reflects
2407 	 * more up to date window information we update our window information.
2408 	 */
2409 	case TCPS_ESTABLISHED:
2410 	case TCPS_FIN_WAIT_1:
2411 	case TCPS_FIN_WAIT_2:
2412 	case TCPS_CLOSE_WAIT:
2413 	case TCPS_CLOSING:
2414 	case TCPS_LAST_ACK:
2415 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
2416 			TCPSTAT_INC(tcps_rcvacktoomuch);
2417 			goto dropafterack;
2418 		}
2419 		if ((tp->t_flags & TF_SACK_PERMIT) &&
2420 		    ((to.to_flags & TOF_SACK) ||
2421 		     !TAILQ_EMPTY(&tp->snd_holes)))
2422 			tcp_sack_doack(tp, &to, th->th_ack);
2423 
2424 		/* Run HHOOK_TCP_ESTABLISHED_IN helper hooks. */
2425 		hhook_run_tcp_est_in(tp, th, &to);
2426 
2427 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
2428 			if (tlen == 0 && tiwin == tp->snd_wnd) {
2429 				/*
2430 				 * If this is the first time we've seen a
2431 				 * FIN from the remote, this is not a
2432 				 * duplicate and it needs to be processed
2433 				 * normally.  This happens during a
2434 				 * simultaneous close.
2435 				 */
2436 				if ((thflags & TH_FIN) &&
2437 				    (TCPS_HAVERCVDFIN(tp->t_state) == 0)) {
2438 					tp->t_dupacks = 0;
2439 					break;
2440 				}
2441 				TCPSTAT_INC(tcps_rcvdupack);
2442 				/*
2443 				 * If we have outstanding data (other than
2444 				 * a window probe), this is a completely
2445 				 * duplicate ack (ie, window info didn't
2446 				 * change and FIN isn't set),
2447 				 * the ack is the biggest we've
2448 				 * seen and we've seen exactly our rexmt
2449 				 * threshhold of them, assume a packet
2450 				 * has been dropped and retransmit it.
2451 				 * Kludge snd_nxt & the congestion
2452 				 * window so we send only this one
2453 				 * packet.
2454 				 *
2455 				 * We know we're losing at the current
2456 				 * window size so do congestion avoidance
2457 				 * (set ssthresh to half the current window
2458 				 * and pull our congestion window back to
2459 				 * the new ssthresh).
2460 				 *
2461 				 * Dup acks mean that packets have left the
2462 				 * network (they're now cached at the receiver)
2463 				 * so bump cwnd by the amount in the receiver
2464 				 * to keep a constant cwnd packets in the
2465 				 * network.
2466 				 *
2467 				 * When using TCP ECN, notify the peer that
2468 				 * we reduced the cwnd.
2469 				 */
2470 				if (!tcp_timer_active(tp, TT_REXMT) ||
2471 				    th->th_ack != tp->snd_una)
2472 					tp->t_dupacks = 0;
2473 				else if (++tp->t_dupacks > tcprexmtthresh ||
2474 				     IN_FASTRECOVERY(tp->t_flags)) {
2475 					cc_ack_received(tp, th, CC_DUPACK);
2476 					if ((tp->t_flags & TF_SACK_PERMIT) &&
2477 					    IN_FASTRECOVERY(tp->t_flags)) {
2478 						int awnd;
2479 
2480 						/*
2481 						 * Compute the amount of data in flight first.
2482 						 * We can inject new data into the pipe iff
2483 						 * we have less than 1/2 the original window's
2484 						 * worth of data in flight.
2485 						 */
2486 						awnd = (tp->snd_nxt - tp->snd_fack) +
2487 							tp->sackhint.sack_bytes_rexmit;
2488 						if (awnd < tp->snd_ssthresh) {
2489 							tp->snd_cwnd += tp->t_maxseg;
2490 							if (tp->snd_cwnd > tp->snd_ssthresh)
2491 								tp->snd_cwnd = tp->snd_ssthresh;
2492 						}
2493 					} else
2494 						tp->snd_cwnd += tp->t_maxseg;
2495 					(void) tcp_output(tp);
2496 					goto drop;
2497 				} else if (tp->t_dupacks == tcprexmtthresh) {
2498 					tcp_seq onxt = tp->snd_nxt;
2499 
2500 					/*
2501 					 * If we're doing sack, check to
2502 					 * see if we're already in sack
2503 					 * recovery. If we're not doing sack,
2504 					 * check to see if we're in newreno
2505 					 * recovery.
2506 					 */
2507 					if (tp->t_flags & TF_SACK_PERMIT) {
2508 						if (IN_FASTRECOVERY(tp->t_flags)) {
2509 							tp->t_dupacks = 0;
2510 							break;
2511 						}
2512 					} else {
2513 						if (SEQ_LEQ(th->th_ack,
2514 						    tp->snd_recover)) {
2515 							tp->t_dupacks = 0;
2516 							break;
2517 						}
2518 					}
2519 					/* Congestion signal before ack. */
2520 					cc_cong_signal(tp, th, CC_NDUPACK);
2521 					cc_ack_received(tp, th, CC_DUPACK);
2522 					tcp_timer_activate(tp, TT_REXMT, 0);
2523 					tp->t_rtttime = 0;
2524 					if (tp->t_flags & TF_SACK_PERMIT) {
2525 						TCPSTAT_INC(
2526 						    tcps_sack_recovery_episode);
2527 						tp->sack_newdata = tp->snd_nxt;
2528 						tp->snd_cwnd = tp->t_maxseg;
2529 						(void) tcp_output(tp);
2530 						goto drop;
2531 					}
2532 					tp->snd_nxt = th->th_ack;
2533 					tp->snd_cwnd = tp->t_maxseg;
2534 					(void) tcp_output(tp);
2535 					KASSERT(tp->snd_limited <= 2,
2536 					    ("%s: tp->snd_limited too big",
2537 					    __func__));
2538 					tp->snd_cwnd = tp->snd_ssthresh +
2539 					     tp->t_maxseg *
2540 					     (tp->t_dupacks - tp->snd_limited);
2541 					if (SEQ_GT(onxt, tp->snd_nxt))
2542 						tp->snd_nxt = onxt;
2543 					goto drop;
2544 				} else if (V_tcp_do_rfc3042) {
2545 					/*
2546 					 * Process first and second duplicate
2547 					 * ACKs. Each indicates a segment
2548 					 * leaving the network, creating room
2549 					 * for more. Make sure we can send a
2550 					 * packet on reception of each duplicate
2551 					 * ACK by increasing snd_cwnd by one
2552 					 * segment. Restore the original
2553 					 * snd_cwnd after packet transmission.
2554 					 */
2555 					cc_ack_received(tp, th, CC_DUPACK);
2556 					u_long oldcwnd = tp->snd_cwnd;
2557 					tcp_seq oldsndmax = tp->snd_max;
2558 					u_int sent;
2559 					int avail;
2560 
2561 					KASSERT(tp->t_dupacks == 1 ||
2562 					    tp->t_dupacks == 2,
2563 					    ("%s: dupacks not 1 or 2",
2564 					    __func__));
2565 					if (tp->t_dupacks == 1)
2566 						tp->snd_limited = 0;
2567 					tp->snd_cwnd =
2568 					    (tp->snd_nxt - tp->snd_una) +
2569 					    (tp->t_dupacks - tp->snd_limited) *
2570 					    tp->t_maxseg;
2571 					/*
2572 					 * Only call tcp_output when there
2573 					 * is new data available to be sent.
2574 					 * Otherwise we would send pure ACKs.
2575 					 */
2576 					SOCKBUF_LOCK(&so->so_snd);
2577 					avail = sbavail(&so->so_snd) -
2578 					    (tp->snd_nxt - tp->snd_una);
2579 					SOCKBUF_UNLOCK(&so->so_snd);
2580 					if (avail > 0)
2581 						(void) tcp_output(tp);
2582 					sent = tp->snd_max - oldsndmax;
2583 					if (sent > tp->t_maxseg) {
2584 						KASSERT((tp->t_dupacks == 2 &&
2585 						    tp->snd_limited == 0) ||
2586 						   (sent == tp->t_maxseg + 1 &&
2587 						    tp->t_flags & TF_SENTFIN),
2588 						    ("%s: sent too much",
2589 						    __func__));
2590 						tp->snd_limited = 2;
2591 					} else if (sent > 0)
2592 						++tp->snd_limited;
2593 					tp->snd_cwnd = oldcwnd;
2594 					goto drop;
2595 				}
2596 			} else
2597 				tp->t_dupacks = 0;
2598 			break;
2599 		}
2600 
2601 		KASSERT(SEQ_GT(th->th_ack, tp->snd_una),
2602 		    ("%s: th_ack <= snd_una", __func__));
2603 
2604 		/*
2605 		 * If the congestion window was inflated to account
2606 		 * for the other side's cached packets, retract it.
2607 		 */
2608 		if (IN_FASTRECOVERY(tp->t_flags)) {
2609 			if (SEQ_LT(th->th_ack, tp->snd_recover)) {
2610 				if (tp->t_flags & TF_SACK_PERMIT)
2611 					tcp_sack_partialack(tp, th);
2612 				else
2613 					tcp_newreno_partial_ack(tp, th);
2614 			} else
2615 				cc_post_recovery(tp, th);
2616 		}
2617 		tp->t_dupacks = 0;
2618 		/*
2619 		 * If we reach this point, ACK is not a duplicate,
2620 		 *     i.e., it ACKs something we sent.
2621 		 */
2622 		if (tp->t_flags & TF_NEEDSYN) {
2623 			/*
2624 			 * T/TCP: Connection was half-synchronized, and our
2625 			 * SYN has been ACK'd (so connection is now fully
2626 			 * synchronized).  Go to non-starred state,
2627 			 * increment snd_una for ACK of SYN, and check if
2628 			 * we can do window scaling.
2629 			 */
2630 			tp->t_flags &= ~TF_NEEDSYN;
2631 			tp->snd_una++;
2632 			/* Do window scaling? */
2633 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2634 				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
2635 				tp->rcv_scale = tp->request_r_scale;
2636 				/* Send window already scaled. */
2637 			}
2638 		}
2639 
2640 process_ACK:
2641 		INP_WLOCK_ASSERT(tp->t_inpcb);
2642 
2643 		acked = BYTES_THIS_ACK(tp, th);
2644 		TCPSTAT_INC(tcps_rcvackpack);
2645 		TCPSTAT_ADD(tcps_rcvackbyte, acked);
2646 
2647 		/*
2648 		 * If we just performed our first retransmit, and the ACK
2649 		 * arrives within our recovery window, then it was a mistake
2650 		 * to do the retransmit in the first place.  Recover our
2651 		 * original cwnd and ssthresh, and proceed to transmit where
2652 		 * we left off.
2653 		 */
2654 		if (tp->t_rxtshift == 1 && tp->t_flags & TF_PREVVALID &&
2655 		    (int)(ticks - tp->t_badrxtwin) < 0)
2656 			cc_cong_signal(tp, th, CC_RTO_ERR);
2657 
2658 		/*
2659 		 * If we have a timestamp reply, update smoothed
2660 		 * round trip time.  If no timestamp is present but
2661 		 * transmit timer is running and timed sequence
2662 		 * number was acked, update smoothed round trip time.
2663 		 * Since we now have an rtt measurement, cancel the
2664 		 * timer backoff (cf., Phil Karn's retransmit alg.).
2665 		 * Recompute the initial retransmit timer.
2666 		 *
2667 		 * Some boxes send broken timestamp replies
2668 		 * during the SYN+ACK phase, ignore
2669 		 * timestamps of 0 or we could calculate a
2670 		 * huge RTT and blow up the retransmit timer.
2671 		 */
2672 		if ((to.to_flags & TOF_TS) != 0 && to.to_tsecr) {
2673 			u_int t;
2674 
2675 			t = tcp_ts_getticks() - to.to_tsecr;
2676 			if (!tp->t_rttlow || tp->t_rttlow > t)
2677 				tp->t_rttlow = t;
2678 			tcp_xmit_timer(tp, TCP_TS_TO_TICKS(t) + 1);
2679 		} else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq)) {
2680 			if (!tp->t_rttlow || tp->t_rttlow > ticks - tp->t_rtttime)
2681 				tp->t_rttlow = ticks - tp->t_rtttime;
2682 			tcp_xmit_timer(tp, ticks - tp->t_rtttime);
2683 		}
2684 
2685 		/*
2686 		 * If all outstanding data is acked, stop retransmit
2687 		 * timer and remember to restart (more output or persist).
2688 		 * If there is more data to be acked, restart retransmit
2689 		 * timer, using current (possibly backed-off) value.
2690 		 */
2691 		if (th->th_ack == tp->snd_max) {
2692 			tcp_timer_activate(tp, TT_REXMT, 0);
2693 			needoutput = 1;
2694 		} else if (!tcp_timer_active(tp, TT_PERSIST))
2695 			tcp_timer_activate(tp, TT_REXMT, tp->t_rxtcur);
2696 
2697 		/*
2698 		 * If no data (only SYN) was ACK'd,
2699 		 *    skip rest of ACK processing.
2700 		 */
2701 		if (acked == 0)
2702 			goto step6;
2703 
2704 		/*
2705 		 * Let the congestion control algorithm update congestion
2706 		 * control related information. This typically means increasing
2707 		 * the congestion window.
2708 		 */
2709 		cc_ack_received(tp, th, CC_ACK);
2710 
2711 		SOCKBUF_LOCK(&so->so_snd);
2712 		if (acked > sbavail(&so->so_snd)) {
2713 			tp->snd_wnd -= sbavail(&so->so_snd);
2714 			mfree = sbcut_locked(&so->so_snd,
2715 			    (int)sbavail(&so->so_snd));
2716 			ourfinisacked = 1;
2717 		} else {
2718 			mfree = sbcut_locked(&so->so_snd, acked);
2719 			tp->snd_wnd -= acked;
2720 			ourfinisacked = 0;
2721 		}
2722 		/* NB: sowwakeup_locked() does an implicit unlock. */
2723 		sowwakeup_locked(so);
2724 		m_freem(mfree);
2725 		/* Detect una wraparound. */
2726 		if (!IN_RECOVERY(tp->t_flags) &&
2727 		    SEQ_GT(tp->snd_una, tp->snd_recover) &&
2728 		    SEQ_LEQ(th->th_ack, tp->snd_recover))
2729 			tp->snd_recover = th->th_ack - 1;
2730 		/* XXXLAS: Can this be moved up into cc_post_recovery? */
2731 		if (IN_RECOVERY(tp->t_flags) &&
2732 		    SEQ_GEQ(th->th_ack, tp->snd_recover)) {
2733 			EXIT_RECOVERY(tp->t_flags);
2734 		}
2735 		tp->snd_una = th->th_ack;
2736 		if (tp->t_flags & TF_SACK_PERMIT) {
2737 			if (SEQ_GT(tp->snd_una, tp->snd_recover))
2738 				tp->snd_recover = tp->snd_una;
2739 		}
2740 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2741 			tp->snd_nxt = tp->snd_una;
2742 
2743 		switch (tp->t_state) {
2744 
2745 		/*
2746 		 * In FIN_WAIT_1 STATE in addition to the processing
2747 		 * for the ESTABLISHED state if our FIN is now acknowledged
2748 		 * then enter FIN_WAIT_2.
2749 		 */
2750 		case TCPS_FIN_WAIT_1:
2751 			if (ourfinisacked) {
2752 				/*
2753 				 * If we can't receive any more
2754 				 * data, then closing user can proceed.
2755 				 * Starting the timer is contrary to the
2756 				 * specification, but if we don't get a FIN
2757 				 * we'll hang forever.
2758 				 *
2759 				 * XXXjl:
2760 				 * we should release the tp also, and use a
2761 				 * compressed state.
2762 				 */
2763 				if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
2764 					soisdisconnected(so);
2765 					tcp_timer_activate(tp, TT_2MSL,
2766 					    (tcp_fast_finwait2_recycle ?
2767 					    tcp_finwait2_timeout :
2768 					    TP_MAXIDLE(tp)));
2769 				}
2770 				tcp_state_change(tp, TCPS_FIN_WAIT_2);
2771 			}
2772 			break;
2773 
2774 		/*
2775 		 * In CLOSING STATE in addition to the processing for
2776 		 * the ESTABLISHED state if the ACK acknowledges our FIN
2777 		 * then enter the TIME-WAIT state, otherwise ignore
2778 		 * the segment.
2779 		 */
2780 		case TCPS_CLOSING:
2781 			if (ourfinisacked) {
2782 				INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
2783 				tcp_twstart(tp);
2784 				INP_INFO_RUNLOCK(&V_tcbinfo);
2785 				m_freem(m);
2786 				return;
2787 			}
2788 			break;
2789 
2790 		/*
2791 		 * In LAST_ACK, we may still be waiting for data to drain
2792 		 * and/or to be acked, as well as for the ack of our FIN.
2793 		 * If our FIN is now acknowledged, delete the TCB,
2794 		 * enter the closed state and return.
2795 		 */
2796 		case TCPS_LAST_ACK:
2797 			if (ourfinisacked) {
2798 				INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
2799 				tp = tcp_close(tp);
2800 				goto drop;
2801 			}
2802 			break;
2803 		}
2804 	}
2805 
2806 step6:
2807 	INP_WLOCK_ASSERT(tp->t_inpcb);
2808 
2809 	/*
2810 	 * Update window information.
2811 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2812 	 */
2813 	if ((thflags & TH_ACK) &&
2814 	    (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2815 	    (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
2816 	     (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
2817 		/* keep track of pure window updates */
2818 		if (tlen == 0 &&
2819 		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2820 			TCPSTAT_INC(tcps_rcvwinupd);
2821 		tp->snd_wnd = tiwin;
2822 		tp->snd_wl1 = th->th_seq;
2823 		tp->snd_wl2 = th->th_ack;
2824 		if (tp->snd_wnd > tp->max_sndwnd)
2825 			tp->max_sndwnd = tp->snd_wnd;
2826 		needoutput = 1;
2827 	}
2828 
2829 	/*
2830 	 * Process segments with URG.
2831 	 */
2832 	if ((thflags & TH_URG) && th->th_urp &&
2833 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2834 		/*
2835 		 * This is a kludge, but if we receive and accept
2836 		 * random urgent pointers, we'll crash in
2837 		 * soreceive.  It's hard to imagine someone
2838 		 * actually wanting to send this much urgent data.
2839 		 */
2840 		SOCKBUF_LOCK(&so->so_rcv);
2841 		if (th->th_urp + sbavail(&so->so_rcv) > sb_max) {
2842 			th->th_urp = 0;			/* XXX */
2843 			thflags &= ~TH_URG;		/* XXX */
2844 			SOCKBUF_UNLOCK(&so->so_rcv);	/* XXX */
2845 			goto dodata;			/* XXX */
2846 		}
2847 		/*
2848 		 * If this segment advances the known urgent pointer,
2849 		 * then mark the data stream.  This should not happen
2850 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2851 		 * a FIN has been received from the remote side.
2852 		 * In these states we ignore the URG.
2853 		 *
2854 		 * According to RFC961 (Assigned Protocols),
2855 		 * the urgent pointer points to the last octet
2856 		 * of urgent data.  We continue, however,
2857 		 * to consider it to indicate the first octet
2858 		 * of data past the urgent section as the original
2859 		 * spec states (in one of two places).
2860 		 */
2861 		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2862 			tp->rcv_up = th->th_seq + th->th_urp;
2863 			so->so_oobmark = sbavail(&so->so_rcv) +
2864 			    (tp->rcv_up - tp->rcv_nxt) - 1;
2865 			if (so->so_oobmark == 0)
2866 				so->so_rcv.sb_state |= SBS_RCVATMARK;
2867 			sohasoutofband(so);
2868 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2869 		}
2870 		SOCKBUF_UNLOCK(&so->so_rcv);
2871 		/*
2872 		 * Remove out of band data so doesn't get presented to user.
2873 		 * This can happen independent of advancing the URG pointer,
2874 		 * but if two URG's are pending at once, some out-of-band
2875 		 * data may creep in... ick.
2876 		 */
2877 		if (th->th_urp <= (u_long)tlen &&
2878 		    !(so->so_options & SO_OOBINLINE)) {
2879 			/* hdr drop is delayed */
2880 			tcp_pulloutofband(so, th, m, drop_hdrlen);
2881 		}
2882 	} else {
2883 		/*
2884 		 * If no out of band data is expected,
2885 		 * pull receive urgent pointer along
2886 		 * with the receive window.
2887 		 */
2888 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2889 			tp->rcv_up = tp->rcv_nxt;
2890 	}
2891 dodata:							/* XXX */
2892 	INP_WLOCK_ASSERT(tp->t_inpcb);
2893 
2894 	/*
2895 	 * Process the segment text, merging it into the TCP sequencing queue,
2896 	 * and arranging for acknowledgment of receipt if necessary.
2897 	 * This process logically involves adjusting tp->rcv_wnd as data
2898 	 * is presented to the user (this happens in tcp_usrreq.c,
2899 	 * case PRU_RCVD).  If a FIN has already been received on this
2900 	 * connection then we just ignore the text.
2901 	 */
2902 	if ((tlen || (thflags & TH_FIN)) &&
2903 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2904 		tcp_seq save_start = th->th_seq;
2905 		m_adj(m, drop_hdrlen);	/* delayed header drop */
2906 		/*
2907 		 * Insert segment which includes th into TCP reassembly queue
2908 		 * with control block tp.  Set thflags to whether reassembly now
2909 		 * includes a segment with FIN.  This handles the common case
2910 		 * inline (segment is the next to be received on an established
2911 		 * connection, and the queue is empty), avoiding linkage into
2912 		 * and removal from the queue and repetition of various
2913 		 * conversions.
2914 		 * Set DELACK for segments received in order, but ack
2915 		 * immediately when segments are out of order (so
2916 		 * fast retransmit can work).
2917 		 */
2918 		if (th->th_seq == tp->rcv_nxt &&
2919 		    LIST_EMPTY(&tp->t_segq) &&
2920 		    TCPS_HAVEESTABLISHED(tp->t_state)) {
2921 			if (DELAY_ACK(tp, tlen))
2922 				tp->t_flags |= TF_DELACK;
2923 			else
2924 				tp->t_flags |= TF_ACKNOW;
2925 			tp->rcv_nxt += tlen;
2926 			thflags = th->th_flags & TH_FIN;
2927 			TCPSTAT_INC(tcps_rcvpack);
2928 			TCPSTAT_ADD(tcps_rcvbyte, tlen);
2929 			SOCKBUF_LOCK(&so->so_rcv);
2930 			if (so->so_rcv.sb_state & SBS_CANTRCVMORE)
2931 				m_freem(m);
2932 			else
2933 				sbappendstream_locked(&so->so_rcv, m, 0);
2934 			/* NB: sorwakeup_locked() does an implicit unlock. */
2935 			sorwakeup_locked(so);
2936 		} else {
2937 			/*
2938 			 * XXX: Due to the header drop above "th" is
2939 			 * theoretically invalid by now.  Fortunately
2940 			 * m_adj() doesn't actually frees any mbufs
2941 			 * when trimming from the head.
2942 			 */
2943 			thflags = tcp_reass(tp, th, &tlen, m);
2944 			tp->t_flags |= TF_ACKNOW;
2945 		}
2946 		if (tlen > 0 && (tp->t_flags & TF_SACK_PERMIT))
2947 			tcp_update_sack_list(tp, save_start, save_start + tlen);
2948 #if 0
2949 		/*
2950 		 * Note the amount of data that peer has sent into
2951 		 * our window, in order to estimate the sender's
2952 		 * buffer size.
2953 		 * XXX: Unused.
2954 		 */
2955 		if (SEQ_GT(tp->rcv_adv, tp->rcv_nxt))
2956 			len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2957 		else
2958 			len = so->so_rcv.sb_hiwat;
2959 #endif
2960 	} else {
2961 		m_freem(m);
2962 		thflags &= ~TH_FIN;
2963 	}
2964 
2965 	/*
2966 	 * If FIN is received ACK the FIN and let the user know
2967 	 * that the connection is closing.
2968 	 */
2969 	if (thflags & TH_FIN) {
2970 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2971 			socantrcvmore(so);
2972 			/*
2973 			 * If connection is half-synchronized
2974 			 * (ie NEEDSYN flag on) then delay ACK,
2975 			 * so it may be piggybacked when SYN is sent.
2976 			 * Otherwise, since we received a FIN then no
2977 			 * more input can be expected, send ACK now.
2978 			 */
2979 			if (tp->t_flags & TF_NEEDSYN)
2980 				tp->t_flags |= TF_DELACK;
2981 			else
2982 				tp->t_flags |= TF_ACKNOW;
2983 			tp->rcv_nxt++;
2984 		}
2985 		switch (tp->t_state) {
2986 
2987 		/*
2988 		 * In SYN_RECEIVED and ESTABLISHED STATES
2989 		 * enter the CLOSE_WAIT state.
2990 		 */
2991 		case TCPS_SYN_RECEIVED:
2992 			tp->t_starttime = ticks;
2993 			/* FALLTHROUGH */
2994 		case TCPS_ESTABLISHED:
2995 			tcp_state_change(tp, TCPS_CLOSE_WAIT);
2996 			break;
2997 
2998 		/*
2999 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
3000 		 * enter the CLOSING state.
3001 		 */
3002 		case TCPS_FIN_WAIT_1:
3003 			tcp_state_change(tp, TCPS_CLOSING);
3004 			break;
3005 
3006 		/*
3007 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
3008 		 * starting the time-wait timer, turning off the other
3009 		 * standard timers.
3010 		 */
3011 		case TCPS_FIN_WAIT_2:
3012 			INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
3013 			KASSERT(ti_locked == TI_RLOCKED, ("%s: dodata "
3014 			    "TCP_FIN_WAIT_2 ti_locked: %d", __func__,
3015 			    ti_locked));
3016 
3017 			tcp_twstart(tp);
3018 			INP_INFO_RUNLOCK(&V_tcbinfo);
3019 			return;
3020 		}
3021 	}
3022 	if (ti_locked == TI_RLOCKED)
3023 		INP_INFO_RUNLOCK(&V_tcbinfo);
3024 	ti_locked = TI_UNLOCKED;
3025 
3026 #ifdef TCPDEBUG
3027 	if (so->so_options & SO_DEBUG)
3028 		tcp_trace(TA_INPUT, ostate, tp, (void *)tcp_saveipgen,
3029 			  &tcp_savetcp, 0);
3030 #endif
3031 	TCP_PROBE3(debug__input, tp, th, mtod(m, const char *));
3032 
3033 	/*
3034 	 * Return any desired output.
3035 	 */
3036 	if (needoutput || (tp->t_flags & TF_ACKNOW))
3037 		(void) tcp_output(tp);
3038 
3039 check_delack:
3040 	KASSERT(ti_locked == TI_UNLOCKED, ("%s: check_delack ti_locked %d",
3041 	    __func__, ti_locked));
3042 	INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
3043 	INP_WLOCK_ASSERT(tp->t_inpcb);
3044 
3045 	if (tp->t_flags & TF_DELACK) {
3046 		tp->t_flags &= ~TF_DELACK;
3047 		tcp_timer_activate(tp, TT_DELACK, tcp_delacktime);
3048 	}
3049 	INP_WUNLOCK(tp->t_inpcb);
3050 	return;
3051 
3052 dropafterack:
3053 	/*
3054 	 * Generate an ACK dropping incoming segment if it occupies
3055 	 * sequence space, where the ACK reflects our state.
3056 	 *
3057 	 * We can now skip the test for the RST flag since all
3058 	 * paths to this code happen after packets containing
3059 	 * RST have been dropped.
3060 	 *
3061 	 * In the SYN-RECEIVED state, don't send an ACK unless the
3062 	 * segment we received passes the SYN-RECEIVED ACK test.
3063 	 * If it fails send a RST.  This breaks the loop in the
3064 	 * "LAND" DoS attack, and also prevents an ACK storm
3065 	 * between two listening ports that have been sent forged
3066 	 * SYN segments, each with the source address of the other.
3067 	 */
3068 	if (tp->t_state == TCPS_SYN_RECEIVED && (thflags & TH_ACK) &&
3069 	    (SEQ_GT(tp->snd_una, th->th_ack) ||
3070 	     SEQ_GT(th->th_ack, tp->snd_max)) ) {
3071 		rstreason = BANDLIM_RST_OPENPORT;
3072 		goto dropwithreset;
3073 	}
3074 #ifdef TCPDEBUG
3075 	if (so->so_options & SO_DEBUG)
3076 		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
3077 			  &tcp_savetcp, 0);
3078 #endif
3079 	TCP_PROBE3(debug__input, tp, th, mtod(m, const char *));
3080 	if (ti_locked == TI_RLOCKED)
3081 		INP_INFO_RUNLOCK(&V_tcbinfo);
3082 	ti_locked = TI_UNLOCKED;
3083 
3084 	tp->t_flags |= TF_ACKNOW;
3085 	(void) tcp_output(tp);
3086 	INP_WUNLOCK(tp->t_inpcb);
3087 	m_freem(m);
3088 	return;
3089 
3090 dropwithreset:
3091 	if (ti_locked == TI_RLOCKED)
3092 		INP_INFO_RUNLOCK(&V_tcbinfo);
3093 	ti_locked = TI_UNLOCKED;
3094 
3095 	if (tp != NULL) {
3096 		tcp_dropwithreset(m, th, tp, tlen, rstreason);
3097 		INP_WUNLOCK(tp->t_inpcb);
3098 	} else
3099 		tcp_dropwithreset(m, th, NULL, tlen, rstreason);
3100 	return;
3101 
3102 drop:
3103 	if (ti_locked == TI_RLOCKED) {
3104 		INP_INFO_RUNLOCK(&V_tcbinfo);
3105 		ti_locked = TI_UNLOCKED;
3106 	}
3107 #ifdef INVARIANTS
3108 	else
3109 		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
3110 #endif
3111 
3112 	/*
3113 	 * Drop space held by incoming segment and return.
3114 	 */
3115 #ifdef TCPDEBUG
3116 	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
3117 		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
3118 			  &tcp_savetcp, 0);
3119 #endif
3120 	TCP_PROBE3(debug__input, tp, th, mtod(m, const char *));
3121 	if (tp != NULL)
3122 		INP_WUNLOCK(tp->t_inpcb);
3123 	m_freem(m);
3124 }
3125 
3126 /*
3127  * Issue RST and make ACK acceptable to originator of segment.
3128  * The mbuf must still include the original packet header.
3129  * tp may be NULL.
3130  */
3131 static void
3132 tcp_dropwithreset(struct mbuf *m, struct tcphdr *th, struct tcpcb *tp,
3133     int tlen, int rstreason)
3134 {
3135 #ifdef INET
3136 	struct ip *ip;
3137 #endif
3138 #ifdef INET6
3139 	struct ip6_hdr *ip6;
3140 #endif
3141 
3142 	if (tp != NULL) {
3143 		INP_WLOCK_ASSERT(tp->t_inpcb);
3144 	}
3145 
3146 	/* Don't bother if destination was broadcast/multicast. */
3147 	if ((th->th_flags & TH_RST) || m->m_flags & (M_BCAST|M_MCAST))
3148 		goto drop;
3149 #ifdef INET6
3150 	if (mtod(m, struct ip *)->ip_v == 6) {
3151 		ip6 = mtod(m, struct ip6_hdr *);
3152 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
3153 		    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
3154 			goto drop;
3155 		/* IPv6 anycast check is done at tcp6_input() */
3156 	}
3157 #endif
3158 #if defined(INET) && defined(INET6)
3159 	else
3160 #endif
3161 #ifdef INET
3162 	{
3163 		ip = mtod(m, struct ip *);
3164 		if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
3165 		    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
3166 		    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
3167 		    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
3168 			goto drop;
3169 	}
3170 #endif
3171 
3172 	/* Perform bandwidth limiting. */
3173 	if (badport_bandlim(rstreason) < 0)
3174 		goto drop;
3175 
3176 	/* tcp_respond consumes the mbuf chain. */
3177 	if (th->th_flags & TH_ACK) {
3178 		tcp_respond(tp, mtod(m, void *), th, m, (tcp_seq)0,
3179 		    th->th_ack, TH_RST);
3180 	} else {
3181 		if (th->th_flags & TH_SYN)
3182 			tlen++;
3183 		tcp_respond(tp, mtod(m, void *), th, m, th->th_seq+tlen,
3184 		    (tcp_seq)0, TH_RST|TH_ACK);
3185 	}
3186 	return;
3187 drop:
3188 	m_freem(m);
3189 }
3190 
3191 /*
3192  * Parse TCP options and place in tcpopt.
3193  */
3194 static void
3195 tcp_dooptions(struct tcpopt *to, u_char *cp, int cnt, int flags)
3196 {
3197 	int opt, optlen;
3198 
3199 	to->to_flags = 0;
3200 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
3201 		opt = cp[0];
3202 		if (opt == TCPOPT_EOL)
3203 			break;
3204 		if (opt == TCPOPT_NOP)
3205 			optlen = 1;
3206 		else {
3207 			if (cnt < 2)
3208 				break;
3209 			optlen = cp[1];
3210 			if (optlen < 2 || optlen > cnt)
3211 				break;
3212 		}
3213 		switch (opt) {
3214 		case TCPOPT_MAXSEG:
3215 			if (optlen != TCPOLEN_MAXSEG)
3216 				continue;
3217 			if (!(flags & TO_SYN))
3218 				continue;
3219 			to->to_flags |= TOF_MSS;
3220 			bcopy((char *)cp + 2,
3221 			    (char *)&to->to_mss, sizeof(to->to_mss));
3222 			to->to_mss = ntohs(to->to_mss);
3223 			break;
3224 		case TCPOPT_WINDOW:
3225 			if (optlen != TCPOLEN_WINDOW)
3226 				continue;
3227 			if (!(flags & TO_SYN))
3228 				continue;
3229 			to->to_flags |= TOF_SCALE;
3230 			to->to_wscale = min(cp[2], TCP_MAX_WINSHIFT);
3231 			break;
3232 		case TCPOPT_TIMESTAMP:
3233 			if (optlen != TCPOLEN_TIMESTAMP)
3234 				continue;
3235 			to->to_flags |= TOF_TS;
3236 			bcopy((char *)cp + 2,
3237 			    (char *)&to->to_tsval, sizeof(to->to_tsval));
3238 			to->to_tsval = ntohl(to->to_tsval);
3239 			bcopy((char *)cp + 6,
3240 			    (char *)&to->to_tsecr, sizeof(to->to_tsecr));
3241 			to->to_tsecr = ntohl(to->to_tsecr);
3242 			break;
3243 #ifdef TCP_SIGNATURE
3244 		/*
3245 		 * XXX In order to reply to a host which has set the
3246 		 * TCP_SIGNATURE option in its initial SYN, we have to
3247 		 * record the fact that the option was observed here
3248 		 * for the syncache code to perform the correct response.
3249 		 */
3250 		case TCPOPT_SIGNATURE:
3251 			if (optlen != TCPOLEN_SIGNATURE)
3252 				continue;
3253 			to->to_flags |= TOF_SIGNATURE;
3254 			to->to_signature = cp + 2;
3255 			break;
3256 #endif
3257 		case TCPOPT_SACK_PERMITTED:
3258 			if (optlen != TCPOLEN_SACK_PERMITTED)
3259 				continue;
3260 			if (!(flags & TO_SYN))
3261 				continue;
3262 			if (!V_tcp_do_sack)
3263 				continue;
3264 			to->to_flags |= TOF_SACKPERM;
3265 			break;
3266 		case TCPOPT_SACK:
3267 			if (optlen <= 2 || (optlen - 2) % TCPOLEN_SACK != 0)
3268 				continue;
3269 			if (flags & TO_SYN)
3270 				continue;
3271 			to->to_flags |= TOF_SACK;
3272 			to->to_nsacks = (optlen - 2) / TCPOLEN_SACK;
3273 			to->to_sacks = cp + 2;
3274 			TCPSTAT_INC(tcps_sack_rcv_blocks);
3275 			break;
3276 		default:
3277 			continue;
3278 		}
3279 	}
3280 }
3281 
3282 /*
3283  * Pull out of band byte out of a segment so
3284  * it doesn't appear in the user's data queue.
3285  * It is still reflected in the segment length for
3286  * sequencing purposes.
3287  */
3288 static void
3289 tcp_pulloutofband(struct socket *so, struct tcphdr *th, struct mbuf *m,
3290     int off)
3291 {
3292 	int cnt = off + th->th_urp - 1;
3293 
3294 	while (cnt >= 0) {
3295 		if (m->m_len > cnt) {
3296 			char *cp = mtod(m, caddr_t) + cnt;
3297 			struct tcpcb *tp = sototcpcb(so);
3298 
3299 			INP_WLOCK_ASSERT(tp->t_inpcb);
3300 
3301 			tp->t_iobc = *cp;
3302 			tp->t_oobflags |= TCPOOB_HAVEDATA;
3303 			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
3304 			m->m_len--;
3305 			if (m->m_flags & M_PKTHDR)
3306 				m->m_pkthdr.len--;
3307 			return;
3308 		}
3309 		cnt -= m->m_len;
3310 		m = m->m_next;
3311 		if (m == NULL)
3312 			break;
3313 	}
3314 	panic("tcp_pulloutofband");
3315 }
3316 
3317 /*
3318  * Collect new round-trip time estimate
3319  * and update averages and current timeout.
3320  */
3321 static void
3322 tcp_xmit_timer(struct tcpcb *tp, int rtt)
3323 {
3324 	int delta;
3325 
3326 	INP_WLOCK_ASSERT(tp->t_inpcb);
3327 
3328 	TCPSTAT_INC(tcps_rttupdated);
3329 	tp->t_rttupdated++;
3330 	if (tp->t_srtt != 0) {
3331 		/*
3332 		 * srtt is stored as fixed point with 5 bits after the
3333 		 * binary point (i.e., scaled by 8).  The following magic
3334 		 * is equivalent to the smoothing algorithm in rfc793 with
3335 		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
3336 		 * point).  Adjust rtt to origin 0.
3337 		 */
3338 		delta = ((rtt - 1) << TCP_DELTA_SHIFT)
3339 			- (tp->t_srtt >> (TCP_RTT_SHIFT - TCP_DELTA_SHIFT));
3340 
3341 		if ((tp->t_srtt += delta) <= 0)
3342 			tp->t_srtt = 1;
3343 
3344 		/*
3345 		 * We accumulate a smoothed rtt variance (actually, a
3346 		 * smoothed mean difference), then set the retransmit
3347 		 * timer to smoothed rtt + 4 times the smoothed variance.
3348 		 * rttvar is stored as fixed point with 4 bits after the
3349 		 * binary point (scaled by 16).  The following is
3350 		 * equivalent to rfc793 smoothing with an alpha of .75
3351 		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
3352 		 * rfc793's wired-in beta.
3353 		 */
3354 		if (delta < 0)
3355 			delta = -delta;
3356 		delta -= tp->t_rttvar >> (TCP_RTTVAR_SHIFT - TCP_DELTA_SHIFT);
3357 		if ((tp->t_rttvar += delta) <= 0)
3358 			tp->t_rttvar = 1;
3359 		if (tp->t_rttbest > tp->t_srtt + tp->t_rttvar)
3360 		    tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
3361 	} else {
3362 		/*
3363 		 * No rtt measurement yet - use the unsmoothed rtt.
3364 		 * Set the variance to half the rtt (so our first
3365 		 * retransmit happens at 3*rtt).
3366 		 */
3367 		tp->t_srtt = rtt << TCP_RTT_SHIFT;
3368 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1);
3369 		tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
3370 	}
3371 	tp->t_rtttime = 0;
3372 	tp->t_rxtshift = 0;
3373 
3374 	/*
3375 	 * the retransmit should happen at rtt + 4 * rttvar.
3376 	 * Because of the way we do the smoothing, srtt and rttvar
3377 	 * will each average +1/2 tick of bias.  When we compute
3378 	 * the retransmit timer, we want 1/2 tick of rounding and
3379 	 * 1 extra tick because of +-1/2 tick uncertainty in the
3380 	 * firing of the timer.  The bias will give us exactly the
3381 	 * 1.5 tick we need.  But, because the bias is
3382 	 * statistical, we have to test that we don't drop below
3383 	 * the minimum feasible timer (which is 2 ticks).
3384 	 */
3385 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
3386 		      max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
3387 
3388 	/*
3389 	 * We received an ack for a packet that wasn't retransmitted;
3390 	 * it is probably safe to discard any error indications we've
3391 	 * received recently.  This isn't quite right, but close enough
3392 	 * for now (a route might have failed after we sent a segment,
3393 	 * and the return path might not be symmetrical).
3394 	 */
3395 	tp->t_softerror = 0;
3396 }
3397 
3398 /*
3399  * Determine a reasonable value for maxseg size.
3400  * If the route is known, check route for mtu.
3401  * If none, use an mss that can be handled on the outgoing interface
3402  * without forcing IP to fragment.  If no route is found, route has no mtu,
3403  * or the destination isn't local, use a default, hopefully conservative
3404  * size (usually 512 or the default IP max size, but no more than the mtu
3405  * of the interface), as we can't discover anything about intervening
3406  * gateways or networks.  We also initialize the congestion/slow start
3407  * window to be a single segment if the destination isn't local.
3408  * While looking at the routing entry, we also initialize other path-dependent
3409  * parameters from pre-set or cached values in the routing entry.
3410  *
3411  * Also take into account the space needed for options that we
3412  * send regularly.  Make maxseg shorter by that amount to assure
3413  * that we can send maxseg amount of data even when the options
3414  * are present.  Store the upper limit of the length of options plus
3415  * data in maxopd.
3416  *
3417  * NOTE that this routine is only called when we process an incoming
3418  * segment, or an ICMP need fragmentation datagram. Outgoing SYN/ACK MSS
3419  * settings are handled in tcp_mssopt().
3420  */
3421 void
3422 tcp_mss_update(struct tcpcb *tp, int offer, int mtuoffer,
3423     struct hc_metrics_lite *metricptr, struct tcp_ifcap *cap)
3424 {
3425 	int mss = 0;
3426 	u_long maxmtu = 0;
3427 	struct inpcb *inp = tp->t_inpcb;
3428 	struct hc_metrics_lite metrics;
3429 	int origoffer;
3430 #ifdef INET6
3431 	int isipv6 = ((inp->inp_vflag & INP_IPV6) != 0) ? 1 : 0;
3432 	size_t min_protoh = isipv6 ?
3433 			    sizeof (struct ip6_hdr) + sizeof (struct tcphdr) :
3434 			    sizeof (struct tcpiphdr);
3435 #else
3436 	const size_t min_protoh = sizeof(struct tcpiphdr);
3437 #endif
3438 
3439 	INP_WLOCK_ASSERT(tp->t_inpcb);
3440 
3441 	if (mtuoffer != -1) {
3442 		KASSERT(offer == -1, ("%s: conflict", __func__));
3443 		offer = mtuoffer - min_protoh;
3444 	}
3445 	origoffer = offer;
3446 
3447 	/* Initialize. */
3448 #ifdef INET6
3449 	if (isipv6) {
3450 		maxmtu = tcp_maxmtu6(&inp->inp_inc, cap);
3451 		tp->t_maxopd = tp->t_maxseg = V_tcp_v6mssdflt;
3452 	}
3453 #endif
3454 #if defined(INET) && defined(INET6)
3455 	else
3456 #endif
3457 #ifdef INET
3458 	{
3459 		maxmtu = tcp_maxmtu(&inp->inp_inc, cap);
3460 		tp->t_maxopd = tp->t_maxseg = V_tcp_mssdflt;
3461 	}
3462 #endif
3463 
3464 	/*
3465 	 * No route to sender, stay with default mss and return.
3466 	 */
3467 	if (maxmtu == 0) {
3468 		/*
3469 		 * In case we return early we need to initialize metrics
3470 		 * to a defined state as tcp_hc_get() would do for us
3471 		 * if there was no cache hit.
3472 		 */
3473 		if (metricptr != NULL)
3474 			bzero(metricptr, sizeof(struct hc_metrics_lite));
3475 		return;
3476 	}
3477 
3478 	/* What have we got? */
3479 	switch (offer) {
3480 		case 0:
3481 			/*
3482 			 * Offer == 0 means that there was no MSS on the SYN
3483 			 * segment, in this case we use tcp_mssdflt as
3484 			 * already assigned to t_maxopd above.
3485 			 */
3486 			offer = tp->t_maxopd;
3487 			break;
3488 
3489 		case -1:
3490 			/*
3491 			 * Offer == -1 means that we didn't receive SYN yet.
3492 			 */
3493 			/* FALLTHROUGH */
3494 
3495 		default:
3496 			/*
3497 			 * Prevent DoS attack with too small MSS. Round up
3498 			 * to at least minmss.
3499 			 */
3500 			offer = max(offer, V_tcp_minmss);
3501 	}
3502 
3503 	/*
3504 	 * rmx information is now retrieved from tcp_hostcache.
3505 	 */
3506 	tcp_hc_get(&inp->inp_inc, &metrics);
3507 	if (metricptr != NULL)
3508 		bcopy(&metrics, metricptr, sizeof(struct hc_metrics_lite));
3509 
3510 	/*
3511 	 * If there's a discovered mtu in tcp hostcache, use it.
3512 	 * Else, use the link mtu.
3513 	 */
3514 	if (metrics.rmx_mtu)
3515 		mss = min(metrics.rmx_mtu, maxmtu) - min_protoh;
3516 	else {
3517 #ifdef INET6
3518 		if (isipv6) {
3519 			mss = maxmtu - min_protoh;
3520 			if (!V_path_mtu_discovery &&
3521 			    !in6_localaddr(&inp->in6p_faddr))
3522 				mss = min(mss, V_tcp_v6mssdflt);
3523 		}
3524 #endif
3525 #if defined(INET) && defined(INET6)
3526 		else
3527 #endif
3528 #ifdef INET
3529 		{
3530 			mss = maxmtu - min_protoh;
3531 			if (!V_path_mtu_discovery &&
3532 			    !in_localaddr(inp->inp_faddr))
3533 				mss = min(mss, V_tcp_mssdflt);
3534 		}
3535 #endif
3536 		/*
3537 		 * XXX - The above conditional (mss = maxmtu - min_protoh)
3538 		 * probably violates the TCP spec.
3539 		 * The problem is that, since we don't know the
3540 		 * other end's MSS, we are supposed to use a conservative
3541 		 * default.  But, if we do that, then MTU discovery will
3542 		 * never actually take place, because the conservative
3543 		 * default is much less than the MTUs typically seen
3544 		 * on the Internet today.  For the moment, we'll sweep
3545 		 * this under the carpet.
3546 		 *
3547 		 * The conservative default might not actually be a problem
3548 		 * if the only case this occurs is when sending an initial
3549 		 * SYN with options and data to a host we've never talked
3550 		 * to before.  Then, they will reply with an MSS value which
3551 		 * will get recorded and the new parameters should get
3552 		 * recomputed.  For Further Study.
3553 		 */
3554 	}
3555 	mss = min(mss, offer);
3556 
3557 	/*
3558 	 * Sanity check: make sure that maxopd will be large
3559 	 * enough to allow some data on segments even if the
3560 	 * all the option space is used (40bytes).  Otherwise
3561 	 * funny things may happen in tcp_output.
3562 	 */
3563 	mss = max(mss, 64);
3564 
3565 	/*
3566 	 * maxopd stores the maximum length of data AND options
3567 	 * in a segment; maxseg is the amount of data in a normal
3568 	 * segment.  We need to store this value (maxopd) apart
3569 	 * from maxseg, because now every segment carries options
3570 	 * and thus we normally have somewhat less data in segments.
3571 	 */
3572 	tp->t_maxopd = mss;
3573 
3574 	/*
3575 	 * origoffer==-1 indicates that no segments were received yet.
3576 	 * In this case we just guess.
3577 	 */
3578 	if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
3579 	    (origoffer == -1 ||
3580 	     (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP))
3581 		mss -= TCPOLEN_TSTAMP_APPA;
3582 
3583 	tp->t_maxseg = mss;
3584 }
3585 
3586 void
3587 tcp_mss(struct tcpcb *tp, int offer)
3588 {
3589 	int mss;
3590 	u_long bufsize;
3591 	struct inpcb *inp;
3592 	struct socket *so;
3593 	struct hc_metrics_lite metrics;
3594 	struct tcp_ifcap cap;
3595 
3596 	KASSERT(tp != NULL, ("%s: tp == NULL", __func__));
3597 
3598 	bzero(&cap, sizeof(cap));
3599 	tcp_mss_update(tp, offer, -1, &metrics, &cap);
3600 
3601 	mss = tp->t_maxseg;
3602 	inp = tp->t_inpcb;
3603 
3604 	/*
3605 	 * If there's a pipesize, change the socket buffer to that size,
3606 	 * don't change if sb_hiwat is different than default (then it
3607 	 * has been changed on purpose with setsockopt).
3608 	 * Make the socket buffers an integral number of mss units;
3609 	 * if the mss is larger than the socket buffer, decrease the mss.
3610 	 */
3611 	so = inp->inp_socket;
3612 	SOCKBUF_LOCK(&so->so_snd);
3613 	if ((so->so_snd.sb_hiwat == V_tcp_sendspace) && metrics.rmx_sendpipe)
3614 		bufsize = metrics.rmx_sendpipe;
3615 	else
3616 		bufsize = so->so_snd.sb_hiwat;
3617 	if (bufsize < mss)
3618 		mss = bufsize;
3619 	else {
3620 		bufsize = roundup(bufsize, mss);
3621 		if (bufsize > sb_max)
3622 			bufsize = sb_max;
3623 		if (bufsize > so->so_snd.sb_hiwat)
3624 			(void)sbreserve_locked(&so->so_snd, bufsize, so, NULL);
3625 	}
3626 	SOCKBUF_UNLOCK(&so->so_snd);
3627 	tp->t_maxseg = mss;
3628 
3629 	SOCKBUF_LOCK(&so->so_rcv);
3630 	if ((so->so_rcv.sb_hiwat == V_tcp_recvspace) && metrics.rmx_recvpipe)
3631 		bufsize = metrics.rmx_recvpipe;
3632 	else
3633 		bufsize = so->so_rcv.sb_hiwat;
3634 	if (bufsize > mss) {
3635 		bufsize = roundup(bufsize, mss);
3636 		if (bufsize > sb_max)
3637 			bufsize = sb_max;
3638 		if (bufsize > so->so_rcv.sb_hiwat)
3639 			(void)sbreserve_locked(&so->so_rcv, bufsize, so, NULL);
3640 	}
3641 	SOCKBUF_UNLOCK(&so->so_rcv);
3642 
3643 	/* Check the interface for TSO capabilities. */
3644 	if (cap.ifcap & CSUM_TSO) {
3645 		tp->t_flags |= TF_TSO;
3646 		tp->t_tsomax = cap.tsomax;
3647 		tp->t_tsomaxsegcount = cap.tsomaxsegcount;
3648 		tp->t_tsomaxsegsize = cap.tsomaxsegsize;
3649 	}
3650 }
3651 
3652 /*
3653  * Determine the MSS option to send on an outgoing SYN.
3654  */
3655 int
3656 tcp_mssopt(struct in_conninfo *inc)
3657 {
3658 	int mss = 0;
3659 	u_long maxmtu = 0;
3660 	u_long thcmtu = 0;
3661 	size_t min_protoh;
3662 
3663 	KASSERT(inc != NULL, ("tcp_mssopt with NULL in_conninfo pointer"));
3664 
3665 #ifdef INET6
3666 	if (inc->inc_flags & INC_ISIPV6) {
3667 		mss = V_tcp_v6mssdflt;
3668 		maxmtu = tcp_maxmtu6(inc, NULL);
3669 		min_protoh = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
3670 	}
3671 #endif
3672 #if defined(INET) && defined(INET6)
3673 	else
3674 #endif
3675 #ifdef INET
3676 	{
3677 		mss = V_tcp_mssdflt;
3678 		maxmtu = tcp_maxmtu(inc, NULL);
3679 		min_protoh = sizeof(struct tcpiphdr);
3680 	}
3681 #endif
3682 #if defined(INET6) || defined(INET)
3683 	thcmtu = tcp_hc_getmtu(inc); /* IPv4 and IPv6 */
3684 #endif
3685 
3686 	if (maxmtu && thcmtu)
3687 		mss = min(maxmtu, thcmtu) - min_protoh;
3688 	else if (maxmtu || thcmtu)
3689 		mss = max(maxmtu, thcmtu) - min_protoh;
3690 
3691 	return (mss);
3692 }
3693 
3694 
3695 /*
3696  * On a partial ack arrives, force the retransmission of the
3697  * next unacknowledged segment.  Do not clear tp->t_dupacks.
3698  * By setting snd_nxt to ti_ack, this forces retransmission timer to
3699  * be started again.
3700  */
3701 static void
3702 tcp_newreno_partial_ack(struct tcpcb *tp, struct tcphdr *th)
3703 {
3704 	tcp_seq onxt = tp->snd_nxt;
3705 	u_long  ocwnd = tp->snd_cwnd;
3706 
3707 	INP_WLOCK_ASSERT(tp->t_inpcb);
3708 
3709 	tcp_timer_activate(tp, TT_REXMT, 0);
3710 	tp->t_rtttime = 0;
3711 	tp->snd_nxt = th->th_ack;
3712 	/*
3713 	 * Set snd_cwnd to one segment beyond acknowledged offset.
3714 	 * (tp->snd_una has not yet been updated when this function is called.)
3715 	 */
3716 	tp->snd_cwnd = tp->t_maxseg + BYTES_THIS_ACK(tp, th);
3717 	tp->t_flags |= TF_ACKNOW;
3718 	(void) tcp_output(tp);
3719 	tp->snd_cwnd = ocwnd;
3720 	if (SEQ_GT(onxt, tp->snd_nxt))
3721 		tp->snd_nxt = onxt;
3722 	/*
3723 	 * Partial window deflation.  Relies on fact that tp->snd_una
3724 	 * not updated yet.
3725 	 */
3726 	if (tp->snd_cwnd > BYTES_THIS_ACK(tp, th))
3727 		tp->snd_cwnd -= BYTES_THIS_ACK(tp, th);
3728 	else
3729 		tp->snd_cwnd = 0;
3730 	tp->snd_cwnd += tp->t_maxseg;
3731 }
3732