xref: /freebsd/sys/netinet/tcp_input.c (revision 298cf604ccf133b101c6fad42d1a078a1fac58ca)
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
3  *	The Regents of the University of California.  All rights reserved.
4  * Copyright (c) 2007-2008,2010
5  *	Swinburne University of Technology, Melbourne, Australia.
6  * Copyright (c) 2009-2010 Lawrence Stewart <lstewart@freebsd.org>
7  * Copyright (c) 2010 The FreeBSD Foundation
8  * Copyright (c) 2010-2011 Juniper Networks, Inc.
9  * All rights reserved.
10  *
11  * Portions of this software were developed at the Centre for Advanced Internet
12  * Architectures, Swinburne University of Technology, by Lawrence Stewart,
13  * James Healy and David Hayes, made possible in part by a grant from the Cisco
14  * University Research Program Fund at Community Foundation Silicon Valley.
15  *
16  * Portions of this software were developed at the Centre for Advanced
17  * Internet Architectures, Swinburne University of Technology, Melbourne,
18  * Australia by David Hayes under sponsorship from the FreeBSD Foundation.
19  *
20  * Portions of this software were developed by Robert N. M. Watson under
21  * contract to Juniper Networks, Inc.
22  *
23  * Redistribution and use in source and binary forms, with or without
24  * modification, are permitted provided that the following conditions
25  * are met:
26  * 1. Redistributions of source code must retain the above copyright
27  *    notice, this list of conditions and the following disclaimer.
28  * 2. Redistributions in binary form must reproduce the above copyright
29  *    notice, this list of conditions and the following disclaimer in the
30  *    documentation and/or other materials provided with the distribution.
31  * 4. Neither the name of the University nor the names of its contributors
32  *    may be used to endorse or promote products derived from this software
33  *    without specific prior written permission.
34  *
35  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
36  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
37  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
38  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
39  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
40  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
41  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
42  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
43  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
44  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
45  * SUCH DAMAGE.
46  *
47  *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
48  */
49 
50 #include <sys/cdefs.h>
51 __FBSDID("$FreeBSD$");
52 
53 #include "opt_ipfw.h"		/* for ipfw_fwd	*/
54 #include "opt_inet.h"
55 #include "opt_inet6.h"
56 #include "opt_ipsec.h"
57 #include "opt_tcpdebug.h"
58 
59 #include <sys/param.h>
60 #include <sys/kernel.h>
61 #include <sys/hhook.h>
62 #include <sys/malloc.h>
63 #include <sys/mbuf.h>
64 #include <sys/proc.h>		/* for proc0 declaration */
65 #include <sys/protosw.h>
66 #include <sys/signalvar.h>
67 #include <sys/socket.h>
68 #include <sys/socketvar.h>
69 #include <sys/sysctl.h>
70 #include <sys/syslog.h>
71 #include <sys/systm.h>
72 
73 #include <machine/cpu.h>	/* before tcp_seq.h, for tcp_random18() */
74 
75 #include <vm/uma.h>
76 
77 #include <net/if.h>
78 #include <net/route.h>
79 #include <net/vnet.h>
80 
81 #define TCPSTATES		/* for logging */
82 
83 #include <netinet/cc.h>
84 #include <netinet/in.h>
85 #include <netinet/in_pcb.h>
86 #include <netinet/in_systm.h>
87 #include <netinet/in_var.h>
88 #include <netinet/ip.h>
89 #include <netinet/ip_icmp.h>	/* required for icmp_var.h */
90 #include <netinet/icmp_var.h>	/* for ICMP_BANDLIM */
91 #include <netinet/ip_var.h>
92 #include <netinet/ip_options.h>
93 #include <netinet/ip6.h>
94 #include <netinet/icmp6.h>
95 #include <netinet6/in6_pcb.h>
96 #include <netinet6/ip6_var.h>
97 #include <netinet6/nd6.h>
98 #include <netinet/tcp_fsm.h>
99 #include <netinet/tcp_seq.h>
100 #include <netinet/tcp_timer.h>
101 #include <netinet/tcp_var.h>
102 #include <netinet6/tcp6_var.h>
103 #include <netinet/tcpip.h>
104 #include <netinet/tcp_syncache.h>
105 #ifdef TCPDEBUG
106 #include <netinet/tcp_debug.h>
107 #endif /* TCPDEBUG */
108 #ifdef TCP_OFFLOAD
109 #include <netinet/tcp_offload.h>
110 #endif
111 
112 #ifdef IPSEC
113 #include <netipsec/ipsec.h>
114 #include <netipsec/ipsec6.h>
115 #endif /*IPSEC*/
116 
117 #include <machine/in_cksum.h>
118 
119 #include <security/mac/mac_framework.h>
120 
121 const int tcprexmtthresh = 3;
122 
123 VNET_DEFINE(struct tcpstat, tcpstat);
124 SYSCTL_VNET_STRUCT(_net_inet_tcp, TCPCTL_STATS, stats, CTLFLAG_RW,
125     &VNET_NAME(tcpstat), tcpstat,
126     "TCP statistics (struct tcpstat, netinet/tcp_var.h)");
127 
128 int tcp_log_in_vain = 0;
129 SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_in_vain, CTLFLAG_RW,
130     &tcp_log_in_vain, 0,
131     "Log all incoming TCP segments to closed ports");
132 
133 VNET_DEFINE(int, blackhole) = 0;
134 #define	V_blackhole		VNET(blackhole)
135 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, blackhole, CTLFLAG_RW,
136     &VNET_NAME(blackhole), 0,
137     "Do not send RST on segments to closed ports");
138 
139 VNET_DEFINE(int, tcp_delack_enabled) = 1;
140 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, delayed_ack, CTLFLAG_RW,
141     &VNET_NAME(tcp_delack_enabled), 0,
142     "Delay ACK to try and piggyback it onto a data packet");
143 
144 VNET_DEFINE(int, drop_synfin) = 0;
145 #define	V_drop_synfin		VNET(drop_synfin)
146 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, drop_synfin, CTLFLAG_RW,
147     &VNET_NAME(drop_synfin), 0,
148     "Drop TCP packets with SYN+FIN set");
149 
150 VNET_DEFINE(int, tcp_do_rfc3042) = 1;
151 #define	V_tcp_do_rfc3042	VNET(tcp_do_rfc3042)
152 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, rfc3042, CTLFLAG_RW,
153     &VNET_NAME(tcp_do_rfc3042), 0,
154     "Enable RFC 3042 (Limited Transmit)");
155 
156 VNET_DEFINE(int, tcp_do_rfc3390) = 1;
157 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, rfc3390, CTLFLAG_RW,
158     &VNET_NAME(tcp_do_rfc3390), 0,
159     "Enable RFC 3390 (Increasing TCP's Initial Congestion Window)");
160 
161 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, experimental, CTLFLAG_RW, 0,
162     "Experimental TCP extensions");
163 
164 VNET_DEFINE(int, tcp_do_initcwnd10) = 1;
165 SYSCTL_VNET_INT(_net_inet_tcp_experimental, OID_AUTO, initcwnd10, CTLFLAG_RW,
166     &VNET_NAME(tcp_do_initcwnd10), 0,
167     "Enable draft-ietf-tcpm-initcwnd-05 (Increasing initial CWND to 10)");
168 
169 VNET_DEFINE(int, tcp_do_rfc3465) = 1;
170 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, rfc3465, CTLFLAG_RW,
171     &VNET_NAME(tcp_do_rfc3465), 0,
172     "Enable RFC 3465 (Appropriate Byte Counting)");
173 
174 VNET_DEFINE(int, tcp_abc_l_var) = 2;
175 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, abc_l_var, CTLFLAG_RW,
176     &VNET_NAME(tcp_abc_l_var), 2,
177     "Cap the max cwnd increment during slow-start to this number of segments");
178 
179 static SYSCTL_NODE(_net_inet_tcp, OID_AUTO, ecn, CTLFLAG_RW, 0, "TCP ECN");
180 
181 VNET_DEFINE(int, tcp_do_ecn) = 0;
182 SYSCTL_VNET_INT(_net_inet_tcp_ecn, OID_AUTO, enable, CTLFLAG_RW,
183     &VNET_NAME(tcp_do_ecn), 0,
184     "TCP ECN support");
185 
186 VNET_DEFINE(int, tcp_ecn_maxretries) = 1;
187 SYSCTL_VNET_INT(_net_inet_tcp_ecn, OID_AUTO, maxretries, CTLFLAG_RW,
188     &VNET_NAME(tcp_ecn_maxretries), 0,
189     "Max retries before giving up on ECN");
190 
191 VNET_DEFINE(int, tcp_insecure_rst) = 0;
192 #define	V_tcp_insecure_rst	VNET(tcp_insecure_rst)
193 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, insecure_rst, CTLFLAG_RW,
194     &VNET_NAME(tcp_insecure_rst), 0,
195     "Follow the old (insecure) criteria for accepting RST packets");
196 
197 VNET_DEFINE(int, tcp_recvspace) = 1024*64;
198 #define	V_tcp_recvspace	VNET(tcp_recvspace)
199 SYSCTL_VNET_INT(_net_inet_tcp, TCPCTL_RECVSPACE, recvspace, CTLFLAG_RW,
200     &VNET_NAME(tcp_recvspace), 0, "Initial receive socket buffer size");
201 
202 VNET_DEFINE(int, tcp_do_autorcvbuf) = 1;
203 #define	V_tcp_do_autorcvbuf	VNET(tcp_do_autorcvbuf)
204 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, recvbuf_auto, CTLFLAG_RW,
205     &VNET_NAME(tcp_do_autorcvbuf), 0,
206     "Enable automatic receive buffer sizing");
207 
208 VNET_DEFINE(int, tcp_autorcvbuf_inc) = 16*1024;
209 #define	V_tcp_autorcvbuf_inc	VNET(tcp_autorcvbuf_inc)
210 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, recvbuf_inc, CTLFLAG_RW,
211     &VNET_NAME(tcp_autorcvbuf_inc), 0,
212     "Incrementor step size of automatic receive buffer");
213 
214 VNET_DEFINE(int, tcp_autorcvbuf_max) = 2*1024*1024;
215 #define	V_tcp_autorcvbuf_max	VNET(tcp_autorcvbuf_max)
216 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, recvbuf_max, CTLFLAG_RW,
217     &VNET_NAME(tcp_autorcvbuf_max), 0,
218     "Max size of automatic receive buffer");
219 
220 VNET_DEFINE(struct inpcbhead, tcb);
221 #define	tcb6	tcb  /* for KAME src sync over BSD*'s */
222 VNET_DEFINE(struct inpcbinfo, tcbinfo);
223 
224 static void	 tcp_dooptions(struct tcpopt *, u_char *, int, int);
225 static void	 tcp_do_segment(struct mbuf *, struct tcphdr *,
226 		     struct socket *, struct tcpcb *, int, int, uint8_t,
227 		     int);
228 static void	 tcp_dropwithreset(struct mbuf *, struct tcphdr *,
229 		     struct tcpcb *, int, int);
230 static void	 tcp_pulloutofband(struct socket *,
231 		     struct tcphdr *, struct mbuf *, int);
232 static void	 tcp_xmit_timer(struct tcpcb *, int);
233 static void	 tcp_newreno_partial_ack(struct tcpcb *, struct tcphdr *);
234 static void inline 	tcp_fields_to_host(struct tcphdr *);
235 #ifdef TCP_SIGNATURE
236 static void inline 	tcp_fields_to_net(struct tcphdr *);
237 static int inline	tcp_signature_verify_input(struct mbuf *, int, int,
238 			    int, struct tcpopt *, struct tcphdr *, u_int);
239 #endif
240 static void inline	cc_ack_received(struct tcpcb *tp, struct tcphdr *th,
241 			    uint16_t type);
242 static void inline	cc_conn_init(struct tcpcb *tp);
243 static void inline	cc_post_recovery(struct tcpcb *tp, struct tcphdr *th);
244 static void inline	hhook_run_tcp_est_in(struct tcpcb *tp,
245 			    struct tcphdr *th, struct tcpopt *to);
246 
247 /*
248  * Kernel module interface for updating tcpstat.  The argument is an index
249  * into tcpstat treated as an array of u_long.  While this encodes the
250  * general layout of tcpstat into the caller, it doesn't encode its location,
251  * so that future changes to add, for example, per-CPU stats support won't
252  * cause binary compatibility problems for kernel modules.
253  */
254 void
255 kmod_tcpstat_inc(int statnum)
256 {
257 
258 	(*((u_long *)&V_tcpstat + statnum))++;
259 }
260 
261 /*
262  * Wrapper for the TCP established input helper hook.
263  */
264 static void inline
265 hhook_run_tcp_est_in(struct tcpcb *tp, struct tcphdr *th, struct tcpopt *to)
266 {
267 	struct tcp_hhook_data hhook_data;
268 
269 	if (V_tcp_hhh[HHOOK_TCP_EST_IN]->hhh_nhooks > 0) {
270 		hhook_data.tp = tp;
271 		hhook_data.th = th;
272 		hhook_data.to = to;
273 
274 		hhook_run_hooks(V_tcp_hhh[HHOOK_TCP_EST_IN], &hhook_data,
275 		    tp->osd);
276 	}
277 }
278 
279 /*
280  * CC wrapper hook functions
281  */
282 static void inline
283 cc_ack_received(struct tcpcb *tp, struct tcphdr *th, uint16_t type)
284 {
285 	INP_WLOCK_ASSERT(tp->t_inpcb);
286 
287 	tp->ccv->bytes_this_ack = BYTES_THIS_ACK(tp, th);
288 	if (tp->snd_cwnd == min(tp->snd_cwnd, tp->snd_wnd))
289 		tp->ccv->flags |= CCF_CWND_LIMITED;
290 	else
291 		tp->ccv->flags &= ~CCF_CWND_LIMITED;
292 
293 	if (type == CC_ACK) {
294 		if (tp->snd_cwnd > tp->snd_ssthresh) {
295 			tp->t_bytes_acked += min(tp->ccv->bytes_this_ack,
296 			     V_tcp_abc_l_var * tp->t_maxseg);
297 			if (tp->t_bytes_acked >= tp->snd_cwnd) {
298 				tp->t_bytes_acked -= tp->snd_cwnd;
299 				tp->ccv->flags |= CCF_ABC_SENTAWND;
300 			}
301 		} else {
302 				tp->ccv->flags &= ~CCF_ABC_SENTAWND;
303 				tp->t_bytes_acked = 0;
304 		}
305 	}
306 
307 	if (CC_ALGO(tp)->ack_received != NULL) {
308 		/* XXXLAS: Find a way to live without this */
309 		tp->ccv->curack = th->th_ack;
310 		CC_ALGO(tp)->ack_received(tp->ccv, type);
311 	}
312 }
313 
314 static void inline
315 cc_conn_init(struct tcpcb *tp)
316 {
317 	struct hc_metrics_lite metrics;
318 	struct inpcb *inp = tp->t_inpcb;
319 	int rtt;
320 
321 	INP_WLOCK_ASSERT(tp->t_inpcb);
322 
323 	tcp_hc_get(&inp->inp_inc, &metrics);
324 
325 	if (tp->t_srtt == 0 && (rtt = metrics.rmx_rtt)) {
326 		tp->t_srtt = rtt;
327 		tp->t_rttbest = tp->t_srtt + TCP_RTT_SCALE;
328 		TCPSTAT_INC(tcps_usedrtt);
329 		if (metrics.rmx_rttvar) {
330 			tp->t_rttvar = metrics.rmx_rttvar;
331 			TCPSTAT_INC(tcps_usedrttvar);
332 		} else {
333 			/* default variation is +- 1 rtt */
334 			tp->t_rttvar =
335 			    tp->t_srtt * TCP_RTTVAR_SCALE / TCP_RTT_SCALE;
336 		}
337 		TCPT_RANGESET(tp->t_rxtcur,
338 		    ((tp->t_srtt >> 2) + tp->t_rttvar) >> 1,
339 		    tp->t_rttmin, TCPTV_REXMTMAX);
340 	}
341 	if (metrics.rmx_ssthresh) {
342 		/*
343 		 * There's some sort of gateway or interface
344 		 * buffer limit on the path.  Use this to set
345 		 * the slow start threshhold, but set the
346 		 * threshold to no less than 2*mss.
347 		 */
348 		tp->snd_ssthresh = max(2 * tp->t_maxseg, metrics.rmx_ssthresh);
349 		TCPSTAT_INC(tcps_usedssthresh);
350 	}
351 
352 	/*
353 	 * Set the initial slow-start flight size.
354 	 *
355 	 * RFC5681 Section 3.1 specifies the default conservative values.
356 	 * RFC3390 specifies slightly more aggressive values.
357 	 * Draft-ietf-tcpm-initcwnd-05 increases it to ten segments.
358 	 *
359 	 * If a SYN or SYN/ACK was lost and retransmitted, we have to
360 	 * reduce the initial CWND to one segment as congestion is likely
361 	 * requiring us to be cautious.
362 	 */
363 	if (tp->snd_cwnd == 1)
364 		tp->snd_cwnd = tp->t_maxseg;		/* SYN(-ACK) lost */
365 	else if (V_tcp_do_initcwnd10)
366 		tp->snd_cwnd = min(10 * tp->t_maxseg,
367 		    max(2 * tp->t_maxseg, 14600));
368 	else if (V_tcp_do_rfc3390)
369 		tp->snd_cwnd = min(4 * tp->t_maxseg,
370 		    max(2 * tp->t_maxseg, 4380));
371 	else {
372 		/* Per RFC5681 Section 3.1 */
373 		if (tp->t_maxseg > 2190)
374 			tp->snd_cwnd = 2 * tp->t_maxseg;
375 		else if (tp->t_maxseg > 1095)
376 			tp->snd_cwnd = 3 * tp->t_maxseg;
377 		else
378 			tp->snd_cwnd = 4 * tp->t_maxseg;
379 	}
380 
381 	if (CC_ALGO(tp)->conn_init != NULL)
382 		CC_ALGO(tp)->conn_init(tp->ccv);
383 }
384 
385 void inline
386 cc_cong_signal(struct tcpcb *tp, struct tcphdr *th, uint32_t type)
387 {
388 	INP_WLOCK_ASSERT(tp->t_inpcb);
389 
390 	switch(type) {
391 	case CC_NDUPACK:
392 		if (!IN_FASTRECOVERY(tp->t_flags)) {
393 			tp->snd_recover = tp->snd_max;
394 			if (tp->t_flags & TF_ECN_PERMIT)
395 				tp->t_flags |= TF_ECN_SND_CWR;
396 		}
397 		break;
398 	case CC_ECN:
399 		if (!IN_CONGRECOVERY(tp->t_flags)) {
400 			TCPSTAT_INC(tcps_ecn_rcwnd);
401 			tp->snd_recover = tp->snd_max;
402 			if (tp->t_flags & TF_ECN_PERMIT)
403 				tp->t_flags |= TF_ECN_SND_CWR;
404 		}
405 		break;
406 	case CC_RTO:
407 		tp->t_dupacks = 0;
408 		tp->t_bytes_acked = 0;
409 		EXIT_RECOVERY(tp->t_flags);
410 		tp->snd_ssthresh = max(2, min(tp->snd_wnd, tp->snd_cwnd) / 2 /
411 		    tp->t_maxseg) * tp->t_maxseg;
412 		tp->snd_cwnd = tp->t_maxseg;
413 		break;
414 	case CC_RTO_ERR:
415 		TCPSTAT_INC(tcps_sndrexmitbad);
416 		/* RTO was unnecessary, so reset everything. */
417 		tp->snd_cwnd = tp->snd_cwnd_prev;
418 		tp->snd_ssthresh = tp->snd_ssthresh_prev;
419 		tp->snd_recover = tp->snd_recover_prev;
420 		if (tp->t_flags & TF_WASFRECOVERY)
421 			ENTER_FASTRECOVERY(tp->t_flags);
422 		if (tp->t_flags & TF_WASCRECOVERY)
423 			ENTER_CONGRECOVERY(tp->t_flags);
424 		tp->snd_nxt = tp->snd_max;
425 		tp->t_flags &= ~TF_PREVVALID;
426 		tp->t_badrxtwin = 0;
427 		break;
428 	}
429 
430 	if (CC_ALGO(tp)->cong_signal != NULL) {
431 		if (th != NULL)
432 			tp->ccv->curack = th->th_ack;
433 		CC_ALGO(tp)->cong_signal(tp->ccv, type);
434 	}
435 }
436 
437 static void inline
438 cc_post_recovery(struct tcpcb *tp, struct tcphdr *th)
439 {
440 	INP_WLOCK_ASSERT(tp->t_inpcb);
441 
442 	/* XXXLAS: KASSERT that we're in recovery? */
443 
444 	if (CC_ALGO(tp)->post_recovery != NULL) {
445 		tp->ccv->curack = th->th_ack;
446 		CC_ALGO(tp)->post_recovery(tp->ccv);
447 	}
448 	/* XXXLAS: EXIT_RECOVERY ? */
449 	tp->t_bytes_acked = 0;
450 }
451 
452 static inline void
453 tcp_fields_to_host(struct tcphdr *th)
454 {
455 
456 	th->th_seq = ntohl(th->th_seq);
457 	th->th_ack = ntohl(th->th_ack);
458 	th->th_win = ntohs(th->th_win);
459 	th->th_urp = ntohs(th->th_urp);
460 }
461 
462 #ifdef TCP_SIGNATURE
463 static inline void
464 tcp_fields_to_net(struct tcphdr *th)
465 {
466 
467 	th->th_seq = htonl(th->th_seq);
468 	th->th_ack = htonl(th->th_ack);
469 	th->th_win = htons(th->th_win);
470 	th->th_urp = htons(th->th_urp);
471 }
472 
473 static inline int
474 tcp_signature_verify_input(struct mbuf *m, int off0, int tlen, int optlen,
475     struct tcpopt *to, struct tcphdr *th, u_int tcpbflag)
476 {
477 	int ret;
478 
479 	tcp_fields_to_net(th);
480 	ret = tcp_signature_verify(m, off0, tlen, optlen, to, th, tcpbflag);
481 	tcp_fields_to_host(th);
482 	return (ret);
483 }
484 #endif
485 
486 /* Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint. */
487 #ifdef INET6
488 #define ND6_HINT(tp) \
489 do { \
490 	if ((tp) && (tp)->t_inpcb && \
491 	    ((tp)->t_inpcb->inp_vflag & INP_IPV6) != 0) \
492 		nd6_nud_hint(NULL, NULL, 0); \
493 } while (0)
494 #else
495 #define ND6_HINT(tp)
496 #endif
497 
498 /*
499  * Indicate whether this ack should be delayed.  We can delay the ack if
500  *	- there is no delayed ack timer in progress and
501  *	- our last ack wasn't a 0-sized window.  We never want to delay
502  *	  the ack that opens up a 0-sized window and
503  *		- delayed acks are enabled or
504  *		- this is a half-synchronized T/TCP connection.
505  */
506 #define DELAY_ACK(tp)							\
507 	((!tcp_timer_active(tp, TT_DELACK) &&				\
508 	    (tp->t_flags & TF_RXWIN0SENT) == 0) &&			\
509 	    (V_tcp_delack_enabled || (tp->t_flags & TF_NEEDSYN)))
510 
511 /*
512  * TCP input handling is split into multiple parts:
513  *   tcp6_input is a thin wrapper around tcp_input for the extended
514  *	ip6_protox[] call format in ip6_input
515  *   tcp_input handles primary segment validation, inpcb lookup and
516  *	SYN processing on listen sockets
517  *   tcp_do_segment processes the ACK and text of the segment for
518  *	establishing, established and closing connections
519  */
520 #ifdef INET6
521 int
522 tcp6_input(struct mbuf **mp, int *offp, int proto)
523 {
524 	struct mbuf *m = *mp;
525 	struct in6_ifaddr *ia6;
526 
527 	IP6_EXTHDR_CHECK(m, *offp, sizeof(struct tcphdr), IPPROTO_DONE);
528 
529 	/*
530 	 * draft-itojun-ipv6-tcp-to-anycast
531 	 * better place to put this in?
532 	 */
533 	ia6 = ip6_getdstifaddr(m);
534 	if (ia6 && (ia6->ia6_flags & IN6_IFF_ANYCAST)) {
535 		struct ip6_hdr *ip6;
536 
537 		ifa_free(&ia6->ia_ifa);
538 		ip6 = mtod(m, struct ip6_hdr *);
539 		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
540 			    (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
541 		return IPPROTO_DONE;
542 	}
543 	if (ia6)
544 		ifa_free(&ia6->ia_ifa);
545 
546 	tcp_input(m, *offp);
547 	return IPPROTO_DONE;
548 }
549 #endif /* INET6 */
550 
551 void
552 tcp_input(struct mbuf *m, int off0)
553 {
554 	struct tcphdr *th = NULL;
555 	struct ip *ip = NULL;
556 	struct inpcb *inp = NULL;
557 	struct tcpcb *tp = NULL;
558 	struct socket *so = NULL;
559 	u_char *optp = NULL;
560 	int optlen = 0;
561 #ifdef INET
562 	int len;
563 #endif
564 	int tlen = 0, off;
565 	int drop_hdrlen;
566 	int thflags;
567 	int rstreason = 0;	/* For badport_bandlim accounting purposes */
568 #ifdef TCP_SIGNATURE
569 	uint8_t sig_checked = 0;
570 #endif
571 	uint8_t iptos = 0;
572 	struct m_tag *fwd_tag = NULL;
573 #ifdef INET6
574 	struct ip6_hdr *ip6 = NULL;
575 	int isipv6;
576 #else
577 	const void *ip6 = NULL;
578 #endif /* INET6 */
579 	struct tcpopt to;		/* options in this segment */
580 	char *s = NULL;			/* address and port logging */
581 	int ti_locked;
582 #define	TI_UNLOCKED	1
583 #define	TI_WLOCKED	2
584 
585 #ifdef TCPDEBUG
586 	/*
587 	 * The size of tcp_saveipgen must be the size of the max ip header,
588 	 * now IPv6.
589 	 */
590 	u_char tcp_saveipgen[IP6_HDR_LEN];
591 	struct tcphdr tcp_savetcp;
592 	short ostate = 0;
593 #endif
594 
595 #ifdef INET6
596 	isipv6 = (mtod(m, struct ip *)->ip_v == 6) ? 1 : 0;
597 #endif
598 
599 	to.to_flags = 0;
600 	TCPSTAT_INC(tcps_rcvtotal);
601 
602 #ifdef INET6
603 	if (isipv6) {
604 		/* IP6_EXTHDR_CHECK() is already done at tcp6_input(). */
605 
606 		if (m->m_len < (sizeof(*ip6) + sizeof(*th))) {
607 			m = m_pullup(m, sizeof(*ip6) + sizeof(*th));
608 			if (m == NULL) {
609 				TCPSTAT_INC(tcps_rcvshort);
610 				return;
611 			}
612 		}
613 
614 		ip6 = mtod(m, struct ip6_hdr *);
615 		th = (struct tcphdr *)((caddr_t)ip6 + off0);
616 		tlen = sizeof(*ip6) + ntohs(ip6->ip6_plen) - off0;
617 		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID_IPV6) {
618 			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
619 				th->th_sum = m->m_pkthdr.csum_data;
620 			else
621 				th->th_sum = in6_cksum_pseudo(ip6, tlen,
622 				    IPPROTO_TCP, m->m_pkthdr.csum_data);
623 			th->th_sum ^= 0xffff;
624 		} else
625 			th->th_sum = in6_cksum(m, IPPROTO_TCP, off0, tlen);
626 		if (th->th_sum) {
627 			TCPSTAT_INC(tcps_rcvbadsum);
628 			goto drop;
629 		}
630 
631 		/*
632 		 * Be proactive about unspecified IPv6 address in source.
633 		 * As we use all-zero to indicate unbounded/unconnected pcb,
634 		 * unspecified IPv6 address can be used to confuse us.
635 		 *
636 		 * Note that packets with unspecified IPv6 destination is
637 		 * already dropped in ip6_input.
638 		 */
639 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
640 			/* XXX stat */
641 			goto drop;
642 		}
643 	}
644 #endif
645 #if defined(INET) && defined(INET6)
646 	else
647 #endif
648 #ifdef INET
649 	{
650 		/*
651 		 * Get IP and TCP header together in first mbuf.
652 		 * Note: IP leaves IP header in first mbuf.
653 		 */
654 		if (off0 > sizeof (struct ip)) {
655 			ip_stripoptions(m);
656 			off0 = sizeof(struct ip);
657 		}
658 		if (m->m_len < sizeof (struct tcpiphdr)) {
659 			if ((m = m_pullup(m, sizeof (struct tcpiphdr)))
660 			    == NULL) {
661 				TCPSTAT_INC(tcps_rcvshort);
662 				return;
663 			}
664 		}
665 		ip = mtod(m, struct ip *);
666 		th = (struct tcphdr *)((caddr_t)ip + off0);
667 		tlen = ntohs(ip->ip_len) - off0;
668 
669 		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
670 			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
671 				th->th_sum = m->m_pkthdr.csum_data;
672 			else
673 				th->th_sum = in_pseudo(ip->ip_src.s_addr,
674 				    ip->ip_dst.s_addr,
675 				    htonl(m->m_pkthdr.csum_data + tlen +
676 				    IPPROTO_TCP));
677 			th->th_sum ^= 0xffff;
678 		} else {
679 			struct ipovly *ipov = (struct ipovly *)ip;
680 
681 			/*
682 			 * Checksum extended TCP header and data.
683 			 */
684 			len = off0 + tlen;
685 			bzero(ipov->ih_x1, sizeof(ipov->ih_x1));
686 			ipov->ih_len = htons(tlen);
687 			th->th_sum = in_cksum(m, len);
688 		}
689 		if (th->th_sum) {
690 			TCPSTAT_INC(tcps_rcvbadsum);
691 			goto drop;
692 		}
693 		/* Re-initialization for later version check */
694 		ip->ip_v = IPVERSION;
695 	}
696 #endif /* INET */
697 
698 #ifdef INET6
699 	if (isipv6)
700 		iptos = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
701 #endif
702 #if defined(INET) && defined(INET6)
703 	else
704 #endif
705 #ifdef INET
706 		iptos = ip->ip_tos;
707 #endif
708 
709 	/*
710 	 * Check that TCP offset makes sense,
711 	 * pull out TCP options and adjust length.		XXX
712 	 */
713 	off = th->th_off << 2;
714 	if (off < sizeof (struct tcphdr) || off > tlen) {
715 		TCPSTAT_INC(tcps_rcvbadoff);
716 		goto drop;
717 	}
718 	tlen -= off;	/* tlen is used instead of ti->ti_len */
719 	if (off > sizeof (struct tcphdr)) {
720 #ifdef INET6
721 		if (isipv6) {
722 			IP6_EXTHDR_CHECK(m, off0, off, );
723 			ip6 = mtod(m, struct ip6_hdr *);
724 			th = (struct tcphdr *)((caddr_t)ip6 + off0);
725 		}
726 #endif
727 #if defined(INET) && defined(INET6)
728 		else
729 #endif
730 #ifdef INET
731 		{
732 			if (m->m_len < sizeof(struct ip) + off) {
733 				if ((m = m_pullup(m, sizeof (struct ip) + off))
734 				    == NULL) {
735 					TCPSTAT_INC(tcps_rcvshort);
736 					return;
737 				}
738 				ip = mtod(m, struct ip *);
739 				th = (struct tcphdr *)((caddr_t)ip + off0);
740 			}
741 		}
742 #endif
743 		optlen = off - sizeof (struct tcphdr);
744 		optp = (u_char *)(th + 1);
745 	}
746 	thflags = th->th_flags;
747 
748 	/*
749 	 * Convert TCP protocol specific fields to host format.
750 	 */
751 	tcp_fields_to_host(th);
752 
753 	/*
754 	 * Delay dropping TCP, IP headers, IPv6 ext headers, and TCP options.
755 	 */
756 	drop_hdrlen = off0 + off;
757 
758 	/*
759 	 * Locate pcb for segment; if we're likely to add or remove a
760 	 * connection then first acquire pcbinfo lock.  There are two cases
761 	 * where we might discover later we need a write lock despite the
762 	 * flags: ACKs moving a connection out of the syncache, and ACKs for
763 	 * a connection in TIMEWAIT.
764 	 */
765 	if ((thflags & (TH_SYN | TH_FIN | TH_RST)) != 0) {
766 		INP_INFO_WLOCK(&V_tcbinfo);
767 		ti_locked = TI_WLOCKED;
768 	} else
769 		ti_locked = TI_UNLOCKED;
770 
771 findpcb:
772 #ifdef INVARIANTS
773 	if (ti_locked == TI_WLOCKED) {
774 		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
775 	} else {
776 		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
777 	}
778 #endif
779 
780 	/*
781 	 * Grab info from PACKET_TAG_IPFORWARD tag prepended to the chain.
782 	 */
783         if (
784 #ifdef INET6
785 	    (isipv6 && (m->m_flags & M_IP6_NEXTHOP))
786 #ifdef INET
787 	    || (!isipv6 && (m->m_flags & M_IP_NEXTHOP))
788 #endif
789 #endif
790 #if defined(INET) && !defined(INET6)
791 	    (m->m_flags & M_IP_NEXTHOP)
792 #endif
793 	    )
794 		fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
795 
796 #ifdef INET6
797 	if (isipv6 && fwd_tag != NULL) {
798 		struct sockaddr_in6 *next_hop6;
799 
800 		next_hop6 = (struct sockaddr_in6 *)(fwd_tag + 1);
801 		/*
802 		 * Transparently forwarded. Pretend to be the destination.
803 		 * Already got one like this?
804 		 */
805 		inp = in6_pcblookup_mbuf(&V_tcbinfo,
806 		    &ip6->ip6_src, th->th_sport, &ip6->ip6_dst, th->th_dport,
807 		    INPLOOKUP_WLOCKPCB, m->m_pkthdr.rcvif, m);
808 		if (!inp) {
809 			/*
810 			 * It's new.  Try to find the ambushing socket.
811 			 * Because we've rewritten the destination address,
812 			 * any hardware-generated hash is ignored.
813 			 */
814 			inp = in6_pcblookup(&V_tcbinfo, &ip6->ip6_src,
815 			    th->th_sport, &next_hop6->sin6_addr,
816 			    next_hop6->sin6_port ? ntohs(next_hop6->sin6_port) :
817 			    th->th_dport, INPLOOKUP_WILDCARD |
818 			    INPLOOKUP_WLOCKPCB, m->m_pkthdr.rcvif);
819 		}
820 		/* Remove the tag from the packet.  We don't need it anymore. */
821 		m_tag_delete(m, fwd_tag);
822 		m->m_flags &= ~M_IP6_NEXTHOP;
823 		fwd_tag = NULL;
824 	} else if (isipv6) {
825 		inp = in6_pcblookup_mbuf(&V_tcbinfo, &ip6->ip6_src,
826 		    th->th_sport, &ip6->ip6_dst, th->th_dport,
827 		    INPLOOKUP_WILDCARD | INPLOOKUP_WLOCKPCB,
828 		    m->m_pkthdr.rcvif, m);
829 	}
830 #endif /* INET6 */
831 #if defined(INET6) && defined(INET)
832 	else
833 #endif
834 #ifdef INET
835 	if (fwd_tag != NULL) {
836 		struct sockaddr_in *next_hop;
837 
838 		next_hop = (struct sockaddr_in *)(fwd_tag+1);
839 		/*
840 		 * Transparently forwarded. Pretend to be the destination.
841 		 * already got one like this?
842 		 */
843 		inp = in_pcblookup_mbuf(&V_tcbinfo, ip->ip_src, th->th_sport,
844 		    ip->ip_dst, th->th_dport, INPLOOKUP_WLOCKPCB,
845 		    m->m_pkthdr.rcvif, m);
846 		if (!inp) {
847 			/*
848 			 * It's new.  Try to find the ambushing socket.
849 			 * Because we've rewritten the destination address,
850 			 * any hardware-generated hash is ignored.
851 			 */
852 			inp = in_pcblookup(&V_tcbinfo, ip->ip_src,
853 			    th->th_sport, next_hop->sin_addr,
854 			    next_hop->sin_port ? ntohs(next_hop->sin_port) :
855 			    th->th_dport, INPLOOKUP_WILDCARD |
856 			    INPLOOKUP_WLOCKPCB, m->m_pkthdr.rcvif);
857 		}
858 		/* Remove the tag from the packet.  We don't need it anymore. */
859 		m_tag_delete(m, fwd_tag);
860 		m->m_flags &= ~M_IP_NEXTHOP;
861 		fwd_tag = NULL;
862 	} else
863 		inp = in_pcblookup_mbuf(&V_tcbinfo, ip->ip_src,
864 		    th->th_sport, ip->ip_dst, th->th_dport,
865 		    INPLOOKUP_WILDCARD | INPLOOKUP_WLOCKPCB,
866 		    m->m_pkthdr.rcvif, m);
867 #endif /* INET */
868 
869 	/*
870 	 * If the INPCB does not exist then all data in the incoming
871 	 * segment is discarded and an appropriate RST is sent back.
872 	 * XXX MRT Send RST using which routing table?
873 	 */
874 	if (inp == NULL) {
875 		/*
876 		 * Log communication attempts to ports that are not
877 		 * in use.
878 		 */
879 		if ((tcp_log_in_vain == 1 && (thflags & TH_SYN)) ||
880 		    tcp_log_in_vain == 2) {
881 			if ((s = tcp_log_vain(NULL, th, (void *)ip, ip6)))
882 				log(LOG_INFO, "%s; %s: Connection attempt "
883 				    "to closed port\n", s, __func__);
884 		}
885 		/*
886 		 * When blackholing do not respond with a RST but
887 		 * completely ignore the segment and drop it.
888 		 */
889 		if ((V_blackhole == 1 && (thflags & TH_SYN)) ||
890 		    V_blackhole == 2)
891 			goto dropunlock;
892 
893 		rstreason = BANDLIM_RST_CLOSEDPORT;
894 		goto dropwithreset;
895 	}
896 	INP_WLOCK_ASSERT(inp);
897 	if (!(inp->inp_flags & INP_HW_FLOWID)
898 	    && (m->m_flags & M_FLOWID)
899 	    && ((inp->inp_socket == NULL)
900 		|| !(inp->inp_socket->so_options & SO_ACCEPTCONN))) {
901 		inp->inp_flags |= INP_HW_FLOWID;
902 		inp->inp_flags &= ~INP_SW_FLOWID;
903 		inp->inp_flowid = m->m_pkthdr.flowid;
904 	}
905 #ifdef IPSEC
906 #ifdef INET6
907 	if (isipv6 && ipsec6_in_reject(m, inp)) {
908 		V_ipsec6stat.in_polvio++;
909 		goto dropunlock;
910 	} else
911 #endif /* INET6 */
912 	if (ipsec4_in_reject(m, inp) != 0) {
913 		V_ipsec4stat.in_polvio++;
914 		goto dropunlock;
915 	}
916 #endif /* IPSEC */
917 
918 	/*
919 	 * Check the minimum TTL for socket.
920 	 */
921 	if (inp->inp_ip_minttl != 0) {
922 #ifdef INET6
923 		if (isipv6 && inp->inp_ip_minttl > ip6->ip6_hlim)
924 			goto dropunlock;
925 		else
926 #endif
927 		if (inp->inp_ip_minttl > ip->ip_ttl)
928 			goto dropunlock;
929 	}
930 
931 	/*
932 	 * A previous connection in TIMEWAIT state is supposed to catch stray
933 	 * or duplicate segments arriving late.  If this segment was a
934 	 * legitimate new connection attempt, the old INPCB gets removed and
935 	 * we can try again to find a listening socket.
936 	 *
937 	 * At this point, due to earlier optimism, we may hold only an inpcb
938 	 * lock, and not the inpcbinfo write lock.  If so, we need to try to
939 	 * acquire it, or if that fails, acquire a reference on the inpcb,
940 	 * drop all locks, acquire a global write lock, and then re-acquire
941 	 * the inpcb lock.  We may at that point discover that another thread
942 	 * has tried to free the inpcb, in which case we need to loop back
943 	 * and try to find a new inpcb to deliver to.
944 	 *
945 	 * XXXRW: It may be time to rethink timewait locking.
946 	 */
947 relocked:
948 	if (inp->inp_flags & INP_TIMEWAIT) {
949 		if (ti_locked == TI_UNLOCKED) {
950 			if (INP_INFO_TRY_WLOCK(&V_tcbinfo) == 0) {
951 				in_pcbref(inp);
952 				INP_WUNLOCK(inp);
953 				INP_INFO_WLOCK(&V_tcbinfo);
954 				ti_locked = TI_WLOCKED;
955 				INP_WLOCK(inp);
956 				if (in_pcbrele_wlocked(inp)) {
957 					inp = NULL;
958 					goto findpcb;
959 				}
960 			} else
961 				ti_locked = TI_WLOCKED;
962 		}
963 		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
964 
965 		if (thflags & TH_SYN)
966 			tcp_dooptions(&to, optp, optlen, TO_SYN);
967 		/*
968 		 * NB: tcp_twcheck unlocks the INP and frees the mbuf.
969 		 */
970 		if (tcp_twcheck(inp, &to, th, m, tlen))
971 			goto findpcb;
972 		INP_INFO_WUNLOCK(&V_tcbinfo);
973 		return;
974 	}
975 	/*
976 	 * The TCPCB may no longer exist if the connection is winding
977 	 * down or it is in the CLOSED state.  Either way we drop the
978 	 * segment and send an appropriate response.
979 	 */
980 	tp = intotcpcb(inp);
981 	if (tp == NULL || tp->t_state == TCPS_CLOSED) {
982 		rstreason = BANDLIM_RST_CLOSEDPORT;
983 		goto dropwithreset;
984 	}
985 
986 #ifdef TCP_OFFLOAD
987 	if (tp->t_flags & TF_TOE) {
988 		tcp_offload_input(tp, m);
989 		m = NULL;	/* consumed by the TOE driver */
990 		goto dropunlock;
991 	}
992 #endif
993 
994 	/*
995 	 * We've identified a valid inpcb, but it could be that we need an
996 	 * inpcbinfo write lock but don't hold it.  In this case, attempt to
997 	 * acquire using the same strategy as the TIMEWAIT case above.  If we
998 	 * relock, we have to jump back to 'relocked' as the connection might
999 	 * now be in TIMEWAIT.
1000 	 */
1001 #ifdef INVARIANTS
1002 	if ((thflags & (TH_SYN | TH_FIN | TH_RST)) != 0)
1003 		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1004 #endif
1005 	if (tp->t_state != TCPS_ESTABLISHED) {
1006 		if (ti_locked == TI_UNLOCKED) {
1007 			if (INP_INFO_TRY_WLOCK(&V_tcbinfo) == 0) {
1008 				in_pcbref(inp);
1009 				INP_WUNLOCK(inp);
1010 				INP_INFO_WLOCK(&V_tcbinfo);
1011 				ti_locked = TI_WLOCKED;
1012 				INP_WLOCK(inp);
1013 				if (in_pcbrele_wlocked(inp)) {
1014 					inp = NULL;
1015 					goto findpcb;
1016 				}
1017 				goto relocked;
1018 			} else
1019 				ti_locked = TI_WLOCKED;
1020 		}
1021 		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1022 	}
1023 
1024 #ifdef MAC
1025 	INP_WLOCK_ASSERT(inp);
1026 	if (mac_inpcb_check_deliver(inp, m))
1027 		goto dropunlock;
1028 #endif
1029 	so = inp->inp_socket;
1030 	KASSERT(so != NULL, ("%s: so == NULL", __func__));
1031 #ifdef TCPDEBUG
1032 	if (so->so_options & SO_DEBUG) {
1033 		ostate = tp->t_state;
1034 #ifdef INET6
1035 		if (isipv6) {
1036 			bcopy((char *)ip6, (char *)tcp_saveipgen, sizeof(*ip6));
1037 		} else
1038 #endif
1039 			bcopy((char *)ip, (char *)tcp_saveipgen, sizeof(*ip));
1040 		tcp_savetcp = *th;
1041 	}
1042 #endif /* TCPDEBUG */
1043 	/*
1044 	 * When the socket is accepting connections (the INPCB is in LISTEN
1045 	 * state) we look into the SYN cache if this is a new connection
1046 	 * attempt or the completion of a previous one.  Because listen
1047 	 * sockets are never in TCPS_ESTABLISHED, the V_tcbinfo lock will be
1048 	 * held in this case.
1049 	 */
1050 	if (so->so_options & SO_ACCEPTCONN) {
1051 		struct in_conninfo inc;
1052 
1053 		KASSERT(tp->t_state == TCPS_LISTEN, ("%s: so accepting but "
1054 		    "tp not listening", __func__));
1055 		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1056 
1057 		bzero(&inc, sizeof(inc));
1058 #ifdef INET6
1059 		if (isipv6) {
1060 			inc.inc_flags |= INC_ISIPV6;
1061 			inc.inc6_faddr = ip6->ip6_src;
1062 			inc.inc6_laddr = ip6->ip6_dst;
1063 		} else
1064 #endif
1065 		{
1066 			inc.inc_faddr = ip->ip_src;
1067 			inc.inc_laddr = ip->ip_dst;
1068 		}
1069 		inc.inc_fport = th->th_sport;
1070 		inc.inc_lport = th->th_dport;
1071 		inc.inc_fibnum = so->so_fibnum;
1072 
1073 		/*
1074 		 * Check for an existing connection attempt in syncache if
1075 		 * the flag is only ACK.  A successful lookup creates a new
1076 		 * socket appended to the listen queue in SYN_RECEIVED state.
1077 		 */
1078 		if ((thflags & (TH_RST|TH_ACK|TH_SYN)) == TH_ACK) {
1079 			/*
1080 			 * Parse the TCP options here because
1081 			 * syncookies need access to the reflected
1082 			 * timestamp.
1083 			 */
1084 			tcp_dooptions(&to, optp, optlen, 0);
1085 			/*
1086 			 * NB: syncache_expand() doesn't unlock
1087 			 * inp and tcpinfo locks.
1088 			 */
1089 			if (!syncache_expand(&inc, &to, th, &so, m)) {
1090 				/*
1091 				 * No syncache entry or ACK was not
1092 				 * for our SYN/ACK.  Send a RST.
1093 				 * NB: syncache did its own logging
1094 				 * of the failure cause.
1095 				 */
1096 				rstreason = BANDLIM_RST_OPENPORT;
1097 				goto dropwithreset;
1098 			}
1099 			if (so == NULL) {
1100 				/*
1101 				 * We completed the 3-way handshake
1102 				 * but could not allocate a socket
1103 				 * either due to memory shortage,
1104 				 * listen queue length limits or
1105 				 * global socket limits.  Send RST
1106 				 * or wait and have the remote end
1107 				 * retransmit the ACK for another
1108 				 * try.
1109 				 */
1110 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1111 					log(LOG_DEBUG, "%s; %s: Listen socket: "
1112 					    "Socket allocation failed due to "
1113 					    "limits or memory shortage, %s\n",
1114 					    s, __func__,
1115 					    V_tcp_sc_rst_sock_fail ?
1116 					    "sending RST" : "try again");
1117 				if (V_tcp_sc_rst_sock_fail) {
1118 					rstreason = BANDLIM_UNLIMITED;
1119 					goto dropwithreset;
1120 				} else
1121 					goto dropunlock;
1122 			}
1123 			/*
1124 			 * Socket is created in state SYN_RECEIVED.
1125 			 * Unlock the listen socket, lock the newly
1126 			 * created socket and update the tp variable.
1127 			 */
1128 			INP_WUNLOCK(inp);	/* listen socket */
1129 			inp = sotoinpcb(so);
1130 			INP_WLOCK(inp);		/* new connection */
1131 			tp = intotcpcb(inp);
1132 			KASSERT(tp->t_state == TCPS_SYN_RECEIVED,
1133 			    ("%s: ", __func__));
1134 #ifdef TCP_SIGNATURE
1135 			if (sig_checked == 0)  {
1136 				tcp_dooptions(&to, optp, optlen,
1137 				    (thflags & TH_SYN) ? TO_SYN : 0);
1138 				if (!tcp_signature_verify_input(m, off0, tlen,
1139 				    optlen, &to, th, tp->t_flags)) {
1140 
1141 					/*
1142 					 * In SYN_SENT state if it receives an
1143 					 * RST, it is allowed for further
1144 					 * processing.
1145 					 */
1146 					if ((thflags & TH_RST) == 0 ||
1147 					    (tp->t_state == TCPS_SYN_SENT) == 0)
1148 						goto dropunlock;
1149 				}
1150 				sig_checked = 1;
1151 			}
1152 #endif
1153 
1154 			/*
1155 			 * Process the segment and the data it
1156 			 * contains.  tcp_do_segment() consumes
1157 			 * the mbuf chain and unlocks the inpcb.
1158 			 */
1159 			tcp_do_segment(m, th, so, tp, drop_hdrlen, tlen,
1160 			    iptos, ti_locked);
1161 			INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1162 			return;
1163 		}
1164 		/*
1165 		 * Segment flag validation for new connection attempts:
1166 		 *
1167 		 * Our (SYN|ACK) response was rejected.
1168 		 * Check with syncache and remove entry to prevent
1169 		 * retransmits.
1170 		 *
1171 		 * NB: syncache_chkrst does its own logging of failure
1172 		 * causes.
1173 		 */
1174 		if (thflags & TH_RST) {
1175 			syncache_chkrst(&inc, th);
1176 			goto dropunlock;
1177 		}
1178 		/*
1179 		 * We can't do anything without SYN.
1180 		 */
1181 		if ((thflags & TH_SYN) == 0) {
1182 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1183 				log(LOG_DEBUG, "%s; %s: Listen socket: "
1184 				    "SYN is missing, segment ignored\n",
1185 				    s, __func__);
1186 			TCPSTAT_INC(tcps_badsyn);
1187 			goto dropunlock;
1188 		}
1189 		/*
1190 		 * (SYN|ACK) is bogus on a listen socket.
1191 		 */
1192 		if (thflags & TH_ACK) {
1193 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1194 				log(LOG_DEBUG, "%s; %s: Listen socket: "
1195 				    "SYN|ACK invalid, segment rejected\n",
1196 				    s, __func__);
1197 			syncache_badack(&inc);	/* XXX: Not needed! */
1198 			TCPSTAT_INC(tcps_badsyn);
1199 			rstreason = BANDLIM_RST_OPENPORT;
1200 			goto dropwithreset;
1201 		}
1202 		/*
1203 		 * If the drop_synfin option is enabled, drop all
1204 		 * segments with both the SYN and FIN bits set.
1205 		 * This prevents e.g. nmap from identifying the
1206 		 * TCP/IP stack.
1207 		 * XXX: Poor reasoning.  nmap has other methods
1208 		 * and is constantly refining its stack detection
1209 		 * strategies.
1210 		 * XXX: This is a violation of the TCP specification
1211 		 * and was used by RFC1644.
1212 		 */
1213 		if ((thflags & TH_FIN) && V_drop_synfin) {
1214 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1215 				log(LOG_DEBUG, "%s; %s: Listen socket: "
1216 				    "SYN|FIN segment ignored (based on "
1217 				    "sysctl setting)\n", s, __func__);
1218 			TCPSTAT_INC(tcps_badsyn);
1219 			goto dropunlock;
1220 		}
1221 		/*
1222 		 * Segment's flags are (SYN) or (SYN|FIN).
1223 		 *
1224 		 * TH_PUSH, TH_URG, TH_ECE, TH_CWR are ignored
1225 		 * as they do not affect the state of the TCP FSM.
1226 		 * The data pointed to by TH_URG and th_urp is ignored.
1227 		 */
1228 		KASSERT((thflags & (TH_RST|TH_ACK)) == 0,
1229 		    ("%s: Listen socket: TH_RST or TH_ACK set", __func__));
1230 		KASSERT(thflags & (TH_SYN),
1231 		    ("%s: Listen socket: TH_SYN not set", __func__));
1232 #ifdef INET6
1233 		/*
1234 		 * If deprecated address is forbidden,
1235 		 * we do not accept SYN to deprecated interface
1236 		 * address to prevent any new inbound connection from
1237 		 * getting established.
1238 		 * When we do not accept SYN, we send a TCP RST,
1239 		 * with deprecated source address (instead of dropping
1240 		 * it).  We compromise it as it is much better for peer
1241 		 * to send a RST, and RST will be the final packet
1242 		 * for the exchange.
1243 		 *
1244 		 * If we do not forbid deprecated addresses, we accept
1245 		 * the SYN packet.  RFC2462 does not suggest dropping
1246 		 * SYN in this case.
1247 		 * If we decipher RFC2462 5.5.4, it says like this:
1248 		 * 1. use of deprecated addr with existing
1249 		 *    communication is okay - "SHOULD continue to be
1250 		 *    used"
1251 		 * 2. use of it with new communication:
1252 		 *   (2a) "SHOULD NOT be used if alternate address
1253 		 *        with sufficient scope is available"
1254 		 *   (2b) nothing mentioned otherwise.
1255 		 * Here we fall into (2b) case as we have no choice in
1256 		 * our source address selection - we must obey the peer.
1257 		 *
1258 		 * The wording in RFC2462 is confusing, and there are
1259 		 * multiple description text for deprecated address
1260 		 * handling - worse, they are not exactly the same.
1261 		 * I believe 5.5.4 is the best one, so we follow 5.5.4.
1262 		 */
1263 		if (isipv6 && !V_ip6_use_deprecated) {
1264 			struct in6_ifaddr *ia6;
1265 
1266 			ia6 = ip6_getdstifaddr(m);
1267 			if (ia6 != NULL &&
1268 			    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
1269 				ifa_free(&ia6->ia_ifa);
1270 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1271 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1272 					"Connection attempt to deprecated "
1273 					"IPv6 address rejected\n",
1274 					s, __func__);
1275 				rstreason = BANDLIM_RST_OPENPORT;
1276 				goto dropwithreset;
1277 			}
1278 			if (ia6)
1279 				ifa_free(&ia6->ia_ifa);
1280 		}
1281 #endif /* INET6 */
1282 		/*
1283 		 * Basic sanity checks on incoming SYN requests:
1284 		 *   Don't respond if the destination is a link layer
1285 		 *	broadcast according to RFC1122 4.2.3.10, p. 104.
1286 		 *   If it is from this socket it must be forged.
1287 		 *   Don't respond if the source or destination is a
1288 		 *	global or subnet broad- or multicast address.
1289 		 *   Note that it is quite possible to receive unicast
1290 		 *	link-layer packets with a broadcast IP address. Use
1291 		 *	in_broadcast() to find them.
1292 		 */
1293 		if (m->m_flags & (M_BCAST|M_MCAST)) {
1294 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1295 			    log(LOG_DEBUG, "%s; %s: Listen socket: "
1296 				"Connection attempt from broad- or multicast "
1297 				"link layer address ignored\n", s, __func__);
1298 			goto dropunlock;
1299 		}
1300 #ifdef INET6
1301 		if (isipv6) {
1302 			if (th->th_dport == th->th_sport &&
1303 			    IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst, &ip6->ip6_src)) {
1304 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1305 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1306 					"Connection attempt to/from self "
1307 					"ignored\n", s, __func__);
1308 				goto dropunlock;
1309 			}
1310 			if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
1311 			    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
1312 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1313 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1314 					"Connection attempt from/to multicast "
1315 					"address ignored\n", s, __func__);
1316 				goto dropunlock;
1317 			}
1318 		}
1319 #endif
1320 #if defined(INET) && defined(INET6)
1321 		else
1322 #endif
1323 #ifdef INET
1324 		{
1325 			if (th->th_dport == th->th_sport &&
1326 			    ip->ip_dst.s_addr == ip->ip_src.s_addr) {
1327 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1328 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1329 					"Connection attempt from/to self "
1330 					"ignored\n", s, __func__);
1331 				goto dropunlock;
1332 			}
1333 			if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
1334 			    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
1335 			    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
1336 			    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif)) {
1337 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1338 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1339 					"Connection attempt from/to broad- "
1340 					"or multicast address ignored\n",
1341 					s, __func__);
1342 				goto dropunlock;
1343 			}
1344 		}
1345 #endif
1346 		/*
1347 		 * SYN appears to be valid.  Create compressed TCP state
1348 		 * for syncache.
1349 		 */
1350 #ifdef TCPDEBUG
1351 		if (so->so_options & SO_DEBUG)
1352 			tcp_trace(TA_INPUT, ostate, tp,
1353 			    (void *)tcp_saveipgen, &tcp_savetcp, 0);
1354 #endif
1355 		tcp_dooptions(&to, optp, optlen, TO_SYN);
1356 		syncache_add(&inc, &to, th, inp, &so, m, NULL, NULL);
1357 		/*
1358 		 * Entry added to syncache and mbuf consumed.
1359 		 * Everything already unlocked by syncache_add().
1360 		 */
1361 		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1362 		return;
1363 	}
1364 
1365 #ifdef TCP_SIGNATURE
1366 	if (sig_checked == 0)  {
1367 		tcp_dooptions(&to, optp, optlen,
1368 		    (thflags & TH_SYN) ? TO_SYN : 0);
1369 		if (!tcp_signature_verify_input(m, off0, tlen, optlen, &to,
1370 		    th, tp->t_flags)) {
1371 
1372 			/*
1373 			 * In SYN_SENT state if it receives an RST, it is
1374 			 * allowed for further processing.
1375 			 */
1376 			if ((thflags & TH_RST) == 0 ||
1377 			    (tp->t_state == TCPS_SYN_SENT) == 0)
1378 				goto dropunlock;
1379 		}
1380 		sig_checked = 1;
1381 	}
1382 #endif
1383 
1384 	/*
1385 	 * Segment belongs to a connection in SYN_SENT, ESTABLISHED or later
1386 	 * state.  tcp_do_segment() always consumes the mbuf chain, unlocks
1387 	 * the inpcb, and unlocks pcbinfo.
1388 	 */
1389 	tcp_do_segment(m, th, so, tp, drop_hdrlen, tlen, iptos, ti_locked);
1390 	INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1391 	return;
1392 
1393 dropwithreset:
1394 	if (ti_locked == TI_WLOCKED) {
1395 		INP_INFO_WUNLOCK(&V_tcbinfo);
1396 		ti_locked = TI_UNLOCKED;
1397 	}
1398 #ifdef INVARIANTS
1399 	else {
1400 		KASSERT(ti_locked == TI_UNLOCKED, ("%s: dropwithreset "
1401 		    "ti_locked: %d", __func__, ti_locked));
1402 		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1403 	}
1404 #endif
1405 
1406 	if (inp != NULL) {
1407 		tcp_dropwithreset(m, th, tp, tlen, rstreason);
1408 		INP_WUNLOCK(inp);
1409 	} else
1410 		tcp_dropwithreset(m, th, NULL, tlen, rstreason);
1411 	m = NULL;	/* mbuf chain got consumed. */
1412 	goto drop;
1413 
1414 dropunlock:
1415 	if (ti_locked == TI_WLOCKED) {
1416 		INP_INFO_WUNLOCK(&V_tcbinfo);
1417 		ti_locked = TI_UNLOCKED;
1418 	}
1419 #ifdef INVARIANTS
1420 	else {
1421 		KASSERT(ti_locked == TI_UNLOCKED, ("%s: dropunlock "
1422 		    "ti_locked: %d", __func__, ti_locked));
1423 		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1424 	}
1425 #endif
1426 
1427 	if (inp != NULL)
1428 		INP_WUNLOCK(inp);
1429 
1430 drop:
1431 	INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1432 	if (s != NULL)
1433 		free(s, M_TCPLOG);
1434 	if (m != NULL)
1435 		m_freem(m);
1436 }
1437 
1438 static void
1439 tcp_do_segment(struct mbuf *m, struct tcphdr *th, struct socket *so,
1440     struct tcpcb *tp, int drop_hdrlen, int tlen, uint8_t iptos,
1441     int ti_locked)
1442 {
1443 	int thflags, acked, ourfinisacked, needoutput = 0;
1444 	int rstreason, todrop, win;
1445 	u_long tiwin;
1446 	struct tcpopt to;
1447 
1448 #ifdef TCPDEBUG
1449 	/*
1450 	 * The size of tcp_saveipgen must be the size of the max ip header,
1451 	 * now IPv6.
1452 	 */
1453 	u_char tcp_saveipgen[IP6_HDR_LEN];
1454 	struct tcphdr tcp_savetcp;
1455 	short ostate = 0;
1456 #endif
1457 	thflags = th->th_flags;
1458 	tp->sackhint.last_sack_ack = 0;
1459 
1460 	/*
1461 	 * If this is either a state-changing packet or current state isn't
1462 	 * established, we require a write lock on tcbinfo.  Otherwise, we
1463 	 * allow the tcbinfo to be in either alocked or unlocked, as the
1464 	 * caller may have unnecessarily acquired a write lock due to a race.
1465 	 */
1466 	if ((thflags & (TH_SYN | TH_FIN | TH_RST)) != 0 ||
1467 	    tp->t_state != TCPS_ESTABLISHED) {
1468 		KASSERT(ti_locked == TI_WLOCKED, ("%s ti_locked %d for "
1469 		    "SYN/FIN/RST/!EST", __func__, ti_locked));
1470 		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1471 	} else {
1472 #ifdef INVARIANTS
1473 		if (ti_locked == TI_WLOCKED)
1474 			INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1475 		else {
1476 			KASSERT(ti_locked == TI_UNLOCKED, ("%s: EST "
1477 			    "ti_locked: %d", __func__, ti_locked));
1478 			INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1479 		}
1480 #endif
1481 	}
1482 	INP_WLOCK_ASSERT(tp->t_inpcb);
1483 	KASSERT(tp->t_state > TCPS_LISTEN, ("%s: TCPS_LISTEN",
1484 	    __func__));
1485 	KASSERT(tp->t_state != TCPS_TIME_WAIT, ("%s: TCPS_TIME_WAIT",
1486 	    __func__));
1487 
1488 	/*
1489 	 * Segment received on connection.
1490 	 * Reset idle time and keep-alive timer.
1491 	 * XXX: This should be done after segment
1492 	 * validation to ignore broken/spoofed segs.
1493 	 */
1494 	tp->t_rcvtime = ticks;
1495 	if (TCPS_HAVEESTABLISHED(tp->t_state))
1496 		tcp_timer_activate(tp, TT_KEEP, TP_KEEPIDLE(tp));
1497 
1498 	/*
1499 	 * Unscale the window into a 32-bit value.
1500 	 * For the SYN_SENT state the scale is zero.
1501 	 */
1502 	tiwin = th->th_win << tp->snd_scale;
1503 
1504 	/*
1505 	 * TCP ECN processing.
1506 	 */
1507 	if (tp->t_flags & TF_ECN_PERMIT) {
1508 		if (thflags & TH_CWR)
1509 			tp->t_flags &= ~TF_ECN_SND_ECE;
1510 		switch (iptos & IPTOS_ECN_MASK) {
1511 		case IPTOS_ECN_CE:
1512 			tp->t_flags |= TF_ECN_SND_ECE;
1513 			TCPSTAT_INC(tcps_ecn_ce);
1514 			break;
1515 		case IPTOS_ECN_ECT0:
1516 			TCPSTAT_INC(tcps_ecn_ect0);
1517 			break;
1518 		case IPTOS_ECN_ECT1:
1519 			TCPSTAT_INC(tcps_ecn_ect1);
1520 			break;
1521 		}
1522 		/* Congestion experienced. */
1523 		if (thflags & TH_ECE) {
1524 			cc_cong_signal(tp, th, CC_ECN);
1525 		}
1526 	}
1527 
1528 	/*
1529 	 * Parse options on any incoming segment.
1530 	 */
1531 	tcp_dooptions(&to, (u_char *)(th + 1),
1532 	    (th->th_off << 2) - sizeof(struct tcphdr),
1533 	    (thflags & TH_SYN) ? TO_SYN : 0);
1534 
1535 	/*
1536 	 * If echoed timestamp is later than the current time,
1537 	 * fall back to non RFC1323 RTT calculation.  Normalize
1538 	 * timestamp if syncookies were used when this connection
1539 	 * was established.
1540 	 */
1541 	if ((to.to_flags & TOF_TS) && (to.to_tsecr != 0)) {
1542 		to.to_tsecr -= tp->ts_offset;
1543 		if (TSTMP_GT(to.to_tsecr, tcp_ts_getticks()))
1544 			to.to_tsecr = 0;
1545 	}
1546 
1547 	/*
1548 	 * Process options only when we get SYN/ACK back. The SYN case
1549 	 * for incoming connections is handled in tcp_syncache.
1550 	 * According to RFC1323 the window field in a SYN (i.e., a <SYN>
1551 	 * or <SYN,ACK>) segment itself is never scaled.
1552 	 * XXX this is traditional behavior, may need to be cleaned up.
1553 	 */
1554 	if (tp->t_state == TCPS_SYN_SENT && (thflags & TH_SYN)) {
1555 		if ((to.to_flags & TOF_SCALE) &&
1556 		    (tp->t_flags & TF_REQ_SCALE)) {
1557 			tp->t_flags |= TF_RCVD_SCALE;
1558 			tp->snd_scale = to.to_wscale;
1559 		}
1560 		/*
1561 		 * Initial send window.  It will be updated with
1562 		 * the next incoming segment to the scaled value.
1563 		 */
1564 		tp->snd_wnd = th->th_win;
1565 		if (to.to_flags & TOF_TS) {
1566 			tp->t_flags |= TF_RCVD_TSTMP;
1567 			tp->ts_recent = to.to_tsval;
1568 			tp->ts_recent_age = tcp_ts_getticks();
1569 		}
1570 		if (to.to_flags & TOF_MSS)
1571 			tcp_mss(tp, to.to_mss);
1572 		if ((tp->t_flags & TF_SACK_PERMIT) &&
1573 		    (to.to_flags & TOF_SACKPERM) == 0)
1574 			tp->t_flags &= ~TF_SACK_PERMIT;
1575 	}
1576 
1577 	/*
1578 	 * Header prediction: check for the two common cases
1579 	 * of a uni-directional data xfer.  If the packet has
1580 	 * no control flags, is in-sequence, the window didn't
1581 	 * change and we're not retransmitting, it's a
1582 	 * candidate.  If the length is zero and the ack moved
1583 	 * forward, we're the sender side of the xfer.  Just
1584 	 * free the data acked & wake any higher level process
1585 	 * that was blocked waiting for space.  If the length
1586 	 * is non-zero and the ack didn't move, we're the
1587 	 * receiver side.  If we're getting packets in-order
1588 	 * (the reassembly queue is empty), add the data to
1589 	 * the socket buffer and note that we need a delayed ack.
1590 	 * Make sure that the hidden state-flags are also off.
1591 	 * Since we check for TCPS_ESTABLISHED first, it can only
1592 	 * be TH_NEEDSYN.
1593 	 */
1594 	if (tp->t_state == TCPS_ESTABLISHED &&
1595 	    th->th_seq == tp->rcv_nxt &&
1596 	    (thflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
1597 	    tp->snd_nxt == tp->snd_max &&
1598 	    tiwin && tiwin == tp->snd_wnd &&
1599 	    ((tp->t_flags & (TF_NEEDSYN|TF_NEEDFIN)) == 0) &&
1600 	    LIST_EMPTY(&tp->t_segq) &&
1601 	    ((to.to_flags & TOF_TS) == 0 ||
1602 	     TSTMP_GEQ(to.to_tsval, tp->ts_recent)) ) {
1603 
1604 		/*
1605 		 * If last ACK falls within this segment's sequence numbers,
1606 		 * record the timestamp.
1607 		 * NOTE that the test is modified according to the latest
1608 		 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
1609 		 */
1610 		if ((to.to_flags & TOF_TS) != 0 &&
1611 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1612 			tp->ts_recent_age = tcp_ts_getticks();
1613 			tp->ts_recent = to.to_tsval;
1614 		}
1615 
1616 		if (tlen == 0) {
1617 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
1618 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
1619 			    !IN_RECOVERY(tp->t_flags) &&
1620 			    (to.to_flags & TOF_SACK) == 0 &&
1621 			    TAILQ_EMPTY(&tp->snd_holes)) {
1622 				/*
1623 				 * This is a pure ack for outstanding data.
1624 				 */
1625 				if (ti_locked == TI_WLOCKED)
1626 					INP_INFO_WUNLOCK(&V_tcbinfo);
1627 				ti_locked = TI_UNLOCKED;
1628 
1629 				TCPSTAT_INC(tcps_predack);
1630 
1631 				/*
1632 				 * "bad retransmit" recovery.
1633 				 */
1634 				if (tp->t_rxtshift == 1 &&
1635 				    tp->t_flags & TF_PREVVALID &&
1636 				    (int)(ticks - tp->t_badrxtwin) < 0) {
1637 					cc_cong_signal(tp, th, CC_RTO_ERR);
1638 				}
1639 
1640 				/*
1641 				 * Recalculate the transmit timer / rtt.
1642 				 *
1643 				 * Some boxes send broken timestamp replies
1644 				 * during the SYN+ACK phase, ignore
1645 				 * timestamps of 0 or we could calculate a
1646 				 * huge RTT and blow up the retransmit timer.
1647 				 */
1648 				if ((to.to_flags & TOF_TS) != 0 &&
1649 				    to.to_tsecr) {
1650 					u_int t;
1651 
1652 					t = tcp_ts_getticks() - to.to_tsecr;
1653 					if (!tp->t_rttlow || tp->t_rttlow > t)
1654 						tp->t_rttlow = t;
1655 					tcp_xmit_timer(tp,
1656 					    TCP_TS_TO_TICKS(t) + 1);
1657 				} else if (tp->t_rtttime &&
1658 				    SEQ_GT(th->th_ack, tp->t_rtseq)) {
1659 					if (!tp->t_rttlow ||
1660 					    tp->t_rttlow > ticks - tp->t_rtttime)
1661 						tp->t_rttlow = ticks - tp->t_rtttime;
1662 					tcp_xmit_timer(tp,
1663 							ticks - tp->t_rtttime);
1664 				}
1665 				acked = BYTES_THIS_ACK(tp, th);
1666 
1667 				/* Run HHOOK_TCP_ESTABLISHED_IN helper hooks. */
1668 				hhook_run_tcp_est_in(tp, th, &to);
1669 
1670 				TCPSTAT_INC(tcps_rcvackpack);
1671 				TCPSTAT_ADD(tcps_rcvackbyte, acked);
1672 				sbdrop(&so->so_snd, acked);
1673 				if (SEQ_GT(tp->snd_una, tp->snd_recover) &&
1674 				    SEQ_LEQ(th->th_ack, tp->snd_recover))
1675 					tp->snd_recover = th->th_ack - 1;
1676 
1677 				/*
1678 				 * Let the congestion control algorithm update
1679 				 * congestion control related information. This
1680 				 * typically means increasing the congestion
1681 				 * window.
1682 				 */
1683 				cc_ack_received(tp, th, CC_ACK);
1684 
1685 				tp->snd_una = th->th_ack;
1686 				/*
1687 				 * Pull snd_wl2 up to prevent seq wrap relative
1688 				 * to th_ack.
1689 				 */
1690 				tp->snd_wl2 = th->th_ack;
1691 				tp->t_dupacks = 0;
1692 				m_freem(m);
1693 				ND6_HINT(tp); /* Some progress has been made. */
1694 
1695 				/*
1696 				 * If all outstanding data are acked, stop
1697 				 * retransmit timer, otherwise restart timer
1698 				 * using current (possibly backed-off) value.
1699 				 * If process is waiting for space,
1700 				 * wakeup/selwakeup/signal.  If data
1701 				 * are ready to send, let tcp_output
1702 				 * decide between more output or persist.
1703 				 */
1704 #ifdef TCPDEBUG
1705 				if (so->so_options & SO_DEBUG)
1706 					tcp_trace(TA_INPUT, ostate, tp,
1707 					    (void *)tcp_saveipgen,
1708 					    &tcp_savetcp, 0);
1709 #endif
1710 				if (tp->snd_una == tp->snd_max)
1711 					tcp_timer_activate(tp, TT_REXMT, 0);
1712 				else if (!tcp_timer_active(tp, TT_PERSIST))
1713 					tcp_timer_activate(tp, TT_REXMT,
1714 						      tp->t_rxtcur);
1715 				sowwakeup(so);
1716 				if (so->so_snd.sb_cc)
1717 					(void) tcp_output(tp);
1718 				goto check_delack;
1719 			}
1720 		} else if (th->th_ack == tp->snd_una &&
1721 		    tlen <= sbspace(&so->so_rcv)) {
1722 			int newsize = 0;	/* automatic sockbuf scaling */
1723 
1724 			/*
1725 			 * This is a pure, in-sequence data packet with
1726 			 * nothing on the reassembly queue and we have enough
1727 			 * buffer space to take it.
1728 			 */
1729 			if (ti_locked == TI_WLOCKED)
1730 				INP_INFO_WUNLOCK(&V_tcbinfo);
1731 			ti_locked = TI_UNLOCKED;
1732 
1733 			/* Clean receiver SACK report if present */
1734 			if ((tp->t_flags & TF_SACK_PERMIT) && tp->rcv_numsacks)
1735 				tcp_clean_sackreport(tp);
1736 			TCPSTAT_INC(tcps_preddat);
1737 			tp->rcv_nxt += tlen;
1738 			/*
1739 			 * Pull snd_wl1 up to prevent seq wrap relative to
1740 			 * th_seq.
1741 			 */
1742 			tp->snd_wl1 = th->th_seq;
1743 			/*
1744 			 * Pull rcv_up up to prevent seq wrap relative to
1745 			 * rcv_nxt.
1746 			 */
1747 			tp->rcv_up = tp->rcv_nxt;
1748 			TCPSTAT_INC(tcps_rcvpack);
1749 			TCPSTAT_ADD(tcps_rcvbyte, tlen);
1750 			ND6_HINT(tp);	/* Some progress has been made */
1751 #ifdef TCPDEBUG
1752 			if (so->so_options & SO_DEBUG)
1753 				tcp_trace(TA_INPUT, ostate, tp,
1754 				    (void *)tcp_saveipgen, &tcp_savetcp, 0);
1755 #endif
1756 		/*
1757 		 * Automatic sizing of receive socket buffer.  Often the send
1758 		 * buffer size is not optimally adjusted to the actual network
1759 		 * conditions at hand (delay bandwidth product).  Setting the
1760 		 * buffer size too small limits throughput on links with high
1761 		 * bandwidth and high delay (eg. trans-continental/oceanic links).
1762 		 *
1763 		 * On the receive side the socket buffer memory is only rarely
1764 		 * used to any significant extent.  This allows us to be much
1765 		 * more aggressive in scaling the receive socket buffer.  For
1766 		 * the case that the buffer space is actually used to a large
1767 		 * extent and we run out of kernel memory we can simply drop
1768 		 * the new segments; TCP on the sender will just retransmit it
1769 		 * later.  Setting the buffer size too big may only consume too
1770 		 * much kernel memory if the application doesn't read() from
1771 		 * the socket or packet loss or reordering makes use of the
1772 		 * reassembly queue.
1773 		 *
1774 		 * The criteria to step up the receive buffer one notch are:
1775 		 *  1. the number of bytes received during the time it takes
1776 		 *     one timestamp to be reflected back to us (the RTT);
1777 		 *  2. received bytes per RTT is within seven eighth of the
1778 		 *     current socket buffer size;
1779 		 *  3. receive buffer size has not hit maximal automatic size;
1780 		 *
1781 		 * This algorithm does one step per RTT at most and only if
1782 		 * we receive a bulk stream w/o packet losses or reorderings.
1783 		 * Shrinking the buffer during idle times is not necessary as
1784 		 * it doesn't consume any memory when idle.
1785 		 *
1786 		 * TODO: Only step up if the application is actually serving
1787 		 * the buffer to better manage the socket buffer resources.
1788 		 */
1789 			if (V_tcp_do_autorcvbuf &&
1790 			    to.to_tsecr &&
1791 			    (so->so_rcv.sb_flags & SB_AUTOSIZE)) {
1792 				if (TSTMP_GT(to.to_tsecr, tp->rfbuf_ts) &&
1793 				    to.to_tsecr - tp->rfbuf_ts < hz) {
1794 					if (tp->rfbuf_cnt >
1795 					    (so->so_rcv.sb_hiwat / 8 * 7) &&
1796 					    so->so_rcv.sb_hiwat <
1797 					    V_tcp_autorcvbuf_max) {
1798 						newsize =
1799 						    min(so->so_rcv.sb_hiwat +
1800 						    V_tcp_autorcvbuf_inc,
1801 						    V_tcp_autorcvbuf_max);
1802 					}
1803 					/* Start over with next RTT. */
1804 					tp->rfbuf_ts = 0;
1805 					tp->rfbuf_cnt = 0;
1806 				} else
1807 					tp->rfbuf_cnt += tlen;	/* add up */
1808 			}
1809 
1810 			/* Add data to socket buffer. */
1811 			SOCKBUF_LOCK(&so->so_rcv);
1812 			if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
1813 				m_freem(m);
1814 			} else {
1815 				/*
1816 				 * Set new socket buffer size.
1817 				 * Give up when limit is reached.
1818 				 */
1819 				if (newsize)
1820 					if (!sbreserve_locked(&so->so_rcv,
1821 					    newsize, so, NULL))
1822 						so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
1823 				m_adj(m, drop_hdrlen);	/* delayed header drop */
1824 				sbappendstream_locked(&so->so_rcv, m);
1825 			}
1826 			/* NB: sorwakeup_locked() does an implicit unlock. */
1827 			sorwakeup_locked(so);
1828 			if (DELAY_ACK(tp)) {
1829 				tp->t_flags |= TF_DELACK;
1830 			} else {
1831 				tp->t_flags |= TF_ACKNOW;
1832 				tcp_output(tp);
1833 			}
1834 			goto check_delack;
1835 		}
1836 	}
1837 
1838 	/*
1839 	 * Calculate amount of space in receive window,
1840 	 * and then do TCP input processing.
1841 	 * Receive window is amount of space in rcv queue,
1842 	 * but not less than advertised window.
1843 	 */
1844 	win = sbspace(&so->so_rcv);
1845 	if (win < 0)
1846 		win = 0;
1847 	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1848 
1849 	/* Reset receive buffer auto scaling when not in bulk receive mode. */
1850 	tp->rfbuf_ts = 0;
1851 	tp->rfbuf_cnt = 0;
1852 
1853 	switch (tp->t_state) {
1854 
1855 	/*
1856 	 * If the state is SYN_RECEIVED:
1857 	 *	if seg contains an ACK, but not for our SYN/ACK, send a RST.
1858 	 */
1859 	case TCPS_SYN_RECEIVED:
1860 		if ((thflags & TH_ACK) &&
1861 		    (SEQ_LEQ(th->th_ack, tp->snd_una) ||
1862 		     SEQ_GT(th->th_ack, tp->snd_max))) {
1863 				rstreason = BANDLIM_RST_OPENPORT;
1864 				goto dropwithreset;
1865 		}
1866 		break;
1867 
1868 	/*
1869 	 * If the state is SYN_SENT:
1870 	 *	if seg contains an ACK, but not for our SYN, drop the input.
1871 	 *	if seg contains a RST, then drop the connection.
1872 	 *	if seg does not contain SYN, then drop it.
1873 	 * Otherwise this is an acceptable SYN segment
1874 	 *	initialize tp->rcv_nxt and tp->irs
1875 	 *	if seg contains ack then advance tp->snd_una
1876 	 *	if seg contains an ECE and ECN support is enabled, the stream
1877 	 *	    is ECN capable.
1878 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1879 	 *	arrange for segment to be acked (eventually)
1880 	 *	continue processing rest of data/controls, beginning with URG
1881 	 */
1882 	case TCPS_SYN_SENT:
1883 		if ((thflags & TH_ACK) &&
1884 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
1885 		     SEQ_GT(th->th_ack, tp->snd_max))) {
1886 			rstreason = BANDLIM_UNLIMITED;
1887 			goto dropwithreset;
1888 		}
1889 		if ((thflags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST))
1890 			tp = tcp_drop(tp, ECONNREFUSED);
1891 		if (thflags & TH_RST)
1892 			goto drop;
1893 		if (!(thflags & TH_SYN))
1894 			goto drop;
1895 
1896 		tp->irs = th->th_seq;
1897 		tcp_rcvseqinit(tp);
1898 		if (thflags & TH_ACK) {
1899 			TCPSTAT_INC(tcps_connects);
1900 			soisconnected(so);
1901 #ifdef MAC
1902 			mac_socketpeer_set_from_mbuf(m, so);
1903 #endif
1904 			/* Do window scaling on this connection? */
1905 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1906 				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1907 				tp->rcv_scale = tp->request_r_scale;
1908 			}
1909 			tp->rcv_adv += imin(tp->rcv_wnd,
1910 			    TCP_MAXWIN << tp->rcv_scale);
1911 			tp->snd_una++;		/* SYN is acked */
1912 			/*
1913 			 * If there's data, delay ACK; if there's also a FIN
1914 			 * ACKNOW will be turned on later.
1915 			 */
1916 			if (DELAY_ACK(tp) && tlen != 0)
1917 				tcp_timer_activate(tp, TT_DELACK,
1918 				    tcp_delacktime);
1919 			else
1920 				tp->t_flags |= TF_ACKNOW;
1921 
1922 			if ((thflags & TH_ECE) && V_tcp_do_ecn) {
1923 				tp->t_flags |= TF_ECN_PERMIT;
1924 				TCPSTAT_INC(tcps_ecn_shs);
1925 			}
1926 
1927 			/*
1928 			 * Received <SYN,ACK> in SYN_SENT[*] state.
1929 			 * Transitions:
1930 			 *	SYN_SENT  --> ESTABLISHED
1931 			 *	SYN_SENT* --> FIN_WAIT_1
1932 			 */
1933 			tp->t_starttime = ticks;
1934 			if (tp->t_flags & TF_NEEDFIN) {
1935 				tp->t_state = TCPS_FIN_WAIT_1;
1936 				tp->t_flags &= ~TF_NEEDFIN;
1937 				thflags &= ~TH_SYN;
1938 			} else {
1939 				tp->t_state = TCPS_ESTABLISHED;
1940 				cc_conn_init(tp);
1941 				tcp_timer_activate(tp, TT_KEEP,
1942 				    TP_KEEPIDLE(tp));
1943 			}
1944 		} else {
1945 			/*
1946 			 * Received initial SYN in SYN-SENT[*] state =>
1947 			 * simultaneous open.  If segment contains CC option
1948 			 * and there is a cached CC, apply TAO test.
1949 			 * If it succeeds, connection is * half-synchronized.
1950 			 * Otherwise, do 3-way handshake:
1951 			 *        SYN-SENT -> SYN-RECEIVED
1952 			 *        SYN-SENT* -> SYN-RECEIVED*
1953 			 * If there was no CC option, clear cached CC value.
1954 			 */
1955 			tp->t_flags |= (TF_ACKNOW | TF_NEEDSYN);
1956 			tcp_timer_activate(tp, TT_REXMT, 0);
1957 			tp->t_state = TCPS_SYN_RECEIVED;
1958 		}
1959 
1960 		KASSERT(ti_locked == TI_WLOCKED, ("%s: trimthenstep6: "
1961 		    "ti_locked %d", __func__, ti_locked));
1962 		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1963 		INP_WLOCK_ASSERT(tp->t_inpcb);
1964 
1965 		/*
1966 		 * Advance th->th_seq to correspond to first data byte.
1967 		 * If data, trim to stay within window,
1968 		 * dropping FIN if necessary.
1969 		 */
1970 		th->th_seq++;
1971 		if (tlen > tp->rcv_wnd) {
1972 			todrop = tlen - tp->rcv_wnd;
1973 			m_adj(m, -todrop);
1974 			tlen = tp->rcv_wnd;
1975 			thflags &= ~TH_FIN;
1976 			TCPSTAT_INC(tcps_rcvpackafterwin);
1977 			TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop);
1978 		}
1979 		tp->snd_wl1 = th->th_seq - 1;
1980 		tp->rcv_up = th->th_seq;
1981 		/*
1982 		 * Client side of transaction: already sent SYN and data.
1983 		 * If the remote host used T/TCP to validate the SYN,
1984 		 * our data will be ACK'd; if so, enter normal data segment
1985 		 * processing in the middle of step 5, ack processing.
1986 		 * Otherwise, goto step 6.
1987 		 */
1988 		if (thflags & TH_ACK)
1989 			goto process_ACK;
1990 
1991 		goto step6;
1992 
1993 	/*
1994 	 * If the state is LAST_ACK or CLOSING or TIME_WAIT:
1995 	 *      do normal processing.
1996 	 *
1997 	 * NB: Leftover from RFC1644 T/TCP.  Cases to be reused later.
1998 	 */
1999 	case TCPS_LAST_ACK:
2000 	case TCPS_CLOSING:
2001 		break;  /* continue normal processing */
2002 	}
2003 
2004 	/*
2005 	 * States other than LISTEN or SYN_SENT.
2006 	 * First check the RST flag and sequence number since reset segments
2007 	 * are exempt from the timestamp and connection count tests.  This
2008 	 * fixes a bug introduced by the Stevens, vol. 2, p. 960 bugfix
2009 	 * below which allowed reset segments in half the sequence space
2010 	 * to fall though and be processed (which gives forged reset
2011 	 * segments with a random sequence number a 50 percent chance of
2012 	 * killing a connection).
2013 	 * Then check timestamp, if present.
2014 	 * Then check the connection count, if present.
2015 	 * Then check that at least some bytes of segment are within
2016 	 * receive window.  If segment begins before rcv_nxt,
2017 	 * drop leading data (and SYN); if nothing left, just ack.
2018 	 *
2019 	 *
2020 	 * If the RST bit is set, check the sequence number to see
2021 	 * if this is a valid reset segment.
2022 	 * RFC 793 page 37:
2023 	 *   In all states except SYN-SENT, all reset (RST) segments
2024 	 *   are validated by checking their SEQ-fields.  A reset is
2025 	 *   valid if its sequence number is in the window.
2026 	 * Note: this does not take into account delayed ACKs, so
2027 	 *   we should test against last_ack_sent instead of rcv_nxt.
2028 	 *   The sequence number in the reset segment is normally an
2029 	 *   echo of our outgoing acknowlegement numbers, but some hosts
2030 	 *   send a reset with the sequence number at the rightmost edge
2031 	 *   of our receive window, and we have to handle this case.
2032 	 * Note 2: Paul Watson's paper "Slipping in the Window" has shown
2033 	 *   that brute force RST attacks are possible.  To combat this,
2034 	 *   we use a much stricter check while in the ESTABLISHED state,
2035 	 *   only accepting RSTs where the sequence number is equal to
2036 	 *   last_ack_sent.  In all other states (the states in which a
2037 	 *   RST is more likely), the more permissive check is used.
2038 	 * If we have multiple segments in flight, the initial reset
2039 	 * segment sequence numbers will be to the left of last_ack_sent,
2040 	 * but they will eventually catch up.
2041 	 * In any case, it never made sense to trim reset segments to
2042 	 * fit the receive window since RFC 1122 says:
2043 	 *   4.2.2.12  RST Segment: RFC-793 Section 3.4
2044 	 *
2045 	 *    A TCP SHOULD allow a received RST segment to include data.
2046 	 *
2047 	 *    DISCUSSION
2048 	 *         It has been suggested that a RST segment could contain
2049 	 *         ASCII text that encoded and explained the cause of the
2050 	 *         RST.  No standard has yet been established for such
2051 	 *         data.
2052 	 *
2053 	 * If the reset segment passes the sequence number test examine
2054 	 * the state:
2055 	 *    SYN_RECEIVED STATE:
2056 	 *	If passive open, return to LISTEN state.
2057 	 *	If active open, inform user that connection was refused.
2058 	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT_2, CLOSE_WAIT STATES:
2059 	 *	Inform user that connection was reset, and close tcb.
2060 	 *    CLOSING, LAST_ACK STATES:
2061 	 *	Close the tcb.
2062 	 *    TIME_WAIT STATE:
2063 	 *	Drop the segment - see Stevens, vol. 2, p. 964 and
2064 	 *      RFC 1337.
2065 	 */
2066 	if (thflags & TH_RST) {
2067 		if (SEQ_GEQ(th->th_seq, tp->last_ack_sent - 1) &&
2068 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) {
2069 			switch (tp->t_state) {
2070 
2071 			case TCPS_SYN_RECEIVED:
2072 				so->so_error = ECONNREFUSED;
2073 				goto close;
2074 
2075 			case TCPS_ESTABLISHED:
2076 				if (V_tcp_insecure_rst == 0 &&
2077 				    !(SEQ_GEQ(th->th_seq, tp->rcv_nxt - 1) &&
2078 				    SEQ_LEQ(th->th_seq, tp->rcv_nxt + 1)) &&
2079 				    !(SEQ_GEQ(th->th_seq, tp->last_ack_sent - 1) &&
2080 				    SEQ_LEQ(th->th_seq, tp->last_ack_sent + 1))) {
2081 					TCPSTAT_INC(tcps_badrst);
2082 					goto drop;
2083 				}
2084 				/* FALLTHROUGH */
2085 			case TCPS_FIN_WAIT_1:
2086 			case TCPS_FIN_WAIT_2:
2087 			case TCPS_CLOSE_WAIT:
2088 				so->so_error = ECONNRESET;
2089 			close:
2090 				KASSERT(ti_locked == TI_WLOCKED,
2091 				    ("tcp_do_segment: TH_RST 1 ti_locked %d",
2092 				    ti_locked));
2093 				INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2094 
2095 				tp->t_state = TCPS_CLOSED;
2096 				TCPSTAT_INC(tcps_drops);
2097 				tp = tcp_close(tp);
2098 				break;
2099 
2100 			case TCPS_CLOSING:
2101 			case TCPS_LAST_ACK:
2102 				KASSERT(ti_locked == TI_WLOCKED,
2103 				    ("tcp_do_segment: TH_RST 2 ti_locked %d",
2104 				    ti_locked));
2105 				INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2106 
2107 				tp = tcp_close(tp);
2108 				break;
2109 			}
2110 		}
2111 		goto drop;
2112 	}
2113 
2114 	/*
2115 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
2116 	 * and it's less than ts_recent, drop it.
2117 	 */
2118 	if ((to.to_flags & TOF_TS) != 0 && tp->ts_recent &&
2119 	    TSTMP_LT(to.to_tsval, tp->ts_recent)) {
2120 
2121 		/* Check to see if ts_recent is over 24 days old.  */
2122 		if (tcp_ts_getticks() - tp->ts_recent_age > TCP_PAWS_IDLE) {
2123 			/*
2124 			 * Invalidate ts_recent.  If this segment updates
2125 			 * ts_recent, the age will be reset later and ts_recent
2126 			 * will get a valid value.  If it does not, setting
2127 			 * ts_recent to zero will at least satisfy the
2128 			 * requirement that zero be placed in the timestamp
2129 			 * echo reply when ts_recent isn't valid.  The
2130 			 * age isn't reset until we get a valid ts_recent
2131 			 * because we don't want out-of-order segments to be
2132 			 * dropped when ts_recent is old.
2133 			 */
2134 			tp->ts_recent = 0;
2135 		} else {
2136 			TCPSTAT_INC(tcps_rcvduppack);
2137 			TCPSTAT_ADD(tcps_rcvdupbyte, tlen);
2138 			TCPSTAT_INC(tcps_pawsdrop);
2139 			if (tlen)
2140 				goto dropafterack;
2141 			goto drop;
2142 		}
2143 	}
2144 
2145 	/*
2146 	 * In the SYN-RECEIVED state, validate that the packet belongs to
2147 	 * this connection before trimming the data to fit the receive
2148 	 * window.  Check the sequence number versus IRS since we know
2149 	 * the sequence numbers haven't wrapped.  This is a partial fix
2150 	 * for the "LAND" DoS attack.
2151 	 */
2152 	if (tp->t_state == TCPS_SYN_RECEIVED && SEQ_LT(th->th_seq, tp->irs)) {
2153 		rstreason = BANDLIM_RST_OPENPORT;
2154 		goto dropwithreset;
2155 	}
2156 
2157 	todrop = tp->rcv_nxt - th->th_seq;
2158 	if (todrop > 0) {
2159 		/*
2160 		 * If this is a duplicate SYN for our current connection,
2161 		 * advance over it and pretend and it's not a SYN.
2162 		 */
2163 		if (thflags & TH_SYN && th->th_seq == tp->irs) {
2164 			thflags &= ~TH_SYN;
2165 			th->th_seq++;
2166 			if (th->th_urp > 1)
2167 				th->th_urp--;
2168 			else
2169 				thflags &= ~TH_URG;
2170 			todrop--;
2171 		}
2172 		/*
2173 		 * Following if statement from Stevens, vol. 2, p. 960.
2174 		 */
2175 		if (todrop > tlen
2176 		    || (todrop == tlen && (thflags & TH_FIN) == 0)) {
2177 			/*
2178 			 * Any valid FIN must be to the left of the window.
2179 			 * At this point the FIN must be a duplicate or out
2180 			 * of sequence; drop it.
2181 			 */
2182 			thflags &= ~TH_FIN;
2183 
2184 			/*
2185 			 * Send an ACK to resynchronize and drop any data.
2186 			 * But keep on processing for RST or ACK.
2187 			 */
2188 			tp->t_flags |= TF_ACKNOW;
2189 			todrop = tlen;
2190 			TCPSTAT_INC(tcps_rcvduppack);
2191 			TCPSTAT_ADD(tcps_rcvdupbyte, todrop);
2192 		} else {
2193 			TCPSTAT_INC(tcps_rcvpartduppack);
2194 			TCPSTAT_ADD(tcps_rcvpartdupbyte, todrop);
2195 		}
2196 		drop_hdrlen += todrop;	/* drop from the top afterwards */
2197 		th->th_seq += todrop;
2198 		tlen -= todrop;
2199 		if (th->th_urp > todrop)
2200 			th->th_urp -= todrop;
2201 		else {
2202 			thflags &= ~TH_URG;
2203 			th->th_urp = 0;
2204 		}
2205 	}
2206 
2207 	/*
2208 	 * If new data are received on a connection after the
2209 	 * user processes are gone, then RST the other end.
2210 	 */
2211 	if ((so->so_state & SS_NOFDREF) &&
2212 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
2213 		char *s;
2214 
2215 		KASSERT(ti_locked == TI_WLOCKED, ("%s: SS_NOFDEREF && "
2216 		    "CLOSE_WAIT && tlen ti_locked %d", __func__, ti_locked));
2217 		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2218 
2219 		if ((s = tcp_log_addrs(&tp->t_inpcb->inp_inc, th, NULL, NULL))) {
2220 			log(LOG_DEBUG, "%s; %s: %s: Received %d bytes of data after socket "
2221 			    "was closed, sending RST and removing tcpcb\n",
2222 			    s, __func__, tcpstates[tp->t_state], tlen);
2223 			free(s, M_TCPLOG);
2224 		}
2225 		tp = tcp_close(tp);
2226 		TCPSTAT_INC(tcps_rcvafterclose);
2227 		rstreason = BANDLIM_UNLIMITED;
2228 		goto dropwithreset;
2229 	}
2230 
2231 	/*
2232 	 * If segment ends after window, drop trailing data
2233 	 * (and PUSH and FIN); if nothing left, just ACK.
2234 	 */
2235 	todrop = (th->th_seq + tlen) - (tp->rcv_nxt + tp->rcv_wnd);
2236 	if (todrop > 0) {
2237 		TCPSTAT_INC(tcps_rcvpackafterwin);
2238 		if (todrop >= tlen) {
2239 			TCPSTAT_ADD(tcps_rcvbyteafterwin, tlen);
2240 			/*
2241 			 * If window is closed can only take segments at
2242 			 * window edge, and have to drop data and PUSH from
2243 			 * incoming segments.  Continue processing, but
2244 			 * remember to ack.  Otherwise, drop segment
2245 			 * and ack.
2246 			 */
2247 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
2248 				tp->t_flags |= TF_ACKNOW;
2249 				TCPSTAT_INC(tcps_rcvwinprobe);
2250 			} else
2251 				goto dropafterack;
2252 		} else
2253 			TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop);
2254 		m_adj(m, -todrop);
2255 		tlen -= todrop;
2256 		thflags &= ~(TH_PUSH|TH_FIN);
2257 	}
2258 
2259 	/*
2260 	 * If last ACK falls within this segment's sequence numbers,
2261 	 * record its timestamp.
2262 	 * NOTE:
2263 	 * 1) That the test incorporates suggestions from the latest
2264 	 *    proposal of the tcplw@cray.com list (Braden 1993/04/26).
2265 	 * 2) That updating only on newer timestamps interferes with
2266 	 *    our earlier PAWS tests, so this check should be solely
2267 	 *    predicated on the sequence space of this segment.
2268 	 * 3) That we modify the segment boundary check to be
2269 	 *        Last.ACK.Sent <= SEG.SEQ + SEG.Len
2270 	 *    instead of RFC1323's
2271 	 *        Last.ACK.Sent < SEG.SEQ + SEG.Len,
2272 	 *    This modified check allows us to overcome RFC1323's
2273 	 *    limitations as described in Stevens TCP/IP Illustrated
2274 	 *    Vol. 2 p.869. In such cases, we can still calculate the
2275 	 *    RTT correctly when RCV.NXT == Last.ACK.Sent.
2276 	 */
2277 	if ((to.to_flags & TOF_TS) != 0 &&
2278 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
2279 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
2280 		((thflags & (TH_SYN|TH_FIN)) != 0))) {
2281 		tp->ts_recent_age = tcp_ts_getticks();
2282 		tp->ts_recent = to.to_tsval;
2283 	}
2284 
2285 	/*
2286 	 * If a SYN is in the window, then this is an
2287 	 * error and we send an RST and drop the connection.
2288 	 */
2289 	if (thflags & TH_SYN) {
2290 		KASSERT(ti_locked == TI_WLOCKED,
2291 		    ("tcp_do_segment: TH_SYN ti_locked %d", ti_locked));
2292 		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2293 
2294 		tp = tcp_drop(tp, ECONNRESET);
2295 		rstreason = BANDLIM_UNLIMITED;
2296 		goto drop;
2297 	}
2298 
2299 	/*
2300 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN
2301 	 * flag is on (half-synchronized state), then queue data for
2302 	 * later processing; else drop segment and return.
2303 	 */
2304 	if ((thflags & TH_ACK) == 0) {
2305 		if (tp->t_state == TCPS_SYN_RECEIVED ||
2306 		    (tp->t_flags & TF_NEEDSYN))
2307 			goto step6;
2308 		else if (tp->t_flags & TF_ACKNOW)
2309 			goto dropafterack;
2310 		else
2311 			goto drop;
2312 	}
2313 
2314 	/*
2315 	 * Ack processing.
2316 	 */
2317 	switch (tp->t_state) {
2318 
2319 	/*
2320 	 * In SYN_RECEIVED state, the ack ACKs our SYN, so enter
2321 	 * ESTABLISHED state and continue processing.
2322 	 * The ACK was checked above.
2323 	 */
2324 	case TCPS_SYN_RECEIVED:
2325 
2326 		TCPSTAT_INC(tcps_connects);
2327 		soisconnected(so);
2328 		/* Do window scaling? */
2329 		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2330 			(TF_RCVD_SCALE|TF_REQ_SCALE)) {
2331 			tp->rcv_scale = tp->request_r_scale;
2332 			tp->snd_wnd = tiwin;
2333 		}
2334 		/*
2335 		 * Make transitions:
2336 		 *      SYN-RECEIVED  -> ESTABLISHED
2337 		 *      SYN-RECEIVED* -> FIN-WAIT-1
2338 		 */
2339 		tp->t_starttime = ticks;
2340 		if (tp->t_flags & TF_NEEDFIN) {
2341 			tp->t_state = TCPS_FIN_WAIT_1;
2342 			tp->t_flags &= ~TF_NEEDFIN;
2343 		} else {
2344 			tp->t_state = TCPS_ESTABLISHED;
2345 			cc_conn_init(tp);
2346 			tcp_timer_activate(tp, TT_KEEP, TP_KEEPIDLE(tp));
2347 		}
2348 		/*
2349 		 * If segment contains data or ACK, will call tcp_reass()
2350 		 * later; if not, do so now to pass queued data to user.
2351 		 */
2352 		if (tlen == 0 && (thflags & TH_FIN) == 0)
2353 			(void) tcp_reass(tp, (struct tcphdr *)0, 0,
2354 			    (struct mbuf *)0);
2355 		tp->snd_wl1 = th->th_seq - 1;
2356 		/* FALLTHROUGH */
2357 
2358 	/*
2359 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
2360 	 * ACKs.  If the ack is in the range
2361 	 *	tp->snd_una < th->th_ack <= tp->snd_max
2362 	 * then advance tp->snd_una to th->th_ack and drop
2363 	 * data from the retransmission queue.  If this ACK reflects
2364 	 * more up to date window information we update our window information.
2365 	 */
2366 	case TCPS_ESTABLISHED:
2367 	case TCPS_FIN_WAIT_1:
2368 	case TCPS_FIN_WAIT_2:
2369 	case TCPS_CLOSE_WAIT:
2370 	case TCPS_CLOSING:
2371 	case TCPS_LAST_ACK:
2372 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
2373 			TCPSTAT_INC(tcps_rcvacktoomuch);
2374 			goto dropafterack;
2375 		}
2376 		if ((tp->t_flags & TF_SACK_PERMIT) &&
2377 		    ((to.to_flags & TOF_SACK) ||
2378 		     !TAILQ_EMPTY(&tp->snd_holes)))
2379 			tcp_sack_doack(tp, &to, th->th_ack);
2380 
2381 		/* Run HHOOK_TCP_ESTABLISHED_IN helper hooks. */
2382 		hhook_run_tcp_est_in(tp, th, &to);
2383 
2384 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
2385 			if (tlen == 0 && tiwin == tp->snd_wnd) {
2386 				TCPSTAT_INC(tcps_rcvdupack);
2387 				/*
2388 				 * If we have outstanding data (other than
2389 				 * a window probe), this is a completely
2390 				 * duplicate ack (ie, window info didn't
2391 				 * change), the ack is the biggest we've
2392 				 * seen and we've seen exactly our rexmt
2393 				 * threshhold of them, assume a packet
2394 				 * has been dropped and retransmit it.
2395 				 * Kludge snd_nxt & the congestion
2396 				 * window so we send only this one
2397 				 * packet.
2398 				 *
2399 				 * We know we're losing at the current
2400 				 * window size so do congestion avoidance
2401 				 * (set ssthresh to half the current window
2402 				 * and pull our congestion window back to
2403 				 * the new ssthresh).
2404 				 *
2405 				 * Dup acks mean that packets have left the
2406 				 * network (they're now cached at the receiver)
2407 				 * so bump cwnd by the amount in the receiver
2408 				 * to keep a constant cwnd packets in the
2409 				 * network.
2410 				 *
2411 				 * When using TCP ECN, notify the peer that
2412 				 * we reduced the cwnd.
2413 				 */
2414 				if (!tcp_timer_active(tp, TT_REXMT) ||
2415 				    th->th_ack != tp->snd_una)
2416 					tp->t_dupacks = 0;
2417 				else if (++tp->t_dupacks > tcprexmtthresh ||
2418 				     IN_FASTRECOVERY(tp->t_flags)) {
2419 					cc_ack_received(tp, th, CC_DUPACK);
2420 					if ((tp->t_flags & TF_SACK_PERMIT) &&
2421 					    IN_FASTRECOVERY(tp->t_flags)) {
2422 						int awnd;
2423 
2424 						/*
2425 						 * Compute the amount of data in flight first.
2426 						 * We can inject new data into the pipe iff
2427 						 * we have less than 1/2 the original window's
2428 						 * worth of data in flight.
2429 						 */
2430 						awnd = (tp->snd_nxt - tp->snd_fack) +
2431 							tp->sackhint.sack_bytes_rexmit;
2432 						if (awnd < tp->snd_ssthresh) {
2433 							tp->snd_cwnd += tp->t_maxseg;
2434 							if (tp->snd_cwnd > tp->snd_ssthresh)
2435 								tp->snd_cwnd = tp->snd_ssthresh;
2436 						}
2437 					} else
2438 						tp->snd_cwnd += tp->t_maxseg;
2439 					if ((thflags & TH_FIN) &&
2440 					    (TCPS_HAVERCVDFIN(tp->t_state) == 0)) {
2441 						/*
2442 						 * If its a fin we need to process
2443 						 * it to avoid a race where both
2444 						 * sides enter FIN-WAIT and send FIN|ACK
2445 						 * at the same time.
2446 						 */
2447 						break;
2448 					}
2449 					(void) tcp_output(tp);
2450 					goto drop;
2451 				} else if (tp->t_dupacks == tcprexmtthresh) {
2452 					tcp_seq onxt = tp->snd_nxt;
2453 
2454 					/*
2455 					 * If we're doing sack, check to
2456 					 * see if we're already in sack
2457 					 * recovery. If we're not doing sack,
2458 					 * check to see if we're in newreno
2459 					 * recovery.
2460 					 */
2461 					if (tp->t_flags & TF_SACK_PERMIT) {
2462 						if (IN_FASTRECOVERY(tp->t_flags)) {
2463 							tp->t_dupacks = 0;
2464 							break;
2465 						}
2466 					} else {
2467 						if (SEQ_LEQ(th->th_ack,
2468 						    tp->snd_recover)) {
2469 							tp->t_dupacks = 0;
2470 							break;
2471 						}
2472 					}
2473 					/* Congestion signal before ack. */
2474 					cc_cong_signal(tp, th, CC_NDUPACK);
2475 					cc_ack_received(tp, th, CC_DUPACK);
2476 					tcp_timer_activate(tp, TT_REXMT, 0);
2477 					tp->t_rtttime = 0;
2478 					if (tp->t_flags & TF_SACK_PERMIT) {
2479 						TCPSTAT_INC(
2480 						    tcps_sack_recovery_episode);
2481 						tp->sack_newdata = tp->snd_nxt;
2482 						tp->snd_cwnd = tp->t_maxseg;
2483 						(void) tcp_output(tp);
2484 						goto drop;
2485 					}
2486 					tp->snd_nxt = th->th_ack;
2487 					tp->snd_cwnd = tp->t_maxseg;
2488 					if ((thflags & TH_FIN) &&
2489 					    (TCPS_HAVERCVDFIN(tp->t_state) == 0)) {
2490 						/*
2491 						 * If its a fin we need to process
2492 						 * it to avoid a race where both
2493 						 * sides enter FIN-WAIT and send FIN|ACK
2494 						 * at the same time.
2495 						 */
2496 						break;
2497 					}
2498 					(void) tcp_output(tp);
2499 					KASSERT(tp->snd_limited <= 2,
2500 					    ("%s: tp->snd_limited too big",
2501 					    __func__));
2502 					tp->snd_cwnd = tp->snd_ssthresh +
2503 					     tp->t_maxseg *
2504 					     (tp->t_dupacks - tp->snd_limited);
2505 					if (SEQ_GT(onxt, tp->snd_nxt))
2506 						tp->snd_nxt = onxt;
2507 					goto drop;
2508 				} else if (V_tcp_do_rfc3042) {
2509 					cc_ack_received(tp, th, CC_DUPACK);
2510 					u_long oldcwnd = tp->snd_cwnd;
2511 					tcp_seq oldsndmax = tp->snd_max;
2512 					u_int sent;
2513 
2514 					KASSERT(tp->t_dupacks == 1 ||
2515 					    tp->t_dupacks == 2,
2516 					    ("%s: dupacks not 1 or 2",
2517 					    __func__));
2518 					if (tp->t_dupacks == 1)
2519 						tp->snd_limited = 0;
2520 					tp->snd_cwnd =
2521 					    (tp->snd_nxt - tp->snd_una) +
2522 					    (tp->t_dupacks - tp->snd_limited) *
2523 					    tp->t_maxseg;
2524 					if ((thflags & TH_FIN) &&
2525 					    (TCPS_HAVERCVDFIN(tp->t_state) == 0)) {
2526 						/*
2527 						 * If its a fin we need to process
2528 						 * it to avoid a race where both
2529 						 * sides enter FIN-WAIT and send FIN|ACK
2530 						 * at the same time.
2531 						 */
2532 						break;
2533 					}
2534 					(void) tcp_output(tp);
2535 					sent = tp->snd_max - oldsndmax;
2536 					if (sent > tp->t_maxseg) {
2537 						KASSERT((tp->t_dupacks == 2 &&
2538 						    tp->snd_limited == 0) ||
2539 						   (sent == tp->t_maxseg + 1 &&
2540 						    tp->t_flags & TF_SENTFIN),
2541 						    ("%s: sent too much",
2542 						    __func__));
2543 						tp->snd_limited = 2;
2544 					} else if (sent > 0)
2545 						++tp->snd_limited;
2546 					tp->snd_cwnd = oldcwnd;
2547 					goto drop;
2548 				}
2549 			} else
2550 				tp->t_dupacks = 0;
2551 			break;
2552 		}
2553 
2554 		KASSERT(SEQ_GT(th->th_ack, tp->snd_una),
2555 		    ("%s: th_ack <= snd_una", __func__));
2556 
2557 		/*
2558 		 * If the congestion window was inflated to account
2559 		 * for the other side's cached packets, retract it.
2560 		 */
2561 		if (IN_FASTRECOVERY(tp->t_flags)) {
2562 			if (SEQ_LT(th->th_ack, tp->snd_recover)) {
2563 				if (tp->t_flags & TF_SACK_PERMIT)
2564 					tcp_sack_partialack(tp, th);
2565 				else
2566 					tcp_newreno_partial_ack(tp, th);
2567 			} else
2568 				cc_post_recovery(tp, th);
2569 		}
2570 		tp->t_dupacks = 0;
2571 		/*
2572 		 * If we reach this point, ACK is not a duplicate,
2573 		 *     i.e., it ACKs something we sent.
2574 		 */
2575 		if (tp->t_flags & TF_NEEDSYN) {
2576 			/*
2577 			 * T/TCP: Connection was half-synchronized, and our
2578 			 * SYN has been ACK'd (so connection is now fully
2579 			 * synchronized).  Go to non-starred state,
2580 			 * increment snd_una for ACK of SYN, and check if
2581 			 * we can do window scaling.
2582 			 */
2583 			tp->t_flags &= ~TF_NEEDSYN;
2584 			tp->snd_una++;
2585 			/* Do window scaling? */
2586 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2587 				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
2588 				tp->rcv_scale = tp->request_r_scale;
2589 				/* Send window already scaled. */
2590 			}
2591 		}
2592 
2593 process_ACK:
2594 		INP_WLOCK_ASSERT(tp->t_inpcb);
2595 
2596 		acked = BYTES_THIS_ACK(tp, th);
2597 		TCPSTAT_INC(tcps_rcvackpack);
2598 		TCPSTAT_ADD(tcps_rcvackbyte, acked);
2599 
2600 		/*
2601 		 * If we just performed our first retransmit, and the ACK
2602 		 * arrives within our recovery window, then it was a mistake
2603 		 * to do the retransmit in the first place.  Recover our
2604 		 * original cwnd and ssthresh, and proceed to transmit where
2605 		 * we left off.
2606 		 */
2607 		if (tp->t_rxtshift == 1 && tp->t_flags & TF_PREVVALID &&
2608 		    (int)(ticks - tp->t_badrxtwin) < 0)
2609 			cc_cong_signal(tp, th, CC_RTO_ERR);
2610 
2611 		/*
2612 		 * If we have a timestamp reply, update smoothed
2613 		 * round trip time.  If no timestamp is present but
2614 		 * transmit timer is running and timed sequence
2615 		 * number was acked, update smoothed round trip time.
2616 		 * Since we now have an rtt measurement, cancel the
2617 		 * timer backoff (cf., Phil Karn's retransmit alg.).
2618 		 * Recompute the initial retransmit timer.
2619 		 *
2620 		 * Some boxes send broken timestamp replies
2621 		 * during the SYN+ACK phase, ignore
2622 		 * timestamps of 0 or we could calculate a
2623 		 * huge RTT and blow up the retransmit timer.
2624 		 */
2625 		if ((to.to_flags & TOF_TS) != 0 && to.to_tsecr) {
2626 			u_int t;
2627 
2628 			t = tcp_ts_getticks() - to.to_tsecr;
2629 			if (!tp->t_rttlow || tp->t_rttlow > t)
2630 				tp->t_rttlow = t;
2631 			tcp_xmit_timer(tp, TCP_TS_TO_TICKS(t) + 1);
2632 		} else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq)) {
2633 			if (!tp->t_rttlow || tp->t_rttlow > ticks - tp->t_rtttime)
2634 				tp->t_rttlow = ticks - tp->t_rtttime;
2635 			tcp_xmit_timer(tp, ticks - tp->t_rtttime);
2636 		}
2637 
2638 		/*
2639 		 * If all outstanding data is acked, stop retransmit
2640 		 * timer and remember to restart (more output or persist).
2641 		 * If there is more data to be acked, restart retransmit
2642 		 * timer, using current (possibly backed-off) value.
2643 		 */
2644 		if (th->th_ack == tp->snd_max) {
2645 			tcp_timer_activate(tp, TT_REXMT, 0);
2646 			needoutput = 1;
2647 		} else if (!tcp_timer_active(tp, TT_PERSIST))
2648 			tcp_timer_activate(tp, TT_REXMT, tp->t_rxtcur);
2649 
2650 		/*
2651 		 * If no data (only SYN) was ACK'd,
2652 		 *    skip rest of ACK processing.
2653 		 */
2654 		if (acked == 0)
2655 			goto step6;
2656 
2657 		/*
2658 		 * Let the congestion control algorithm update congestion
2659 		 * control related information. This typically means increasing
2660 		 * the congestion window.
2661 		 */
2662 		cc_ack_received(tp, th, CC_ACK);
2663 
2664 		SOCKBUF_LOCK(&so->so_snd);
2665 		if (acked > so->so_snd.sb_cc) {
2666 			tp->snd_wnd -= so->so_snd.sb_cc;
2667 			sbdrop_locked(&so->so_snd, (int)so->so_snd.sb_cc);
2668 			ourfinisacked = 1;
2669 		} else {
2670 			sbdrop_locked(&so->so_snd, acked);
2671 			tp->snd_wnd -= acked;
2672 			ourfinisacked = 0;
2673 		}
2674 		/* NB: sowwakeup_locked() does an implicit unlock. */
2675 		sowwakeup_locked(so);
2676 		/* Detect una wraparound. */
2677 		if (!IN_RECOVERY(tp->t_flags) &&
2678 		    SEQ_GT(tp->snd_una, tp->snd_recover) &&
2679 		    SEQ_LEQ(th->th_ack, tp->snd_recover))
2680 			tp->snd_recover = th->th_ack - 1;
2681 		/* XXXLAS: Can this be moved up into cc_post_recovery? */
2682 		if (IN_RECOVERY(tp->t_flags) &&
2683 		    SEQ_GEQ(th->th_ack, tp->snd_recover)) {
2684 			EXIT_RECOVERY(tp->t_flags);
2685 		}
2686 		tp->snd_una = th->th_ack;
2687 		if (tp->t_flags & TF_SACK_PERMIT) {
2688 			if (SEQ_GT(tp->snd_una, tp->snd_recover))
2689 				tp->snd_recover = tp->snd_una;
2690 		}
2691 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2692 			tp->snd_nxt = tp->snd_una;
2693 
2694 		switch (tp->t_state) {
2695 
2696 		/*
2697 		 * In FIN_WAIT_1 STATE in addition to the processing
2698 		 * for the ESTABLISHED state if our FIN is now acknowledged
2699 		 * then enter FIN_WAIT_2.
2700 		 */
2701 		case TCPS_FIN_WAIT_1:
2702 			if (ourfinisacked) {
2703 				/*
2704 				 * If we can't receive any more
2705 				 * data, then closing user can proceed.
2706 				 * Starting the timer is contrary to the
2707 				 * specification, but if we don't get a FIN
2708 				 * we'll hang forever.
2709 				 *
2710 				 * XXXjl:
2711 				 * we should release the tp also, and use a
2712 				 * compressed state.
2713 				 */
2714 				if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
2715 					soisdisconnected(so);
2716 					tcp_timer_activate(tp, TT_2MSL,
2717 					    (tcp_fast_finwait2_recycle ?
2718 					    tcp_finwait2_timeout :
2719 					    TP_MAXIDLE(tp)));
2720 				}
2721 				tp->t_state = TCPS_FIN_WAIT_2;
2722 			}
2723 			break;
2724 
2725 		/*
2726 		 * In CLOSING STATE in addition to the processing for
2727 		 * the ESTABLISHED state if the ACK acknowledges our FIN
2728 		 * then enter the TIME-WAIT state, otherwise ignore
2729 		 * the segment.
2730 		 */
2731 		case TCPS_CLOSING:
2732 			if (ourfinisacked) {
2733 				INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2734 				tcp_twstart(tp);
2735 				INP_INFO_WUNLOCK(&V_tcbinfo);
2736 				m_freem(m);
2737 				return;
2738 			}
2739 			break;
2740 
2741 		/*
2742 		 * In LAST_ACK, we may still be waiting for data to drain
2743 		 * and/or to be acked, as well as for the ack of our FIN.
2744 		 * If our FIN is now acknowledged, delete the TCB,
2745 		 * enter the closed state and return.
2746 		 */
2747 		case TCPS_LAST_ACK:
2748 			if (ourfinisacked) {
2749 				INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2750 				tp = tcp_close(tp);
2751 				goto drop;
2752 			}
2753 			break;
2754 		}
2755 	}
2756 
2757 step6:
2758 	INP_WLOCK_ASSERT(tp->t_inpcb);
2759 
2760 	/*
2761 	 * Update window information.
2762 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2763 	 */
2764 	if ((thflags & TH_ACK) &&
2765 	    (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2766 	    (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
2767 	     (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
2768 		/* keep track of pure window updates */
2769 		if (tlen == 0 &&
2770 		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2771 			TCPSTAT_INC(tcps_rcvwinupd);
2772 		tp->snd_wnd = tiwin;
2773 		tp->snd_wl1 = th->th_seq;
2774 		tp->snd_wl2 = th->th_ack;
2775 		if (tp->snd_wnd > tp->max_sndwnd)
2776 			tp->max_sndwnd = tp->snd_wnd;
2777 		needoutput = 1;
2778 	}
2779 
2780 	/*
2781 	 * Process segments with URG.
2782 	 */
2783 	if ((thflags & TH_URG) && th->th_urp &&
2784 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2785 		/*
2786 		 * This is a kludge, but if we receive and accept
2787 		 * random urgent pointers, we'll crash in
2788 		 * soreceive.  It's hard to imagine someone
2789 		 * actually wanting to send this much urgent data.
2790 		 */
2791 		SOCKBUF_LOCK(&so->so_rcv);
2792 		if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2793 			th->th_urp = 0;			/* XXX */
2794 			thflags &= ~TH_URG;		/* XXX */
2795 			SOCKBUF_UNLOCK(&so->so_rcv);	/* XXX */
2796 			goto dodata;			/* XXX */
2797 		}
2798 		/*
2799 		 * If this segment advances the known urgent pointer,
2800 		 * then mark the data stream.  This should not happen
2801 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2802 		 * a FIN has been received from the remote side.
2803 		 * In these states we ignore the URG.
2804 		 *
2805 		 * According to RFC961 (Assigned Protocols),
2806 		 * the urgent pointer points to the last octet
2807 		 * of urgent data.  We continue, however,
2808 		 * to consider it to indicate the first octet
2809 		 * of data past the urgent section as the original
2810 		 * spec states (in one of two places).
2811 		 */
2812 		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2813 			tp->rcv_up = th->th_seq + th->th_urp;
2814 			so->so_oobmark = so->so_rcv.sb_cc +
2815 			    (tp->rcv_up - tp->rcv_nxt) - 1;
2816 			if (so->so_oobmark == 0)
2817 				so->so_rcv.sb_state |= SBS_RCVATMARK;
2818 			sohasoutofband(so);
2819 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2820 		}
2821 		SOCKBUF_UNLOCK(&so->so_rcv);
2822 		/*
2823 		 * Remove out of band data so doesn't get presented to user.
2824 		 * This can happen independent of advancing the URG pointer,
2825 		 * but if two URG's are pending at once, some out-of-band
2826 		 * data may creep in... ick.
2827 		 */
2828 		if (th->th_urp <= (u_long)tlen &&
2829 		    !(so->so_options & SO_OOBINLINE)) {
2830 			/* hdr drop is delayed */
2831 			tcp_pulloutofband(so, th, m, drop_hdrlen);
2832 		}
2833 	} else {
2834 		/*
2835 		 * If no out of band data is expected,
2836 		 * pull receive urgent pointer along
2837 		 * with the receive window.
2838 		 */
2839 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2840 			tp->rcv_up = tp->rcv_nxt;
2841 	}
2842 dodata:							/* XXX */
2843 	INP_WLOCK_ASSERT(tp->t_inpcb);
2844 
2845 	/*
2846 	 * Process the segment text, merging it into the TCP sequencing queue,
2847 	 * and arranging for acknowledgment of receipt if necessary.
2848 	 * This process logically involves adjusting tp->rcv_wnd as data
2849 	 * is presented to the user (this happens in tcp_usrreq.c,
2850 	 * case PRU_RCVD).  If a FIN has already been received on this
2851 	 * connection then we just ignore the text.
2852 	 */
2853 	if ((tlen || (thflags & TH_FIN)) &&
2854 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2855 		tcp_seq save_start = th->th_seq;
2856 		m_adj(m, drop_hdrlen);	/* delayed header drop */
2857 		/*
2858 		 * Insert segment which includes th into TCP reassembly queue
2859 		 * with control block tp.  Set thflags to whether reassembly now
2860 		 * includes a segment with FIN.  This handles the common case
2861 		 * inline (segment is the next to be received on an established
2862 		 * connection, and the queue is empty), avoiding linkage into
2863 		 * and removal from the queue and repetition of various
2864 		 * conversions.
2865 		 * Set DELACK for segments received in order, but ack
2866 		 * immediately when segments are out of order (so
2867 		 * fast retransmit can work).
2868 		 */
2869 		if (th->th_seq == tp->rcv_nxt &&
2870 		    LIST_EMPTY(&tp->t_segq) &&
2871 		    TCPS_HAVEESTABLISHED(tp->t_state)) {
2872 			if (DELAY_ACK(tp))
2873 				tp->t_flags |= TF_DELACK;
2874 			else
2875 				tp->t_flags |= TF_ACKNOW;
2876 			tp->rcv_nxt += tlen;
2877 			thflags = th->th_flags & TH_FIN;
2878 			TCPSTAT_INC(tcps_rcvpack);
2879 			TCPSTAT_ADD(tcps_rcvbyte, tlen);
2880 			ND6_HINT(tp);
2881 			SOCKBUF_LOCK(&so->so_rcv);
2882 			if (so->so_rcv.sb_state & SBS_CANTRCVMORE)
2883 				m_freem(m);
2884 			else
2885 				sbappendstream_locked(&so->so_rcv, m);
2886 			/* NB: sorwakeup_locked() does an implicit unlock. */
2887 			sorwakeup_locked(so);
2888 		} else {
2889 			/*
2890 			 * XXX: Due to the header drop above "th" is
2891 			 * theoretically invalid by now.  Fortunately
2892 			 * m_adj() doesn't actually frees any mbufs
2893 			 * when trimming from the head.
2894 			 */
2895 			thflags = tcp_reass(tp, th, &tlen, m);
2896 			tp->t_flags |= TF_ACKNOW;
2897 		}
2898 		if (tlen > 0 && (tp->t_flags & TF_SACK_PERMIT))
2899 			tcp_update_sack_list(tp, save_start, save_start + tlen);
2900 #if 0
2901 		/*
2902 		 * Note the amount of data that peer has sent into
2903 		 * our window, in order to estimate the sender's
2904 		 * buffer size.
2905 		 * XXX: Unused.
2906 		 */
2907 		if (SEQ_GT(tp->rcv_adv, tp->rcv_nxt))
2908 			len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2909 		else
2910 			len = so->so_rcv.sb_hiwat;
2911 #endif
2912 	} else {
2913 		m_freem(m);
2914 		thflags &= ~TH_FIN;
2915 	}
2916 
2917 	/*
2918 	 * If FIN is received ACK the FIN and let the user know
2919 	 * that the connection is closing.
2920 	 */
2921 	if (thflags & TH_FIN) {
2922 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2923 			socantrcvmore(so);
2924 			/*
2925 			 * If connection is half-synchronized
2926 			 * (ie NEEDSYN flag on) then delay ACK,
2927 			 * so it may be piggybacked when SYN is sent.
2928 			 * Otherwise, since we received a FIN then no
2929 			 * more input can be expected, send ACK now.
2930 			 */
2931 			if (tp->t_flags & TF_NEEDSYN)
2932 				tp->t_flags |= TF_DELACK;
2933 			else
2934 				tp->t_flags |= TF_ACKNOW;
2935 			tp->rcv_nxt++;
2936 		}
2937 		switch (tp->t_state) {
2938 
2939 		/*
2940 		 * In SYN_RECEIVED and ESTABLISHED STATES
2941 		 * enter the CLOSE_WAIT state.
2942 		 */
2943 		case TCPS_SYN_RECEIVED:
2944 			tp->t_starttime = ticks;
2945 			/* FALLTHROUGH */
2946 		case TCPS_ESTABLISHED:
2947 			tp->t_state = TCPS_CLOSE_WAIT;
2948 			break;
2949 
2950 		/*
2951 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2952 		 * enter the CLOSING state.
2953 		 */
2954 		case TCPS_FIN_WAIT_1:
2955 			tp->t_state = TCPS_CLOSING;
2956 			break;
2957 
2958 		/*
2959 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2960 		 * starting the time-wait timer, turning off the other
2961 		 * standard timers.
2962 		 */
2963 		case TCPS_FIN_WAIT_2:
2964 			INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2965 			KASSERT(ti_locked == TI_WLOCKED, ("%s: dodata "
2966 			    "TCP_FIN_WAIT_2 ti_locked: %d", __func__,
2967 			    ti_locked));
2968 
2969 			tcp_twstart(tp);
2970 			INP_INFO_WUNLOCK(&V_tcbinfo);
2971 			return;
2972 		}
2973 	}
2974 	if (ti_locked == TI_WLOCKED)
2975 		INP_INFO_WUNLOCK(&V_tcbinfo);
2976 	ti_locked = TI_UNLOCKED;
2977 
2978 #ifdef TCPDEBUG
2979 	if (so->so_options & SO_DEBUG)
2980 		tcp_trace(TA_INPUT, ostate, tp, (void *)tcp_saveipgen,
2981 			  &tcp_savetcp, 0);
2982 #endif
2983 
2984 	/*
2985 	 * Return any desired output.
2986 	 */
2987 	if (needoutput || (tp->t_flags & TF_ACKNOW))
2988 		(void) tcp_output(tp);
2989 
2990 check_delack:
2991 	KASSERT(ti_locked == TI_UNLOCKED, ("%s: check_delack ti_locked %d",
2992 	    __func__, ti_locked));
2993 	INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
2994 	INP_WLOCK_ASSERT(tp->t_inpcb);
2995 
2996 	if (tp->t_flags & TF_DELACK) {
2997 		tp->t_flags &= ~TF_DELACK;
2998 		tcp_timer_activate(tp, TT_DELACK, tcp_delacktime);
2999 	}
3000 	INP_WUNLOCK(tp->t_inpcb);
3001 	return;
3002 
3003 dropafterack:
3004 	/*
3005 	 * Generate an ACK dropping incoming segment if it occupies
3006 	 * sequence space, where the ACK reflects our state.
3007 	 *
3008 	 * We can now skip the test for the RST flag since all
3009 	 * paths to this code happen after packets containing
3010 	 * RST have been dropped.
3011 	 *
3012 	 * In the SYN-RECEIVED state, don't send an ACK unless the
3013 	 * segment we received passes the SYN-RECEIVED ACK test.
3014 	 * If it fails send a RST.  This breaks the loop in the
3015 	 * "LAND" DoS attack, and also prevents an ACK storm
3016 	 * between two listening ports that have been sent forged
3017 	 * SYN segments, each with the source address of the other.
3018 	 */
3019 	if (tp->t_state == TCPS_SYN_RECEIVED && (thflags & TH_ACK) &&
3020 	    (SEQ_GT(tp->snd_una, th->th_ack) ||
3021 	     SEQ_GT(th->th_ack, tp->snd_max)) ) {
3022 		rstreason = BANDLIM_RST_OPENPORT;
3023 		goto dropwithreset;
3024 	}
3025 #ifdef TCPDEBUG
3026 	if (so->so_options & SO_DEBUG)
3027 		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
3028 			  &tcp_savetcp, 0);
3029 #endif
3030 	if (ti_locked == TI_WLOCKED)
3031 		INP_INFO_WUNLOCK(&V_tcbinfo);
3032 	ti_locked = TI_UNLOCKED;
3033 
3034 	tp->t_flags |= TF_ACKNOW;
3035 	(void) tcp_output(tp);
3036 	INP_WUNLOCK(tp->t_inpcb);
3037 	m_freem(m);
3038 	return;
3039 
3040 dropwithreset:
3041 	if (ti_locked == TI_WLOCKED)
3042 		INP_INFO_WUNLOCK(&V_tcbinfo);
3043 	ti_locked = TI_UNLOCKED;
3044 
3045 	if (tp != NULL) {
3046 		tcp_dropwithreset(m, th, tp, tlen, rstreason);
3047 		INP_WUNLOCK(tp->t_inpcb);
3048 	} else
3049 		tcp_dropwithreset(m, th, NULL, tlen, rstreason);
3050 	return;
3051 
3052 drop:
3053 	if (ti_locked == TI_WLOCKED) {
3054 		INP_INFO_WUNLOCK(&V_tcbinfo);
3055 		ti_locked = TI_UNLOCKED;
3056 	}
3057 #ifdef INVARIANTS
3058 	else
3059 		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
3060 #endif
3061 
3062 	/*
3063 	 * Drop space held by incoming segment and return.
3064 	 */
3065 #ifdef TCPDEBUG
3066 	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
3067 		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
3068 			  &tcp_savetcp, 0);
3069 #endif
3070 	if (tp != NULL)
3071 		INP_WUNLOCK(tp->t_inpcb);
3072 	m_freem(m);
3073 }
3074 
3075 /*
3076  * Issue RST and make ACK acceptable to originator of segment.
3077  * The mbuf must still include the original packet header.
3078  * tp may be NULL.
3079  */
3080 static void
3081 tcp_dropwithreset(struct mbuf *m, struct tcphdr *th, struct tcpcb *tp,
3082     int tlen, int rstreason)
3083 {
3084 #ifdef INET
3085 	struct ip *ip;
3086 #endif
3087 #ifdef INET6
3088 	struct ip6_hdr *ip6;
3089 #endif
3090 
3091 	if (tp != NULL) {
3092 		INP_WLOCK_ASSERT(tp->t_inpcb);
3093 	}
3094 
3095 	/* Don't bother if destination was broadcast/multicast. */
3096 	if ((th->th_flags & TH_RST) || m->m_flags & (M_BCAST|M_MCAST))
3097 		goto drop;
3098 #ifdef INET6
3099 	if (mtod(m, struct ip *)->ip_v == 6) {
3100 		ip6 = mtod(m, struct ip6_hdr *);
3101 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
3102 		    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
3103 			goto drop;
3104 		/* IPv6 anycast check is done at tcp6_input() */
3105 	}
3106 #endif
3107 #if defined(INET) && defined(INET6)
3108 	else
3109 #endif
3110 #ifdef INET
3111 	{
3112 		ip = mtod(m, struct ip *);
3113 		if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
3114 		    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
3115 		    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
3116 		    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
3117 			goto drop;
3118 	}
3119 #endif
3120 
3121 	/* Perform bandwidth limiting. */
3122 	if (badport_bandlim(rstreason) < 0)
3123 		goto drop;
3124 
3125 	/* tcp_respond consumes the mbuf chain. */
3126 	if (th->th_flags & TH_ACK) {
3127 		tcp_respond(tp, mtod(m, void *), th, m, (tcp_seq)0,
3128 		    th->th_ack, TH_RST);
3129 	} else {
3130 		if (th->th_flags & TH_SYN)
3131 			tlen++;
3132 		tcp_respond(tp, mtod(m, void *), th, m, th->th_seq+tlen,
3133 		    (tcp_seq)0, TH_RST|TH_ACK);
3134 	}
3135 	return;
3136 drop:
3137 	m_freem(m);
3138 }
3139 
3140 /*
3141  * Parse TCP options and place in tcpopt.
3142  */
3143 static void
3144 tcp_dooptions(struct tcpopt *to, u_char *cp, int cnt, int flags)
3145 {
3146 	int opt, optlen;
3147 
3148 	to->to_flags = 0;
3149 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
3150 		opt = cp[0];
3151 		if (opt == TCPOPT_EOL)
3152 			break;
3153 		if (opt == TCPOPT_NOP)
3154 			optlen = 1;
3155 		else {
3156 			if (cnt < 2)
3157 				break;
3158 			optlen = cp[1];
3159 			if (optlen < 2 || optlen > cnt)
3160 				break;
3161 		}
3162 		switch (opt) {
3163 		case TCPOPT_MAXSEG:
3164 			if (optlen != TCPOLEN_MAXSEG)
3165 				continue;
3166 			if (!(flags & TO_SYN))
3167 				continue;
3168 			to->to_flags |= TOF_MSS;
3169 			bcopy((char *)cp + 2,
3170 			    (char *)&to->to_mss, sizeof(to->to_mss));
3171 			to->to_mss = ntohs(to->to_mss);
3172 			break;
3173 		case TCPOPT_WINDOW:
3174 			if (optlen != TCPOLEN_WINDOW)
3175 				continue;
3176 			if (!(flags & TO_SYN))
3177 				continue;
3178 			to->to_flags |= TOF_SCALE;
3179 			to->to_wscale = min(cp[2], TCP_MAX_WINSHIFT);
3180 			break;
3181 		case TCPOPT_TIMESTAMP:
3182 			if (optlen != TCPOLEN_TIMESTAMP)
3183 				continue;
3184 			to->to_flags |= TOF_TS;
3185 			bcopy((char *)cp + 2,
3186 			    (char *)&to->to_tsval, sizeof(to->to_tsval));
3187 			to->to_tsval = ntohl(to->to_tsval);
3188 			bcopy((char *)cp + 6,
3189 			    (char *)&to->to_tsecr, sizeof(to->to_tsecr));
3190 			to->to_tsecr = ntohl(to->to_tsecr);
3191 			break;
3192 #ifdef TCP_SIGNATURE
3193 		/*
3194 		 * XXX In order to reply to a host which has set the
3195 		 * TCP_SIGNATURE option in its initial SYN, we have to
3196 		 * record the fact that the option was observed here
3197 		 * for the syncache code to perform the correct response.
3198 		 */
3199 		case TCPOPT_SIGNATURE:
3200 			if (optlen != TCPOLEN_SIGNATURE)
3201 				continue;
3202 			to->to_flags |= TOF_SIGNATURE;
3203 			to->to_signature = cp + 2;
3204 			break;
3205 #endif
3206 		case TCPOPT_SACK_PERMITTED:
3207 			if (optlen != TCPOLEN_SACK_PERMITTED)
3208 				continue;
3209 			if (!(flags & TO_SYN))
3210 				continue;
3211 			if (!V_tcp_do_sack)
3212 				continue;
3213 			to->to_flags |= TOF_SACKPERM;
3214 			break;
3215 		case TCPOPT_SACK:
3216 			if (optlen <= 2 || (optlen - 2) % TCPOLEN_SACK != 0)
3217 				continue;
3218 			if (flags & TO_SYN)
3219 				continue;
3220 			to->to_flags |= TOF_SACK;
3221 			to->to_nsacks = (optlen - 2) / TCPOLEN_SACK;
3222 			to->to_sacks = cp + 2;
3223 			TCPSTAT_INC(tcps_sack_rcv_blocks);
3224 			break;
3225 		default:
3226 			continue;
3227 		}
3228 	}
3229 }
3230 
3231 /*
3232  * Pull out of band byte out of a segment so
3233  * it doesn't appear in the user's data queue.
3234  * It is still reflected in the segment length for
3235  * sequencing purposes.
3236  */
3237 static void
3238 tcp_pulloutofband(struct socket *so, struct tcphdr *th, struct mbuf *m,
3239     int off)
3240 {
3241 	int cnt = off + th->th_urp - 1;
3242 
3243 	while (cnt >= 0) {
3244 		if (m->m_len > cnt) {
3245 			char *cp = mtod(m, caddr_t) + cnt;
3246 			struct tcpcb *tp = sototcpcb(so);
3247 
3248 			INP_WLOCK_ASSERT(tp->t_inpcb);
3249 
3250 			tp->t_iobc = *cp;
3251 			tp->t_oobflags |= TCPOOB_HAVEDATA;
3252 			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
3253 			m->m_len--;
3254 			if (m->m_flags & M_PKTHDR)
3255 				m->m_pkthdr.len--;
3256 			return;
3257 		}
3258 		cnt -= m->m_len;
3259 		m = m->m_next;
3260 		if (m == NULL)
3261 			break;
3262 	}
3263 	panic("tcp_pulloutofband");
3264 }
3265 
3266 /*
3267  * Collect new round-trip time estimate
3268  * and update averages and current timeout.
3269  */
3270 static void
3271 tcp_xmit_timer(struct tcpcb *tp, int rtt)
3272 {
3273 	int delta;
3274 
3275 	INP_WLOCK_ASSERT(tp->t_inpcb);
3276 
3277 	TCPSTAT_INC(tcps_rttupdated);
3278 	tp->t_rttupdated++;
3279 	if (tp->t_srtt != 0) {
3280 		/*
3281 		 * srtt is stored as fixed point with 5 bits after the
3282 		 * binary point (i.e., scaled by 8).  The following magic
3283 		 * is equivalent to the smoothing algorithm in rfc793 with
3284 		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
3285 		 * point).  Adjust rtt to origin 0.
3286 		 */
3287 		delta = ((rtt - 1) << TCP_DELTA_SHIFT)
3288 			- (tp->t_srtt >> (TCP_RTT_SHIFT - TCP_DELTA_SHIFT));
3289 
3290 		if ((tp->t_srtt += delta) <= 0)
3291 			tp->t_srtt = 1;
3292 
3293 		/*
3294 		 * We accumulate a smoothed rtt variance (actually, a
3295 		 * smoothed mean difference), then set the retransmit
3296 		 * timer to smoothed rtt + 4 times the smoothed variance.
3297 		 * rttvar is stored as fixed point with 4 bits after the
3298 		 * binary point (scaled by 16).  The following is
3299 		 * equivalent to rfc793 smoothing with an alpha of .75
3300 		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
3301 		 * rfc793's wired-in beta.
3302 		 */
3303 		if (delta < 0)
3304 			delta = -delta;
3305 		delta -= tp->t_rttvar >> (TCP_RTTVAR_SHIFT - TCP_DELTA_SHIFT);
3306 		if ((tp->t_rttvar += delta) <= 0)
3307 			tp->t_rttvar = 1;
3308 		if (tp->t_rttbest > tp->t_srtt + tp->t_rttvar)
3309 		    tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
3310 	} else {
3311 		/*
3312 		 * No rtt measurement yet - use the unsmoothed rtt.
3313 		 * Set the variance to half the rtt (so our first
3314 		 * retransmit happens at 3*rtt).
3315 		 */
3316 		tp->t_srtt = rtt << TCP_RTT_SHIFT;
3317 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1);
3318 		tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
3319 	}
3320 	tp->t_rtttime = 0;
3321 	tp->t_rxtshift = 0;
3322 
3323 	/*
3324 	 * the retransmit should happen at rtt + 4 * rttvar.
3325 	 * Because of the way we do the smoothing, srtt and rttvar
3326 	 * will each average +1/2 tick of bias.  When we compute
3327 	 * the retransmit timer, we want 1/2 tick of rounding and
3328 	 * 1 extra tick because of +-1/2 tick uncertainty in the
3329 	 * firing of the timer.  The bias will give us exactly the
3330 	 * 1.5 tick we need.  But, because the bias is
3331 	 * statistical, we have to test that we don't drop below
3332 	 * the minimum feasible timer (which is 2 ticks).
3333 	 */
3334 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
3335 		      max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
3336 
3337 	/*
3338 	 * We received an ack for a packet that wasn't retransmitted;
3339 	 * it is probably safe to discard any error indications we've
3340 	 * received recently.  This isn't quite right, but close enough
3341 	 * for now (a route might have failed after we sent a segment,
3342 	 * and the return path might not be symmetrical).
3343 	 */
3344 	tp->t_softerror = 0;
3345 }
3346 
3347 /*
3348  * Determine a reasonable value for maxseg size.
3349  * If the route is known, check route for mtu.
3350  * If none, use an mss that can be handled on the outgoing interface
3351  * without forcing IP to fragment.  If no route is found, route has no mtu,
3352  * or the destination isn't local, use a default, hopefully conservative
3353  * size (usually 512 or the default IP max size, but no more than the mtu
3354  * of the interface), as we can't discover anything about intervening
3355  * gateways or networks.  We also initialize the congestion/slow start
3356  * window to be a single segment if the destination isn't local.
3357  * While looking at the routing entry, we also initialize other path-dependent
3358  * parameters from pre-set or cached values in the routing entry.
3359  *
3360  * Also take into account the space needed for options that we
3361  * send regularly.  Make maxseg shorter by that amount to assure
3362  * that we can send maxseg amount of data even when the options
3363  * are present.  Store the upper limit of the length of options plus
3364  * data in maxopd.
3365  *
3366  * NOTE that this routine is only called when we process an incoming
3367  * segment, or an ICMP need fragmentation datagram. Outgoing SYN/ACK MSS
3368  * settings are handled in tcp_mssopt().
3369  */
3370 void
3371 tcp_mss_update(struct tcpcb *tp, int offer, int mtuoffer,
3372     struct hc_metrics_lite *metricptr, int *mtuflags)
3373 {
3374 	int mss = 0;
3375 	u_long maxmtu = 0;
3376 	struct inpcb *inp = tp->t_inpcb;
3377 	struct hc_metrics_lite metrics;
3378 	int origoffer;
3379 #ifdef INET6
3380 	int isipv6 = ((inp->inp_vflag & INP_IPV6) != 0) ? 1 : 0;
3381 	size_t min_protoh = isipv6 ?
3382 			    sizeof (struct ip6_hdr) + sizeof (struct tcphdr) :
3383 			    sizeof (struct tcpiphdr);
3384 #else
3385 	const size_t min_protoh = sizeof(struct tcpiphdr);
3386 #endif
3387 
3388 	INP_WLOCK_ASSERT(tp->t_inpcb);
3389 
3390 	if (mtuoffer != -1) {
3391 		KASSERT(offer == -1, ("%s: conflict", __func__));
3392 		offer = mtuoffer - min_protoh;
3393 	}
3394 	origoffer = offer;
3395 
3396 	/* Initialize. */
3397 #ifdef INET6
3398 	if (isipv6) {
3399 		maxmtu = tcp_maxmtu6(&inp->inp_inc, mtuflags);
3400 		tp->t_maxopd = tp->t_maxseg = V_tcp_v6mssdflt;
3401 	}
3402 #endif
3403 #if defined(INET) && defined(INET6)
3404 	else
3405 #endif
3406 #ifdef INET
3407 	{
3408 		maxmtu = tcp_maxmtu(&inp->inp_inc, mtuflags);
3409 		tp->t_maxopd = tp->t_maxseg = V_tcp_mssdflt;
3410 	}
3411 #endif
3412 
3413 	/*
3414 	 * No route to sender, stay with default mss and return.
3415 	 */
3416 	if (maxmtu == 0) {
3417 		/*
3418 		 * In case we return early we need to initialize metrics
3419 		 * to a defined state as tcp_hc_get() would do for us
3420 		 * if there was no cache hit.
3421 		 */
3422 		if (metricptr != NULL)
3423 			bzero(metricptr, sizeof(struct hc_metrics_lite));
3424 		return;
3425 	}
3426 
3427 	/* What have we got? */
3428 	switch (offer) {
3429 		case 0:
3430 			/*
3431 			 * Offer == 0 means that there was no MSS on the SYN
3432 			 * segment, in this case we use tcp_mssdflt as
3433 			 * already assigned to t_maxopd above.
3434 			 */
3435 			offer = tp->t_maxopd;
3436 			break;
3437 
3438 		case -1:
3439 			/*
3440 			 * Offer == -1 means that we didn't receive SYN yet.
3441 			 */
3442 			/* FALLTHROUGH */
3443 
3444 		default:
3445 			/*
3446 			 * Prevent DoS attack with too small MSS. Round up
3447 			 * to at least minmss.
3448 			 */
3449 			offer = max(offer, V_tcp_minmss);
3450 	}
3451 
3452 	/*
3453 	 * rmx information is now retrieved from tcp_hostcache.
3454 	 */
3455 	tcp_hc_get(&inp->inp_inc, &metrics);
3456 	if (metricptr != NULL)
3457 		bcopy(&metrics, metricptr, sizeof(struct hc_metrics_lite));
3458 
3459 	/*
3460 	 * If there's a discovered mtu int tcp hostcache, use it
3461 	 * else, use the link mtu.
3462 	 */
3463 	if (metrics.rmx_mtu)
3464 		mss = min(metrics.rmx_mtu, maxmtu) - min_protoh;
3465 	else {
3466 #ifdef INET6
3467 		if (isipv6) {
3468 			mss = maxmtu - min_protoh;
3469 			if (!V_path_mtu_discovery &&
3470 			    !in6_localaddr(&inp->in6p_faddr))
3471 				mss = min(mss, V_tcp_v6mssdflt);
3472 		}
3473 #endif
3474 #if defined(INET) && defined(INET6)
3475 		else
3476 #endif
3477 #ifdef INET
3478 		{
3479 			mss = maxmtu - min_protoh;
3480 			if (!V_path_mtu_discovery &&
3481 			    !in_localaddr(inp->inp_faddr))
3482 				mss = min(mss, V_tcp_mssdflt);
3483 		}
3484 #endif
3485 		/*
3486 		 * XXX - The above conditional (mss = maxmtu - min_protoh)
3487 		 * probably violates the TCP spec.
3488 		 * The problem is that, since we don't know the
3489 		 * other end's MSS, we are supposed to use a conservative
3490 		 * default.  But, if we do that, then MTU discovery will
3491 		 * never actually take place, because the conservative
3492 		 * default is much less than the MTUs typically seen
3493 		 * on the Internet today.  For the moment, we'll sweep
3494 		 * this under the carpet.
3495 		 *
3496 		 * The conservative default might not actually be a problem
3497 		 * if the only case this occurs is when sending an initial
3498 		 * SYN with options and data to a host we've never talked
3499 		 * to before.  Then, they will reply with an MSS value which
3500 		 * will get recorded and the new parameters should get
3501 		 * recomputed.  For Further Study.
3502 		 */
3503 	}
3504 	mss = min(mss, offer);
3505 
3506 	/*
3507 	 * Sanity check: make sure that maxopd will be large
3508 	 * enough to allow some data on segments even if the
3509 	 * all the option space is used (40bytes).  Otherwise
3510 	 * funny things may happen in tcp_output.
3511 	 */
3512 	mss = max(mss, 64);
3513 
3514 	/*
3515 	 * maxopd stores the maximum length of data AND options
3516 	 * in a segment; maxseg is the amount of data in a normal
3517 	 * segment.  We need to store this value (maxopd) apart
3518 	 * from maxseg, because now every segment carries options
3519 	 * and thus we normally have somewhat less data in segments.
3520 	 */
3521 	tp->t_maxopd = mss;
3522 
3523 	/*
3524 	 * origoffer==-1 indicates that no segments were received yet.
3525 	 * In this case we just guess.
3526 	 */
3527 	if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
3528 	    (origoffer == -1 ||
3529 	     (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP))
3530 		mss -= TCPOLEN_TSTAMP_APPA;
3531 
3532 	tp->t_maxseg = mss;
3533 }
3534 
3535 void
3536 tcp_mss(struct tcpcb *tp, int offer)
3537 {
3538 	int mss;
3539 	u_long bufsize;
3540 	struct inpcb *inp;
3541 	struct socket *so;
3542 	struct hc_metrics_lite metrics;
3543 	int mtuflags = 0;
3544 
3545 	KASSERT(tp != NULL, ("%s: tp == NULL", __func__));
3546 
3547 	tcp_mss_update(tp, offer, -1, &metrics, &mtuflags);
3548 
3549 	mss = tp->t_maxseg;
3550 	inp = tp->t_inpcb;
3551 
3552 	/*
3553 	 * If there's a pipesize, change the socket buffer to that size,
3554 	 * don't change if sb_hiwat is different than default (then it
3555 	 * has been changed on purpose with setsockopt).
3556 	 * Make the socket buffers an integral number of mss units;
3557 	 * if the mss is larger than the socket buffer, decrease the mss.
3558 	 */
3559 	so = inp->inp_socket;
3560 	SOCKBUF_LOCK(&so->so_snd);
3561 	if ((so->so_snd.sb_hiwat == V_tcp_sendspace) && metrics.rmx_sendpipe)
3562 		bufsize = metrics.rmx_sendpipe;
3563 	else
3564 		bufsize = so->so_snd.sb_hiwat;
3565 	if (bufsize < mss)
3566 		mss = bufsize;
3567 	else {
3568 		bufsize = roundup(bufsize, mss);
3569 		if (bufsize > sb_max)
3570 			bufsize = sb_max;
3571 		if (bufsize > so->so_snd.sb_hiwat)
3572 			(void)sbreserve_locked(&so->so_snd, bufsize, so, NULL);
3573 	}
3574 	SOCKBUF_UNLOCK(&so->so_snd);
3575 	tp->t_maxseg = mss;
3576 
3577 	SOCKBUF_LOCK(&so->so_rcv);
3578 	if ((so->so_rcv.sb_hiwat == V_tcp_recvspace) && metrics.rmx_recvpipe)
3579 		bufsize = metrics.rmx_recvpipe;
3580 	else
3581 		bufsize = so->so_rcv.sb_hiwat;
3582 	if (bufsize > mss) {
3583 		bufsize = roundup(bufsize, mss);
3584 		if (bufsize > sb_max)
3585 			bufsize = sb_max;
3586 		if (bufsize > so->so_rcv.sb_hiwat)
3587 			(void)sbreserve_locked(&so->so_rcv, bufsize, so, NULL);
3588 	}
3589 	SOCKBUF_UNLOCK(&so->so_rcv);
3590 
3591 	/* Check the interface for TSO capabilities. */
3592 	if (mtuflags & CSUM_TSO)
3593 		tp->t_flags |= TF_TSO;
3594 }
3595 
3596 /*
3597  * Determine the MSS option to send on an outgoing SYN.
3598  */
3599 int
3600 tcp_mssopt(struct in_conninfo *inc)
3601 {
3602 	int mss = 0;
3603 	u_long maxmtu = 0;
3604 	u_long thcmtu = 0;
3605 	size_t min_protoh;
3606 
3607 	KASSERT(inc != NULL, ("tcp_mssopt with NULL in_conninfo pointer"));
3608 
3609 #ifdef INET6
3610 	if (inc->inc_flags & INC_ISIPV6) {
3611 		mss = V_tcp_v6mssdflt;
3612 		maxmtu = tcp_maxmtu6(inc, NULL);
3613 		min_protoh = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
3614 	}
3615 #endif
3616 #if defined(INET) && defined(INET6)
3617 	else
3618 #endif
3619 #ifdef INET
3620 	{
3621 		mss = V_tcp_mssdflt;
3622 		maxmtu = tcp_maxmtu(inc, NULL);
3623 		min_protoh = sizeof(struct tcpiphdr);
3624 	}
3625 #endif
3626 #if defined(INET6) || defined(INET)
3627 	thcmtu = tcp_hc_getmtu(inc); /* IPv4 and IPv6 */
3628 #endif
3629 
3630 	if (maxmtu && thcmtu)
3631 		mss = min(maxmtu, thcmtu) - min_protoh;
3632 	else if (maxmtu || thcmtu)
3633 		mss = max(maxmtu, thcmtu) - min_protoh;
3634 
3635 	return (mss);
3636 }
3637 
3638 
3639 /*
3640  * On a partial ack arrives, force the retransmission of the
3641  * next unacknowledged segment.  Do not clear tp->t_dupacks.
3642  * By setting snd_nxt to ti_ack, this forces retransmission timer to
3643  * be started again.
3644  */
3645 static void
3646 tcp_newreno_partial_ack(struct tcpcb *tp, struct tcphdr *th)
3647 {
3648 	tcp_seq onxt = tp->snd_nxt;
3649 	u_long  ocwnd = tp->snd_cwnd;
3650 
3651 	INP_WLOCK_ASSERT(tp->t_inpcb);
3652 
3653 	tcp_timer_activate(tp, TT_REXMT, 0);
3654 	tp->t_rtttime = 0;
3655 	tp->snd_nxt = th->th_ack;
3656 	/*
3657 	 * Set snd_cwnd to one segment beyond acknowledged offset.
3658 	 * (tp->snd_una has not yet been updated when this function is called.)
3659 	 */
3660 	tp->snd_cwnd = tp->t_maxseg + BYTES_THIS_ACK(tp, th);
3661 	tp->t_flags |= TF_ACKNOW;
3662 	(void) tcp_output(tp);
3663 	tp->snd_cwnd = ocwnd;
3664 	if (SEQ_GT(onxt, tp->snd_nxt))
3665 		tp->snd_nxt = onxt;
3666 	/*
3667 	 * Partial window deflation.  Relies on fact that tp->snd_una
3668 	 * not updated yet.
3669 	 */
3670 	if (tp->snd_cwnd > BYTES_THIS_ACK(tp, th))
3671 		tp->snd_cwnd -= BYTES_THIS_ACK(tp, th);
3672 	else
3673 		tp->snd_cwnd = 0;
3674 	tp->snd_cwnd += tp->t_maxseg;
3675 }
3676