xref: /freebsd/sys/netinet/tcp_input.c (revision 1e413cf93298b5b97441a21d9a50fdcd0ee9945e)
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 4. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include "opt_ipfw.h"		/* for ipfw_fwd	*/
36 #include "opt_inet.h"
37 #include "opt_inet6.h"
38 #include "opt_ipsec.h"
39 #include "opt_mac.h"
40 #include "opt_tcpdebug.h"
41 
42 #include <sys/param.h>
43 #include <sys/kernel.h>
44 #include <sys/malloc.h>
45 #include <sys/mbuf.h>
46 #include <sys/proc.h>		/* for proc0 declaration */
47 #include <sys/protosw.h>
48 #include <sys/signalvar.h>
49 #include <sys/socket.h>
50 #include <sys/socketvar.h>
51 #include <sys/sysctl.h>
52 #include <sys/syslog.h>
53 #include <sys/systm.h>
54 
55 #include <machine/cpu.h>	/* before tcp_seq.h, for tcp_random18() */
56 
57 #include <vm/uma.h>
58 
59 #include <net/if.h>
60 #include <net/route.h>
61 
62 #define TCPSTATES		/* for logging */
63 
64 #include <netinet/in.h>
65 #include <netinet/in_pcb.h>
66 #include <netinet/in_systm.h>
67 #include <netinet/in_var.h>
68 #include <netinet/ip.h>
69 #include <netinet/ip_icmp.h>	/* required for icmp_var.h */
70 #include <netinet/icmp_var.h>	/* for ICMP_BANDLIM */
71 #include <netinet/ip_var.h>
72 #include <netinet/ip_options.h>
73 #include <netinet/ip6.h>
74 #include <netinet/icmp6.h>
75 #include <netinet6/in6_pcb.h>
76 #include <netinet6/ip6_var.h>
77 #include <netinet6/nd6.h>
78 #include <netinet/tcp.h>
79 #include <netinet/tcp_fsm.h>
80 #include <netinet/tcp_seq.h>
81 #include <netinet/tcp_timer.h>
82 #include <netinet/tcp_var.h>
83 #include <netinet6/tcp6_var.h>
84 #include <netinet/tcpip.h>
85 #include <netinet/tcp_syncache.h>
86 #ifdef TCPDEBUG
87 #include <netinet/tcp_debug.h>
88 #endif /* TCPDEBUG */
89 
90 #ifdef IPSEC
91 #include <netipsec/ipsec.h>
92 #include <netipsec/ipsec6.h>
93 #endif /*IPSEC*/
94 
95 #include <machine/in_cksum.h>
96 
97 #include <security/mac/mac_framework.h>
98 
99 static const int tcprexmtthresh = 3;
100 
101 struct	tcpstat tcpstat;
102 SYSCTL_STRUCT(_net_inet_tcp, TCPCTL_STATS, stats, CTLFLAG_RW,
103     &tcpstat , tcpstat, "TCP statistics (struct tcpstat, netinet/tcp_var.h)");
104 
105 int tcp_log_in_vain = 0;
106 SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_in_vain, CTLFLAG_RW,
107     &tcp_log_in_vain, 0, "Log all incoming TCP segments to closed ports");
108 
109 static int blackhole = 0;
110 SYSCTL_INT(_net_inet_tcp, OID_AUTO, blackhole, CTLFLAG_RW,
111     &blackhole, 0, "Do not send RST on segments to closed ports");
112 
113 int tcp_delack_enabled = 1;
114 SYSCTL_INT(_net_inet_tcp, OID_AUTO, delayed_ack, CTLFLAG_RW,
115     &tcp_delack_enabled, 0,
116     "Delay ACK to try and piggyback it onto a data packet");
117 
118 static int drop_synfin = 0;
119 SYSCTL_INT(_net_inet_tcp, OID_AUTO, drop_synfin, CTLFLAG_RW,
120     &drop_synfin, 0, "Drop TCP packets with SYN+FIN set");
121 
122 static int tcp_do_rfc3042 = 1;
123 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3042, CTLFLAG_RW,
124     &tcp_do_rfc3042, 0, "Enable RFC 3042 (Limited Transmit)");
125 
126 static int tcp_do_rfc3390 = 1;
127 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3390, CTLFLAG_RW,
128     &tcp_do_rfc3390, 0,
129     "Enable RFC 3390 (Increasing TCP's Initial Congestion Window)");
130 
131 static int tcp_insecure_rst = 0;
132 SYSCTL_INT(_net_inet_tcp, OID_AUTO, insecure_rst, CTLFLAG_RW,
133     &tcp_insecure_rst, 0,
134     "Follow the old (insecure) criteria for accepting RST packets");
135 
136 int	tcp_do_autorcvbuf = 1;
137 SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbuf_auto, CTLFLAG_RW,
138     &tcp_do_autorcvbuf, 0, "Enable automatic receive buffer sizing");
139 
140 int	tcp_autorcvbuf_inc = 16*1024;
141 SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbuf_inc, CTLFLAG_RW,
142     &tcp_autorcvbuf_inc, 0,
143     "Incrementor step size of automatic receive buffer");
144 
145 int	tcp_autorcvbuf_max = 256*1024;
146 SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbuf_max, CTLFLAG_RW,
147     &tcp_autorcvbuf_max, 0, "Max size of automatic receive buffer");
148 
149 struct inpcbhead tcb;
150 #define	tcb6	tcb  /* for KAME src sync over BSD*'s */
151 struct inpcbinfo tcbinfo;
152 
153 static void	 tcp_dooptions(struct tcpopt *, u_char *, int, int);
154 static void	 tcp_do_segment(struct mbuf *, struct tcphdr *,
155 		     struct socket *, struct tcpcb *, int, int);
156 static void	 tcp_dropwithreset(struct mbuf *, struct tcphdr *,
157 		     struct tcpcb *, int, int);
158 static void	 tcp_pulloutofband(struct socket *,
159 		     struct tcphdr *, struct mbuf *, int);
160 static void	 tcp_xmit_timer(struct tcpcb *, int);
161 static void	 tcp_newreno_partial_ack(struct tcpcb *, struct tcphdr *);
162 
163 /* Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint. */
164 #ifdef INET6
165 #define ND6_HINT(tp) \
166 do { \
167 	if ((tp) && (tp)->t_inpcb && \
168 	    ((tp)->t_inpcb->inp_vflag & INP_IPV6) != 0) \
169 		nd6_nud_hint(NULL, NULL, 0); \
170 } while (0)
171 #else
172 #define ND6_HINT(tp)
173 #endif
174 
175 /*
176  * Indicate whether this ack should be delayed.  We can delay the ack if
177  *	- there is no delayed ack timer in progress and
178  *	- our last ack wasn't a 0-sized window.  We never want to delay
179  *	  the ack that opens up a 0-sized window and
180  *		- delayed acks are enabled or
181  *		- this is a half-synchronized T/TCP connection.
182  */
183 #define DELAY_ACK(tp)							\
184 	((!tcp_timer_active(tp, TT_DELACK) &&				\
185 	    (tp->t_flags & TF_RXWIN0SENT) == 0) &&			\
186 	    (tcp_delack_enabled || (tp->t_flags & TF_NEEDSYN)))
187 
188 
189 /*
190  * TCP input handling is split into multiple parts:
191  *   tcp6_input is a thin wrapper around tcp_input for the extended
192  *	ip6_protox[] call format in ip6_input
193  *   tcp_input handles primary segment validation, inpcb lookup and
194  *	SYN processing on listen sockets
195  *   tcp_do_segment processes the ACK and text of the segment for
196  *	establishing, established and closing connections
197  */
198 #ifdef INET6
199 int
200 tcp6_input(struct mbuf **mp, int *offp, int proto)
201 {
202 	struct mbuf *m = *mp;
203 	struct in6_ifaddr *ia6;
204 
205 	IP6_EXTHDR_CHECK(m, *offp, sizeof(struct tcphdr), IPPROTO_DONE);
206 
207 	/*
208 	 * draft-itojun-ipv6-tcp-to-anycast
209 	 * better place to put this in?
210 	 */
211 	ia6 = ip6_getdstifaddr(m);
212 	if (ia6 && (ia6->ia6_flags & IN6_IFF_ANYCAST)) {
213 		struct ip6_hdr *ip6;
214 
215 		ip6 = mtod(m, struct ip6_hdr *);
216 		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
217 			    (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
218 		return IPPROTO_DONE;
219 	}
220 
221 	tcp_input(m, *offp);
222 	return IPPROTO_DONE;
223 }
224 #endif
225 
226 void
227 tcp_input(struct mbuf *m, int off0)
228 {
229 	struct tcphdr *th;
230 	struct ip *ip = NULL;
231 	struct ipovly *ipov;
232 	struct inpcb *inp = NULL;
233 	struct tcpcb *tp = NULL;
234 	struct socket *so = NULL;
235 	u_char *optp = NULL;
236 	int optlen = 0;
237 	int len, tlen, off;
238 	int drop_hdrlen;
239 	int thflags;
240 	int rstreason = 0;	/* For badport_bandlim accounting purposes */
241 #ifdef IPFIREWALL_FORWARD
242 	struct m_tag *fwd_tag;
243 #endif
244 #ifdef INET6
245 	struct ip6_hdr *ip6 = NULL;
246 	int isipv6;
247 #else
248 	const void *ip6 = NULL;
249 	const int isipv6 = 0;
250 #endif
251 	struct tcpopt to;		/* options in this segment */
252 	char *s = NULL;			/* address and port logging */
253 
254 #ifdef TCPDEBUG
255 	/*
256 	 * The size of tcp_saveipgen must be the size of the max ip header,
257 	 * now IPv6.
258 	 */
259 	u_char tcp_saveipgen[IP6_HDR_LEN];
260 	struct tcphdr tcp_savetcp;
261 	short ostate = 0;
262 #endif
263 
264 #ifdef INET6
265 	isipv6 = (mtod(m, struct ip *)->ip_v == 6) ? 1 : 0;
266 #endif
267 
268 	to.to_flags = 0;
269 	tcpstat.tcps_rcvtotal++;
270 
271 	if (isipv6) {
272 #ifdef INET6
273 		/* IP6_EXTHDR_CHECK() is already done at tcp6_input(). */
274 		ip6 = mtod(m, struct ip6_hdr *);
275 		tlen = sizeof(*ip6) + ntohs(ip6->ip6_plen) - off0;
276 		if (in6_cksum(m, IPPROTO_TCP, off0, tlen)) {
277 			tcpstat.tcps_rcvbadsum++;
278 			goto drop;
279 		}
280 		th = (struct tcphdr *)((caddr_t)ip6 + off0);
281 
282 		/*
283 		 * Be proactive about unspecified IPv6 address in source.
284 		 * As we use all-zero to indicate unbounded/unconnected pcb,
285 		 * unspecified IPv6 address can be used to confuse us.
286 		 *
287 		 * Note that packets with unspecified IPv6 destination is
288 		 * already dropped in ip6_input.
289 		 */
290 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
291 			/* XXX stat */
292 			goto drop;
293 		}
294 #else
295 		th = NULL;		/* XXX: Avoid compiler warning. */
296 #endif
297 	} else {
298 		/*
299 		 * Get IP and TCP header together in first mbuf.
300 		 * Note: IP leaves IP header in first mbuf.
301 		 */
302 		if (off0 > sizeof (struct ip)) {
303 			ip_stripoptions(m, (struct mbuf *)0);
304 			off0 = sizeof(struct ip);
305 		}
306 		if (m->m_len < sizeof (struct tcpiphdr)) {
307 			if ((m = m_pullup(m, sizeof (struct tcpiphdr)))
308 			    == NULL) {
309 				tcpstat.tcps_rcvshort++;
310 				return;
311 			}
312 		}
313 		ip = mtod(m, struct ip *);
314 		ipov = (struct ipovly *)ip;
315 		th = (struct tcphdr *)((caddr_t)ip + off0);
316 		tlen = ip->ip_len;
317 
318 		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
319 			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
320 				th->th_sum = m->m_pkthdr.csum_data;
321 			else
322 				th->th_sum = in_pseudo(ip->ip_src.s_addr,
323 						ip->ip_dst.s_addr,
324 						htonl(m->m_pkthdr.csum_data +
325 							ip->ip_len +
326 							IPPROTO_TCP));
327 			th->th_sum ^= 0xffff;
328 #ifdef TCPDEBUG
329 			ipov->ih_len = (u_short)tlen;
330 			ipov->ih_len = htons(ipov->ih_len);
331 #endif
332 		} else {
333 			/*
334 			 * Checksum extended TCP header and data.
335 			 */
336 			len = sizeof (struct ip) + tlen;
337 			bzero(ipov->ih_x1, sizeof(ipov->ih_x1));
338 			ipov->ih_len = (u_short)tlen;
339 			ipov->ih_len = htons(ipov->ih_len);
340 			th->th_sum = in_cksum(m, len);
341 		}
342 		if (th->th_sum) {
343 			tcpstat.tcps_rcvbadsum++;
344 			goto drop;
345 		}
346 		/* Re-initialization for later version check */
347 		ip->ip_v = IPVERSION;
348 	}
349 
350 	/*
351 	 * Check that TCP offset makes sense,
352 	 * pull out TCP options and adjust length.		XXX
353 	 */
354 	off = th->th_off << 2;
355 	if (off < sizeof (struct tcphdr) || off > tlen) {
356 		tcpstat.tcps_rcvbadoff++;
357 		goto drop;
358 	}
359 	tlen -= off;	/* tlen is used instead of ti->ti_len */
360 	if (off > sizeof (struct tcphdr)) {
361 		if (isipv6) {
362 #ifdef INET6
363 			IP6_EXTHDR_CHECK(m, off0, off, );
364 			ip6 = mtod(m, struct ip6_hdr *);
365 			th = (struct tcphdr *)((caddr_t)ip6 + off0);
366 #endif
367 		} else {
368 			if (m->m_len < sizeof(struct ip) + off) {
369 				if ((m = m_pullup(m, sizeof (struct ip) + off))
370 				    == NULL) {
371 					tcpstat.tcps_rcvshort++;
372 					return;
373 				}
374 				ip = mtod(m, struct ip *);
375 				ipov = (struct ipovly *)ip;
376 				th = (struct tcphdr *)((caddr_t)ip + off0);
377 			}
378 		}
379 		optlen = off - sizeof (struct tcphdr);
380 		optp = (u_char *)(th + 1);
381 	}
382 	thflags = th->th_flags;
383 
384 	/*
385 	 * Convert TCP protocol specific fields to host format.
386 	 */
387 	th->th_seq = ntohl(th->th_seq);
388 	th->th_ack = ntohl(th->th_ack);
389 	th->th_win = ntohs(th->th_win);
390 	th->th_urp = ntohs(th->th_urp);
391 
392 	/*
393 	 * Delay dropping TCP, IP headers, IPv6 ext headers, and TCP options.
394 	 */
395 	drop_hdrlen = off0 + off;
396 
397 	/*
398 	 * Locate pcb for segment.
399 	 */
400 	INP_INFO_WLOCK(&tcbinfo);
401 findpcb:
402 	INP_INFO_WLOCK_ASSERT(&tcbinfo);
403 #ifdef IPFIREWALL_FORWARD
404 	/*
405 	 * Grab info from PACKET_TAG_IPFORWARD tag prepended to the chain.
406 	 */
407 	fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
408 
409 	if (fwd_tag != NULL && isipv6 == 0) {	/* IPv6 support is not yet */
410 		struct sockaddr_in *next_hop;
411 
412 		next_hop = (struct sockaddr_in *)(fwd_tag+1);
413 		/*
414 		 * Transparently forwarded. Pretend to be the destination.
415 		 * already got one like this?
416 		 */
417 		inp = in_pcblookup_hash(&tcbinfo,
418 					ip->ip_src, th->th_sport,
419 					ip->ip_dst, th->th_dport,
420 					0, m->m_pkthdr.rcvif);
421 		if (!inp) {
422 			/* It's new.  Try to find the ambushing socket. */
423 			inp = in_pcblookup_hash(&tcbinfo,
424 						ip->ip_src, th->th_sport,
425 						next_hop->sin_addr,
426 						next_hop->sin_port ?
427 						    ntohs(next_hop->sin_port) :
428 						    th->th_dport,
429 						INPLOOKUP_WILDCARD,
430 						m->m_pkthdr.rcvif);
431 		}
432 		/* Remove the tag from the packet.  We don't need it anymore. */
433 		m_tag_delete(m, fwd_tag);
434 	} else
435 #endif /* IPFIREWALL_FORWARD */
436 	{
437 		if (isipv6) {
438 #ifdef INET6
439 			inp = in6_pcblookup_hash(&tcbinfo,
440 						 &ip6->ip6_src, th->th_sport,
441 						 &ip6->ip6_dst, th->th_dport,
442 						 INPLOOKUP_WILDCARD,
443 						 m->m_pkthdr.rcvif);
444 #endif
445 		} else
446 			inp = in_pcblookup_hash(&tcbinfo,
447 						ip->ip_src, th->th_sport,
448 						ip->ip_dst, th->th_dport,
449 						INPLOOKUP_WILDCARD,
450 						m->m_pkthdr.rcvif);
451 	}
452 
453 	/*
454 	 * If the INPCB does not exist then all data in the incoming
455 	 * segment is discarded and an appropriate RST is sent back.
456 	 */
457 	if (inp == NULL) {
458 		/*
459 		 * Log communication attempts to ports that are not
460 		 * in use.
461 		 */
462 		if ((tcp_log_in_vain == 1 && (thflags & TH_SYN)) ||
463 		    tcp_log_in_vain == 2) {
464 			if ((s = tcp_log_addrs(NULL, th, (void *)ip, ip6)))
465 				log(LOG_INFO, "%s; %s: Connection attempt "
466 				    "to closed port\n", s, __func__);
467 		}
468 		/*
469 		 * When blackholing do not respond with a RST but
470 		 * completely ignore the segment and drop it.
471 		 */
472 		if ((blackhole == 1 && (thflags & TH_SYN)) ||
473 		    blackhole == 2)
474 			goto dropunlock;
475 
476 		rstreason = BANDLIM_RST_CLOSEDPORT;
477 		goto dropwithreset;
478 	}
479 	INP_LOCK(inp);
480 
481 #ifdef IPSEC
482 #ifdef INET6
483 	if (isipv6 && ipsec6_in_reject(m, inp)) {
484 		ipsec6stat.in_polvio++;
485 		goto dropunlock;
486 	} else
487 #endif /* INET6 */
488 	if (ipsec4_in_reject(m, inp) != 0) {
489 		ipsec4stat.in_polvio++;
490 		goto dropunlock;
491 	}
492 #endif /* IPSEC */
493 
494 	/*
495 	 * Check the minimum TTL for socket.
496 	 */
497 	if (inp->inp_ip_minttl != 0) {
498 #ifdef INET6
499 		if (isipv6 && inp->inp_ip_minttl > ip6->ip6_hlim)
500 			goto dropunlock;
501 		else
502 #endif
503 		if (inp->inp_ip_minttl > ip->ip_ttl)
504 			goto dropunlock;
505 	}
506 
507 	/*
508 	 * A previous connection in TIMEWAIT state is supposed to catch
509 	 * stray or duplicate segments arriving late.  If this segment
510 	 * was a legitimate new connection attempt the old INPCB gets
511 	 * removed and we can try again to find a listening socket.
512 	 */
513 	if (inp->inp_vflag & INP_TIMEWAIT) {
514 		if (thflags & TH_SYN)
515 			tcp_dooptions(&to, optp, optlen, TO_SYN);
516 		/*
517 		 * NB: tcp_twcheck unlocks the INP and frees the mbuf.
518 		 */
519 		if (tcp_twcheck(inp, &to, th, m, tlen))
520 			goto findpcb;
521 		INP_INFO_WUNLOCK(&tcbinfo);
522 		return;
523 	}
524 	/*
525 	 * The TCPCB may no longer exist if the connection is winding
526 	 * down or it is in the CLOSED state.  Either way we drop the
527 	 * segment and send an appropriate response.
528 	 */
529 	tp = intotcpcb(inp);
530 	if (tp == NULL || tp->t_state == TCPS_CLOSED) {
531 		rstreason = BANDLIM_RST_CLOSEDPORT;
532 		goto dropwithreset;
533 	}
534 
535 #ifdef MAC
536 	INP_LOCK_ASSERT(inp);
537 	if (mac_inpcb_check_deliver(inp, m))
538 		goto dropunlock;
539 #endif
540 	so = inp->inp_socket;
541 	KASSERT(so != NULL, ("%s: so == NULL", __func__));
542 #ifdef TCPDEBUG
543 	if (so->so_options & SO_DEBUG) {
544 		ostate = tp->t_state;
545 		if (isipv6) {
546 #ifdef INET6
547 			bcopy((char *)ip6, (char *)tcp_saveipgen, sizeof(*ip6));
548 #endif
549 		} else
550 			bcopy((char *)ip, (char *)tcp_saveipgen, sizeof(*ip));
551 		tcp_savetcp = *th;
552 	}
553 #endif
554 	/*
555 	 * When the socket is accepting connections (the INPCB is in LISTEN
556 	 * state) we look into the SYN cache if this is a new connection
557 	 * attempt or the completion of a previous one.
558 	 */
559 	if (so->so_options & SO_ACCEPTCONN) {
560 		struct in_conninfo inc;
561 
562 		KASSERT(tp->t_state == TCPS_LISTEN, ("%s: so accepting but "
563 		    "tp not listening", __func__));
564 
565 		bzero(&inc, sizeof(inc));
566 		inc.inc_isipv6 = isipv6;
567 #ifdef INET6
568 		if (isipv6) {
569 			inc.inc6_faddr = ip6->ip6_src;
570 			inc.inc6_laddr = ip6->ip6_dst;
571 		} else
572 #endif
573 		{
574 			inc.inc_faddr = ip->ip_src;
575 			inc.inc_laddr = ip->ip_dst;
576 		}
577 		inc.inc_fport = th->th_sport;
578 		inc.inc_lport = th->th_dport;
579 
580 		/*
581 		 * Check for an existing connection attempt in syncache if
582 		 * the flag is only ACK.  A successful lookup creates a new
583 		 * socket appended to the listen queue in SYN_RECEIVED state.
584 		 */
585 		if ((thflags & (TH_RST|TH_ACK|TH_SYN)) == TH_ACK) {
586 			/*
587 			 * Parse the TCP options here because
588 			 * syncookies need access to the reflected
589 			 * timestamp.
590 			 */
591 			tcp_dooptions(&to, optp, optlen, 0);
592 			/*
593 			 * NB: syncache_expand() doesn't unlock
594 			 * inp and tcpinfo locks.
595 			 */
596 			if (!syncache_expand(&inc, &to, th, &so, m)) {
597 				/*
598 				 * No syncache entry or ACK was not
599 				 * for our SYN/ACK.  Send a RST.
600 				 * NB: syncache did its own logging
601 				 * of the failure cause.
602 				 */
603 				rstreason = BANDLIM_RST_OPENPORT;
604 				goto dropwithreset;
605 			}
606 			if (so == NULL) {
607 				/*
608 				 * We completed the 3-way handshake
609 				 * but could not allocate a socket
610 				 * either due to memory shortage,
611 				 * listen queue length limits or
612 				 * global socket limits.  Send RST
613 				 * or wait and have the remote end
614 				 * retransmit the ACK for another
615 				 * try.
616 				 */
617 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
618 					log(LOG_DEBUG, "%s; %s: Listen socket: "
619 					    "Socket allocation failed due to "
620 					    "limits or memory shortage, %s\n",
621 					    s, __func__, (tcp_sc_rst_sock_fail ?
622 					    "sending RST" : "try again"));
623 				if (tcp_sc_rst_sock_fail) {
624 					rstreason = BANDLIM_UNLIMITED;
625 					goto dropwithreset;
626 				} else
627 					goto dropunlock;
628 			}
629 			/*
630 			 * Socket is created in state SYN_RECEIVED.
631 			 * Unlock the listen socket, lock the newly
632 			 * created socket and update the tp variable.
633 			 */
634 			INP_UNLOCK(inp);	/* listen socket */
635 			inp = sotoinpcb(so);
636 			INP_LOCK(inp);		/* new connection */
637 			tp = intotcpcb(inp);
638 			KASSERT(tp->t_state == TCPS_SYN_RECEIVED,
639 			    ("%s: ", __func__));
640 			/*
641 			 * Process the segment and the data it
642 			 * contains.  tcp_do_segment() consumes
643 			 * the mbuf chain and unlocks the inpcb.
644 			 */
645 			tcp_do_segment(m, th, so, tp, drop_hdrlen, tlen);
646 			INP_INFO_UNLOCK_ASSERT(&tcbinfo);
647 			return;
648 		}
649 		/*
650 		 * Segment flag validation for new connection attempts:
651 		 *
652 		 * Our (SYN|ACK) response was rejected.
653 		 * Check with syncache and remove entry to prevent
654 		 * retransmits.
655 		 *
656 		 * NB: syncache_chkrst does its own logging of failure
657 		 * causes.
658 		 */
659 		if (thflags & TH_RST) {
660 			syncache_chkrst(&inc, th);
661 			goto dropunlock;
662 		}
663 		/*
664 		 * We can't do anything without SYN.
665 		 */
666 		if ((thflags & TH_SYN) == 0) {
667 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
668 				log(LOG_DEBUG, "%s; %s: Listen socket: "
669 				    "SYN is missing, segment ignored\n",
670 				    s, __func__);
671 			tcpstat.tcps_badsyn++;
672 			goto dropunlock;
673 		}
674 		/*
675 		 * (SYN|ACK) is bogus on a listen socket.
676 		 */
677 		if (thflags & TH_ACK) {
678 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
679 				log(LOG_DEBUG, "%s; %s: Listen socket: "
680 				    "SYN|ACK invalid, segment rejected\n",
681 				    s, __func__);
682 			syncache_badack(&inc);	/* XXX: Not needed! */
683 			tcpstat.tcps_badsyn++;
684 			rstreason = BANDLIM_RST_OPENPORT;
685 			goto dropwithreset;
686 		}
687 		/*
688 		 * If the drop_synfin option is enabled, drop all
689 		 * segments with both the SYN and FIN bits set.
690 		 * This prevents e.g. nmap from identifying the
691 		 * TCP/IP stack.
692 		 * XXX: Poor reasoning.  nmap has other methods
693 		 * and is constantly refining its stack detection
694 		 * strategies.
695 		 * XXX: This is a violation of the TCP specification
696 		 * and was used by RFC1644.
697 		 */
698 		if ((thflags & TH_FIN) && drop_synfin) {
699 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
700 				log(LOG_DEBUG, "%s; %s: Listen socket: "
701 				    "SYN|FIN segment ignored (based on "
702 				    "sysctl setting)\n", s, __func__);
703 			tcpstat.tcps_badsyn++;
704                 	goto dropunlock;
705 		}
706 		/*
707 		 * Segment's flags are (SYN) or (SYN|FIN).
708 		 *
709 		 * TH_PUSH, TH_URG, TH_ECE, TH_CWR are ignored
710 		 * as they do not affect the state of the TCP FSM.
711 		 * The data pointed to by TH_URG and th_urp is ignored.
712 		 */
713 		KASSERT((thflags & (TH_RST|TH_ACK)) == 0,
714 		    ("%s: Listen socket: TH_RST or TH_ACK set", __func__));
715 		KASSERT(thflags & (TH_SYN),
716 		    ("%s: Listen socket: TH_SYN not set", __func__));
717 #ifdef INET6
718 		/*
719 		 * If deprecated address is forbidden,
720 		 * we do not accept SYN to deprecated interface
721 		 * address to prevent any new inbound connection from
722 		 * getting established.
723 		 * When we do not accept SYN, we send a TCP RST,
724 		 * with deprecated source address (instead of dropping
725 		 * it).  We compromise it as it is much better for peer
726 		 * to send a RST, and RST will be the final packet
727 		 * for the exchange.
728 		 *
729 		 * If we do not forbid deprecated addresses, we accept
730 		 * the SYN packet.  RFC2462 does not suggest dropping
731 		 * SYN in this case.
732 		 * If we decipher RFC2462 5.5.4, it says like this:
733 		 * 1. use of deprecated addr with existing
734 		 *    communication is okay - "SHOULD continue to be
735 		 *    used"
736 		 * 2. use of it with new communication:
737 		 *   (2a) "SHOULD NOT be used if alternate address
738 		 *        with sufficient scope is available"
739 		 *   (2b) nothing mentioned otherwise.
740 		 * Here we fall into (2b) case as we have no choice in
741 		 * our source address selection - we must obey the peer.
742 		 *
743 		 * The wording in RFC2462 is confusing, and there are
744 		 * multiple description text for deprecated address
745 		 * handling - worse, they are not exactly the same.
746 		 * I believe 5.5.4 is the best one, so we follow 5.5.4.
747 		 */
748 		if (isipv6 && !ip6_use_deprecated) {
749 			struct in6_ifaddr *ia6;
750 
751 			if ((ia6 = ip6_getdstifaddr(m)) &&
752 			    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
753 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
754 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
755 					"Connection attempt to deprecated "
756 					"IPv6 address rejected\n",
757 					s, __func__);
758 				rstreason = BANDLIM_RST_OPENPORT;
759 				goto dropwithreset;
760 			}
761 		}
762 #endif
763 		/*
764 		 * Basic sanity checks on incoming SYN requests:
765 		 *   Don't respond if the destination is a link layer
766 		 *	broadcast according to RFC1122 4.2.3.10, p. 104.
767 		 *   If it is from this socket it must be forged.
768 		 *   Don't respond if the source or destination is a
769 		 *	global or subnet broad- or multicast address.
770 		 *   Note that it is quite possible to receive unicast
771 		 *	link-layer packets with a broadcast IP address. Use
772 		 *	in_broadcast() to find them.
773 		 */
774 		if (m->m_flags & (M_BCAST|M_MCAST)) {
775 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
776 			    log(LOG_DEBUG, "%s; %s: Listen socket: "
777 				"Connection attempt from broad- or multicast "
778 				"link layer address ignored\n", s, __func__);
779 			goto dropunlock;
780 		}
781 		if (isipv6) {
782 #ifdef INET6
783 			if (th->th_dport == th->th_sport &&
784 			    IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst, &ip6->ip6_src)) {
785 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
786 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
787 					"Connection attempt to/from self "
788 					"ignored\n", s, __func__);
789 				goto dropunlock;
790 			}
791 			if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
792 			    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
793 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
794 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
795 					"Connection attempt from/to multicast "
796 					"address ignored\n", s, __func__);
797 				goto dropunlock;
798 			}
799 #endif
800 		} else {
801 			if (th->th_dport == th->th_sport &&
802 			    ip->ip_dst.s_addr == ip->ip_src.s_addr) {
803 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
804 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
805 					"Connection attempt from/to self "
806 					"ignored\n", s, __func__);
807 				goto dropunlock;
808 			}
809 			if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
810 			    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
811 			    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
812 			    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif)) {
813 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
814 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
815 					"Connection attempt from/to broad- "
816 					"or multicast address ignored\n",
817 					s, __func__);
818 				goto dropunlock;
819 			}
820 		}
821 		/*
822 		 * SYN appears to be valid.  Create compressed TCP state
823 		 * for syncache.
824 		 */
825 #ifdef TCPDEBUG
826 		if (so->so_options & SO_DEBUG)
827 			tcp_trace(TA_INPUT, ostate, tp,
828 			    (void *)tcp_saveipgen, &tcp_savetcp, 0);
829 #endif
830 		tcp_dooptions(&to, optp, optlen, TO_SYN);
831 		syncache_add(&inc, &to, th, inp, &so, m);
832 		/*
833 		 * Entry added to syncache and mbuf consumed.
834 		 * Everything already unlocked by syncache_add().
835 		 */
836 		INP_INFO_UNLOCK_ASSERT(&tcbinfo);
837 		return;
838 	}
839 
840 	/*
841 	 * Segment belongs to a connection in SYN_SENT, ESTABLISHED or later
842 	 * state.  tcp_do_segment() always consumes the mbuf chain, unlocks
843 	 * the inpcb, and unlocks pcbinfo.
844 	 */
845 	tcp_do_segment(m, th, so, tp, drop_hdrlen, tlen);
846 	INP_INFO_UNLOCK_ASSERT(&tcbinfo);
847 	return;
848 
849 dropwithreset:
850 	INP_INFO_WLOCK_ASSERT(&tcbinfo);
851 	tcp_dropwithreset(m, th, tp, tlen, rstreason);
852 	m = NULL;	/* mbuf chain got consumed. */
853 dropunlock:
854 	INP_INFO_WLOCK_ASSERT(&tcbinfo);
855 	if (inp != NULL)
856 		INP_UNLOCK(inp);
857 	INP_INFO_WUNLOCK(&tcbinfo);
858 drop:
859 	INP_INFO_UNLOCK_ASSERT(&tcbinfo);
860 	if (s != NULL)
861 		free(s, M_TCPLOG);
862 	if (m != NULL)
863 		m_freem(m);
864 	return;
865 }
866 
867 static void
868 tcp_do_segment(struct mbuf *m, struct tcphdr *th, struct socket *so,
869     struct tcpcb *tp, int drop_hdrlen, int tlen)
870 {
871 	int thflags, acked, ourfinisacked, needoutput = 0;
872 	int headlocked = 1;
873 	int rstreason, todrop, win;
874 	u_long tiwin;
875 	struct tcpopt to;
876 
877 #ifdef TCPDEBUG
878 	/*
879 	 * The size of tcp_saveipgen must be the size of the max ip header,
880 	 * now IPv6.
881 	 */
882 	u_char tcp_saveipgen[IP6_HDR_LEN];
883 	struct tcphdr tcp_savetcp;
884 	short ostate = 0;
885 #endif
886 	thflags = th->th_flags;
887 
888 	INP_INFO_WLOCK_ASSERT(&tcbinfo);
889 	INP_LOCK_ASSERT(tp->t_inpcb);
890 	KASSERT(tp->t_state > TCPS_LISTEN, ("%s: TCPS_LISTEN",
891 	    __func__));
892 	KASSERT(tp->t_state != TCPS_TIME_WAIT, ("%s: TCPS_TIME_WAIT",
893 	    __func__));
894 
895 	/*
896 	 * Segment received on connection.
897 	 * Reset idle time and keep-alive timer.
898 	 * XXX: This should be done after segment
899 	 * validation to ignore broken/spoofed segs.
900 	 */
901 	tp->t_rcvtime = ticks;
902 	if (TCPS_HAVEESTABLISHED(tp->t_state))
903 		tcp_timer_activate(tp, TT_KEEP, tcp_keepidle);
904 
905 	/*
906 	 * Unscale the window into a 32-bit value.
907 	 * For the SYN_SENT state the scale is zero.
908 	 */
909 	tiwin = th->th_win << tp->snd_scale;
910 
911 	/*
912 	 * Parse options on any incoming segment.
913 	 */
914 	tcp_dooptions(&to, (u_char *)(th + 1),
915 	    (th->th_off << 2) - sizeof(struct tcphdr),
916 	    (thflags & TH_SYN) ? TO_SYN : 0);
917 
918 	/*
919 	 * If echoed timestamp is later than the current time,
920 	 * fall back to non RFC1323 RTT calculation.  Normalize
921 	 * timestamp if syncookies were used when this connection
922 	 * was established.
923 	 */
924 	if ((to.to_flags & TOF_TS) && (to.to_tsecr != 0)) {
925 		to.to_tsecr -= tp->ts_offset;
926 		if (TSTMP_GT(to.to_tsecr, ticks))
927 			to.to_tsecr = 0;
928 	}
929 
930 	/*
931 	 * Process options only when we get SYN/ACK back. The SYN case
932 	 * for incoming connections is handled in tcp_syncache.
933 	 * According to RFC1323 the window field in a SYN (i.e., a <SYN>
934 	 * or <SYN,ACK>) segment itself is never scaled.
935 	 * XXX this is traditional behavior, may need to be cleaned up.
936 	 */
937 	if (tp->t_state == TCPS_SYN_SENT && (thflags & TH_SYN)) {
938 		if ((to.to_flags & TOF_SCALE) &&
939 		    (tp->t_flags & TF_REQ_SCALE)) {
940 			tp->t_flags |= TF_RCVD_SCALE;
941 			tp->snd_scale = to.to_wscale;
942 		}
943 		/*
944 		 * Initial send window.  It will be updated with
945 		 * the next incoming segment to the scaled value.
946 		 */
947 		tp->snd_wnd = th->th_win;
948 		if (to.to_flags & TOF_TS) {
949 			tp->t_flags |= TF_RCVD_TSTMP;
950 			tp->ts_recent = to.to_tsval;
951 			tp->ts_recent_age = ticks;
952 		}
953 		if (to.to_flags & TOF_MSS)
954 			tcp_mss(tp, to.to_mss);
955 		if ((tp->t_flags & TF_SACK_PERMIT) &&
956 		    (to.to_flags & TOF_SACKPERM) == 0)
957 			tp->t_flags &= ~TF_SACK_PERMIT;
958 	}
959 
960 	/*
961 	 * Header prediction: check for the two common cases
962 	 * of a uni-directional data xfer.  If the packet has
963 	 * no control flags, is in-sequence, the window didn't
964 	 * change and we're not retransmitting, it's a
965 	 * candidate.  If the length is zero and the ack moved
966 	 * forward, we're the sender side of the xfer.  Just
967 	 * free the data acked & wake any higher level process
968 	 * that was blocked waiting for space.  If the length
969 	 * is non-zero and the ack didn't move, we're the
970 	 * receiver side.  If we're getting packets in-order
971 	 * (the reassembly queue is empty), add the data to
972 	 * the socket buffer and note that we need a delayed ack.
973 	 * Make sure that the hidden state-flags are also off.
974 	 * Since we check for TCPS_ESTABLISHED first, it can only
975 	 * be TH_NEEDSYN.
976 	 */
977 	if (tp->t_state == TCPS_ESTABLISHED &&
978 	    th->th_seq == tp->rcv_nxt &&
979 	    (thflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
980 	    tp->snd_nxt == tp->snd_max &&
981 	    tiwin && tiwin == tp->snd_wnd &&
982 	    ((tp->t_flags & (TF_NEEDSYN|TF_NEEDFIN)) == 0) &&
983 	    LIST_EMPTY(&tp->t_segq) &&
984 	    ((to.to_flags & TOF_TS) == 0 ||
985 	     TSTMP_GEQ(to.to_tsval, tp->ts_recent)) ) {
986 
987 		/*
988 		 * If last ACK falls within this segment's sequence numbers,
989 		 * record the timestamp.
990 		 * NOTE that the test is modified according to the latest
991 		 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
992 		 */
993 		if ((to.to_flags & TOF_TS) != 0 &&
994 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
995 			tp->ts_recent_age = ticks;
996 			tp->ts_recent = to.to_tsval;
997 		}
998 
999 		if (tlen == 0) {
1000 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
1001 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
1002 			    tp->snd_cwnd >= tp->snd_wnd &&
1003 			    ((!tcp_do_newreno &&
1004 			      !(tp->t_flags & TF_SACK_PERMIT) &&
1005 			      tp->t_dupacks < tcprexmtthresh) ||
1006 			     ((tcp_do_newreno ||
1007 			       (tp->t_flags & TF_SACK_PERMIT)) &&
1008 			      !IN_FASTRECOVERY(tp) &&
1009 			      (to.to_flags & TOF_SACK) == 0 &&
1010 			      TAILQ_EMPTY(&tp->snd_holes)))) {
1011 				KASSERT(headlocked,
1012 				    ("%s: headlocked", __func__));
1013 				INP_INFO_WUNLOCK(&tcbinfo);
1014 				headlocked = 0;
1015 				/*
1016 				 * This is a pure ack for outstanding data.
1017 				 */
1018 				++tcpstat.tcps_predack;
1019 				/*
1020 				 * "bad retransmit" recovery.
1021 				 */
1022 				if (tp->t_rxtshift == 1 &&
1023 				    ticks < tp->t_badrxtwin) {
1024 					++tcpstat.tcps_sndrexmitbad;
1025 					tp->snd_cwnd = tp->snd_cwnd_prev;
1026 					tp->snd_ssthresh =
1027 					    tp->snd_ssthresh_prev;
1028 					tp->snd_recover = tp->snd_recover_prev;
1029 					if (tp->t_flags & TF_WASFRECOVERY)
1030 					    ENTER_FASTRECOVERY(tp);
1031 					tp->snd_nxt = tp->snd_max;
1032 					tp->t_badrxtwin = 0;
1033 				}
1034 
1035 				/*
1036 				 * Recalculate the transmit timer / rtt.
1037 				 *
1038 				 * Some boxes send broken timestamp replies
1039 				 * during the SYN+ACK phase, ignore
1040 				 * timestamps of 0 or we could calculate a
1041 				 * huge RTT and blow up the retransmit timer.
1042 				 */
1043 				if ((to.to_flags & TOF_TS) != 0 &&
1044 				    to.to_tsecr) {
1045 					if (!tp->t_rttlow ||
1046 					    tp->t_rttlow > ticks - to.to_tsecr)
1047 						tp->t_rttlow = ticks - to.to_tsecr;
1048 					tcp_xmit_timer(tp,
1049 					    ticks - to.to_tsecr + 1);
1050 				} else if (tp->t_rtttime &&
1051 				    SEQ_GT(th->th_ack, tp->t_rtseq)) {
1052 					if (!tp->t_rttlow ||
1053 					    tp->t_rttlow > ticks - tp->t_rtttime)
1054 						tp->t_rttlow = ticks - tp->t_rtttime;
1055 					tcp_xmit_timer(tp,
1056 							ticks - tp->t_rtttime);
1057 				}
1058 				tcp_xmit_bandwidth_limit(tp, th->th_ack);
1059 				acked = th->th_ack - tp->snd_una;
1060 				tcpstat.tcps_rcvackpack++;
1061 				tcpstat.tcps_rcvackbyte += acked;
1062 				sbdrop(&so->so_snd, acked);
1063 				if (SEQ_GT(tp->snd_una, tp->snd_recover) &&
1064 				    SEQ_LEQ(th->th_ack, tp->snd_recover))
1065 					tp->snd_recover = th->th_ack - 1;
1066 				tp->snd_una = th->th_ack;
1067 				/*
1068 				 * Pull snd_wl2 up to prevent seq wrap relative
1069 				 * to th_ack.
1070 				 */
1071 				tp->snd_wl2 = th->th_ack;
1072 				tp->t_dupacks = 0;
1073 				m_freem(m);
1074 				ND6_HINT(tp); /* Some progress has been made. */
1075 
1076 				/*
1077 				 * If all outstanding data are acked, stop
1078 				 * retransmit timer, otherwise restart timer
1079 				 * using current (possibly backed-off) value.
1080 				 * If process is waiting for space,
1081 				 * wakeup/selwakeup/signal.  If data
1082 				 * are ready to send, let tcp_output
1083 				 * decide between more output or persist.
1084 				 */
1085 #ifdef TCPDEBUG
1086 				if (so->so_options & SO_DEBUG)
1087 					tcp_trace(TA_INPUT, ostate, tp,
1088 					    (void *)tcp_saveipgen,
1089 					    &tcp_savetcp, 0);
1090 #endif
1091 				if (tp->snd_una == tp->snd_max)
1092 					tcp_timer_activate(tp, TT_REXMT, 0);
1093 				else if (!tcp_timer_active(tp, TT_PERSIST))
1094 					tcp_timer_activate(tp, TT_REXMT,
1095 						      tp->t_rxtcur);
1096 				sowwakeup(so);
1097 				if (so->so_snd.sb_cc)
1098 					(void) tcp_output(tp);
1099 				goto check_delack;
1100 			}
1101 		} else if (th->th_ack == tp->snd_una &&
1102 		    tlen <= sbspace(&so->so_rcv)) {
1103 			int newsize = 0;	/* automatic sockbuf scaling */
1104 
1105 			KASSERT(headlocked, ("%s: headlocked", __func__));
1106 			INP_INFO_WUNLOCK(&tcbinfo);
1107 			headlocked = 0;
1108 			/*
1109 			 * This is a pure, in-sequence data packet
1110 			 * with nothing on the reassembly queue and
1111 			 * we have enough buffer space to take it.
1112 			 */
1113 			/* Clean receiver SACK report if present */
1114 			if ((tp->t_flags & TF_SACK_PERMIT) && tp->rcv_numsacks)
1115 				tcp_clean_sackreport(tp);
1116 			++tcpstat.tcps_preddat;
1117 			tp->rcv_nxt += tlen;
1118 			/*
1119 			 * Pull snd_wl1 up to prevent seq wrap relative to
1120 			 * th_seq.
1121 			 */
1122 			tp->snd_wl1 = th->th_seq;
1123 			/*
1124 			 * Pull rcv_up up to prevent seq wrap relative to
1125 			 * rcv_nxt.
1126 			 */
1127 			tp->rcv_up = tp->rcv_nxt;
1128 			tcpstat.tcps_rcvpack++;
1129 			tcpstat.tcps_rcvbyte += tlen;
1130 			ND6_HINT(tp);	/* Some progress has been made */
1131 #ifdef TCPDEBUG
1132 			if (so->so_options & SO_DEBUG)
1133 				tcp_trace(TA_INPUT, ostate, tp,
1134 				    (void *)tcp_saveipgen, &tcp_savetcp, 0);
1135 #endif
1136 		/*
1137 		 * Automatic sizing of receive socket buffer.  Often the send
1138 		 * buffer size is not optimally adjusted to the actual network
1139 		 * conditions at hand (delay bandwidth product).  Setting the
1140 		 * buffer size too small limits throughput on links with high
1141 		 * bandwidth and high delay (eg. trans-continental/oceanic links).
1142 		 *
1143 		 * On the receive side the socket buffer memory is only rarely
1144 		 * used to any significant extent.  This allows us to be much
1145 		 * more aggressive in scaling the receive socket buffer.  For
1146 		 * the case that the buffer space is actually used to a large
1147 		 * extent and we run out of kernel memory we can simply drop
1148 		 * the new segments; TCP on the sender will just retransmit it
1149 		 * later.  Setting the buffer size too big may only consume too
1150 		 * much kernel memory if the application doesn't read() from
1151 		 * the socket or packet loss or reordering makes use of the
1152 		 * reassembly queue.
1153 		 *
1154 		 * The criteria to step up the receive buffer one notch are:
1155 		 *  1. the number of bytes received during the time it takes
1156 		 *     one timestamp to be reflected back to us (the RTT);
1157 		 *  2. received bytes per RTT is within seven eighth of the
1158 		 *     current socket buffer size;
1159 		 *  3. receive buffer size has not hit maximal automatic size;
1160 		 *
1161 		 * This algorithm does one step per RTT at most and only if
1162 		 * we receive a bulk stream w/o packet losses or reorderings.
1163 		 * Shrinking the buffer during idle times is not necessary as
1164 		 * it doesn't consume any memory when idle.
1165 		 *
1166 		 * TODO: Only step up if the application is actually serving
1167 		 * the buffer to better manage the socket buffer resources.
1168 		 */
1169 			if (tcp_do_autorcvbuf &&
1170 			    to.to_tsecr &&
1171 			    (so->so_rcv.sb_flags & SB_AUTOSIZE)) {
1172 				if (to.to_tsecr > tp->rfbuf_ts &&
1173 				    to.to_tsecr - tp->rfbuf_ts < hz) {
1174 					if (tp->rfbuf_cnt >
1175 					    (so->so_rcv.sb_hiwat / 8 * 7) &&
1176 					    so->so_rcv.sb_hiwat <
1177 					    tcp_autorcvbuf_max) {
1178 						newsize =
1179 						    min(so->so_rcv.sb_hiwat +
1180 						    tcp_autorcvbuf_inc,
1181 						    tcp_autorcvbuf_max);
1182 					}
1183 					/* Start over with next RTT. */
1184 					tp->rfbuf_ts = 0;
1185 					tp->rfbuf_cnt = 0;
1186 				} else
1187 					tp->rfbuf_cnt += tlen;	/* add up */
1188 			}
1189 
1190 			/* Add data to socket buffer. */
1191 			SOCKBUF_LOCK(&so->so_rcv);
1192 			if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
1193 				m_freem(m);
1194 			} else {
1195 				/*
1196 				 * Set new socket buffer size.
1197 				 * Give up when limit is reached.
1198 				 */
1199 				if (newsize)
1200 					if (!sbreserve_locked(&so->so_rcv,
1201 					    newsize, so, curthread))
1202 						so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
1203 				m_adj(m, drop_hdrlen);	/* delayed header drop */
1204 				sbappendstream_locked(&so->so_rcv, m);
1205 			}
1206 			/* NB: sorwakeup_locked() does an implicit unlock. */
1207 			sorwakeup_locked(so);
1208 			if (DELAY_ACK(tp)) {
1209 				tp->t_flags |= TF_DELACK;
1210 			} else {
1211 				tp->t_flags |= TF_ACKNOW;
1212 				tcp_output(tp);
1213 			}
1214 			goto check_delack;
1215 		}
1216 	}
1217 
1218 	/*
1219 	 * Calculate amount of space in receive window,
1220 	 * and then do TCP input processing.
1221 	 * Receive window is amount of space in rcv queue,
1222 	 * but not less than advertised window.
1223 	 */
1224 	win = sbspace(&so->so_rcv);
1225 	if (win < 0)
1226 		win = 0;
1227 	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1228 
1229 	/* Reset receive buffer auto scaling when not in bulk receive mode. */
1230 	tp->rfbuf_ts = 0;
1231 	tp->rfbuf_cnt = 0;
1232 
1233 	switch (tp->t_state) {
1234 
1235 	/*
1236 	 * If the state is SYN_RECEIVED:
1237 	 *	if seg contains an ACK, but not for our SYN/ACK, send a RST.
1238 	 */
1239 	case TCPS_SYN_RECEIVED:
1240 		if ((thflags & TH_ACK) &&
1241 		    (SEQ_LEQ(th->th_ack, tp->snd_una) ||
1242 		     SEQ_GT(th->th_ack, tp->snd_max))) {
1243 				rstreason = BANDLIM_RST_OPENPORT;
1244 				goto dropwithreset;
1245 		}
1246 		break;
1247 
1248 	/*
1249 	 * If the state is SYN_SENT:
1250 	 *	if seg contains an ACK, but not for our SYN, drop the input.
1251 	 *	if seg contains a RST, then drop the connection.
1252 	 *	if seg does not contain SYN, then drop it.
1253 	 * Otherwise this is an acceptable SYN segment
1254 	 *	initialize tp->rcv_nxt and tp->irs
1255 	 *	if seg contains ack then advance tp->snd_una
1256 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1257 	 *	arrange for segment to be acked (eventually)
1258 	 *	continue processing rest of data/controls, beginning with URG
1259 	 */
1260 	case TCPS_SYN_SENT:
1261 		if ((thflags & TH_ACK) &&
1262 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
1263 		     SEQ_GT(th->th_ack, tp->snd_max))) {
1264 			rstreason = BANDLIM_UNLIMITED;
1265 			goto dropwithreset;
1266 		}
1267 		if ((thflags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST))
1268 			tp = tcp_drop(tp, ECONNREFUSED);
1269 		if (thflags & TH_RST)
1270 			goto drop;
1271 		if (!(thflags & TH_SYN))
1272 			goto drop;
1273 
1274 		tp->irs = th->th_seq;
1275 		tcp_rcvseqinit(tp);
1276 		if (thflags & TH_ACK) {
1277 			tcpstat.tcps_connects++;
1278 			soisconnected(so);
1279 #ifdef MAC
1280 			SOCK_LOCK(so);
1281 			mac_socketpeer_set_from_mbuf(m, so);
1282 			SOCK_UNLOCK(so);
1283 #endif
1284 			/* Do window scaling on this connection? */
1285 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1286 				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1287 				tp->rcv_scale = tp->request_r_scale;
1288 			}
1289 			tp->rcv_adv += tp->rcv_wnd;
1290 			tp->snd_una++;		/* SYN is acked */
1291 			/*
1292 			 * If there's data, delay ACK; if there's also a FIN
1293 			 * ACKNOW will be turned on later.
1294 			 */
1295 			if (DELAY_ACK(tp) && tlen != 0)
1296 				tcp_timer_activate(tp, TT_DELACK,
1297 				    tcp_delacktime);
1298 			else
1299 				tp->t_flags |= TF_ACKNOW;
1300 			/*
1301 			 * Received <SYN,ACK> in SYN_SENT[*] state.
1302 			 * Transitions:
1303 			 *	SYN_SENT  --> ESTABLISHED
1304 			 *	SYN_SENT* --> FIN_WAIT_1
1305 			 */
1306 			tp->t_starttime = ticks;
1307 			if (tp->t_flags & TF_NEEDFIN) {
1308 				tp->t_state = TCPS_FIN_WAIT_1;
1309 				tp->t_flags &= ~TF_NEEDFIN;
1310 				thflags &= ~TH_SYN;
1311 			} else {
1312 				tp->t_state = TCPS_ESTABLISHED;
1313 				tcp_timer_activate(tp, TT_KEEP, tcp_keepidle);
1314 			}
1315 		} else {
1316 			/*
1317 			 * Received initial SYN in SYN-SENT[*] state =>
1318 			 * simultaneous open.  If segment contains CC option
1319 			 * and there is a cached CC, apply TAO test.
1320 			 * If it succeeds, connection is * half-synchronized.
1321 			 * Otherwise, do 3-way handshake:
1322 			 *        SYN-SENT -> SYN-RECEIVED
1323 			 *        SYN-SENT* -> SYN-RECEIVED*
1324 			 * If there was no CC option, clear cached CC value.
1325 			 */
1326 			tp->t_flags |= (TF_ACKNOW | TF_NEEDSYN);
1327 			tcp_timer_activate(tp, TT_REXMT, 0);
1328 			tp->t_state = TCPS_SYN_RECEIVED;
1329 		}
1330 
1331 		KASSERT(headlocked, ("%s: trimthenstep6: head not locked",
1332 		    __func__));
1333 		INP_LOCK_ASSERT(tp->t_inpcb);
1334 
1335 		/*
1336 		 * Advance th->th_seq to correspond to first data byte.
1337 		 * If data, trim to stay within window,
1338 		 * dropping FIN if necessary.
1339 		 */
1340 		th->th_seq++;
1341 		if (tlen > tp->rcv_wnd) {
1342 			todrop = tlen - tp->rcv_wnd;
1343 			m_adj(m, -todrop);
1344 			tlen = tp->rcv_wnd;
1345 			thflags &= ~TH_FIN;
1346 			tcpstat.tcps_rcvpackafterwin++;
1347 			tcpstat.tcps_rcvbyteafterwin += todrop;
1348 		}
1349 		tp->snd_wl1 = th->th_seq - 1;
1350 		tp->rcv_up = th->th_seq;
1351 		/*
1352 		 * Client side of transaction: already sent SYN and data.
1353 		 * If the remote host used T/TCP to validate the SYN,
1354 		 * our data will be ACK'd; if so, enter normal data segment
1355 		 * processing in the middle of step 5, ack processing.
1356 		 * Otherwise, goto step 6.
1357 		 */
1358 		if (thflags & TH_ACK)
1359 			goto process_ACK;
1360 
1361 		goto step6;
1362 
1363 	/*
1364 	 * If the state is LAST_ACK or CLOSING or TIME_WAIT:
1365 	 *      do normal processing.
1366 	 *
1367 	 * NB: Leftover from RFC1644 T/TCP.  Cases to be reused later.
1368 	 */
1369 	case TCPS_LAST_ACK:
1370 	case TCPS_CLOSING:
1371 		break;  /* continue normal processing */
1372 	}
1373 
1374 	/*
1375 	 * States other than LISTEN or SYN_SENT.
1376 	 * First check the RST flag and sequence number since reset segments
1377 	 * are exempt from the timestamp and connection count tests.  This
1378 	 * fixes a bug introduced by the Stevens, vol. 2, p. 960 bugfix
1379 	 * below which allowed reset segments in half the sequence space
1380 	 * to fall though and be processed (which gives forged reset
1381 	 * segments with a random sequence number a 50 percent chance of
1382 	 * killing a connection).
1383 	 * Then check timestamp, if present.
1384 	 * Then check the connection count, if present.
1385 	 * Then check that at least some bytes of segment are within
1386 	 * receive window.  If segment begins before rcv_nxt,
1387 	 * drop leading data (and SYN); if nothing left, just ack.
1388 	 *
1389 	 *
1390 	 * If the RST bit is set, check the sequence number to see
1391 	 * if this is a valid reset segment.
1392 	 * RFC 793 page 37:
1393 	 *   In all states except SYN-SENT, all reset (RST) segments
1394 	 *   are validated by checking their SEQ-fields.  A reset is
1395 	 *   valid if its sequence number is in the window.
1396 	 * Note: this does not take into account delayed ACKs, so
1397 	 *   we should test against last_ack_sent instead of rcv_nxt.
1398 	 *   The sequence number in the reset segment is normally an
1399 	 *   echo of our outgoing acknowlegement numbers, but some hosts
1400 	 *   send a reset with the sequence number at the rightmost edge
1401 	 *   of our receive window, and we have to handle this case.
1402 	 * Note 2: Paul Watson's paper "Slipping in the Window" has shown
1403 	 *   that brute force RST attacks are possible.  To combat this,
1404 	 *   we use a much stricter check while in the ESTABLISHED state,
1405 	 *   only accepting RSTs where the sequence number is equal to
1406 	 *   last_ack_sent.  In all other states (the states in which a
1407 	 *   RST is more likely), the more permissive check is used.
1408 	 * If we have multiple segments in flight, the intial reset
1409 	 * segment sequence numbers will be to the left of last_ack_sent,
1410 	 * but they will eventually catch up.
1411 	 * In any case, it never made sense to trim reset segments to
1412 	 * fit the receive window since RFC 1122 says:
1413 	 *   4.2.2.12  RST Segment: RFC-793 Section 3.4
1414 	 *
1415 	 *    A TCP SHOULD allow a received RST segment to include data.
1416 	 *
1417 	 *    DISCUSSION
1418 	 *         It has been suggested that a RST segment could contain
1419 	 *         ASCII text that encoded and explained the cause of the
1420 	 *         RST.  No standard has yet been established for such
1421 	 *         data.
1422 	 *
1423 	 * If the reset segment passes the sequence number test examine
1424 	 * the state:
1425 	 *    SYN_RECEIVED STATE:
1426 	 *	If passive open, return to LISTEN state.
1427 	 *	If active open, inform user that connection was refused.
1428 	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT_2, CLOSE_WAIT STATES:
1429 	 *	Inform user that connection was reset, and close tcb.
1430 	 *    CLOSING, LAST_ACK STATES:
1431 	 *	Close the tcb.
1432 	 *    TIME_WAIT STATE:
1433 	 *	Drop the segment - see Stevens, vol. 2, p. 964 and
1434 	 *      RFC 1337.
1435 	 */
1436 	if (thflags & TH_RST) {
1437 		if (SEQ_GEQ(th->th_seq, tp->last_ack_sent - 1) &&
1438 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) {
1439 			switch (tp->t_state) {
1440 
1441 			case TCPS_SYN_RECEIVED:
1442 				so->so_error = ECONNREFUSED;
1443 				goto close;
1444 
1445 			case TCPS_ESTABLISHED:
1446 				if (tcp_insecure_rst == 0 &&
1447 				    !(SEQ_GEQ(th->th_seq, tp->rcv_nxt - 1) &&
1448 				    SEQ_LEQ(th->th_seq, tp->rcv_nxt + 1)) &&
1449 				    !(SEQ_GEQ(th->th_seq, tp->last_ack_sent - 1) &&
1450 				    SEQ_LEQ(th->th_seq, tp->last_ack_sent + 1))) {
1451 					tcpstat.tcps_badrst++;
1452 					goto drop;
1453 				}
1454 				/* FALLTHROUGH */
1455 			case TCPS_FIN_WAIT_1:
1456 			case TCPS_FIN_WAIT_2:
1457 			case TCPS_CLOSE_WAIT:
1458 				so->so_error = ECONNRESET;
1459 			close:
1460 				tp->t_state = TCPS_CLOSED;
1461 				tcpstat.tcps_drops++;
1462 				KASSERT(headlocked, ("%s: trimthenstep6: "
1463 				    "tcp_close: head not locked", __func__));
1464 				tp = tcp_close(tp);
1465 				break;
1466 
1467 			case TCPS_CLOSING:
1468 			case TCPS_LAST_ACK:
1469 				KASSERT(headlocked, ("%s: trimthenstep6: "
1470 				    "tcp_close.2: head not locked", __func__));
1471 				tp = tcp_close(tp);
1472 				break;
1473 			}
1474 		}
1475 		goto drop;
1476 	}
1477 
1478 	/*
1479 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
1480 	 * and it's less than ts_recent, drop it.
1481 	 */
1482 	if ((to.to_flags & TOF_TS) != 0 && tp->ts_recent &&
1483 	    TSTMP_LT(to.to_tsval, tp->ts_recent)) {
1484 
1485 		/* Check to see if ts_recent is over 24 days old.  */
1486 		if ((int)(ticks - tp->ts_recent_age) > TCP_PAWS_IDLE) {
1487 			/*
1488 			 * Invalidate ts_recent.  If this segment updates
1489 			 * ts_recent, the age will be reset later and ts_recent
1490 			 * will get a valid value.  If it does not, setting
1491 			 * ts_recent to zero will at least satisfy the
1492 			 * requirement that zero be placed in the timestamp
1493 			 * echo reply when ts_recent isn't valid.  The
1494 			 * age isn't reset until we get a valid ts_recent
1495 			 * because we don't want out-of-order segments to be
1496 			 * dropped when ts_recent is old.
1497 			 */
1498 			tp->ts_recent = 0;
1499 		} else {
1500 			tcpstat.tcps_rcvduppack++;
1501 			tcpstat.tcps_rcvdupbyte += tlen;
1502 			tcpstat.tcps_pawsdrop++;
1503 			if (tlen)
1504 				goto dropafterack;
1505 			goto drop;
1506 		}
1507 	}
1508 
1509 	/*
1510 	 * In the SYN-RECEIVED state, validate that the packet belongs to
1511 	 * this connection before trimming the data to fit the receive
1512 	 * window.  Check the sequence number versus IRS since we know
1513 	 * the sequence numbers haven't wrapped.  This is a partial fix
1514 	 * for the "LAND" DoS attack.
1515 	 */
1516 	if (tp->t_state == TCPS_SYN_RECEIVED && SEQ_LT(th->th_seq, tp->irs)) {
1517 		rstreason = BANDLIM_RST_OPENPORT;
1518 		goto dropwithreset;
1519 	}
1520 
1521 	todrop = tp->rcv_nxt - th->th_seq;
1522 	if (todrop > 0) {
1523 		if (thflags & TH_SYN) {
1524 			thflags &= ~TH_SYN;
1525 			th->th_seq++;
1526 			if (th->th_urp > 1)
1527 				th->th_urp--;
1528 			else
1529 				thflags &= ~TH_URG;
1530 			todrop--;
1531 		}
1532 		/*
1533 		 * Following if statement from Stevens, vol. 2, p. 960.
1534 		 */
1535 		if (todrop > tlen
1536 		    || (todrop == tlen && (thflags & TH_FIN) == 0)) {
1537 			/*
1538 			 * Any valid FIN must be to the left of the window.
1539 			 * At this point the FIN must be a duplicate or out
1540 			 * of sequence; drop it.
1541 			 */
1542 			thflags &= ~TH_FIN;
1543 
1544 			/*
1545 			 * Send an ACK to resynchronize and drop any data.
1546 			 * But keep on processing for RST or ACK.
1547 			 */
1548 			tp->t_flags |= TF_ACKNOW;
1549 			todrop = tlen;
1550 			tcpstat.tcps_rcvduppack++;
1551 			tcpstat.tcps_rcvdupbyte += todrop;
1552 		} else {
1553 			tcpstat.tcps_rcvpartduppack++;
1554 			tcpstat.tcps_rcvpartdupbyte += todrop;
1555 		}
1556 		drop_hdrlen += todrop;	/* drop from the top afterwards */
1557 		th->th_seq += todrop;
1558 		tlen -= todrop;
1559 		if (th->th_urp > todrop)
1560 			th->th_urp -= todrop;
1561 		else {
1562 			thflags &= ~TH_URG;
1563 			th->th_urp = 0;
1564 		}
1565 	}
1566 
1567 	/*
1568 	 * If new data are received on a connection after the
1569 	 * user processes are gone, then RST the other end.
1570 	 */
1571 	if ((so->so_state & SS_NOFDREF) &&
1572 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
1573 		char *s;
1574 
1575 		KASSERT(headlocked, ("%s: trimthenstep6: tcp_close.3: head "
1576 		    "not locked", __func__));
1577 		if ((s = tcp_log_addrs(&tp->t_inpcb->inp_inc, th, NULL, NULL))) {
1578 			log(LOG_DEBUG, "%s; %s: %s: Received %d bytes of data after socket "
1579 			    "was closed, sending RST and removing tcpcb\n",
1580 			    s, __func__, tcpstates[tp->t_state], tlen);
1581 			free(s, M_TCPLOG);
1582 		}
1583 		tp = tcp_close(tp);
1584 		tcpstat.tcps_rcvafterclose++;
1585 		rstreason = BANDLIM_UNLIMITED;
1586 		goto dropwithreset;
1587 	}
1588 
1589 	/*
1590 	 * If segment ends after window, drop trailing data
1591 	 * (and PUSH and FIN); if nothing left, just ACK.
1592 	 */
1593 	todrop = (th->th_seq + tlen) - (tp->rcv_nxt + tp->rcv_wnd);
1594 	if (todrop > 0) {
1595 		tcpstat.tcps_rcvpackafterwin++;
1596 		if (todrop >= tlen) {
1597 			tcpstat.tcps_rcvbyteafterwin += tlen;
1598 			/*
1599 			 * If window is closed can only take segments at
1600 			 * window edge, and have to drop data and PUSH from
1601 			 * incoming segments.  Continue processing, but
1602 			 * remember to ack.  Otherwise, drop segment
1603 			 * and ack.
1604 			 */
1605 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
1606 				tp->t_flags |= TF_ACKNOW;
1607 				tcpstat.tcps_rcvwinprobe++;
1608 			} else
1609 				goto dropafterack;
1610 		} else
1611 			tcpstat.tcps_rcvbyteafterwin += todrop;
1612 		m_adj(m, -todrop);
1613 		tlen -= todrop;
1614 		thflags &= ~(TH_PUSH|TH_FIN);
1615 	}
1616 
1617 	/*
1618 	 * If last ACK falls within this segment's sequence numbers,
1619 	 * record its timestamp.
1620 	 * NOTE:
1621 	 * 1) That the test incorporates suggestions from the latest
1622 	 *    proposal of the tcplw@cray.com list (Braden 1993/04/26).
1623 	 * 2) That updating only on newer timestamps interferes with
1624 	 *    our earlier PAWS tests, so this check should be solely
1625 	 *    predicated on the sequence space of this segment.
1626 	 * 3) That we modify the segment boundary check to be
1627 	 *        Last.ACK.Sent <= SEG.SEQ + SEG.Len
1628 	 *    instead of RFC1323's
1629 	 *        Last.ACK.Sent < SEG.SEQ + SEG.Len,
1630 	 *    This modified check allows us to overcome RFC1323's
1631 	 *    limitations as described in Stevens TCP/IP Illustrated
1632 	 *    Vol. 2 p.869. In such cases, we can still calculate the
1633 	 *    RTT correctly when RCV.NXT == Last.ACK.Sent.
1634 	 */
1635 	if ((to.to_flags & TOF_TS) != 0 &&
1636 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1637 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
1638 		((thflags & (TH_SYN|TH_FIN)) != 0))) {
1639 		tp->ts_recent_age = ticks;
1640 		tp->ts_recent = to.to_tsval;
1641 	}
1642 
1643 	/*
1644 	 * If a SYN is in the window, then this is an
1645 	 * error and we send an RST and drop the connection.
1646 	 */
1647 	if (thflags & TH_SYN) {
1648 		KASSERT(headlocked, ("%s: tcp_drop: trimthenstep6: "
1649 		    "head not locked", __func__));
1650 		tp = tcp_drop(tp, ECONNRESET);
1651 		rstreason = BANDLIM_UNLIMITED;
1652 		goto drop;
1653 	}
1654 
1655 	/*
1656 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN
1657 	 * flag is on (half-synchronized state), then queue data for
1658 	 * later processing; else drop segment and return.
1659 	 */
1660 	if ((thflags & TH_ACK) == 0) {
1661 		if (tp->t_state == TCPS_SYN_RECEIVED ||
1662 		    (tp->t_flags & TF_NEEDSYN))
1663 			goto step6;
1664 		else if (tp->t_flags & TF_ACKNOW)
1665 			goto dropafterack;
1666 		else
1667 			goto drop;
1668 	}
1669 
1670 	/*
1671 	 * Ack processing.
1672 	 */
1673 	switch (tp->t_state) {
1674 
1675 	/*
1676 	 * In SYN_RECEIVED state, the ack ACKs our SYN, so enter
1677 	 * ESTABLISHED state and continue processing.
1678 	 * The ACK was checked above.
1679 	 */
1680 	case TCPS_SYN_RECEIVED:
1681 
1682 		tcpstat.tcps_connects++;
1683 		soisconnected(so);
1684 		/* Do window scaling? */
1685 		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1686 			(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1687 			tp->rcv_scale = tp->request_r_scale;
1688 			tp->snd_wnd = tiwin;
1689 		}
1690 		/*
1691 		 * Make transitions:
1692 		 *      SYN-RECEIVED  -> ESTABLISHED
1693 		 *      SYN-RECEIVED* -> FIN-WAIT-1
1694 		 */
1695 		tp->t_starttime = ticks;
1696 		if (tp->t_flags & TF_NEEDFIN) {
1697 			tp->t_state = TCPS_FIN_WAIT_1;
1698 			tp->t_flags &= ~TF_NEEDFIN;
1699 		} else {
1700 			tp->t_state = TCPS_ESTABLISHED;
1701 			tcp_timer_activate(tp, TT_KEEP, tcp_keepidle);
1702 		}
1703 		/*
1704 		 * If segment contains data or ACK, will call tcp_reass()
1705 		 * later; if not, do so now to pass queued data to user.
1706 		 */
1707 		if (tlen == 0 && (thflags & TH_FIN) == 0)
1708 			(void) tcp_reass(tp, (struct tcphdr *)0, 0,
1709 			    (struct mbuf *)0);
1710 		tp->snd_wl1 = th->th_seq - 1;
1711 		/* FALLTHROUGH */
1712 
1713 	/*
1714 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
1715 	 * ACKs.  If the ack is in the range
1716 	 *	tp->snd_una < th->th_ack <= tp->snd_max
1717 	 * then advance tp->snd_una to th->th_ack and drop
1718 	 * data from the retransmission queue.  If this ACK reflects
1719 	 * more up to date window information we update our window information.
1720 	 */
1721 	case TCPS_ESTABLISHED:
1722 	case TCPS_FIN_WAIT_1:
1723 	case TCPS_FIN_WAIT_2:
1724 	case TCPS_CLOSE_WAIT:
1725 	case TCPS_CLOSING:
1726 	case TCPS_LAST_ACK:
1727 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
1728 			tcpstat.tcps_rcvacktoomuch++;
1729 			goto dropafterack;
1730 		}
1731 		if ((tp->t_flags & TF_SACK_PERMIT) &&
1732 		    ((to.to_flags & TOF_SACK) ||
1733 		     !TAILQ_EMPTY(&tp->snd_holes)))
1734 			tcp_sack_doack(tp, &to, th->th_ack);
1735 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
1736 			if (tlen == 0 && tiwin == tp->snd_wnd) {
1737 				tcpstat.tcps_rcvdupack++;
1738 				/*
1739 				 * If we have outstanding data (other than
1740 				 * a window probe), this is a completely
1741 				 * duplicate ack (ie, window info didn't
1742 				 * change), the ack is the biggest we've
1743 				 * seen and we've seen exactly our rexmt
1744 				 * threshhold of them, assume a packet
1745 				 * has been dropped and retransmit it.
1746 				 * Kludge snd_nxt & the congestion
1747 				 * window so we send only this one
1748 				 * packet.
1749 				 *
1750 				 * We know we're losing at the current
1751 				 * window size so do congestion avoidance
1752 				 * (set ssthresh to half the current window
1753 				 * and pull our congestion window back to
1754 				 * the new ssthresh).
1755 				 *
1756 				 * Dup acks mean that packets have left the
1757 				 * network (they're now cached at the receiver)
1758 				 * so bump cwnd by the amount in the receiver
1759 				 * to keep a constant cwnd packets in the
1760 				 * network.
1761 				 */
1762 				if (!tcp_timer_active(tp, TT_REXMT) ||
1763 				    th->th_ack != tp->snd_una)
1764 					tp->t_dupacks = 0;
1765 				else if (++tp->t_dupacks > tcprexmtthresh ||
1766 				    ((tcp_do_newreno ||
1767 				      (tp->t_flags & TF_SACK_PERMIT)) &&
1768 				     IN_FASTRECOVERY(tp))) {
1769 					if ((tp->t_flags & TF_SACK_PERMIT) &&
1770 					    IN_FASTRECOVERY(tp)) {
1771 						int awnd;
1772 
1773 						/*
1774 						 * Compute the amount of data in flight first.
1775 						 * We can inject new data into the pipe iff
1776 						 * we have less than 1/2 the original window's
1777 						 * worth of data in flight.
1778 						 */
1779 						awnd = (tp->snd_nxt - tp->snd_fack) +
1780 							tp->sackhint.sack_bytes_rexmit;
1781 						if (awnd < tp->snd_ssthresh) {
1782 							tp->snd_cwnd += tp->t_maxseg;
1783 							if (tp->snd_cwnd > tp->snd_ssthresh)
1784 								tp->snd_cwnd = tp->snd_ssthresh;
1785 						}
1786 					} else
1787 						tp->snd_cwnd += tp->t_maxseg;
1788 					(void) tcp_output(tp);
1789 					goto drop;
1790 				} else if (tp->t_dupacks == tcprexmtthresh) {
1791 					tcp_seq onxt = tp->snd_nxt;
1792 					u_int win;
1793 
1794 					/*
1795 					 * If we're doing sack, check to
1796 					 * see if we're already in sack
1797 					 * recovery. If we're not doing sack,
1798 					 * check to see if we're in newreno
1799 					 * recovery.
1800 					 */
1801 					if (tp->t_flags & TF_SACK_PERMIT) {
1802 						if (IN_FASTRECOVERY(tp)) {
1803 							tp->t_dupacks = 0;
1804 							break;
1805 						}
1806 					} else if (tcp_do_newreno) {
1807 						if (SEQ_LEQ(th->th_ack,
1808 						    tp->snd_recover)) {
1809 							tp->t_dupacks = 0;
1810 							break;
1811 						}
1812 					}
1813 					win = min(tp->snd_wnd, tp->snd_cwnd) /
1814 					    2 / tp->t_maxseg;
1815 					if (win < 2)
1816 						win = 2;
1817 					tp->snd_ssthresh = win * tp->t_maxseg;
1818 					ENTER_FASTRECOVERY(tp);
1819 					tp->snd_recover = tp->snd_max;
1820 					tcp_timer_activate(tp, TT_REXMT, 0);
1821 					tp->t_rtttime = 0;
1822 					if (tp->t_flags & TF_SACK_PERMIT) {
1823 						tcpstat.tcps_sack_recovery_episode++;
1824 						tp->sack_newdata = tp->snd_nxt;
1825 						tp->snd_cwnd = tp->t_maxseg;
1826 						(void) tcp_output(tp);
1827 						goto drop;
1828 					}
1829 					tp->snd_nxt = th->th_ack;
1830 					tp->snd_cwnd = tp->t_maxseg;
1831 					(void) tcp_output(tp);
1832 					KASSERT(tp->snd_limited <= 2,
1833 					    ("%s: tp->snd_limited too big",
1834 					    __func__));
1835 					tp->snd_cwnd = tp->snd_ssthresh +
1836 					     tp->t_maxseg *
1837 					     (tp->t_dupacks - tp->snd_limited);
1838 					if (SEQ_GT(onxt, tp->snd_nxt))
1839 						tp->snd_nxt = onxt;
1840 					goto drop;
1841 				} else if (tcp_do_rfc3042) {
1842 					u_long oldcwnd = tp->snd_cwnd;
1843 					tcp_seq oldsndmax = tp->snd_max;
1844 					u_int sent;
1845 
1846 					KASSERT(tp->t_dupacks == 1 ||
1847 					    tp->t_dupacks == 2,
1848 					    ("%s: dupacks not 1 or 2",
1849 					    __func__));
1850 					if (tp->t_dupacks == 1)
1851 						tp->snd_limited = 0;
1852 					tp->snd_cwnd =
1853 					    (tp->snd_nxt - tp->snd_una) +
1854 					    (tp->t_dupacks - tp->snd_limited) *
1855 					    tp->t_maxseg;
1856 					(void) tcp_output(tp);
1857 					sent = tp->snd_max - oldsndmax;
1858 					if (sent > tp->t_maxseg) {
1859 						KASSERT((tp->t_dupacks == 2 &&
1860 						    tp->snd_limited == 0) ||
1861 						   (sent == tp->t_maxseg + 1 &&
1862 						    tp->t_flags & TF_SENTFIN),
1863 						    ("%s: sent too much",
1864 						    __func__));
1865 						tp->snd_limited = 2;
1866 					} else if (sent > 0)
1867 						++tp->snd_limited;
1868 					tp->snd_cwnd = oldcwnd;
1869 					goto drop;
1870 				}
1871 			} else
1872 				tp->t_dupacks = 0;
1873 			break;
1874 		}
1875 
1876 		KASSERT(SEQ_GT(th->th_ack, tp->snd_una),
1877 		    ("%s: th_ack <= snd_una", __func__));
1878 
1879 		/*
1880 		 * If the congestion window was inflated to account
1881 		 * for the other side's cached packets, retract it.
1882 		 */
1883 		if (tcp_do_newreno || (tp->t_flags & TF_SACK_PERMIT)) {
1884 			if (IN_FASTRECOVERY(tp)) {
1885 				if (SEQ_LT(th->th_ack, tp->snd_recover)) {
1886 					if (tp->t_flags & TF_SACK_PERMIT)
1887 						tcp_sack_partialack(tp, th);
1888 					else
1889 						tcp_newreno_partial_ack(tp, th);
1890 				} else {
1891 					/*
1892 					 * Out of fast recovery.
1893 					 * Window inflation should have left us
1894 					 * with approximately snd_ssthresh
1895 					 * outstanding data.
1896 					 * But in case we would be inclined to
1897 					 * send a burst, better to do it via
1898 					 * the slow start mechanism.
1899 					 */
1900 					if (SEQ_GT(th->th_ack +
1901 							tp->snd_ssthresh,
1902 						   tp->snd_max))
1903 						tp->snd_cwnd = tp->snd_max -
1904 								th->th_ack +
1905 								tp->t_maxseg;
1906 					else
1907 						tp->snd_cwnd = tp->snd_ssthresh;
1908 				}
1909 			}
1910 		} else {
1911 			if (tp->t_dupacks >= tcprexmtthresh &&
1912 			    tp->snd_cwnd > tp->snd_ssthresh)
1913 				tp->snd_cwnd = tp->snd_ssthresh;
1914 		}
1915 		tp->t_dupacks = 0;
1916 		/*
1917 		 * If we reach this point, ACK is not a duplicate,
1918 		 *     i.e., it ACKs something we sent.
1919 		 */
1920 		if (tp->t_flags & TF_NEEDSYN) {
1921 			/*
1922 			 * T/TCP: Connection was half-synchronized, and our
1923 			 * SYN has been ACK'd (so connection is now fully
1924 			 * synchronized).  Go to non-starred state,
1925 			 * increment snd_una for ACK of SYN, and check if
1926 			 * we can do window scaling.
1927 			 */
1928 			tp->t_flags &= ~TF_NEEDSYN;
1929 			tp->snd_una++;
1930 			/* Do window scaling? */
1931 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1932 				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1933 				tp->rcv_scale = tp->request_r_scale;
1934 				/* Send window already scaled. */
1935 			}
1936 		}
1937 
1938 process_ACK:
1939 		KASSERT(headlocked, ("%s: process_ACK: head not locked",
1940 		    __func__));
1941 		INP_LOCK_ASSERT(tp->t_inpcb);
1942 
1943 		acked = th->th_ack - tp->snd_una;
1944 		tcpstat.tcps_rcvackpack++;
1945 		tcpstat.tcps_rcvackbyte += acked;
1946 
1947 		/*
1948 		 * If we just performed our first retransmit, and the ACK
1949 		 * arrives within our recovery window, then it was a mistake
1950 		 * to do the retransmit in the first place.  Recover our
1951 		 * original cwnd and ssthresh, and proceed to transmit where
1952 		 * we left off.
1953 		 */
1954 		if (tp->t_rxtshift == 1 && ticks < tp->t_badrxtwin) {
1955 			++tcpstat.tcps_sndrexmitbad;
1956 			tp->snd_cwnd = tp->snd_cwnd_prev;
1957 			tp->snd_ssthresh = tp->snd_ssthresh_prev;
1958 			tp->snd_recover = tp->snd_recover_prev;
1959 			if (tp->t_flags & TF_WASFRECOVERY)
1960 				ENTER_FASTRECOVERY(tp);
1961 			tp->snd_nxt = tp->snd_max;
1962 			tp->t_badrxtwin = 0;	/* XXX probably not required */
1963 		}
1964 
1965 		/*
1966 		 * If we have a timestamp reply, update smoothed
1967 		 * round trip time.  If no timestamp is present but
1968 		 * transmit timer is running and timed sequence
1969 		 * number was acked, update smoothed round trip time.
1970 		 * Since we now have an rtt measurement, cancel the
1971 		 * timer backoff (cf., Phil Karn's retransmit alg.).
1972 		 * Recompute the initial retransmit timer.
1973 		 *
1974 		 * Some boxes send broken timestamp replies
1975 		 * during the SYN+ACK phase, ignore
1976 		 * timestamps of 0 or we could calculate a
1977 		 * huge RTT and blow up the retransmit timer.
1978 		 */
1979 		if ((to.to_flags & TOF_TS) != 0 &&
1980 		    to.to_tsecr) {
1981 			if (!tp->t_rttlow || tp->t_rttlow > ticks - to.to_tsecr)
1982 				tp->t_rttlow = ticks - to.to_tsecr;
1983 			tcp_xmit_timer(tp, ticks - to.to_tsecr + 1);
1984 		} else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq)) {
1985 			if (!tp->t_rttlow || tp->t_rttlow > ticks - tp->t_rtttime)
1986 				tp->t_rttlow = ticks - tp->t_rtttime;
1987 			tcp_xmit_timer(tp, ticks - tp->t_rtttime);
1988 		}
1989 		tcp_xmit_bandwidth_limit(tp, th->th_ack);
1990 
1991 		/*
1992 		 * If all outstanding data is acked, stop retransmit
1993 		 * timer and remember to restart (more output or persist).
1994 		 * If there is more data to be acked, restart retransmit
1995 		 * timer, using current (possibly backed-off) value.
1996 		 */
1997 		if (th->th_ack == tp->snd_max) {
1998 			tcp_timer_activate(tp, TT_REXMT, 0);
1999 			needoutput = 1;
2000 		} else if (!tcp_timer_active(tp, TT_PERSIST))
2001 			tcp_timer_activate(tp, TT_REXMT, tp->t_rxtcur);
2002 
2003 		/*
2004 		 * If no data (only SYN) was ACK'd,
2005 		 *    skip rest of ACK processing.
2006 		 */
2007 		if (acked == 0)
2008 			goto step6;
2009 
2010 		/*
2011 		 * When new data is acked, open the congestion window.
2012 		 * If the window gives us less than ssthresh packets
2013 		 * in flight, open exponentially (maxseg per packet).
2014 		 * Otherwise open linearly: maxseg per window
2015 		 * (maxseg^2 / cwnd per packet).
2016 		 */
2017 		if ((!tcp_do_newreno && !(tp->t_flags & TF_SACK_PERMIT)) ||
2018 		    !IN_FASTRECOVERY(tp)) {
2019 			u_int cw = tp->snd_cwnd;
2020 			u_int incr = tp->t_maxseg;
2021 			if (cw > tp->snd_ssthresh)
2022 				incr = incr * incr / cw;
2023 			tp->snd_cwnd = min(cw+incr, TCP_MAXWIN<<tp->snd_scale);
2024 		}
2025 		SOCKBUF_LOCK(&so->so_snd);
2026 		if (acked > so->so_snd.sb_cc) {
2027 			tp->snd_wnd -= so->so_snd.sb_cc;
2028 			sbdrop_locked(&so->so_snd, (int)so->so_snd.sb_cc);
2029 			ourfinisacked = 1;
2030 		} else {
2031 			sbdrop_locked(&so->so_snd, acked);
2032 			tp->snd_wnd -= acked;
2033 			ourfinisacked = 0;
2034 		}
2035 		/* NB: sowwakeup_locked() does an implicit unlock. */
2036 		sowwakeup_locked(so);
2037 		/* Detect una wraparound. */
2038 		if ((tcp_do_newreno || (tp->t_flags & TF_SACK_PERMIT)) &&
2039 		    !IN_FASTRECOVERY(tp) &&
2040 		    SEQ_GT(tp->snd_una, tp->snd_recover) &&
2041 		    SEQ_LEQ(th->th_ack, tp->snd_recover))
2042 			tp->snd_recover = th->th_ack - 1;
2043 		if ((tcp_do_newreno || (tp->t_flags & TF_SACK_PERMIT)) &&
2044 		    IN_FASTRECOVERY(tp) &&
2045 		    SEQ_GEQ(th->th_ack, tp->snd_recover))
2046 			EXIT_FASTRECOVERY(tp);
2047 		tp->snd_una = th->th_ack;
2048 		if (tp->t_flags & TF_SACK_PERMIT) {
2049 			if (SEQ_GT(tp->snd_una, tp->snd_recover))
2050 				tp->snd_recover = tp->snd_una;
2051 		}
2052 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2053 			tp->snd_nxt = tp->snd_una;
2054 
2055 		switch (tp->t_state) {
2056 
2057 		/*
2058 		 * In FIN_WAIT_1 STATE in addition to the processing
2059 		 * for the ESTABLISHED state if our FIN is now acknowledged
2060 		 * then enter FIN_WAIT_2.
2061 		 */
2062 		case TCPS_FIN_WAIT_1:
2063 			if (ourfinisacked) {
2064 				/*
2065 				 * If we can't receive any more
2066 				 * data, then closing user can proceed.
2067 				 * Starting the timer is contrary to the
2068 				 * specification, but if we don't get a FIN
2069 				 * we'll hang forever.
2070 				 *
2071 				 * XXXjl:
2072 				 * we should release the tp also, and use a
2073 				 * compressed state.
2074 				 */
2075 				if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
2076 					int timeout;
2077 
2078 					soisdisconnected(so);
2079 					timeout = (tcp_fast_finwait2_recycle) ?
2080 						tcp_finwait2_timeout : tcp_maxidle;
2081 					tcp_timer_activate(tp, TT_2MSL, timeout);
2082 				}
2083 				tp->t_state = TCPS_FIN_WAIT_2;
2084 			}
2085 			break;
2086 
2087 		/*
2088 		 * In CLOSING STATE in addition to the processing for
2089 		 * the ESTABLISHED state if the ACK acknowledges our FIN
2090 		 * then enter the TIME-WAIT state, otherwise ignore
2091 		 * the segment.
2092 		 */
2093 		case TCPS_CLOSING:
2094 			if (ourfinisacked) {
2095 				KASSERT(headlocked, ("%s: process_ACK: "
2096 				    "head not locked", __func__));
2097 				tcp_twstart(tp);
2098 				INP_INFO_WUNLOCK(&tcbinfo);
2099 				headlocked = 0;
2100 				m_freem(m);
2101 				return;
2102 			}
2103 			break;
2104 
2105 		/*
2106 		 * In LAST_ACK, we may still be waiting for data to drain
2107 		 * and/or to be acked, as well as for the ack of our FIN.
2108 		 * If our FIN is now acknowledged, delete the TCB,
2109 		 * enter the closed state and return.
2110 		 */
2111 		case TCPS_LAST_ACK:
2112 			if (ourfinisacked) {
2113 				KASSERT(headlocked, ("%s: process_ACK: "
2114 				    "tcp_close: head not locked", __func__));
2115 				tp = tcp_close(tp);
2116 				goto drop;
2117 			}
2118 			break;
2119 		}
2120 	}
2121 
2122 step6:
2123 	KASSERT(headlocked, ("%s: step6: head not locked", __func__));
2124 	INP_LOCK_ASSERT(tp->t_inpcb);
2125 
2126 	/*
2127 	 * Update window information.
2128 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2129 	 */
2130 	if ((thflags & TH_ACK) &&
2131 	    (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2132 	    (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
2133 	     (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
2134 		/* keep track of pure window updates */
2135 		if (tlen == 0 &&
2136 		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2137 			tcpstat.tcps_rcvwinupd++;
2138 		tp->snd_wnd = tiwin;
2139 		tp->snd_wl1 = th->th_seq;
2140 		tp->snd_wl2 = th->th_ack;
2141 		if (tp->snd_wnd > tp->max_sndwnd)
2142 			tp->max_sndwnd = tp->snd_wnd;
2143 		needoutput = 1;
2144 	}
2145 
2146 	/*
2147 	 * Process segments with URG.
2148 	 */
2149 	if ((thflags & TH_URG) && th->th_urp &&
2150 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2151 		/*
2152 		 * This is a kludge, but if we receive and accept
2153 		 * random urgent pointers, we'll crash in
2154 		 * soreceive.  It's hard to imagine someone
2155 		 * actually wanting to send this much urgent data.
2156 		 */
2157 		SOCKBUF_LOCK(&so->so_rcv);
2158 		if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2159 			th->th_urp = 0;			/* XXX */
2160 			thflags &= ~TH_URG;		/* XXX */
2161 			SOCKBUF_UNLOCK(&so->so_rcv);	/* XXX */
2162 			goto dodata;			/* XXX */
2163 		}
2164 		/*
2165 		 * If this segment advances the known urgent pointer,
2166 		 * then mark the data stream.  This should not happen
2167 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2168 		 * a FIN has been received from the remote side.
2169 		 * In these states we ignore the URG.
2170 		 *
2171 		 * According to RFC961 (Assigned Protocols),
2172 		 * the urgent pointer points to the last octet
2173 		 * of urgent data.  We continue, however,
2174 		 * to consider it to indicate the first octet
2175 		 * of data past the urgent section as the original
2176 		 * spec states (in one of two places).
2177 		 */
2178 		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2179 			tp->rcv_up = th->th_seq + th->th_urp;
2180 			so->so_oobmark = so->so_rcv.sb_cc +
2181 			    (tp->rcv_up - tp->rcv_nxt) - 1;
2182 			if (so->so_oobmark == 0)
2183 				so->so_rcv.sb_state |= SBS_RCVATMARK;
2184 			sohasoutofband(so);
2185 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2186 		}
2187 		SOCKBUF_UNLOCK(&so->so_rcv);
2188 		/*
2189 		 * Remove out of band data so doesn't get presented to user.
2190 		 * This can happen independent of advancing the URG pointer,
2191 		 * but if two URG's are pending at once, some out-of-band
2192 		 * data may creep in... ick.
2193 		 */
2194 		if (th->th_urp <= (u_long)tlen &&
2195 		    !(so->so_options & SO_OOBINLINE)) {
2196 			/* hdr drop is delayed */
2197 			tcp_pulloutofband(so, th, m, drop_hdrlen);
2198 		}
2199 	} else {
2200 		/*
2201 		 * If no out of band data is expected,
2202 		 * pull receive urgent pointer along
2203 		 * with the receive window.
2204 		 */
2205 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2206 			tp->rcv_up = tp->rcv_nxt;
2207 	}
2208 dodata:							/* XXX */
2209 	KASSERT(headlocked, ("%s: dodata: head not locked", __func__));
2210 	INP_LOCK_ASSERT(tp->t_inpcb);
2211 
2212 	/*
2213 	 * Process the segment text, merging it into the TCP sequencing queue,
2214 	 * and arranging for acknowledgment of receipt if necessary.
2215 	 * This process logically involves adjusting tp->rcv_wnd as data
2216 	 * is presented to the user (this happens in tcp_usrreq.c,
2217 	 * case PRU_RCVD).  If a FIN has already been received on this
2218 	 * connection then we just ignore the text.
2219 	 */
2220 	if ((tlen || (thflags & TH_FIN)) &&
2221 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2222 		tcp_seq save_start = th->th_seq;
2223 		m_adj(m, drop_hdrlen);	/* delayed header drop */
2224 		/*
2225 		 * Insert segment which includes th into TCP reassembly queue
2226 		 * with control block tp.  Set thflags to whether reassembly now
2227 		 * includes a segment with FIN.  This handles the common case
2228 		 * inline (segment is the next to be received on an established
2229 		 * connection, and the queue is empty), avoiding linkage into
2230 		 * and removal from the queue and repetition of various
2231 		 * conversions.
2232 		 * Set DELACK for segments received in order, but ack
2233 		 * immediately when segments are out of order (so
2234 		 * fast retransmit can work).
2235 		 */
2236 		if (th->th_seq == tp->rcv_nxt &&
2237 		    LIST_EMPTY(&tp->t_segq) &&
2238 		    TCPS_HAVEESTABLISHED(tp->t_state)) {
2239 			if (DELAY_ACK(tp))
2240 				tp->t_flags |= TF_DELACK;
2241 			else
2242 				tp->t_flags |= TF_ACKNOW;
2243 			tp->rcv_nxt += tlen;
2244 			thflags = th->th_flags & TH_FIN;
2245 			tcpstat.tcps_rcvpack++;
2246 			tcpstat.tcps_rcvbyte += tlen;
2247 			ND6_HINT(tp);
2248 			SOCKBUF_LOCK(&so->so_rcv);
2249 			if (so->so_rcv.sb_state & SBS_CANTRCVMORE)
2250 				m_freem(m);
2251 			else
2252 				sbappendstream_locked(&so->so_rcv, m);
2253 			/* NB: sorwakeup_locked() does an implicit unlock. */
2254 			sorwakeup_locked(so);
2255 		} else {
2256 			/*
2257 			 * XXX: Due to the header drop above "th" is
2258 			 * theoretically invalid by now.  Fortunately
2259 			 * m_adj() doesn't actually frees any mbufs
2260 			 * when trimming from the head.
2261 			 */
2262 			thflags = tcp_reass(tp, th, &tlen, m);
2263 			tp->t_flags |= TF_ACKNOW;
2264 		}
2265 		if (tlen > 0 && (tp->t_flags & TF_SACK_PERMIT))
2266 			tcp_update_sack_list(tp, save_start, save_start + tlen);
2267 #if 0
2268 		/*
2269 		 * Note the amount of data that peer has sent into
2270 		 * our window, in order to estimate the sender's
2271 		 * buffer size.
2272 		 * XXX: Unused.
2273 		 */
2274 		len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2275 #endif
2276 	} else {
2277 		m_freem(m);
2278 		thflags &= ~TH_FIN;
2279 	}
2280 
2281 	/*
2282 	 * If FIN is received ACK the FIN and let the user know
2283 	 * that the connection is closing.
2284 	 */
2285 	if (thflags & TH_FIN) {
2286 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2287 			socantrcvmore(so);
2288 			/*
2289 			 * If connection is half-synchronized
2290 			 * (ie NEEDSYN flag on) then delay ACK,
2291 			 * so it may be piggybacked when SYN is sent.
2292 			 * Otherwise, since we received a FIN then no
2293 			 * more input can be expected, send ACK now.
2294 			 */
2295 			if (tp->t_flags & TF_NEEDSYN)
2296 				tp->t_flags |= TF_DELACK;
2297 			else
2298 				tp->t_flags |= TF_ACKNOW;
2299 			tp->rcv_nxt++;
2300 		}
2301 		switch (tp->t_state) {
2302 
2303 		/*
2304 		 * In SYN_RECEIVED and ESTABLISHED STATES
2305 		 * enter the CLOSE_WAIT state.
2306 		 */
2307 		case TCPS_SYN_RECEIVED:
2308 			tp->t_starttime = ticks;
2309 			/* FALLTHROUGH */
2310 		case TCPS_ESTABLISHED:
2311 			tp->t_state = TCPS_CLOSE_WAIT;
2312 			break;
2313 
2314 		/*
2315 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2316 		 * enter the CLOSING state.
2317 		 */
2318 		case TCPS_FIN_WAIT_1:
2319 			tp->t_state = TCPS_CLOSING;
2320 			break;
2321 
2322 		/*
2323 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2324 		 * starting the time-wait timer, turning off the other
2325 		 * standard timers.
2326 		 */
2327 		case TCPS_FIN_WAIT_2:
2328 			KASSERT(headlocked == 1, ("%s: dodata: "
2329 			    "TCP_FIN_WAIT_2: head not locked", __func__));
2330 			tcp_twstart(tp);
2331 			INP_INFO_WUNLOCK(&tcbinfo);
2332 			return;
2333 		}
2334 	}
2335 	INP_INFO_WUNLOCK(&tcbinfo);
2336 	headlocked = 0;
2337 #ifdef TCPDEBUG
2338 	if (so->so_options & SO_DEBUG)
2339 		tcp_trace(TA_INPUT, ostate, tp, (void *)tcp_saveipgen,
2340 			  &tcp_savetcp, 0);
2341 #endif
2342 
2343 	/*
2344 	 * Return any desired output.
2345 	 */
2346 	if (needoutput || (tp->t_flags & TF_ACKNOW))
2347 		(void) tcp_output(tp);
2348 
2349 check_delack:
2350 	KASSERT(headlocked == 0, ("%s: check_delack: head locked",
2351 	    __func__));
2352 	INP_INFO_UNLOCK_ASSERT(&tcbinfo);
2353 	INP_LOCK_ASSERT(tp->t_inpcb);
2354 	if (tp->t_flags & TF_DELACK) {
2355 		tp->t_flags &= ~TF_DELACK;
2356 		tcp_timer_activate(tp, TT_DELACK, tcp_delacktime);
2357 	}
2358 	INP_UNLOCK(tp->t_inpcb);
2359 	return;
2360 
2361 dropafterack:
2362 	KASSERT(headlocked, ("%s: dropafterack: head not locked", __func__));
2363 	/*
2364 	 * Generate an ACK dropping incoming segment if it occupies
2365 	 * sequence space, where the ACK reflects our state.
2366 	 *
2367 	 * We can now skip the test for the RST flag since all
2368 	 * paths to this code happen after packets containing
2369 	 * RST have been dropped.
2370 	 *
2371 	 * In the SYN-RECEIVED state, don't send an ACK unless the
2372 	 * segment we received passes the SYN-RECEIVED ACK test.
2373 	 * If it fails send a RST.  This breaks the loop in the
2374 	 * "LAND" DoS attack, and also prevents an ACK storm
2375 	 * between two listening ports that have been sent forged
2376 	 * SYN segments, each with the source address of the other.
2377 	 */
2378 	if (tp->t_state == TCPS_SYN_RECEIVED && (thflags & TH_ACK) &&
2379 	    (SEQ_GT(tp->snd_una, th->th_ack) ||
2380 	     SEQ_GT(th->th_ack, tp->snd_max)) ) {
2381 		rstreason = BANDLIM_RST_OPENPORT;
2382 		goto dropwithreset;
2383 	}
2384 #ifdef TCPDEBUG
2385 	if (so->so_options & SO_DEBUG)
2386 		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
2387 			  &tcp_savetcp, 0);
2388 #endif
2389 	KASSERT(headlocked, ("%s: headlocked should be 1", __func__));
2390 	INP_INFO_WUNLOCK(&tcbinfo);
2391 	tp->t_flags |= TF_ACKNOW;
2392 	(void) tcp_output(tp);
2393 	INP_UNLOCK(tp->t_inpcb);
2394 	m_freem(m);
2395 	return;
2396 
2397 dropwithreset:
2398 	KASSERT(headlocked, ("%s: dropwithreset: head not locked", __func__));
2399 
2400 	tcp_dropwithreset(m, th, tp, tlen, rstreason);
2401 
2402 	if (tp != NULL)
2403 		INP_UNLOCK(tp->t_inpcb);
2404 	if (headlocked)
2405 		INP_INFO_WUNLOCK(&tcbinfo);
2406 	return;
2407 
2408 drop:
2409 	/*
2410 	 * Drop space held by incoming segment and return.
2411 	 */
2412 #ifdef TCPDEBUG
2413 	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
2414 		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
2415 			  &tcp_savetcp, 0);
2416 #endif
2417 	if (tp != NULL)
2418 		INP_UNLOCK(tp->t_inpcb);
2419 	if (headlocked)
2420 		INP_INFO_WUNLOCK(&tcbinfo);
2421 	m_freem(m);
2422 	return;
2423 }
2424 
2425 /*
2426  * Issue RST and make ACK acceptable to originator of segment.
2427  * The mbuf must still include the original packet header.
2428  * tp may be NULL.
2429  */
2430 static void
2431 tcp_dropwithreset(struct mbuf *m, struct tcphdr *th, struct tcpcb *tp,
2432     int tlen, int rstreason)
2433 {
2434 	struct ip *ip;
2435 #ifdef INET6
2436 	struct ip6_hdr *ip6;
2437 #endif
2438 	/* Don't bother if destination was broadcast/multicast. */
2439 	if ((th->th_flags & TH_RST) || m->m_flags & (M_BCAST|M_MCAST))
2440 		goto drop;
2441 #ifdef INET6
2442 	if (mtod(m, struct ip *)->ip_v == 6) {
2443 		ip6 = mtod(m, struct ip6_hdr *);
2444 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
2445 		    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
2446 			goto drop;
2447 		/* IPv6 anycast check is done at tcp6_input() */
2448 	} else
2449 #endif
2450 	{
2451 		ip = mtod(m, struct ip *);
2452 		if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
2453 		    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
2454 		    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
2455 		    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
2456 			goto drop;
2457 	}
2458 
2459 	/* Perform bandwidth limiting. */
2460 	if (badport_bandlim(rstreason) < 0)
2461 		goto drop;
2462 
2463 	/* tcp_respond consumes the mbuf chain. */
2464 	if (th->th_flags & TH_ACK) {
2465 		tcp_respond(tp, mtod(m, void *), th, m, (tcp_seq)0,
2466 		    th->th_ack, TH_RST);
2467 	} else {
2468 		if (th->th_flags & TH_SYN)
2469 			tlen++;
2470 		tcp_respond(tp, mtod(m, void *), th, m, th->th_seq+tlen,
2471 		    (tcp_seq)0, TH_RST|TH_ACK);
2472 	}
2473 	return;
2474 drop:
2475 	m_freem(m);
2476 	return;
2477 }
2478 
2479 /*
2480  * Parse TCP options and place in tcpopt.
2481  */
2482 static void
2483 tcp_dooptions(struct tcpopt *to, u_char *cp, int cnt, int flags)
2484 {
2485 	int opt, optlen;
2486 
2487 	to->to_flags = 0;
2488 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
2489 		opt = cp[0];
2490 		if (opt == TCPOPT_EOL)
2491 			break;
2492 		if (opt == TCPOPT_NOP)
2493 			optlen = 1;
2494 		else {
2495 			if (cnt < 2)
2496 				break;
2497 			optlen = cp[1];
2498 			if (optlen < 2 || optlen > cnt)
2499 				break;
2500 		}
2501 		switch (opt) {
2502 		case TCPOPT_MAXSEG:
2503 			if (optlen != TCPOLEN_MAXSEG)
2504 				continue;
2505 			if (!(flags & TO_SYN))
2506 				continue;
2507 			to->to_flags |= TOF_MSS;
2508 			bcopy((char *)cp + 2,
2509 			    (char *)&to->to_mss, sizeof(to->to_mss));
2510 			to->to_mss = ntohs(to->to_mss);
2511 			break;
2512 		case TCPOPT_WINDOW:
2513 			if (optlen != TCPOLEN_WINDOW)
2514 				continue;
2515 			if (!(flags & TO_SYN))
2516 				continue;
2517 			to->to_flags |= TOF_SCALE;
2518 			to->to_wscale = min(cp[2], TCP_MAX_WINSHIFT);
2519 			break;
2520 		case TCPOPT_TIMESTAMP:
2521 			if (optlen != TCPOLEN_TIMESTAMP)
2522 				continue;
2523 			to->to_flags |= TOF_TS;
2524 			bcopy((char *)cp + 2,
2525 			    (char *)&to->to_tsval, sizeof(to->to_tsval));
2526 			to->to_tsval = ntohl(to->to_tsval);
2527 			bcopy((char *)cp + 6,
2528 			    (char *)&to->to_tsecr, sizeof(to->to_tsecr));
2529 			to->to_tsecr = ntohl(to->to_tsecr);
2530 			break;
2531 #ifdef TCP_SIGNATURE
2532 		/*
2533 		 * XXX In order to reply to a host which has set the
2534 		 * TCP_SIGNATURE option in its initial SYN, we have to
2535 		 * record the fact that the option was observed here
2536 		 * for the syncache code to perform the correct response.
2537 		 */
2538 		case TCPOPT_SIGNATURE:
2539 			if (optlen != TCPOLEN_SIGNATURE)
2540 				continue;
2541 			to->to_flags |= TOF_SIGNATURE;
2542 			to->to_signature = cp + 2;
2543 			break;
2544 #endif
2545 		case TCPOPT_SACK_PERMITTED:
2546 			if (optlen != TCPOLEN_SACK_PERMITTED)
2547 				continue;
2548 			if (!(flags & TO_SYN))
2549 				continue;
2550 			if (!tcp_do_sack)
2551 				continue;
2552 			to->to_flags |= TOF_SACKPERM;
2553 			break;
2554 		case TCPOPT_SACK:
2555 			if (optlen <= 2 || (optlen - 2) % TCPOLEN_SACK != 0)
2556 				continue;
2557 			if (flags & TO_SYN)
2558 				continue;
2559 			to->to_flags |= TOF_SACK;
2560 			to->to_nsacks = (optlen - 2) / TCPOLEN_SACK;
2561 			to->to_sacks = cp + 2;
2562 			tcpstat.tcps_sack_rcv_blocks++;
2563 			break;
2564 		default:
2565 			continue;
2566 		}
2567 	}
2568 }
2569 
2570 /*
2571  * Pull out of band byte out of a segment so
2572  * it doesn't appear in the user's data queue.
2573  * It is still reflected in the segment length for
2574  * sequencing purposes.
2575  */
2576 static void
2577 tcp_pulloutofband(struct socket *so, struct tcphdr *th, struct mbuf *m,
2578     int off)
2579 {
2580 	int cnt = off + th->th_urp - 1;
2581 
2582 	while (cnt >= 0) {
2583 		if (m->m_len > cnt) {
2584 			char *cp = mtod(m, caddr_t) + cnt;
2585 			struct tcpcb *tp = sototcpcb(so);
2586 
2587 			tp->t_iobc = *cp;
2588 			tp->t_oobflags |= TCPOOB_HAVEDATA;
2589 			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
2590 			m->m_len--;
2591 			if (m->m_flags & M_PKTHDR)
2592 				m->m_pkthdr.len--;
2593 			return;
2594 		}
2595 		cnt -= m->m_len;
2596 		m = m->m_next;
2597 		if (m == NULL)
2598 			break;
2599 	}
2600 	panic("tcp_pulloutofband");
2601 }
2602 
2603 /*
2604  * Collect new round-trip time estimate
2605  * and update averages and current timeout.
2606  */
2607 static void
2608 tcp_xmit_timer(struct tcpcb *tp, int rtt)
2609 {
2610 	int delta;
2611 
2612 	INP_LOCK_ASSERT(tp->t_inpcb);
2613 
2614 	tcpstat.tcps_rttupdated++;
2615 	tp->t_rttupdated++;
2616 	if (tp->t_srtt != 0) {
2617 		/*
2618 		 * srtt is stored as fixed point with 5 bits after the
2619 		 * binary point (i.e., scaled by 8).  The following magic
2620 		 * is equivalent to the smoothing algorithm in rfc793 with
2621 		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
2622 		 * point).  Adjust rtt to origin 0.
2623 		 */
2624 		delta = ((rtt - 1) << TCP_DELTA_SHIFT)
2625 			- (tp->t_srtt >> (TCP_RTT_SHIFT - TCP_DELTA_SHIFT));
2626 
2627 		if ((tp->t_srtt += delta) <= 0)
2628 			tp->t_srtt = 1;
2629 
2630 		/*
2631 		 * We accumulate a smoothed rtt variance (actually, a
2632 		 * smoothed mean difference), then set the retransmit
2633 		 * timer to smoothed rtt + 4 times the smoothed variance.
2634 		 * rttvar is stored as fixed point with 4 bits after the
2635 		 * binary point (scaled by 16).  The following is
2636 		 * equivalent to rfc793 smoothing with an alpha of .75
2637 		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
2638 		 * rfc793's wired-in beta.
2639 		 */
2640 		if (delta < 0)
2641 			delta = -delta;
2642 		delta -= tp->t_rttvar >> (TCP_RTTVAR_SHIFT - TCP_DELTA_SHIFT);
2643 		if ((tp->t_rttvar += delta) <= 0)
2644 			tp->t_rttvar = 1;
2645 		if (tp->t_rttbest > tp->t_srtt + tp->t_rttvar)
2646 		    tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
2647 	} else {
2648 		/*
2649 		 * No rtt measurement yet - use the unsmoothed rtt.
2650 		 * Set the variance to half the rtt (so our first
2651 		 * retransmit happens at 3*rtt).
2652 		 */
2653 		tp->t_srtt = rtt << TCP_RTT_SHIFT;
2654 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1);
2655 		tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
2656 	}
2657 	tp->t_rtttime = 0;
2658 	tp->t_rxtshift = 0;
2659 
2660 	/*
2661 	 * the retransmit should happen at rtt + 4 * rttvar.
2662 	 * Because of the way we do the smoothing, srtt and rttvar
2663 	 * will each average +1/2 tick of bias.  When we compute
2664 	 * the retransmit timer, we want 1/2 tick of rounding and
2665 	 * 1 extra tick because of +-1/2 tick uncertainty in the
2666 	 * firing of the timer.  The bias will give us exactly the
2667 	 * 1.5 tick we need.  But, because the bias is
2668 	 * statistical, we have to test that we don't drop below
2669 	 * the minimum feasible timer (which is 2 ticks).
2670 	 */
2671 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
2672 		      max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
2673 
2674 	/*
2675 	 * We received an ack for a packet that wasn't retransmitted;
2676 	 * it is probably safe to discard any error indications we've
2677 	 * received recently.  This isn't quite right, but close enough
2678 	 * for now (a route might have failed after we sent a segment,
2679 	 * and the return path might not be symmetrical).
2680 	 */
2681 	tp->t_softerror = 0;
2682 }
2683 
2684 /*
2685  * Determine a reasonable value for maxseg size.
2686  * If the route is known, check route for mtu.
2687  * If none, use an mss that can be handled on the outgoing
2688  * interface without forcing IP to fragment; if bigger than
2689  * an mbuf cluster (MCLBYTES), round down to nearest multiple of MCLBYTES
2690  * to utilize large mbufs.  If no route is found, route has no mtu,
2691  * or the destination isn't local, use a default, hopefully conservative
2692  * size (usually 512 or the default IP max size, but no more than the mtu
2693  * of the interface), as we can't discover anything about intervening
2694  * gateways or networks.  We also initialize the congestion/slow start
2695  * window to be a single segment if the destination isn't local.
2696  * While looking at the routing entry, we also initialize other path-dependent
2697  * parameters from pre-set or cached values in the routing entry.
2698  *
2699  * Also take into account the space needed for options that we
2700  * send regularly.  Make maxseg shorter by that amount to assure
2701  * that we can send maxseg amount of data even when the options
2702  * are present.  Store the upper limit of the length of options plus
2703  * data in maxopd.
2704  *
2705  * In case of T/TCP, we call this routine during implicit connection
2706  * setup as well (offer = -1), to initialize maxseg from the cached
2707  * MSS of our peer.
2708  *
2709  * NOTE that this routine is only called when we process an incoming
2710  * segment. Outgoing SYN/ACK MSS settings are handled in tcp_mssopt().
2711  */
2712 void
2713 tcp_mss(struct tcpcb *tp, int offer)
2714 {
2715 	int rtt, mss;
2716 	u_long bufsize;
2717 	u_long maxmtu;
2718 	struct inpcb *inp = tp->t_inpcb;
2719 	struct socket *so;
2720 	struct hc_metrics_lite metrics;
2721 	int origoffer = offer;
2722 	int mtuflags = 0;
2723 #ifdef INET6
2724 	int isipv6 = ((inp->inp_vflag & INP_IPV6) != 0) ? 1 : 0;
2725 	size_t min_protoh = isipv6 ?
2726 			    sizeof (struct ip6_hdr) + sizeof (struct tcphdr) :
2727 			    sizeof (struct tcpiphdr);
2728 #else
2729 	const size_t min_protoh = sizeof(struct tcpiphdr);
2730 #endif
2731 
2732 	/* Initialize. */
2733 #ifdef INET6
2734 	if (isipv6) {
2735 		maxmtu = tcp_maxmtu6(&inp->inp_inc, &mtuflags);
2736 		tp->t_maxopd = tp->t_maxseg = tcp_v6mssdflt;
2737 	} else
2738 #endif
2739 	{
2740 		maxmtu = tcp_maxmtu(&inp->inp_inc, &mtuflags);
2741 		tp->t_maxopd = tp->t_maxseg = tcp_mssdflt;
2742 	}
2743 	so = inp->inp_socket;
2744 
2745 	/*
2746 	 * No route to sender, stay with default mss and return.
2747 	 */
2748 	if (maxmtu == 0)
2749 		return;
2750 
2751 	/* What have we got? */
2752 	switch (offer) {
2753 		case 0:
2754 			/*
2755 			 * Offer == 0 means that there was no MSS on the SYN
2756 			 * segment, in this case we use tcp_mssdflt.
2757 			 */
2758 			offer =
2759 #ifdef INET6
2760 				isipv6 ? tcp_v6mssdflt :
2761 #endif
2762 				tcp_mssdflt;
2763 			break;
2764 
2765 		case -1:
2766 			/*
2767 			 * Offer == -1 means that we didn't receive SYN yet.
2768 			 */
2769 			/* FALLTHROUGH */
2770 
2771 		default:
2772 			/*
2773 			 * Prevent DoS attack with too small MSS. Round up
2774 			 * to at least minmss.
2775 			 */
2776 			offer = max(offer, tcp_minmss);
2777 			/*
2778 			 * Sanity check: make sure that maxopd will be large
2779 			 * enough to allow some data on segments even if the
2780 			 * all the option space is used (40bytes).  Otherwise
2781 			 * funny things may happen in tcp_output.
2782 			 */
2783 			offer = max(offer, 64);
2784 	}
2785 
2786 	/*
2787 	 * rmx information is now retrieved from tcp_hostcache.
2788 	 */
2789 	tcp_hc_get(&inp->inp_inc, &metrics);
2790 
2791 	/*
2792 	 * If there's a discovered mtu int tcp hostcache, use it
2793 	 * else, use the link mtu.
2794 	 */
2795 	if (metrics.rmx_mtu)
2796 		mss = min(metrics.rmx_mtu, maxmtu) - min_protoh;
2797 	else {
2798 #ifdef INET6
2799 		if (isipv6) {
2800 			mss = maxmtu - min_protoh;
2801 			if (!path_mtu_discovery &&
2802 			    !in6_localaddr(&inp->in6p_faddr))
2803 				mss = min(mss, tcp_v6mssdflt);
2804 		} else
2805 #endif
2806 		{
2807 			mss = maxmtu - min_protoh;
2808 			if (!path_mtu_discovery &&
2809 			    !in_localaddr(inp->inp_faddr))
2810 				mss = min(mss, tcp_mssdflt);
2811 		}
2812 	}
2813 	mss = min(mss, offer);
2814 
2815 	/*
2816 	 * maxopd stores the maximum length of data AND options
2817 	 * in a segment; maxseg is the amount of data in a normal
2818 	 * segment.  We need to store this value (maxopd) apart
2819 	 * from maxseg, because now every segment carries options
2820 	 * and thus we normally have somewhat less data in segments.
2821 	 */
2822 	tp->t_maxopd = mss;
2823 
2824 	/*
2825 	 * origoffer==-1 indicates that no segments were received yet.
2826 	 * In this case we just guess.
2827 	 */
2828 	if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
2829 	    (origoffer == -1 ||
2830 	     (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP))
2831 		mss -= TCPOLEN_TSTAMP_APPA;
2832 	tp->t_maxseg = mss;
2833 
2834 #if	(MCLBYTES & (MCLBYTES - 1)) == 0
2835 		if (mss > MCLBYTES)
2836 			mss &= ~(MCLBYTES-1);
2837 #else
2838 		if (mss > MCLBYTES)
2839 			mss = mss / MCLBYTES * MCLBYTES;
2840 #endif
2841 	tp->t_maxseg = mss;
2842 
2843 	/*
2844 	 * If there's a pipesize, change the socket buffer to that size,
2845 	 * don't change if sb_hiwat is different than default (then it
2846 	 * has been changed on purpose with setsockopt).
2847 	 * Make the socket buffers an integral number of mss units;
2848 	 * if the mss is larger than the socket buffer, decrease the mss.
2849 	 */
2850 	SOCKBUF_LOCK(&so->so_snd);
2851 	if ((so->so_snd.sb_hiwat == tcp_sendspace) && metrics.rmx_sendpipe)
2852 		bufsize = metrics.rmx_sendpipe;
2853 	else
2854 		bufsize = so->so_snd.sb_hiwat;
2855 	if (bufsize < mss)
2856 		mss = bufsize;
2857 	else {
2858 		bufsize = roundup(bufsize, mss);
2859 		if (bufsize > sb_max)
2860 			bufsize = sb_max;
2861 		if (bufsize > so->so_snd.sb_hiwat)
2862 			(void)sbreserve_locked(&so->so_snd, bufsize, so, NULL);
2863 	}
2864 	SOCKBUF_UNLOCK(&so->so_snd);
2865 	tp->t_maxseg = mss;
2866 
2867 	SOCKBUF_LOCK(&so->so_rcv);
2868 	if ((so->so_rcv.sb_hiwat == tcp_recvspace) && metrics.rmx_recvpipe)
2869 		bufsize = metrics.rmx_recvpipe;
2870 	else
2871 		bufsize = so->so_rcv.sb_hiwat;
2872 	if (bufsize > mss) {
2873 		bufsize = roundup(bufsize, mss);
2874 		if (bufsize > sb_max)
2875 			bufsize = sb_max;
2876 		if (bufsize > so->so_rcv.sb_hiwat)
2877 			(void)sbreserve_locked(&so->so_rcv, bufsize, so, NULL);
2878 	}
2879 	SOCKBUF_UNLOCK(&so->so_rcv);
2880 	/*
2881 	 * While we're here, check the others too.
2882 	 */
2883 	if (tp->t_srtt == 0 && (rtt = metrics.rmx_rtt)) {
2884 		tp->t_srtt = rtt;
2885 		tp->t_rttbest = tp->t_srtt + TCP_RTT_SCALE;
2886 		tcpstat.tcps_usedrtt++;
2887 		if (metrics.rmx_rttvar) {
2888 			tp->t_rttvar = metrics.rmx_rttvar;
2889 			tcpstat.tcps_usedrttvar++;
2890 		} else {
2891 			/* default variation is +- 1 rtt */
2892 			tp->t_rttvar =
2893 			    tp->t_srtt * TCP_RTTVAR_SCALE / TCP_RTT_SCALE;
2894 		}
2895 		TCPT_RANGESET(tp->t_rxtcur,
2896 			      ((tp->t_srtt >> 2) + tp->t_rttvar) >> 1,
2897 			      tp->t_rttmin, TCPTV_REXMTMAX);
2898 	}
2899 	if (metrics.rmx_ssthresh) {
2900 		/*
2901 		 * There's some sort of gateway or interface
2902 		 * buffer limit on the path.  Use this to set
2903 		 * the slow start threshhold, but set the
2904 		 * threshold to no less than 2*mss.
2905 		 */
2906 		tp->snd_ssthresh = max(2 * mss, metrics.rmx_ssthresh);
2907 		tcpstat.tcps_usedssthresh++;
2908 	}
2909 	if (metrics.rmx_bandwidth)
2910 		tp->snd_bandwidth = metrics.rmx_bandwidth;
2911 
2912 	/*
2913 	 * Set the slow-start flight size depending on whether this
2914 	 * is a local network or not.
2915 	 *
2916 	 * Extend this so we cache the cwnd too and retrieve it here.
2917 	 * Make cwnd even bigger than RFC3390 suggests but only if we
2918 	 * have previous experience with the remote host. Be careful
2919 	 * not make cwnd bigger than remote receive window or our own
2920 	 * send socket buffer. Maybe put some additional upper bound
2921 	 * on the retrieved cwnd. Should do incremental updates to
2922 	 * hostcache when cwnd collapses so next connection doesn't
2923 	 * overloads the path again.
2924 	 *
2925 	 * RFC3390 says only do this if SYN or SYN/ACK didn't got lost.
2926 	 * We currently check only in syncache_socket for that.
2927 	 */
2928 #define TCP_METRICS_CWND
2929 #ifdef TCP_METRICS_CWND
2930 	if (metrics.rmx_cwnd)
2931 		tp->snd_cwnd = max(mss,
2932 				min(metrics.rmx_cwnd / 2,
2933 				 min(tp->snd_wnd, so->so_snd.sb_hiwat)));
2934 	else
2935 #endif
2936 	if (tcp_do_rfc3390)
2937 		tp->snd_cwnd = min(4 * mss, max(2 * mss, 4380));
2938 #ifdef INET6
2939 	else if ((isipv6 && in6_localaddr(&inp->in6p_faddr)) ||
2940 		 (!isipv6 && in_localaddr(inp->inp_faddr)))
2941 #else
2942 	else if (in_localaddr(inp->inp_faddr))
2943 #endif
2944 		tp->snd_cwnd = mss * ss_fltsz_local;
2945 	else
2946 		tp->snd_cwnd = mss * ss_fltsz;
2947 
2948 	/* Check the interface for TSO capabilities. */
2949 	if (mtuflags & CSUM_TSO)
2950 		tp->t_flags |= TF_TSO;
2951 }
2952 
2953 /*
2954  * Determine the MSS option to send on an outgoing SYN.
2955  */
2956 int
2957 tcp_mssopt(struct in_conninfo *inc)
2958 {
2959 	int mss = 0;
2960 	u_long maxmtu = 0;
2961 	u_long thcmtu = 0;
2962 	size_t min_protoh;
2963 #ifdef INET6
2964 	int isipv6 = inc->inc_isipv6 ? 1 : 0;
2965 #endif
2966 
2967 	KASSERT(inc != NULL, ("tcp_mssopt with NULL in_conninfo pointer"));
2968 
2969 #ifdef INET6
2970 	if (isipv6) {
2971 		mss = tcp_v6mssdflt;
2972 		maxmtu = tcp_maxmtu6(inc, NULL);
2973 		thcmtu = tcp_hc_getmtu(inc); /* IPv4 and IPv6 */
2974 		min_protoh = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
2975 	} else
2976 #endif
2977 	{
2978 		mss = tcp_mssdflt;
2979 		maxmtu = tcp_maxmtu(inc, NULL);
2980 		thcmtu = tcp_hc_getmtu(inc); /* IPv4 and IPv6 */
2981 		min_protoh = sizeof(struct tcpiphdr);
2982 	}
2983 	if (maxmtu && thcmtu)
2984 		mss = min(maxmtu, thcmtu) - min_protoh;
2985 	else if (maxmtu || thcmtu)
2986 		mss = max(maxmtu, thcmtu) - min_protoh;
2987 
2988 	return (mss);
2989 }
2990 
2991 
2992 /*
2993  * On a partial ack arrives, force the retransmission of the
2994  * next unacknowledged segment.  Do not clear tp->t_dupacks.
2995  * By setting snd_nxt to ti_ack, this forces retransmission timer to
2996  * be started again.
2997  */
2998 static void
2999 tcp_newreno_partial_ack(struct tcpcb *tp, struct tcphdr *th)
3000 {
3001 	tcp_seq onxt = tp->snd_nxt;
3002 	u_long  ocwnd = tp->snd_cwnd;
3003 
3004 	tcp_timer_activate(tp, TT_REXMT, 0);
3005 	tp->t_rtttime = 0;
3006 	tp->snd_nxt = th->th_ack;
3007 	/*
3008 	 * Set snd_cwnd to one segment beyond acknowledged offset.
3009 	 * (tp->snd_una has not yet been updated when this function is called.)
3010 	 */
3011 	tp->snd_cwnd = tp->t_maxseg + (th->th_ack - tp->snd_una);
3012 	tp->t_flags |= TF_ACKNOW;
3013 	(void) tcp_output(tp);
3014 	tp->snd_cwnd = ocwnd;
3015 	if (SEQ_GT(onxt, tp->snd_nxt))
3016 		tp->snd_nxt = onxt;
3017 	/*
3018 	 * Partial window deflation.  Relies on fact that tp->snd_una
3019 	 * not updated yet.
3020 	 */
3021 	if (tp->snd_cwnd > th->th_ack - tp->snd_una)
3022 		tp->snd_cwnd -= th->th_ack - tp->snd_una;
3023 	else
3024 		tp->snd_cwnd = 0;
3025 	tp->snd_cwnd += tp->t_maxseg;
3026 }
3027