xref: /freebsd/sys/netinet/tcp_input.c (revision 195ebc7e9e4b129de810833791a19dfb4349d6a9)
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 4. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include "opt_ipfw.h"		/* for ipfw_fwd	*/
36 #include "opt_inet.h"
37 #include "opt_inet6.h"
38 #include "opt_ipsec.h"
39 #include "opt_mac.h"
40 #include "opt_tcpdebug.h"
41 
42 #include <sys/param.h>
43 #include <sys/kernel.h>
44 #include <sys/malloc.h>
45 #include <sys/mbuf.h>
46 #include <sys/proc.h>		/* for proc0 declaration */
47 #include <sys/protosw.h>
48 #include <sys/signalvar.h>
49 #include <sys/socket.h>
50 #include <sys/socketvar.h>
51 #include <sys/sysctl.h>
52 #include <sys/syslog.h>
53 #include <sys/systm.h>
54 #include <sys/vimage.h>
55 
56 #include <machine/cpu.h>	/* before tcp_seq.h, for tcp_random18() */
57 
58 #include <vm/uma.h>
59 
60 #include <net/if.h>
61 #include <net/route.h>
62 
63 #define TCPSTATES		/* for logging */
64 
65 #include <netinet/in.h>
66 #include <netinet/in_pcb.h>
67 #include <netinet/in_systm.h>
68 #include <netinet/in_var.h>
69 #include <netinet/ip.h>
70 #include <netinet/ip_icmp.h>	/* required for icmp_var.h */
71 #include <netinet/icmp_var.h>	/* for ICMP_BANDLIM */
72 #include <netinet/ip_var.h>
73 #include <netinet/ip_options.h>
74 #include <netinet/ip6.h>
75 #include <netinet/icmp6.h>
76 #include <netinet6/in6_pcb.h>
77 #include <netinet6/ip6_var.h>
78 #include <netinet6/nd6.h>
79 #include <netinet/tcp.h>
80 #include <netinet/tcp_fsm.h>
81 #include <netinet/tcp_seq.h>
82 #include <netinet/tcp_timer.h>
83 #include <netinet/tcp_var.h>
84 #include <netinet6/tcp6_var.h>
85 #include <netinet/tcpip.h>
86 #include <netinet/tcp_syncache.h>
87 #ifdef TCPDEBUG
88 #include <netinet/tcp_debug.h>
89 #endif /* TCPDEBUG */
90 #include <netinet/vinet.h>
91 
92 #ifdef INET6
93 #include <netinet6/vinet6.h>
94 #endif
95 
96 #ifdef IPSEC
97 #include <netipsec/ipsec.h>
98 #include <netipsec/ipsec6.h>
99 #endif /*IPSEC*/
100 
101 #include <machine/in_cksum.h>
102 
103 #include <security/mac/mac_framework.h>
104 
105 static const int tcprexmtthresh = 3;
106 
107 #ifdef VIMAGE_GLOBALS
108 struct	tcpstat tcpstat;
109 int	blackhole;
110 int	tcp_delack_enabled;
111 int	drop_synfin;
112 int	tcp_do_rfc3042;
113 int	tcp_do_rfc3390;
114 int	tcp_do_ecn;
115 int	tcp_ecn_maxretries;
116 int	tcp_insecure_rst;
117 int	tcp_do_autorcvbuf;
118 int	tcp_autorcvbuf_inc;
119 int	tcp_autorcvbuf_max;
120 int	tcp_do_rfc3465;
121 int	tcp_abc_l_var;
122 #endif
123 
124 SYSCTL_V_STRUCT(V_NET, vnet_inet, _net_inet_tcp, TCPCTL_STATS, stats,
125     CTLFLAG_RW, tcpstat , tcpstat,
126     "TCP statistics (struct tcpstat, netinet/tcp_var.h)");
127 
128 int tcp_log_in_vain = 0;
129 SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_in_vain, CTLFLAG_RW,
130     &tcp_log_in_vain, 0, "Log all incoming TCP segments to closed ports");
131 
132 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_tcp, OID_AUTO, blackhole, CTLFLAG_RW,
133     blackhole, 0, "Do not send RST on segments to closed ports");
134 
135 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_tcp, OID_AUTO, delayed_ack,
136     CTLFLAG_RW, tcp_delack_enabled, 0,
137     "Delay ACK to try and piggyback it onto a data packet");
138 
139 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_tcp, OID_AUTO, drop_synfin,
140     CTLFLAG_RW, drop_synfin, 0, "Drop TCP packets with SYN+FIN set");
141 
142 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_tcp, OID_AUTO, rfc3042, CTLFLAG_RW,
143     tcp_do_rfc3042, 0, "Enable RFC 3042 (Limited Transmit)");
144 
145 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_tcp, OID_AUTO, rfc3390, CTLFLAG_RW,
146     tcp_do_rfc3390, 0,
147     "Enable RFC 3390 (Increasing TCP's Initial Congestion Window)");
148 
149 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_tcp, OID_AUTO, rfc3465, CTLFLAG_RW,
150     tcp_do_rfc3465, 0,
151     "Enable RFC 3465 (Appropriate Byte Counting)");
152 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_tcp, OID_AUTO, abc_l_var, CTLFLAG_RW,
153     tcp_abc_l_var, 2,
154     "Cap the max cwnd increment during slow-start to this number of segments");
155 
156 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, ecn, CTLFLAG_RW, 0, "TCP ECN");
157 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_tcp_ecn, OID_AUTO, enable,
158     CTLFLAG_RW, tcp_do_ecn, 0, "TCP ECN support");
159 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_tcp_ecn, OID_AUTO, maxretries,
160     CTLFLAG_RW, tcp_ecn_maxretries, 0, "Max retries before giving up on ECN");
161 
162 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_tcp, OID_AUTO, insecure_rst,
163     CTLFLAG_RW, tcp_insecure_rst, 0,
164     "Follow the old (insecure) criteria for accepting RST packets");
165 
166 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_tcp, OID_AUTO, recvbuf_auto,
167     CTLFLAG_RW, tcp_do_autorcvbuf, 0,
168     "Enable automatic receive buffer sizing");
169 
170 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_tcp, OID_AUTO, recvbuf_inc,
171     CTLFLAG_RW, tcp_autorcvbuf_inc, 0,
172     "Incrementor step size of automatic receive buffer");
173 
174 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_tcp, OID_AUTO, recvbuf_max,
175     CTLFLAG_RW, tcp_autorcvbuf_max, 0,
176     "Max size of automatic receive buffer");
177 
178 int	tcp_read_locking = 1;
179 SYSCTL_INT(_net_inet_tcp, OID_AUTO, read_locking, CTLFLAG_RW,
180     &tcp_read_locking, 0, "Enable read locking strategy");
181 
182 int	tcp_rlock_atfirst;
183 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rlock_atfirst, CTLFLAG_RD,
184     &tcp_rlock_atfirst, 0, "");
185 
186 int	tcp_wlock_atfirst;
187 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcp_wlock_atfirst, CTLFLAG_RD,
188     &tcp_wlock_atfirst, 0, "");
189 
190 int	tcp_wlock_upgraded;
191 SYSCTL_INT(_net_inet_tcp, OID_AUTO, wlock_upgraded, CTLFLAG_RD,
192     &tcp_wlock_upgraded, 0, "");
193 
194 int	tcp_wlock_relocked;
195 SYSCTL_INT(_net_inet_tcp, OID_AUTO, wlock_relocked, CTLFLAG_RD,
196     &tcp_wlock_relocked, 0, "");
197 
198 int	tcp_wlock_looped;
199 SYSCTL_INT(_net_inet_tcp, OID_AUTO, wlock_looped, CTLFLAG_RD,
200     &tcp_wlock_looped, 0, "");
201 
202 #ifdef VIMAGE_GLOBALS
203 struct inpcbhead tcb;
204 struct inpcbinfo tcbinfo;
205 #endif
206 #define	tcb6	tcb  /* for KAME src sync over BSD*'s */
207 
208 static void	 tcp_dooptions(struct tcpopt *, u_char *, int, int);
209 static void	 tcp_do_segment(struct mbuf *, struct tcphdr *,
210 		     struct socket *, struct tcpcb *, int, int, uint8_t,
211 		     int);
212 static void	 tcp_dropwithreset(struct mbuf *, struct tcphdr *,
213 		     struct tcpcb *, int, int);
214 static void	 tcp_pulloutofband(struct socket *,
215 		     struct tcphdr *, struct mbuf *, int);
216 static void	 tcp_xmit_timer(struct tcpcb *, int);
217 static void	 tcp_newreno_partial_ack(struct tcpcb *, struct tcphdr *);
218 static void inline
219 		 tcp_congestion_exp(struct tcpcb *);
220 
221 static void inline
222 tcp_congestion_exp(struct tcpcb *tp)
223 {
224 	u_int win;
225 
226 	win = min(tp->snd_wnd, tp->snd_cwnd) /
227 	    2 / tp->t_maxseg;
228 	if (win < 2)
229 		win = 2;
230 	tp->snd_ssthresh = win * tp->t_maxseg;
231 	ENTER_FASTRECOVERY(tp);
232 	tp->snd_recover = tp->snd_max;
233 	if (tp->t_flags & TF_ECN_PERMIT)
234 		tp->t_flags |= TF_ECN_SND_CWR;
235 }
236 
237 /* Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint. */
238 #ifdef INET6
239 #define ND6_HINT(tp) \
240 do { \
241 	if ((tp) && (tp)->t_inpcb && \
242 	    ((tp)->t_inpcb->inp_vflag & INP_IPV6) != 0) \
243 		nd6_nud_hint(NULL, NULL, 0); \
244 } while (0)
245 #else
246 #define ND6_HINT(tp)
247 #endif
248 
249 /*
250  * Indicate whether this ack should be delayed.  We can delay the ack if
251  *	- there is no delayed ack timer in progress and
252  *	- our last ack wasn't a 0-sized window.  We never want to delay
253  *	  the ack that opens up a 0-sized window and
254  *		- delayed acks are enabled or
255  *		- this is a half-synchronized T/TCP connection.
256  */
257 #define DELAY_ACK(tp)							\
258 	((!tcp_timer_active(tp, TT_DELACK) &&				\
259 	    (tp->t_flags & TF_RXWIN0SENT) == 0) &&			\
260 	    (V_tcp_delack_enabled || (tp->t_flags & TF_NEEDSYN)))
261 
262 /*
263  * TCP input handling is split into multiple parts:
264  *   tcp6_input is a thin wrapper around tcp_input for the extended
265  *	ip6_protox[] call format in ip6_input
266  *   tcp_input handles primary segment validation, inpcb lookup and
267  *	SYN processing on listen sockets
268  *   tcp_do_segment processes the ACK and text of the segment for
269  *	establishing, established and closing connections
270  */
271 #ifdef INET6
272 int
273 tcp6_input(struct mbuf **mp, int *offp, int proto)
274 {
275 	INIT_VNET_INET6(curvnet);
276 	struct mbuf *m = *mp;
277 	struct in6_ifaddr *ia6;
278 
279 	IP6_EXTHDR_CHECK(m, *offp, sizeof(struct tcphdr), IPPROTO_DONE);
280 
281 	/*
282 	 * draft-itojun-ipv6-tcp-to-anycast
283 	 * better place to put this in?
284 	 */
285 	ia6 = ip6_getdstifaddr(m);
286 	if (ia6 && (ia6->ia6_flags & IN6_IFF_ANYCAST)) {
287 		struct ip6_hdr *ip6;
288 
289 		ip6 = mtod(m, struct ip6_hdr *);
290 		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
291 			    (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
292 		return IPPROTO_DONE;
293 	}
294 
295 	tcp_input(m, *offp);
296 	return IPPROTO_DONE;
297 }
298 #endif
299 
300 void
301 tcp_input(struct mbuf *m, int off0)
302 {
303 	INIT_VNET_INET(curvnet);
304 #ifdef INET6
305 	INIT_VNET_INET6(curvnet);
306 #endif
307 #ifdef IPSEC
308 	INIT_VNET_IPSEC(curvnet);
309 #endif
310 	struct tcphdr *th;
311 	struct ip *ip = NULL;
312 	struct ipovly *ipov;
313 	struct inpcb *inp = NULL;
314 	struct tcpcb *tp = NULL;
315 	struct socket *so = NULL;
316 	u_char *optp = NULL;
317 	int optlen = 0;
318 	int len, tlen, off;
319 	int drop_hdrlen;
320 	int thflags;
321 	int rstreason = 0;	/* For badport_bandlim accounting purposes */
322 	uint8_t iptos;
323 #ifdef IPFIREWALL_FORWARD
324 	struct m_tag *fwd_tag;
325 #endif
326 #ifdef INET6
327 	struct ip6_hdr *ip6 = NULL;
328 	int isipv6;
329 #else
330 	const void *ip6 = NULL;
331 	const int isipv6 = 0;
332 #endif
333 	struct tcpopt to;		/* options in this segment */
334 	char *s = NULL;			/* address and port logging */
335 	int ti_locked;
336 #define	TI_UNLOCKED	1
337 #define	TI_RLOCKED	2
338 #define	TI_WLOCKED	3
339 
340 #ifdef TCPDEBUG
341 	/*
342 	 * The size of tcp_saveipgen must be the size of the max ip header,
343 	 * now IPv6.
344 	 */
345 	u_char tcp_saveipgen[IP6_HDR_LEN];
346 	struct tcphdr tcp_savetcp;
347 	short ostate = 0;
348 #endif
349 
350 #ifdef INET6
351 	isipv6 = (mtod(m, struct ip *)->ip_v == 6) ? 1 : 0;
352 #endif
353 
354 	to.to_flags = 0;
355 	TCPSTAT_INC(tcps_rcvtotal);
356 
357 	if (isipv6) {
358 #ifdef INET6
359 		/* IP6_EXTHDR_CHECK() is already done at tcp6_input(). */
360 		ip6 = mtod(m, struct ip6_hdr *);
361 		tlen = sizeof(*ip6) + ntohs(ip6->ip6_plen) - off0;
362 		if (in6_cksum(m, IPPROTO_TCP, off0, tlen)) {
363 			TCPSTAT_INC(tcps_rcvbadsum);
364 			goto drop;
365 		}
366 		th = (struct tcphdr *)((caddr_t)ip6 + off0);
367 
368 		/*
369 		 * Be proactive about unspecified IPv6 address in source.
370 		 * As we use all-zero to indicate unbounded/unconnected pcb,
371 		 * unspecified IPv6 address can be used to confuse us.
372 		 *
373 		 * Note that packets with unspecified IPv6 destination is
374 		 * already dropped in ip6_input.
375 		 */
376 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
377 			/* XXX stat */
378 			goto drop;
379 		}
380 #else
381 		th = NULL;		/* XXX: Avoid compiler warning. */
382 #endif
383 	} else {
384 		/*
385 		 * Get IP and TCP header together in first mbuf.
386 		 * Note: IP leaves IP header in first mbuf.
387 		 */
388 		if (off0 > sizeof (struct ip)) {
389 			ip_stripoptions(m, (struct mbuf *)0);
390 			off0 = sizeof(struct ip);
391 		}
392 		if (m->m_len < sizeof (struct tcpiphdr)) {
393 			if ((m = m_pullup(m, sizeof (struct tcpiphdr)))
394 			    == NULL) {
395 				TCPSTAT_INC(tcps_rcvshort);
396 				return;
397 			}
398 		}
399 		ip = mtod(m, struct ip *);
400 		ipov = (struct ipovly *)ip;
401 		th = (struct tcphdr *)((caddr_t)ip + off0);
402 		tlen = ip->ip_len;
403 
404 		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
405 			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
406 				th->th_sum = m->m_pkthdr.csum_data;
407 			else
408 				th->th_sum = in_pseudo(ip->ip_src.s_addr,
409 						ip->ip_dst.s_addr,
410 						htonl(m->m_pkthdr.csum_data +
411 							ip->ip_len +
412 							IPPROTO_TCP));
413 			th->th_sum ^= 0xffff;
414 #ifdef TCPDEBUG
415 			ipov->ih_len = (u_short)tlen;
416 			ipov->ih_len = htons(ipov->ih_len);
417 #endif
418 		} else {
419 			/*
420 			 * Checksum extended TCP header and data.
421 			 */
422 			len = sizeof (struct ip) + tlen;
423 			bzero(ipov->ih_x1, sizeof(ipov->ih_x1));
424 			ipov->ih_len = (u_short)tlen;
425 			ipov->ih_len = htons(ipov->ih_len);
426 			th->th_sum = in_cksum(m, len);
427 		}
428 		if (th->th_sum) {
429 			TCPSTAT_INC(tcps_rcvbadsum);
430 			goto drop;
431 		}
432 		/* Re-initialization for later version check */
433 		ip->ip_v = IPVERSION;
434 	}
435 
436 #ifdef INET6
437 	if (isipv6)
438 		iptos = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
439 	else
440 #endif
441 		iptos = ip->ip_tos;
442 
443 	/*
444 	 * Check that TCP offset makes sense,
445 	 * pull out TCP options and adjust length.		XXX
446 	 */
447 	off = th->th_off << 2;
448 	if (off < sizeof (struct tcphdr) || off > tlen) {
449 		TCPSTAT_INC(tcps_rcvbadoff);
450 		goto drop;
451 	}
452 	tlen -= off;	/* tlen is used instead of ti->ti_len */
453 	if (off > sizeof (struct tcphdr)) {
454 		if (isipv6) {
455 #ifdef INET6
456 			IP6_EXTHDR_CHECK(m, off0, off, );
457 			ip6 = mtod(m, struct ip6_hdr *);
458 			th = (struct tcphdr *)((caddr_t)ip6 + off0);
459 #endif
460 		} else {
461 			if (m->m_len < sizeof(struct ip) + off) {
462 				if ((m = m_pullup(m, sizeof (struct ip) + off))
463 				    == NULL) {
464 					TCPSTAT_INC(tcps_rcvshort);
465 					return;
466 				}
467 				ip = mtod(m, struct ip *);
468 				ipov = (struct ipovly *)ip;
469 				th = (struct tcphdr *)((caddr_t)ip + off0);
470 			}
471 		}
472 		optlen = off - sizeof (struct tcphdr);
473 		optp = (u_char *)(th + 1);
474 	}
475 	thflags = th->th_flags;
476 
477 	/*
478 	 * Convert TCP protocol specific fields to host format.
479 	 */
480 	th->th_seq = ntohl(th->th_seq);
481 	th->th_ack = ntohl(th->th_ack);
482 	th->th_win = ntohs(th->th_win);
483 	th->th_urp = ntohs(th->th_urp);
484 
485 	/*
486 	 * Delay dropping TCP, IP headers, IPv6 ext headers, and TCP options.
487 	 */
488 	drop_hdrlen = off0 + off;
489 
490 	/*
491 	 * Locate pcb for segment, which requires a lock on tcbinfo.
492 	 * Optimisticaly acquire a global read lock rather than a write lock
493 	 * unless header flags necessarily imply a state change.  There are
494 	 * two cases where we might discover later we need a write lock
495 	 * despite the flags: ACKs moving a connection out of the syncache,
496 	 * and ACKs for a connection in TIMEWAIT.
497 	 */
498 	if ((thflags & (TH_SYN | TH_FIN | TH_RST)) != 0 ||
499 	    tcp_read_locking == 0) {
500 		INP_INFO_WLOCK(&V_tcbinfo);
501 		ti_locked = TI_WLOCKED;
502 		tcp_wlock_atfirst++;
503 	} else {
504 		INP_INFO_RLOCK(&V_tcbinfo);
505 		ti_locked = TI_RLOCKED;
506 		tcp_rlock_atfirst++;
507 	}
508 
509 findpcb:
510 #ifdef INVARIANTS
511 	if (ti_locked == TI_RLOCKED)
512 		INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
513 	else if (ti_locked == TI_WLOCKED)
514 		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
515 	else
516 		panic("%s: findpcb ti_locked %d\n", __func__, ti_locked);
517 #endif
518 
519 #ifdef IPFIREWALL_FORWARD
520 	/*
521 	 * Grab info from PACKET_TAG_IPFORWARD tag prepended to the chain.
522 	 */
523 	fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
524 
525 	if (fwd_tag != NULL && isipv6 == 0) {	/* IPv6 support is not yet */
526 		struct sockaddr_in *next_hop;
527 
528 		next_hop = (struct sockaddr_in *)(fwd_tag+1);
529 		/*
530 		 * Transparently forwarded. Pretend to be the destination.
531 		 * already got one like this?
532 		 */
533 		inp = in_pcblookup_hash(&V_tcbinfo,
534 					ip->ip_src, th->th_sport,
535 					ip->ip_dst, th->th_dport,
536 					0, m->m_pkthdr.rcvif);
537 		if (!inp) {
538 			/* It's new.  Try to find the ambushing socket. */
539 			inp = in_pcblookup_hash(&V_tcbinfo,
540 						ip->ip_src, th->th_sport,
541 						next_hop->sin_addr,
542 						next_hop->sin_port ?
543 						    ntohs(next_hop->sin_port) :
544 						    th->th_dport,
545 						INPLOOKUP_WILDCARD,
546 						m->m_pkthdr.rcvif);
547 		}
548 		/* Remove the tag from the packet.  We don't need it anymore. */
549 		m_tag_delete(m, fwd_tag);
550 	} else
551 #endif /* IPFIREWALL_FORWARD */
552 	{
553 		if (isipv6) {
554 #ifdef INET6
555 			inp = in6_pcblookup_hash(&V_tcbinfo,
556 						 &ip6->ip6_src, th->th_sport,
557 						 &ip6->ip6_dst, th->th_dport,
558 						 INPLOOKUP_WILDCARD,
559 						 m->m_pkthdr.rcvif);
560 #endif
561 		} else
562 			inp = in_pcblookup_hash(&V_tcbinfo,
563 						ip->ip_src, th->th_sport,
564 						ip->ip_dst, th->th_dport,
565 						INPLOOKUP_WILDCARD,
566 						m->m_pkthdr.rcvif);
567 	}
568 
569 	/*
570 	 * If the INPCB does not exist then all data in the incoming
571 	 * segment is discarded and an appropriate RST is sent back.
572 	 * XXX MRT Send RST using which routing table?
573 	 */
574 	if (inp == NULL) {
575 		/*
576 		 * Log communication attempts to ports that are not
577 		 * in use.
578 		 */
579 		if ((tcp_log_in_vain == 1 && (thflags & TH_SYN)) ||
580 		    tcp_log_in_vain == 2) {
581 			if ((s = tcp_log_addrs(NULL, th, (void *)ip, ip6)))
582 				log(LOG_INFO, "%s; %s: Connection attempt "
583 				    "to closed port\n", s, __func__);
584 		}
585 		/*
586 		 * When blackholing do not respond with a RST but
587 		 * completely ignore the segment and drop it.
588 		 */
589 		if ((V_blackhole == 1 && (thflags & TH_SYN)) ||
590 		    V_blackhole == 2)
591 			goto dropunlock;
592 
593 		rstreason = BANDLIM_RST_CLOSEDPORT;
594 		goto dropwithreset;
595 	}
596 	INP_WLOCK(inp);
597 	if (!(inp->inp_flags & INP_HW_FLOWID)
598 	    && (m->m_flags & M_FLOWID)
599 	    && ((inp->inp_socket == NULL)
600 		|| !(inp->inp_socket->so_options & SO_ACCEPTCONN))) {
601 		inp->inp_flags |= INP_HW_FLOWID;
602 		inp->inp_flags &= ~INP_SW_FLOWID;
603 		inp->inp_flowid = m->m_pkthdr.flowid;
604 	}
605 #ifdef IPSEC
606 #ifdef INET6
607 	if (isipv6 && ipsec6_in_reject(m, inp)) {
608 		V_ipsec6stat.in_polvio++;
609 		goto dropunlock;
610 	} else
611 #endif /* INET6 */
612 	if (ipsec4_in_reject(m, inp) != 0) {
613 		V_ipsec4stat.in_polvio++;
614 		goto dropunlock;
615 	}
616 #endif /* IPSEC */
617 
618 	/*
619 	 * Check the minimum TTL for socket.
620 	 */
621 	if (inp->inp_ip_minttl != 0) {
622 #ifdef INET6
623 		if (isipv6 && inp->inp_ip_minttl > ip6->ip6_hlim)
624 			goto dropunlock;
625 		else
626 #endif
627 		if (inp->inp_ip_minttl > ip->ip_ttl)
628 			goto dropunlock;
629 	}
630 
631 	/*
632 	 * A previous connection in TIMEWAIT state is supposed to catch stray
633 	 * or duplicate segments arriving late.  If this segment was a
634 	 * legitimate new connection attempt the old INPCB gets removed and
635 	 * we can try again to find a listening socket.
636 	 *
637 	 * At this point, due to earlier optimism, we may hold a read lock on
638 	 * the inpcbinfo, rather than a write lock.  If so, we need to
639 	 * upgrade, or if that fails, acquire a reference on the inpcb, drop
640 	 * all locks, acquire a global write lock, and then re-acquire the
641 	 * inpcb lock.  We may at that point discover that another thread has
642 	 * tried to free the inpcb, in which case we need to loop back and
643 	 * try to find a new inpcb to deliver to.
644 	 */
645 	if (inp->inp_flags & INP_TIMEWAIT) {
646 		KASSERT(ti_locked == TI_RLOCKED || ti_locked == TI_WLOCKED,
647 		    ("%s: INP_TIMEWAIT ti_locked %d", __func__, ti_locked));
648 
649 		if (ti_locked == TI_RLOCKED) {
650 			if (rw_try_upgrade(&V_tcbinfo.ipi_lock) == 0) {
651 				in_pcbref(inp);
652 				INP_WUNLOCK(inp);
653 				INP_INFO_RUNLOCK(&V_tcbinfo);
654 				INP_INFO_WLOCK(&V_tcbinfo);
655 				ti_locked = TI_WLOCKED;
656 				INP_WLOCK(inp);
657 				if (in_pcbrele(inp)) {
658 					tcp_wlock_looped++;
659 					inp = NULL;
660 					goto findpcb;
661 				}
662 				tcp_wlock_relocked++;
663 			} else {
664 				ti_locked = TI_WLOCKED;
665 				tcp_wlock_upgraded++;
666 			}
667 		}
668 		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
669 
670 		if (thflags & TH_SYN)
671 			tcp_dooptions(&to, optp, optlen, TO_SYN);
672 		/*
673 		 * NB: tcp_twcheck unlocks the INP and frees the mbuf.
674 		 */
675 		if (tcp_twcheck(inp, &to, th, m, tlen))
676 			goto findpcb;
677 		INP_INFO_WUNLOCK(&V_tcbinfo);
678 		return;
679 	}
680 	/*
681 	 * The TCPCB may no longer exist if the connection is winding
682 	 * down or it is in the CLOSED state.  Either way we drop the
683 	 * segment and send an appropriate response.
684 	 */
685 	tp = intotcpcb(inp);
686 	if (tp == NULL || tp->t_state == TCPS_CLOSED) {
687 		rstreason = BANDLIM_RST_CLOSEDPORT;
688 		goto dropwithreset;
689 	}
690 
691 	/*
692 	 * We've identified a valid inpcb, but it could be that we need an
693 	 * inpcbinfo write lock and have only a read lock.  In this case,
694 	 * attempt to upgrade/relock using the same strategy as the TIMEWAIT
695 	 * case above.
696 	 */
697 	if (tp->t_state != TCPS_ESTABLISHED ||
698 	    (thflags & (TH_SYN | TH_FIN | TH_RST)) != 0 ||
699 	    tcp_read_locking == 0) {
700 		KASSERT(ti_locked == TI_RLOCKED || ti_locked == TI_WLOCKED,
701 		    ("%s: upgrade check ti_locked %d", __func__, ti_locked));
702 
703 		if (ti_locked == TI_RLOCKED) {
704 			if (rw_try_upgrade(&V_tcbinfo.ipi_lock) == 0) {
705 				in_pcbref(inp);
706 				INP_WUNLOCK(inp);
707 				INP_INFO_RUNLOCK(&V_tcbinfo);
708 				INP_INFO_WLOCK(&V_tcbinfo);
709 				ti_locked = TI_WLOCKED;
710 				INP_WLOCK(inp);
711 				if (in_pcbrele(inp)) {
712 					tcp_wlock_looped++;
713 					inp = NULL;
714 					goto findpcb;
715 				}
716 				tcp_wlock_relocked++;
717 			} else {
718 				ti_locked = TI_WLOCKED;
719 				tcp_wlock_upgraded++;
720 			}
721 		}
722 		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
723 	}
724 
725 #ifdef MAC
726 	INP_WLOCK_ASSERT(inp);
727 	if (mac_inpcb_check_deliver(inp, m))
728 		goto dropunlock;
729 #endif
730 	so = inp->inp_socket;
731 	KASSERT(so != NULL, ("%s: so == NULL", __func__));
732 #ifdef TCPDEBUG
733 	if (so->so_options & SO_DEBUG) {
734 		ostate = tp->t_state;
735 		if (isipv6) {
736 #ifdef INET6
737 			bcopy((char *)ip6, (char *)tcp_saveipgen, sizeof(*ip6));
738 #endif
739 		} else
740 			bcopy((char *)ip, (char *)tcp_saveipgen, sizeof(*ip));
741 		tcp_savetcp = *th;
742 	}
743 #endif
744 	/*
745 	 * When the socket is accepting connections (the INPCB is in LISTEN
746 	 * state) we look into the SYN cache if this is a new connection
747 	 * attempt or the completion of a previous one.
748 	 */
749 	if (so->so_options & SO_ACCEPTCONN) {
750 		struct in_conninfo inc;
751 
752 		KASSERT(tp->t_state == TCPS_LISTEN, ("%s: so accepting but "
753 		    "tp not listening", __func__));
754 
755 		bzero(&inc, sizeof(inc));
756 #ifdef INET6
757 		if (isipv6) {
758 			inc.inc_flags |= INC_ISIPV6;
759 			inc.inc6_faddr = ip6->ip6_src;
760 			inc.inc6_laddr = ip6->ip6_dst;
761 		} else
762 #endif
763 		{
764 			inc.inc_faddr = ip->ip_src;
765 			inc.inc_laddr = ip->ip_dst;
766 		}
767 		inc.inc_fport = th->th_sport;
768 		inc.inc_lport = th->th_dport;
769 
770 		/*
771 		 * Check for an existing connection attempt in syncache if
772 		 * the flag is only ACK.  A successful lookup creates a new
773 		 * socket appended to the listen queue in SYN_RECEIVED state.
774 		 */
775 		if ((thflags & (TH_RST|TH_ACK|TH_SYN)) == TH_ACK) {
776 			/*
777 			 * Parse the TCP options here because
778 			 * syncookies need access to the reflected
779 			 * timestamp.
780 			 */
781 			tcp_dooptions(&to, optp, optlen, 0);
782 			/*
783 			 * NB: syncache_expand() doesn't unlock
784 			 * inp and tcpinfo locks.
785 			 */
786 			if (!syncache_expand(&inc, &to, th, &so, m)) {
787 				/*
788 				 * No syncache entry or ACK was not
789 				 * for our SYN/ACK.  Send a RST.
790 				 * NB: syncache did its own logging
791 				 * of the failure cause.
792 				 */
793 				rstreason = BANDLIM_RST_OPENPORT;
794 				goto dropwithreset;
795 			}
796 			if (so == NULL) {
797 				/*
798 				 * We completed the 3-way handshake
799 				 * but could not allocate a socket
800 				 * either due to memory shortage,
801 				 * listen queue length limits or
802 				 * global socket limits.  Send RST
803 				 * or wait and have the remote end
804 				 * retransmit the ACK for another
805 				 * try.
806 				 */
807 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
808 					log(LOG_DEBUG, "%s; %s: Listen socket: "
809 					    "Socket allocation failed due to "
810 					    "limits or memory shortage, %s\n",
811 					    s, __func__,
812 					    V_tcp_sc_rst_sock_fail ?
813 					    "sending RST" : "try again");
814 				if (V_tcp_sc_rst_sock_fail) {
815 					rstreason = BANDLIM_UNLIMITED;
816 					goto dropwithreset;
817 				} else
818 					goto dropunlock;
819 			}
820 			/*
821 			 * Socket is created in state SYN_RECEIVED.
822 			 * Unlock the listen socket, lock the newly
823 			 * created socket and update the tp variable.
824 			 */
825 			INP_WUNLOCK(inp);	/* listen socket */
826 			inp = sotoinpcb(so);
827 			INP_WLOCK(inp);		/* new connection */
828 			tp = intotcpcb(inp);
829 			KASSERT(tp->t_state == TCPS_SYN_RECEIVED,
830 			    ("%s: ", __func__));
831 			/*
832 			 * Process the segment and the data it
833 			 * contains.  tcp_do_segment() consumes
834 			 * the mbuf chain and unlocks the inpcb.
835 			 */
836 			tcp_do_segment(m, th, so, tp, drop_hdrlen, tlen,
837 			    iptos, ti_locked);
838 			INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
839 			return;
840 		}
841 		/*
842 		 * Segment flag validation for new connection attempts:
843 		 *
844 		 * Our (SYN|ACK) response was rejected.
845 		 * Check with syncache and remove entry to prevent
846 		 * retransmits.
847 		 *
848 		 * NB: syncache_chkrst does its own logging of failure
849 		 * causes.
850 		 */
851 		if (thflags & TH_RST) {
852 			syncache_chkrst(&inc, th);
853 			goto dropunlock;
854 		}
855 		/*
856 		 * We can't do anything without SYN.
857 		 */
858 		if ((thflags & TH_SYN) == 0) {
859 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
860 				log(LOG_DEBUG, "%s; %s: Listen socket: "
861 				    "SYN is missing, segment ignored\n",
862 				    s, __func__);
863 			TCPSTAT_INC(tcps_badsyn);
864 			goto dropunlock;
865 		}
866 		/*
867 		 * (SYN|ACK) is bogus on a listen socket.
868 		 */
869 		if (thflags & TH_ACK) {
870 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
871 				log(LOG_DEBUG, "%s; %s: Listen socket: "
872 				    "SYN|ACK invalid, segment rejected\n",
873 				    s, __func__);
874 			syncache_badack(&inc);	/* XXX: Not needed! */
875 			TCPSTAT_INC(tcps_badsyn);
876 			rstreason = BANDLIM_RST_OPENPORT;
877 			goto dropwithreset;
878 		}
879 		/*
880 		 * If the drop_synfin option is enabled, drop all
881 		 * segments with both the SYN and FIN bits set.
882 		 * This prevents e.g. nmap from identifying the
883 		 * TCP/IP stack.
884 		 * XXX: Poor reasoning.  nmap has other methods
885 		 * and is constantly refining its stack detection
886 		 * strategies.
887 		 * XXX: This is a violation of the TCP specification
888 		 * and was used by RFC1644.
889 		 */
890 		if ((thflags & TH_FIN) && V_drop_synfin) {
891 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
892 				log(LOG_DEBUG, "%s; %s: Listen socket: "
893 				    "SYN|FIN segment ignored (based on "
894 				    "sysctl setting)\n", s, __func__);
895 			TCPSTAT_INC(tcps_badsyn);
896                 	goto dropunlock;
897 		}
898 		/*
899 		 * Segment's flags are (SYN) or (SYN|FIN).
900 		 *
901 		 * TH_PUSH, TH_URG, TH_ECE, TH_CWR are ignored
902 		 * as they do not affect the state of the TCP FSM.
903 		 * The data pointed to by TH_URG and th_urp is ignored.
904 		 */
905 		KASSERT((thflags & (TH_RST|TH_ACK)) == 0,
906 		    ("%s: Listen socket: TH_RST or TH_ACK set", __func__));
907 		KASSERT(thflags & (TH_SYN),
908 		    ("%s: Listen socket: TH_SYN not set", __func__));
909 #ifdef INET6
910 		/*
911 		 * If deprecated address is forbidden,
912 		 * we do not accept SYN to deprecated interface
913 		 * address to prevent any new inbound connection from
914 		 * getting established.
915 		 * When we do not accept SYN, we send a TCP RST,
916 		 * with deprecated source address (instead of dropping
917 		 * it).  We compromise it as it is much better for peer
918 		 * to send a RST, and RST will be the final packet
919 		 * for the exchange.
920 		 *
921 		 * If we do not forbid deprecated addresses, we accept
922 		 * the SYN packet.  RFC2462 does not suggest dropping
923 		 * SYN in this case.
924 		 * If we decipher RFC2462 5.5.4, it says like this:
925 		 * 1. use of deprecated addr with existing
926 		 *    communication is okay - "SHOULD continue to be
927 		 *    used"
928 		 * 2. use of it with new communication:
929 		 *   (2a) "SHOULD NOT be used if alternate address
930 		 *        with sufficient scope is available"
931 		 *   (2b) nothing mentioned otherwise.
932 		 * Here we fall into (2b) case as we have no choice in
933 		 * our source address selection - we must obey the peer.
934 		 *
935 		 * The wording in RFC2462 is confusing, and there are
936 		 * multiple description text for deprecated address
937 		 * handling - worse, they are not exactly the same.
938 		 * I believe 5.5.4 is the best one, so we follow 5.5.4.
939 		 */
940 		if (isipv6 && !V_ip6_use_deprecated) {
941 			struct in6_ifaddr *ia6;
942 
943 			if ((ia6 = ip6_getdstifaddr(m)) &&
944 			    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
945 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
946 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
947 					"Connection attempt to deprecated "
948 					"IPv6 address rejected\n",
949 					s, __func__);
950 				rstreason = BANDLIM_RST_OPENPORT;
951 				goto dropwithreset;
952 			}
953 		}
954 #endif
955 		/*
956 		 * Basic sanity checks on incoming SYN requests:
957 		 *   Don't respond if the destination is a link layer
958 		 *	broadcast according to RFC1122 4.2.3.10, p. 104.
959 		 *   If it is from this socket it must be forged.
960 		 *   Don't respond if the source or destination is a
961 		 *	global or subnet broad- or multicast address.
962 		 *   Note that it is quite possible to receive unicast
963 		 *	link-layer packets with a broadcast IP address. Use
964 		 *	in_broadcast() to find them.
965 		 */
966 		if (m->m_flags & (M_BCAST|M_MCAST)) {
967 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
968 			    log(LOG_DEBUG, "%s; %s: Listen socket: "
969 				"Connection attempt from broad- or multicast "
970 				"link layer address ignored\n", s, __func__);
971 			goto dropunlock;
972 		}
973 		if (isipv6) {
974 #ifdef INET6
975 			if (th->th_dport == th->th_sport &&
976 			    IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst, &ip6->ip6_src)) {
977 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
978 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
979 					"Connection attempt to/from self "
980 					"ignored\n", s, __func__);
981 				goto dropunlock;
982 			}
983 			if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
984 			    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
985 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
986 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
987 					"Connection attempt from/to multicast "
988 					"address ignored\n", s, __func__);
989 				goto dropunlock;
990 			}
991 #endif
992 		} else {
993 			if (th->th_dport == th->th_sport &&
994 			    ip->ip_dst.s_addr == ip->ip_src.s_addr) {
995 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
996 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
997 					"Connection attempt from/to self "
998 					"ignored\n", s, __func__);
999 				goto dropunlock;
1000 			}
1001 			if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
1002 			    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
1003 			    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
1004 			    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif)) {
1005 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1006 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1007 					"Connection attempt from/to broad- "
1008 					"or multicast address ignored\n",
1009 					s, __func__);
1010 				goto dropunlock;
1011 			}
1012 		}
1013 		/*
1014 		 * SYN appears to be valid.  Create compressed TCP state
1015 		 * for syncache.
1016 		 */
1017 #ifdef TCPDEBUG
1018 		if (so->so_options & SO_DEBUG)
1019 			tcp_trace(TA_INPUT, ostate, tp,
1020 			    (void *)tcp_saveipgen, &tcp_savetcp, 0);
1021 #endif
1022 		tcp_dooptions(&to, optp, optlen, TO_SYN);
1023 		syncache_add(&inc, &to, th, inp, &so, m);
1024 		/*
1025 		 * Entry added to syncache and mbuf consumed.
1026 		 * Everything already unlocked by syncache_add().
1027 		 */
1028 		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1029 		return;
1030 	}
1031 
1032 	/*
1033 	 * Segment belongs to a connection in SYN_SENT, ESTABLISHED or later
1034 	 * state.  tcp_do_segment() always consumes the mbuf chain, unlocks
1035 	 * the inpcb, and unlocks pcbinfo.
1036 	 */
1037 	tcp_do_segment(m, th, so, tp, drop_hdrlen, tlen, iptos, ti_locked);
1038 	INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1039 	return;
1040 
1041 dropwithreset:
1042 	if (ti_locked == TI_RLOCKED)
1043 		INP_INFO_RUNLOCK(&V_tcbinfo);
1044 	else if (ti_locked == TI_WLOCKED)
1045 		INP_INFO_WUNLOCK(&V_tcbinfo);
1046 	else
1047 		panic("%s: dropwithreset ti_locked %d", __func__, ti_locked);
1048 	ti_locked = TI_UNLOCKED;
1049 
1050 	if (inp != NULL) {
1051 		tcp_dropwithreset(m, th, tp, tlen, rstreason);
1052 		INP_WUNLOCK(inp);
1053 	} else
1054 		tcp_dropwithreset(m, th, NULL, tlen, rstreason);
1055 	m = NULL;	/* mbuf chain got consumed. */
1056 	goto drop;
1057 
1058 dropunlock:
1059 	if (ti_locked == TI_RLOCKED)
1060 		INP_INFO_RUNLOCK(&V_tcbinfo);
1061 	else if (ti_locked == TI_WLOCKED)
1062 		INP_INFO_WUNLOCK(&V_tcbinfo);
1063 	else
1064 		panic("%s: dropunlock ti_locked %d", __func__, ti_locked);
1065 	ti_locked = TI_UNLOCKED;
1066 
1067 	if (inp != NULL)
1068 		INP_WUNLOCK(inp);
1069 
1070 drop:
1071 	INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1072 	if (s != NULL)
1073 		free(s, M_TCPLOG);
1074 	if (m != NULL)
1075 		m_freem(m);
1076 }
1077 
1078 static void
1079 tcp_do_segment(struct mbuf *m, struct tcphdr *th, struct socket *so,
1080     struct tcpcb *tp, int drop_hdrlen, int tlen, uint8_t iptos,
1081     int ti_locked)
1082 {
1083 	INIT_VNET_INET(tp->t_vnet);
1084 	int thflags, acked, ourfinisacked, needoutput = 0;
1085 	int rstreason, todrop, win;
1086 	u_long tiwin;
1087 	struct tcpopt to;
1088 
1089 #ifdef TCPDEBUG
1090 	/*
1091 	 * The size of tcp_saveipgen must be the size of the max ip header,
1092 	 * now IPv6.
1093 	 */
1094 	u_char tcp_saveipgen[IP6_HDR_LEN];
1095 	struct tcphdr tcp_savetcp;
1096 	short ostate = 0;
1097 #endif
1098 	thflags = th->th_flags;
1099 
1100 	/*
1101 	 * If this is either a state-changing packet or current state isn't
1102 	 * established, we require a write lock on tcbinfo.  Otherwise, we
1103 	 * allow either a read lock or a write lock, as we may have acquired
1104 	 * a write lock due to a race.
1105 	 *
1106 	 * Require a global write lock for SYN/FIN/RST segments or
1107 	 * non-established connections; otherwise accept either a read or
1108 	 * write lock, as we may have conservatively acquired a write lock in
1109 	 * certain cases in tcp_input() (is this still true?).  Currently we
1110 	 * will never enter with no lock, so we try to drop it quickly in the
1111 	 * common pure ack/pure data cases.
1112 	 */
1113 	if ((thflags & (TH_SYN | TH_FIN | TH_RST)) != 0 ||
1114 	    tp->t_state != TCPS_ESTABLISHED) {
1115 		KASSERT(ti_locked == TI_WLOCKED, ("%s ti_locked %d for "
1116 		    "SYN/FIN/RST/!EST", __func__, ti_locked));
1117 		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1118 	} else {
1119 #ifdef INVARIANTS
1120 		if (ti_locked == TI_RLOCKED)
1121 			INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
1122 		else if (ti_locked == TI_WLOCKED)
1123 			INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1124 		else
1125 			panic("%s: ti_locked %d for EST", __func__,
1126 			    ti_locked);
1127 #endif
1128 	}
1129 	INP_WLOCK_ASSERT(tp->t_inpcb);
1130 	KASSERT(tp->t_state > TCPS_LISTEN, ("%s: TCPS_LISTEN",
1131 	    __func__));
1132 	KASSERT(tp->t_state != TCPS_TIME_WAIT, ("%s: TCPS_TIME_WAIT",
1133 	    __func__));
1134 
1135 	/*
1136 	 * Segment received on connection.
1137 	 * Reset idle time and keep-alive timer.
1138 	 * XXX: This should be done after segment
1139 	 * validation to ignore broken/spoofed segs.
1140 	 */
1141 	tp->t_rcvtime = ticks;
1142 	if (TCPS_HAVEESTABLISHED(tp->t_state))
1143 		tcp_timer_activate(tp, TT_KEEP, tcp_keepidle);
1144 
1145 	/*
1146 	 * Unscale the window into a 32-bit value.
1147 	 * For the SYN_SENT state the scale is zero.
1148 	 */
1149 	tiwin = th->th_win << tp->snd_scale;
1150 
1151 	/*
1152 	 * TCP ECN processing.
1153 	 */
1154 	if (tp->t_flags & TF_ECN_PERMIT) {
1155 		switch (iptos & IPTOS_ECN_MASK) {
1156 		case IPTOS_ECN_CE:
1157 			tp->t_flags |= TF_ECN_SND_ECE;
1158 			TCPSTAT_INC(tcps_ecn_ce);
1159 			break;
1160 		case IPTOS_ECN_ECT0:
1161 			TCPSTAT_INC(tcps_ecn_ect0);
1162 			break;
1163 		case IPTOS_ECN_ECT1:
1164 			TCPSTAT_INC(tcps_ecn_ect1);
1165 			break;
1166 		}
1167 
1168 		if (thflags & TH_CWR)
1169 			tp->t_flags &= ~TF_ECN_SND_ECE;
1170 
1171 		/*
1172 		 * Congestion experienced.
1173 		 * Ignore if we are already trying to recover.
1174 		 */
1175 		if ((thflags & TH_ECE) &&
1176 		    SEQ_LEQ(th->th_ack, tp->snd_recover)) {
1177 			TCPSTAT_INC(tcps_ecn_rcwnd);
1178 			tcp_congestion_exp(tp);
1179 		}
1180 	}
1181 
1182 	/*
1183 	 * Parse options on any incoming segment.
1184 	 */
1185 	tcp_dooptions(&to, (u_char *)(th + 1),
1186 	    (th->th_off << 2) - sizeof(struct tcphdr),
1187 	    (thflags & TH_SYN) ? TO_SYN : 0);
1188 
1189 	/*
1190 	 * If echoed timestamp is later than the current time,
1191 	 * fall back to non RFC1323 RTT calculation.  Normalize
1192 	 * timestamp if syncookies were used when this connection
1193 	 * was established.
1194 	 */
1195 	if ((to.to_flags & TOF_TS) && (to.to_tsecr != 0)) {
1196 		to.to_tsecr -= tp->ts_offset;
1197 		if (TSTMP_GT(to.to_tsecr, ticks))
1198 			to.to_tsecr = 0;
1199 	}
1200 
1201 	/*
1202 	 * Process options only when we get SYN/ACK back. The SYN case
1203 	 * for incoming connections is handled in tcp_syncache.
1204 	 * According to RFC1323 the window field in a SYN (i.e., a <SYN>
1205 	 * or <SYN,ACK>) segment itself is never scaled.
1206 	 * XXX this is traditional behavior, may need to be cleaned up.
1207 	 */
1208 	if (tp->t_state == TCPS_SYN_SENT && (thflags & TH_SYN)) {
1209 		if ((to.to_flags & TOF_SCALE) &&
1210 		    (tp->t_flags & TF_REQ_SCALE)) {
1211 			tp->t_flags |= TF_RCVD_SCALE;
1212 			tp->snd_scale = to.to_wscale;
1213 		}
1214 		/*
1215 		 * Initial send window.  It will be updated with
1216 		 * the next incoming segment to the scaled value.
1217 		 */
1218 		tp->snd_wnd = th->th_win;
1219 		if (to.to_flags & TOF_TS) {
1220 			tp->t_flags |= TF_RCVD_TSTMP;
1221 			tp->ts_recent = to.to_tsval;
1222 			tp->ts_recent_age = ticks;
1223 		}
1224 		if (to.to_flags & TOF_MSS)
1225 			tcp_mss(tp, to.to_mss);
1226 		if ((tp->t_flags & TF_SACK_PERMIT) &&
1227 		    (to.to_flags & TOF_SACKPERM) == 0)
1228 			tp->t_flags &= ~TF_SACK_PERMIT;
1229 	}
1230 
1231 	/*
1232 	 * Header prediction: check for the two common cases
1233 	 * of a uni-directional data xfer.  If the packet has
1234 	 * no control flags, is in-sequence, the window didn't
1235 	 * change and we're not retransmitting, it's a
1236 	 * candidate.  If the length is zero and the ack moved
1237 	 * forward, we're the sender side of the xfer.  Just
1238 	 * free the data acked & wake any higher level process
1239 	 * that was blocked waiting for space.  If the length
1240 	 * is non-zero and the ack didn't move, we're the
1241 	 * receiver side.  If we're getting packets in-order
1242 	 * (the reassembly queue is empty), add the data to
1243 	 * the socket buffer and note that we need a delayed ack.
1244 	 * Make sure that the hidden state-flags are also off.
1245 	 * Since we check for TCPS_ESTABLISHED first, it can only
1246 	 * be TH_NEEDSYN.
1247 	 */
1248 	if (tp->t_state == TCPS_ESTABLISHED &&
1249 	    th->th_seq == tp->rcv_nxt &&
1250 	    (thflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
1251 	    tp->snd_nxt == tp->snd_max &&
1252 	    tiwin && tiwin == tp->snd_wnd &&
1253 	    ((tp->t_flags & (TF_NEEDSYN|TF_NEEDFIN)) == 0) &&
1254 	    LIST_EMPTY(&tp->t_segq) &&
1255 	    ((to.to_flags & TOF_TS) == 0 ||
1256 	     TSTMP_GEQ(to.to_tsval, tp->ts_recent)) ) {
1257 
1258 		/*
1259 		 * If last ACK falls within this segment's sequence numbers,
1260 		 * record the timestamp.
1261 		 * NOTE that the test is modified according to the latest
1262 		 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
1263 		 */
1264 		if ((to.to_flags & TOF_TS) != 0 &&
1265 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1266 			tp->ts_recent_age = ticks;
1267 			tp->ts_recent = to.to_tsval;
1268 		}
1269 
1270 		if (tlen == 0) {
1271 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
1272 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
1273 			    tp->snd_cwnd >= tp->snd_wnd &&
1274 			    ((!V_tcp_do_newreno &&
1275 			      !(tp->t_flags & TF_SACK_PERMIT) &&
1276 			      tp->t_dupacks < tcprexmtthresh) ||
1277 			     ((V_tcp_do_newreno ||
1278 			       (tp->t_flags & TF_SACK_PERMIT)) &&
1279 			      !IN_FASTRECOVERY(tp) &&
1280 			      (to.to_flags & TOF_SACK) == 0 &&
1281 			      TAILQ_EMPTY(&tp->snd_holes)))) {
1282 				/*
1283 				 * This is a pure ack for outstanding data.
1284 				 */
1285 				if (ti_locked == TI_RLOCKED)
1286 					INP_INFO_RUNLOCK(&V_tcbinfo);
1287 				else if (ti_locked == TI_WLOCKED)
1288 					INP_INFO_WUNLOCK(&V_tcbinfo);
1289 				else
1290 					panic("%s: ti_locked %d on pure ACK",
1291 					    __func__, ti_locked);
1292 				ti_locked = TI_UNLOCKED;
1293 
1294 				TCPSTAT_INC(tcps_predack);
1295 
1296 				/*
1297 				 * "bad retransmit" recovery.
1298 				 */
1299 				if (tp->t_rxtshift == 1 &&
1300 				    ticks < tp->t_badrxtwin) {
1301 					TCPSTAT_INC(tcps_sndrexmitbad);
1302 					tp->snd_cwnd = tp->snd_cwnd_prev;
1303 					tp->snd_ssthresh =
1304 					    tp->snd_ssthresh_prev;
1305 					tp->snd_recover = tp->snd_recover_prev;
1306 					if (tp->t_flags & TF_WASFRECOVERY)
1307 					    ENTER_FASTRECOVERY(tp);
1308 					tp->snd_nxt = tp->snd_max;
1309 					tp->t_badrxtwin = 0;
1310 				}
1311 
1312 				/*
1313 				 * Recalculate the transmit timer / rtt.
1314 				 *
1315 				 * Some boxes send broken timestamp replies
1316 				 * during the SYN+ACK phase, ignore
1317 				 * timestamps of 0 or we could calculate a
1318 				 * huge RTT and blow up the retransmit timer.
1319 				 */
1320 				if ((to.to_flags & TOF_TS) != 0 &&
1321 				    to.to_tsecr) {
1322 					if (!tp->t_rttlow ||
1323 					    tp->t_rttlow > ticks - to.to_tsecr)
1324 						tp->t_rttlow = ticks - to.to_tsecr;
1325 					tcp_xmit_timer(tp,
1326 					    ticks - to.to_tsecr + 1);
1327 				} else if (tp->t_rtttime &&
1328 				    SEQ_GT(th->th_ack, tp->t_rtseq)) {
1329 					if (!tp->t_rttlow ||
1330 					    tp->t_rttlow > ticks - tp->t_rtttime)
1331 						tp->t_rttlow = ticks - tp->t_rtttime;
1332 					tcp_xmit_timer(tp,
1333 							ticks - tp->t_rtttime);
1334 				}
1335 				tcp_xmit_bandwidth_limit(tp, th->th_ack);
1336 				acked = th->th_ack - tp->snd_una;
1337 				TCPSTAT_INC(tcps_rcvackpack);
1338 				TCPSTAT_ADD(tcps_rcvackbyte, acked);
1339 				sbdrop(&so->so_snd, acked);
1340 				if (SEQ_GT(tp->snd_una, tp->snd_recover) &&
1341 				    SEQ_LEQ(th->th_ack, tp->snd_recover))
1342 					tp->snd_recover = th->th_ack - 1;
1343 				tp->snd_una = th->th_ack;
1344 				/*
1345 				 * Pull snd_wl2 up to prevent seq wrap relative
1346 				 * to th_ack.
1347 				 */
1348 				tp->snd_wl2 = th->th_ack;
1349 				tp->t_dupacks = 0;
1350 				m_freem(m);
1351 				ND6_HINT(tp); /* Some progress has been made. */
1352 
1353 				/*
1354 				 * If all outstanding data are acked, stop
1355 				 * retransmit timer, otherwise restart timer
1356 				 * using current (possibly backed-off) value.
1357 				 * If process is waiting for space,
1358 				 * wakeup/selwakeup/signal.  If data
1359 				 * are ready to send, let tcp_output
1360 				 * decide between more output or persist.
1361 				 */
1362 #ifdef TCPDEBUG
1363 				if (so->so_options & SO_DEBUG)
1364 					tcp_trace(TA_INPUT, ostate, tp,
1365 					    (void *)tcp_saveipgen,
1366 					    &tcp_savetcp, 0);
1367 #endif
1368 				if (tp->snd_una == tp->snd_max)
1369 					tcp_timer_activate(tp, TT_REXMT, 0);
1370 				else if (!tcp_timer_active(tp, TT_PERSIST))
1371 					tcp_timer_activate(tp, TT_REXMT,
1372 						      tp->t_rxtcur);
1373 				sowwakeup(so);
1374 				if (so->so_snd.sb_cc)
1375 					(void) tcp_output(tp);
1376 				goto check_delack;
1377 			}
1378 		} else if (th->th_ack == tp->snd_una &&
1379 		    tlen <= sbspace(&so->so_rcv)) {
1380 			int newsize = 0;	/* automatic sockbuf scaling */
1381 
1382 			/*
1383 			 * This is a pure, in-sequence data packet with
1384 			 * nothing on the reassembly queue and we have enough
1385 			 * buffer space to take it.
1386 			 */
1387 			if (ti_locked == TI_RLOCKED)
1388 				INP_INFO_RUNLOCK(&V_tcbinfo);
1389 			else if (ti_locked == TI_WLOCKED)
1390 				INP_INFO_WUNLOCK(&V_tcbinfo);
1391 			else
1392 				panic("%s: ti_locked %d on pure data "
1393 				    "segment", __func__, ti_locked);
1394 			ti_locked = TI_UNLOCKED;
1395 
1396 			/* Clean receiver SACK report if present */
1397 			if ((tp->t_flags & TF_SACK_PERMIT) && tp->rcv_numsacks)
1398 				tcp_clean_sackreport(tp);
1399 			TCPSTAT_INC(tcps_preddat);
1400 			tp->rcv_nxt += tlen;
1401 			/*
1402 			 * Pull snd_wl1 up to prevent seq wrap relative to
1403 			 * th_seq.
1404 			 */
1405 			tp->snd_wl1 = th->th_seq;
1406 			/*
1407 			 * Pull rcv_up up to prevent seq wrap relative to
1408 			 * rcv_nxt.
1409 			 */
1410 			tp->rcv_up = tp->rcv_nxt;
1411 			TCPSTAT_INC(tcps_rcvpack);
1412 			TCPSTAT_ADD(tcps_rcvbyte, tlen);
1413 			ND6_HINT(tp);	/* Some progress has been made */
1414 #ifdef TCPDEBUG
1415 			if (so->so_options & SO_DEBUG)
1416 				tcp_trace(TA_INPUT, ostate, tp,
1417 				    (void *)tcp_saveipgen, &tcp_savetcp, 0);
1418 #endif
1419 		/*
1420 		 * Automatic sizing of receive socket buffer.  Often the send
1421 		 * buffer size is not optimally adjusted to the actual network
1422 		 * conditions at hand (delay bandwidth product).  Setting the
1423 		 * buffer size too small limits throughput on links with high
1424 		 * bandwidth and high delay (eg. trans-continental/oceanic links).
1425 		 *
1426 		 * On the receive side the socket buffer memory is only rarely
1427 		 * used to any significant extent.  This allows us to be much
1428 		 * more aggressive in scaling the receive socket buffer.  For
1429 		 * the case that the buffer space is actually used to a large
1430 		 * extent and we run out of kernel memory we can simply drop
1431 		 * the new segments; TCP on the sender will just retransmit it
1432 		 * later.  Setting the buffer size too big may only consume too
1433 		 * much kernel memory if the application doesn't read() from
1434 		 * the socket or packet loss or reordering makes use of the
1435 		 * reassembly queue.
1436 		 *
1437 		 * The criteria to step up the receive buffer one notch are:
1438 		 *  1. the number of bytes received during the time it takes
1439 		 *     one timestamp to be reflected back to us (the RTT);
1440 		 *  2. received bytes per RTT is within seven eighth of the
1441 		 *     current socket buffer size;
1442 		 *  3. receive buffer size has not hit maximal automatic size;
1443 		 *
1444 		 * This algorithm does one step per RTT at most and only if
1445 		 * we receive a bulk stream w/o packet losses or reorderings.
1446 		 * Shrinking the buffer during idle times is not necessary as
1447 		 * it doesn't consume any memory when idle.
1448 		 *
1449 		 * TODO: Only step up if the application is actually serving
1450 		 * the buffer to better manage the socket buffer resources.
1451 		 */
1452 			if (V_tcp_do_autorcvbuf &&
1453 			    to.to_tsecr &&
1454 			    (so->so_rcv.sb_flags & SB_AUTOSIZE)) {
1455 				if (to.to_tsecr > tp->rfbuf_ts &&
1456 				    to.to_tsecr - tp->rfbuf_ts < hz) {
1457 					if (tp->rfbuf_cnt >
1458 					    (so->so_rcv.sb_hiwat / 8 * 7) &&
1459 					    so->so_rcv.sb_hiwat <
1460 					    V_tcp_autorcvbuf_max) {
1461 						newsize =
1462 						    min(so->so_rcv.sb_hiwat +
1463 						    V_tcp_autorcvbuf_inc,
1464 						    V_tcp_autorcvbuf_max);
1465 					}
1466 					/* Start over with next RTT. */
1467 					tp->rfbuf_ts = 0;
1468 					tp->rfbuf_cnt = 0;
1469 				} else
1470 					tp->rfbuf_cnt += tlen;	/* add up */
1471 			}
1472 
1473 			/* Add data to socket buffer. */
1474 			SOCKBUF_LOCK(&so->so_rcv);
1475 			if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
1476 				m_freem(m);
1477 			} else {
1478 				/*
1479 				 * Set new socket buffer size.
1480 				 * Give up when limit is reached.
1481 				 */
1482 				if (newsize)
1483 					if (!sbreserve_locked(&so->so_rcv,
1484 					    newsize, so, NULL))
1485 						so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
1486 				m_adj(m, drop_hdrlen);	/* delayed header drop */
1487 				sbappendstream_locked(&so->so_rcv, m);
1488 			}
1489 			/* NB: sorwakeup_locked() does an implicit unlock. */
1490 			sorwakeup_locked(so);
1491 			if (DELAY_ACK(tp)) {
1492 				tp->t_flags |= TF_DELACK;
1493 			} else {
1494 				tp->t_flags |= TF_ACKNOW;
1495 				tcp_output(tp);
1496 			}
1497 			goto check_delack;
1498 		}
1499 	}
1500 
1501 	/*
1502 	 * Calculate amount of space in receive window,
1503 	 * and then do TCP input processing.
1504 	 * Receive window is amount of space in rcv queue,
1505 	 * but not less than advertised window.
1506 	 */
1507 	win = sbspace(&so->so_rcv);
1508 	if (win < 0)
1509 		win = 0;
1510 	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1511 
1512 	/* Reset receive buffer auto scaling when not in bulk receive mode. */
1513 	tp->rfbuf_ts = 0;
1514 	tp->rfbuf_cnt = 0;
1515 
1516 	switch (tp->t_state) {
1517 
1518 	/*
1519 	 * If the state is SYN_RECEIVED:
1520 	 *	if seg contains an ACK, but not for our SYN/ACK, send a RST.
1521 	 */
1522 	case TCPS_SYN_RECEIVED:
1523 		if ((thflags & TH_ACK) &&
1524 		    (SEQ_LEQ(th->th_ack, tp->snd_una) ||
1525 		     SEQ_GT(th->th_ack, tp->snd_max))) {
1526 				rstreason = BANDLIM_RST_OPENPORT;
1527 				goto dropwithreset;
1528 		}
1529 		break;
1530 
1531 	/*
1532 	 * If the state is SYN_SENT:
1533 	 *	if seg contains an ACK, but not for our SYN, drop the input.
1534 	 *	if seg contains a RST, then drop the connection.
1535 	 *	if seg does not contain SYN, then drop it.
1536 	 * Otherwise this is an acceptable SYN segment
1537 	 *	initialize tp->rcv_nxt and tp->irs
1538 	 *	if seg contains ack then advance tp->snd_una
1539 	 *	if seg contains an ECE and ECN support is enabled, the stream
1540 	 *	    is ECN capable.
1541 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1542 	 *	arrange for segment to be acked (eventually)
1543 	 *	continue processing rest of data/controls, beginning with URG
1544 	 */
1545 	case TCPS_SYN_SENT:
1546 		if ((thflags & TH_ACK) &&
1547 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
1548 		     SEQ_GT(th->th_ack, tp->snd_max))) {
1549 			rstreason = BANDLIM_UNLIMITED;
1550 			goto dropwithreset;
1551 		}
1552 		if ((thflags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST))
1553 			tp = tcp_drop(tp, ECONNREFUSED);
1554 		if (thflags & TH_RST)
1555 			goto drop;
1556 		if (!(thflags & TH_SYN))
1557 			goto drop;
1558 
1559 		tp->irs = th->th_seq;
1560 		tcp_rcvseqinit(tp);
1561 		if (thflags & TH_ACK) {
1562 			TCPSTAT_INC(tcps_connects);
1563 			soisconnected(so);
1564 #ifdef MAC
1565 			mac_socketpeer_set_from_mbuf(m, so);
1566 #endif
1567 			/* Do window scaling on this connection? */
1568 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1569 				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1570 				tp->rcv_scale = tp->request_r_scale;
1571 			}
1572 			tp->rcv_adv += tp->rcv_wnd;
1573 			tp->snd_una++;		/* SYN is acked */
1574 			/*
1575 			 * If there's data, delay ACK; if there's also a FIN
1576 			 * ACKNOW will be turned on later.
1577 			 */
1578 			if (DELAY_ACK(tp) && tlen != 0)
1579 				tcp_timer_activate(tp, TT_DELACK,
1580 				    tcp_delacktime);
1581 			else
1582 				tp->t_flags |= TF_ACKNOW;
1583 
1584 			if ((thflags & TH_ECE) && V_tcp_do_ecn) {
1585 				tp->t_flags |= TF_ECN_PERMIT;
1586 				TCPSTAT_INC(tcps_ecn_shs);
1587 			}
1588 
1589 			/*
1590 			 * Received <SYN,ACK> in SYN_SENT[*] state.
1591 			 * Transitions:
1592 			 *	SYN_SENT  --> ESTABLISHED
1593 			 *	SYN_SENT* --> FIN_WAIT_1
1594 			 */
1595 			tp->t_starttime = ticks;
1596 			if (tp->t_flags & TF_NEEDFIN) {
1597 				tp->t_state = TCPS_FIN_WAIT_1;
1598 				tp->t_flags &= ~TF_NEEDFIN;
1599 				thflags &= ~TH_SYN;
1600 			} else {
1601 				tp->t_state = TCPS_ESTABLISHED;
1602 				tcp_timer_activate(tp, TT_KEEP, tcp_keepidle);
1603 			}
1604 		} else {
1605 			/*
1606 			 * Received initial SYN in SYN-SENT[*] state =>
1607 			 * simultaneous open.  If segment contains CC option
1608 			 * and there is a cached CC, apply TAO test.
1609 			 * If it succeeds, connection is * half-synchronized.
1610 			 * Otherwise, do 3-way handshake:
1611 			 *        SYN-SENT -> SYN-RECEIVED
1612 			 *        SYN-SENT* -> SYN-RECEIVED*
1613 			 * If there was no CC option, clear cached CC value.
1614 			 */
1615 			tp->t_flags |= (TF_ACKNOW | TF_NEEDSYN);
1616 			tcp_timer_activate(tp, TT_REXMT, 0);
1617 			tp->t_state = TCPS_SYN_RECEIVED;
1618 		}
1619 
1620 		KASSERT(ti_locked == TI_WLOCKED, ("%s: trimthenstep6: "
1621 		    "ti_locked %d", __func__, ti_locked));
1622 		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1623 		INP_WLOCK_ASSERT(tp->t_inpcb);
1624 
1625 		/*
1626 		 * Advance th->th_seq to correspond to first data byte.
1627 		 * If data, trim to stay within window,
1628 		 * dropping FIN if necessary.
1629 		 */
1630 		th->th_seq++;
1631 		if (tlen > tp->rcv_wnd) {
1632 			todrop = tlen - tp->rcv_wnd;
1633 			m_adj(m, -todrop);
1634 			tlen = tp->rcv_wnd;
1635 			thflags &= ~TH_FIN;
1636 			TCPSTAT_INC(tcps_rcvpackafterwin);
1637 			TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop);
1638 		}
1639 		tp->snd_wl1 = th->th_seq - 1;
1640 		tp->rcv_up = th->th_seq;
1641 		/*
1642 		 * Client side of transaction: already sent SYN and data.
1643 		 * If the remote host used T/TCP to validate the SYN,
1644 		 * our data will be ACK'd; if so, enter normal data segment
1645 		 * processing in the middle of step 5, ack processing.
1646 		 * Otherwise, goto step 6.
1647 		 */
1648 		if (thflags & TH_ACK)
1649 			goto process_ACK;
1650 
1651 		goto step6;
1652 
1653 	/*
1654 	 * If the state is LAST_ACK or CLOSING or TIME_WAIT:
1655 	 *      do normal processing.
1656 	 *
1657 	 * NB: Leftover from RFC1644 T/TCP.  Cases to be reused later.
1658 	 */
1659 	case TCPS_LAST_ACK:
1660 	case TCPS_CLOSING:
1661 		break;  /* continue normal processing */
1662 	}
1663 
1664 	/*
1665 	 * States other than LISTEN or SYN_SENT.
1666 	 * First check the RST flag and sequence number since reset segments
1667 	 * are exempt from the timestamp and connection count tests.  This
1668 	 * fixes a bug introduced by the Stevens, vol. 2, p. 960 bugfix
1669 	 * below which allowed reset segments in half the sequence space
1670 	 * to fall though and be processed (which gives forged reset
1671 	 * segments with a random sequence number a 50 percent chance of
1672 	 * killing a connection).
1673 	 * Then check timestamp, if present.
1674 	 * Then check the connection count, if present.
1675 	 * Then check that at least some bytes of segment are within
1676 	 * receive window.  If segment begins before rcv_nxt,
1677 	 * drop leading data (and SYN); if nothing left, just ack.
1678 	 *
1679 	 *
1680 	 * If the RST bit is set, check the sequence number to see
1681 	 * if this is a valid reset segment.
1682 	 * RFC 793 page 37:
1683 	 *   In all states except SYN-SENT, all reset (RST) segments
1684 	 *   are validated by checking their SEQ-fields.  A reset is
1685 	 *   valid if its sequence number is in the window.
1686 	 * Note: this does not take into account delayed ACKs, so
1687 	 *   we should test against last_ack_sent instead of rcv_nxt.
1688 	 *   The sequence number in the reset segment is normally an
1689 	 *   echo of our outgoing acknowlegement numbers, but some hosts
1690 	 *   send a reset with the sequence number at the rightmost edge
1691 	 *   of our receive window, and we have to handle this case.
1692 	 * Note 2: Paul Watson's paper "Slipping in the Window" has shown
1693 	 *   that brute force RST attacks are possible.  To combat this,
1694 	 *   we use a much stricter check while in the ESTABLISHED state,
1695 	 *   only accepting RSTs where the sequence number is equal to
1696 	 *   last_ack_sent.  In all other states (the states in which a
1697 	 *   RST is more likely), the more permissive check is used.
1698 	 * If we have multiple segments in flight, the initial reset
1699 	 * segment sequence numbers will be to the left of last_ack_sent,
1700 	 * but they will eventually catch up.
1701 	 * In any case, it never made sense to trim reset segments to
1702 	 * fit the receive window since RFC 1122 says:
1703 	 *   4.2.2.12  RST Segment: RFC-793 Section 3.4
1704 	 *
1705 	 *    A TCP SHOULD allow a received RST segment to include data.
1706 	 *
1707 	 *    DISCUSSION
1708 	 *         It has been suggested that a RST segment could contain
1709 	 *         ASCII text that encoded and explained the cause of the
1710 	 *         RST.  No standard has yet been established for such
1711 	 *         data.
1712 	 *
1713 	 * If the reset segment passes the sequence number test examine
1714 	 * the state:
1715 	 *    SYN_RECEIVED STATE:
1716 	 *	If passive open, return to LISTEN state.
1717 	 *	If active open, inform user that connection was refused.
1718 	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT_2, CLOSE_WAIT STATES:
1719 	 *	Inform user that connection was reset, and close tcb.
1720 	 *    CLOSING, LAST_ACK STATES:
1721 	 *	Close the tcb.
1722 	 *    TIME_WAIT STATE:
1723 	 *	Drop the segment - see Stevens, vol. 2, p. 964 and
1724 	 *      RFC 1337.
1725 	 */
1726 	if (thflags & TH_RST) {
1727 		if (SEQ_GEQ(th->th_seq, tp->last_ack_sent - 1) &&
1728 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) {
1729 			switch (tp->t_state) {
1730 
1731 			case TCPS_SYN_RECEIVED:
1732 				so->so_error = ECONNREFUSED;
1733 				goto close;
1734 
1735 			case TCPS_ESTABLISHED:
1736 				if (V_tcp_insecure_rst == 0 &&
1737 				    !(SEQ_GEQ(th->th_seq, tp->rcv_nxt - 1) &&
1738 				    SEQ_LEQ(th->th_seq, tp->rcv_nxt + 1)) &&
1739 				    !(SEQ_GEQ(th->th_seq, tp->last_ack_sent - 1) &&
1740 				    SEQ_LEQ(th->th_seq, tp->last_ack_sent + 1))) {
1741 					TCPSTAT_INC(tcps_badrst);
1742 					goto drop;
1743 				}
1744 				/* FALLTHROUGH */
1745 			case TCPS_FIN_WAIT_1:
1746 			case TCPS_FIN_WAIT_2:
1747 			case TCPS_CLOSE_WAIT:
1748 				so->so_error = ECONNRESET;
1749 			close:
1750 				KASSERT(ti_locked == TI_WLOCKED,
1751 				    ("tcp_do_segment: TH_RST 1 ti_locked %d",
1752 				    ti_locked));
1753 				INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1754 
1755 				tp->t_state = TCPS_CLOSED;
1756 				TCPSTAT_INC(tcps_drops);
1757 				tp = tcp_close(tp);
1758 				break;
1759 
1760 			case TCPS_CLOSING:
1761 			case TCPS_LAST_ACK:
1762 				KASSERT(ti_locked == TI_WLOCKED,
1763 				    ("tcp_do_segment: TH_RST 2 ti_locked %d",
1764 				    ti_locked));
1765 				INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1766 
1767 				tp = tcp_close(tp);
1768 				break;
1769 			}
1770 		}
1771 		goto drop;
1772 	}
1773 
1774 	/*
1775 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
1776 	 * and it's less than ts_recent, drop it.
1777 	 */
1778 	if ((to.to_flags & TOF_TS) != 0 && tp->ts_recent &&
1779 	    TSTMP_LT(to.to_tsval, tp->ts_recent)) {
1780 
1781 		/* Check to see if ts_recent is over 24 days old.  */
1782 		if ((int)(ticks - tp->ts_recent_age) > TCP_PAWS_IDLE) {
1783 			/*
1784 			 * Invalidate ts_recent.  If this segment updates
1785 			 * ts_recent, the age will be reset later and ts_recent
1786 			 * will get a valid value.  If it does not, setting
1787 			 * ts_recent to zero will at least satisfy the
1788 			 * requirement that zero be placed in the timestamp
1789 			 * echo reply when ts_recent isn't valid.  The
1790 			 * age isn't reset until we get a valid ts_recent
1791 			 * because we don't want out-of-order segments to be
1792 			 * dropped when ts_recent is old.
1793 			 */
1794 			tp->ts_recent = 0;
1795 		} else {
1796 			TCPSTAT_INC(tcps_rcvduppack);
1797 			TCPSTAT_ADD(tcps_rcvdupbyte, tlen);
1798 			TCPSTAT_INC(tcps_pawsdrop);
1799 			if (tlen)
1800 				goto dropafterack;
1801 			goto drop;
1802 		}
1803 	}
1804 
1805 	/*
1806 	 * In the SYN-RECEIVED state, validate that the packet belongs to
1807 	 * this connection before trimming the data to fit the receive
1808 	 * window.  Check the sequence number versus IRS since we know
1809 	 * the sequence numbers haven't wrapped.  This is a partial fix
1810 	 * for the "LAND" DoS attack.
1811 	 */
1812 	if (tp->t_state == TCPS_SYN_RECEIVED && SEQ_LT(th->th_seq, tp->irs)) {
1813 		rstreason = BANDLIM_RST_OPENPORT;
1814 		goto dropwithreset;
1815 	}
1816 
1817 	todrop = tp->rcv_nxt - th->th_seq;
1818 	if (todrop > 0) {
1819 		/*
1820 		 * If this is a duplicate SYN for our current connection,
1821 		 * advance over it and pretend and it's not a SYN.
1822 		 */
1823 		if (thflags & TH_SYN && th->th_seq == tp->irs) {
1824 			thflags &= ~TH_SYN;
1825 			th->th_seq++;
1826 			if (th->th_urp > 1)
1827 				th->th_urp--;
1828 			else
1829 				thflags &= ~TH_URG;
1830 			todrop--;
1831 		}
1832 		/*
1833 		 * Following if statement from Stevens, vol. 2, p. 960.
1834 		 */
1835 		if (todrop > tlen
1836 		    || (todrop == tlen && (thflags & TH_FIN) == 0)) {
1837 			/*
1838 			 * Any valid FIN must be to the left of the window.
1839 			 * At this point the FIN must be a duplicate or out
1840 			 * of sequence; drop it.
1841 			 */
1842 			thflags &= ~TH_FIN;
1843 
1844 			/*
1845 			 * Send an ACK to resynchronize and drop any data.
1846 			 * But keep on processing for RST or ACK.
1847 			 */
1848 			tp->t_flags |= TF_ACKNOW;
1849 			todrop = tlen;
1850 			TCPSTAT_INC(tcps_rcvduppack);
1851 			TCPSTAT_ADD(tcps_rcvdupbyte, todrop);
1852 		} else {
1853 			TCPSTAT_INC(tcps_rcvpartduppack);
1854 			TCPSTAT_ADD(tcps_rcvpartdupbyte, todrop);
1855 		}
1856 		drop_hdrlen += todrop;	/* drop from the top afterwards */
1857 		th->th_seq += todrop;
1858 		tlen -= todrop;
1859 		if (th->th_urp > todrop)
1860 			th->th_urp -= todrop;
1861 		else {
1862 			thflags &= ~TH_URG;
1863 			th->th_urp = 0;
1864 		}
1865 	}
1866 
1867 	/*
1868 	 * If new data are received on a connection after the
1869 	 * user processes are gone, then RST the other end.
1870 	 */
1871 	if ((so->so_state & SS_NOFDREF) &&
1872 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
1873 		char *s;
1874 
1875 		KASSERT(ti_locked == TI_WLOCKED, ("%s: SS_NOFDEREF && "
1876 		    "CLOSE_WAIT && tlen ti_locked %d", __func__, ti_locked));
1877 		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1878 
1879 		if ((s = tcp_log_addrs(&tp->t_inpcb->inp_inc, th, NULL, NULL))) {
1880 			log(LOG_DEBUG, "%s; %s: %s: Received %d bytes of data after socket "
1881 			    "was closed, sending RST and removing tcpcb\n",
1882 			    s, __func__, tcpstates[tp->t_state], tlen);
1883 			free(s, M_TCPLOG);
1884 		}
1885 		tp = tcp_close(tp);
1886 		TCPSTAT_INC(tcps_rcvafterclose);
1887 		rstreason = BANDLIM_UNLIMITED;
1888 		goto dropwithreset;
1889 	}
1890 
1891 	/*
1892 	 * If segment ends after window, drop trailing data
1893 	 * (and PUSH and FIN); if nothing left, just ACK.
1894 	 */
1895 	todrop = (th->th_seq + tlen) - (tp->rcv_nxt + tp->rcv_wnd);
1896 	if (todrop > 0) {
1897 		TCPSTAT_INC(tcps_rcvpackafterwin);
1898 		if (todrop >= tlen) {
1899 			TCPSTAT_ADD(tcps_rcvbyteafterwin, tlen);
1900 			/*
1901 			 * If window is closed can only take segments at
1902 			 * window edge, and have to drop data and PUSH from
1903 			 * incoming segments.  Continue processing, but
1904 			 * remember to ack.  Otherwise, drop segment
1905 			 * and ack.
1906 			 */
1907 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
1908 				tp->t_flags |= TF_ACKNOW;
1909 				TCPSTAT_INC(tcps_rcvwinprobe);
1910 			} else
1911 				goto dropafterack;
1912 		} else
1913 			TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop);
1914 		m_adj(m, -todrop);
1915 		tlen -= todrop;
1916 		thflags &= ~(TH_PUSH|TH_FIN);
1917 	}
1918 
1919 	/*
1920 	 * If last ACK falls within this segment's sequence numbers,
1921 	 * record its timestamp.
1922 	 * NOTE:
1923 	 * 1) That the test incorporates suggestions from the latest
1924 	 *    proposal of the tcplw@cray.com list (Braden 1993/04/26).
1925 	 * 2) That updating only on newer timestamps interferes with
1926 	 *    our earlier PAWS tests, so this check should be solely
1927 	 *    predicated on the sequence space of this segment.
1928 	 * 3) That we modify the segment boundary check to be
1929 	 *        Last.ACK.Sent <= SEG.SEQ + SEG.Len
1930 	 *    instead of RFC1323's
1931 	 *        Last.ACK.Sent < SEG.SEQ + SEG.Len,
1932 	 *    This modified check allows us to overcome RFC1323's
1933 	 *    limitations as described in Stevens TCP/IP Illustrated
1934 	 *    Vol. 2 p.869. In such cases, we can still calculate the
1935 	 *    RTT correctly when RCV.NXT == Last.ACK.Sent.
1936 	 */
1937 	if ((to.to_flags & TOF_TS) != 0 &&
1938 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1939 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
1940 		((thflags & (TH_SYN|TH_FIN)) != 0))) {
1941 		tp->ts_recent_age = ticks;
1942 		tp->ts_recent = to.to_tsval;
1943 	}
1944 
1945 	/*
1946 	 * If a SYN is in the window, then this is an
1947 	 * error and we send an RST and drop the connection.
1948 	 */
1949 	if (thflags & TH_SYN) {
1950 		KASSERT(ti_locked == TI_WLOCKED,
1951 		    ("tcp_do_segment: TH_SYN ti_locked %d", ti_locked));
1952 		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1953 
1954 		tp = tcp_drop(tp, ECONNRESET);
1955 		rstreason = BANDLIM_UNLIMITED;
1956 		goto drop;
1957 	}
1958 
1959 	/*
1960 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN
1961 	 * flag is on (half-synchronized state), then queue data for
1962 	 * later processing; else drop segment and return.
1963 	 */
1964 	if ((thflags & TH_ACK) == 0) {
1965 		if (tp->t_state == TCPS_SYN_RECEIVED ||
1966 		    (tp->t_flags & TF_NEEDSYN))
1967 			goto step6;
1968 		else if (tp->t_flags & TF_ACKNOW)
1969 			goto dropafterack;
1970 		else
1971 			goto drop;
1972 	}
1973 
1974 	/*
1975 	 * Ack processing.
1976 	 */
1977 	switch (tp->t_state) {
1978 
1979 	/*
1980 	 * In SYN_RECEIVED state, the ack ACKs our SYN, so enter
1981 	 * ESTABLISHED state and continue processing.
1982 	 * The ACK was checked above.
1983 	 */
1984 	case TCPS_SYN_RECEIVED:
1985 
1986 		TCPSTAT_INC(tcps_connects);
1987 		soisconnected(so);
1988 		/* Do window scaling? */
1989 		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1990 			(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1991 			tp->rcv_scale = tp->request_r_scale;
1992 			tp->snd_wnd = tiwin;
1993 		}
1994 		/*
1995 		 * Make transitions:
1996 		 *      SYN-RECEIVED  -> ESTABLISHED
1997 		 *      SYN-RECEIVED* -> FIN-WAIT-1
1998 		 */
1999 		tp->t_starttime = ticks;
2000 		if (tp->t_flags & TF_NEEDFIN) {
2001 			tp->t_state = TCPS_FIN_WAIT_1;
2002 			tp->t_flags &= ~TF_NEEDFIN;
2003 		} else {
2004 			tp->t_state = TCPS_ESTABLISHED;
2005 			tcp_timer_activate(tp, TT_KEEP, tcp_keepidle);
2006 		}
2007 		/*
2008 		 * If segment contains data or ACK, will call tcp_reass()
2009 		 * later; if not, do so now to pass queued data to user.
2010 		 */
2011 		if (tlen == 0 && (thflags & TH_FIN) == 0)
2012 			(void) tcp_reass(tp, (struct tcphdr *)0, 0,
2013 			    (struct mbuf *)0);
2014 		tp->snd_wl1 = th->th_seq - 1;
2015 		/* FALLTHROUGH */
2016 
2017 	/*
2018 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
2019 	 * ACKs.  If the ack is in the range
2020 	 *	tp->snd_una < th->th_ack <= tp->snd_max
2021 	 * then advance tp->snd_una to th->th_ack and drop
2022 	 * data from the retransmission queue.  If this ACK reflects
2023 	 * more up to date window information we update our window information.
2024 	 */
2025 	case TCPS_ESTABLISHED:
2026 	case TCPS_FIN_WAIT_1:
2027 	case TCPS_FIN_WAIT_2:
2028 	case TCPS_CLOSE_WAIT:
2029 	case TCPS_CLOSING:
2030 	case TCPS_LAST_ACK:
2031 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
2032 			TCPSTAT_INC(tcps_rcvacktoomuch);
2033 			goto dropafterack;
2034 		}
2035 		if ((tp->t_flags & TF_SACK_PERMIT) &&
2036 		    ((to.to_flags & TOF_SACK) ||
2037 		     !TAILQ_EMPTY(&tp->snd_holes)))
2038 			tcp_sack_doack(tp, &to, th->th_ack);
2039 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
2040 			if (tlen == 0 && tiwin == tp->snd_wnd) {
2041 				TCPSTAT_INC(tcps_rcvdupack);
2042 				/*
2043 				 * If we have outstanding data (other than
2044 				 * a window probe), this is a completely
2045 				 * duplicate ack (ie, window info didn't
2046 				 * change), the ack is the biggest we've
2047 				 * seen and we've seen exactly our rexmt
2048 				 * threshhold of them, assume a packet
2049 				 * has been dropped and retransmit it.
2050 				 * Kludge snd_nxt & the congestion
2051 				 * window so we send only this one
2052 				 * packet.
2053 				 *
2054 				 * We know we're losing at the current
2055 				 * window size so do congestion avoidance
2056 				 * (set ssthresh to half the current window
2057 				 * and pull our congestion window back to
2058 				 * the new ssthresh).
2059 				 *
2060 				 * Dup acks mean that packets have left the
2061 				 * network (they're now cached at the receiver)
2062 				 * so bump cwnd by the amount in the receiver
2063 				 * to keep a constant cwnd packets in the
2064 				 * network.
2065 				 *
2066 				 * When using TCP ECN, notify the peer that
2067 				 * we reduced the cwnd.
2068 				 */
2069 				if (!tcp_timer_active(tp, TT_REXMT) ||
2070 				    th->th_ack != tp->snd_una)
2071 					tp->t_dupacks = 0;
2072 				else if (++tp->t_dupacks > tcprexmtthresh ||
2073 				    ((V_tcp_do_newreno ||
2074 				      (tp->t_flags & TF_SACK_PERMIT)) &&
2075 				     IN_FASTRECOVERY(tp))) {
2076 					if ((tp->t_flags & TF_SACK_PERMIT) &&
2077 					    IN_FASTRECOVERY(tp)) {
2078 						int awnd;
2079 
2080 						/*
2081 						 * Compute the amount of data in flight first.
2082 						 * We can inject new data into the pipe iff
2083 						 * we have less than 1/2 the original window's
2084 						 * worth of data in flight.
2085 						 */
2086 						awnd = (tp->snd_nxt - tp->snd_fack) +
2087 							tp->sackhint.sack_bytes_rexmit;
2088 						if (awnd < tp->snd_ssthresh) {
2089 							tp->snd_cwnd += tp->t_maxseg;
2090 							if (tp->snd_cwnd > tp->snd_ssthresh)
2091 								tp->snd_cwnd = tp->snd_ssthresh;
2092 						}
2093 					} else
2094 						tp->snd_cwnd += tp->t_maxseg;
2095 					(void) tcp_output(tp);
2096 					goto drop;
2097 				} else if (tp->t_dupacks == tcprexmtthresh) {
2098 					tcp_seq onxt = tp->snd_nxt;
2099 
2100 					/*
2101 					 * If we're doing sack, check to
2102 					 * see if we're already in sack
2103 					 * recovery. If we're not doing sack,
2104 					 * check to see if we're in newreno
2105 					 * recovery.
2106 					 */
2107 					if (tp->t_flags & TF_SACK_PERMIT) {
2108 						if (IN_FASTRECOVERY(tp)) {
2109 							tp->t_dupacks = 0;
2110 							break;
2111 						}
2112 					} else if (V_tcp_do_newreno ||
2113 					    V_tcp_do_ecn) {
2114 						if (SEQ_LEQ(th->th_ack,
2115 						    tp->snd_recover)) {
2116 							tp->t_dupacks = 0;
2117 							break;
2118 						}
2119 					}
2120 					tcp_congestion_exp(tp);
2121 					tcp_timer_activate(tp, TT_REXMT, 0);
2122 					tp->t_rtttime = 0;
2123 					if (tp->t_flags & TF_SACK_PERMIT) {
2124 						TCPSTAT_INC(
2125 						    tcps_sack_recovery_episode);
2126 						tp->sack_newdata = tp->snd_nxt;
2127 						tp->snd_cwnd = tp->t_maxseg;
2128 						(void) tcp_output(tp);
2129 						goto drop;
2130 					}
2131 					tp->snd_nxt = th->th_ack;
2132 					tp->snd_cwnd = tp->t_maxseg;
2133 					(void) tcp_output(tp);
2134 					KASSERT(tp->snd_limited <= 2,
2135 					    ("%s: tp->snd_limited too big",
2136 					    __func__));
2137 					tp->snd_cwnd = tp->snd_ssthresh +
2138 					     tp->t_maxseg *
2139 					     (tp->t_dupacks - tp->snd_limited);
2140 					if (SEQ_GT(onxt, tp->snd_nxt))
2141 						tp->snd_nxt = onxt;
2142 					goto drop;
2143 				} else if (V_tcp_do_rfc3042) {
2144 					u_long oldcwnd = tp->snd_cwnd;
2145 					tcp_seq oldsndmax = tp->snd_max;
2146 					u_int sent;
2147 
2148 					KASSERT(tp->t_dupacks == 1 ||
2149 					    tp->t_dupacks == 2,
2150 					    ("%s: dupacks not 1 or 2",
2151 					    __func__));
2152 					if (tp->t_dupacks == 1)
2153 						tp->snd_limited = 0;
2154 					tp->snd_cwnd =
2155 					    (tp->snd_nxt - tp->snd_una) +
2156 					    (tp->t_dupacks - tp->snd_limited) *
2157 					    tp->t_maxseg;
2158 					(void) tcp_output(tp);
2159 					sent = tp->snd_max - oldsndmax;
2160 					if (sent > tp->t_maxseg) {
2161 						KASSERT((tp->t_dupacks == 2 &&
2162 						    tp->snd_limited == 0) ||
2163 						   (sent == tp->t_maxseg + 1 &&
2164 						    tp->t_flags & TF_SENTFIN),
2165 						    ("%s: sent too much",
2166 						    __func__));
2167 						tp->snd_limited = 2;
2168 					} else if (sent > 0)
2169 						++tp->snd_limited;
2170 					tp->snd_cwnd = oldcwnd;
2171 					goto drop;
2172 				}
2173 			} else
2174 				tp->t_dupacks = 0;
2175 			break;
2176 		}
2177 
2178 		KASSERT(SEQ_GT(th->th_ack, tp->snd_una),
2179 		    ("%s: th_ack <= snd_una", __func__));
2180 
2181 		/*
2182 		 * If the congestion window was inflated to account
2183 		 * for the other side's cached packets, retract it.
2184 		 */
2185 		if (V_tcp_do_newreno || (tp->t_flags & TF_SACK_PERMIT)) {
2186 			if (IN_FASTRECOVERY(tp)) {
2187 				if (SEQ_LT(th->th_ack, tp->snd_recover)) {
2188 					if (tp->t_flags & TF_SACK_PERMIT)
2189 						tcp_sack_partialack(tp, th);
2190 					else
2191 						tcp_newreno_partial_ack(tp, th);
2192 				} else {
2193 					/*
2194 					 * Out of fast recovery.
2195 					 * Window inflation should have left us
2196 					 * with approximately snd_ssthresh
2197 					 * outstanding data.
2198 					 * But in case we would be inclined to
2199 					 * send a burst, better to do it via
2200 					 * the slow start mechanism.
2201 					 */
2202 					if (SEQ_GT(th->th_ack +
2203 							tp->snd_ssthresh,
2204 						   tp->snd_max))
2205 						tp->snd_cwnd = tp->snd_max -
2206 								th->th_ack +
2207 								tp->t_maxseg;
2208 					else
2209 						tp->snd_cwnd = tp->snd_ssthresh;
2210 				}
2211 			}
2212 		} else {
2213 			if (tp->t_dupacks >= tcprexmtthresh &&
2214 			    tp->snd_cwnd > tp->snd_ssthresh)
2215 				tp->snd_cwnd = tp->snd_ssthresh;
2216 		}
2217 		tp->t_dupacks = 0;
2218 		/*
2219 		 * If we reach this point, ACK is not a duplicate,
2220 		 *     i.e., it ACKs something we sent.
2221 		 */
2222 		if (tp->t_flags & TF_NEEDSYN) {
2223 			/*
2224 			 * T/TCP: Connection was half-synchronized, and our
2225 			 * SYN has been ACK'd (so connection is now fully
2226 			 * synchronized).  Go to non-starred state,
2227 			 * increment snd_una for ACK of SYN, and check if
2228 			 * we can do window scaling.
2229 			 */
2230 			tp->t_flags &= ~TF_NEEDSYN;
2231 			tp->snd_una++;
2232 			/* Do window scaling? */
2233 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2234 				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
2235 				tp->rcv_scale = tp->request_r_scale;
2236 				/* Send window already scaled. */
2237 			}
2238 		}
2239 
2240 process_ACK:
2241 		INP_INFO_LOCK_ASSERT(&V_tcbinfo);
2242 		KASSERT(ti_locked == TI_RLOCKED || ti_locked == TI_WLOCKED,
2243 		    ("tcp_input: process_ACK ti_locked %d", ti_locked));
2244 		INP_WLOCK_ASSERT(tp->t_inpcb);
2245 
2246 		acked = th->th_ack - tp->snd_una;
2247 		TCPSTAT_INC(tcps_rcvackpack);
2248 		TCPSTAT_ADD(tcps_rcvackbyte, acked);
2249 
2250 		/*
2251 		 * If we just performed our first retransmit, and the ACK
2252 		 * arrives within our recovery window, then it was a mistake
2253 		 * to do the retransmit in the first place.  Recover our
2254 		 * original cwnd and ssthresh, and proceed to transmit where
2255 		 * we left off.
2256 		 */
2257 		if (tp->t_rxtshift == 1 && ticks < tp->t_badrxtwin) {
2258 			TCPSTAT_INC(tcps_sndrexmitbad);
2259 			tp->snd_cwnd = tp->snd_cwnd_prev;
2260 			tp->snd_ssthresh = tp->snd_ssthresh_prev;
2261 			tp->snd_recover = tp->snd_recover_prev;
2262 			if (tp->t_flags & TF_WASFRECOVERY)
2263 				ENTER_FASTRECOVERY(tp);
2264 			tp->snd_nxt = tp->snd_max;
2265 			tp->t_badrxtwin = 0;	/* XXX probably not required */
2266 		}
2267 
2268 		/*
2269 		 * If we have a timestamp reply, update smoothed
2270 		 * round trip time.  If no timestamp is present but
2271 		 * transmit timer is running and timed sequence
2272 		 * number was acked, update smoothed round trip time.
2273 		 * Since we now have an rtt measurement, cancel the
2274 		 * timer backoff (cf., Phil Karn's retransmit alg.).
2275 		 * Recompute the initial retransmit timer.
2276 		 *
2277 		 * Some boxes send broken timestamp replies
2278 		 * during the SYN+ACK phase, ignore
2279 		 * timestamps of 0 or we could calculate a
2280 		 * huge RTT and blow up the retransmit timer.
2281 		 */
2282 		if ((to.to_flags & TOF_TS) != 0 &&
2283 		    to.to_tsecr) {
2284 			if (!tp->t_rttlow || tp->t_rttlow > ticks - to.to_tsecr)
2285 				tp->t_rttlow = ticks - to.to_tsecr;
2286 			tcp_xmit_timer(tp, ticks - to.to_tsecr + 1);
2287 		} else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq)) {
2288 			if (!tp->t_rttlow || tp->t_rttlow > ticks - tp->t_rtttime)
2289 				tp->t_rttlow = ticks - tp->t_rtttime;
2290 			tcp_xmit_timer(tp, ticks - tp->t_rtttime);
2291 		}
2292 		tcp_xmit_bandwidth_limit(tp, th->th_ack);
2293 
2294 		/*
2295 		 * If all outstanding data is acked, stop retransmit
2296 		 * timer and remember to restart (more output or persist).
2297 		 * If there is more data to be acked, restart retransmit
2298 		 * timer, using current (possibly backed-off) value.
2299 		 */
2300 		if (th->th_ack == tp->snd_max) {
2301 			tcp_timer_activate(tp, TT_REXMT, 0);
2302 			needoutput = 1;
2303 		} else if (!tcp_timer_active(tp, TT_PERSIST))
2304 			tcp_timer_activate(tp, TT_REXMT, tp->t_rxtcur);
2305 
2306 		/*
2307 		 * If no data (only SYN) was ACK'd,
2308 		 *    skip rest of ACK processing.
2309 		 */
2310 		if (acked == 0)
2311 			goto step6;
2312 
2313 		/*
2314 		 * When new data is acked, open the congestion window.
2315 		 * Method depends on which congestion control state we're
2316 		 * in (slow start or cong avoid) and if ABC (RFC 3465) is
2317 		 * enabled.
2318 		 *
2319 		 * slow start: cwnd <= ssthresh
2320 		 * cong avoid: cwnd > ssthresh
2321 		 *
2322 		 * slow start and ABC (RFC 3465):
2323 		 *   Grow cwnd exponentially by the amount of data
2324 		 *   ACKed capping the max increment per ACK to
2325 		 *   (abc_l_var * maxseg) bytes.
2326 		 *
2327 		 * slow start without ABC (RFC 2581):
2328 		 *   Grow cwnd exponentially by maxseg per ACK.
2329 		 *
2330 		 * cong avoid and ABC (RFC 3465):
2331 		 *   Grow cwnd linearly by maxseg per RTT for each
2332 		 *   cwnd worth of ACKed data.
2333 		 *
2334 		 * cong avoid without ABC (RFC 2581):
2335 		 *   Grow cwnd linearly by approximately maxseg per RTT using
2336 		 *   maxseg^2 / cwnd per ACK as the increment.
2337 		 *   If cwnd > maxseg^2, fix the cwnd increment at 1 byte to
2338 		 *   avoid capping cwnd.
2339 		 */
2340 		if ((!V_tcp_do_newreno && !(tp->t_flags & TF_SACK_PERMIT)) ||
2341 		    !IN_FASTRECOVERY(tp)) {
2342 			u_int cw = tp->snd_cwnd;
2343 			u_int incr = tp->t_maxseg;
2344 			/* In congestion avoidance? */
2345 			if (cw > tp->snd_ssthresh) {
2346 				if (V_tcp_do_rfc3465) {
2347 					tp->t_bytes_acked += acked;
2348 					if (tp->t_bytes_acked >= tp->snd_cwnd)
2349 						tp->t_bytes_acked -= cw;
2350 					else
2351 						incr = 0;
2352 				}
2353 				else
2354 					incr = max((incr * incr / cw), 1);
2355 			/*
2356 			 * In slow-start with ABC enabled and no RTO in sight?
2357 			 * (Must not use abc_l_var > 1 if slow starting after an
2358 			 * RTO. On RTO, snd_nxt = snd_una, so the snd_nxt ==
2359 			 * snd_max check is sufficient to handle this).
2360 			 */
2361 			} else if (V_tcp_do_rfc3465 &&
2362 			    tp->snd_nxt == tp->snd_max)
2363 				incr = min(acked,
2364 				    V_tcp_abc_l_var * tp->t_maxseg);
2365 			/* ABC is on by default, so (incr == 0) frequently. */
2366 			if (incr > 0)
2367 				tp->snd_cwnd = min(cw+incr, TCP_MAXWIN<<tp->snd_scale);
2368 		}
2369 		SOCKBUF_LOCK(&so->so_snd);
2370 		if (acked > so->so_snd.sb_cc) {
2371 			tp->snd_wnd -= so->so_snd.sb_cc;
2372 			sbdrop_locked(&so->so_snd, (int)so->so_snd.sb_cc);
2373 			ourfinisacked = 1;
2374 		} else {
2375 			sbdrop_locked(&so->so_snd, acked);
2376 			tp->snd_wnd -= acked;
2377 			ourfinisacked = 0;
2378 		}
2379 		/* NB: sowwakeup_locked() does an implicit unlock. */
2380 		sowwakeup_locked(so);
2381 		/* Detect una wraparound. */
2382 		if ((V_tcp_do_newreno || (tp->t_flags & TF_SACK_PERMIT)) &&
2383 		    !IN_FASTRECOVERY(tp) &&
2384 		    SEQ_GT(tp->snd_una, tp->snd_recover) &&
2385 		    SEQ_LEQ(th->th_ack, tp->snd_recover))
2386 			tp->snd_recover = th->th_ack - 1;
2387 		if ((V_tcp_do_newreno || (tp->t_flags & TF_SACK_PERMIT)) &&
2388 		    IN_FASTRECOVERY(tp) &&
2389 		    SEQ_GEQ(th->th_ack, tp->snd_recover)) {
2390 			EXIT_FASTRECOVERY(tp);
2391 			tp->t_bytes_acked = 0;
2392 		}
2393 		tp->snd_una = th->th_ack;
2394 		if (tp->t_flags & TF_SACK_PERMIT) {
2395 			if (SEQ_GT(tp->snd_una, tp->snd_recover))
2396 				tp->snd_recover = tp->snd_una;
2397 		}
2398 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2399 			tp->snd_nxt = tp->snd_una;
2400 
2401 		switch (tp->t_state) {
2402 
2403 		/*
2404 		 * In FIN_WAIT_1 STATE in addition to the processing
2405 		 * for the ESTABLISHED state if our FIN is now acknowledged
2406 		 * then enter FIN_WAIT_2.
2407 		 */
2408 		case TCPS_FIN_WAIT_1:
2409 			if (ourfinisacked) {
2410 				/*
2411 				 * If we can't receive any more
2412 				 * data, then closing user can proceed.
2413 				 * Starting the timer is contrary to the
2414 				 * specification, but if we don't get a FIN
2415 				 * we'll hang forever.
2416 				 *
2417 				 * XXXjl:
2418 				 * we should release the tp also, and use a
2419 				 * compressed state.
2420 				 */
2421 				if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
2422 					int timeout;
2423 
2424 					soisdisconnected(so);
2425 					timeout = (tcp_fast_finwait2_recycle) ?
2426 						tcp_finwait2_timeout : tcp_maxidle;
2427 					tcp_timer_activate(tp, TT_2MSL, timeout);
2428 				}
2429 				tp->t_state = TCPS_FIN_WAIT_2;
2430 			}
2431 			break;
2432 
2433 		/*
2434 		 * In CLOSING STATE in addition to the processing for
2435 		 * the ESTABLISHED state if the ACK acknowledges our FIN
2436 		 * then enter the TIME-WAIT state, otherwise ignore
2437 		 * the segment.
2438 		 */
2439 		case TCPS_CLOSING:
2440 			if (ourfinisacked) {
2441 				INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2442 				tcp_twstart(tp);
2443 				INP_INFO_WUNLOCK(&V_tcbinfo);
2444 				m_freem(m);
2445 				return;
2446 			}
2447 			break;
2448 
2449 		/*
2450 		 * In LAST_ACK, we may still be waiting for data to drain
2451 		 * and/or to be acked, as well as for the ack of our FIN.
2452 		 * If our FIN is now acknowledged, delete the TCB,
2453 		 * enter the closed state and return.
2454 		 */
2455 		case TCPS_LAST_ACK:
2456 			if (ourfinisacked) {
2457 				INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2458 				tp = tcp_close(tp);
2459 				goto drop;
2460 			}
2461 			break;
2462 		}
2463 	}
2464 
2465 step6:
2466 	INP_INFO_LOCK_ASSERT(&V_tcbinfo);
2467 	KASSERT(ti_locked == TI_RLOCKED || ti_locked == TI_WLOCKED,
2468 	    ("tcp_do_segment: step6 ti_locked %d", ti_locked));
2469 	INP_WLOCK_ASSERT(tp->t_inpcb);
2470 
2471 	/*
2472 	 * Update window information.
2473 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2474 	 */
2475 	if ((thflags & TH_ACK) &&
2476 	    (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2477 	    (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
2478 	     (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
2479 		/* keep track of pure window updates */
2480 		if (tlen == 0 &&
2481 		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2482 			TCPSTAT_INC(tcps_rcvwinupd);
2483 		tp->snd_wnd = tiwin;
2484 		tp->snd_wl1 = th->th_seq;
2485 		tp->snd_wl2 = th->th_ack;
2486 		if (tp->snd_wnd > tp->max_sndwnd)
2487 			tp->max_sndwnd = tp->snd_wnd;
2488 		needoutput = 1;
2489 	}
2490 
2491 	/*
2492 	 * Process segments with URG.
2493 	 */
2494 	if ((thflags & TH_URG) && th->th_urp &&
2495 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2496 		/*
2497 		 * This is a kludge, but if we receive and accept
2498 		 * random urgent pointers, we'll crash in
2499 		 * soreceive.  It's hard to imagine someone
2500 		 * actually wanting to send this much urgent data.
2501 		 */
2502 		SOCKBUF_LOCK(&so->so_rcv);
2503 		if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2504 			th->th_urp = 0;			/* XXX */
2505 			thflags &= ~TH_URG;		/* XXX */
2506 			SOCKBUF_UNLOCK(&so->so_rcv);	/* XXX */
2507 			goto dodata;			/* XXX */
2508 		}
2509 		/*
2510 		 * If this segment advances the known urgent pointer,
2511 		 * then mark the data stream.  This should not happen
2512 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2513 		 * a FIN has been received from the remote side.
2514 		 * In these states we ignore the URG.
2515 		 *
2516 		 * According to RFC961 (Assigned Protocols),
2517 		 * the urgent pointer points to the last octet
2518 		 * of urgent data.  We continue, however,
2519 		 * to consider it to indicate the first octet
2520 		 * of data past the urgent section as the original
2521 		 * spec states (in one of two places).
2522 		 */
2523 		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2524 			tp->rcv_up = th->th_seq + th->th_urp;
2525 			so->so_oobmark = so->so_rcv.sb_cc +
2526 			    (tp->rcv_up - tp->rcv_nxt) - 1;
2527 			if (so->so_oobmark == 0)
2528 				so->so_rcv.sb_state |= SBS_RCVATMARK;
2529 			sohasoutofband(so);
2530 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2531 		}
2532 		SOCKBUF_UNLOCK(&so->so_rcv);
2533 		/*
2534 		 * Remove out of band data so doesn't get presented to user.
2535 		 * This can happen independent of advancing the URG pointer,
2536 		 * but if two URG's are pending at once, some out-of-band
2537 		 * data may creep in... ick.
2538 		 */
2539 		if (th->th_urp <= (u_long)tlen &&
2540 		    !(so->so_options & SO_OOBINLINE)) {
2541 			/* hdr drop is delayed */
2542 			tcp_pulloutofband(so, th, m, drop_hdrlen);
2543 		}
2544 	} else {
2545 		/*
2546 		 * If no out of band data is expected,
2547 		 * pull receive urgent pointer along
2548 		 * with the receive window.
2549 		 */
2550 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2551 			tp->rcv_up = tp->rcv_nxt;
2552 	}
2553 dodata:							/* XXX */
2554 	INP_INFO_LOCK_ASSERT(&V_tcbinfo);
2555 	KASSERT(ti_locked == TI_RLOCKED || ti_locked == TI_WLOCKED,
2556 	    ("tcp_do_segment: dodata ti_locked %d", ti_locked));
2557 	INP_WLOCK_ASSERT(tp->t_inpcb);
2558 
2559 	/*
2560 	 * Process the segment text, merging it into the TCP sequencing queue,
2561 	 * and arranging for acknowledgment of receipt if necessary.
2562 	 * This process logically involves adjusting tp->rcv_wnd as data
2563 	 * is presented to the user (this happens in tcp_usrreq.c,
2564 	 * case PRU_RCVD).  If a FIN has already been received on this
2565 	 * connection then we just ignore the text.
2566 	 */
2567 	if ((tlen || (thflags & TH_FIN)) &&
2568 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2569 		tcp_seq save_start = th->th_seq;
2570 		m_adj(m, drop_hdrlen);	/* delayed header drop */
2571 		/*
2572 		 * Insert segment which includes th into TCP reassembly queue
2573 		 * with control block tp.  Set thflags to whether reassembly now
2574 		 * includes a segment with FIN.  This handles the common case
2575 		 * inline (segment is the next to be received on an established
2576 		 * connection, and the queue is empty), avoiding linkage into
2577 		 * and removal from the queue and repetition of various
2578 		 * conversions.
2579 		 * Set DELACK for segments received in order, but ack
2580 		 * immediately when segments are out of order (so
2581 		 * fast retransmit can work).
2582 		 */
2583 		if (th->th_seq == tp->rcv_nxt &&
2584 		    LIST_EMPTY(&tp->t_segq) &&
2585 		    TCPS_HAVEESTABLISHED(tp->t_state)) {
2586 			if (DELAY_ACK(tp))
2587 				tp->t_flags |= TF_DELACK;
2588 			else
2589 				tp->t_flags |= TF_ACKNOW;
2590 			tp->rcv_nxt += tlen;
2591 			thflags = th->th_flags & TH_FIN;
2592 			TCPSTAT_INC(tcps_rcvpack);
2593 			TCPSTAT_ADD(tcps_rcvbyte, tlen);
2594 			ND6_HINT(tp);
2595 			SOCKBUF_LOCK(&so->so_rcv);
2596 			if (so->so_rcv.sb_state & SBS_CANTRCVMORE)
2597 				m_freem(m);
2598 			else
2599 				sbappendstream_locked(&so->so_rcv, m);
2600 			/* NB: sorwakeup_locked() does an implicit unlock. */
2601 			sorwakeup_locked(so);
2602 		} else {
2603 			/*
2604 			 * XXX: Due to the header drop above "th" is
2605 			 * theoretically invalid by now.  Fortunately
2606 			 * m_adj() doesn't actually frees any mbufs
2607 			 * when trimming from the head.
2608 			 */
2609 			thflags = tcp_reass(tp, th, &tlen, m);
2610 			tp->t_flags |= TF_ACKNOW;
2611 		}
2612 		if (tlen > 0 && (tp->t_flags & TF_SACK_PERMIT))
2613 			tcp_update_sack_list(tp, save_start, save_start + tlen);
2614 #if 0
2615 		/*
2616 		 * Note the amount of data that peer has sent into
2617 		 * our window, in order to estimate the sender's
2618 		 * buffer size.
2619 		 * XXX: Unused.
2620 		 */
2621 		len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2622 #endif
2623 	} else {
2624 		m_freem(m);
2625 		thflags &= ~TH_FIN;
2626 	}
2627 
2628 	/*
2629 	 * If FIN is received ACK the FIN and let the user know
2630 	 * that the connection is closing.
2631 	 */
2632 	if (thflags & TH_FIN) {
2633 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2634 			socantrcvmore(so);
2635 			/*
2636 			 * If connection is half-synchronized
2637 			 * (ie NEEDSYN flag on) then delay ACK,
2638 			 * so it may be piggybacked when SYN is sent.
2639 			 * Otherwise, since we received a FIN then no
2640 			 * more input can be expected, send ACK now.
2641 			 */
2642 			if (tp->t_flags & TF_NEEDSYN)
2643 				tp->t_flags |= TF_DELACK;
2644 			else
2645 				tp->t_flags |= TF_ACKNOW;
2646 			tp->rcv_nxt++;
2647 		}
2648 		switch (tp->t_state) {
2649 
2650 		/*
2651 		 * In SYN_RECEIVED and ESTABLISHED STATES
2652 		 * enter the CLOSE_WAIT state.
2653 		 */
2654 		case TCPS_SYN_RECEIVED:
2655 			tp->t_starttime = ticks;
2656 			/* FALLTHROUGH */
2657 		case TCPS_ESTABLISHED:
2658 			tp->t_state = TCPS_CLOSE_WAIT;
2659 			break;
2660 
2661 		/*
2662 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2663 		 * enter the CLOSING state.
2664 		 */
2665 		case TCPS_FIN_WAIT_1:
2666 			tp->t_state = TCPS_CLOSING;
2667 			break;
2668 
2669 		/*
2670 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2671 		 * starting the time-wait timer, turning off the other
2672 		 * standard timers.
2673 		 */
2674 		case TCPS_FIN_WAIT_2:
2675 			INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2676 			KASSERT(ti_locked == TI_WLOCKED, ("%s: dodata "
2677 			    "TCP_FIN_WAIT_2 ti_locked: %d", __func__,
2678 			    ti_locked));
2679 
2680 			tcp_twstart(tp);
2681 			INP_INFO_WUNLOCK(&V_tcbinfo);
2682 			return;
2683 		}
2684 	}
2685 	if (ti_locked == TI_RLOCKED)
2686 		INP_INFO_RUNLOCK(&V_tcbinfo);
2687 	else if (ti_locked == TI_WLOCKED)
2688 		INP_INFO_WUNLOCK(&V_tcbinfo);
2689 	else
2690 		panic("%s: dodata epilogue ti_locked %d", __func__,
2691 		    ti_locked);
2692 	ti_locked = TI_UNLOCKED;
2693 
2694 #ifdef TCPDEBUG
2695 	if (so->so_options & SO_DEBUG)
2696 		tcp_trace(TA_INPUT, ostate, tp, (void *)tcp_saveipgen,
2697 			  &tcp_savetcp, 0);
2698 #endif
2699 
2700 	/*
2701 	 * Return any desired output.
2702 	 */
2703 	if (needoutput || (tp->t_flags & TF_ACKNOW))
2704 		(void) tcp_output(tp);
2705 
2706 check_delack:
2707 	KASSERT(ti_locked == TI_UNLOCKED, ("%s: check_delack ti_locked %d",
2708 	    __func__, ti_locked));
2709 	INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
2710 	INP_WLOCK_ASSERT(tp->t_inpcb);
2711 
2712 	if (tp->t_flags & TF_DELACK) {
2713 		tp->t_flags &= ~TF_DELACK;
2714 		tcp_timer_activate(tp, TT_DELACK, tcp_delacktime);
2715 	}
2716 	INP_WUNLOCK(tp->t_inpcb);
2717 	return;
2718 
2719 dropafterack:
2720 	KASSERT(ti_locked == TI_RLOCKED || ti_locked == TI_WLOCKED,
2721 	    ("tcp_do_segment: dropafterack ti_locked %d", ti_locked));
2722 
2723 	/*
2724 	 * Generate an ACK dropping incoming segment if it occupies
2725 	 * sequence space, where the ACK reflects our state.
2726 	 *
2727 	 * We can now skip the test for the RST flag since all
2728 	 * paths to this code happen after packets containing
2729 	 * RST have been dropped.
2730 	 *
2731 	 * In the SYN-RECEIVED state, don't send an ACK unless the
2732 	 * segment we received passes the SYN-RECEIVED ACK test.
2733 	 * If it fails send a RST.  This breaks the loop in the
2734 	 * "LAND" DoS attack, and also prevents an ACK storm
2735 	 * between two listening ports that have been sent forged
2736 	 * SYN segments, each with the source address of the other.
2737 	 */
2738 	if (tp->t_state == TCPS_SYN_RECEIVED && (thflags & TH_ACK) &&
2739 	    (SEQ_GT(tp->snd_una, th->th_ack) ||
2740 	     SEQ_GT(th->th_ack, tp->snd_max)) ) {
2741 		rstreason = BANDLIM_RST_OPENPORT;
2742 		goto dropwithreset;
2743 	}
2744 #ifdef TCPDEBUG
2745 	if (so->so_options & SO_DEBUG)
2746 		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
2747 			  &tcp_savetcp, 0);
2748 #endif
2749 	if (ti_locked == TI_RLOCKED)
2750 		INP_INFO_RUNLOCK(&V_tcbinfo);
2751 	else if (ti_locked == TI_WLOCKED)
2752 		INP_INFO_WUNLOCK(&V_tcbinfo);
2753 	else
2754 		panic("%s: dropafterack epilogue ti_locked %d", __func__,
2755 		    ti_locked);
2756 	ti_locked = TI_UNLOCKED;
2757 
2758 	tp->t_flags |= TF_ACKNOW;
2759 	(void) tcp_output(tp);
2760 	INP_WUNLOCK(tp->t_inpcb);
2761 	m_freem(m);
2762 	return;
2763 
2764 dropwithreset:
2765 	if (ti_locked == TI_RLOCKED)
2766 		INP_INFO_RUNLOCK(&V_tcbinfo);
2767 	else if (ti_locked == TI_WLOCKED)
2768 		INP_INFO_WUNLOCK(&V_tcbinfo);
2769 	else
2770 		panic("%s: dropwithreset ti_locked %d", __func__, ti_locked);
2771 	ti_locked = TI_UNLOCKED;
2772 
2773 	if (tp != NULL) {
2774 		tcp_dropwithreset(m, th, tp, tlen, rstreason);
2775 		INP_WUNLOCK(tp->t_inpcb);
2776 	} else
2777 		tcp_dropwithreset(m, th, NULL, tlen, rstreason);
2778 	return;
2779 
2780 drop:
2781 	if (ti_locked == TI_RLOCKED)
2782 		INP_INFO_RUNLOCK(&V_tcbinfo);
2783 	else if (ti_locked == TI_WLOCKED)
2784 		INP_INFO_WUNLOCK(&V_tcbinfo);
2785 #ifdef INVARIANTS
2786 	else
2787 		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
2788 #endif
2789 	ti_locked = TI_UNLOCKED;
2790 
2791 	/*
2792 	 * Drop space held by incoming segment and return.
2793 	 */
2794 #ifdef TCPDEBUG
2795 	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
2796 		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
2797 			  &tcp_savetcp, 0);
2798 #endif
2799 	if (tp != NULL)
2800 		INP_WUNLOCK(tp->t_inpcb);
2801 	m_freem(m);
2802 }
2803 
2804 /*
2805  * Issue RST and make ACK acceptable to originator of segment.
2806  * The mbuf must still include the original packet header.
2807  * tp may be NULL.
2808  */
2809 static void
2810 tcp_dropwithreset(struct mbuf *m, struct tcphdr *th, struct tcpcb *tp,
2811     int tlen, int rstreason)
2812 {
2813 	struct ip *ip;
2814 #ifdef INET6
2815 	struct ip6_hdr *ip6;
2816 #endif
2817 
2818 	if (tp != NULL) {
2819 		INP_WLOCK_ASSERT(tp->t_inpcb);
2820 	}
2821 
2822 	/* Don't bother if destination was broadcast/multicast. */
2823 	if ((th->th_flags & TH_RST) || m->m_flags & (M_BCAST|M_MCAST))
2824 		goto drop;
2825 #ifdef INET6
2826 	if (mtod(m, struct ip *)->ip_v == 6) {
2827 		ip6 = mtod(m, struct ip6_hdr *);
2828 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
2829 		    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
2830 			goto drop;
2831 		/* IPv6 anycast check is done at tcp6_input() */
2832 	} else
2833 #endif
2834 	{
2835 		ip = mtod(m, struct ip *);
2836 		if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
2837 		    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
2838 		    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
2839 		    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
2840 			goto drop;
2841 	}
2842 
2843 	/* Perform bandwidth limiting. */
2844 	if (badport_bandlim(rstreason) < 0)
2845 		goto drop;
2846 
2847 	/* tcp_respond consumes the mbuf chain. */
2848 	if (th->th_flags & TH_ACK) {
2849 		tcp_respond(tp, mtod(m, void *), th, m, (tcp_seq)0,
2850 		    th->th_ack, TH_RST);
2851 	} else {
2852 		if (th->th_flags & TH_SYN)
2853 			tlen++;
2854 		tcp_respond(tp, mtod(m, void *), th, m, th->th_seq+tlen,
2855 		    (tcp_seq)0, TH_RST|TH_ACK);
2856 	}
2857 	return;
2858 drop:
2859 	m_freem(m);
2860 }
2861 
2862 /*
2863  * Parse TCP options and place in tcpopt.
2864  */
2865 static void
2866 tcp_dooptions(struct tcpopt *to, u_char *cp, int cnt, int flags)
2867 {
2868 	INIT_VNET_INET(curvnet);
2869 	int opt, optlen;
2870 
2871 	to->to_flags = 0;
2872 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
2873 		opt = cp[0];
2874 		if (opt == TCPOPT_EOL)
2875 			break;
2876 		if (opt == TCPOPT_NOP)
2877 			optlen = 1;
2878 		else {
2879 			if (cnt < 2)
2880 				break;
2881 			optlen = cp[1];
2882 			if (optlen < 2 || optlen > cnt)
2883 				break;
2884 		}
2885 		switch (opt) {
2886 		case TCPOPT_MAXSEG:
2887 			if (optlen != TCPOLEN_MAXSEG)
2888 				continue;
2889 			if (!(flags & TO_SYN))
2890 				continue;
2891 			to->to_flags |= TOF_MSS;
2892 			bcopy((char *)cp + 2,
2893 			    (char *)&to->to_mss, sizeof(to->to_mss));
2894 			to->to_mss = ntohs(to->to_mss);
2895 			break;
2896 		case TCPOPT_WINDOW:
2897 			if (optlen != TCPOLEN_WINDOW)
2898 				continue;
2899 			if (!(flags & TO_SYN))
2900 				continue;
2901 			to->to_flags |= TOF_SCALE;
2902 			to->to_wscale = min(cp[2], TCP_MAX_WINSHIFT);
2903 			break;
2904 		case TCPOPT_TIMESTAMP:
2905 			if (optlen != TCPOLEN_TIMESTAMP)
2906 				continue;
2907 			to->to_flags |= TOF_TS;
2908 			bcopy((char *)cp + 2,
2909 			    (char *)&to->to_tsval, sizeof(to->to_tsval));
2910 			to->to_tsval = ntohl(to->to_tsval);
2911 			bcopy((char *)cp + 6,
2912 			    (char *)&to->to_tsecr, sizeof(to->to_tsecr));
2913 			to->to_tsecr = ntohl(to->to_tsecr);
2914 			break;
2915 #ifdef TCP_SIGNATURE
2916 		/*
2917 		 * XXX In order to reply to a host which has set the
2918 		 * TCP_SIGNATURE option in its initial SYN, we have to
2919 		 * record the fact that the option was observed here
2920 		 * for the syncache code to perform the correct response.
2921 		 */
2922 		case TCPOPT_SIGNATURE:
2923 			if (optlen != TCPOLEN_SIGNATURE)
2924 				continue;
2925 			to->to_flags |= TOF_SIGNATURE;
2926 			to->to_signature = cp + 2;
2927 			break;
2928 #endif
2929 		case TCPOPT_SACK_PERMITTED:
2930 			if (optlen != TCPOLEN_SACK_PERMITTED)
2931 				continue;
2932 			if (!(flags & TO_SYN))
2933 				continue;
2934 			if (!V_tcp_do_sack)
2935 				continue;
2936 			to->to_flags |= TOF_SACKPERM;
2937 			break;
2938 		case TCPOPT_SACK:
2939 			if (optlen <= 2 || (optlen - 2) % TCPOLEN_SACK != 0)
2940 				continue;
2941 			if (flags & TO_SYN)
2942 				continue;
2943 			to->to_flags |= TOF_SACK;
2944 			to->to_nsacks = (optlen - 2) / TCPOLEN_SACK;
2945 			to->to_sacks = cp + 2;
2946 			TCPSTAT_INC(tcps_sack_rcv_blocks);
2947 			break;
2948 		default:
2949 			continue;
2950 		}
2951 	}
2952 }
2953 
2954 /*
2955  * Pull out of band byte out of a segment so
2956  * it doesn't appear in the user's data queue.
2957  * It is still reflected in the segment length for
2958  * sequencing purposes.
2959  */
2960 static void
2961 tcp_pulloutofband(struct socket *so, struct tcphdr *th, struct mbuf *m,
2962     int off)
2963 {
2964 	int cnt = off + th->th_urp - 1;
2965 
2966 	while (cnt >= 0) {
2967 		if (m->m_len > cnt) {
2968 			char *cp = mtod(m, caddr_t) + cnt;
2969 			struct tcpcb *tp = sototcpcb(so);
2970 
2971 			INP_WLOCK_ASSERT(tp->t_inpcb);
2972 
2973 			tp->t_iobc = *cp;
2974 			tp->t_oobflags |= TCPOOB_HAVEDATA;
2975 			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
2976 			m->m_len--;
2977 			if (m->m_flags & M_PKTHDR)
2978 				m->m_pkthdr.len--;
2979 			return;
2980 		}
2981 		cnt -= m->m_len;
2982 		m = m->m_next;
2983 		if (m == NULL)
2984 			break;
2985 	}
2986 	panic("tcp_pulloutofband");
2987 }
2988 
2989 /*
2990  * Collect new round-trip time estimate
2991  * and update averages and current timeout.
2992  */
2993 static void
2994 tcp_xmit_timer(struct tcpcb *tp, int rtt)
2995 {
2996 	INIT_VNET_INET(tp->t_inpcb->inp_vnet);
2997 	int delta;
2998 
2999 	INP_WLOCK_ASSERT(tp->t_inpcb);
3000 
3001 	TCPSTAT_INC(tcps_rttupdated);
3002 	tp->t_rttupdated++;
3003 	if (tp->t_srtt != 0) {
3004 		/*
3005 		 * srtt is stored as fixed point with 5 bits after the
3006 		 * binary point (i.e., scaled by 8).  The following magic
3007 		 * is equivalent to the smoothing algorithm in rfc793 with
3008 		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
3009 		 * point).  Adjust rtt to origin 0.
3010 		 */
3011 		delta = ((rtt - 1) << TCP_DELTA_SHIFT)
3012 			- (tp->t_srtt >> (TCP_RTT_SHIFT - TCP_DELTA_SHIFT));
3013 
3014 		if ((tp->t_srtt += delta) <= 0)
3015 			tp->t_srtt = 1;
3016 
3017 		/*
3018 		 * We accumulate a smoothed rtt variance (actually, a
3019 		 * smoothed mean difference), then set the retransmit
3020 		 * timer to smoothed rtt + 4 times the smoothed variance.
3021 		 * rttvar is stored as fixed point with 4 bits after the
3022 		 * binary point (scaled by 16).  The following is
3023 		 * equivalent to rfc793 smoothing with an alpha of .75
3024 		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
3025 		 * rfc793's wired-in beta.
3026 		 */
3027 		if (delta < 0)
3028 			delta = -delta;
3029 		delta -= tp->t_rttvar >> (TCP_RTTVAR_SHIFT - TCP_DELTA_SHIFT);
3030 		if ((tp->t_rttvar += delta) <= 0)
3031 			tp->t_rttvar = 1;
3032 		if (tp->t_rttbest > tp->t_srtt + tp->t_rttvar)
3033 		    tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
3034 	} else {
3035 		/*
3036 		 * No rtt measurement yet - use the unsmoothed rtt.
3037 		 * Set the variance to half the rtt (so our first
3038 		 * retransmit happens at 3*rtt).
3039 		 */
3040 		tp->t_srtt = rtt << TCP_RTT_SHIFT;
3041 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1);
3042 		tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
3043 	}
3044 	tp->t_rtttime = 0;
3045 	tp->t_rxtshift = 0;
3046 
3047 	/*
3048 	 * the retransmit should happen at rtt + 4 * rttvar.
3049 	 * Because of the way we do the smoothing, srtt and rttvar
3050 	 * will each average +1/2 tick of bias.  When we compute
3051 	 * the retransmit timer, we want 1/2 tick of rounding and
3052 	 * 1 extra tick because of +-1/2 tick uncertainty in the
3053 	 * firing of the timer.  The bias will give us exactly the
3054 	 * 1.5 tick we need.  But, because the bias is
3055 	 * statistical, we have to test that we don't drop below
3056 	 * the minimum feasible timer (which is 2 ticks).
3057 	 */
3058 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
3059 		      max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
3060 
3061 	/*
3062 	 * We received an ack for a packet that wasn't retransmitted;
3063 	 * it is probably safe to discard any error indications we've
3064 	 * received recently.  This isn't quite right, but close enough
3065 	 * for now (a route might have failed after we sent a segment,
3066 	 * and the return path might not be symmetrical).
3067 	 */
3068 	tp->t_softerror = 0;
3069 }
3070 
3071 /*
3072  * Determine a reasonable value for maxseg size.
3073  * If the route is known, check route for mtu.
3074  * If none, use an mss that can be handled on the outgoing
3075  * interface without forcing IP to fragment; if bigger than
3076  * an mbuf cluster (MCLBYTES), round down to nearest multiple of MCLBYTES
3077  * to utilize large mbufs.  If no route is found, route has no mtu,
3078  * or the destination isn't local, use a default, hopefully conservative
3079  * size (usually 512 or the default IP max size, but no more than the mtu
3080  * of the interface), as we can't discover anything about intervening
3081  * gateways or networks.  We also initialize the congestion/slow start
3082  * window to be a single segment if the destination isn't local.
3083  * While looking at the routing entry, we also initialize other path-dependent
3084  * parameters from pre-set or cached values in the routing entry.
3085  *
3086  * Also take into account the space needed for options that we
3087  * send regularly.  Make maxseg shorter by that amount to assure
3088  * that we can send maxseg amount of data even when the options
3089  * are present.  Store the upper limit of the length of options plus
3090  * data in maxopd.
3091  *
3092  * In case of T/TCP, we call this routine during implicit connection
3093  * setup as well (offer = -1), to initialize maxseg from the cached
3094  * MSS of our peer.
3095  *
3096  * NOTE that this routine is only called when we process an incoming
3097  * segment. Outgoing SYN/ACK MSS settings are handled in tcp_mssopt().
3098  */
3099 void
3100 tcp_mss_update(struct tcpcb *tp, int offer,
3101     struct hc_metrics_lite *metricptr, int *mtuflags)
3102 {
3103 	INIT_VNET_INET(tp->t_inpcb->inp_vnet);
3104 	int mss;
3105 	u_long maxmtu;
3106 	struct inpcb *inp = tp->t_inpcb;
3107 	struct hc_metrics_lite metrics;
3108 	int origoffer = offer;
3109 #ifdef INET6
3110 	int isipv6 = ((inp->inp_vflag & INP_IPV6) != 0) ? 1 : 0;
3111 	size_t min_protoh = isipv6 ?
3112 			    sizeof (struct ip6_hdr) + sizeof (struct tcphdr) :
3113 			    sizeof (struct tcpiphdr);
3114 #else
3115 	const size_t min_protoh = sizeof(struct tcpiphdr);
3116 #endif
3117 
3118 	INP_WLOCK_ASSERT(tp->t_inpcb);
3119 
3120 	/* Initialize. */
3121 #ifdef INET6
3122 	if (isipv6) {
3123 		maxmtu = tcp_maxmtu6(&inp->inp_inc, mtuflags);
3124 		tp->t_maxopd = tp->t_maxseg = V_tcp_v6mssdflt;
3125 	} else
3126 #endif
3127 	{
3128 		maxmtu = tcp_maxmtu(&inp->inp_inc, mtuflags);
3129 		tp->t_maxopd = tp->t_maxseg = V_tcp_mssdflt;
3130 	}
3131 
3132 	/*
3133 	 * No route to sender, stay with default mss and return.
3134 	 */
3135 	if (maxmtu == 0) {
3136 		/*
3137 		 * In case we return early we need to initialize metrics
3138 		 * to a defined state as tcp_hc_get() would do for us
3139 		 * if there was no cache hit.
3140 		 */
3141 		if (metricptr != NULL)
3142 			bzero(metricptr, sizeof(struct hc_metrics_lite));
3143 		return;
3144 	}
3145 
3146 	/* What have we got? */
3147 	switch (offer) {
3148 		case 0:
3149 			/*
3150 			 * Offer == 0 means that there was no MSS on the SYN
3151 			 * segment, in this case we use tcp_mssdflt as
3152 			 * already assigned to t_maxopd above.
3153 			 */
3154 			offer = tp->t_maxopd;
3155 			break;
3156 
3157 		case -1:
3158 			/*
3159 			 * Offer == -1 means that we didn't receive SYN yet.
3160 			 */
3161 			/* FALLTHROUGH */
3162 
3163 		default:
3164 			/*
3165 			 * Prevent DoS attack with too small MSS. Round up
3166 			 * to at least minmss.
3167 			 */
3168 			offer = max(offer, V_tcp_minmss);
3169 	}
3170 
3171 	/*
3172 	 * rmx information is now retrieved from tcp_hostcache.
3173 	 */
3174 	tcp_hc_get(&inp->inp_inc, &metrics);
3175 	if (metricptr != NULL)
3176 		bcopy(&metrics, metricptr, sizeof(struct hc_metrics_lite));
3177 
3178 	/*
3179 	 * If there's a discovered mtu int tcp hostcache, use it
3180 	 * else, use the link mtu.
3181 	 */
3182 	if (metrics.rmx_mtu)
3183 		mss = min(metrics.rmx_mtu, maxmtu) - min_protoh;
3184 	else {
3185 #ifdef INET6
3186 		if (isipv6) {
3187 			mss = maxmtu - min_protoh;
3188 			if (!V_path_mtu_discovery &&
3189 			    !in6_localaddr(&inp->in6p_faddr))
3190 				mss = min(mss, V_tcp_v6mssdflt);
3191 		} else
3192 #endif
3193 		{
3194 			mss = maxmtu - min_protoh;
3195 			if (!V_path_mtu_discovery &&
3196 			    !in_localaddr(inp->inp_faddr))
3197 				mss = min(mss, V_tcp_mssdflt);
3198 		}
3199 		/*
3200 		 * XXX - The above conditional (mss = maxmtu - min_protoh)
3201 		 * probably violates the TCP spec.
3202 		 * The problem is that, since we don't know the
3203 		 * other end's MSS, we are supposed to use a conservative
3204 		 * default.  But, if we do that, then MTU discovery will
3205 		 * never actually take place, because the conservative
3206 		 * default is much less than the MTUs typically seen
3207 		 * on the Internet today.  For the moment, we'll sweep
3208 		 * this under the carpet.
3209 		 *
3210 		 * The conservative default might not actually be a problem
3211 		 * if the only case this occurs is when sending an initial
3212 		 * SYN with options and data to a host we've never talked
3213 		 * to before.  Then, they will reply with an MSS value which
3214 		 * will get recorded and the new parameters should get
3215 		 * recomputed.  For Further Study.
3216 		 */
3217 	}
3218 	mss = min(mss, offer);
3219 
3220 	/*
3221 	 * Sanity check: make sure that maxopd will be large
3222 	 * enough to allow some data on segments even if the
3223 	 * all the option space is used (40bytes).  Otherwise
3224 	 * funny things may happen in tcp_output.
3225 	 */
3226 	mss = max(mss, 64);
3227 
3228 	/*
3229 	 * maxopd stores the maximum length of data AND options
3230 	 * in a segment; maxseg is the amount of data in a normal
3231 	 * segment.  We need to store this value (maxopd) apart
3232 	 * from maxseg, because now every segment carries options
3233 	 * and thus we normally have somewhat less data in segments.
3234 	 */
3235 	tp->t_maxopd = mss;
3236 
3237 	/*
3238 	 * origoffer==-1 indicates that no segments were received yet.
3239 	 * In this case we just guess.
3240 	 */
3241 	if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
3242 	    (origoffer == -1 ||
3243 	     (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP))
3244 		mss -= TCPOLEN_TSTAMP_APPA;
3245 
3246 #if	(MCLBYTES & (MCLBYTES - 1)) == 0
3247 	if (mss > MCLBYTES)
3248 		mss &= ~(MCLBYTES-1);
3249 #else
3250 	if (mss > MCLBYTES)
3251 		mss = mss / MCLBYTES * MCLBYTES;
3252 #endif
3253 	tp->t_maxseg = mss;
3254 }
3255 
3256 void
3257 tcp_mss(struct tcpcb *tp, int offer)
3258 {
3259 	int rtt, mss;
3260 	u_long bufsize;
3261 	struct inpcb *inp;
3262 	struct socket *so;
3263 	struct hc_metrics_lite metrics;
3264 	int mtuflags = 0;
3265 #ifdef INET6
3266 	int isipv6;
3267 #endif
3268 	KASSERT(tp != NULL, ("%s: tp == NULL", __func__));
3269 	INIT_VNET_INET(tp->t_vnet);
3270 
3271 	tcp_mss_update(tp, offer, &metrics, &mtuflags);
3272 
3273 	mss = tp->t_maxseg;
3274 	inp = tp->t_inpcb;
3275 #ifdef INET6
3276 	isipv6 = ((inp->inp_vflag & INP_IPV6) != 0) ? 1 : 0;
3277 #endif
3278 
3279 	/*
3280 	 * If there's a pipesize, change the socket buffer to that size,
3281 	 * don't change if sb_hiwat is different than default (then it
3282 	 * has been changed on purpose with setsockopt).
3283 	 * Make the socket buffers an integral number of mss units;
3284 	 * if the mss is larger than the socket buffer, decrease the mss.
3285 	 */
3286 	so = inp->inp_socket;
3287 	SOCKBUF_LOCK(&so->so_snd);
3288 	if ((so->so_snd.sb_hiwat == tcp_sendspace) && metrics.rmx_sendpipe)
3289 		bufsize = metrics.rmx_sendpipe;
3290 	else
3291 		bufsize = so->so_snd.sb_hiwat;
3292 	if (bufsize < mss)
3293 		mss = bufsize;
3294 	else {
3295 		bufsize = roundup(bufsize, mss);
3296 		if (bufsize > sb_max)
3297 			bufsize = sb_max;
3298 		if (bufsize > so->so_snd.sb_hiwat)
3299 			(void)sbreserve_locked(&so->so_snd, bufsize, so, NULL);
3300 	}
3301 	SOCKBUF_UNLOCK(&so->so_snd);
3302 	tp->t_maxseg = mss;
3303 
3304 	SOCKBUF_LOCK(&so->so_rcv);
3305 	if ((so->so_rcv.sb_hiwat == tcp_recvspace) && metrics.rmx_recvpipe)
3306 		bufsize = metrics.rmx_recvpipe;
3307 	else
3308 		bufsize = so->so_rcv.sb_hiwat;
3309 	if (bufsize > mss) {
3310 		bufsize = roundup(bufsize, mss);
3311 		if (bufsize > sb_max)
3312 			bufsize = sb_max;
3313 		if (bufsize > so->so_rcv.sb_hiwat)
3314 			(void)sbreserve_locked(&so->so_rcv, bufsize, so, NULL);
3315 	}
3316 	SOCKBUF_UNLOCK(&so->so_rcv);
3317 	/*
3318 	 * While we're here, check the others too.
3319 	 */
3320 	if (tp->t_srtt == 0 && (rtt = metrics.rmx_rtt)) {
3321 		tp->t_srtt = rtt;
3322 		tp->t_rttbest = tp->t_srtt + TCP_RTT_SCALE;
3323 		TCPSTAT_INC(tcps_usedrtt);
3324 		if (metrics.rmx_rttvar) {
3325 			tp->t_rttvar = metrics.rmx_rttvar;
3326 			TCPSTAT_INC(tcps_usedrttvar);
3327 		} else {
3328 			/* default variation is +- 1 rtt */
3329 			tp->t_rttvar =
3330 			    tp->t_srtt * TCP_RTTVAR_SCALE / TCP_RTT_SCALE;
3331 		}
3332 		TCPT_RANGESET(tp->t_rxtcur,
3333 			      ((tp->t_srtt >> 2) + tp->t_rttvar) >> 1,
3334 			      tp->t_rttmin, TCPTV_REXMTMAX);
3335 	}
3336 	if (metrics.rmx_ssthresh) {
3337 		/*
3338 		 * There's some sort of gateway or interface
3339 		 * buffer limit on the path.  Use this to set
3340 		 * the slow start threshhold, but set the
3341 		 * threshold to no less than 2*mss.
3342 		 */
3343 		tp->snd_ssthresh = max(2 * mss, metrics.rmx_ssthresh);
3344 		TCPSTAT_INC(tcps_usedssthresh);
3345 	}
3346 	if (metrics.rmx_bandwidth)
3347 		tp->snd_bandwidth = metrics.rmx_bandwidth;
3348 
3349 	/*
3350 	 * Set the slow-start flight size depending on whether this
3351 	 * is a local network or not.
3352 	 *
3353 	 * Extend this so we cache the cwnd too and retrieve it here.
3354 	 * Make cwnd even bigger than RFC3390 suggests but only if we
3355 	 * have previous experience with the remote host. Be careful
3356 	 * not make cwnd bigger than remote receive window or our own
3357 	 * send socket buffer. Maybe put some additional upper bound
3358 	 * on the retrieved cwnd. Should do incremental updates to
3359 	 * hostcache when cwnd collapses so next connection doesn't
3360 	 * overloads the path again.
3361 	 *
3362 	 * RFC3390 says only do this if SYN or SYN/ACK didn't got lost.
3363 	 * We currently check only in syncache_socket for that.
3364 	 */
3365 #define TCP_METRICS_CWND
3366 #ifdef TCP_METRICS_CWND
3367 	if (metrics.rmx_cwnd)
3368 		tp->snd_cwnd = max(mss,
3369 				min(metrics.rmx_cwnd / 2,
3370 				 min(tp->snd_wnd, so->so_snd.sb_hiwat)));
3371 	else
3372 #endif
3373 	if (V_tcp_do_rfc3390)
3374 		tp->snd_cwnd = min(4 * mss, max(2 * mss, 4380));
3375 #ifdef INET6
3376 	else if ((isipv6 && in6_localaddr(&inp->in6p_faddr)) ||
3377 		 (!isipv6 && in_localaddr(inp->inp_faddr)))
3378 #else
3379 	else if (in_localaddr(inp->inp_faddr))
3380 #endif
3381 		tp->snd_cwnd = mss * V_ss_fltsz_local;
3382 	else
3383 		tp->snd_cwnd = mss * V_ss_fltsz;
3384 
3385 	/* Check the interface for TSO capabilities. */
3386 	if (mtuflags & CSUM_TSO)
3387 		tp->t_flags |= TF_TSO;
3388 }
3389 
3390 /*
3391  * Determine the MSS option to send on an outgoing SYN.
3392  */
3393 int
3394 tcp_mssopt(struct in_conninfo *inc)
3395 {
3396 	INIT_VNET_INET(curvnet);
3397 	int mss = 0;
3398 	u_long maxmtu = 0;
3399 	u_long thcmtu = 0;
3400 	size_t min_protoh;
3401 
3402 	KASSERT(inc != NULL, ("tcp_mssopt with NULL in_conninfo pointer"));
3403 
3404 #ifdef INET6
3405 	if (inc->inc_flags & INC_ISIPV6) {
3406 		mss = V_tcp_v6mssdflt;
3407 		maxmtu = tcp_maxmtu6(inc, NULL);
3408 		thcmtu = tcp_hc_getmtu(inc); /* IPv4 and IPv6 */
3409 		min_protoh = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
3410 	} else
3411 #endif
3412 	{
3413 		mss = V_tcp_mssdflt;
3414 		maxmtu = tcp_maxmtu(inc, NULL);
3415 		thcmtu = tcp_hc_getmtu(inc); /* IPv4 and IPv6 */
3416 		min_protoh = sizeof(struct tcpiphdr);
3417 	}
3418 	if (maxmtu && thcmtu)
3419 		mss = min(maxmtu, thcmtu) - min_protoh;
3420 	else if (maxmtu || thcmtu)
3421 		mss = max(maxmtu, thcmtu) - min_protoh;
3422 
3423 	return (mss);
3424 }
3425 
3426 
3427 /*
3428  * On a partial ack arrives, force the retransmission of the
3429  * next unacknowledged segment.  Do not clear tp->t_dupacks.
3430  * By setting snd_nxt to ti_ack, this forces retransmission timer to
3431  * be started again.
3432  */
3433 static void
3434 tcp_newreno_partial_ack(struct tcpcb *tp, struct tcphdr *th)
3435 {
3436 	tcp_seq onxt = tp->snd_nxt;
3437 	u_long  ocwnd = tp->snd_cwnd;
3438 
3439 	INP_WLOCK_ASSERT(tp->t_inpcb);
3440 
3441 	tcp_timer_activate(tp, TT_REXMT, 0);
3442 	tp->t_rtttime = 0;
3443 	tp->snd_nxt = th->th_ack;
3444 	/*
3445 	 * Set snd_cwnd to one segment beyond acknowledged offset.
3446 	 * (tp->snd_una has not yet been updated when this function is called.)
3447 	 */
3448 	tp->snd_cwnd = tp->t_maxseg + (th->th_ack - tp->snd_una);
3449 	tp->t_flags |= TF_ACKNOW;
3450 	(void) tcp_output(tp);
3451 	tp->snd_cwnd = ocwnd;
3452 	if (SEQ_GT(onxt, tp->snd_nxt))
3453 		tp->snd_nxt = onxt;
3454 	/*
3455 	 * Partial window deflation.  Relies on fact that tp->snd_una
3456 	 * not updated yet.
3457 	 */
3458 	if (tp->snd_cwnd > th->th_ack - tp->snd_una)
3459 		tp->snd_cwnd -= th->th_ack - tp->snd_una;
3460 	else
3461 		tp->snd_cwnd = 0;
3462 	tp->snd_cwnd += tp->t_maxseg;
3463 }
3464