xref: /freebsd/sys/netinet/tcp_input.c (revision 130d950cafcd29c6a32cf5357bf600dcd9c1d998)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
5  *	The Regents of the University of California.  All rights reserved.
6  * Copyright (c) 2007-2008,2010
7  *	Swinburne University of Technology, Melbourne, Australia.
8  * Copyright (c) 2009-2010 Lawrence Stewart <lstewart@freebsd.org>
9  * Copyright (c) 2010 The FreeBSD Foundation
10  * Copyright (c) 2010-2011 Juniper Networks, Inc.
11  * All rights reserved.
12  *
13  * Portions of this software were developed at the Centre for Advanced Internet
14  * Architectures, Swinburne University of Technology, by Lawrence Stewart,
15  * James Healy and David Hayes, made possible in part by a grant from the Cisco
16  * University Research Program Fund at Community Foundation Silicon Valley.
17  *
18  * Portions of this software were developed at the Centre for Advanced
19  * Internet Architectures, Swinburne University of Technology, Melbourne,
20  * Australia by David Hayes under sponsorship from the FreeBSD Foundation.
21  *
22  * Portions of this software were developed by Robert N. M. Watson under
23  * contract to Juniper Networks, Inc.
24  *
25  * Redistribution and use in source and binary forms, with or without
26  * modification, are permitted provided that the following conditions
27  * are met:
28  * 1. Redistributions of source code must retain the above copyright
29  *    notice, this list of conditions and the following disclaimer.
30  * 2. Redistributions in binary form must reproduce the above copyright
31  *    notice, this list of conditions and the following disclaimer in the
32  *    documentation and/or other materials provided with the distribution.
33  * 3. Neither the name of the University nor the names of its contributors
34  *    may be used to endorse or promote products derived from this software
35  *    without specific prior written permission.
36  *
37  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
38  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
39  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
40  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
41  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
42  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
43  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
45  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
46  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
47  * SUCH DAMAGE.
48  *
49  *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
50  */
51 
52 #include <sys/cdefs.h>
53 __FBSDID("$FreeBSD$");
54 
55 #include "opt_inet.h"
56 #include "opt_inet6.h"
57 #include "opt_ipsec.h"
58 #include "opt_tcpdebug.h"
59 
60 #include <sys/param.h>
61 #include <sys/arb.h>
62 #include <sys/kernel.h>
63 #ifdef TCP_HHOOK
64 #include <sys/hhook.h>
65 #endif
66 #include <sys/malloc.h>
67 #include <sys/mbuf.h>
68 #include <sys/proc.h>		/* for proc0 declaration */
69 #include <sys/protosw.h>
70 #include <sys/qmath.h>
71 #include <sys/sdt.h>
72 #include <sys/signalvar.h>
73 #include <sys/socket.h>
74 #include <sys/socketvar.h>
75 #include <sys/sysctl.h>
76 #include <sys/syslog.h>
77 #include <sys/systm.h>
78 #include <sys/stats.h>
79 
80 #include <machine/cpu.h>	/* before tcp_seq.h, for tcp_random18() */
81 
82 #include <vm/uma.h>
83 
84 #include <net/if.h>
85 #include <net/if_var.h>
86 #include <net/route.h>
87 #include <net/vnet.h>
88 
89 #define TCPSTATES		/* for logging */
90 
91 #include <netinet/in.h>
92 #include <netinet/in_kdtrace.h>
93 #include <netinet/in_pcb.h>
94 #include <netinet/in_systm.h>
95 #include <netinet/ip.h>
96 #include <netinet/ip_icmp.h>	/* required for icmp_var.h */
97 #include <netinet/icmp_var.h>	/* for ICMP_BANDLIM */
98 #include <netinet/ip_var.h>
99 #include <netinet/ip_options.h>
100 #include <netinet/ip6.h>
101 #include <netinet/icmp6.h>
102 #include <netinet6/in6_pcb.h>
103 #include <netinet6/in6_var.h>
104 #include <netinet6/ip6_var.h>
105 #include <netinet6/nd6.h>
106 #include <netinet/tcp.h>
107 #include <netinet/tcp_fsm.h>
108 #include <netinet/tcp_log_buf.h>
109 #include <netinet/tcp_seq.h>
110 #include <netinet/tcp_timer.h>
111 #include <netinet/tcp_var.h>
112 #include <netinet6/tcp6_var.h>
113 #include <netinet/tcpip.h>
114 #include <netinet/cc/cc.h>
115 #include <netinet/tcp_fastopen.h>
116 #ifdef TCPPCAP
117 #include <netinet/tcp_pcap.h>
118 #endif
119 #include <netinet/tcp_syncache.h>
120 #ifdef TCPDEBUG
121 #include <netinet/tcp_debug.h>
122 #endif /* TCPDEBUG */
123 #ifdef TCP_OFFLOAD
124 #include <netinet/tcp_offload.h>
125 #endif
126 
127 #include <netipsec/ipsec_support.h>
128 
129 #include <machine/in_cksum.h>
130 
131 #include <security/mac/mac_framework.h>
132 
133 const int tcprexmtthresh = 3;
134 
135 VNET_DEFINE(int, tcp_log_in_vain) = 0;
136 SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_in_vain, CTLFLAG_VNET | CTLFLAG_RW,
137     &VNET_NAME(tcp_log_in_vain), 0,
138     "Log all incoming TCP segments to closed ports");
139 
140 VNET_DEFINE(int, blackhole) = 0;
141 #define	V_blackhole		VNET(blackhole)
142 SYSCTL_INT(_net_inet_tcp, OID_AUTO, blackhole, CTLFLAG_VNET | CTLFLAG_RW,
143     &VNET_NAME(blackhole), 0,
144     "Do not send RST on segments to closed ports");
145 
146 VNET_DEFINE(int, tcp_delack_enabled) = 1;
147 SYSCTL_INT(_net_inet_tcp, OID_AUTO, delayed_ack, CTLFLAG_VNET | CTLFLAG_RW,
148     &VNET_NAME(tcp_delack_enabled), 0,
149     "Delay ACK to try and piggyback it onto a data packet");
150 
151 VNET_DEFINE(int, drop_synfin) = 0;
152 SYSCTL_INT(_net_inet_tcp, OID_AUTO, drop_synfin, CTLFLAG_VNET | CTLFLAG_RW,
153     &VNET_NAME(drop_synfin), 0,
154     "Drop TCP packets with SYN+FIN set");
155 
156 VNET_DEFINE(int, tcp_do_newcwv) = 0;
157 SYSCTL_INT(_net_inet_tcp, OID_AUTO, newcwv, CTLFLAG_VNET | CTLFLAG_RW,
158     &VNET_NAME(tcp_do_newcwv), 0,
159     "Enable New Congestion Window Validation per RFC7661");
160 
161 VNET_DEFINE(int, tcp_do_rfc6675_pipe) = 0;
162 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc6675_pipe, CTLFLAG_VNET | CTLFLAG_RW,
163     &VNET_NAME(tcp_do_rfc6675_pipe), 0,
164     "Use calculated pipe/in-flight bytes per RFC 6675");
165 
166 VNET_DEFINE(int, tcp_do_rfc3042) = 1;
167 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3042, CTLFLAG_VNET | CTLFLAG_RW,
168     &VNET_NAME(tcp_do_rfc3042), 0,
169     "Enable RFC 3042 (Limited Transmit)");
170 
171 VNET_DEFINE(int, tcp_do_rfc3390) = 1;
172 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3390, CTLFLAG_VNET | CTLFLAG_RW,
173     &VNET_NAME(tcp_do_rfc3390), 0,
174     "Enable RFC 3390 (Increasing TCP's Initial Congestion Window)");
175 
176 VNET_DEFINE(int, tcp_initcwnd_segments) = 10;
177 SYSCTL_INT(_net_inet_tcp, OID_AUTO, initcwnd_segments,
178     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(tcp_initcwnd_segments), 0,
179     "Slow-start flight size (initial congestion window) in number of segments");
180 
181 VNET_DEFINE(int, tcp_do_rfc3465) = 1;
182 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3465, CTLFLAG_VNET | CTLFLAG_RW,
183     &VNET_NAME(tcp_do_rfc3465), 0,
184     "Enable RFC 3465 (Appropriate Byte Counting)");
185 
186 VNET_DEFINE(int, tcp_abc_l_var) = 2;
187 SYSCTL_INT(_net_inet_tcp, OID_AUTO, abc_l_var, CTLFLAG_VNET | CTLFLAG_RW,
188     &VNET_NAME(tcp_abc_l_var), 2,
189     "Cap the max cwnd increment during slow-start to this number of segments");
190 
191 static SYSCTL_NODE(_net_inet_tcp, OID_AUTO, ecn,
192     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
193     "TCP ECN");
194 
195 VNET_DEFINE(int, tcp_do_ecn) = 2;
196 SYSCTL_INT(_net_inet_tcp_ecn, OID_AUTO, enable, CTLFLAG_VNET | CTLFLAG_RW,
197     &VNET_NAME(tcp_do_ecn), 0,
198     "TCP ECN support");
199 
200 VNET_DEFINE(int, tcp_ecn_maxretries) = 1;
201 SYSCTL_INT(_net_inet_tcp_ecn, OID_AUTO, maxretries, CTLFLAG_VNET | CTLFLAG_RW,
202     &VNET_NAME(tcp_ecn_maxretries), 0,
203     "Max retries before giving up on ECN");
204 
205 VNET_DEFINE(int, tcp_insecure_syn) = 0;
206 SYSCTL_INT(_net_inet_tcp, OID_AUTO, insecure_syn, CTLFLAG_VNET | CTLFLAG_RW,
207     &VNET_NAME(tcp_insecure_syn), 0,
208     "Follow RFC793 instead of RFC5961 criteria for accepting SYN packets");
209 
210 VNET_DEFINE(int, tcp_insecure_rst) = 0;
211 SYSCTL_INT(_net_inet_tcp, OID_AUTO, insecure_rst, CTLFLAG_VNET | CTLFLAG_RW,
212     &VNET_NAME(tcp_insecure_rst), 0,
213     "Follow RFC793 instead of RFC5961 criteria for accepting RST packets");
214 
215 VNET_DEFINE(int, tcp_recvspace) = 1024*64;
216 #define	V_tcp_recvspace	VNET(tcp_recvspace)
217 SYSCTL_INT(_net_inet_tcp, TCPCTL_RECVSPACE, recvspace, CTLFLAG_VNET | CTLFLAG_RW,
218     &VNET_NAME(tcp_recvspace), 0, "Initial receive socket buffer size");
219 
220 VNET_DEFINE(int, tcp_do_autorcvbuf) = 1;
221 SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbuf_auto, CTLFLAG_VNET | CTLFLAG_RW,
222     &VNET_NAME(tcp_do_autorcvbuf), 0,
223     "Enable automatic receive buffer sizing");
224 
225 VNET_DEFINE(int, tcp_autorcvbuf_max) = 2*1024*1024;
226 SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbuf_max, CTLFLAG_VNET | CTLFLAG_RW,
227     &VNET_NAME(tcp_autorcvbuf_max), 0,
228     "Max size of automatic receive buffer");
229 
230 VNET_DEFINE(struct inpcbhead, tcb);
231 #define	tcb6	tcb  /* for KAME src sync over BSD*'s */
232 VNET_DEFINE(struct inpcbinfo, tcbinfo);
233 
234 /*
235  * TCP statistics are stored in an array of counter(9)s, which size matches
236  * size of struct tcpstat.  TCP running connection count is a regular array.
237  */
238 VNET_PCPUSTAT_DEFINE(struct tcpstat, tcpstat);
239 SYSCTL_VNET_PCPUSTAT(_net_inet_tcp, TCPCTL_STATS, stats, struct tcpstat,
240     tcpstat, "TCP statistics (struct tcpstat, netinet/tcp_var.h)");
241 VNET_DEFINE(counter_u64_t, tcps_states[TCP_NSTATES]);
242 SYSCTL_COUNTER_U64_ARRAY(_net_inet_tcp, TCPCTL_STATES, states, CTLFLAG_RD |
243     CTLFLAG_VNET, &VNET_NAME(tcps_states)[0], TCP_NSTATES,
244     "TCP connection counts by TCP state");
245 
246 static void
247 tcp_vnet_init(const void *unused)
248 {
249 
250 	COUNTER_ARRAY_ALLOC(V_tcps_states, TCP_NSTATES, M_WAITOK);
251 	VNET_PCPUSTAT_ALLOC(tcpstat, M_WAITOK);
252 }
253 VNET_SYSINIT(tcp_vnet_init, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_ANY,
254     tcp_vnet_init, NULL);
255 
256 #ifdef VIMAGE
257 static void
258 tcp_vnet_uninit(const void *unused)
259 {
260 
261 	COUNTER_ARRAY_FREE(V_tcps_states, TCP_NSTATES);
262 	VNET_PCPUSTAT_FREE(tcpstat);
263 }
264 VNET_SYSUNINIT(tcp_vnet_uninit, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_ANY,
265     tcp_vnet_uninit, NULL);
266 #endif /* VIMAGE */
267 
268 /*
269  * Kernel module interface for updating tcpstat.  The first argument is an index
270  * into tcpstat treated as an array.
271  */
272 void
273 kmod_tcpstat_add(int statnum, int val)
274 {
275 
276 	counter_u64_add(VNET(tcpstat)[statnum], val);
277 }
278 
279 #ifdef TCP_HHOOK
280 /*
281  * Wrapper for the TCP established input helper hook.
282  */
283 void
284 hhook_run_tcp_est_in(struct tcpcb *tp, struct tcphdr *th, struct tcpopt *to)
285 {
286 	struct tcp_hhook_data hhook_data;
287 
288 	if (V_tcp_hhh[HHOOK_TCP_EST_IN]->hhh_nhooks > 0) {
289 		hhook_data.tp = tp;
290 		hhook_data.th = th;
291 		hhook_data.to = to;
292 
293 		hhook_run_hooks(V_tcp_hhh[HHOOK_TCP_EST_IN], &hhook_data,
294 		    tp->osd);
295 	}
296 }
297 #endif
298 
299 /*
300  * CC wrapper hook functions
301  */
302 void
303 cc_ack_received(struct tcpcb *tp, struct tcphdr *th, uint16_t nsegs,
304     uint16_t type)
305 {
306 #ifdef STATS
307 	int32_t gput;
308 #endif
309 
310 	INP_WLOCK_ASSERT(tp->t_inpcb);
311 
312 	tp->ccv->nsegs = nsegs;
313 	tp->ccv->bytes_this_ack = BYTES_THIS_ACK(tp, th);
314 	if ((!V_tcp_do_newcwv && (tp->snd_cwnd <= tp->snd_wnd)) ||
315 	    (V_tcp_do_newcwv && (tp->snd_cwnd <= tp->snd_wnd) &&
316 	     (tp->snd_cwnd < (tcp_compute_pipe(tp) * 2))))
317 		tp->ccv->flags |= CCF_CWND_LIMITED;
318 	else
319 		tp->ccv->flags &= ~CCF_CWND_LIMITED;
320 
321 	if (type == CC_ACK) {
322 #ifdef STATS
323 		stats_voi_update_abs_s32(tp->t_stats, VOI_TCP_CALCFRWINDIFF,
324 		    ((int32_t)tp->snd_cwnd) - tp->snd_wnd);
325 		if (!IN_RECOVERY(tp->t_flags))
326 			stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_ACKLEN,
327 			   tp->ccv->bytes_this_ack / (tcp_maxseg(tp) * nsegs));
328 		if ((tp->t_flags & TF_GPUTINPROG) &&
329 		    SEQ_GEQ(th->th_ack, tp->gput_ack)) {
330 			/*
331 			 * Compute goodput in bits per millisecond.
332 			 */
333 			gput = (((int64_t)(th->th_ack - tp->gput_seq)) << 3) /
334 			    max(1, tcp_ts_getticks() - tp->gput_ts);
335 			stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_GPUT,
336 			    gput);
337 			/*
338 			 * XXXLAS: This is a temporary hack, and should be
339 			 * chained off VOI_TCP_GPUT when stats(9) grows an API
340 			 * to deal with chained VOIs.
341 			 */
342 			if (tp->t_stats_gput_prev > 0)
343 				stats_voi_update_abs_s32(tp->t_stats,
344 				    VOI_TCP_GPUT_ND,
345 				    ((gput - tp->t_stats_gput_prev) * 100) /
346 				    tp->t_stats_gput_prev);
347 			tp->t_flags &= ~TF_GPUTINPROG;
348 			tp->t_stats_gput_prev = gput;
349 		}
350 #endif /* STATS */
351 		if (tp->snd_cwnd > tp->snd_ssthresh) {
352 			tp->t_bytes_acked += min(tp->ccv->bytes_this_ack,
353 			     nsegs * V_tcp_abc_l_var * tcp_maxseg(tp));
354 			if (tp->t_bytes_acked >= tp->snd_cwnd) {
355 				tp->t_bytes_acked -= tp->snd_cwnd;
356 				tp->ccv->flags |= CCF_ABC_SENTAWND;
357 			}
358 		} else {
359 				tp->ccv->flags &= ~CCF_ABC_SENTAWND;
360 				tp->t_bytes_acked = 0;
361 		}
362 	}
363 
364 	if (CC_ALGO(tp)->ack_received != NULL) {
365 		/* XXXLAS: Find a way to live without this */
366 		tp->ccv->curack = th->th_ack;
367 		CC_ALGO(tp)->ack_received(tp->ccv, type);
368 	}
369 #ifdef STATS
370 	stats_voi_update_abs_ulong(tp->t_stats, VOI_TCP_LCWIN, tp->snd_cwnd);
371 #endif
372 }
373 
374 void
375 cc_conn_init(struct tcpcb *tp)
376 {
377 	struct hc_metrics_lite metrics;
378 	struct inpcb *inp = tp->t_inpcb;
379 	u_int maxseg;
380 	int rtt;
381 
382 	INP_WLOCK_ASSERT(tp->t_inpcb);
383 
384 	tcp_hc_get(&inp->inp_inc, &metrics);
385 	maxseg = tcp_maxseg(tp);
386 
387 	if (tp->t_srtt == 0 && (rtt = metrics.rmx_rtt)) {
388 		tp->t_srtt = rtt;
389 		tp->t_rttbest = tp->t_srtt + TCP_RTT_SCALE;
390 		TCPSTAT_INC(tcps_usedrtt);
391 		if (metrics.rmx_rttvar) {
392 			tp->t_rttvar = metrics.rmx_rttvar;
393 			TCPSTAT_INC(tcps_usedrttvar);
394 		} else {
395 			/* default variation is +- 1 rtt */
396 			tp->t_rttvar =
397 			    tp->t_srtt * TCP_RTTVAR_SCALE / TCP_RTT_SCALE;
398 		}
399 		TCPT_RANGESET(tp->t_rxtcur,
400 		    ((tp->t_srtt >> 2) + tp->t_rttvar) >> 1,
401 		    tp->t_rttmin, TCPTV_REXMTMAX);
402 	}
403 	if (metrics.rmx_ssthresh) {
404 		/*
405 		 * There's some sort of gateway or interface
406 		 * buffer limit on the path.  Use this to set
407 		 * the slow start threshold, but set the
408 		 * threshold to no less than 2*mss.
409 		 */
410 		tp->snd_ssthresh = max(2 * maxseg, metrics.rmx_ssthresh);
411 		TCPSTAT_INC(tcps_usedssthresh);
412 	}
413 
414 	/*
415 	 * Set the initial slow-start flight size.
416 	 *
417 	 * If a SYN or SYN/ACK was lost and retransmitted, we have to
418 	 * reduce the initial CWND to one segment as congestion is likely
419 	 * requiring us to be cautious.
420 	 */
421 	if (tp->snd_cwnd == 1)
422 		tp->snd_cwnd = maxseg;		/* SYN(-ACK) lost */
423 	else
424 		tp->snd_cwnd = tcp_compute_initwnd(maxseg);
425 
426 	if (CC_ALGO(tp)->conn_init != NULL)
427 		CC_ALGO(tp)->conn_init(tp->ccv);
428 }
429 
430 void inline
431 cc_cong_signal(struct tcpcb *tp, struct tcphdr *th, uint32_t type)
432 {
433 	u_int maxseg;
434 
435 	INP_WLOCK_ASSERT(tp->t_inpcb);
436 
437 #ifdef STATS
438 	stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_CSIG, type);
439 #endif
440 
441 	switch(type) {
442 	case CC_NDUPACK:
443 		if (!IN_FASTRECOVERY(tp->t_flags)) {
444 			tp->snd_recover = tp->snd_max;
445 			if (tp->t_flags2 & TF2_ECN_PERMIT)
446 				tp->t_flags2 |= TF2_ECN_SND_CWR;
447 		}
448 		break;
449 	case CC_ECN:
450 		if (!IN_CONGRECOVERY(tp->t_flags)) {
451 			TCPSTAT_INC(tcps_ecn_rcwnd);
452 			tp->snd_recover = tp->snd_max;
453 			if (tp->t_flags2 & TF2_ECN_PERMIT)
454 				tp->t_flags2 |= TF2_ECN_SND_CWR;
455 		}
456 		break;
457 	case CC_RTO:
458 		maxseg = tcp_maxseg(tp);
459 		tp->t_dupacks = 0;
460 		tp->t_bytes_acked = 0;
461 		EXIT_RECOVERY(tp->t_flags);
462 		tp->snd_ssthresh = max(2, min(tp->snd_wnd, tp->snd_cwnd) / 2 /
463 		    maxseg) * maxseg;
464 		tp->snd_cwnd = maxseg;
465 		if (tp->t_flags2 & TF2_ECN_PERMIT)
466 			tp->t_flags2 |= TF2_ECN_SND_CWR;
467 		break;
468 	case CC_RTO_ERR:
469 		TCPSTAT_INC(tcps_sndrexmitbad);
470 		/* RTO was unnecessary, so reset everything. */
471 		tp->snd_cwnd = tp->snd_cwnd_prev;
472 		tp->snd_ssthresh = tp->snd_ssthresh_prev;
473 		tp->snd_recover = tp->snd_recover_prev;
474 		if (tp->t_flags & TF_WASFRECOVERY)
475 			ENTER_FASTRECOVERY(tp->t_flags);
476 		if (tp->t_flags & TF_WASCRECOVERY)
477 			ENTER_CONGRECOVERY(tp->t_flags);
478 		tp->snd_nxt = tp->snd_max;
479 		tp->t_flags &= ~TF_PREVVALID;
480 		tp->t_badrxtwin = 0;
481 		break;
482 	}
483 
484 	if (CC_ALGO(tp)->cong_signal != NULL) {
485 		if (th != NULL)
486 			tp->ccv->curack = th->th_ack;
487 		CC_ALGO(tp)->cong_signal(tp->ccv, type);
488 	}
489 }
490 
491 void inline
492 cc_post_recovery(struct tcpcb *tp, struct tcphdr *th)
493 {
494 	INP_WLOCK_ASSERT(tp->t_inpcb);
495 
496 	/* XXXLAS: KASSERT that we're in recovery? */
497 
498 	if (CC_ALGO(tp)->post_recovery != NULL) {
499 		tp->ccv->curack = th->th_ack;
500 		CC_ALGO(tp)->post_recovery(tp->ccv);
501 	}
502 	/* XXXLAS: EXIT_RECOVERY ? */
503 	tp->t_bytes_acked = 0;
504 }
505 
506 /*
507  * Indicate whether this ack should be delayed.  We can delay the ack if
508  * following conditions are met:
509  *	- There is no delayed ack timer in progress.
510  *	- Our last ack wasn't a 0-sized window. We never want to delay
511  *	  the ack that opens up a 0-sized window.
512  *	- LRO wasn't used for this segment. We make sure by checking that the
513  *	  segment size is not larger than the MSS.
514  */
515 #define DELAY_ACK(tp, tlen)						\
516 	((!tcp_timer_active(tp, TT_DELACK) &&				\
517 	    (tp->t_flags & TF_RXWIN0SENT) == 0) &&			\
518 	    (tlen <= tp->t_maxseg) &&					\
519 	    (V_tcp_delack_enabled || (tp->t_flags & TF_NEEDSYN)))
520 
521 void inline
522 cc_ecnpkt_handler(struct tcpcb *tp, struct tcphdr *th, uint8_t iptos)
523 {
524 	INP_WLOCK_ASSERT(tp->t_inpcb);
525 
526 	if (CC_ALGO(tp)->ecnpkt_handler != NULL) {
527 		switch (iptos & IPTOS_ECN_MASK) {
528 		case IPTOS_ECN_CE:
529 			tp->ccv->flags |= CCF_IPHDR_CE;
530 			break;
531 		case IPTOS_ECN_ECT0:
532 			/* FALLTHROUGH */
533 		case IPTOS_ECN_ECT1:
534 			/* FALLTHROUGH */
535 		case IPTOS_ECN_NOTECT:
536 			tp->ccv->flags &= ~CCF_IPHDR_CE;
537 			break;
538 		}
539 
540 		if (th->th_flags & TH_CWR)
541 			tp->ccv->flags |= CCF_TCPHDR_CWR;
542 		else
543 			tp->ccv->flags &= ~CCF_TCPHDR_CWR;
544 
545 		CC_ALGO(tp)->ecnpkt_handler(tp->ccv);
546 
547 		if (tp->ccv->flags & CCF_ACKNOW) {
548 			tcp_timer_activate(tp, TT_DELACK, tcp_delacktime);
549 			tp->t_flags |= TF_ACKNOW;
550 		}
551 	}
552 }
553 
554 /*
555  * TCP input handling is split into multiple parts:
556  *   tcp6_input is a thin wrapper around tcp_input for the extended
557  *	ip6_protox[] call format in ip6_input
558  *   tcp_input handles primary segment validation, inpcb lookup and
559  *	SYN processing on listen sockets
560  *   tcp_do_segment processes the ACK and text of the segment for
561  *	establishing, established and closing connections
562  */
563 #ifdef INET6
564 int
565 tcp6_input(struct mbuf **mp, int *offp, int proto)
566 {
567 	struct mbuf *m;
568 	struct in6_ifaddr *ia6;
569 	struct ip6_hdr *ip6;
570 
571 	m = *mp;
572 	if (m->m_len < *offp + sizeof(struct tcphdr)) {
573 		m = m_pullup(m, *offp + sizeof(struct tcphdr));
574 		if (m == NULL) {
575 			*mp = m;
576 			TCPSTAT_INC(tcps_rcvshort);
577 			return (IPPROTO_DONE);
578 		}
579 	}
580 
581 	/*
582 	 * draft-itojun-ipv6-tcp-to-anycast
583 	 * better place to put this in?
584 	 */
585 	ip6 = mtod(m, struct ip6_hdr *);
586 	ia6 = in6ifa_ifwithaddr(&ip6->ip6_dst, 0 /* XXX */);
587 	if (ia6 && (ia6->ia6_flags & IN6_IFF_ANYCAST)) {
588 
589 		ifa_free(&ia6->ia_ifa);
590 		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
591 			    (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
592 		*mp = NULL;
593 		return (IPPROTO_DONE);
594 	}
595 	if (ia6)
596 		ifa_free(&ia6->ia_ifa);
597 
598 	*mp = m;
599 	return (tcp_input(mp, offp, proto));
600 }
601 #endif /* INET6 */
602 
603 int
604 tcp_input(struct mbuf **mp, int *offp, int proto)
605 {
606 	struct mbuf *m = *mp;
607 	struct tcphdr *th = NULL;
608 	struct ip *ip = NULL;
609 	struct inpcb *inp = NULL;
610 	struct tcpcb *tp = NULL;
611 	struct socket *so = NULL;
612 	u_char *optp = NULL;
613 	int off0;
614 	int optlen = 0;
615 #ifdef INET
616 	int len;
617 	uint8_t ipttl;
618 #endif
619 	int tlen = 0, off;
620 	int drop_hdrlen;
621 	int thflags;
622 	int rstreason = 0;	/* For badport_bandlim accounting purposes */
623 	uint8_t iptos;
624 	struct m_tag *fwd_tag = NULL;
625 #ifdef INET6
626 	struct ip6_hdr *ip6 = NULL;
627 	int isipv6;
628 #else
629 	const void *ip6 = NULL;
630 #endif /* INET6 */
631 	struct tcpopt to;		/* options in this segment */
632 	char *s = NULL;			/* address and port logging */
633 #ifdef TCPDEBUG
634 	/*
635 	 * The size of tcp_saveipgen must be the size of the max ip header,
636 	 * now IPv6.
637 	 */
638 	u_char tcp_saveipgen[IP6_HDR_LEN];
639 	struct tcphdr tcp_savetcp;
640 	short ostate = 0;
641 #endif
642 
643 	NET_EPOCH_ASSERT();
644 
645 #ifdef INET6
646 	isipv6 = (mtod(m, struct ip *)->ip_v == 6) ? 1 : 0;
647 #endif
648 
649 	off0 = *offp;
650 	m = *mp;
651 	*mp = NULL;
652 	to.to_flags = 0;
653 	TCPSTAT_INC(tcps_rcvtotal);
654 
655 #ifdef INET6
656 	if (isipv6) {
657 
658 		ip6 = mtod(m, struct ip6_hdr *);
659 		th = (struct tcphdr *)((caddr_t)ip6 + off0);
660 		tlen = sizeof(*ip6) + ntohs(ip6->ip6_plen) - off0;
661 		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID_IPV6) {
662 			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
663 				th->th_sum = m->m_pkthdr.csum_data;
664 			else
665 				th->th_sum = in6_cksum_pseudo(ip6, tlen,
666 				    IPPROTO_TCP, m->m_pkthdr.csum_data);
667 			th->th_sum ^= 0xffff;
668 		} else
669 			th->th_sum = in6_cksum(m, IPPROTO_TCP, off0, tlen);
670 		if (th->th_sum) {
671 			TCPSTAT_INC(tcps_rcvbadsum);
672 			goto drop;
673 		}
674 
675 		/*
676 		 * Be proactive about unspecified IPv6 address in source.
677 		 * As we use all-zero to indicate unbounded/unconnected pcb,
678 		 * unspecified IPv6 address can be used to confuse us.
679 		 *
680 		 * Note that packets with unspecified IPv6 destination is
681 		 * already dropped in ip6_input.
682 		 */
683 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
684 			/* XXX stat */
685 			goto drop;
686 		}
687 		iptos = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
688 	}
689 #endif
690 #if defined(INET) && defined(INET6)
691 	else
692 #endif
693 #ifdef INET
694 	{
695 		/*
696 		 * Get IP and TCP header together in first mbuf.
697 		 * Note: IP leaves IP header in first mbuf.
698 		 */
699 		if (off0 > sizeof (struct ip)) {
700 			ip_stripoptions(m);
701 			off0 = sizeof(struct ip);
702 		}
703 		if (m->m_len < sizeof (struct tcpiphdr)) {
704 			if ((m = m_pullup(m, sizeof (struct tcpiphdr)))
705 			    == NULL) {
706 				TCPSTAT_INC(tcps_rcvshort);
707 				return (IPPROTO_DONE);
708 			}
709 		}
710 		ip = mtod(m, struct ip *);
711 		th = (struct tcphdr *)((caddr_t)ip + off0);
712 		tlen = ntohs(ip->ip_len) - off0;
713 
714 		iptos = ip->ip_tos;
715 		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
716 			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
717 				th->th_sum = m->m_pkthdr.csum_data;
718 			else
719 				th->th_sum = in_pseudo(ip->ip_src.s_addr,
720 				    ip->ip_dst.s_addr,
721 				    htonl(m->m_pkthdr.csum_data + tlen +
722 				    IPPROTO_TCP));
723 			th->th_sum ^= 0xffff;
724 		} else {
725 			struct ipovly *ipov = (struct ipovly *)ip;
726 
727 			/*
728 			 * Checksum extended TCP header and data.
729 			 */
730 			len = off0 + tlen;
731 			ipttl = ip->ip_ttl;
732 			bzero(ipov->ih_x1, sizeof(ipov->ih_x1));
733 			ipov->ih_len = htons(tlen);
734 			th->th_sum = in_cksum(m, len);
735 			/* Reset length for SDT probes. */
736 			ip->ip_len = htons(len);
737 			/* Reset TOS bits */
738 			ip->ip_tos = iptos;
739 			/* Re-initialization for later version check */
740 			ip->ip_ttl = ipttl;
741 			ip->ip_v = IPVERSION;
742 			ip->ip_hl = off0 >> 2;
743 		}
744 
745 		if (th->th_sum) {
746 			TCPSTAT_INC(tcps_rcvbadsum);
747 			goto drop;
748 		}
749 	}
750 #endif /* INET */
751 
752 	/*
753 	 * Check that TCP offset makes sense,
754 	 * pull out TCP options and adjust length.		XXX
755 	 */
756 	off = th->th_off << 2;
757 	if (off < sizeof (struct tcphdr) || off > tlen) {
758 		TCPSTAT_INC(tcps_rcvbadoff);
759 		goto drop;
760 	}
761 	tlen -= off;	/* tlen is used instead of ti->ti_len */
762 	if (off > sizeof (struct tcphdr)) {
763 #ifdef INET6
764 		if (isipv6) {
765 			if (m->m_len < off0 + off) {
766 				m = m_pullup(m, off0 + off);
767 				if (m == NULL) {
768 					TCPSTAT_INC(tcps_rcvshort);
769 					return (IPPROTO_DONE);
770 				}
771 			}
772 			ip6 = mtod(m, struct ip6_hdr *);
773 			th = (struct tcphdr *)((caddr_t)ip6 + off0);
774 		}
775 #endif
776 #if defined(INET) && defined(INET6)
777 		else
778 #endif
779 #ifdef INET
780 		{
781 			if (m->m_len < sizeof(struct ip) + off) {
782 				if ((m = m_pullup(m, sizeof (struct ip) + off))
783 				    == NULL) {
784 					TCPSTAT_INC(tcps_rcvshort);
785 					return (IPPROTO_DONE);
786 				}
787 				ip = mtod(m, struct ip *);
788 				th = (struct tcphdr *)((caddr_t)ip + off0);
789 			}
790 		}
791 #endif
792 		optlen = off - sizeof (struct tcphdr);
793 		optp = (u_char *)(th + 1);
794 	}
795 	thflags = th->th_flags;
796 
797 	/*
798 	 * Convert TCP protocol specific fields to host format.
799 	 */
800 	tcp_fields_to_host(th);
801 
802 	/*
803 	 * Delay dropping TCP, IP headers, IPv6 ext headers, and TCP options.
804 	 */
805 	drop_hdrlen = off0 + off;
806 
807 	/*
808 	 * Grab info from PACKET_TAG_IPFORWARD tag prepended to the chain.
809 	 */
810         if (
811 #ifdef INET6
812 	    (isipv6 && (m->m_flags & M_IP6_NEXTHOP))
813 #ifdef INET
814 	    || (!isipv6 && (m->m_flags & M_IP_NEXTHOP))
815 #endif
816 #endif
817 #if defined(INET) && !defined(INET6)
818 	    (m->m_flags & M_IP_NEXTHOP)
819 #endif
820 	    )
821 		fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
822 
823 findpcb:
824 #ifdef INET6
825 	if (isipv6 && fwd_tag != NULL) {
826 		struct sockaddr_in6 *next_hop6;
827 
828 		next_hop6 = (struct sockaddr_in6 *)(fwd_tag + 1);
829 		/*
830 		 * Transparently forwarded. Pretend to be the destination.
831 		 * Already got one like this?
832 		 */
833 		inp = in6_pcblookup_mbuf(&V_tcbinfo,
834 		    &ip6->ip6_src, th->th_sport, &ip6->ip6_dst, th->th_dport,
835 		    INPLOOKUP_WLOCKPCB, m->m_pkthdr.rcvif, m);
836 		if (!inp) {
837 			/*
838 			 * It's new.  Try to find the ambushing socket.
839 			 * Because we've rewritten the destination address,
840 			 * any hardware-generated hash is ignored.
841 			 */
842 			inp = in6_pcblookup(&V_tcbinfo, &ip6->ip6_src,
843 			    th->th_sport, &next_hop6->sin6_addr,
844 			    next_hop6->sin6_port ? ntohs(next_hop6->sin6_port) :
845 			    th->th_dport, INPLOOKUP_WILDCARD |
846 			    INPLOOKUP_WLOCKPCB, m->m_pkthdr.rcvif);
847 		}
848 	} else if (isipv6) {
849 		inp = in6_pcblookup_mbuf(&V_tcbinfo, &ip6->ip6_src,
850 		    th->th_sport, &ip6->ip6_dst, th->th_dport,
851 		    INPLOOKUP_WILDCARD | INPLOOKUP_WLOCKPCB,
852 		    m->m_pkthdr.rcvif, m);
853 	}
854 #endif /* INET6 */
855 #if defined(INET6) && defined(INET)
856 	else
857 #endif
858 #ifdef INET
859 	if (fwd_tag != NULL) {
860 		struct sockaddr_in *next_hop;
861 
862 		next_hop = (struct sockaddr_in *)(fwd_tag+1);
863 		/*
864 		 * Transparently forwarded. Pretend to be the destination.
865 		 * already got one like this?
866 		 */
867 		inp = in_pcblookup_mbuf(&V_tcbinfo, ip->ip_src, th->th_sport,
868 		    ip->ip_dst, th->th_dport, INPLOOKUP_WLOCKPCB,
869 		    m->m_pkthdr.rcvif, m);
870 		if (!inp) {
871 			/*
872 			 * It's new.  Try to find the ambushing socket.
873 			 * Because we've rewritten the destination address,
874 			 * any hardware-generated hash is ignored.
875 			 */
876 			inp = in_pcblookup(&V_tcbinfo, ip->ip_src,
877 			    th->th_sport, next_hop->sin_addr,
878 			    next_hop->sin_port ? ntohs(next_hop->sin_port) :
879 			    th->th_dport, INPLOOKUP_WILDCARD |
880 			    INPLOOKUP_WLOCKPCB, m->m_pkthdr.rcvif);
881 		}
882 	} else
883 		inp = in_pcblookup_mbuf(&V_tcbinfo, ip->ip_src,
884 		    th->th_sport, ip->ip_dst, th->th_dport,
885 		    INPLOOKUP_WILDCARD | INPLOOKUP_WLOCKPCB,
886 		    m->m_pkthdr.rcvif, m);
887 #endif /* INET */
888 
889 	/*
890 	 * If the INPCB does not exist then all data in the incoming
891 	 * segment is discarded and an appropriate RST is sent back.
892 	 * XXX MRT Send RST using which routing table?
893 	 */
894 	if (inp == NULL) {
895 		/*
896 		 * Log communication attempts to ports that are not
897 		 * in use.
898 		 */
899 		if ((V_tcp_log_in_vain == 1 && (thflags & TH_SYN)) ||
900 		    V_tcp_log_in_vain == 2) {
901 			if ((s = tcp_log_vain(NULL, th, (void *)ip, ip6)))
902 				log(LOG_INFO, "%s; %s: Connection attempt "
903 				    "to closed port\n", s, __func__);
904 		}
905 		/*
906 		 * When blackholing do not respond with a RST but
907 		 * completely ignore the segment and drop it.
908 		 */
909 		if ((V_blackhole == 1 && (thflags & TH_SYN)) ||
910 		    V_blackhole == 2)
911 			goto dropunlock;
912 
913 		rstreason = BANDLIM_RST_CLOSEDPORT;
914 		goto dropwithreset;
915 	}
916 	INP_WLOCK_ASSERT(inp);
917 	/*
918 	 * While waiting for inp lock during the lookup, another thread
919 	 * can have dropped the inpcb, in which case we need to loop back
920 	 * and try to find a new inpcb to deliver to.
921 	 */
922 	if (inp->inp_flags & INP_DROPPED) {
923 		INP_WUNLOCK(inp);
924 		inp = NULL;
925 		goto findpcb;
926 	}
927 	if ((inp->inp_flowtype == M_HASHTYPE_NONE) &&
928 	    (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) &&
929 	    ((inp->inp_socket == NULL) ||
930 	    (inp->inp_socket->so_options & SO_ACCEPTCONN) == 0)) {
931 		inp->inp_flowid = m->m_pkthdr.flowid;
932 		inp->inp_flowtype = M_HASHTYPE_GET(m);
933 	}
934 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
935 #ifdef INET6
936 	if (isipv6 && IPSEC_ENABLED(ipv6) &&
937 	    IPSEC_CHECK_POLICY(ipv6, m, inp) != 0) {
938 		goto dropunlock;
939 	}
940 #ifdef INET
941 	else
942 #endif
943 #endif /* INET6 */
944 #ifdef INET
945 	if (IPSEC_ENABLED(ipv4) &&
946 	    IPSEC_CHECK_POLICY(ipv4, m, inp) != 0) {
947 		goto dropunlock;
948 	}
949 #endif /* INET */
950 #endif /* IPSEC */
951 
952 	/*
953 	 * Check the minimum TTL for socket.
954 	 */
955 	if (inp->inp_ip_minttl != 0) {
956 #ifdef INET6
957 		if (isipv6) {
958 			if (inp->inp_ip_minttl > ip6->ip6_hlim)
959 				goto dropunlock;
960 		} else
961 #endif
962 		if (inp->inp_ip_minttl > ip->ip_ttl)
963 			goto dropunlock;
964 	}
965 
966 	/*
967 	 * A previous connection in TIMEWAIT state is supposed to catch stray
968 	 * or duplicate segments arriving late.  If this segment was a
969 	 * legitimate new connection attempt, the old INPCB gets removed and
970 	 * we can try again to find a listening socket.
971 	 *
972 	 * At this point, due to earlier optimism, we may hold only an inpcb
973 	 * lock, and not the inpcbinfo write lock.  If so, we need to try to
974 	 * acquire it, or if that fails, acquire a reference on the inpcb,
975 	 * drop all locks, acquire a global write lock, and then re-acquire
976 	 * the inpcb lock.  We may at that point discover that another thread
977 	 * has tried to free the inpcb, in which case we need to loop back
978 	 * and try to find a new inpcb to deliver to.
979 	 *
980 	 * XXXRW: It may be time to rethink timewait locking.
981 	 */
982 	if (inp->inp_flags & INP_TIMEWAIT) {
983 		if (thflags & TH_SYN)
984 			tcp_dooptions(&to, optp, optlen, TO_SYN);
985 		/*
986 		 * NB: tcp_twcheck unlocks the INP and frees the mbuf.
987 		 */
988 		if (tcp_twcheck(inp, &to, th, m, tlen))
989 			goto findpcb;
990 		return (IPPROTO_DONE);
991 	}
992 	/*
993 	 * The TCPCB may no longer exist if the connection is winding
994 	 * down or it is in the CLOSED state.  Either way we drop the
995 	 * segment and send an appropriate response.
996 	 */
997 	tp = intotcpcb(inp);
998 	if (tp == NULL || tp->t_state == TCPS_CLOSED) {
999 		rstreason = BANDLIM_RST_CLOSEDPORT;
1000 		goto dropwithreset;
1001 	}
1002 
1003 #ifdef TCP_OFFLOAD
1004 	if (tp->t_flags & TF_TOE) {
1005 		tcp_offload_input(tp, m);
1006 		m = NULL;	/* consumed by the TOE driver */
1007 		goto dropunlock;
1008 	}
1009 #endif
1010 
1011 #ifdef MAC
1012 	INP_WLOCK_ASSERT(inp);
1013 	if (mac_inpcb_check_deliver(inp, m))
1014 		goto dropunlock;
1015 #endif
1016 	so = inp->inp_socket;
1017 	KASSERT(so != NULL, ("%s: so == NULL", __func__));
1018 #ifdef TCPDEBUG
1019 	if (so->so_options & SO_DEBUG) {
1020 		ostate = tp->t_state;
1021 #ifdef INET6
1022 		if (isipv6) {
1023 			bcopy((char *)ip6, (char *)tcp_saveipgen, sizeof(*ip6));
1024 		} else
1025 #endif
1026 			bcopy((char *)ip, (char *)tcp_saveipgen, sizeof(*ip));
1027 		tcp_savetcp = *th;
1028 	}
1029 #endif /* TCPDEBUG */
1030 	/*
1031 	 * When the socket is accepting connections (the INPCB is in LISTEN
1032 	 * state) we look into the SYN cache if this is a new connection
1033 	 * attempt or the completion of a previous one.
1034 	 */
1035 	KASSERT(tp->t_state == TCPS_LISTEN || !(so->so_options & SO_ACCEPTCONN),
1036 	    ("%s: so accepting but tp %p not listening", __func__, tp));
1037 	if (tp->t_state == TCPS_LISTEN && (so->so_options & SO_ACCEPTCONN)) {
1038 		struct in_conninfo inc;
1039 
1040 		bzero(&inc, sizeof(inc));
1041 #ifdef INET6
1042 		if (isipv6) {
1043 			inc.inc_flags |= INC_ISIPV6;
1044 			if (inp->inp_inc.inc_flags & INC_IPV6MINMTU)
1045 				inc.inc_flags |= INC_IPV6MINMTU;
1046 			inc.inc6_faddr = ip6->ip6_src;
1047 			inc.inc6_laddr = ip6->ip6_dst;
1048 		} else
1049 #endif
1050 		{
1051 			inc.inc_faddr = ip->ip_src;
1052 			inc.inc_laddr = ip->ip_dst;
1053 		}
1054 		inc.inc_fport = th->th_sport;
1055 		inc.inc_lport = th->th_dport;
1056 		inc.inc_fibnum = so->so_fibnum;
1057 
1058 		/*
1059 		 * Check for an existing connection attempt in syncache if
1060 		 * the flag is only ACK.  A successful lookup creates a new
1061 		 * socket appended to the listen queue in SYN_RECEIVED state.
1062 		 */
1063 		if ((thflags & (TH_RST|TH_ACK|TH_SYN)) == TH_ACK) {
1064 
1065 			/*
1066 			 * Parse the TCP options here because
1067 			 * syncookies need access to the reflected
1068 			 * timestamp.
1069 			 */
1070 			tcp_dooptions(&to, optp, optlen, 0);
1071 			/*
1072 			 * NB: syncache_expand() doesn't unlock
1073 			 * inp and tcpinfo locks.
1074 			 */
1075 			rstreason = syncache_expand(&inc, &to, th, &so, m);
1076 			if (rstreason < 0) {
1077 				/*
1078 				 * A failing TCP MD5 signature comparison
1079 				 * must result in the segment being dropped
1080 				 * and must not produce any response back
1081 				 * to the sender.
1082 				 */
1083 				goto dropunlock;
1084 			} else if (rstreason == 0) {
1085 				/*
1086 				 * No syncache entry or ACK was not
1087 				 * for our SYN/ACK.  Send a RST.
1088 				 * NB: syncache did its own logging
1089 				 * of the failure cause.
1090 				 */
1091 				rstreason = BANDLIM_RST_OPENPORT;
1092 				goto dropwithreset;
1093 			}
1094 tfo_socket_result:
1095 			if (so == NULL) {
1096 				/*
1097 				 * We completed the 3-way handshake
1098 				 * but could not allocate a socket
1099 				 * either due to memory shortage,
1100 				 * listen queue length limits or
1101 				 * global socket limits.  Send RST
1102 				 * or wait and have the remote end
1103 				 * retransmit the ACK for another
1104 				 * try.
1105 				 */
1106 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1107 					log(LOG_DEBUG, "%s; %s: Listen socket: "
1108 					    "Socket allocation failed due to "
1109 					    "limits or memory shortage, %s\n",
1110 					    s, __func__,
1111 					    V_tcp_sc_rst_sock_fail ?
1112 					    "sending RST" : "try again");
1113 				if (V_tcp_sc_rst_sock_fail) {
1114 					rstreason = BANDLIM_UNLIMITED;
1115 					goto dropwithreset;
1116 				} else
1117 					goto dropunlock;
1118 			}
1119 			/*
1120 			 * Socket is created in state SYN_RECEIVED.
1121 			 * Unlock the listen socket, lock the newly
1122 			 * created socket and update the tp variable.
1123 			 */
1124 			INP_WUNLOCK(inp);	/* listen socket */
1125 			inp = sotoinpcb(so);
1126 			/*
1127 			 * New connection inpcb is already locked by
1128 			 * syncache_expand().
1129 			 */
1130 			INP_WLOCK_ASSERT(inp);
1131 			tp = intotcpcb(inp);
1132 			KASSERT(tp->t_state == TCPS_SYN_RECEIVED,
1133 			    ("%s: ", __func__));
1134 			/*
1135 			 * Process the segment and the data it
1136 			 * contains.  tcp_do_segment() consumes
1137 			 * the mbuf chain and unlocks the inpcb.
1138 			 */
1139 			TCP_PROBE5(receive, NULL, tp, m, tp, th);
1140 			tp->t_fb->tfb_tcp_do_segment(m, th, so, tp, drop_hdrlen, tlen,
1141 			    iptos);
1142 			return (IPPROTO_DONE);
1143 		}
1144 		/*
1145 		 * Segment flag validation for new connection attempts:
1146 		 *
1147 		 * Our (SYN|ACK) response was rejected.
1148 		 * Check with syncache and remove entry to prevent
1149 		 * retransmits.
1150 		 *
1151 		 * NB: syncache_chkrst does its own logging of failure
1152 		 * causes.
1153 		 */
1154 		if (thflags & TH_RST) {
1155 			syncache_chkrst(&inc, th, m);
1156 			goto dropunlock;
1157 		}
1158 		/*
1159 		 * We can't do anything without SYN.
1160 		 */
1161 		if ((thflags & TH_SYN) == 0) {
1162 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1163 				log(LOG_DEBUG, "%s; %s: Listen socket: "
1164 				    "SYN is missing, segment ignored\n",
1165 				    s, __func__);
1166 			TCPSTAT_INC(tcps_badsyn);
1167 			goto dropunlock;
1168 		}
1169 		/*
1170 		 * (SYN|ACK) is bogus on a listen socket.
1171 		 */
1172 		if (thflags & TH_ACK) {
1173 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1174 				log(LOG_DEBUG, "%s; %s: Listen socket: "
1175 				    "SYN|ACK invalid, segment rejected\n",
1176 				    s, __func__);
1177 			syncache_badack(&inc);	/* XXX: Not needed! */
1178 			TCPSTAT_INC(tcps_badsyn);
1179 			rstreason = BANDLIM_RST_OPENPORT;
1180 			goto dropwithreset;
1181 		}
1182 		/*
1183 		 * If the drop_synfin option is enabled, drop all
1184 		 * segments with both the SYN and FIN bits set.
1185 		 * This prevents e.g. nmap from identifying the
1186 		 * TCP/IP stack.
1187 		 * XXX: Poor reasoning.  nmap has other methods
1188 		 * and is constantly refining its stack detection
1189 		 * strategies.
1190 		 * XXX: This is a violation of the TCP specification
1191 		 * and was used by RFC1644.
1192 		 */
1193 		if ((thflags & TH_FIN) && V_drop_synfin) {
1194 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1195 				log(LOG_DEBUG, "%s; %s: Listen socket: "
1196 				    "SYN|FIN segment ignored (based on "
1197 				    "sysctl setting)\n", s, __func__);
1198 			TCPSTAT_INC(tcps_badsyn);
1199 			goto dropunlock;
1200 		}
1201 		/*
1202 		 * Segment's flags are (SYN) or (SYN|FIN).
1203 		 *
1204 		 * TH_PUSH, TH_URG, TH_ECE, TH_CWR are ignored
1205 		 * as they do not affect the state of the TCP FSM.
1206 		 * The data pointed to by TH_URG and th_urp is ignored.
1207 		 */
1208 		KASSERT((thflags & (TH_RST|TH_ACK)) == 0,
1209 		    ("%s: Listen socket: TH_RST or TH_ACK set", __func__));
1210 		KASSERT(thflags & (TH_SYN),
1211 		    ("%s: Listen socket: TH_SYN not set", __func__));
1212 #ifdef INET6
1213 		/*
1214 		 * If deprecated address is forbidden,
1215 		 * we do not accept SYN to deprecated interface
1216 		 * address to prevent any new inbound connection from
1217 		 * getting established.
1218 		 * When we do not accept SYN, we send a TCP RST,
1219 		 * with deprecated source address (instead of dropping
1220 		 * it).  We compromise it as it is much better for peer
1221 		 * to send a RST, and RST will be the final packet
1222 		 * for the exchange.
1223 		 *
1224 		 * If we do not forbid deprecated addresses, we accept
1225 		 * the SYN packet.  RFC2462 does not suggest dropping
1226 		 * SYN in this case.
1227 		 * If we decipher RFC2462 5.5.4, it says like this:
1228 		 * 1. use of deprecated addr with existing
1229 		 *    communication is okay - "SHOULD continue to be
1230 		 *    used"
1231 		 * 2. use of it with new communication:
1232 		 *   (2a) "SHOULD NOT be used if alternate address
1233 		 *        with sufficient scope is available"
1234 		 *   (2b) nothing mentioned otherwise.
1235 		 * Here we fall into (2b) case as we have no choice in
1236 		 * our source address selection - we must obey the peer.
1237 		 *
1238 		 * The wording in RFC2462 is confusing, and there are
1239 		 * multiple description text for deprecated address
1240 		 * handling - worse, they are not exactly the same.
1241 		 * I believe 5.5.4 is the best one, so we follow 5.5.4.
1242 		 */
1243 		if (isipv6 && !V_ip6_use_deprecated) {
1244 			struct in6_ifaddr *ia6;
1245 
1246 			ia6 = in6ifa_ifwithaddr(&ip6->ip6_dst, 0 /* XXX */);
1247 			if (ia6 != NULL &&
1248 			    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
1249 				ifa_free(&ia6->ia_ifa);
1250 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1251 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1252 					"Connection attempt to deprecated "
1253 					"IPv6 address rejected\n",
1254 					s, __func__);
1255 				rstreason = BANDLIM_RST_OPENPORT;
1256 				goto dropwithreset;
1257 			}
1258 			if (ia6)
1259 				ifa_free(&ia6->ia_ifa);
1260 		}
1261 #endif /* INET6 */
1262 		/*
1263 		 * Basic sanity checks on incoming SYN requests:
1264 		 *   Don't respond if the destination is a link layer
1265 		 *	broadcast according to RFC1122 4.2.3.10, p. 104.
1266 		 *   If it is from this socket it must be forged.
1267 		 *   Don't respond if the source or destination is a
1268 		 *	global or subnet broad- or multicast address.
1269 		 *   Note that it is quite possible to receive unicast
1270 		 *	link-layer packets with a broadcast IP address. Use
1271 		 *	in_broadcast() to find them.
1272 		 */
1273 		if (m->m_flags & (M_BCAST|M_MCAST)) {
1274 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1275 			    log(LOG_DEBUG, "%s; %s: Listen socket: "
1276 				"Connection attempt from broad- or multicast "
1277 				"link layer address ignored\n", s, __func__);
1278 			goto dropunlock;
1279 		}
1280 #ifdef INET6
1281 		if (isipv6) {
1282 			if (th->th_dport == th->th_sport &&
1283 			    IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst, &ip6->ip6_src)) {
1284 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1285 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1286 					"Connection attempt to/from self "
1287 					"ignored\n", s, __func__);
1288 				goto dropunlock;
1289 			}
1290 			if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
1291 			    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
1292 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1293 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1294 					"Connection attempt from/to multicast "
1295 					"address ignored\n", s, __func__);
1296 				goto dropunlock;
1297 			}
1298 		}
1299 #endif
1300 #if defined(INET) && defined(INET6)
1301 		else
1302 #endif
1303 #ifdef INET
1304 		{
1305 			if (th->th_dport == th->th_sport &&
1306 			    ip->ip_dst.s_addr == ip->ip_src.s_addr) {
1307 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1308 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1309 					"Connection attempt from/to self "
1310 					"ignored\n", s, __func__);
1311 				goto dropunlock;
1312 			}
1313 			if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
1314 			    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
1315 			    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
1316 			    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif)) {
1317 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1318 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1319 					"Connection attempt from/to broad- "
1320 					"or multicast address ignored\n",
1321 					s, __func__);
1322 				goto dropunlock;
1323 			}
1324 		}
1325 #endif
1326 		/*
1327 		 * SYN appears to be valid.  Create compressed TCP state
1328 		 * for syncache.
1329 		 */
1330 #ifdef TCPDEBUG
1331 		if (so->so_options & SO_DEBUG)
1332 			tcp_trace(TA_INPUT, ostate, tp,
1333 			    (void *)tcp_saveipgen, &tcp_savetcp, 0);
1334 #endif
1335 		TCP_PROBE3(debug__input, tp, th, m);
1336 		tcp_dooptions(&to, optp, optlen, TO_SYN);
1337 		if (syncache_add(&inc, &to, th, inp, &so, m, NULL, NULL, iptos))
1338 			goto tfo_socket_result;
1339 
1340 		/*
1341 		 * Entry added to syncache and mbuf consumed.
1342 		 * Only the listen socket is unlocked by syncache_add().
1343 		 */
1344 		INP_INFO_WUNLOCK_ASSERT(&V_tcbinfo);
1345 		return (IPPROTO_DONE);
1346 	} else if (tp->t_state == TCPS_LISTEN) {
1347 		/*
1348 		 * When a listen socket is torn down the SO_ACCEPTCONN
1349 		 * flag is removed first while connections are drained
1350 		 * from the accept queue in a unlock/lock cycle of the
1351 		 * ACCEPT_LOCK, opening a race condition allowing a SYN
1352 		 * attempt go through unhandled.
1353 		 */
1354 		goto dropunlock;
1355 	}
1356 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1357 	if (tp->t_flags & TF_SIGNATURE) {
1358 		tcp_dooptions(&to, optp, optlen, thflags);
1359 		if ((to.to_flags & TOF_SIGNATURE) == 0) {
1360 			TCPSTAT_INC(tcps_sig_err_nosigopt);
1361 			goto dropunlock;
1362 		}
1363 		if (!TCPMD5_ENABLED() ||
1364 		    TCPMD5_INPUT(m, th, to.to_signature) != 0)
1365 			goto dropunlock;
1366 	}
1367 #endif
1368 	TCP_PROBE5(receive, NULL, tp, m, tp, th);
1369 
1370 	/*
1371 	 * Segment belongs to a connection in SYN_SENT, ESTABLISHED or later
1372 	 * state.  tcp_do_segment() always consumes the mbuf chain, unlocks
1373 	 * the inpcb, and unlocks pcbinfo.
1374 	 */
1375 	tp->t_fb->tfb_tcp_do_segment(m, th, so, tp, drop_hdrlen, tlen, iptos);
1376 	return (IPPROTO_DONE);
1377 
1378 dropwithreset:
1379 	TCP_PROBE5(receive, NULL, tp, m, tp, th);
1380 
1381 	if (inp != NULL) {
1382 		tcp_dropwithreset(m, th, tp, tlen, rstreason);
1383 		INP_WUNLOCK(inp);
1384 	} else
1385 		tcp_dropwithreset(m, th, NULL, tlen, rstreason);
1386 	m = NULL;	/* mbuf chain got consumed. */
1387 	goto drop;
1388 
1389 dropunlock:
1390 	if (m != NULL)
1391 		TCP_PROBE5(receive, NULL, tp, m, tp, th);
1392 
1393 	if (inp != NULL)
1394 		INP_WUNLOCK(inp);
1395 
1396 drop:
1397 	INP_INFO_WUNLOCK_ASSERT(&V_tcbinfo);
1398 	if (s != NULL)
1399 		free(s, M_TCPLOG);
1400 	if (m != NULL)
1401 		m_freem(m);
1402 	return (IPPROTO_DONE);
1403 }
1404 
1405 /*
1406  * Automatic sizing of receive socket buffer.  Often the send
1407  * buffer size is not optimally adjusted to the actual network
1408  * conditions at hand (delay bandwidth product).  Setting the
1409  * buffer size too small limits throughput on links with high
1410  * bandwidth and high delay (eg. trans-continental/oceanic links).
1411  *
1412  * On the receive side the socket buffer memory is only rarely
1413  * used to any significant extent.  This allows us to be much
1414  * more aggressive in scaling the receive socket buffer.  For
1415  * the case that the buffer space is actually used to a large
1416  * extent and we run out of kernel memory we can simply drop
1417  * the new segments; TCP on the sender will just retransmit it
1418  * later.  Setting the buffer size too big may only consume too
1419  * much kernel memory if the application doesn't read() from
1420  * the socket or packet loss or reordering makes use of the
1421  * reassembly queue.
1422  *
1423  * The criteria to step up the receive buffer one notch are:
1424  *  1. Application has not set receive buffer size with
1425  *     SO_RCVBUF. Setting SO_RCVBUF clears SB_AUTOSIZE.
1426  *  2. the number of bytes received during 1/2 of an sRTT
1427  *     is at least 3/8 of the current socket buffer size.
1428  *  3. receive buffer size has not hit maximal automatic size;
1429  *
1430  * If all of the criteria are met we increaset the socket buffer
1431  * by a 1/2 (bounded by the max). This allows us to keep ahead
1432  * of slow-start but also makes it so our peer never gets limited
1433  * by our rwnd which we then open up causing a burst.
1434  *
1435  * This algorithm does two steps per RTT at most and only if
1436  * we receive a bulk stream w/o packet losses or reorderings.
1437  * Shrinking the buffer during idle times is not necessary as
1438  * it doesn't consume any memory when idle.
1439  *
1440  * TODO: Only step up if the application is actually serving
1441  * the buffer to better manage the socket buffer resources.
1442  */
1443 int
1444 tcp_autorcvbuf(struct mbuf *m, struct tcphdr *th, struct socket *so,
1445     struct tcpcb *tp, int tlen)
1446 {
1447 	int newsize = 0;
1448 
1449 	if (V_tcp_do_autorcvbuf && (so->so_rcv.sb_flags & SB_AUTOSIZE) &&
1450 	    tp->t_srtt != 0 && tp->rfbuf_ts != 0 &&
1451 	    TCP_TS_TO_TICKS(tcp_ts_getticks() - tp->rfbuf_ts) >
1452 	    ((tp->t_srtt >> TCP_RTT_SHIFT)/2)) {
1453 		if (tp->rfbuf_cnt > ((so->so_rcv.sb_hiwat / 2)/ 4 * 3) &&
1454 		    so->so_rcv.sb_hiwat < V_tcp_autorcvbuf_max) {
1455 			newsize = min((so->so_rcv.sb_hiwat + (so->so_rcv.sb_hiwat/2)), V_tcp_autorcvbuf_max);
1456 		}
1457 		TCP_PROBE6(receive__autoresize, NULL, tp, m, tp, th, newsize);
1458 
1459 		/* Start over with next RTT. */
1460 		tp->rfbuf_ts = 0;
1461 		tp->rfbuf_cnt = 0;
1462 	} else {
1463 		tp->rfbuf_cnt += tlen;	/* add up */
1464 	}
1465 	return (newsize);
1466 }
1467 
1468 void
1469 tcp_do_segment(struct mbuf *m, struct tcphdr *th, struct socket *so,
1470     struct tcpcb *tp, int drop_hdrlen, int tlen, uint8_t iptos)
1471 {
1472 	int thflags, acked, ourfinisacked, needoutput = 0, sack_changed;
1473 	int rstreason, todrop, win;
1474 	uint32_t tiwin;
1475 	uint16_t nsegs;
1476 	char *s;
1477 	struct in_conninfo *inc;
1478 	struct mbuf *mfree;
1479 	struct tcpopt to;
1480 	int tfo_syn;
1481 
1482 #ifdef TCPDEBUG
1483 	/*
1484 	 * The size of tcp_saveipgen must be the size of the max ip header,
1485 	 * now IPv6.
1486 	 */
1487 	u_char tcp_saveipgen[IP6_HDR_LEN];
1488 	struct tcphdr tcp_savetcp;
1489 	short ostate = 0;
1490 #endif
1491 	thflags = th->th_flags;
1492 	inc = &tp->t_inpcb->inp_inc;
1493 	tp->sackhint.last_sack_ack = 0;
1494 	sack_changed = 0;
1495 	nsegs = max(1, m->m_pkthdr.lro_nsegs);
1496 
1497 	NET_EPOCH_ASSERT();
1498 	INP_WLOCK_ASSERT(tp->t_inpcb);
1499 	KASSERT(tp->t_state > TCPS_LISTEN, ("%s: TCPS_LISTEN",
1500 	    __func__));
1501 	KASSERT(tp->t_state != TCPS_TIME_WAIT, ("%s: TCPS_TIME_WAIT",
1502 	    __func__));
1503 
1504 #ifdef TCPPCAP
1505 	/* Save segment, if requested. */
1506 	tcp_pcap_add(th, m, &(tp->t_inpkts));
1507 #endif
1508 	TCP_LOG_EVENT(tp, th, &so->so_rcv, &so->so_snd, TCP_LOG_IN, 0,
1509 	    tlen, NULL, true);
1510 
1511 	if ((thflags & TH_SYN) && (thflags & TH_FIN) && V_drop_synfin) {
1512 		if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1513 			log(LOG_DEBUG, "%s; %s: "
1514 			    "SYN|FIN segment ignored (based on "
1515 			    "sysctl setting)\n", s, __func__);
1516 			free(s, M_TCPLOG);
1517 		}
1518 		goto drop;
1519 	}
1520 
1521 	/*
1522 	 * If a segment with the ACK-bit set arrives in the SYN-SENT state
1523 	 * check SEQ.ACK first.
1524 	 */
1525 	if ((tp->t_state == TCPS_SYN_SENT) && (thflags & TH_ACK) &&
1526 	    (SEQ_LEQ(th->th_ack, tp->iss) || SEQ_GT(th->th_ack, tp->snd_max))) {
1527 		rstreason = BANDLIM_UNLIMITED;
1528 		goto dropwithreset;
1529 	}
1530 
1531 	/*
1532 	 * Segment received on connection.
1533 	 * Reset idle time and keep-alive timer.
1534 	 * XXX: This should be done after segment
1535 	 * validation to ignore broken/spoofed segs.
1536 	 */
1537 	tp->t_rcvtime = ticks;
1538 
1539 	/*
1540 	 * Scale up the window into a 32-bit value.
1541 	 * For the SYN_SENT state the scale is zero.
1542 	 */
1543 	tiwin = th->th_win << tp->snd_scale;
1544 #ifdef STATS
1545 	stats_voi_update_abs_ulong(tp->t_stats, VOI_TCP_FRWIN, tiwin);
1546 #endif
1547 
1548 	/*
1549 	 * TCP ECN processing.
1550 	 */
1551 	if (tp->t_flags2 & TF2_ECN_PERMIT) {
1552 		if (thflags & TH_CWR) {
1553 			tp->t_flags2 &= ~TF2_ECN_SND_ECE;
1554 			tp->t_flags |= TF_ACKNOW;
1555 		}
1556 		switch (iptos & IPTOS_ECN_MASK) {
1557 		case IPTOS_ECN_CE:
1558 			tp->t_flags2 |= TF2_ECN_SND_ECE;
1559 			TCPSTAT_INC(tcps_ecn_ce);
1560 			break;
1561 		case IPTOS_ECN_ECT0:
1562 			TCPSTAT_INC(tcps_ecn_ect0);
1563 			break;
1564 		case IPTOS_ECN_ECT1:
1565 			TCPSTAT_INC(tcps_ecn_ect1);
1566 			break;
1567 		}
1568 
1569 		/* Process a packet differently from RFC3168. */
1570 		cc_ecnpkt_handler(tp, th, iptos);
1571 
1572 		/* Congestion experienced. */
1573 		if (thflags & TH_ECE) {
1574 			cc_cong_signal(tp, th, CC_ECN);
1575 		}
1576 	}
1577 
1578 	/*
1579 	 * Parse options on any incoming segment.
1580 	 */
1581 	tcp_dooptions(&to, (u_char *)(th + 1),
1582 	    (th->th_off << 2) - sizeof(struct tcphdr),
1583 	    (thflags & TH_SYN) ? TO_SYN : 0);
1584 
1585 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1586 	if ((tp->t_flags & TF_SIGNATURE) != 0 &&
1587 	    (to.to_flags & TOF_SIGNATURE) == 0) {
1588 		TCPSTAT_INC(tcps_sig_err_sigopt);
1589 		/* XXX: should drop? */
1590 	}
1591 #endif
1592 	/*
1593 	 * If echoed timestamp is later than the current time,
1594 	 * fall back to non RFC1323 RTT calculation.  Normalize
1595 	 * timestamp if syncookies were used when this connection
1596 	 * was established.
1597 	 */
1598 	if ((to.to_flags & TOF_TS) && (to.to_tsecr != 0)) {
1599 		to.to_tsecr -= tp->ts_offset;
1600 		if (TSTMP_GT(to.to_tsecr, tcp_ts_getticks()))
1601 			to.to_tsecr = 0;
1602 		else if (tp->t_flags & TF_PREVVALID &&
1603 			 tp->t_badrxtwin != 0 && SEQ_LT(to.to_tsecr, tp->t_badrxtwin))
1604 			cc_cong_signal(tp, th, CC_RTO_ERR);
1605 	}
1606 	/*
1607 	 * Process options only when we get SYN/ACK back. The SYN case
1608 	 * for incoming connections is handled in tcp_syncache.
1609 	 * According to RFC1323 the window field in a SYN (i.e., a <SYN>
1610 	 * or <SYN,ACK>) segment itself is never scaled.
1611 	 * XXX this is traditional behavior, may need to be cleaned up.
1612 	 */
1613 	if (tp->t_state == TCPS_SYN_SENT && (thflags & TH_SYN)) {
1614 		if ((to.to_flags & TOF_SCALE) &&
1615 		    (tp->t_flags & TF_REQ_SCALE)) {
1616 			tp->t_flags |= TF_RCVD_SCALE;
1617 			tp->snd_scale = to.to_wscale;
1618 		}
1619 		/*
1620 		 * Initial send window.  It will be updated with
1621 		 * the next incoming segment to the scaled value.
1622 		 */
1623 		tp->snd_wnd = th->th_win;
1624 		if (to.to_flags & TOF_TS) {
1625 			tp->t_flags |= TF_RCVD_TSTMP;
1626 			tp->ts_recent = to.to_tsval;
1627 			tp->ts_recent_age = tcp_ts_getticks();
1628 		}
1629 		if (to.to_flags & TOF_MSS)
1630 			tcp_mss(tp, to.to_mss);
1631 		if ((tp->t_flags & TF_SACK_PERMIT) &&
1632 		    (to.to_flags & TOF_SACKPERM) == 0)
1633 			tp->t_flags &= ~TF_SACK_PERMIT;
1634 		if (IS_FASTOPEN(tp->t_flags)) {
1635 			if (to.to_flags & TOF_FASTOPEN) {
1636 				uint16_t mss;
1637 
1638 				if (to.to_flags & TOF_MSS)
1639 					mss = to.to_mss;
1640 				else
1641 					if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0)
1642 						mss = TCP6_MSS;
1643 					else
1644 						mss = TCP_MSS;
1645 				tcp_fastopen_update_cache(tp, mss,
1646 				    to.to_tfo_len, to.to_tfo_cookie);
1647 			} else
1648 				tcp_fastopen_disable_path(tp);
1649 		}
1650 	}
1651 
1652 	/*
1653 	 * If timestamps were negotiated during SYN/ACK they should
1654 	 * appear on every segment during this session and vice versa.
1655 	 */
1656 	if ((tp->t_flags & TF_RCVD_TSTMP) && !(to.to_flags & TOF_TS)) {
1657 		if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1658 			log(LOG_DEBUG, "%s; %s: Timestamp missing, "
1659 			    "no action\n", s, __func__);
1660 			free(s, M_TCPLOG);
1661 		}
1662 	}
1663 	if (!(tp->t_flags & TF_RCVD_TSTMP) && (to.to_flags & TOF_TS)) {
1664 		if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1665 			log(LOG_DEBUG, "%s; %s: Timestamp not expected, "
1666 			    "no action\n", s, __func__);
1667 			free(s, M_TCPLOG);
1668 		}
1669 	}
1670 
1671 	/*
1672 	 * Header prediction: check for the two common cases
1673 	 * of a uni-directional data xfer.  If the packet has
1674 	 * no control flags, is in-sequence, the window didn't
1675 	 * change and we're not retransmitting, it's a
1676 	 * candidate.  If the length is zero and the ack moved
1677 	 * forward, we're the sender side of the xfer.  Just
1678 	 * free the data acked & wake any higher level process
1679 	 * that was blocked waiting for space.  If the length
1680 	 * is non-zero and the ack didn't move, we're the
1681 	 * receiver side.  If we're getting packets in-order
1682 	 * (the reassembly queue is empty), add the data to
1683 	 * the socket buffer and note that we need a delayed ack.
1684 	 * Make sure that the hidden state-flags are also off.
1685 	 * Since we check for TCPS_ESTABLISHED first, it can only
1686 	 * be TH_NEEDSYN.
1687 	 */
1688 	if (tp->t_state == TCPS_ESTABLISHED &&
1689 	    th->th_seq == tp->rcv_nxt &&
1690 	    (thflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
1691 	    tp->snd_nxt == tp->snd_max &&
1692 	    tiwin && tiwin == tp->snd_wnd &&
1693 	    ((tp->t_flags & (TF_NEEDSYN|TF_NEEDFIN)) == 0) &&
1694 	    SEGQ_EMPTY(tp) &&
1695 	    ((to.to_flags & TOF_TS) == 0 ||
1696 	     TSTMP_GEQ(to.to_tsval, tp->ts_recent)) ) {
1697 
1698 		/*
1699 		 * If last ACK falls within this segment's sequence numbers,
1700 		 * record the timestamp.
1701 		 * NOTE that the test is modified according to the latest
1702 		 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
1703 		 */
1704 		if ((to.to_flags & TOF_TS) != 0 &&
1705 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1706 			tp->ts_recent_age = tcp_ts_getticks();
1707 			tp->ts_recent = to.to_tsval;
1708 		}
1709 
1710 		if (tlen == 0) {
1711 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
1712 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
1713 			    !IN_RECOVERY(tp->t_flags) &&
1714 			    (to.to_flags & TOF_SACK) == 0 &&
1715 			    TAILQ_EMPTY(&tp->snd_holes)) {
1716 				/*
1717 				 * This is a pure ack for outstanding data.
1718 				 */
1719 				TCPSTAT_INC(tcps_predack);
1720 
1721 				/*
1722 				 * "bad retransmit" recovery without timestamps.
1723 				 */
1724 				if ((to.to_flags & TOF_TS) == 0 &&
1725 				    tp->t_rxtshift == 1 &&
1726 				    tp->t_flags & TF_PREVVALID &&
1727 				    (int)(ticks - tp->t_badrxtwin) < 0) {
1728 					cc_cong_signal(tp, th, CC_RTO_ERR);
1729 				}
1730 
1731 				/*
1732 				 * Recalculate the transmit timer / rtt.
1733 				 *
1734 				 * Some boxes send broken timestamp replies
1735 				 * during the SYN+ACK phase, ignore
1736 				 * timestamps of 0 or we could calculate a
1737 				 * huge RTT and blow up the retransmit timer.
1738 				 */
1739 				if ((to.to_flags & TOF_TS) != 0 &&
1740 				    to.to_tsecr) {
1741 					uint32_t t;
1742 
1743 					t = tcp_ts_getticks() - to.to_tsecr;
1744 					if (!tp->t_rttlow || tp->t_rttlow > t)
1745 						tp->t_rttlow = t;
1746 					tcp_xmit_timer(tp,
1747 					    TCP_TS_TO_TICKS(t) + 1);
1748 				} else if (tp->t_rtttime &&
1749 				    SEQ_GT(th->th_ack, tp->t_rtseq)) {
1750 					if (!tp->t_rttlow ||
1751 					    tp->t_rttlow > ticks - tp->t_rtttime)
1752 						tp->t_rttlow = ticks - tp->t_rtttime;
1753 					tcp_xmit_timer(tp,
1754 							ticks - tp->t_rtttime);
1755 				}
1756 				acked = BYTES_THIS_ACK(tp, th);
1757 
1758 #ifdef TCP_HHOOK
1759 				/* Run HHOOK_TCP_ESTABLISHED_IN helper hooks. */
1760 				hhook_run_tcp_est_in(tp, th, &to);
1761 #endif
1762 
1763 				TCPSTAT_ADD(tcps_rcvackpack, nsegs);
1764 				TCPSTAT_ADD(tcps_rcvackbyte, acked);
1765 				sbdrop(&so->so_snd, acked);
1766 				if (SEQ_GT(tp->snd_una, tp->snd_recover) &&
1767 				    SEQ_LEQ(th->th_ack, tp->snd_recover))
1768 					tp->snd_recover = th->th_ack - 1;
1769 
1770 				/*
1771 				 * Let the congestion control algorithm update
1772 				 * congestion control related information. This
1773 				 * typically means increasing the congestion
1774 				 * window.
1775 				 */
1776 				cc_ack_received(tp, th, nsegs, CC_ACK);
1777 
1778 				tp->snd_una = th->th_ack;
1779 				/*
1780 				 * Pull snd_wl2 up to prevent seq wrap relative
1781 				 * to th_ack.
1782 				 */
1783 				tp->snd_wl2 = th->th_ack;
1784 				tp->t_dupacks = 0;
1785 				m_freem(m);
1786 
1787 				/*
1788 				 * If all outstanding data are acked, stop
1789 				 * retransmit timer, otherwise restart timer
1790 				 * using current (possibly backed-off) value.
1791 				 * If process is waiting for space,
1792 				 * wakeup/selwakeup/signal.  If data
1793 				 * are ready to send, let tcp_output
1794 				 * decide between more output or persist.
1795 				 */
1796 #ifdef TCPDEBUG
1797 				if (so->so_options & SO_DEBUG)
1798 					tcp_trace(TA_INPUT, ostate, tp,
1799 					    (void *)tcp_saveipgen,
1800 					    &tcp_savetcp, 0);
1801 #endif
1802 				TCP_PROBE3(debug__input, tp, th, m);
1803 				if (tp->snd_una == tp->snd_max)
1804 					tcp_timer_activate(tp, TT_REXMT, 0);
1805 				else if (!tcp_timer_active(tp, TT_PERSIST))
1806 					tcp_timer_activate(tp, TT_REXMT,
1807 						      tp->t_rxtcur);
1808 				sowwakeup(so);
1809 				if (sbavail(&so->so_snd))
1810 					(void) tp->t_fb->tfb_tcp_output(tp);
1811 				goto check_delack;
1812 			}
1813 		} else if (th->th_ack == tp->snd_una &&
1814 		    tlen <= sbspace(&so->so_rcv)) {
1815 			int newsize = 0;	/* automatic sockbuf scaling */
1816 
1817 			/*
1818 			 * This is a pure, in-sequence data packet with
1819 			 * nothing on the reassembly queue and we have enough
1820 			 * buffer space to take it.
1821 			 */
1822 			/* Clean receiver SACK report if present */
1823 			if ((tp->t_flags & TF_SACK_PERMIT) && tp->rcv_numsacks)
1824 				tcp_clean_sackreport(tp);
1825 			TCPSTAT_INC(tcps_preddat);
1826 			tp->rcv_nxt += tlen;
1827 			/*
1828 			 * Pull snd_wl1 up to prevent seq wrap relative to
1829 			 * th_seq.
1830 			 */
1831 			tp->snd_wl1 = th->th_seq;
1832 			/*
1833 			 * Pull rcv_up up to prevent seq wrap relative to
1834 			 * rcv_nxt.
1835 			 */
1836 			tp->rcv_up = tp->rcv_nxt;
1837 			TCPSTAT_ADD(tcps_rcvpack, nsegs);
1838 			TCPSTAT_ADD(tcps_rcvbyte, tlen);
1839 #ifdef TCPDEBUG
1840 			if (so->so_options & SO_DEBUG)
1841 				tcp_trace(TA_INPUT, ostate, tp,
1842 				    (void *)tcp_saveipgen, &tcp_savetcp, 0);
1843 #endif
1844 			TCP_PROBE3(debug__input, tp, th, m);
1845 
1846 			newsize = tcp_autorcvbuf(m, th, so, tp, tlen);
1847 
1848 			/* Add data to socket buffer. */
1849 			SOCKBUF_LOCK(&so->so_rcv);
1850 			if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
1851 				m_freem(m);
1852 			} else {
1853 				/*
1854 				 * Set new socket buffer size.
1855 				 * Give up when limit is reached.
1856 				 */
1857 				if (newsize)
1858 					if (!sbreserve_locked(&so->so_rcv,
1859 					    newsize, so, NULL))
1860 						so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
1861 				m_adj(m, drop_hdrlen);	/* delayed header drop */
1862 				sbappendstream_locked(&so->so_rcv, m, 0);
1863 			}
1864 			/* NB: sorwakeup_locked() does an implicit unlock. */
1865 			sorwakeup_locked(so);
1866 			if (DELAY_ACK(tp, tlen)) {
1867 				tp->t_flags |= TF_DELACK;
1868 			} else {
1869 				tp->t_flags |= TF_ACKNOW;
1870 				tp->t_fb->tfb_tcp_output(tp);
1871 			}
1872 			goto check_delack;
1873 		}
1874 	}
1875 
1876 	/*
1877 	 * Calculate amount of space in receive window,
1878 	 * and then do TCP input processing.
1879 	 * Receive window is amount of space in rcv queue,
1880 	 * but not less than advertised window.
1881 	 */
1882 	win = sbspace(&so->so_rcv);
1883 	if (win < 0)
1884 		win = 0;
1885 	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1886 
1887 	switch (tp->t_state) {
1888 
1889 	/*
1890 	 * If the state is SYN_RECEIVED:
1891 	 *	if seg contains an ACK, but not for our SYN/ACK, send a RST.
1892 	 */
1893 	case TCPS_SYN_RECEIVED:
1894 		if ((thflags & TH_ACK) &&
1895 		    (SEQ_LEQ(th->th_ack, tp->snd_una) ||
1896 		     SEQ_GT(th->th_ack, tp->snd_max))) {
1897 				rstreason = BANDLIM_RST_OPENPORT;
1898 				goto dropwithreset;
1899 		}
1900 		if (IS_FASTOPEN(tp->t_flags)) {
1901 			/*
1902 			 * When a TFO connection is in SYN_RECEIVED, the
1903 			 * only valid packets are the initial SYN, a
1904 			 * retransmit/copy of the initial SYN (possibly with
1905 			 * a subset of the original data), a valid ACK, a
1906 			 * FIN, or a RST.
1907 			 */
1908 			if ((thflags & (TH_SYN|TH_ACK)) == (TH_SYN|TH_ACK)) {
1909 				rstreason = BANDLIM_RST_OPENPORT;
1910 				goto dropwithreset;
1911 			} else if (thflags & TH_SYN) {
1912 				/* non-initial SYN is ignored */
1913 				if ((tcp_timer_active(tp, TT_DELACK) ||
1914 				     tcp_timer_active(tp, TT_REXMT)))
1915 					goto drop;
1916 			} else if (!(thflags & (TH_ACK|TH_FIN|TH_RST))) {
1917 				goto drop;
1918 			}
1919 		}
1920 		break;
1921 
1922 	/*
1923 	 * If the state is SYN_SENT:
1924 	 *	if seg contains a RST with valid ACK (SEQ.ACK has already
1925 	 *	    been verified), then drop the connection.
1926 	 *	if seg contains a RST without an ACK, drop the seg.
1927 	 *	if seg does not contain SYN, then drop the seg.
1928 	 * Otherwise this is an acceptable SYN segment
1929 	 *	initialize tp->rcv_nxt and tp->irs
1930 	 *	if seg contains ack then advance tp->snd_una
1931 	 *	if seg contains an ECE and ECN support is enabled, the stream
1932 	 *	    is ECN capable.
1933 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1934 	 *	arrange for segment to be acked (eventually)
1935 	 *	continue processing rest of data/controls, beginning with URG
1936 	 */
1937 	case TCPS_SYN_SENT:
1938 		if ((thflags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) {
1939 			TCP_PROBE5(connect__refused, NULL, tp,
1940 			    m, tp, th);
1941 			tp = tcp_drop(tp, ECONNREFUSED);
1942 		}
1943 		if (thflags & TH_RST)
1944 			goto drop;
1945 		if (!(thflags & TH_SYN))
1946 			goto drop;
1947 
1948 		tp->irs = th->th_seq;
1949 		tcp_rcvseqinit(tp);
1950 		if (thflags & TH_ACK) {
1951 			int tfo_partial_ack = 0;
1952 
1953 			TCPSTAT_INC(tcps_connects);
1954 			soisconnected(so);
1955 #ifdef MAC
1956 			mac_socketpeer_set_from_mbuf(m, so);
1957 #endif
1958 			/* Do window scaling on this connection? */
1959 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1960 				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1961 				tp->rcv_scale = tp->request_r_scale;
1962 			}
1963 			tp->rcv_adv += min(tp->rcv_wnd,
1964 			    TCP_MAXWIN << tp->rcv_scale);
1965 			tp->snd_una++;		/* SYN is acked */
1966 			/*
1967 			 * If not all the data that was sent in the TFO SYN
1968 			 * has been acked, resend the remainder right away.
1969 			 */
1970 			if (IS_FASTOPEN(tp->t_flags) &&
1971 			    (tp->snd_una != tp->snd_max)) {
1972 				tp->snd_nxt = th->th_ack;
1973 				tfo_partial_ack = 1;
1974 			}
1975 			/*
1976 			 * If there's data, delay ACK; if there's also a FIN
1977 			 * ACKNOW will be turned on later.
1978 			 */
1979 			if (DELAY_ACK(tp, tlen) && tlen != 0 && !tfo_partial_ack)
1980 				tcp_timer_activate(tp, TT_DELACK,
1981 				    tcp_delacktime);
1982 			else
1983 				tp->t_flags |= TF_ACKNOW;
1984 
1985 			if (((thflags & (TH_CWR | TH_ECE)) == TH_ECE) &&
1986 			    (V_tcp_do_ecn == 1)) {
1987 				tp->t_flags2 |= TF2_ECN_PERMIT;
1988 				TCPSTAT_INC(tcps_ecn_shs);
1989 			}
1990 
1991 			/*
1992 			 * Received <SYN,ACK> in SYN_SENT[*] state.
1993 			 * Transitions:
1994 			 *	SYN_SENT  --> ESTABLISHED
1995 			 *	SYN_SENT* --> FIN_WAIT_1
1996 			 */
1997 			tp->t_starttime = ticks;
1998 			if (tp->t_flags & TF_NEEDFIN) {
1999 				tcp_state_change(tp, TCPS_FIN_WAIT_1);
2000 				tp->t_flags &= ~TF_NEEDFIN;
2001 				thflags &= ~TH_SYN;
2002 			} else {
2003 				tcp_state_change(tp, TCPS_ESTABLISHED);
2004 				TCP_PROBE5(connect__established, NULL, tp,
2005 				    m, tp, th);
2006 				cc_conn_init(tp);
2007 				tcp_timer_activate(tp, TT_KEEP,
2008 				    TP_KEEPIDLE(tp));
2009 			}
2010 		} else {
2011 			/*
2012 			 * Received initial SYN in SYN-SENT[*] state =>
2013 			 * simultaneous open.
2014 			 * If it succeeds, connection is * half-synchronized.
2015 			 * Otherwise, do 3-way handshake:
2016 			 *        SYN-SENT -> SYN-RECEIVED
2017 			 *        SYN-SENT* -> SYN-RECEIVED*
2018 			 */
2019 			tp->t_flags |= (TF_ACKNOW | TF_NEEDSYN);
2020 			tcp_timer_activate(tp, TT_REXMT, 0);
2021 			tcp_state_change(tp, TCPS_SYN_RECEIVED);
2022 		}
2023 
2024 		INP_WLOCK_ASSERT(tp->t_inpcb);
2025 
2026 		/*
2027 		 * Advance th->th_seq to correspond to first data byte.
2028 		 * If data, trim to stay within window,
2029 		 * dropping FIN if necessary.
2030 		 */
2031 		th->th_seq++;
2032 		if (tlen > tp->rcv_wnd) {
2033 			todrop = tlen - tp->rcv_wnd;
2034 			m_adj(m, -todrop);
2035 			tlen = tp->rcv_wnd;
2036 			thflags &= ~TH_FIN;
2037 			TCPSTAT_INC(tcps_rcvpackafterwin);
2038 			TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop);
2039 		}
2040 		tp->snd_wl1 = th->th_seq - 1;
2041 		tp->rcv_up = th->th_seq;
2042 		/*
2043 		 * Client side of transaction: already sent SYN and data.
2044 		 * If the remote host used T/TCP to validate the SYN,
2045 		 * our data will be ACK'd; if so, enter normal data segment
2046 		 * processing in the middle of step 5, ack processing.
2047 		 * Otherwise, goto step 6.
2048 		 */
2049 		if (thflags & TH_ACK)
2050 			goto process_ACK;
2051 
2052 		goto step6;
2053 
2054 	/*
2055 	 * If the state is LAST_ACK or CLOSING or TIME_WAIT:
2056 	 *      do normal processing.
2057 	 *
2058 	 * NB: Leftover from RFC1644 T/TCP.  Cases to be reused later.
2059 	 */
2060 	case TCPS_LAST_ACK:
2061 	case TCPS_CLOSING:
2062 		break;  /* continue normal processing */
2063 	}
2064 
2065 	/*
2066 	 * States other than LISTEN or SYN_SENT.
2067 	 * First check the RST flag and sequence number since reset segments
2068 	 * are exempt from the timestamp and connection count tests.  This
2069 	 * fixes a bug introduced by the Stevens, vol. 2, p. 960 bugfix
2070 	 * below which allowed reset segments in half the sequence space
2071 	 * to fall though and be processed (which gives forged reset
2072 	 * segments with a random sequence number a 50 percent chance of
2073 	 * killing a connection).
2074 	 * Then check timestamp, if present.
2075 	 * Then check the connection count, if present.
2076 	 * Then check that at least some bytes of segment are within
2077 	 * receive window.  If segment begins before rcv_nxt,
2078 	 * drop leading data (and SYN); if nothing left, just ack.
2079 	 */
2080 	if (thflags & TH_RST) {
2081 		/*
2082 		 * RFC5961 Section 3.2
2083 		 *
2084 		 * - RST drops connection only if SEG.SEQ == RCV.NXT.
2085 		 * - If RST is in window, we send challenge ACK.
2086 		 *
2087 		 * Note: to take into account delayed ACKs, we should
2088 		 *   test against last_ack_sent instead of rcv_nxt.
2089 		 * Note 2: we handle special case of closed window, not
2090 		 *   covered by the RFC.
2091 		 */
2092 		if ((SEQ_GEQ(th->th_seq, tp->last_ack_sent) &&
2093 		    SEQ_LT(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) ||
2094 		    (tp->rcv_wnd == 0 && tp->last_ack_sent == th->th_seq)) {
2095 
2096 			KASSERT(tp->t_state != TCPS_SYN_SENT,
2097 			    ("%s: TH_RST for TCPS_SYN_SENT th %p tp %p",
2098 			    __func__, th, tp));
2099 
2100 			if (V_tcp_insecure_rst ||
2101 			    tp->last_ack_sent == th->th_seq) {
2102 				TCPSTAT_INC(tcps_drops);
2103 				/* Drop the connection. */
2104 				switch (tp->t_state) {
2105 				case TCPS_SYN_RECEIVED:
2106 					so->so_error = ECONNREFUSED;
2107 					goto close;
2108 				case TCPS_ESTABLISHED:
2109 				case TCPS_FIN_WAIT_1:
2110 				case TCPS_FIN_WAIT_2:
2111 				case TCPS_CLOSE_WAIT:
2112 				case TCPS_CLOSING:
2113 				case TCPS_LAST_ACK:
2114 					so->so_error = ECONNRESET;
2115 				close:
2116 					/* FALLTHROUGH */
2117 				default:
2118 					tp = tcp_close(tp);
2119 				}
2120 			} else {
2121 				TCPSTAT_INC(tcps_badrst);
2122 				/* Send challenge ACK. */
2123 				tcp_respond(tp, mtod(m, void *), th, m,
2124 				    tp->rcv_nxt, tp->snd_nxt, TH_ACK);
2125 				tp->last_ack_sent = tp->rcv_nxt;
2126 				m = NULL;
2127 			}
2128 		}
2129 		goto drop;
2130 	}
2131 
2132 	/*
2133 	 * RFC5961 Section 4.2
2134 	 * Send challenge ACK for any SYN in synchronized state.
2135 	 */
2136 	if ((thflags & TH_SYN) && tp->t_state != TCPS_SYN_SENT &&
2137 	    tp->t_state != TCPS_SYN_RECEIVED) {
2138 		TCPSTAT_INC(tcps_badsyn);
2139 		if (V_tcp_insecure_syn &&
2140 		    SEQ_GEQ(th->th_seq, tp->last_ack_sent) &&
2141 		    SEQ_LT(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) {
2142 			tp = tcp_drop(tp, ECONNRESET);
2143 			rstreason = BANDLIM_UNLIMITED;
2144 		} else {
2145 			/* Send challenge ACK. */
2146 			tcp_respond(tp, mtod(m, void *), th, m, tp->rcv_nxt,
2147 			    tp->snd_nxt, TH_ACK);
2148 			tp->last_ack_sent = tp->rcv_nxt;
2149 			m = NULL;
2150 		}
2151 		goto drop;
2152 	}
2153 
2154 	/*
2155 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
2156 	 * and it's less than ts_recent, drop it.
2157 	 */
2158 	if ((to.to_flags & TOF_TS) != 0 && tp->ts_recent &&
2159 	    TSTMP_LT(to.to_tsval, tp->ts_recent)) {
2160 
2161 		/* Check to see if ts_recent is over 24 days old.  */
2162 		if (tcp_ts_getticks() - tp->ts_recent_age > TCP_PAWS_IDLE) {
2163 			/*
2164 			 * Invalidate ts_recent.  If this segment updates
2165 			 * ts_recent, the age will be reset later and ts_recent
2166 			 * will get a valid value.  If it does not, setting
2167 			 * ts_recent to zero will at least satisfy the
2168 			 * requirement that zero be placed in the timestamp
2169 			 * echo reply when ts_recent isn't valid.  The
2170 			 * age isn't reset until we get a valid ts_recent
2171 			 * because we don't want out-of-order segments to be
2172 			 * dropped when ts_recent is old.
2173 			 */
2174 			tp->ts_recent = 0;
2175 		} else {
2176 			TCPSTAT_INC(tcps_rcvduppack);
2177 			TCPSTAT_ADD(tcps_rcvdupbyte, tlen);
2178 			TCPSTAT_INC(tcps_pawsdrop);
2179 			if (tlen)
2180 				goto dropafterack;
2181 			goto drop;
2182 		}
2183 	}
2184 
2185 	/*
2186 	 * In the SYN-RECEIVED state, validate that the packet belongs to
2187 	 * this connection before trimming the data to fit the receive
2188 	 * window.  Check the sequence number versus IRS since we know
2189 	 * the sequence numbers haven't wrapped.  This is a partial fix
2190 	 * for the "LAND" DoS attack.
2191 	 */
2192 	if (tp->t_state == TCPS_SYN_RECEIVED && SEQ_LT(th->th_seq, tp->irs)) {
2193 		rstreason = BANDLIM_RST_OPENPORT;
2194 		goto dropwithreset;
2195 	}
2196 
2197 	todrop = tp->rcv_nxt - th->th_seq;
2198 	if (todrop > 0) {
2199 		if (thflags & TH_SYN) {
2200 			thflags &= ~TH_SYN;
2201 			th->th_seq++;
2202 			if (th->th_urp > 1)
2203 				th->th_urp--;
2204 			else
2205 				thflags &= ~TH_URG;
2206 			todrop--;
2207 		}
2208 		/*
2209 		 * Following if statement from Stevens, vol. 2, p. 960.
2210 		 */
2211 		if (todrop > tlen
2212 		    || (todrop == tlen && (thflags & TH_FIN) == 0)) {
2213 			/*
2214 			 * Any valid FIN must be to the left of the window.
2215 			 * At this point the FIN must be a duplicate or out
2216 			 * of sequence; drop it.
2217 			 */
2218 			thflags &= ~TH_FIN;
2219 
2220 			/*
2221 			 * Send an ACK to resynchronize and drop any data.
2222 			 * But keep on processing for RST or ACK.
2223 			 */
2224 			tp->t_flags |= TF_ACKNOW;
2225 			todrop = tlen;
2226 			TCPSTAT_INC(tcps_rcvduppack);
2227 			TCPSTAT_ADD(tcps_rcvdupbyte, todrop);
2228 		} else {
2229 			TCPSTAT_INC(tcps_rcvpartduppack);
2230 			TCPSTAT_ADD(tcps_rcvpartdupbyte, todrop);
2231 		}
2232 		/*
2233 		 * DSACK - add SACK block for dropped range
2234 		 */
2235 		if ((todrop > 0) && (tp->t_flags & TF_SACK_PERMIT)) {
2236 			tcp_update_sack_list(tp, th->th_seq,
2237 			    th->th_seq + todrop);
2238 			/*
2239 			 * ACK now, as the next in-sequence segment
2240 			 * will clear the DSACK block again
2241 			 */
2242 			tp->t_flags |= TF_ACKNOW;
2243 		}
2244 		drop_hdrlen += todrop;	/* drop from the top afterwards */
2245 		th->th_seq += todrop;
2246 		tlen -= todrop;
2247 		if (th->th_urp > todrop)
2248 			th->th_urp -= todrop;
2249 		else {
2250 			thflags &= ~TH_URG;
2251 			th->th_urp = 0;
2252 		}
2253 	}
2254 
2255 	/*
2256 	 * If new data are received on a connection after the
2257 	 * user processes are gone, then RST the other end.
2258 	 */
2259 	if ((so->so_state & SS_NOFDREF) &&
2260 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
2261 		if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
2262 			log(LOG_DEBUG, "%s; %s: %s: Received %d bytes of data "
2263 			    "after socket was closed, "
2264 			    "sending RST and removing tcpcb\n",
2265 			    s, __func__, tcpstates[tp->t_state], tlen);
2266 			free(s, M_TCPLOG);
2267 		}
2268 		tp = tcp_close(tp);
2269 		TCPSTAT_INC(tcps_rcvafterclose);
2270 		rstreason = BANDLIM_UNLIMITED;
2271 		goto dropwithreset;
2272 	}
2273 
2274 	/*
2275 	 * If segment ends after window, drop trailing data
2276 	 * (and PUSH and FIN); if nothing left, just ACK.
2277 	 */
2278 	todrop = (th->th_seq + tlen) - (tp->rcv_nxt + tp->rcv_wnd);
2279 	if (todrop > 0) {
2280 		TCPSTAT_INC(tcps_rcvpackafterwin);
2281 		if (todrop >= tlen) {
2282 			TCPSTAT_ADD(tcps_rcvbyteafterwin, tlen);
2283 			/*
2284 			 * If window is closed can only take segments at
2285 			 * window edge, and have to drop data and PUSH from
2286 			 * incoming segments.  Continue processing, but
2287 			 * remember to ack.  Otherwise, drop segment
2288 			 * and ack.
2289 			 */
2290 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
2291 				tp->t_flags |= TF_ACKNOW;
2292 				TCPSTAT_INC(tcps_rcvwinprobe);
2293 			} else
2294 				goto dropafterack;
2295 		} else
2296 			TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop);
2297 		m_adj(m, -todrop);
2298 		tlen -= todrop;
2299 		thflags &= ~(TH_PUSH|TH_FIN);
2300 	}
2301 
2302 	/*
2303 	 * If last ACK falls within this segment's sequence numbers,
2304 	 * record its timestamp.
2305 	 * NOTE:
2306 	 * 1) That the test incorporates suggestions from the latest
2307 	 *    proposal of the tcplw@cray.com list (Braden 1993/04/26).
2308 	 * 2) That updating only on newer timestamps interferes with
2309 	 *    our earlier PAWS tests, so this check should be solely
2310 	 *    predicated on the sequence space of this segment.
2311 	 * 3) That we modify the segment boundary check to be
2312 	 *        Last.ACK.Sent <= SEG.SEQ + SEG.Len
2313 	 *    instead of RFC1323's
2314 	 *        Last.ACK.Sent < SEG.SEQ + SEG.Len,
2315 	 *    This modified check allows us to overcome RFC1323's
2316 	 *    limitations as described in Stevens TCP/IP Illustrated
2317 	 *    Vol. 2 p.869. In such cases, we can still calculate the
2318 	 *    RTT correctly when RCV.NXT == Last.ACK.Sent.
2319 	 */
2320 	if ((to.to_flags & TOF_TS) != 0 &&
2321 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
2322 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
2323 		((thflags & (TH_SYN|TH_FIN)) != 0))) {
2324 		tp->ts_recent_age = tcp_ts_getticks();
2325 		tp->ts_recent = to.to_tsval;
2326 	}
2327 
2328 	/*
2329 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN
2330 	 * flag is on (half-synchronized state), then queue data for
2331 	 * later processing; else drop segment and return.
2332 	 */
2333 	if ((thflags & TH_ACK) == 0) {
2334 		if (tp->t_state == TCPS_SYN_RECEIVED ||
2335 		    (tp->t_flags & TF_NEEDSYN)) {
2336 			if (tp->t_state == TCPS_SYN_RECEIVED &&
2337 			    IS_FASTOPEN(tp->t_flags)) {
2338 				tp->snd_wnd = tiwin;
2339 				cc_conn_init(tp);
2340 			}
2341 			goto step6;
2342 		} else if (tp->t_flags & TF_ACKNOW)
2343 			goto dropafterack;
2344 		else
2345 			goto drop;
2346 	}
2347 
2348 	/*
2349 	 * Ack processing.
2350 	 */
2351 	switch (tp->t_state) {
2352 
2353 	/*
2354 	 * In SYN_RECEIVED state, the ack ACKs our SYN, so enter
2355 	 * ESTABLISHED state and continue processing.
2356 	 * The ACK was checked above.
2357 	 */
2358 	case TCPS_SYN_RECEIVED:
2359 
2360 		TCPSTAT_INC(tcps_connects);
2361 		soisconnected(so);
2362 		/* Do window scaling? */
2363 		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2364 			(TF_RCVD_SCALE|TF_REQ_SCALE)) {
2365 			tp->rcv_scale = tp->request_r_scale;
2366 		}
2367 		tp->snd_wnd = tiwin;
2368 		/*
2369 		 * Make transitions:
2370 		 *      SYN-RECEIVED  -> ESTABLISHED
2371 		 *      SYN-RECEIVED* -> FIN-WAIT-1
2372 		 */
2373 		tp->t_starttime = ticks;
2374 		if (IS_FASTOPEN(tp->t_flags) && tp->t_tfo_pending) {
2375 			tcp_fastopen_decrement_counter(tp->t_tfo_pending);
2376 			tp->t_tfo_pending = NULL;
2377 
2378 			/*
2379 			 * Account for the ACK of our SYN prior to
2380 			 * regular ACK processing below.
2381 			 */
2382 			tp->snd_una++;
2383 		}
2384 		if (tp->t_flags & TF_NEEDFIN) {
2385 			tcp_state_change(tp, TCPS_FIN_WAIT_1);
2386 			tp->t_flags &= ~TF_NEEDFIN;
2387 		} else {
2388 			tcp_state_change(tp, TCPS_ESTABLISHED);
2389 			TCP_PROBE5(accept__established, NULL, tp,
2390 			    m, tp, th);
2391 			/*
2392 			 * TFO connections call cc_conn_init() during SYN
2393 			 * processing.  Calling it again here for such
2394 			 * connections is not harmless as it would undo the
2395 			 * snd_cwnd reduction that occurs when a TFO SYN|ACK
2396 			 * is retransmitted.
2397 			 */
2398 			if (!IS_FASTOPEN(tp->t_flags))
2399 				cc_conn_init(tp);
2400 			tcp_timer_activate(tp, TT_KEEP, TP_KEEPIDLE(tp));
2401 		}
2402 		/*
2403 		 * If segment contains data or ACK, will call tcp_reass()
2404 		 * later; if not, do so now to pass queued data to user.
2405 		 */
2406 		if (tlen == 0 && (thflags & TH_FIN) == 0)
2407 			(void) tcp_reass(tp, (struct tcphdr *)0, NULL, 0,
2408 			    (struct mbuf *)0);
2409 		tp->snd_wl1 = th->th_seq - 1;
2410 		/* FALLTHROUGH */
2411 
2412 	/*
2413 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
2414 	 * ACKs.  If the ack is in the range
2415 	 *	tp->snd_una < th->th_ack <= tp->snd_max
2416 	 * then advance tp->snd_una to th->th_ack and drop
2417 	 * data from the retransmission queue.  If this ACK reflects
2418 	 * more up to date window information we update our window information.
2419 	 */
2420 	case TCPS_ESTABLISHED:
2421 	case TCPS_FIN_WAIT_1:
2422 	case TCPS_FIN_WAIT_2:
2423 	case TCPS_CLOSE_WAIT:
2424 	case TCPS_CLOSING:
2425 	case TCPS_LAST_ACK:
2426 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
2427 			TCPSTAT_INC(tcps_rcvacktoomuch);
2428 			goto dropafterack;
2429 		}
2430 		if ((tp->t_flags & TF_SACK_PERMIT) &&
2431 		    ((to.to_flags & TOF_SACK) ||
2432 		     !TAILQ_EMPTY(&tp->snd_holes)))
2433 			sack_changed = tcp_sack_doack(tp, &to, th->th_ack);
2434 		else
2435 			/*
2436 			 * Reset the value so that previous (valid) value
2437 			 * from the last ack with SACK doesn't get used.
2438 			 */
2439 			tp->sackhint.sacked_bytes = 0;
2440 
2441 #ifdef TCP_HHOOK
2442 		/* Run HHOOK_TCP_ESTABLISHED_IN helper hooks. */
2443 		hhook_run_tcp_est_in(tp, th, &to);
2444 #endif
2445 
2446 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
2447 			u_int maxseg;
2448 
2449 			maxseg = tcp_maxseg(tp);
2450 			if (tlen == 0 &&
2451 			    (tiwin == tp->snd_wnd ||
2452 			    (tp->t_flags & TF_SACK_PERMIT))) {
2453 				/*
2454 				 * If this is the first time we've seen a
2455 				 * FIN from the remote, this is not a
2456 				 * duplicate and it needs to be processed
2457 				 * normally.  This happens during a
2458 				 * simultaneous close.
2459 				 */
2460 				if ((thflags & TH_FIN) &&
2461 				    (TCPS_HAVERCVDFIN(tp->t_state) == 0)) {
2462 					tp->t_dupacks = 0;
2463 					break;
2464 				}
2465 				TCPSTAT_INC(tcps_rcvdupack);
2466 				/*
2467 				 * If we have outstanding data (other than
2468 				 * a window probe), this is a completely
2469 				 * duplicate ack (ie, window info didn't
2470 				 * change and FIN isn't set),
2471 				 * the ack is the biggest we've
2472 				 * seen and we've seen exactly our rexmt
2473 				 * threshold of them, assume a packet
2474 				 * has been dropped and retransmit it.
2475 				 * Kludge snd_nxt & the congestion
2476 				 * window so we send only this one
2477 				 * packet.
2478 				 *
2479 				 * We know we're losing at the current
2480 				 * window size so do congestion avoidance
2481 				 * (set ssthresh to half the current window
2482 				 * and pull our congestion window back to
2483 				 * the new ssthresh).
2484 				 *
2485 				 * Dup acks mean that packets have left the
2486 				 * network (they're now cached at the receiver)
2487 				 * so bump cwnd by the amount in the receiver
2488 				 * to keep a constant cwnd packets in the
2489 				 * network.
2490 				 *
2491 				 * When using TCP ECN, notify the peer that
2492 				 * we reduced the cwnd.
2493 				 */
2494 				/*
2495 				 * Following 2 kinds of acks should not affect
2496 				 * dupack counting:
2497 				 * 1) Old acks
2498 				 * 2) Acks with SACK but without any new SACK
2499 				 * information in them. These could result from
2500 				 * any anomaly in the network like a switch
2501 				 * duplicating packets or a possible DoS attack.
2502 				 */
2503 				if (th->th_ack != tp->snd_una ||
2504 				    ((tp->t_flags & TF_SACK_PERMIT) &&
2505 				    !sack_changed))
2506 					break;
2507 				else if (!tcp_timer_active(tp, TT_REXMT))
2508 					tp->t_dupacks = 0;
2509 				else if (++tp->t_dupacks > tcprexmtthresh ||
2510 				     IN_FASTRECOVERY(tp->t_flags)) {
2511 					cc_ack_received(tp, th, nsegs,
2512 					    CC_DUPACK);
2513 					if ((tp->t_flags & TF_SACK_PERMIT) &&
2514 					    IN_FASTRECOVERY(tp->t_flags)) {
2515 						int awnd;
2516 
2517 						/*
2518 						 * Compute the amount of data in flight first.
2519 						 * We can inject new data into the pipe iff
2520 						 * we have less than 1/2 the original window's
2521 						 * worth of data in flight.
2522 						 */
2523 						if (V_tcp_do_rfc6675_pipe)
2524 							awnd = tcp_compute_pipe(tp);
2525 						else
2526 							awnd = (tp->snd_nxt - tp->snd_fack) +
2527 								tp->sackhint.sack_bytes_rexmit;
2528 
2529 						if (awnd < tp->snd_ssthresh) {
2530 							tp->snd_cwnd += maxseg;
2531 							if (tp->snd_cwnd > tp->snd_ssthresh)
2532 								tp->snd_cwnd = tp->snd_ssthresh;
2533 						}
2534 					} else
2535 						tp->snd_cwnd += maxseg;
2536 					(void) tp->t_fb->tfb_tcp_output(tp);
2537 					goto drop;
2538 				} else if (tp->t_dupacks == tcprexmtthresh) {
2539 					tcp_seq onxt = tp->snd_nxt;
2540 
2541 					/*
2542 					 * If we're doing sack, check to
2543 					 * see if we're already in sack
2544 					 * recovery. If we're not doing sack,
2545 					 * check to see if we're in newreno
2546 					 * recovery.
2547 					 */
2548 					if (tp->t_flags & TF_SACK_PERMIT) {
2549 						if (IN_FASTRECOVERY(tp->t_flags)) {
2550 							tp->t_dupacks = 0;
2551 							break;
2552 						}
2553 					} else {
2554 						if (SEQ_LEQ(th->th_ack,
2555 						    tp->snd_recover)) {
2556 							tp->t_dupacks = 0;
2557 							break;
2558 						}
2559 					}
2560 					/* Congestion signal before ack. */
2561 					cc_cong_signal(tp, th, CC_NDUPACK);
2562 					cc_ack_received(tp, th, nsegs,
2563 					    CC_DUPACK);
2564 					tcp_timer_activate(tp, TT_REXMT, 0);
2565 					tp->t_rtttime = 0;
2566 					if (tp->t_flags & TF_SACK_PERMIT) {
2567 						TCPSTAT_INC(
2568 						    tcps_sack_recovery_episode);
2569 						tp->snd_recover = tp->snd_nxt;
2570 						tp->snd_cwnd = maxseg;
2571 						(void) tp->t_fb->tfb_tcp_output(tp);
2572 						goto drop;
2573 					}
2574 					tp->snd_nxt = th->th_ack;
2575 					tp->snd_cwnd = maxseg;
2576 					(void) tp->t_fb->tfb_tcp_output(tp);
2577 					KASSERT(tp->snd_limited <= 2,
2578 					    ("%s: tp->snd_limited too big",
2579 					    __func__));
2580 					tp->snd_cwnd = tp->snd_ssthresh +
2581 					     maxseg *
2582 					     (tp->t_dupacks - tp->snd_limited);
2583 					if (SEQ_GT(onxt, tp->snd_nxt))
2584 						tp->snd_nxt = onxt;
2585 					goto drop;
2586 				} else if (V_tcp_do_rfc3042) {
2587 					/*
2588 					 * Process first and second duplicate
2589 					 * ACKs. Each indicates a segment
2590 					 * leaving the network, creating room
2591 					 * for more. Make sure we can send a
2592 					 * packet on reception of each duplicate
2593 					 * ACK by increasing snd_cwnd by one
2594 					 * segment. Restore the original
2595 					 * snd_cwnd after packet transmission.
2596 					 */
2597 					cc_ack_received(tp, th, nsegs,
2598 					    CC_DUPACK);
2599 					uint32_t oldcwnd = tp->snd_cwnd;
2600 					tcp_seq oldsndmax = tp->snd_max;
2601 					u_int sent;
2602 					int avail;
2603 
2604 					KASSERT(tp->t_dupacks == 1 ||
2605 					    tp->t_dupacks == 2,
2606 					    ("%s: dupacks not 1 or 2",
2607 					    __func__));
2608 					if (tp->t_dupacks == 1)
2609 						tp->snd_limited = 0;
2610 					tp->snd_cwnd =
2611 					    (tp->snd_nxt - tp->snd_una) +
2612 					    (tp->t_dupacks - tp->snd_limited) *
2613 					    maxseg;
2614 					/*
2615 					 * Only call tcp_output when there
2616 					 * is new data available to be sent.
2617 					 * Otherwise we would send pure ACKs.
2618 					 */
2619 					SOCKBUF_LOCK(&so->so_snd);
2620 					avail = sbavail(&so->so_snd) -
2621 					    (tp->snd_nxt - tp->snd_una);
2622 					SOCKBUF_UNLOCK(&so->so_snd);
2623 					if (avail > 0)
2624 						(void) tp->t_fb->tfb_tcp_output(tp);
2625 					sent = tp->snd_max - oldsndmax;
2626 					if (sent > maxseg) {
2627 						KASSERT((tp->t_dupacks == 2 &&
2628 						    tp->snd_limited == 0) ||
2629 						   (sent == maxseg + 1 &&
2630 						    tp->t_flags & TF_SENTFIN),
2631 						    ("%s: sent too much",
2632 						    __func__));
2633 						tp->snd_limited = 2;
2634 					} else if (sent > 0)
2635 						++tp->snd_limited;
2636 					tp->snd_cwnd = oldcwnd;
2637 					goto drop;
2638 				}
2639 			}
2640 			break;
2641 		} else {
2642 			/*
2643 			 * This ack is advancing the left edge, reset the
2644 			 * counter.
2645 			 */
2646 			tp->t_dupacks = 0;
2647 			/*
2648 			 * If this ack also has new SACK info, increment the
2649 			 * counter as per rfc6675.
2650 			 */
2651 			if ((tp->t_flags & TF_SACK_PERMIT) && sack_changed)
2652 				tp->t_dupacks++;
2653 		}
2654 
2655 		KASSERT(SEQ_GT(th->th_ack, tp->snd_una),
2656 		    ("%s: th_ack <= snd_una", __func__));
2657 
2658 		/*
2659 		 * If the congestion window was inflated to account
2660 		 * for the other side's cached packets, retract it.
2661 		 */
2662 		if (IN_FASTRECOVERY(tp->t_flags)) {
2663 			if (SEQ_LT(th->th_ack, tp->snd_recover)) {
2664 				if (tp->t_flags & TF_SACK_PERMIT)
2665 					tcp_sack_partialack(tp, th);
2666 				else
2667 					tcp_newreno_partial_ack(tp, th);
2668 			} else
2669 				cc_post_recovery(tp, th);
2670 		}
2671 		/*
2672 		 * If we reach this point, ACK is not a duplicate,
2673 		 *     i.e., it ACKs something we sent.
2674 		 */
2675 		if (tp->t_flags & TF_NEEDSYN) {
2676 			/*
2677 			 * T/TCP: Connection was half-synchronized, and our
2678 			 * SYN has been ACK'd (so connection is now fully
2679 			 * synchronized).  Go to non-starred state,
2680 			 * increment snd_una for ACK of SYN, and check if
2681 			 * we can do window scaling.
2682 			 */
2683 			tp->t_flags &= ~TF_NEEDSYN;
2684 			tp->snd_una++;
2685 			/* Do window scaling? */
2686 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2687 				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
2688 				tp->rcv_scale = tp->request_r_scale;
2689 				/* Send window already scaled. */
2690 			}
2691 		}
2692 
2693 process_ACK:
2694 		INP_WLOCK_ASSERT(tp->t_inpcb);
2695 
2696 		acked = BYTES_THIS_ACK(tp, th);
2697 		KASSERT(acked >= 0, ("%s: acked unexepectedly negative "
2698 		    "(tp->snd_una=%u, th->th_ack=%u, tp=%p, m=%p)", __func__,
2699 		    tp->snd_una, th->th_ack, tp, m));
2700 		TCPSTAT_ADD(tcps_rcvackpack, nsegs);
2701 		TCPSTAT_ADD(tcps_rcvackbyte, acked);
2702 
2703 		/*
2704 		 * If we just performed our first retransmit, and the ACK
2705 		 * arrives within our recovery window, then it was a mistake
2706 		 * to do the retransmit in the first place.  Recover our
2707 		 * original cwnd and ssthresh, and proceed to transmit where
2708 		 * we left off.
2709 		 */
2710 		if (tp->t_rxtshift == 1 &&
2711 		    tp->t_flags & TF_PREVVALID &&
2712 		    tp->t_badrxtwin &&
2713 		    SEQ_LT(to.to_tsecr, tp->t_badrxtwin))
2714 			cc_cong_signal(tp, th, CC_RTO_ERR);
2715 
2716 		/*
2717 		 * If we have a timestamp reply, update smoothed
2718 		 * round trip time.  If no timestamp is present but
2719 		 * transmit timer is running and timed sequence
2720 		 * number was acked, update smoothed round trip time.
2721 		 * Since we now have an rtt measurement, cancel the
2722 		 * timer backoff (cf., Phil Karn's retransmit alg.).
2723 		 * Recompute the initial retransmit timer.
2724 		 *
2725 		 * Some boxes send broken timestamp replies
2726 		 * during the SYN+ACK phase, ignore
2727 		 * timestamps of 0 or we could calculate a
2728 		 * huge RTT and blow up the retransmit timer.
2729 		 */
2730 		if ((to.to_flags & TOF_TS) != 0 && to.to_tsecr) {
2731 			uint32_t t;
2732 
2733 			t = tcp_ts_getticks() - to.to_tsecr;
2734 			if (!tp->t_rttlow || tp->t_rttlow > t)
2735 				tp->t_rttlow = t;
2736 			tcp_xmit_timer(tp, TCP_TS_TO_TICKS(t) + 1);
2737 		} else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq)) {
2738 			if (!tp->t_rttlow || tp->t_rttlow > ticks - tp->t_rtttime)
2739 				tp->t_rttlow = ticks - tp->t_rtttime;
2740 			tcp_xmit_timer(tp, ticks - tp->t_rtttime);
2741 		}
2742 
2743 		/*
2744 		 * If all outstanding data is acked, stop retransmit
2745 		 * timer and remember to restart (more output or persist).
2746 		 * If there is more data to be acked, restart retransmit
2747 		 * timer, using current (possibly backed-off) value.
2748 		 */
2749 		if (th->th_ack == tp->snd_max) {
2750 			tcp_timer_activate(tp, TT_REXMT, 0);
2751 			needoutput = 1;
2752 		} else if (!tcp_timer_active(tp, TT_PERSIST))
2753 			tcp_timer_activate(tp, TT_REXMT, tp->t_rxtcur);
2754 
2755 		/*
2756 		 * If no data (only SYN) was ACK'd,
2757 		 *    skip rest of ACK processing.
2758 		 */
2759 		if (acked == 0)
2760 			goto step6;
2761 
2762 		/*
2763 		 * Let the congestion control algorithm update congestion
2764 		 * control related information. This typically means increasing
2765 		 * the congestion window.
2766 		 */
2767 		cc_ack_received(tp, th, nsegs, CC_ACK);
2768 
2769 		SOCKBUF_LOCK(&so->so_snd);
2770 		if (acked > sbavail(&so->so_snd)) {
2771 			if (tp->snd_wnd >= sbavail(&so->so_snd))
2772 				tp->snd_wnd -= sbavail(&so->so_snd);
2773 			else
2774 				tp->snd_wnd = 0;
2775 			mfree = sbcut_locked(&so->so_snd,
2776 			    (int)sbavail(&so->so_snd));
2777 			ourfinisacked = 1;
2778 		} else {
2779 			mfree = sbcut_locked(&so->so_snd, acked);
2780 			if (tp->snd_wnd >= (uint32_t) acked)
2781 				tp->snd_wnd -= acked;
2782 			else
2783 				tp->snd_wnd = 0;
2784 			ourfinisacked = 0;
2785 		}
2786 		/* NB: sowwakeup_locked() does an implicit unlock. */
2787 		sowwakeup_locked(so);
2788 		m_freem(mfree);
2789 		/* Detect una wraparound. */
2790 		if (!IN_RECOVERY(tp->t_flags) &&
2791 		    SEQ_GT(tp->snd_una, tp->snd_recover) &&
2792 		    SEQ_LEQ(th->th_ack, tp->snd_recover))
2793 			tp->snd_recover = th->th_ack - 1;
2794 		/* XXXLAS: Can this be moved up into cc_post_recovery? */
2795 		if (IN_RECOVERY(tp->t_flags) &&
2796 		    SEQ_GEQ(th->th_ack, tp->snd_recover)) {
2797 			EXIT_RECOVERY(tp->t_flags);
2798 		}
2799 		tp->snd_una = th->th_ack;
2800 		if (tp->t_flags & TF_SACK_PERMIT) {
2801 			if (SEQ_GT(tp->snd_una, tp->snd_recover))
2802 				tp->snd_recover = tp->snd_una;
2803 		}
2804 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2805 			tp->snd_nxt = tp->snd_una;
2806 
2807 		switch (tp->t_state) {
2808 
2809 		/*
2810 		 * In FIN_WAIT_1 STATE in addition to the processing
2811 		 * for the ESTABLISHED state if our FIN is now acknowledged
2812 		 * then enter FIN_WAIT_2.
2813 		 */
2814 		case TCPS_FIN_WAIT_1:
2815 			if (ourfinisacked) {
2816 				/*
2817 				 * If we can't receive any more
2818 				 * data, then closing user can proceed.
2819 				 * Starting the timer is contrary to the
2820 				 * specification, but if we don't get a FIN
2821 				 * we'll hang forever.
2822 				 *
2823 				 * XXXjl:
2824 				 * we should release the tp also, and use a
2825 				 * compressed state.
2826 				 */
2827 				if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
2828 					soisdisconnected(so);
2829 					tcp_timer_activate(tp, TT_2MSL,
2830 					    (tcp_fast_finwait2_recycle ?
2831 					    tcp_finwait2_timeout :
2832 					    TP_MAXIDLE(tp)));
2833 				}
2834 				tcp_state_change(tp, TCPS_FIN_WAIT_2);
2835 			}
2836 			break;
2837 
2838 		/*
2839 		 * In CLOSING STATE in addition to the processing for
2840 		 * the ESTABLISHED state if the ACK acknowledges our FIN
2841 		 * then enter the TIME-WAIT state, otherwise ignore
2842 		 * the segment.
2843 		 */
2844 		case TCPS_CLOSING:
2845 			if (ourfinisacked) {
2846 				tcp_twstart(tp);
2847 				m_freem(m);
2848 				return;
2849 			}
2850 			break;
2851 
2852 		/*
2853 		 * In LAST_ACK, we may still be waiting for data to drain
2854 		 * and/or to be acked, as well as for the ack of our FIN.
2855 		 * If our FIN is now acknowledged, delete the TCB,
2856 		 * enter the closed state and return.
2857 		 */
2858 		case TCPS_LAST_ACK:
2859 			if (ourfinisacked) {
2860 				tp = tcp_close(tp);
2861 				goto drop;
2862 			}
2863 			break;
2864 		}
2865 	}
2866 
2867 step6:
2868 	INP_WLOCK_ASSERT(tp->t_inpcb);
2869 
2870 	/*
2871 	 * Update window information.
2872 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2873 	 */
2874 	if ((thflags & TH_ACK) &&
2875 	    (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2876 	    (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
2877 	     (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
2878 		/* keep track of pure window updates */
2879 		if (tlen == 0 &&
2880 		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2881 			TCPSTAT_INC(tcps_rcvwinupd);
2882 		tp->snd_wnd = tiwin;
2883 		tp->snd_wl1 = th->th_seq;
2884 		tp->snd_wl2 = th->th_ack;
2885 		if (tp->snd_wnd > tp->max_sndwnd)
2886 			tp->max_sndwnd = tp->snd_wnd;
2887 		needoutput = 1;
2888 	}
2889 
2890 	/*
2891 	 * Process segments with URG.
2892 	 */
2893 	if ((thflags & TH_URG) && th->th_urp &&
2894 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2895 		/*
2896 		 * This is a kludge, but if we receive and accept
2897 		 * random urgent pointers, we'll crash in
2898 		 * soreceive.  It's hard to imagine someone
2899 		 * actually wanting to send this much urgent data.
2900 		 */
2901 		SOCKBUF_LOCK(&so->so_rcv);
2902 		if (th->th_urp + sbavail(&so->so_rcv) > sb_max) {
2903 			th->th_urp = 0;			/* XXX */
2904 			thflags &= ~TH_URG;		/* XXX */
2905 			SOCKBUF_UNLOCK(&so->so_rcv);	/* XXX */
2906 			goto dodata;			/* XXX */
2907 		}
2908 		/*
2909 		 * If this segment advances the known urgent pointer,
2910 		 * then mark the data stream.  This should not happen
2911 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2912 		 * a FIN has been received from the remote side.
2913 		 * In these states we ignore the URG.
2914 		 *
2915 		 * According to RFC961 (Assigned Protocols),
2916 		 * the urgent pointer points to the last octet
2917 		 * of urgent data.  We continue, however,
2918 		 * to consider it to indicate the first octet
2919 		 * of data past the urgent section as the original
2920 		 * spec states (in one of two places).
2921 		 */
2922 		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2923 			tp->rcv_up = th->th_seq + th->th_urp;
2924 			so->so_oobmark = sbavail(&so->so_rcv) +
2925 			    (tp->rcv_up - tp->rcv_nxt) - 1;
2926 			if (so->so_oobmark == 0)
2927 				so->so_rcv.sb_state |= SBS_RCVATMARK;
2928 			sohasoutofband(so);
2929 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2930 		}
2931 		SOCKBUF_UNLOCK(&so->so_rcv);
2932 		/*
2933 		 * Remove out of band data so doesn't get presented to user.
2934 		 * This can happen independent of advancing the URG pointer,
2935 		 * but if two URG's are pending at once, some out-of-band
2936 		 * data may creep in... ick.
2937 		 */
2938 		if (th->th_urp <= (uint32_t)tlen &&
2939 		    !(so->so_options & SO_OOBINLINE)) {
2940 			/* hdr drop is delayed */
2941 			tcp_pulloutofband(so, th, m, drop_hdrlen);
2942 		}
2943 	} else {
2944 		/*
2945 		 * If no out of band data is expected,
2946 		 * pull receive urgent pointer along
2947 		 * with the receive window.
2948 		 */
2949 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2950 			tp->rcv_up = tp->rcv_nxt;
2951 	}
2952 dodata:							/* XXX */
2953 	INP_WLOCK_ASSERT(tp->t_inpcb);
2954 
2955 	/*
2956 	 * Process the segment text, merging it into the TCP sequencing queue,
2957 	 * and arranging for acknowledgment of receipt if necessary.
2958 	 * This process logically involves adjusting tp->rcv_wnd as data
2959 	 * is presented to the user (this happens in tcp_usrreq.c,
2960 	 * case PRU_RCVD).  If a FIN has already been received on this
2961 	 * connection then we just ignore the text.
2962 	 */
2963 	tfo_syn = ((tp->t_state == TCPS_SYN_RECEIVED) &&
2964 		   IS_FASTOPEN(tp->t_flags));
2965 	if ((tlen || (thflags & TH_FIN) || tfo_syn) &&
2966 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2967 		tcp_seq save_start = th->th_seq;
2968 		tcp_seq save_rnxt  = tp->rcv_nxt;
2969 		int     save_tlen  = tlen;
2970 		m_adj(m, drop_hdrlen);	/* delayed header drop */
2971 		/*
2972 		 * Insert segment which includes th into TCP reassembly queue
2973 		 * with control block tp.  Set thflags to whether reassembly now
2974 		 * includes a segment with FIN.  This handles the common case
2975 		 * inline (segment is the next to be received on an established
2976 		 * connection, and the queue is empty), avoiding linkage into
2977 		 * and removal from the queue and repetition of various
2978 		 * conversions.
2979 		 * Set DELACK for segments received in order, but ack
2980 		 * immediately when segments are out of order (so
2981 		 * fast retransmit can work).
2982 		 */
2983 		if (th->th_seq == tp->rcv_nxt &&
2984 		    SEGQ_EMPTY(tp) &&
2985 		    (TCPS_HAVEESTABLISHED(tp->t_state) ||
2986 		     tfo_syn)) {
2987 			if (DELAY_ACK(tp, tlen) || tfo_syn)
2988 				tp->t_flags |= TF_DELACK;
2989 			else
2990 				tp->t_flags |= TF_ACKNOW;
2991 			tp->rcv_nxt += tlen;
2992 			thflags = th->th_flags & TH_FIN;
2993 			TCPSTAT_INC(tcps_rcvpack);
2994 			TCPSTAT_ADD(tcps_rcvbyte, tlen);
2995 			SOCKBUF_LOCK(&so->so_rcv);
2996 			if (so->so_rcv.sb_state & SBS_CANTRCVMORE)
2997 				m_freem(m);
2998 			else
2999 				sbappendstream_locked(&so->so_rcv, m, 0);
3000 			/* NB: sorwakeup_locked() does an implicit unlock. */
3001 			sorwakeup_locked(so);
3002 		} else {
3003 			/*
3004 			 * XXX: Due to the header drop above "th" is
3005 			 * theoretically invalid by now.  Fortunately
3006 			 * m_adj() doesn't actually frees any mbufs
3007 			 * when trimming from the head.
3008 			 */
3009 			tcp_seq temp = save_start;
3010 			thflags = tcp_reass(tp, th, &temp, &tlen, m);
3011 			tp->t_flags |= TF_ACKNOW;
3012 		}
3013 		if ((tp->t_flags & TF_SACK_PERMIT) && (save_tlen > 0)) {
3014 			if ((tlen == 0) && (SEQ_LT(save_start, save_rnxt))) {
3015 				/*
3016 				 * DSACK actually handled in the fastpath
3017 				 * above.
3018 				 */
3019 				tcp_update_sack_list(tp, save_start,
3020 				    save_start + save_tlen);
3021 			} else if ((tlen > 0) && SEQ_GT(tp->rcv_nxt, save_rnxt)) {
3022 				if ((tp->rcv_numsacks >= 1) &&
3023 				    (tp->sackblks[0].end == save_start)) {
3024 					/*
3025 					 * Partial overlap, recorded at todrop
3026 					 * above.
3027 					 */
3028 					tcp_update_sack_list(tp,
3029 					    tp->sackblks[0].start,
3030 					    tp->sackblks[0].end);
3031 				} else {
3032 					tcp_update_dsack_list(tp, save_start,
3033 					    save_start + save_tlen);
3034 				}
3035 			} else if (tlen >= save_tlen) {
3036 				/* Update of sackblks. */
3037 				tcp_update_dsack_list(tp, save_start,
3038 				    save_start + save_tlen);
3039 			} else if (tlen > 0) {
3040 				tcp_update_dsack_list(tp, save_start,
3041 				    save_start + tlen);
3042 			}
3043 		}
3044 #if 0
3045 		/*
3046 		 * Note the amount of data that peer has sent into
3047 		 * our window, in order to estimate the sender's
3048 		 * buffer size.
3049 		 * XXX: Unused.
3050 		 */
3051 		if (SEQ_GT(tp->rcv_adv, tp->rcv_nxt))
3052 			len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
3053 		else
3054 			len = so->so_rcv.sb_hiwat;
3055 #endif
3056 	} else {
3057 		m_freem(m);
3058 		thflags &= ~TH_FIN;
3059 	}
3060 
3061 	/*
3062 	 * If FIN is received ACK the FIN and let the user know
3063 	 * that the connection is closing.
3064 	 */
3065 	if (thflags & TH_FIN) {
3066 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
3067 			socantrcvmore(so);
3068 			/*
3069 			 * If connection is half-synchronized
3070 			 * (ie NEEDSYN flag on) then delay ACK,
3071 			 * so it may be piggybacked when SYN is sent.
3072 			 * Otherwise, since we received a FIN then no
3073 			 * more input can be expected, send ACK now.
3074 			 */
3075 			if (tp->t_flags & TF_NEEDSYN)
3076 				tp->t_flags |= TF_DELACK;
3077 			else
3078 				tp->t_flags |= TF_ACKNOW;
3079 			tp->rcv_nxt++;
3080 		}
3081 		switch (tp->t_state) {
3082 
3083 		/*
3084 		 * In SYN_RECEIVED and ESTABLISHED STATES
3085 		 * enter the CLOSE_WAIT state.
3086 		 */
3087 		case TCPS_SYN_RECEIVED:
3088 			tp->t_starttime = ticks;
3089 			/* FALLTHROUGH */
3090 		case TCPS_ESTABLISHED:
3091 			tcp_state_change(tp, TCPS_CLOSE_WAIT);
3092 			break;
3093 
3094 		/*
3095 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
3096 		 * enter the CLOSING state.
3097 		 */
3098 		case TCPS_FIN_WAIT_1:
3099 			tcp_state_change(tp, TCPS_CLOSING);
3100 			break;
3101 
3102 		/*
3103 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
3104 		 * starting the time-wait timer, turning off the other
3105 		 * standard timers.
3106 		 */
3107 		case TCPS_FIN_WAIT_2:
3108 			tcp_twstart(tp);
3109 			return;
3110 		}
3111 	}
3112 #ifdef TCPDEBUG
3113 	if (so->so_options & SO_DEBUG)
3114 		tcp_trace(TA_INPUT, ostate, tp, (void *)tcp_saveipgen,
3115 			  &tcp_savetcp, 0);
3116 #endif
3117 	TCP_PROBE3(debug__input, tp, th, m);
3118 
3119 	/*
3120 	 * Return any desired output.
3121 	 */
3122 	if (needoutput || (tp->t_flags & TF_ACKNOW))
3123 		(void) tp->t_fb->tfb_tcp_output(tp);
3124 
3125 check_delack:
3126 	INP_WLOCK_ASSERT(tp->t_inpcb);
3127 
3128 	if (tp->t_flags & TF_DELACK) {
3129 		tp->t_flags &= ~TF_DELACK;
3130 		tcp_timer_activate(tp, TT_DELACK, tcp_delacktime);
3131 	}
3132 	INP_WUNLOCK(tp->t_inpcb);
3133 	return;
3134 
3135 dropafterack:
3136 	/*
3137 	 * Generate an ACK dropping incoming segment if it occupies
3138 	 * sequence space, where the ACK reflects our state.
3139 	 *
3140 	 * We can now skip the test for the RST flag since all
3141 	 * paths to this code happen after packets containing
3142 	 * RST have been dropped.
3143 	 *
3144 	 * In the SYN-RECEIVED state, don't send an ACK unless the
3145 	 * segment we received passes the SYN-RECEIVED ACK test.
3146 	 * If it fails send a RST.  This breaks the loop in the
3147 	 * "LAND" DoS attack, and also prevents an ACK storm
3148 	 * between two listening ports that have been sent forged
3149 	 * SYN segments, each with the source address of the other.
3150 	 */
3151 	if (tp->t_state == TCPS_SYN_RECEIVED && (thflags & TH_ACK) &&
3152 	    (SEQ_GT(tp->snd_una, th->th_ack) ||
3153 	     SEQ_GT(th->th_ack, tp->snd_max)) ) {
3154 		rstreason = BANDLIM_RST_OPENPORT;
3155 		goto dropwithreset;
3156 	}
3157 #ifdef TCPDEBUG
3158 	if (so->so_options & SO_DEBUG)
3159 		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
3160 			  &tcp_savetcp, 0);
3161 #endif
3162 	TCP_PROBE3(debug__input, tp, th, m);
3163 	tp->t_flags |= TF_ACKNOW;
3164 	(void) tp->t_fb->tfb_tcp_output(tp);
3165 	INP_WUNLOCK(tp->t_inpcb);
3166 	m_freem(m);
3167 	return;
3168 
3169 dropwithreset:
3170 	if (tp != NULL) {
3171 		tcp_dropwithreset(m, th, tp, tlen, rstreason);
3172 		INP_WUNLOCK(tp->t_inpcb);
3173 	} else
3174 		tcp_dropwithreset(m, th, NULL, tlen, rstreason);
3175 	return;
3176 
3177 drop:
3178 	/*
3179 	 * Drop space held by incoming segment and return.
3180 	 */
3181 #ifdef TCPDEBUG
3182 	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
3183 		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
3184 			  &tcp_savetcp, 0);
3185 #endif
3186 	TCP_PROBE3(debug__input, tp, th, m);
3187 	if (tp != NULL)
3188 		INP_WUNLOCK(tp->t_inpcb);
3189 	m_freem(m);
3190 }
3191 
3192 /*
3193  * Issue RST and make ACK acceptable to originator of segment.
3194  * The mbuf must still include the original packet header.
3195  * tp may be NULL.
3196  */
3197 void
3198 tcp_dropwithreset(struct mbuf *m, struct tcphdr *th, struct tcpcb *tp,
3199     int tlen, int rstreason)
3200 {
3201 #ifdef INET
3202 	struct ip *ip;
3203 #endif
3204 #ifdef INET6
3205 	struct ip6_hdr *ip6;
3206 #endif
3207 
3208 	if (tp != NULL) {
3209 		INP_WLOCK_ASSERT(tp->t_inpcb);
3210 	}
3211 
3212 	/* Don't bother if destination was broadcast/multicast. */
3213 	if ((th->th_flags & TH_RST) || m->m_flags & (M_BCAST|M_MCAST))
3214 		goto drop;
3215 #ifdef INET6
3216 	if (mtod(m, struct ip *)->ip_v == 6) {
3217 		ip6 = mtod(m, struct ip6_hdr *);
3218 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
3219 		    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
3220 			goto drop;
3221 		/* IPv6 anycast check is done at tcp6_input() */
3222 	}
3223 #endif
3224 #if defined(INET) && defined(INET6)
3225 	else
3226 #endif
3227 #ifdef INET
3228 	{
3229 		ip = mtod(m, struct ip *);
3230 		if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
3231 		    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
3232 		    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
3233 		    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
3234 			goto drop;
3235 	}
3236 #endif
3237 
3238 	/* Perform bandwidth limiting. */
3239 	if (badport_bandlim(rstreason) < 0)
3240 		goto drop;
3241 
3242 	/* tcp_respond consumes the mbuf chain. */
3243 	if (th->th_flags & TH_ACK) {
3244 		tcp_respond(tp, mtod(m, void *), th, m, (tcp_seq)0,
3245 		    th->th_ack, TH_RST);
3246 	} else {
3247 		if (th->th_flags & TH_SYN)
3248 			tlen++;
3249 		if (th->th_flags & TH_FIN)
3250 			tlen++;
3251 		tcp_respond(tp, mtod(m, void *), th, m, th->th_seq+tlen,
3252 		    (tcp_seq)0, TH_RST|TH_ACK);
3253 	}
3254 	return;
3255 drop:
3256 	m_freem(m);
3257 }
3258 
3259 /*
3260  * Parse TCP options and place in tcpopt.
3261  */
3262 void
3263 tcp_dooptions(struct tcpopt *to, u_char *cp, int cnt, int flags)
3264 {
3265 	int opt, optlen;
3266 
3267 	to->to_flags = 0;
3268 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
3269 		opt = cp[0];
3270 		if (opt == TCPOPT_EOL)
3271 			break;
3272 		if (opt == TCPOPT_NOP)
3273 			optlen = 1;
3274 		else {
3275 			if (cnt < 2)
3276 				break;
3277 			optlen = cp[1];
3278 			if (optlen < 2 || optlen > cnt)
3279 				break;
3280 		}
3281 		switch (opt) {
3282 		case TCPOPT_MAXSEG:
3283 			if (optlen != TCPOLEN_MAXSEG)
3284 				continue;
3285 			if (!(flags & TO_SYN))
3286 				continue;
3287 			to->to_flags |= TOF_MSS;
3288 			bcopy((char *)cp + 2,
3289 			    (char *)&to->to_mss, sizeof(to->to_mss));
3290 			to->to_mss = ntohs(to->to_mss);
3291 			break;
3292 		case TCPOPT_WINDOW:
3293 			if (optlen != TCPOLEN_WINDOW)
3294 				continue;
3295 			if (!(flags & TO_SYN))
3296 				continue;
3297 			to->to_flags |= TOF_SCALE;
3298 			to->to_wscale = min(cp[2], TCP_MAX_WINSHIFT);
3299 			break;
3300 		case TCPOPT_TIMESTAMP:
3301 			if (optlen != TCPOLEN_TIMESTAMP)
3302 				continue;
3303 			to->to_flags |= TOF_TS;
3304 			bcopy((char *)cp + 2,
3305 			    (char *)&to->to_tsval, sizeof(to->to_tsval));
3306 			to->to_tsval = ntohl(to->to_tsval);
3307 			bcopy((char *)cp + 6,
3308 			    (char *)&to->to_tsecr, sizeof(to->to_tsecr));
3309 			to->to_tsecr = ntohl(to->to_tsecr);
3310 			break;
3311 		case TCPOPT_SIGNATURE:
3312 			/*
3313 			 * In order to reply to a host which has set the
3314 			 * TCP_SIGNATURE option in its initial SYN, we have
3315 			 * to record the fact that the option was observed
3316 			 * here for the syncache code to perform the correct
3317 			 * response.
3318 			 */
3319 			if (optlen != TCPOLEN_SIGNATURE)
3320 				continue;
3321 			to->to_flags |= TOF_SIGNATURE;
3322 			to->to_signature = cp + 2;
3323 			break;
3324 		case TCPOPT_SACK_PERMITTED:
3325 			if (optlen != TCPOLEN_SACK_PERMITTED)
3326 				continue;
3327 			if (!(flags & TO_SYN))
3328 				continue;
3329 			if (!V_tcp_do_sack)
3330 				continue;
3331 			to->to_flags |= TOF_SACKPERM;
3332 			break;
3333 		case TCPOPT_SACK:
3334 			if (optlen <= 2 || (optlen - 2) % TCPOLEN_SACK != 0)
3335 				continue;
3336 			if (flags & TO_SYN)
3337 				continue;
3338 			to->to_flags |= TOF_SACK;
3339 			to->to_nsacks = (optlen - 2) / TCPOLEN_SACK;
3340 			to->to_sacks = cp + 2;
3341 			TCPSTAT_INC(tcps_sack_rcv_blocks);
3342 			break;
3343 		case TCPOPT_FAST_OPEN:
3344 			/*
3345 			 * Cookie length validation is performed by the
3346 			 * server side cookie checking code or the client
3347 			 * side cookie cache update code.
3348 			 */
3349 			if (!(flags & TO_SYN))
3350 				continue;
3351 			if (!V_tcp_fastopen_client_enable &&
3352 			    !V_tcp_fastopen_server_enable)
3353 				continue;
3354 			to->to_flags |= TOF_FASTOPEN;
3355 			to->to_tfo_len = optlen - 2;
3356 			to->to_tfo_cookie = to->to_tfo_len ? cp + 2 : NULL;
3357 			break;
3358 		default:
3359 			continue;
3360 		}
3361 	}
3362 }
3363 
3364 /*
3365  * Pull out of band byte out of a segment so
3366  * it doesn't appear in the user's data queue.
3367  * It is still reflected in the segment length for
3368  * sequencing purposes.
3369  */
3370 void
3371 tcp_pulloutofband(struct socket *so, struct tcphdr *th, struct mbuf *m,
3372     int off)
3373 {
3374 	int cnt = off + th->th_urp - 1;
3375 
3376 	while (cnt >= 0) {
3377 		if (m->m_len > cnt) {
3378 			char *cp = mtod(m, caddr_t) + cnt;
3379 			struct tcpcb *tp = sototcpcb(so);
3380 
3381 			INP_WLOCK_ASSERT(tp->t_inpcb);
3382 
3383 			tp->t_iobc = *cp;
3384 			tp->t_oobflags |= TCPOOB_HAVEDATA;
3385 			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
3386 			m->m_len--;
3387 			if (m->m_flags & M_PKTHDR)
3388 				m->m_pkthdr.len--;
3389 			return;
3390 		}
3391 		cnt -= m->m_len;
3392 		m = m->m_next;
3393 		if (m == NULL)
3394 			break;
3395 	}
3396 	panic("tcp_pulloutofband");
3397 }
3398 
3399 /*
3400  * Collect new round-trip time estimate
3401  * and update averages and current timeout.
3402  */
3403 void
3404 tcp_xmit_timer(struct tcpcb *tp, int rtt)
3405 {
3406 	int delta;
3407 
3408 	INP_WLOCK_ASSERT(tp->t_inpcb);
3409 
3410 	TCPSTAT_INC(tcps_rttupdated);
3411 	tp->t_rttupdated++;
3412 #ifdef STATS
3413 	stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_RTT,
3414 	    imax(0, rtt * 1000 / hz));
3415 #endif
3416 	if ((tp->t_srtt != 0) && (tp->t_rxtshift <= TCP_RTT_INVALIDATE)) {
3417 		/*
3418 		 * srtt is stored as fixed point with 5 bits after the
3419 		 * binary point (i.e., scaled by 8).  The following magic
3420 		 * is equivalent to the smoothing algorithm in rfc793 with
3421 		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
3422 		 * point).  Adjust rtt to origin 0.
3423 		 */
3424 		delta = ((rtt - 1) << TCP_DELTA_SHIFT)
3425 			- (tp->t_srtt >> (TCP_RTT_SHIFT - TCP_DELTA_SHIFT));
3426 
3427 		if ((tp->t_srtt += delta) <= 0)
3428 			tp->t_srtt = 1;
3429 
3430 		/*
3431 		 * We accumulate a smoothed rtt variance (actually, a
3432 		 * smoothed mean difference), then set the retransmit
3433 		 * timer to smoothed rtt + 4 times the smoothed variance.
3434 		 * rttvar is stored as fixed point with 4 bits after the
3435 		 * binary point (scaled by 16).  The following is
3436 		 * equivalent to rfc793 smoothing with an alpha of .75
3437 		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
3438 		 * rfc793's wired-in beta.
3439 		 */
3440 		if (delta < 0)
3441 			delta = -delta;
3442 		delta -= tp->t_rttvar >> (TCP_RTTVAR_SHIFT - TCP_DELTA_SHIFT);
3443 		if ((tp->t_rttvar += delta) <= 0)
3444 			tp->t_rttvar = 1;
3445 		if (tp->t_rttbest > tp->t_srtt + tp->t_rttvar)
3446 		    tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
3447 	} else {
3448 		/*
3449 		 * No rtt measurement yet - use the unsmoothed rtt.
3450 		 * Set the variance to half the rtt (so our first
3451 		 * retransmit happens at 3*rtt).
3452 		 */
3453 		tp->t_srtt = rtt << TCP_RTT_SHIFT;
3454 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1);
3455 		tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
3456 	}
3457 	tp->t_rtttime = 0;
3458 	tp->t_rxtshift = 0;
3459 
3460 	/*
3461 	 * the retransmit should happen at rtt + 4 * rttvar.
3462 	 * Because of the way we do the smoothing, srtt and rttvar
3463 	 * will each average +1/2 tick of bias.  When we compute
3464 	 * the retransmit timer, we want 1/2 tick of rounding and
3465 	 * 1 extra tick because of +-1/2 tick uncertainty in the
3466 	 * firing of the timer.  The bias will give us exactly the
3467 	 * 1.5 tick we need.  But, because the bias is
3468 	 * statistical, we have to test that we don't drop below
3469 	 * the minimum feasible timer (which is 2 ticks).
3470 	 */
3471 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
3472 		      max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
3473 
3474 	/*
3475 	 * We received an ack for a packet that wasn't retransmitted;
3476 	 * it is probably safe to discard any error indications we've
3477 	 * received recently.  This isn't quite right, but close enough
3478 	 * for now (a route might have failed after we sent a segment,
3479 	 * and the return path might not be symmetrical).
3480 	 */
3481 	tp->t_softerror = 0;
3482 }
3483 
3484 /*
3485  * Determine a reasonable value for maxseg size.
3486  * If the route is known, check route for mtu.
3487  * If none, use an mss that can be handled on the outgoing interface
3488  * without forcing IP to fragment.  If no route is found, route has no mtu,
3489  * or the destination isn't local, use a default, hopefully conservative
3490  * size (usually 512 or the default IP max size, but no more than the mtu
3491  * of the interface), as we can't discover anything about intervening
3492  * gateways or networks.  We also initialize the congestion/slow start
3493  * window to be a single segment if the destination isn't local.
3494  * While looking at the routing entry, we also initialize other path-dependent
3495  * parameters from pre-set or cached values in the routing entry.
3496  *
3497  * NOTE that resulting t_maxseg doesn't include space for TCP options or
3498  * IP options, e.g. IPSEC data, since length of this data may vary, and
3499  * thus it is calculated for every segment separately in tcp_output().
3500  *
3501  * NOTE that this routine is only called when we process an incoming
3502  * segment, or an ICMP need fragmentation datagram. Outgoing SYN/ACK MSS
3503  * settings are handled in tcp_mssopt().
3504  */
3505 void
3506 tcp_mss_update(struct tcpcb *tp, int offer, int mtuoffer,
3507     struct hc_metrics_lite *metricptr, struct tcp_ifcap *cap)
3508 {
3509 	int mss = 0;
3510 	uint32_t maxmtu = 0;
3511 	struct inpcb *inp = tp->t_inpcb;
3512 	struct hc_metrics_lite metrics;
3513 #ifdef INET6
3514 	int isipv6 = ((inp->inp_vflag & INP_IPV6) != 0) ? 1 : 0;
3515 	size_t min_protoh = isipv6 ?
3516 			    sizeof (struct ip6_hdr) + sizeof (struct tcphdr) :
3517 			    sizeof (struct tcpiphdr);
3518 #else
3519 	const size_t min_protoh = sizeof(struct tcpiphdr);
3520 #endif
3521 
3522 	INP_WLOCK_ASSERT(tp->t_inpcb);
3523 
3524 	if (mtuoffer != -1) {
3525 		KASSERT(offer == -1, ("%s: conflict", __func__));
3526 		offer = mtuoffer - min_protoh;
3527 	}
3528 
3529 	/* Initialize. */
3530 #ifdef INET6
3531 	if (isipv6) {
3532 		maxmtu = tcp_maxmtu6(&inp->inp_inc, cap);
3533 		tp->t_maxseg = V_tcp_v6mssdflt;
3534 	}
3535 #endif
3536 #if defined(INET) && defined(INET6)
3537 	else
3538 #endif
3539 #ifdef INET
3540 	{
3541 		maxmtu = tcp_maxmtu(&inp->inp_inc, cap);
3542 		tp->t_maxseg = V_tcp_mssdflt;
3543 	}
3544 #endif
3545 
3546 	/*
3547 	 * No route to sender, stay with default mss and return.
3548 	 */
3549 	if (maxmtu == 0) {
3550 		/*
3551 		 * In case we return early we need to initialize metrics
3552 		 * to a defined state as tcp_hc_get() would do for us
3553 		 * if there was no cache hit.
3554 		 */
3555 		if (metricptr != NULL)
3556 			bzero(metricptr, sizeof(struct hc_metrics_lite));
3557 		return;
3558 	}
3559 
3560 	/* What have we got? */
3561 	switch (offer) {
3562 		case 0:
3563 			/*
3564 			 * Offer == 0 means that there was no MSS on the SYN
3565 			 * segment, in this case we use tcp_mssdflt as
3566 			 * already assigned to t_maxseg above.
3567 			 */
3568 			offer = tp->t_maxseg;
3569 			break;
3570 
3571 		case -1:
3572 			/*
3573 			 * Offer == -1 means that we didn't receive SYN yet.
3574 			 */
3575 			/* FALLTHROUGH */
3576 
3577 		default:
3578 			/*
3579 			 * Prevent DoS attack with too small MSS. Round up
3580 			 * to at least minmss.
3581 			 */
3582 			offer = max(offer, V_tcp_minmss);
3583 	}
3584 
3585 	/*
3586 	 * rmx information is now retrieved from tcp_hostcache.
3587 	 */
3588 	tcp_hc_get(&inp->inp_inc, &metrics);
3589 	if (metricptr != NULL)
3590 		bcopy(&metrics, metricptr, sizeof(struct hc_metrics_lite));
3591 
3592 	/*
3593 	 * If there's a discovered mtu in tcp hostcache, use it.
3594 	 * Else, use the link mtu.
3595 	 */
3596 	if (metrics.rmx_mtu)
3597 		mss = min(metrics.rmx_mtu, maxmtu) - min_protoh;
3598 	else {
3599 #ifdef INET6
3600 		if (isipv6) {
3601 			mss = maxmtu - min_protoh;
3602 			if (!V_path_mtu_discovery &&
3603 			    !in6_localaddr(&inp->in6p_faddr))
3604 				mss = min(mss, V_tcp_v6mssdflt);
3605 		}
3606 #endif
3607 #if defined(INET) && defined(INET6)
3608 		else
3609 #endif
3610 #ifdef INET
3611 		{
3612 			mss = maxmtu - min_protoh;
3613 			if (!V_path_mtu_discovery &&
3614 			    !in_localaddr(inp->inp_faddr))
3615 				mss = min(mss, V_tcp_mssdflt);
3616 		}
3617 #endif
3618 		/*
3619 		 * XXX - The above conditional (mss = maxmtu - min_protoh)
3620 		 * probably violates the TCP spec.
3621 		 * The problem is that, since we don't know the
3622 		 * other end's MSS, we are supposed to use a conservative
3623 		 * default.  But, if we do that, then MTU discovery will
3624 		 * never actually take place, because the conservative
3625 		 * default is much less than the MTUs typically seen
3626 		 * on the Internet today.  For the moment, we'll sweep
3627 		 * this under the carpet.
3628 		 *
3629 		 * The conservative default might not actually be a problem
3630 		 * if the only case this occurs is when sending an initial
3631 		 * SYN with options and data to a host we've never talked
3632 		 * to before.  Then, they will reply with an MSS value which
3633 		 * will get recorded and the new parameters should get
3634 		 * recomputed.  For Further Study.
3635 		 */
3636 	}
3637 	mss = min(mss, offer);
3638 
3639 	/*
3640 	 * Sanity check: make sure that maxseg will be large
3641 	 * enough to allow some data on segments even if the
3642 	 * all the option space is used (40bytes).  Otherwise
3643 	 * funny things may happen in tcp_output.
3644 	 *
3645 	 * XXXGL: shouldn't we reserve space for IP/IPv6 options?
3646 	 */
3647 	mss = max(mss, 64);
3648 
3649 	tp->t_maxseg = mss;
3650 }
3651 
3652 void
3653 tcp_mss(struct tcpcb *tp, int offer)
3654 {
3655 	int mss;
3656 	uint32_t bufsize;
3657 	struct inpcb *inp;
3658 	struct socket *so;
3659 	struct hc_metrics_lite metrics;
3660 	struct tcp_ifcap cap;
3661 
3662 	KASSERT(tp != NULL, ("%s: tp == NULL", __func__));
3663 
3664 	bzero(&cap, sizeof(cap));
3665 	tcp_mss_update(tp, offer, -1, &metrics, &cap);
3666 
3667 	mss = tp->t_maxseg;
3668 	inp = tp->t_inpcb;
3669 
3670 	/*
3671 	 * If there's a pipesize, change the socket buffer to that size,
3672 	 * don't change if sb_hiwat is different than default (then it
3673 	 * has been changed on purpose with setsockopt).
3674 	 * Make the socket buffers an integral number of mss units;
3675 	 * if the mss is larger than the socket buffer, decrease the mss.
3676 	 */
3677 	so = inp->inp_socket;
3678 	SOCKBUF_LOCK(&so->so_snd);
3679 	if ((so->so_snd.sb_hiwat == V_tcp_sendspace) && metrics.rmx_sendpipe)
3680 		bufsize = metrics.rmx_sendpipe;
3681 	else
3682 		bufsize = so->so_snd.sb_hiwat;
3683 	if (bufsize < mss)
3684 		mss = bufsize;
3685 	else {
3686 		bufsize = roundup(bufsize, mss);
3687 		if (bufsize > sb_max)
3688 			bufsize = sb_max;
3689 		if (bufsize > so->so_snd.sb_hiwat)
3690 			(void)sbreserve_locked(&so->so_snd, bufsize, so, NULL);
3691 	}
3692 	SOCKBUF_UNLOCK(&so->so_snd);
3693 	/*
3694 	 * Sanity check: make sure that maxseg will be large
3695 	 * enough to allow some data on segments even if the
3696 	 * all the option space is used (40bytes).  Otherwise
3697 	 * funny things may happen in tcp_output.
3698 	 *
3699 	 * XXXGL: shouldn't we reserve space for IP/IPv6 options?
3700 	 */
3701 	tp->t_maxseg = max(mss, 64);
3702 
3703 	SOCKBUF_LOCK(&so->so_rcv);
3704 	if ((so->so_rcv.sb_hiwat == V_tcp_recvspace) && metrics.rmx_recvpipe)
3705 		bufsize = metrics.rmx_recvpipe;
3706 	else
3707 		bufsize = so->so_rcv.sb_hiwat;
3708 	if (bufsize > mss) {
3709 		bufsize = roundup(bufsize, mss);
3710 		if (bufsize > sb_max)
3711 			bufsize = sb_max;
3712 		if (bufsize > so->so_rcv.sb_hiwat)
3713 			(void)sbreserve_locked(&so->so_rcv, bufsize, so, NULL);
3714 	}
3715 	SOCKBUF_UNLOCK(&so->so_rcv);
3716 
3717 	/* Check the interface for TSO capabilities. */
3718 	if (cap.ifcap & CSUM_TSO) {
3719 		tp->t_flags |= TF_TSO;
3720 		tp->t_tsomax = cap.tsomax;
3721 		tp->t_tsomaxsegcount = cap.tsomaxsegcount;
3722 		tp->t_tsomaxsegsize = cap.tsomaxsegsize;
3723 	}
3724 }
3725 
3726 /*
3727  * Determine the MSS option to send on an outgoing SYN.
3728  */
3729 int
3730 tcp_mssopt(struct in_conninfo *inc)
3731 {
3732 	int mss = 0;
3733 	uint32_t thcmtu = 0;
3734 	uint32_t maxmtu = 0;
3735 	size_t min_protoh;
3736 
3737 	KASSERT(inc != NULL, ("tcp_mssopt with NULL in_conninfo pointer"));
3738 
3739 #ifdef INET6
3740 	if (inc->inc_flags & INC_ISIPV6) {
3741 		mss = V_tcp_v6mssdflt;
3742 		maxmtu = tcp_maxmtu6(inc, NULL);
3743 		min_protoh = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
3744 	}
3745 #endif
3746 #if defined(INET) && defined(INET6)
3747 	else
3748 #endif
3749 #ifdef INET
3750 	{
3751 		mss = V_tcp_mssdflt;
3752 		maxmtu = tcp_maxmtu(inc, NULL);
3753 		min_protoh = sizeof(struct tcpiphdr);
3754 	}
3755 #endif
3756 #if defined(INET6) || defined(INET)
3757 	thcmtu = tcp_hc_getmtu(inc); /* IPv4 and IPv6 */
3758 #endif
3759 
3760 	if (maxmtu && thcmtu)
3761 		mss = min(maxmtu, thcmtu) - min_protoh;
3762 	else if (maxmtu || thcmtu)
3763 		mss = max(maxmtu, thcmtu) - min_protoh;
3764 
3765 	return (mss);
3766 }
3767 
3768 
3769 /*
3770  * On a partial ack arrives, force the retransmission of the
3771  * next unacknowledged segment.  Do not clear tp->t_dupacks.
3772  * By setting snd_nxt to ti_ack, this forces retransmission timer to
3773  * be started again.
3774  */
3775 void
3776 tcp_newreno_partial_ack(struct tcpcb *tp, struct tcphdr *th)
3777 {
3778 	tcp_seq onxt = tp->snd_nxt;
3779 	uint32_t ocwnd = tp->snd_cwnd;
3780 	u_int maxseg = tcp_maxseg(tp);
3781 
3782 	INP_WLOCK_ASSERT(tp->t_inpcb);
3783 
3784 	tcp_timer_activate(tp, TT_REXMT, 0);
3785 	tp->t_rtttime = 0;
3786 	tp->snd_nxt = th->th_ack;
3787 	/*
3788 	 * Set snd_cwnd to one segment beyond acknowledged offset.
3789 	 * (tp->snd_una has not yet been updated when this function is called.)
3790 	 */
3791 	tp->snd_cwnd = maxseg + BYTES_THIS_ACK(tp, th);
3792 	tp->t_flags |= TF_ACKNOW;
3793 	(void) tp->t_fb->tfb_tcp_output(tp);
3794 	tp->snd_cwnd = ocwnd;
3795 	if (SEQ_GT(onxt, tp->snd_nxt))
3796 		tp->snd_nxt = onxt;
3797 	/*
3798 	 * Partial window deflation.  Relies on fact that tp->snd_una
3799 	 * not updated yet.
3800 	 */
3801 	if (tp->snd_cwnd > BYTES_THIS_ACK(tp, th))
3802 		tp->snd_cwnd -= BYTES_THIS_ACK(tp, th);
3803 	else
3804 		tp->snd_cwnd = 0;
3805 	tp->snd_cwnd += maxseg;
3806 }
3807 
3808 int
3809 tcp_compute_pipe(struct tcpcb *tp)
3810 {
3811 	return (tp->snd_max - tp->snd_una +
3812 		tp->sackhint.sack_bytes_rexmit -
3813 		tp->sackhint.sacked_bytes);
3814 }
3815 
3816 uint32_t
3817 tcp_compute_initwnd(uint32_t maxseg)
3818 {
3819 	/*
3820 	 * Calculate the Initial Window, also used as Restart Window
3821 	 *
3822 	 * RFC5681 Section 3.1 specifies the default conservative values.
3823 	 * RFC3390 specifies slightly more aggressive values.
3824 	 * RFC6928 increases it to ten segments.
3825 	 * Support for user specified value for initial flight size.
3826 	 */
3827 	if (V_tcp_initcwnd_segments)
3828 		return min(V_tcp_initcwnd_segments * maxseg,
3829 		    max(2 * maxseg, V_tcp_initcwnd_segments * 1460));
3830 	else if (V_tcp_do_rfc3390)
3831 		return min(4 * maxseg, max(2 * maxseg, 4380));
3832 	else {
3833 		/* Per RFC5681 Section 3.1 */
3834 		if (maxseg > 2190)
3835 			return (2 * maxseg);
3836 		else if (maxseg > 1095)
3837 			return (3 * maxseg);
3838 		else
3839 			return (4 * maxseg);
3840 	}
3841 }
3842