xref: /freebsd/sys/netinet/tcp_input.c (revision 110f229794b4b31ee0fd6568fda89002b26664c8)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
5  *	The Regents of the University of California.  All rights reserved.
6  * Copyright (c) 2007-2008,2010
7  *	Swinburne University of Technology, Melbourne, Australia.
8  * Copyright (c) 2009-2010 Lawrence Stewart <lstewart@freebsd.org>
9  * Copyright (c) 2010 The FreeBSD Foundation
10  * Copyright (c) 2010-2011 Juniper Networks, Inc.
11  * All rights reserved.
12  *
13  * Portions of this software were developed at the Centre for Advanced Internet
14  * Architectures, Swinburne University of Technology, by Lawrence Stewart,
15  * James Healy and David Hayes, made possible in part by a grant from the Cisco
16  * University Research Program Fund at Community Foundation Silicon Valley.
17  *
18  * Portions of this software were developed at the Centre for Advanced
19  * Internet Architectures, Swinburne University of Technology, Melbourne,
20  * Australia by David Hayes under sponsorship from the FreeBSD Foundation.
21  *
22  * Portions of this software were developed by Robert N. M. Watson under
23  * contract to Juniper Networks, Inc.
24  *
25  * Redistribution and use in source and binary forms, with or without
26  * modification, are permitted provided that the following conditions
27  * are met:
28  * 1. Redistributions of source code must retain the above copyright
29  *    notice, this list of conditions and the following disclaimer.
30  * 2. Redistributions in binary form must reproduce the above copyright
31  *    notice, this list of conditions and the following disclaimer in the
32  *    documentation and/or other materials provided with the distribution.
33  * 3. Neither the name of the University nor the names of its contributors
34  *    may be used to endorse or promote products derived from this software
35  *    without specific prior written permission.
36  *
37  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
38  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
39  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
40  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
41  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
42  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
43  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
45  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
46  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
47  * SUCH DAMAGE.
48  *
49  *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
50  */
51 
52 #include <sys/cdefs.h>
53 __FBSDID("$FreeBSD$");
54 
55 #include "opt_inet.h"
56 #include "opt_inet6.h"
57 #include "opt_ipsec.h"
58 #include "opt_tcpdebug.h"
59 
60 #include <sys/param.h>
61 #include <sys/kernel.h>
62 #ifdef TCP_HHOOK
63 #include <sys/hhook.h>
64 #endif
65 #include <sys/malloc.h>
66 #include <sys/mbuf.h>
67 #include <sys/proc.h>		/* for proc0 declaration */
68 #include <sys/protosw.h>
69 #include <sys/sdt.h>
70 #include <sys/signalvar.h>
71 #include <sys/socket.h>
72 #include <sys/socketvar.h>
73 #include <sys/sysctl.h>
74 #include <sys/syslog.h>
75 #include <sys/systm.h>
76 
77 #include <machine/cpu.h>	/* before tcp_seq.h, for tcp_random18() */
78 
79 #include <vm/uma.h>
80 
81 #include <net/if.h>
82 #include <net/if_var.h>
83 #include <net/route.h>
84 #include <net/vnet.h>
85 
86 #define TCPSTATES		/* for logging */
87 
88 #include <netinet/in.h>
89 #include <netinet/in_kdtrace.h>
90 #include <netinet/in_pcb.h>
91 #include <netinet/in_systm.h>
92 #include <netinet/ip.h>
93 #include <netinet/ip_icmp.h>	/* required for icmp_var.h */
94 #include <netinet/icmp_var.h>	/* for ICMP_BANDLIM */
95 #include <netinet/ip_var.h>
96 #include <netinet/ip_options.h>
97 #include <netinet/ip6.h>
98 #include <netinet/icmp6.h>
99 #include <netinet6/in6_pcb.h>
100 #include <netinet6/in6_var.h>
101 #include <netinet6/ip6_var.h>
102 #include <netinet6/nd6.h>
103 #include <netinet/tcp.h>
104 #include <netinet/tcp_fsm.h>
105 #include <netinet/tcp_log_buf.h>
106 #include <netinet/tcp_seq.h>
107 #include <netinet/tcp_timer.h>
108 #include <netinet/tcp_var.h>
109 #include <netinet6/tcp6_var.h>
110 #include <netinet/tcpip.h>
111 #include <netinet/cc/cc.h>
112 #include <netinet/tcp_fastopen.h>
113 #ifdef TCPPCAP
114 #include <netinet/tcp_pcap.h>
115 #endif
116 #include <netinet/tcp_syncache.h>
117 #ifdef TCPDEBUG
118 #include <netinet/tcp_debug.h>
119 #endif /* TCPDEBUG */
120 #ifdef TCP_OFFLOAD
121 #include <netinet/tcp_offload.h>
122 #endif
123 
124 #include <netipsec/ipsec_support.h>
125 
126 #include <machine/in_cksum.h>
127 
128 #include <security/mac/mac_framework.h>
129 
130 const int tcprexmtthresh = 3;
131 
132 int tcp_log_in_vain = 0;
133 SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_in_vain, CTLFLAG_RW,
134     &tcp_log_in_vain, 0,
135     "Log all incoming TCP segments to closed ports");
136 
137 VNET_DEFINE(int, blackhole) = 0;
138 #define	V_blackhole		VNET(blackhole)
139 SYSCTL_INT(_net_inet_tcp, OID_AUTO, blackhole, CTLFLAG_VNET | CTLFLAG_RW,
140     &VNET_NAME(blackhole), 0,
141     "Do not send RST on segments to closed ports");
142 
143 VNET_DEFINE(int, tcp_delack_enabled) = 1;
144 SYSCTL_INT(_net_inet_tcp, OID_AUTO, delayed_ack, CTLFLAG_VNET | CTLFLAG_RW,
145     &VNET_NAME(tcp_delack_enabled), 0,
146     "Delay ACK to try and piggyback it onto a data packet");
147 
148 VNET_DEFINE(int, drop_synfin) = 0;
149 SYSCTL_INT(_net_inet_tcp, OID_AUTO, drop_synfin, CTLFLAG_VNET | CTLFLAG_RW,
150     &VNET_NAME(drop_synfin), 0,
151     "Drop TCP packets with SYN+FIN set");
152 
153 VNET_DEFINE(int, tcp_do_rfc6675_pipe) = 0;
154 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc6675_pipe, CTLFLAG_VNET | CTLFLAG_RW,
155     &VNET_NAME(tcp_do_rfc6675_pipe), 0,
156     "Use calculated pipe/in-flight bytes per RFC 6675");
157 
158 VNET_DEFINE(int, tcp_do_rfc3042) = 1;
159 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3042, CTLFLAG_VNET | CTLFLAG_RW,
160     &VNET_NAME(tcp_do_rfc3042), 0,
161     "Enable RFC 3042 (Limited Transmit)");
162 
163 VNET_DEFINE(int, tcp_do_rfc3390) = 1;
164 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3390, CTLFLAG_VNET | CTLFLAG_RW,
165     &VNET_NAME(tcp_do_rfc3390), 0,
166     "Enable RFC 3390 (Increasing TCP's Initial Congestion Window)");
167 
168 VNET_DEFINE(int, tcp_initcwnd_segments) = 10;
169 SYSCTL_INT(_net_inet_tcp, OID_AUTO, initcwnd_segments,
170     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(tcp_initcwnd_segments), 0,
171     "Slow-start flight size (initial congestion window) in number of segments");
172 
173 VNET_DEFINE(int, tcp_do_rfc3465) = 1;
174 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3465, CTLFLAG_VNET | CTLFLAG_RW,
175     &VNET_NAME(tcp_do_rfc3465), 0,
176     "Enable RFC 3465 (Appropriate Byte Counting)");
177 
178 VNET_DEFINE(int, tcp_abc_l_var) = 2;
179 SYSCTL_INT(_net_inet_tcp, OID_AUTO, abc_l_var, CTLFLAG_VNET | CTLFLAG_RW,
180     &VNET_NAME(tcp_abc_l_var), 2,
181     "Cap the max cwnd increment during slow-start to this number of segments");
182 
183 static SYSCTL_NODE(_net_inet_tcp, OID_AUTO, ecn, CTLFLAG_RW, 0, "TCP ECN");
184 
185 VNET_DEFINE(int, tcp_do_ecn) = 2;
186 SYSCTL_INT(_net_inet_tcp_ecn, OID_AUTO, enable, CTLFLAG_VNET | CTLFLAG_RW,
187     &VNET_NAME(tcp_do_ecn), 0,
188     "TCP ECN support");
189 
190 VNET_DEFINE(int, tcp_ecn_maxretries) = 1;
191 SYSCTL_INT(_net_inet_tcp_ecn, OID_AUTO, maxretries, CTLFLAG_VNET | CTLFLAG_RW,
192     &VNET_NAME(tcp_ecn_maxretries), 0,
193     "Max retries before giving up on ECN");
194 
195 VNET_DEFINE(int, tcp_insecure_syn) = 0;
196 SYSCTL_INT(_net_inet_tcp, OID_AUTO, insecure_syn, CTLFLAG_VNET | CTLFLAG_RW,
197     &VNET_NAME(tcp_insecure_syn), 0,
198     "Follow RFC793 instead of RFC5961 criteria for accepting SYN packets");
199 
200 VNET_DEFINE(int, tcp_insecure_rst) = 0;
201 SYSCTL_INT(_net_inet_tcp, OID_AUTO, insecure_rst, CTLFLAG_VNET | CTLFLAG_RW,
202     &VNET_NAME(tcp_insecure_rst), 0,
203     "Follow RFC793 instead of RFC5961 criteria for accepting RST packets");
204 
205 VNET_DEFINE(int, tcp_recvspace) = 1024*64;
206 #define	V_tcp_recvspace	VNET(tcp_recvspace)
207 SYSCTL_INT(_net_inet_tcp, TCPCTL_RECVSPACE, recvspace, CTLFLAG_VNET | CTLFLAG_RW,
208     &VNET_NAME(tcp_recvspace), 0, "Initial receive socket buffer size");
209 
210 VNET_DEFINE(int, tcp_do_autorcvbuf) = 1;
211 SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbuf_auto, CTLFLAG_VNET | CTLFLAG_RW,
212     &VNET_NAME(tcp_do_autorcvbuf), 0,
213     "Enable automatic receive buffer sizing");
214 
215 VNET_DEFINE(int, tcp_autorcvbuf_max) = 2*1024*1024;
216 SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbuf_max, CTLFLAG_VNET | CTLFLAG_RW,
217     &VNET_NAME(tcp_autorcvbuf_max), 0,
218     "Max size of automatic receive buffer");
219 
220 VNET_DEFINE(struct inpcbhead, tcb);
221 #define	tcb6	tcb  /* for KAME src sync over BSD*'s */
222 VNET_DEFINE(struct inpcbinfo, tcbinfo);
223 
224 /*
225  * TCP statistics are stored in an array of counter(9)s, which size matches
226  * size of struct tcpstat.  TCP running connection count is a regular array.
227  */
228 VNET_PCPUSTAT_DEFINE(struct tcpstat, tcpstat);
229 SYSCTL_VNET_PCPUSTAT(_net_inet_tcp, TCPCTL_STATS, stats, struct tcpstat,
230     tcpstat, "TCP statistics (struct tcpstat, netinet/tcp_var.h)");
231 VNET_DEFINE(counter_u64_t, tcps_states[TCP_NSTATES]);
232 SYSCTL_COUNTER_U64_ARRAY(_net_inet_tcp, TCPCTL_STATES, states, CTLFLAG_RD |
233     CTLFLAG_VNET, &VNET_NAME(tcps_states)[0], TCP_NSTATES,
234     "TCP connection counts by TCP state");
235 
236 static void
237 tcp_vnet_init(const void *unused)
238 {
239 
240 	COUNTER_ARRAY_ALLOC(V_tcps_states, TCP_NSTATES, M_WAITOK);
241 	VNET_PCPUSTAT_ALLOC(tcpstat, M_WAITOK);
242 }
243 VNET_SYSINIT(tcp_vnet_init, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_ANY,
244     tcp_vnet_init, NULL);
245 
246 #ifdef VIMAGE
247 static void
248 tcp_vnet_uninit(const void *unused)
249 {
250 
251 	COUNTER_ARRAY_FREE(V_tcps_states, TCP_NSTATES);
252 	VNET_PCPUSTAT_FREE(tcpstat);
253 }
254 VNET_SYSUNINIT(tcp_vnet_uninit, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_ANY,
255     tcp_vnet_uninit, NULL);
256 #endif /* VIMAGE */
257 
258 /*
259  * Kernel module interface for updating tcpstat.  The argument is an index
260  * into tcpstat treated as an array.
261  */
262 void
263 kmod_tcpstat_inc(int statnum)
264 {
265 
266 	counter_u64_add(VNET(tcpstat)[statnum], 1);
267 }
268 
269 #ifdef TCP_HHOOK
270 /*
271  * Wrapper for the TCP established input helper hook.
272  */
273 void
274 hhook_run_tcp_est_in(struct tcpcb *tp, struct tcphdr *th, struct tcpopt *to)
275 {
276 	struct tcp_hhook_data hhook_data;
277 
278 	if (V_tcp_hhh[HHOOK_TCP_EST_IN]->hhh_nhooks > 0) {
279 		hhook_data.tp = tp;
280 		hhook_data.th = th;
281 		hhook_data.to = to;
282 
283 		hhook_run_hooks(V_tcp_hhh[HHOOK_TCP_EST_IN], &hhook_data,
284 		    tp->osd);
285 	}
286 }
287 #endif
288 
289 /*
290  * CC wrapper hook functions
291  */
292 void
293 cc_ack_received(struct tcpcb *tp, struct tcphdr *th, uint16_t nsegs,
294     uint16_t type)
295 {
296 	INP_WLOCK_ASSERT(tp->t_inpcb);
297 
298 	tp->ccv->nsegs = nsegs;
299 	tp->ccv->bytes_this_ack = BYTES_THIS_ACK(tp, th);
300 	if (tp->snd_cwnd <= tp->snd_wnd)
301 		tp->ccv->flags |= CCF_CWND_LIMITED;
302 	else
303 		tp->ccv->flags &= ~CCF_CWND_LIMITED;
304 
305 	if (type == CC_ACK) {
306 		if (tp->snd_cwnd > tp->snd_ssthresh) {
307 			tp->t_bytes_acked += min(tp->ccv->bytes_this_ack,
308 			     nsegs * V_tcp_abc_l_var * tcp_maxseg(tp));
309 			if (tp->t_bytes_acked >= tp->snd_cwnd) {
310 				tp->t_bytes_acked -= tp->snd_cwnd;
311 				tp->ccv->flags |= CCF_ABC_SENTAWND;
312 			}
313 		} else {
314 				tp->ccv->flags &= ~CCF_ABC_SENTAWND;
315 				tp->t_bytes_acked = 0;
316 		}
317 	}
318 
319 	if (CC_ALGO(tp)->ack_received != NULL) {
320 		/* XXXLAS: Find a way to live without this */
321 		tp->ccv->curack = th->th_ack;
322 		CC_ALGO(tp)->ack_received(tp->ccv, type);
323 	}
324 }
325 
326 void
327 cc_conn_init(struct tcpcb *tp)
328 {
329 	struct hc_metrics_lite metrics;
330 	struct inpcb *inp = tp->t_inpcb;
331 	u_int maxseg;
332 	int rtt;
333 
334 	INP_WLOCK_ASSERT(tp->t_inpcb);
335 
336 	tcp_hc_get(&inp->inp_inc, &metrics);
337 	maxseg = tcp_maxseg(tp);
338 
339 	if (tp->t_srtt == 0 && (rtt = metrics.rmx_rtt)) {
340 		tp->t_srtt = rtt;
341 		tp->t_rttbest = tp->t_srtt + TCP_RTT_SCALE;
342 		TCPSTAT_INC(tcps_usedrtt);
343 		if (metrics.rmx_rttvar) {
344 			tp->t_rttvar = metrics.rmx_rttvar;
345 			TCPSTAT_INC(tcps_usedrttvar);
346 		} else {
347 			/* default variation is +- 1 rtt */
348 			tp->t_rttvar =
349 			    tp->t_srtt * TCP_RTTVAR_SCALE / TCP_RTT_SCALE;
350 		}
351 		TCPT_RANGESET(tp->t_rxtcur,
352 		    ((tp->t_srtt >> 2) + tp->t_rttvar) >> 1,
353 		    tp->t_rttmin, TCPTV_REXMTMAX);
354 	}
355 	if (metrics.rmx_ssthresh) {
356 		/*
357 		 * There's some sort of gateway or interface
358 		 * buffer limit on the path.  Use this to set
359 		 * the slow start threshold, but set the
360 		 * threshold to no less than 2*mss.
361 		 */
362 		tp->snd_ssthresh = max(2 * maxseg, metrics.rmx_ssthresh);
363 		TCPSTAT_INC(tcps_usedssthresh);
364 	}
365 
366 	/*
367 	 * Set the initial slow-start flight size.
368 	 *
369 	 * If a SYN or SYN/ACK was lost and retransmitted, we have to
370 	 * reduce the initial CWND to one segment as congestion is likely
371 	 * requiring us to be cautious.
372 	 */
373 	if (tp->snd_cwnd == 1)
374 		tp->snd_cwnd = maxseg;		/* SYN(-ACK) lost */
375 	else
376 		tp->snd_cwnd = tcp_compute_initwnd(maxseg);
377 
378 	if (CC_ALGO(tp)->conn_init != NULL)
379 		CC_ALGO(tp)->conn_init(tp->ccv);
380 }
381 
382 void inline
383 cc_cong_signal(struct tcpcb *tp, struct tcphdr *th, uint32_t type)
384 {
385 	u_int maxseg;
386 
387 	INP_WLOCK_ASSERT(tp->t_inpcb);
388 
389 	switch(type) {
390 	case CC_NDUPACK:
391 		if (!IN_FASTRECOVERY(tp->t_flags)) {
392 			tp->snd_recover = tp->snd_max;
393 			if (tp->t_flags & TF_ECN_PERMIT)
394 				tp->t_flags |= TF_ECN_SND_CWR;
395 		}
396 		break;
397 	case CC_ECN:
398 		if (!IN_CONGRECOVERY(tp->t_flags)) {
399 			TCPSTAT_INC(tcps_ecn_rcwnd);
400 			tp->snd_recover = tp->snd_max;
401 			if (tp->t_flags & TF_ECN_PERMIT)
402 				tp->t_flags |= TF_ECN_SND_CWR;
403 		}
404 		break;
405 	case CC_RTO:
406 		maxseg = tcp_maxseg(tp);
407 		tp->t_dupacks = 0;
408 		tp->t_bytes_acked = 0;
409 		EXIT_RECOVERY(tp->t_flags);
410 		tp->snd_ssthresh = max(2, min(tp->snd_wnd, tp->snd_cwnd) / 2 /
411 		    maxseg) * maxseg;
412 		tp->snd_cwnd = maxseg;
413 		break;
414 	case CC_RTO_ERR:
415 		TCPSTAT_INC(tcps_sndrexmitbad);
416 		/* RTO was unnecessary, so reset everything. */
417 		tp->snd_cwnd = tp->snd_cwnd_prev;
418 		tp->snd_ssthresh = tp->snd_ssthresh_prev;
419 		tp->snd_recover = tp->snd_recover_prev;
420 		if (tp->t_flags & TF_WASFRECOVERY)
421 			ENTER_FASTRECOVERY(tp->t_flags);
422 		if (tp->t_flags & TF_WASCRECOVERY)
423 			ENTER_CONGRECOVERY(tp->t_flags);
424 		tp->snd_nxt = tp->snd_max;
425 		tp->t_flags &= ~TF_PREVVALID;
426 		tp->t_badrxtwin = 0;
427 		break;
428 	}
429 
430 	if (CC_ALGO(tp)->cong_signal != NULL) {
431 		if (th != NULL)
432 			tp->ccv->curack = th->th_ack;
433 		CC_ALGO(tp)->cong_signal(tp->ccv, type);
434 	}
435 }
436 
437 void inline
438 cc_post_recovery(struct tcpcb *tp, struct tcphdr *th)
439 {
440 	INP_WLOCK_ASSERT(tp->t_inpcb);
441 
442 	/* XXXLAS: KASSERT that we're in recovery? */
443 
444 	if (CC_ALGO(tp)->post_recovery != NULL) {
445 		tp->ccv->curack = th->th_ack;
446 		CC_ALGO(tp)->post_recovery(tp->ccv);
447 	}
448 	/* XXXLAS: EXIT_RECOVERY ? */
449 	tp->t_bytes_acked = 0;
450 }
451 
452 /*
453  * Indicate whether this ack should be delayed.  We can delay the ack if
454  * following conditions are met:
455  *	- There is no delayed ack timer in progress.
456  *	- Our last ack wasn't a 0-sized window. We never want to delay
457  *	  the ack that opens up a 0-sized window.
458  *	- LRO wasn't used for this segment. We make sure by checking that the
459  *	  segment size is not larger than the MSS.
460  */
461 #define DELAY_ACK(tp, tlen)						\
462 	((!tcp_timer_active(tp, TT_DELACK) &&				\
463 	    (tp->t_flags & TF_RXWIN0SENT) == 0) &&			\
464 	    (tlen <= tp->t_maxseg) &&					\
465 	    (V_tcp_delack_enabled || (tp->t_flags & TF_NEEDSYN)))
466 
467 static void inline
468 cc_ecnpkt_handler(struct tcpcb *tp, struct tcphdr *th, uint8_t iptos)
469 {
470 	INP_WLOCK_ASSERT(tp->t_inpcb);
471 
472 	if (CC_ALGO(tp)->ecnpkt_handler != NULL) {
473 		switch (iptos & IPTOS_ECN_MASK) {
474 		case IPTOS_ECN_CE:
475 		    tp->ccv->flags |= CCF_IPHDR_CE;
476 		    break;
477 		case IPTOS_ECN_ECT0:
478 		    tp->ccv->flags &= ~CCF_IPHDR_CE;
479 		    break;
480 		case IPTOS_ECN_ECT1:
481 		    tp->ccv->flags &= ~CCF_IPHDR_CE;
482 		    break;
483 		}
484 
485 		if (th->th_flags & TH_CWR)
486 			tp->ccv->flags |= CCF_TCPHDR_CWR;
487 		else
488 			tp->ccv->flags &= ~CCF_TCPHDR_CWR;
489 
490 		if (tp->t_flags & TF_DELACK)
491 			tp->ccv->flags |= CCF_DELACK;
492 		else
493 			tp->ccv->flags &= ~CCF_DELACK;
494 
495 		CC_ALGO(tp)->ecnpkt_handler(tp->ccv);
496 
497 		if (tp->ccv->flags & CCF_ACKNOW)
498 			tcp_timer_activate(tp, TT_DELACK, tcp_delacktime);
499 	}
500 }
501 
502 /*
503  * TCP input handling is split into multiple parts:
504  *   tcp6_input is a thin wrapper around tcp_input for the extended
505  *	ip6_protox[] call format in ip6_input
506  *   tcp_input handles primary segment validation, inpcb lookup and
507  *	SYN processing on listen sockets
508  *   tcp_do_segment processes the ACK and text of the segment for
509  *	establishing, established and closing connections
510  */
511 #ifdef INET6
512 int
513 tcp6_input(struct mbuf **mp, int *offp, int proto)
514 {
515 	struct mbuf *m = *mp;
516 	struct in6_ifaddr *ia6;
517 	struct ip6_hdr *ip6;
518 
519 	IP6_EXTHDR_CHECK(m, *offp, sizeof(struct tcphdr), IPPROTO_DONE);
520 
521 	/*
522 	 * draft-itojun-ipv6-tcp-to-anycast
523 	 * better place to put this in?
524 	 */
525 	ip6 = mtod(m, struct ip6_hdr *);
526 	ia6 = in6ifa_ifwithaddr(&ip6->ip6_dst, 0 /* XXX */);
527 	if (ia6 && (ia6->ia6_flags & IN6_IFF_ANYCAST)) {
528 		struct ip6_hdr *ip6;
529 
530 		ifa_free(&ia6->ia_ifa);
531 		ip6 = mtod(m, struct ip6_hdr *);
532 		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
533 			    (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
534 		return (IPPROTO_DONE);
535 	}
536 	if (ia6)
537 		ifa_free(&ia6->ia_ifa);
538 
539 	return (tcp_input(mp, offp, proto));
540 }
541 #endif /* INET6 */
542 
543 int
544 tcp_input(struct mbuf **mp, int *offp, int proto)
545 {
546 	struct mbuf *m = *mp;
547 	struct tcphdr *th = NULL;
548 	struct ip *ip = NULL;
549 	struct inpcb *inp = NULL;
550 	struct tcpcb *tp = NULL;
551 	struct socket *so = NULL;
552 	u_char *optp = NULL;
553 	int off0;
554 	int optlen = 0;
555 #ifdef INET
556 	int len;
557 	uint8_t ipttl;
558 #endif
559 	int tlen = 0, off;
560 	int drop_hdrlen;
561 	int thflags;
562 	int rstreason = 0;	/* For badport_bandlim accounting purposes */
563 	uint8_t iptos;
564 	struct m_tag *fwd_tag = NULL;
565 	struct epoch_tracker et;
566 #ifdef INET6
567 	struct ip6_hdr *ip6 = NULL;
568 	int isipv6;
569 #else
570 	const void *ip6 = NULL;
571 #endif /* INET6 */
572 	struct tcpopt to;		/* options in this segment */
573 	char *s = NULL;			/* address and port logging */
574 	int ti_locked;
575 #ifdef TCPDEBUG
576 	/*
577 	 * The size of tcp_saveipgen must be the size of the max ip header,
578 	 * now IPv6.
579 	 */
580 	u_char tcp_saveipgen[IP6_HDR_LEN];
581 	struct tcphdr tcp_savetcp;
582 	short ostate = 0;
583 #endif
584 
585 #ifdef INET6
586 	isipv6 = (mtod(m, struct ip *)->ip_v == 6) ? 1 : 0;
587 #endif
588 
589 	off0 = *offp;
590 	m = *mp;
591 	*mp = NULL;
592 	to.to_flags = 0;
593 	TCPSTAT_INC(tcps_rcvtotal);
594 
595 #ifdef INET6
596 	if (isipv6) {
597 		/* IP6_EXTHDR_CHECK() is already done at tcp6_input(). */
598 
599 		if (m->m_len < (sizeof(*ip6) + sizeof(*th))) {
600 			m = m_pullup(m, sizeof(*ip6) + sizeof(*th));
601 			if (m == NULL) {
602 				TCPSTAT_INC(tcps_rcvshort);
603 				return (IPPROTO_DONE);
604 			}
605 		}
606 
607 		ip6 = mtod(m, struct ip6_hdr *);
608 		th = (struct tcphdr *)((caddr_t)ip6 + off0);
609 		tlen = sizeof(*ip6) + ntohs(ip6->ip6_plen) - off0;
610 		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID_IPV6) {
611 			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
612 				th->th_sum = m->m_pkthdr.csum_data;
613 			else
614 				th->th_sum = in6_cksum_pseudo(ip6, tlen,
615 				    IPPROTO_TCP, m->m_pkthdr.csum_data);
616 			th->th_sum ^= 0xffff;
617 		} else
618 			th->th_sum = in6_cksum(m, IPPROTO_TCP, off0, tlen);
619 		if (th->th_sum) {
620 			TCPSTAT_INC(tcps_rcvbadsum);
621 			goto drop;
622 		}
623 
624 		/*
625 		 * Be proactive about unspecified IPv6 address in source.
626 		 * As we use all-zero to indicate unbounded/unconnected pcb,
627 		 * unspecified IPv6 address can be used to confuse us.
628 		 *
629 		 * Note that packets with unspecified IPv6 destination is
630 		 * already dropped in ip6_input.
631 		 */
632 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
633 			/* XXX stat */
634 			goto drop;
635 		}
636 		iptos = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
637 	}
638 #endif
639 #if defined(INET) && defined(INET6)
640 	else
641 #endif
642 #ifdef INET
643 	{
644 		/*
645 		 * Get IP and TCP header together in first mbuf.
646 		 * Note: IP leaves IP header in first mbuf.
647 		 */
648 		if (off0 > sizeof (struct ip)) {
649 			ip_stripoptions(m);
650 			off0 = sizeof(struct ip);
651 		}
652 		if (m->m_len < sizeof (struct tcpiphdr)) {
653 			if ((m = m_pullup(m, sizeof (struct tcpiphdr)))
654 			    == NULL) {
655 				TCPSTAT_INC(tcps_rcvshort);
656 				return (IPPROTO_DONE);
657 			}
658 		}
659 		ip = mtod(m, struct ip *);
660 		th = (struct tcphdr *)((caddr_t)ip + off0);
661 		tlen = ntohs(ip->ip_len) - off0;
662 
663 		iptos = ip->ip_tos;
664 		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
665 			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
666 				th->th_sum = m->m_pkthdr.csum_data;
667 			else
668 				th->th_sum = in_pseudo(ip->ip_src.s_addr,
669 				    ip->ip_dst.s_addr,
670 				    htonl(m->m_pkthdr.csum_data + tlen +
671 				    IPPROTO_TCP));
672 			th->th_sum ^= 0xffff;
673 		} else {
674 			struct ipovly *ipov = (struct ipovly *)ip;
675 
676 			/*
677 			 * Checksum extended TCP header and data.
678 			 */
679 			len = off0 + tlen;
680 			ipttl = ip->ip_ttl;
681 			bzero(ipov->ih_x1, sizeof(ipov->ih_x1));
682 			ipov->ih_len = htons(tlen);
683 			th->th_sum = in_cksum(m, len);
684 			/* Reset length for SDT probes. */
685 			ip->ip_len = htons(len);
686 			/* Reset TOS bits */
687 			ip->ip_tos = iptos;
688 			/* Re-initialization for later version check */
689 			ip->ip_ttl = ipttl;
690 			ip->ip_v = IPVERSION;
691 			ip->ip_hl = off0 >> 2;
692 		}
693 
694 		if (th->th_sum) {
695 			TCPSTAT_INC(tcps_rcvbadsum);
696 			goto drop;
697 		}
698 	}
699 #endif /* INET */
700 
701 	/*
702 	 * Check that TCP offset makes sense,
703 	 * pull out TCP options and adjust length.		XXX
704 	 */
705 	off = th->th_off << 2;
706 	if (off < sizeof (struct tcphdr) || off > tlen) {
707 		TCPSTAT_INC(tcps_rcvbadoff);
708 		goto drop;
709 	}
710 	tlen -= off;	/* tlen is used instead of ti->ti_len */
711 	if (off > sizeof (struct tcphdr)) {
712 #ifdef INET6
713 		if (isipv6) {
714 			IP6_EXTHDR_CHECK(m, off0, off, IPPROTO_DONE);
715 			ip6 = mtod(m, struct ip6_hdr *);
716 			th = (struct tcphdr *)((caddr_t)ip6 + off0);
717 		}
718 #endif
719 #if defined(INET) && defined(INET6)
720 		else
721 #endif
722 #ifdef INET
723 		{
724 			if (m->m_len < sizeof(struct ip) + off) {
725 				if ((m = m_pullup(m, sizeof (struct ip) + off))
726 				    == NULL) {
727 					TCPSTAT_INC(tcps_rcvshort);
728 					return (IPPROTO_DONE);
729 				}
730 				ip = mtod(m, struct ip *);
731 				th = (struct tcphdr *)((caddr_t)ip + off0);
732 			}
733 		}
734 #endif
735 		optlen = off - sizeof (struct tcphdr);
736 		optp = (u_char *)(th + 1);
737 	}
738 	thflags = th->th_flags;
739 
740 	/*
741 	 * Convert TCP protocol specific fields to host format.
742 	 */
743 	tcp_fields_to_host(th);
744 
745 	/*
746 	 * Delay dropping TCP, IP headers, IPv6 ext headers, and TCP options.
747 	 */
748 	drop_hdrlen = off0 + off;
749 
750 	/*
751 	 * Locate pcb for segment; if we're likely to add or remove a
752 	 * connection then first acquire pcbinfo lock.  There are three cases
753 	 * where we might discover later we need a write lock despite the
754 	 * flags: ACKs moving a connection out of the syncache, ACKs for a
755 	 * connection in TIMEWAIT and SYNs not targeting a listening socket.
756 	 */
757 	if ((thflags & (TH_FIN | TH_RST)) != 0) {
758 		INP_INFO_RLOCK_ET(&V_tcbinfo, et);
759 		ti_locked = TI_RLOCKED;
760 	} else
761 		ti_locked = TI_UNLOCKED;
762 
763 	/*
764 	 * Grab info from PACKET_TAG_IPFORWARD tag prepended to the chain.
765 	 */
766         if (
767 #ifdef INET6
768 	    (isipv6 && (m->m_flags & M_IP6_NEXTHOP))
769 #ifdef INET
770 	    || (!isipv6 && (m->m_flags & M_IP_NEXTHOP))
771 #endif
772 #endif
773 #if defined(INET) && !defined(INET6)
774 	    (m->m_flags & M_IP_NEXTHOP)
775 #endif
776 	    )
777 		fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
778 
779 findpcb:
780 #ifdef INVARIANTS
781 	if (ti_locked == TI_RLOCKED) {
782 		INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
783 	} else {
784 		INP_INFO_WUNLOCK_ASSERT(&V_tcbinfo);
785 	}
786 #endif
787 #ifdef INET6
788 	if (isipv6 && fwd_tag != NULL) {
789 		struct sockaddr_in6 *next_hop6;
790 
791 		next_hop6 = (struct sockaddr_in6 *)(fwd_tag + 1);
792 		/*
793 		 * Transparently forwarded. Pretend to be the destination.
794 		 * Already got one like this?
795 		 */
796 		inp = in6_pcblookup_mbuf(&V_tcbinfo,
797 		    &ip6->ip6_src, th->th_sport, &ip6->ip6_dst, th->th_dport,
798 		    INPLOOKUP_WLOCKPCB, m->m_pkthdr.rcvif, m);
799 		if (!inp) {
800 			/*
801 			 * It's new.  Try to find the ambushing socket.
802 			 * Because we've rewritten the destination address,
803 			 * any hardware-generated hash is ignored.
804 			 */
805 			inp = in6_pcblookup(&V_tcbinfo, &ip6->ip6_src,
806 			    th->th_sport, &next_hop6->sin6_addr,
807 			    next_hop6->sin6_port ? ntohs(next_hop6->sin6_port) :
808 			    th->th_dport, INPLOOKUP_WILDCARD |
809 			    INPLOOKUP_WLOCKPCB, m->m_pkthdr.rcvif);
810 		}
811 	} else if (isipv6) {
812 		inp = in6_pcblookup_mbuf(&V_tcbinfo, &ip6->ip6_src,
813 		    th->th_sport, &ip6->ip6_dst, th->th_dport,
814 		    INPLOOKUP_WILDCARD | INPLOOKUP_WLOCKPCB,
815 		    m->m_pkthdr.rcvif, m);
816 	}
817 #endif /* INET6 */
818 #if defined(INET6) && defined(INET)
819 	else
820 #endif
821 #ifdef INET
822 	if (fwd_tag != NULL) {
823 		struct sockaddr_in *next_hop;
824 
825 		next_hop = (struct sockaddr_in *)(fwd_tag+1);
826 		/*
827 		 * Transparently forwarded. Pretend to be the destination.
828 		 * already got one like this?
829 		 */
830 		inp = in_pcblookup_mbuf(&V_tcbinfo, ip->ip_src, th->th_sport,
831 		    ip->ip_dst, th->th_dport, INPLOOKUP_WLOCKPCB,
832 		    m->m_pkthdr.rcvif, m);
833 		if (!inp) {
834 			/*
835 			 * It's new.  Try to find the ambushing socket.
836 			 * Because we've rewritten the destination address,
837 			 * any hardware-generated hash is ignored.
838 			 */
839 			inp = in_pcblookup(&V_tcbinfo, ip->ip_src,
840 			    th->th_sport, next_hop->sin_addr,
841 			    next_hop->sin_port ? ntohs(next_hop->sin_port) :
842 			    th->th_dport, INPLOOKUP_WILDCARD |
843 			    INPLOOKUP_WLOCKPCB, m->m_pkthdr.rcvif);
844 		}
845 	} else
846 		inp = in_pcblookup_mbuf(&V_tcbinfo, ip->ip_src,
847 		    th->th_sport, ip->ip_dst, th->th_dport,
848 		    INPLOOKUP_WILDCARD | INPLOOKUP_WLOCKPCB,
849 		    m->m_pkthdr.rcvif, m);
850 #endif /* INET */
851 
852 	/*
853 	 * If the INPCB does not exist then all data in the incoming
854 	 * segment is discarded and an appropriate RST is sent back.
855 	 * XXX MRT Send RST using which routing table?
856 	 */
857 	if (inp == NULL) {
858 		/*
859 		 * Log communication attempts to ports that are not
860 		 * in use.
861 		 */
862 		if ((tcp_log_in_vain == 1 && (thflags & TH_SYN)) ||
863 		    tcp_log_in_vain == 2) {
864 			if ((s = tcp_log_vain(NULL, th, (void *)ip, ip6)))
865 				log(LOG_INFO, "%s; %s: Connection attempt "
866 				    "to closed port\n", s, __func__);
867 		}
868 		/*
869 		 * When blackholing do not respond with a RST but
870 		 * completely ignore the segment and drop it.
871 		 */
872 		if ((V_blackhole == 1 && (thflags & TH_SYN)) ||
873 		    V_blackhole == 2)
874 			goto dropunlock;
875 
876 		rstreason = BANDLIM_RST_CLOSEDPORT;
877 		goto dropwithreset;
878 	}
879 	INP_WLOCK_ASSERT(inp);
880 	/*
881 	 * While waiting for inp lock during the lookup, another thread
882 	 * can have dropped the inpcb, in which case we need to loop back
883 	 * and try to find a new inpcb to deliver to.
884 	 */
885 	if (inp->inp_flags & INP_DROPPED) {
886 		INP_WUNLOCK(inp);
887 		inp = NULL;
888 		goto findpcb;
889 	}
890 	if ((inp->inp_flowtype == M_HASHTYPE_NONE) &&
891 	    (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) &&
892 	    ((inp->inp_socket == NULL) ||
893 	    (inp->inp_socket->so_options & SO_ACCEPTCONN) == 0)) {
894 		inp->inp_flowid = m->m_pkthdr.flowid;
895 		inp->inp_flowtype = M_HASHTYPE_GET(m);
896 	}
897 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
898 #ifdef INET6
899 	if (isipv6 && IPSEC_ENABLED(ipv6) &&
900 	    IPSEC_CHECK_POLICY(ipv6, m, inp) != 0) {
901 		goto dropunlock;
902 	}
903 #ifdef INET
904 	else
905 #endif
906 #endif /* INET6 */
907 #ifdef INET
908 	if (IPSEC_ENABLED(ipv4) &&
909 	    IPSEC_CHECK_POLICY(ipv4, m, inp) != 0) {
910 		goto dropunlock;
911 	}
912 #endif /* INET */
913 #endif /* IPSEC */
914 
915 	/*
916 	 * Check the minimum TTL for socket.
917 	 */
918 	if (inp->inp_ip_minttl != 0) {
919 #ifdef INET6
920 		if (isipv6) {
921 			if (inp->inp_ip_minttl > ip6->ip6_hlim)
922 				goto dropunlock;
923 		} else
924 #endif
925 		if (inp->inp_ip_minttl > ip->ip_ttl)
926 			goto dropunlock;
927 	}
928 
929 	/*
930 	 * A previous connection in TIMEWAIT state is supposed to catch stray
931 	 * or duplicate segments arriving late.  If this segment was a
932 	 * legitimate new connection attempt, the old INPCB gets removed and
933 	 * we can try again to find a listening socket.
934 	 *
935 	 * At this point, due to earlier optimism, we may hold only an inpcb
936 	 * lock, and not the inpcbinfo write lock.  If so, we need to try to
937 	 * acquire it, or if that fails, acquire a reference on the inpcb,
938 	 * drop all locks, acquire a global write lock, and then re-acquire
939 	 * the inpcb lock.  We may at that point discover that another thread
940 	 * has tried to free the inpcb, in which case we need to loop back
941 	 * and try to find a new inpcb to deliver to.
942 	 *
943 	 * XXXRW: It may be time to rethink timewait locking.
944 	 */
945 	if (inp->inp_flags & INP_TIMEWAIT) {
946 		if (ti_locked == TI_UNLOCKED) {
947 			INP_INFO_RLOCK_ET(&V_tcbinfo, et);
948 			ti_locked = TI_RLOCKED;
949 		}
950 		INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
951 
952 		if (thflags & TH_SYN)
953 			tcp_dooptions(&to, optp, optlen, TO_SYN);
954 		/*
955 		 * NB: tcp_twcheck unlocks the INP and frees the mbuf.
956 		 */
957 		if (tcp_twcheck(inp, &to, th, m, tlen))
958 			goto findpcb;
959 		INP_INFO_RUNLOCK_ET(&V_tcbinfo, et);
960 		return (IPPROTO_DONE);
961 	}
962 	/*
963 	 * The TCPCB may no longer exist if the connection is winding
964 	 * down or it is in the CLOSED state.  Either way we drop the
965 	 * segment and send an appropriate response.
966 	 */
967 	tp = intotcpcb(inp);
968 	if (tp == NULL || tp->t_state == TCPS_CLOSED) {
969 		rstreason = BANDLIM_RST_CLOSEDPORT;
970 		goto dropwithreset;
971 	}
972 
973 #ifdef TCP_OFFLOAD
974 	if (tp->t_flags & TF_TOE) {
975 		tcp_offload_input(tp, m);
976 		m = NULL;	/* consumed by the TOE driver */
977 		goto dropunlock;
978 	}
979 #endif
980 
981 	/*
982 	 * We've identified a valid inpcb, but it could be that we need an
983 	 * inpcbinfo write lock but don't hold it.  In this case, attempt to
984 	 * acquire using the same strategy as the TIMEWAIT case above.  If we
985 	 * relock, we have to jump back to 'relocked' as the connection might
986 	 * now be in TIMEWAIT.
987 	 */
988 #ifdef INVARIANTS
989 	if ((thflags & (TH_FIN | TH_RST)) != 0)
990 		INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
991 #endif
992 	if (!((tp->t_state == TCPS_ESTABLISHED && (thflags & TH_SYN) == 0) ||
993 	      (tp->t_state == TCPS_LISTEN && (thflags & TH_SYN) &&
994 	       !IS_FASTOPEN(tp->t_flags)))) {
995 		if (ti_locked == TI_UNLOCKED) {
996 			INP_INFO_RLOCK_ET(&V_tcbinfo, et);
997 			ti_locked = TI_RLOCKED;
998 		}
999 		INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
1000 	}
1001 
1002 #ifdef MAC
1003 	INP_WLOCK_ASSERT(inp);
1004 	if (mac_inpcb_check_deliver(inp, m))
1005 		goto dropunlock;
1006 #endif
1007 	so = inp->inp_socket;
1008 	KASSERT(so != NULL, ("%s: so == NULL", __func__));
1009 #ifdef TCPDEBUG
1010 	if (so->so_options & SO_DEBUG) {
1011 		ostate = tp->t_state;
1012 #ifdef INET6
1013 		if (isipv6) {
1014 			bcopy((char *)ip6, (char *)tcp_saveipgen, sizeof(*ip6));
1015 		} else
1016 #endif
1017 			bcopy((char *)ip, (char *)tcp_saveipgen, sizeof(*ip));
1018 		tcp_savetcp = *th;
1019 	}
1020 #endif /* TCPDEBUG */
1021 	/*
1022 	 * When the socket is accepting connections (the INPCB is in LISTEN
1023 	 * state) we look into the SYN cache if this is a new connection
1024 	 * attempt or the completion of a previous one.
1025 	 */
1026 	KASSERT(tp->t_state == TCPS_LISTEN || !(so->so_options & SO_ACCEPTCONN),
1027 	    ("%s: so accepting but tp %p not listening", __func__, tp));
1028 	if (tp->t_state == TCPS_LISTEN && (so->so_options & SO_ACCEPTCONN)) {
1029 		struct in_conninfo inc;
1030 
1031 		bzero(&inc, sizeof(inc));
1032 #ifdef INET6
1033 		if (isipv6) {
1034 			inc.inc_flags |= INC_ISIPV6;
1035 			if (inp->inp_inc.inc_flags & INC_IPV6MINMTU)
1036 				inc.inc_flags |= INC_IPV6MINMTU;
1037 			inc.inc6_faddr = ip6->ip6_src;
1038 			inc.inc6_laddr = ip6->ip6_dst;
1039 		} else
1040 #endif
1041 		{
1042 			inc.inc_faddr = ip->ip_src;
1043 			inc.inc_laddr = ip->ip_dst;
1044 		}
1045 		inc.inc_fport = th->th_sport;
1046 		inc.inc_lport = th->th_dport;
1047 		inc.inc_fibnum = so->so_fibnum;
1048 
1049 		/*
1050 		 * Check for an existing connection attempt in syncache if
1051 		 * the flag is only ACK.  A successful lookup creates a new
1052 		 * socket appended to the listen queue in SYN_RECEIVED state.
1053 		 */
1054 		if ((thflags & (TH_RST|TH_ACK|TH_SYN)) == TH_ACK) {
1055 
1056 			INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
1057 			/*
1058 			 * Parse the TCP options here because
1059 			 * syncookies need access to the reflected
1060 			 * timestamp.
1061 			 */
1062 			tcp_dooptions(&to, optp, optlen, 0);
1063 			/*
1064 			 * NB: syncache_expand() doesn't unlock
1065 			 * inp and tcpinfo locks.
1066 			 */
1067 			rstreason = syncache_expand(&inc, &to, th, &so, m);
1068 			if (rstreason < 0) {
1069 				/*
1070 				 * A failing TCP MD5 signature comparison
1071 				 * must result in the segment being dropped
1072 				 * and must not produce any response back
1073 				 * to the sender.
1074 				 */
1075 				goto dropunlock;
1076 			} else if (rstreason == 0) {
1077 				/*
1078 				 * No syncache entry or ACK was not
1079 				 * for our SYN/ACK.  Send a RST.
1080 				 * NB: syncache did its own logging
1081 				 * of the failure cause.
1082 				 */
1083 				rstreason = BANDLIM_RST_OPENPORT;
1084 				goto dropwithreset;
1085 			}
1086 tfo_socket_result:
1087 			if (so == NULL) {
1088 				/*
1089 				 * We completed the 3-way handshake
1090 				 * but could not allocate a socket
1091 				 * either due to memory shortage,
1092 				 * listen queue length limits or
1093 				 * global socket limits.  Send RST
1094 				 * or wait and have the remote end
1095 				 * retransmit the ACK for another
1096 				 * try.
1097 				 */
1098 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1099 					log(LOG_DEBUG, "%s; %s: Listen socket: "
1100 					    "Socket allocation failed due to "
1101 					    "limits or memory shortage, %s\n",
1102 					    s, __func__,
1103 					    V_tcp_sc_rst_sock_fail ?
1104 					    "sending RST" : "try again");
1105 				if (V_tcp_sc_rst_sock_fail) {
1106 					rstreason = BANDLIM_UNLIMITED;
1107 					goto dropwithreset;
1108 				} else
1109 					goto dropunlock;
1110 			}
1111 			/*
1112 			 * Socket is created in state SYN_RECEIVED.
1113 			 * Unlock the listen socket, lock the newly
1114 			 * created socket and update the tp variable.
1115 			 */
1116 			INP_WUNLOCK(inp);	/* listen socket */
1117 			inp = sotoinpcb(so);
1118 			/*
1119 			 * New connection inpcb is already locked by
1120 			 * syncache_expand().
1121 			 */
1122 			INP_WLOCK_ASSERT(inp);
1123 			tp = intotcpcb(inp);
1124 			KASSERT(tp->t_state == TCPS_SYN_RECEIVED,
1125 			    ("%s: ", __func__));
1126 			/*
1127 			 * Process the segment and the data it
1128 			 * contains.  tcp_do_segment() consumes
1129 			 * the mbuf chain and unlocks the inpcb.
1130 			 */
1131 			TCP_PROBE5(receive, NULL, tp, m, tp, th);
1132 			tp->t_fb->tfb_tcp_do_segment(m, th, so, tp, drop_hdrlen, tlen,
1133 			    iptos);
1134 			if (ti_locked == TI_RLOCKED)
1135 				INP_INFO_RUNLOCK_ET(&V_tcbinfo, et);
1136 			return (IPPROTO_DONE);
1137 		}
1138 		/*
1139 		 * Segment flag validation for new connection attempts:
1140 		 *
1141 		 * Our (SYN|ACK) response was rejected.
1142 		 * Check with syncache and remove entry to prevent
1143 		 * retransmits.
1144 		 *
1145 		 * NB: syncache_chkrst does its own logging of failure
1146 		 * causes.
1147 		 */
1148 		if (thflags & TH_RST) {
1149 			syncache_chkrst(&inc, th, m);
1150 			goto dropunlock;
1151 		}
1152 		/*
1153 		 * We can't do anything without SYN.
1154 		 */
1155 		if ((thflags & TH_SYN) == 0) {
1156 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1157 				log(LOG_DEBUG, "%s; %s: Listen socket: "
1158 				    "SYN is missing, segment ignored\n",
1159 				    s, __func__);
1160 			TCPSTAT_INC(tcps_badsyn);
1161 			goto dropunlock;
1162 		}
1163 		/*
1164 		 * (SYN|ACK) is bogus on a listen socket.
1165 		 */
1166 		if (thflags & TH_ACK) {
1167 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1168 				log(LOG_DEBUG, "%s; %s: Listen socket: "
1169 				    "SYN|ACK invalid, segment rejected\n",
1170 				    s, __func__);
1171 			syncache_badack(&inc);	/* XXX: Not needed! */
1172 			TCPSTAT_INC(tcps_badsyn);
1173 			rstreason = BANDLIM_RST_OPENPORT;
1174 			goto dropwithreset;
1175 		}
1176 		/*
1177 		 * If the drop_synfin option is enabled, drop all
1178 		 * segments with both the SYN and FIN bits set.
1179 		 * This prevents e.g. nmap from identifying the
1180 		 * TCP/IP stack.
1181 		 * XXX: Poor reasoning.  nmap has other methods
1182 		 * and is constantly refining its stack detection
1183 		 * strategies.
1184 		 * XXX: This is a violation of the TCP specification
1185 		 * and was used by RFC1644.
1186 		 */
1187 		if ((thflags & TH_FIN) && V_drop_synfin) {
1188 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1189 				log(LOG_DEBUG, "%s; %s: Listen socket: "
1190 				    "SYN|FIN segment ignored (based on "
1191 				    "sysctl setting)\n", s, __func__);
1192 			TCPSTAT_INC(tcps_badsyn);
1193 			goto dropunlock;
1194 		}
1195 		/*
1196 		 * Segment's flags are (SYN) or (SYN|FIN).
1197 		 *
1198 		 * TH_PUSH, TH_URG, TH_ECE, TH_CWR are ignored
1199 		 * as they do not affect the state of the TCP FSM.
1200 		 * The data pointed to by TH_URG and th_urp is ignored.
1201 		 */
1202 		KASSERT((thflags & (TH_RST|TH_ACK)) == 0,
1203 		    ("%s: Listen socket: TH_RST or TH_ACK set", __func__));
1204 		KASSERT(thflags & (TH_SYN),
1205 		    ("%s: Listen socket: TH_SYN not set", __func__));
1206 #ifdef INET6
1207 		/*
1208 		 * If deprecated address is forbidden,
1209 		 * we do not accept SYN to deprecated interface
1210 		 * address to prevent any new inbound connection from
1211 		 * getting established.
1212 		 * When we do not accept SYN, we send a TCP RST,
1213 		 * with deprecated source address (instead of dropping
1214 		 * it).  We compromise it as it is much better for peer
1215 		 * to send a RST, and RST will be the final packet
1216 		 * for the exchange.
1217 		 *
1218 		 * If we do not forbid deprecated addresses, we accept
1219 		 * the SYN packet.  RFC2462 does not suggest dropping
1220 		 * SYN in this case.
1221 		 * If we decipher RFC2462 5.5.4, it says like this:
1222 		 * 1. use of deprecated addr with existing
1223 		 *    communication is okay - "SHOULD continue to be
1224 		 *    used"
1225 		 * 2. use of it with new communication:
1226 		 *   (2a) "SHOULD NOT be used if alternate address
1227 		 *        with sufficient scope is available"
1228 		 *   (2b) nothing mentioned otherwise.
1229 		 * Here we fall into (2b) case as we have no choice in
1230 		 * our source address selection - we must obey the peer.
1231 		 *
1232 		 * The wording in RFC2462 is confusing, and there are
1233 		 * multiple description text for deprecated address
1234 		 * handling - worse, they are not exactly the same.
1235 		 * I believe 5.5.4 is the best one, so we follow 5.5.4.
1236 		 */
1237 		if (isipv6 && !V_ip6_use_deprecated) {
1238 			struct in6_ifaddr *ia6;
1239 
1240 			ia6 = in6ifa_ifwithaddr(&ip6->ip6_dst, 0 /* XXX */);
1241 			if (ia6 != NULL &&
1242 			    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
1243 				ifa_free(&ia6->ia_ifa);
1244 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1245 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1246 					"Connection attempt to deprecated "
1247 					"IPv6 address rejected\n",
1248 					s, __func__);
1249 				rstreason = BANDLIM_RST_OPENPORT;
1250 				goto dropwithreset;
1251 			}
1252 			if (ia6)
1253 				ifa_free(&ia6->ia_ifa);
1254 		}
1255 #endif /* INET6 */
1256 		/*
1257 		 * Basic sanity checks on incoming SYN requests:
1258 		 *   Don't respond if the destination is a link layer
1259 		 *	broadcast according to RFC1122 4.2.3.10, p. 104.
1260 		 *   If it is from this socket it must be forged.
1261 		 *   Don't respond if the source or destination is a
1262 		 *	global or subnet broad- or multicast address.
1263 		 *   Note that it is quite possible to receive unicast
1264 		 *	link-layer packets with a broadcast IP address. Use
1265 		 *	in_broadcast() to find them.
1266 		 */
1267 		if (m->m_flags & (M_BCAST|M_MCAST)) {
1268 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1269 			    log(LOG_DEBUG, "%s; %s: Listen socket: "
1270 				"Connection attempt from broad- or multicast "
1271 				"link layer address ignored\n", s, __func__);
1272 			goto dropunlock;
1273 		}
1274 #ifdef INET6
1275 		if (isipv6) {
1276 			if (th->th_dport == th->th_sport &&
1277 			    IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst, &ip6->ip6_src)) {
1278 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1279 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1280 					"Connection attempt to/from self "
1281 					"ignored\n", s, __func__);
1282 				goto dropunlock;
1283 			}
1284 			if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
1285 			    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
1286 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1287 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1288 					"Connection attempt from/to multicast "
1289 					"address ignored\n", s, __func__);
1290 				goto dropunlock;
1291 			}
1292 		}
1293 #endif
1294 #if defined(INET) && defined(INET6)
1295 		else
1296 #endif
1297 #ifdef INET
1298 		{
1299 			if (th->th_dport == th->th_sport &&
1300 			    ip->ip_dst.s_addr == ip->ip_src.s_addr) {
1301 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1302 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1303 					"Connection attempt from/to self "
1304 					"ignored\n", s, __func__);
1305 				goto dropunlock;
1306 			}
1307 			if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
1308 			    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
1309 			    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
1310 			    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif)) {
1311 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1312 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1313 					"Connection attempt from/to broad- "
1314 					"or multicast address ignored\n",
1315 					s, __func__);
1316 				goto dropunlock;
1317 			}
1318 		}
1319 #endif
1320 		/*
1321 		 * SYN appears to be valid.  Create compressed TCP state
1322 		 * for syncache.
1323 		 */
1324 #ifdef TCPDEBUG
1325 		if (so->so_options & SO_DEBUG)
1326 			tcp_trace(TA_INPUT, ostate, tp,
1327 			    (void *)tcp_saveipgen, &tcp_savetcp, 0);
1328 #endif
1329 		TCP_PROBE3(debug__input, tp, th, m);
1330 		tcp_dooptions(&to, optp, optlen, TO_SYN);
1331 		if (syncache_add(&inc, &to, th, inp, &so, m, NULL, NULL))
1332 			goto tfo_socket_result;
1333 
1334 		/*
1335 		 * Entry added to syncache and mbuf consumed.
1336 		 * Only the listen socket is unlocked by syncache_add().
1337 		 */
1338 		if (ti_locked == TI_RLOCKED) {
1339 			INP_INFO_RUNLOCK_ET(&V_tcbinfo, et);
1340 			ti_locked = TI_UNLOCKED;
1341 		}
1342 		INP_INFO_WUNLOCK_ASSERT(&V_tcbinfo);
1343 		return (IPPROTO_DONE);
1344 	} else if (tp->t_state == TCPS_LISTEN) {
1345 		/*
1346 		 * When a listen socket is torn down the SO_ACCEPTCONN
1347 		 * flag is removed first while connections are drained
1348 		 * from the accept queue in a unlock/lock cycle of the
1349 		 * ACCEPT_LOCK, opening a race condition allowing a SYN
1350 		 * attempt go through unhandled.
1351 		 */
1352 		goto dropunlock;
1353 	}
1354 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1355 	if (tp->t_flags & TF_SIGNATURE) {
1356 		tcp_dooptions(&to, optp, optlen, thflags);
1357 		if ((to.to_flags & TOF_SIGNATURE) == 0) {
1358 			TCPSTAT_INC(tcps_sig_err_nosigopt);
1359 			goto dropunlock;
1360 		}
1361 		if (!TCPMD5_ENABLED() ||
1362 		    TCPMD5_INPUT(m, th, to.to_signature) != 0)
1363 			goto dropunlock;
1364 	}
1365 #endif
1366 	TCP_PROBE5(receive, NULL, tp, m, tp, th);
1367 
1368 	/*
1369 	 * Segment belongs to a connection in SYN_SENT, ESTABLISHED or later
1370 	 * state.  tcp_do_segment() always consumes the mbuf chain, unlocks
1371 	 * the inpcb, and unlocks pcbinfo.
1372 	 */
1373 	tp->t_fb->tfb_tcp_do_segment(m, th, so, tp, drop_hdrlen, tlen, iptos);
1374 	if (ti_locked == TI_RLOCKED)
1375 		INP_INFO_RUNLOCK_ET(&V_tcbinfo, et);
1376 	return (IPPROTO_DONE);
1377 
1378 dropwithreset:
1379 	TCP_PROBE5(receive, NULL, tp, m, tp, th);
1380 
1381 	if (ti_locked == TI_RLOCKED) {
1382 		INP_INFO_RUNLOCK_ET(&V_tcbinfo, et);
1383 		ti_locked = TI_UNLOCKED;
1384 	}
1385 #ifdef INVARIANTS
1386 	else {
1387 		KASSERT(ti_locked == TI_UNLOCKED, ("%s: dropwithreset "
1388 		    "ti_locked: %d", __func__, ti_locked));
1389 		INP_INFO_WUNLOCK_ASSERT(&V_tcbinfo);
1390 	}
1391 #endif
1392 
1393 	if (inp != NULL) {
1394 		tcp_dropwithreset(m, th, tp, tlen, rstreason);
1395 		INP_WUNLOCK(inp);
1396 	} else
1397 		tcp_dropwithreset(m, th, NULL, tlen, rstreason);
1398 	m = NULL;	/* mbuf chain got consumed. */
1399 	goto drop;
1400 
1401 dropunlock:
1402 	if (m != NULL)
1403 		TCP_PROBE5(receive, NULL, tp, m, tp, th);
1404 
1405 	if (ti_locked == TI_RLOCKED) {
1406 		INP_INFO_RUNLOCK_ET(&V_tcbinfo, et);
1407 		ti_locked = TI_UNLOCKED;
1408 	}
1409 #ifdef INVARIANTS
1410 	else {
1411 		KASSERT(ti_locked == TI_UNLOCKED, ("%s: dropunlock "
1412 		    "ti_locked: %d", __func__, ti_locked));
1413 		INP_INFO_WUNLOCK_ASSERT(&V_tcbinfo);
1414 	}
1415 #endif
1416 
1417 	if (inp != NULL)
1418 		INP_WUNLOCK(inp);
1419 
1420 drop:
1421 	INP_INFO_WUNLOCK_ASSERT(&V_tcbinfo);
1422 	if (s != NULL)
1423 		free(s, M_TCPLOG);
1424 	if (m != NULL)
1425 		m_freem(m);
1426 	return (IPPROTO_DONE);
1427 }
1428 
1429 /*
1430  * Automatic sizing of receive socket buffer.  Often the send
1431  * buffer size is not optimally adjusted to the actual network
1432  * conditions at hand (delay bandwidth product).  Setting the
1433  * buffer size too small limits throughput on links with high
1434  * bandwidth and high delay (eg. trans-continental/oceanic links).
1435  *
1436  * On the receive side the socket buffer memory is only rarely
1437  * used to any significant extent.  This allows us to be much
1438  * more aggressive in scaling the receive socket buffer.  For
1439  * the case that the buffer space is actually used to a large
1440  * extent and we run out of kernel memory we can simply drop
1441  * the new segments; TCP on the sender will just retransmit it
1442  * later.  Setting the buffer size too big may only consume too
1443  * much kernel memory if the application doesn't read() from
1444  * the socket or packet loss or reordering makes use of the
1445  * reassembly queue.
1446  *
1447  * The criteria to step up the receive buffer one notch are:
1448  *  1. Application has not set receive buffer size with
1449  *     SO_RCVBUF. Setting SO_RCVBUF clears SB_AUTOSIZE.
1450  *  2. the number of bytes received during 1/2 of an sRTT
1451  *     is at least 3/8 of the current socket buffer size.
1452  *  3. receive buffer size has not hit maximal automatic size;
1453  *
1454  * If all of the criteria are met we increaset the socket buffer
1455  * by a 1/2 (bounded by the max). This allows us to keep ahead
1456  * of slow-start but also makes it so our peer never gets limited
1457  * by our rwnd which we then open up causing a burst.
1458  *
1459  * This algorithm does two steps per RTT at most and only if
1460  * we receive a bulk stream w/o packet losses or reorderings.
1461  * Shrinking the buffer during idle times is not necessary as
1462  * it doesn't consume any memory when idle.
1463  *
1464  * TODO: Only step up if the application is actually serving
1465  * the buffer to better manage the socket buffer resources.
1466  */
1467 int
1468 tcp_autorcvbuf(struct mbuf *m, struct tcphdr *th, struct socket *so,
1469     struct tcpcb *tp, int tlen)
1470 {
1471 	int newsize = 0;
1472 
1473 	if (V_tcp_do_autorcvbuf && (so->so_rcv.sb_flags & SB_AUTOSIZE) &&
1474 	    tp->t_srtt != 0 && tp->rfbuf_ts != 0 &&
1475 	    TCP_TS_TO_TICKS(tcp_ts_getticks() - tp->rfbuf_ts) >
1476 	    ((tp->t_srtt >> TCP_RTT_SHIFT)/2)) {
1477 		if (tp->rfbuf_cnt > ((so->so_rcv.sb_hiwat / 2)/ 4 * 3) &&
1478 		    so->so_rcv.sb_hiwat < V_tcp_autorcvbuf_max) {
1479 			newsize = min((so->so_rcv.sb_hiwat + (so->so_rcv.sb_hiwat/2)), V_tcp_autorcvbuf_max);
1480 		}
1481 		TCP_PROBE6(receive__autoresize, NULL, tp, m, tp, th, newsize);
1482 
1483 		/* Start over with next RTT. */
1484 		tp->rfbuf_ts = 0;
1485 		tp->rfbuf_cnt = 0;
1486 	} else {
1487 		tp->rfbuf_cnt += tlen;	/* add up */
1488 	}
1489 
1490 	return (newsize);
1491 }
1492 
1493 void
1494 tcp_do_segment(struct mbuf *m, struct tcphdr *th, struct socket *so,
1495     struct tcpcb *tp, int drop_hdrlen, int tlen, uint8_t iptos)
1496 {
1497 	int thflags, acked, ourfinisacked, needoutput = 0, sack_changed;
1498 	int rstreason, todrop, win;
1499 	uint32_t tiwin;
1500 	uint16_t nsegs;
1501 	char *s;
1502 	struct in_conninfo *inc;
1503 	struct mbuf *mfree;
1504 	struct tcpopt to;
1505 	int tfo_syn;
1506 
1507 #ifdef TCPDEBUG
1508 	/*
1509 	 * The size of tcp_saveipgen must be the size of the max ip header,
1510 	 * now IPv6.
1511 	 */
1512 	u_char tcp_saveipgen[IP6_HDR_LEN];
1513 	struct tcphdr tcp_savetcp;
1514 	short ostate = 0;
1515 #endif
1516 	thflags = th->th_flags;
1517 	inc = &tp->t_inpcb->inp_inc;
1518 	tp->sackhint.last_sack_ack = 0;
1519 	sack_changed = 0;
1520 	nsegs = max(1, m->m_pkthdr.lro_nsegs);
1521 	/*
1522 	 * If this is either a state-changing packet or current state isn't
1523 	 * established, we require a write lock on tcbinfo.  Otherwise, we
1524 	 * allow the tcbinfo to be in either alocked or unlocked, as the
1525 	 * caller may have unnecessarily acquired a write lock due to a race.
1526 	 */
1527 	if ((thflags & (TH_SYN | TH_FIN | TH_RST)) != 0 ||
1528 	    tp->t_state != TCPS_ESTABLISHED) {
1529 		INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
1530 	}
1531 	INP_WLOCK_ASSERT(tp->t_inpcb);
1532 	KASSERT(tp->t_state > TCPS_LISTEN, ("%s: TCPS_LISTEN",
1533 	    __func__));
1534 	KASSERT(tp->t_state != TCPS_TIME_WAIT, ("%s: TCPS_TIME_WAIT",
1535 	    __func__));
1536 
1537 #ifdef TCPPCAP
1538 	/* Save segment, if requested. */
1539 	tcp_pcap_add(th, m, &(tp->t_inpkts));
1540 #endif
1541 	TCP_LOG_EVENT(tp, th, &so->so_rcv, &so->so_snd, TCP_LOG_IN, 0,
1542 	    tlen, NULL, true);
1543 
1544 	if ((thflags & TH_SYN) && (thflags & TH_FIN) && V_drop_synfin) {
1545 		if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1546 			log(LOG_DEBUG, "%s; %s: "
1547 			    "SYN|FIN segment ignored (based on "
1548 			    "sysctl setting)\n", s, __func__);
1549 			free(s, M_TCPLOG);
1550 		}
1551 		goto drop;
1552 	}
1553 
1554 	/*
1555 	 * If a segment with the ACK-bit set arrives in the SYN-SENT state
1556 	 * check SEQ.ACK first.
1557 	 */
1558 	if ((tp->t_state == TCPS_SYN_SENT) && (thflags & TH_ACK) &&
1559 	    (SEQ_LEQ(th->th_ack, tp->iss) || SEQ_GT(th->th_ack, tp->snd_max))) {
1560 		rstreason = BANDLIM_UNLIMITED;
1561 		goto dropwithreset;
1562 	}
1563 
1564 	/*
1565 	 * Segment received on connection.
1566 	 * Reset idle time and keep-alive timer.
1567 	 * XXX: This should be done after segment
1568 	 * validation to ignore broken/spoofed segs.
1569 	 */
1570 	tp->t_rcvtime = ticks;
1571 
1572 	/*
1573 	 * Scale up the window into a 32-bit value.
1574 	 * For the SYN_SENT state the scale is zero.
1575 	 */
1576 	tiwin = th->th_win << tp->snd_scale;
1577 
1578 	/*
1579 	 * TCP ECN processing.
1580 	 */
1581 	if (tp->t_flags & TF_ECN_PERMIT) {
1582 		if (thflags & TH_CWR)
1583 			tp->t_flags &= ~TF_ECN_SND_ECE;
1584 		switch (iptos & IPTOS_ECN_MASK) {
1585 		case IPTOS_ECN_CE:
1586 			tp->t_flags |= TF_ECN_SND_ECE;
1587 			TCPSTAT_INC(tcps_ecn_ce);
1588 			break;
1589 		case IPTOS_ECN_ECT0:
1590 			TCPSTAT_INC(tcps_ecn_ect0);
1591 			break;
1592 		case IPTOS_ECN_ECT1:
1593 			TCPSTAT_INC(tcps_ecn_ect1);
1594 			break;
1595 		}
1596 
1597 		/* Process a packet differently from RFC3168. */
1598 		cc_ecnpkt_handler(tp, th, iptos);
1599 
1600 		/* Congestion experienced. */
1601 		if (thflags & TH_ECE) {
1602 			cc_cong_signal(tp, th, CC_ECN);
1603 		}
1604 	}
1605 
1606 	/*
1607 	 * Parse options on any incoming segment.
1608 	 */
1609 	tcp_dooptions(&to, (u_char *)(th + 1),
1610 	    (th->th_off << 2) - sizeof(struct tcphdr),
1611 	    (thflags & TH_SYN) ? TO_SYN : 0);
1612 
1613 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1614 	if ((tp->t_flags & TF_SIGNATURE) != 0 &&
1615 	    (to.to_flags & TOF_SIGNATURE) == 0) {
1616 		TCPSTAT_INC(tcps_sig_err_sigopt);
1617 		/* XXX: should drop? */
1618 	}
1619 #endif
1620 	/*
1621 	 * If echoed timestamp is later than the current time,
1622 	 * fall back to non RFC1323 RTT calculation.  Normalize
1623 	 * timestamp if syncookies were used when this connection
1624 	 * was established.
1625 	 */
1626 	if ((to.to_flags & TOF_TS) && (to.to_tsecr != 0)) {
1627 		to.to_tsecr -= tp->ts_offset;
1628 		if (TSTMP_GT(to.to_tsecr, tcp_ts_getticks()))
1629 			to.to_tsecr = 0;
1630 		else if (tp->t_flags & TF_PREVVALID &&
1631 			 tp->t_badrxtwin != 0 && SEQ_LT(to.to_tsecr, tp->t_badrxtwin))
1632 			cc_cong_signal(tp, th, CC_RTO_ERR);
1633 	}
1634 	/*
1635 	 * Process options only when we get SYN/ACK back. The SYN case
1636 	 * for incoming connections is handled in tcp_syncache.
1637 	 * According to RFC1323 the window field in a SYN (i.e., a <SYN>
1638 	 * or <SYN,ACK>) segment itself is never scaled.
1639 	 * XXX this is traditional behavior, may need to be cleaned up.
1640 	 */
1641 	if (tp->t_state == TCPS_SYN_SENT && (thflags & TH_SYN)) {
1642 		if ((to.to_flags & TOF_SCALE) &&
1643 		    (tp->t_flags & TF_REQ_SCALE)) {
1644 			tp->t_flags |= TF_RCVD_SCALE;
1645 			tp->snd_scale = to.to_wscale;
1646 		}
1647 		/*
1648 		 * Initial send window.  It will be updated with
1649 		 * the next incoming segment to the scaled value.
1650 		 */
1651 		tp->snd_wnd = th->th_win;
1652 		if (to.to_flags & TOF_TS) {
1653 			tp->t_flags |= TF_RCVD_TSTMP;
1654 			tp->ts_recent = to.to_tsval;
1655 			tp->ts_recent_age = tcp_ts_getticks();
1656 		}
1657 		if (to.to_flags & TOF_MSS)
1658 			tcp_mss(tp, to.to_mss);
1659 		if ((tp->t_flags & TF_SACK_PERMIT) &&
1660 		    (to.to_flags & TOF_SACKPERM) == 0)
1661 			tp->t_flags &= ~TF_SACK_PERMIT;
1662 		if (IS_FASTOPEN(tp->t_flags)) {
1663 			if (to.to_flags & TOF_FASTOPEN) {
1664 				uint16_t mss;
1665 
1666 				if (to.to_flags & TOF_MSS)
1667 					mss = to.to_mss;
1668 				else
1669 					if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0)
1670 						mss = TCP6_MSS;
1671 					else
1672 						mss = TCP_MSS;
1673 				tcp_fastopen_update_cache(tp, mss,
1674 				    to.to_tfo_len, to.to_tfo_cookie);
1675 			} else
1676 				tcp_fastopen_disable_path(tp);
1677 		}
1678 	}
1679 
1680 	/*
1681 	 * If timestamps were negotiated during SYN/ACK they should
1682 	 * appear on every segment during this session and vice versa.
1683 	 */
1684 	if ((tp->t_flags & TF_RCVD_TSTMP) && !(to.to_flags & TOF_TS)) {
1685 		if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1686 			log(LOG_DEBUG, "%s; %s: Timestamp missing, "
1687 			    "no action\n", s, __func__);
1688 			free(s, M_TCPLOG);
1689 		}
1690 	}
1691 	if (!(tp->t_flags & TF_RCVD_TSTMP) && (to.to_flags & TOF_TS)) {
1692 		if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1693 			log(LOG_DEBUG, "%s; %s: Timestamp not expected, "
1694 			    "no action\n", s, __func__);
1695 			free(s, M_TCPLOG);
1696 		}
1697 	}
1698 
1699 	/*
1700 	 * Header prediction: check for the two common cases
1701 	 * of a uni-directional data xfer.  If the packet has
1702 	 * no control flags, is in-sequence, the window didn't
1703 	 * change and we're not retransmitting, it's a
1704 	 * candidate.  If the length is zero and the ack moved
1705 	 * forward, we're the sender side of the xfer.  Just
1706 	 * free the data acked & wake any higher level process
1707 	 * that was blocked waiting for space.  If the length
1708 	 * is non-zero and the ack didn't move, we're the
1709 	 * receiver side.  If we're getting packets in-order
1710 	 * (the reassembly queue is empty), add the data to
1711 	 * the socket buffer and note that we need a delayed ack.
1712 	 * Make sure that the hidden state-flags are also off.
1713 	 * Since we check for TCPS_ESTABLISHED first, it can only
1714 	 * be TH_NEEDSYN.
1715 	 */
1716 	if (tp->t_state == TCPS_ESTABLISHED &&
1717 	    th->th_seq == tp->rcv_nxt &&
1718 	    (thflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
1719 	    tp->snd_nxt == tp->snd_max &&
1720 	    tiwin && tiwin == tp->snd_wnd &&
1721 	    ((tp->t_flags & (TF_NEEDSYN|TF_NEEDFIN)) == 0) &&
1722 	    SEGQ_EMPTY(tp) &&
1723 	    ((to.to_flags & TOF_TS) == 0 ||
1724 	     TSTMP_GEQ(to.to_tsval, tp->ts_recent)) ) {
1725 
1726 		/*
1727 		 * If last ACK falls within this segment's sequence numbers,
1728 		 * record the timestamp.
1729 		 * NOTE that the test is modified according to the latest
1730 		 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
1731 		 */
1732 		if ((to.to_flags & TOF_TS) != 0 &&
1733 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1734 			tp->ts_recent_age = tcp_ts_getticks();
1735 			tp->ts_recent = to.to_tsval;
1736 		}
1737 
1738 		if (tlen == 0) {
1739 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
1740 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
1741 			    !IN_RECOVERY(tp->t_flags) &&
1742 			    (to.to_flags & TOF_SACK) == 0 &&
1743 			    TAILQ_EMPTY(&tp->snd_holes)) {
1744 				/*
1745 				 * This is a pure ack for outstanding data.
1746 				 */
1747 				TCPSTAT_INC(tcps_predack);
1748 
1749 				/*
1750 				 * "bad retransmit" recovery without timestamps.
1751 				 */
1752 				if ((to.to_flags & TOF_TS) == 0 &&
1753 				    tp->t_rxtshift == 1 &&
1754 				    tp->t_flags & TF_PREVVALID &&
1755 				    (int)(ticks - tp->t_badrxtwin) < 0) {
1756 					cc_cong_signal(tp, th, CC_RTO_ERR);
1757 				}
1758 
1759 				/*
1760 				 * Recalculate the transmit timer / rtt.
1761 				 *
1762 				 * Some boxes send broken timestamp replies
1763 				 * during the SYN+ACK phase, ignore
1764 				 * timestamps of 0 or we could calculate a
1765 				 * huge RTT and blow up the retransmit timer.
1766 				 */
1767 				if ((to.to_flags & TOF_TS) != 0 &&
1768 				    to.to_tsecr) {
1769 					uint32_t t;
1770 
1771 					t = tcp_ts_getticks() - to.to_tsecr;
1772 					if (!tp->t_rttlow || tp->t_rttlow > t)
1773 						tp->t_rttlow = t;
1774 					tcp_xmit_timer(tp,
1775 					    TCP_TS_TO_TICKS(t) + 1);
1776 				} else if (tp->t_rtttime &&
1777 				    SEQ_GT(th->th_ack, tp->t_rtseq)) {
1778 					if (!tp->t_rttlow ||
1779 					    tp->t_rttlow > ticks - tp->t_rtttime)
1780 						tp->t_rttlow = ticks - tp->t_rtttime;
1781 					tcp_xmit_timer(tp,
1782 							ticks - tp->t_rtttime);
1783 				}
1784 				acked = BYTES_THIS_ACK(tp, th);
1785 
1786 #ifdef TCP_HHOOK
1787 				/* Run HHOOK_TCP_ESTABLISHED_IN helper hooks. */
1788 				hhook_run_tcp_est_in(tp, th, &to);
1789 #endif
1790 
1791 				TCPSTAT_ADD(tcps_rcvackpack, nsegs);
1792 				TCPSTAT_ADD(tcps_rcvackbyte, acked);
1793 				sbdrop(&so->so_snd, acked);
1794 				if (SEQ_GT(tp->snd_una, tp->snd_recover) &&
1795 				    SEQ_LEQ(th->th_ack, tp->snd_recover))
1796 					tp->snd_recover = th->th_ack - 1;
1797 
1798 				/*
1799 				 * Let the congestion control algorithm update
1800 				 * congestion control related information. This
1801 				 * typically means increasing the congestion
1802 				 * window.
1803 				 */
1804 				cc_ack_received(tp, th, nsegs, CC_ACK);
1805 
1806 				tp->snd_una = th->th_ack;
1807 				/*
1808 				 * Pull snd_wl2 up to prevent seq wrap relative
1809 				 * to th_ack.
1810 				 */
1811 				tp->snd_wl2 = th->th_ack;
1812 				tp->t_dupacks = 0;
1813 				m_freem(m);
1814 
1815 				/*
1816 				 * If all outstanding data are acked, stop
1817 				 * retransmit timer, otherwise restart timer
1818 				 * using current (possibly backed-off) value.
1819 				 * If process is waiting for space,
1820 				 * wakeup/selwakeup/signal.  If data
1821 				 * are ready to send, let tcp_output
1822 				 * decide between more output or persist.
1823 				 */
1824 #ifdef TCPDEBUG
1825 				if (so->so_options & SO_DEBUG)
1826 					tcp_trace(TA_INPUT, ostate, tp,
1827 					    (void *)tcp_saveipgen,
1828 					    &tcp_savetcp, 0);
1829 #endif
1830 				TCP_PROBE3(debug__input, tp, th, m);
1831 				if (tp->snd_una == tp->snd_max)
1832 					tcp_timer_activate(tp, TT_REXMT, 0);
1833 				else if (!tcp_timer_active(tp, TT_PERSIST))
1834 					tcp_timer_activate(tp, TT_REXMT,
1835 						      tp->t_rxtcur);
1836 				sowwakeup(so);
1837 				if (sbavail(&so->so_snd))
1838 					(void) tp->t_fb->tfb_tcp_output(tp);
1839 				goto check_delack;
1840 			}
1841 		} else if (th->th_ack == tp->snd_una &&
1842 		    tlen <= sbspace(&so->so_rcv)) {
1843 			int newsize = 0;	/* automatic sockbuf scaling */
1844 
1845 			/*
1846 			 * This is a pure, in-sequence data packet with
1847 			 * nothing on the reassembly queue and we have enough
1848 			 * buffer space to take it.
1849 			 */
1850 			/* Clean receiver SACK report if present */
1851 			if ((tp->t_flags & TF_SACK_PERMIT) && tp->rcv_numsacks)
1852 				tcp_clean_sackreport(tp);
1853 			TCPSTAT_INC(tcps_preddat);
1854 			tp->rcv_nxt += tlen;
1855 			/*
1856 			 * Pull snd_wl1 up to prevent seq wrap relative to
1857 			 * th_seq.
1858 			 */
1859 			tp->snd_wl1 = th->th_seq;
1860 			/*
1861 			 * Pull rcv_up up to prevent seq wrap relative to
1862 			 * rcv_nxt.
1863 			 */
1864 			tp->rcv_up = tp->rcv_nxt;
1865 			TCPSTAT_ADD(tcps_rcvpack, nsegs);
1866 			TCPSTAT_ADD(tcps_rcvbyte, tlen);
1867 #ifdef TCPDEBUG
1868 			if (so->so_options & SO_DEBUG)
1869 				tcp_trace(TA_INPUT, ostate, tp,
1870 				    (void *)tcp_saveipgen, &tcp_savetcp, 0);
1871 #endif
1872 			TCP_PROBE3(debug__input, tp, th, m);
1873 
1874 			newsize = tcp_autorcvbuf(m, th, so, tp, tlen);
1875 
1876 			/* Add data to socket buffer. */
1877 			SOCKBUF_LOCK(&so->so_rcv);
1878 			if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
1879 				m_freem(m);
1880 			} else {
1881 				/*
1882 				 * Set new socket buffer size.
1883 				 * Give up when limit is reached.
1884 				 */
1885 				if (newsize)
1886 					if (!sbreserve_locked(&so->so_rcv,
1887 					    newsize, so, NULL))
1888 						so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
1889 				m_adj(m, drop_hdrlen);	/* delayed header drop */
1890 				sbappendstream_locked(&so->so_rcv, m, 0);
1891 			}
1892 			/* NB: sorwakeup_locked() does an implicit unlock. */
1893 			sorwakeup_locked(so);
1894 			if (DELAY_ACK(tp, tlen)) {
1895 				tp->t_flags |= TF_DELACK;
1896 			} else {
1897 				tp->t_flags |= TF_ACKNOW;
1898 				tp->t_fb->tfb_tcp_output(tp);
1899 			}
1900 			goto check_delack;
1901 		}
1902 	}
1903 
1904 	/*
1905 	 * Calculate amount of space in receive window,
1906 	 * and then do TCP input processing.
1907 	 * Receive window is amount of space in rcv queue,
1908 	 * but not less than advertised window.
1909 	 */
1910 	win = sbspace(&so->so_rcv);
1911 	if (win < 0)
1912 		win = 0;
1913 	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1914 
1915 	switch (tp->t_state) {
1916 
1917 	/*
1918 	 * If the state is SYN_RECEIVED:
1919 	 *	if seg contains an ACK, but not for our SYN/ACK, send a RST.
1920 	 */
1921 	case TCPS_SYN_RECEIVED:
1922 		if ((thflags & TH_ACK) &&
1923 		    (SEQ_LEQ(th->th_ack, tp->snd_una) ||
1924 		     SEQ_GT(th->th_ack, tp->snd_max))) {
1925 				rstreason = BANDLIM_RST_OPENPORT;
1926 				goto dropwithreset;
1927 		}
1928 		if (IS_FASTOPEN(tp->t_flags)) {
1929 			/*
1930 			 * When a TFO connection is in SYN_RECEIVED, the
1931 			 * only valid packets are the initial SYN, a
1932 			 * retransmit/copy of the initial SYN (possibly with
1933 			 * a subset of the original data), a valid ACK, a
1934 			 * FIN, or a RST.
1935 			 */
1936 			if ((thflags & (TH_SYN|TH_ACK)) == (TH_SYN|TH_ACK)) {
1937 				rstreason = BANDLIM_RST_OPENPORT;
1938 				goto dropwithreset;
1939 			} else if (thflags & TH_SYN) {
1940 				/* non-initial SYN is ignored */
1941 				if ((tcp_timer_active(tp, TT_DELACK) ||
1942 				     tcp_timer_active(tp, TT_REXMT)))
1943 					goto drop;
1944 			} else if (!(thflags & (TH_ACK|TH_FIN|TH_RST))) {
1945 				goto drop;
1946 			}
1947 		}
1948 		break;
1949 
1950 	/*
1951 	 * If the state is SYN_SENT:
1952 	 *	if seg contains a RST with valid ACK (SEQ.ACK has already
1953 	 *	    been verified), then drop the connection.
1954 	 *	if seg contains a RST without an ACK, drop the seg.
1955 	 *	if seg does not contain SYN, then drop the seg.
1956 	 * Otherwise this is an acceptable SYN segment
1957 	 *	initialize tp->rcv_nxt and tp->irs
1958 	 *	if seg contains ack then advance tp->snd_una
1959 	 *	if seg contains an ECE and ECN support is enabled, the stream
1960 	 *	    is ECN capable.
1961 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1962 	 *	arrange for segment to be acked (eventually)
1963 	 *	continue processing rest of data/controls, beginning with URG
1964 	 */
1965 	case TCPS_SYN_SENT:
1966 		if ((thflags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) {
1967 			TCP_PROBE5(connect__refused, NULL, tp,
1968 			    m, tp, th);
1969 			tp = tcp_drop(tp, ECONNREFUSED);
1970 		}
1971 		if (thflags & TH_RST)
1972 			goto drop;
1973 		if (!(thflags & TH_SYN))
1974 			goto drop;
1975 
1976 		tp->irs = th->th_seq;
1977 		tcp_rcvseqinit(tp);
1978 		if (thflags & TH_ACK) {
1979 			int tfo_partial_ack = 0;
1980 
1981 			TCPSTAT_INC(tcps_connects);
1982 			soisconnected(so);
1983 #ifdef MAC
1984 			mac_socketpeer_set_from_mbuf(m, so);
1985 #endif
1986 			/* Do window scaling on this connection? */
1987 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1988 				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1989 				tp->rcv_scale = tp->request_r_scale;
1990 			}
1991 			tp->rcv_adv += min(tp->rcv_wnd,
1992 			    TCP_MAXWIN << tp->rcv_scale);
1993 			tp->snd_una++;		/* SYN is acked */
1994 			/*
1995 			 * If not all the data that was sent in the TFO SYN
1996 			 * has been acked, resend the remainder right away.
1997 			 */
1998 			if (IS_FASTOPEN(tp->t_flags) &&
1999 			    (tp->snd_una != tp->snd_max)) {
2000 				tp->snd_nxt = th->th_ack;
2001 				tfo_partial_ack = 1;
2002 			}
2003 			/*
2004 			 * If there's data, delay ACK; if there's also a FIN
2005 			 * ACKNOW will be turned on later.
2006 			 */
2007 			if (DELAY_ACK(tp, tlen) && tlen != 0 && !tfo_partial_ack)
2008 				tcp_timer_activate(tp, TT_DELACK,
2009 				    tcp_delacktime);
2010 			else
2011 				tp->t_flags |= TF_ACKNOW;
2012 
2013 			if (((thflags & (TH_CWR | TH_ECE)) == TH_ECE) &&
2014 			    V_tcp_do_ecn) {
2015 				tp->t_flags |= TF_ECN_PERMIT;
2016 				TCPSTAT_INC(tcps_ecn_shs);
2017 			}
2018 
2019 			/*
2020 			 * Received <SYN,ACK> in SYN_SENT[*] state.
2021 			 * Transitions:
2022 			 *	SYN_SENT  --> ESTABLISHED
2023 			 *	SYN_SENT* --> FIN_WAIT_1
2024 			 */
2025 			tp->t_starttime = ticks;
2026 			if (tp->t_flags & TF_NEEDFIN) {
2027 				tcp_state_change(tp, TCPS_FIN_WAIT_1);
2028 				tp->t_flags &= ~TF_NEEDFIN;
2029 				thflags &= ~TH_SYN;
2030 			} else {
2031 				tcp_state_change(tp, TCPS_ESTABLISHED);
2032 				TCP_PROBE5(connect__established, NULL, tp,
2033 				    m, tp, th);
2034 				cc_conn_init(tp);
2035 				tcp_timer_activate(tp, TT_KEEP,
2036 				    TP_KEEPIDLE(tp));
2037 			}
2038 		} else {
2039 			/*
2040 			 * Received initial SYN in SYN-SENT[*] state =>
2041 			 * simultaneous open.
2042 			 * If it succeeds, connection is * half-synchronized.
2043 			 * Otherwise, do 3-way handshake:
2044 			 *        SYN-SENT -> SYN-RECEIVED
2045 			 *        SYN-SENT* -> SYN-RECEIVED*
2046 			 */
2047 			tp->t_flags |= (TF_ACKNOW | TF_NEEDSYN);
2048 			tcp_timer_activate(tp, TT_REXMT, 0);
2049 			tcp_state_change(tp, TCPS_SYN_RECEIVED);
2050 		}
2051 
2052 		INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
2053 		INP_WLOCK_ASSERT(tp->t_inpcb);
2054 
2055 		/*
2056 		 * Advance th->th_seq to correspond to first data byte.
2057 		 * If data, trim to stay within window,
2058 		 * dropping FIN if necessary.
2059 		 */
2060 		th->th_seq++;
2061 		if (tlen > tp->rcv_wnd) {
2062 			todrop = tlen - tp->rcv_wnd;
2063 			m_adj(m, -todrop);
2064 			tlen = tp->rcv_wnd;
2065 			thflags &= ~TH_FIN;
2066 			TCPSTAT_INC(tcps_rcvpackafterwin);
2067 			TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop);
2068 		}
2069 		tp->snd_wl1 = th->th_seq - 1;
2070 		tp->rcv_up = th->th_seq;
2071 		/*
2072 		 * Client side of transaction: already sent SYN and data.
2073 		 * If the remote host used T/TCP to validate the SYN,
2074 		 * our data will be ACK'd; if so, enter normal data segment
2075 		 * processing in the middle of step 5, ack processing.
2076 		 * Otherwise, goto step 6.
2077 		 */
2078 		if (thflags & TH_ACK)
2079 			goto process_ACK;
2080 
2081 		goto step6;
2082 
2083 	/*
2084 	 * If the state is LAST_ACK or CLOSING or TIME_WAIT:
2085 	 *      do normal processing.
2086 	 *
2087 	 * NB: Leftover from RFC1644 T/TCP.  Cases to be reused later.
2088 	 */
2089 	case TCPS_LAST_ACK:
2090 	case TCPS_CLOSING:
2091 		break;  /* continue normal processing */
2092 	}
2093 
2094 	/*
2095 	 * States other than LISTEN or SYN_SENT.
2096 	 * First check the RST flag and sequence number since reset segments
2097 	 * are exempt from the timestamp and connection count tests.  This
2098 	 * fixes a bug introduced by the Stevens, vol. 2, p. 960 bugfix
2099 	 * below which allowed reset segments in half the sequence space
2100 	 * to fall though and be processed (which gives forged reset
2101 	 * segments with a random sequence number a 50 percent chance of
2102 	 * killing a connection).
2103 	 * Then check timestamp, if present.
2104 	 * Then check the connection count, if present.
2105 	 * Then check that at least some bytes of segment are within
2106 	 * receive window.  If segment begins before rcv_nxt,
2107 	 * drop leading data (and SYN); if nothing left, just ack.
2108 	 */
2109 	if (thflags & TH_RST) {
2110 		/*
2111 		 * RFC5961 Section 3.2
2112 		 *
2113 		 * - RST drops connection only if SEG.SEQ == RCV.NXT.
2114 		 * - If RST is in window, we send challenge ACK.
2115 		 *
2116 		 * Note: to take into account delayed ACKs, we should
2117 		 *   test against last_ack_sent instead of rcv_nxt.
2118 		 * Note 2: we handle special case of closed window, not
2119 		 *   covered by the RFC.
2120 		 */
2121 		if ((SEQ_GEQ(th->th_seq, tp->last_ack_sent) &&
2122 		    SEQ_LT(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) ||
2123 		    (tp->rcv_wnd == 0 && tp->last_ack_sent == th->th_seq)) {
2124 
2125 			INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
2126 			KASSERT(tp->t_state != TCPS_SYN_SENT,
2127 			    ("%s: TH_RST for TCPS_SYN_SENT th %p tp %p",
2128 			    __func__, th, tp));
2129 
2130 			if (V_tcp_insecure_rst ||
2131 			    tp->last_ack_sent == th->th_seq) {
2132 				TCPSTAT_INC(tcps_drops);
2133 				/* Drop the connection. */
2134 				switch (tp->t_state) {
2135 				case TCPS_SYN_RECEIVED:
2136 					so->so_error = ECONNREFUSED;
2137 					goto close;
2138 				case TCPS_ESTABLISHED:
2139 				case TCPS_FIN_WAIT_1:
2140 				case TCPS_FIN_WAIT_2:
2141 				case TCPS_CLOSE_WAIT:
2142 				case TCPS_CLOSING:
2143 				case TCPS_LAST_ACK:
2144 					so->so_error = ECONNRESET;
2145 				close:
2146 					/* FALLTHROUGH */
2147 				default:
2148 					tp = tcp_close(tp);
2149 				}
2150 			} else {
2151 				TCPSTAT_INC(tcps_badrst);
2152 				/* Send challenge ACK. */
2153 				tcp_respond(tp, mtod(m, void *), th, m,
2154 				    tp->rcv_nxt, tp->snd_nxt, TH_ACK);
2155 				tp->last_ack_sent = tp->rcv_nxt;
2156 				m = NULL;
2157 			}
2158 		}
2159 		goto drop;
2160 	}
2161 
2162 	/*
2163 	 * RFC5961 Section 4.2
2164 	 * Send challenge ACK for any SYN in synchronized state.
2165 	 */
2166 	if ((thflags & TH_SYN) && tp->t_state != TCPS_SYN_SENT &&
2167 	    tp->t_state != TCPS_SYN_RECEIVED) {
2168 		INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
2169 
2170 		TCPSTAT_INC(tcps_badsyn);
2171 		if (V_tcp_insecure_syn &&
2172 		    SEQ_GEQ(th->th_seq, tp->last_ack_sent) &&
2173 		    SEQ_LT(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) {
2174 			tp = tcp_drop(tp, ECONNRESET);
2175 			rstreason = BANDLIM_UNLIMITED;
2176 		} else {
2177 			/* Send challenge ACK. */
2178 			tcp_respond(tp, mtod(m, void *), th, m, tp->rcv_nxt,
2179 			    tp->snd_nxt, TH_ACK);
2180 			tp->last_ack_sent = tp->rcv_nxt;
2181 			m = NULL;
2182 		}
2183 		goto drop;
2184 	}
2185 
2186 	/*
2187 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
2188 	 * and it's less than ts_recent, drop it.
2189 	 */
2190 	if ((to.to_flags & TOF_TS) != 0 && tp->ts_recent &&
2191 	    TSTMP_LT(to.to_tsval, tp->ts_recent)) {
2192 
2193 		/* Check to see if ts_recent is over 24 days old.  */
2194 		if (tcp_ts_getticks() - tp->ts_recent_age > TCP_PAWS_IDLE) {
2195 			/*
2196 			 * Invalidate ts_recent.  If this segment updates
2197 			 * ts_recent, the age will be reset later and ts_recent
2198 			 * will get a valid value.  If it does not, setting
2199 			 * ts_recent to zero will at least satisfy the
2200 			 * requirement that zero be placed in the timestamp
2201 			 * echo reply when ts_recent isn't valid.  The
2202 			 * age isn't reset until we get a valid ts_recent
2203 			 * because we don't want out-of-order segments to be
2204 			 * dropped when ts_recent is old.
2205 			 */
2206 			tp->ts_recent = 0;
2207 		} else {
2208 			TCPSTAT_INC(tcps_rcvduppack);
2209 			TCPSTAT_ADD(tcps_rcvdupbyte, tlen);
2210 			TCPSTAT_INC(tcps_pawsdrop);
2211 			if (tlen)
2212 				goto dropafterack;
2213 			goto drop;
2214 		}
2215 	}
2216 
2217 	/*
2218 	 * In the SYN-RECEIVED state, validate that the packet belongs to
2219 	 * this connection before trimming the data to fit the receive
2220 	 * window.  Check the sequence number versus IRS since we know
2221 	 * the sequence numbers haven't wrapped.  This is a partial fix
2222 	 * for the "LAND" DoS attack.
2223 	 */
2224 	if (tp->t_state == TCPS_SYN_RECEIVED && SEQ_LT(th->th_seq, tp->irs)) {
2225 		rstreason = BANDLIM_RST_OPENPORT;
2226 		goto dropwithreset;
2227 	}
2228 
2229 	todrop = tp->rcv_nxt - th->th_seq;
2230 	if (todrop > 0) {
2231 		if (thflags & TH_SYN) {
2232 			thflags &= ~TH_SYN;
2233 			th->th_seq++;
2234 			if (th->th_urp > 1)
2235 				th->th_urp--;
2236 			else
2237 				thflags &= ~TH_URG;
2238 			todrop--;
2239 		}
2240 		/*
2241 		 * Following if statement from Stevens, vol. 2, p. 960.
2242 		 */
2243 		if (todrop > tlen
2244 		    || (todrop == tlen && (thflags & TH_FIN) == 0)) {
2245 			/*
2246 			 * Any valid FIN must be to the left of the window.
2247 			 * At this point the FIN must be a duplicate or out
2248 			 * of sequence; drop it.
2249 			 */
2250 			thflags &= ~TH_FIN;
2251 
2252 			/*
2253 			 * Send an ACK to resynchronize and drop any data.
2254 			 * But keep on processing for RST or ACK.
2255 			 */
2256 			tp->t_flags |= TF_ACKNOW;
2257 			todrop = tlen;
2258 			TCPSTAT_INC(tcps_rcvduppack);
2259 			TCPSTAT_ADD(tcps_rcvdupbyte, todrop);
2260 		} else {
2261 			TCPSTAT_INC(tcps_rcvpartduppack);
2262 			TCPSTAT_ADD(tcps_rcvpartdupbyte, todrop);
2263 		}
2264 		/*
2265 		 * DSACK - add SACK block for dropped range
2266 		 */
2267 		if (tp->t_flags & TF_SACK_PERMIT) {
2268 			tcp_update_sack_list(tp, th->th_seq, th->th_seq+tlen);
2269 			/*
2270 			 * ACK now, as the next in-sequence segment
2271 			 * will clear the DSACK block again
2272 			 */
2273 			tp->t_flags |= TF_ACKNOW;
2274 		}
2275 		drop_hdrlen += todrop;	/* drop from the top afterwards */
2276 		th->th_seq += todrop;
2277 		tlen -= todrop;
2278 		if (th->th_urp > todrop)
2279 			th->th_urp -= todrop;
2280 		else {
2281 			thflags &= ~TH_URG;
2282 			th->th_urp = 0;
2283 		}
2284 	}
2285 
2286 	/*
2287 	 * If new data are received on a connection after the
2288 	 * user processes are gone, then RST the other end.
2289 	 */
2290 	if ((so->so_state & SS_NOFDREF) &&
2291 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
2292 		INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
2293 
2294 		if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
2295 			log(LOG_DEBUG, "%s; %s: %s: Received %d bytes of data "
2296 			    "after socket was closed, "
2297 			    "sending RST and removing tcpcb\n",
2298 			    s, __func__, tcpstates[tp->t_state], tlen);
2299 			free(s, M_TCPLOG);
2300 		}
2301 		tp = tcp_close(tp);
2302 		TCPSTAT_INC(tcps_rcvafterclose);
2303 		rstreason = BANDLIM_UNLIMITED;
2304 		goto dropwithreset;
2305 	}
2306 
2307 	/*
2308 	 * If segment ends after window, drop trailing data
2309 	 * (and PUSH and FIN); if nothing left, just ACK.
2310 	 */
2311 	todrop = (th->th_seq + tlen) - (tp->rcv_nxt + tp->rcv_wnd);
2312 	if (todrop > 0) {
2313 		TCPSTAT_INC(tcps_rcvpackafterwin);
2314 		if (todrop >= tlen) {
2315 			TCPSTAT_ADD(tcps_rcvbyteafterwin, tlen);
2316 			/*
2317 			 * If window is closed can only take segments at
2318 			 * window edge, and have to drop data and PUSH from
2319 			 * incoming segments.  Continue processing, but
2320 			 * remember to ack.  Otherwise, drop segment
2321 			 * and ack.
2322 			 */
2323 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
2324 				tp->t_flags |= TF_ACKNOW;
2325 				TCPSTAT_INC(tcps_rcvwinprobe);
2326 			} else
2327 				goto dropafterack;
2328 		} else
2329 			TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop);
2330 		m_adj(m, -todrop);
2331 		tlen -= todrop;
2332 		thflags &= ~(TH_PUSH|TH_FIN);
2333 	}
2334 
2335 	/*
2336 	 * If last ACK falls within this segment's sequence numbers,
2337 	 * record its timestamp.
2338 	 * NOTE:
2339 	 * 1) That the test incorporates suggestions from the latest
2340 	 *    proposal of the tcplw@cray.com list (Braden 1993/04/26).
2341 	 * 2) That updating only on newer timestamps interferes with
2342 	 *    our earlier PAWS tests, so this check should be solely
2343 	 *    predicated on the sequence space of this segment.
2344 	 * 3) That we modify the segment boundary check to be
2345 	 *        Last.ACK.Sent <= SEG.SEQ + SEG.Len
2346 	 *    instead of RFC1323's
2347 	 *        Last.ACK.Sent < SEG.SEQ + SEG.Len,
2348 	 *    This modified check allows us to overcome RFC1323's
2349 	 *    limitations as described in Stevens TCP/IP Illustrated
2350 	 *    Vol. 2 p.869. In such cases, we can still calculate the
2351 	 *    RTT correctly when RCV.NXT == Last.ACK.Sent.
2352 	 */
2353 	if ((to.to_flags & TOF_TS) != 0 &&
2354 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
2355 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
2356 		((thflags & (TH_SYN|TH_FIN)) != 0))) {
2357 		tp->ts_recent_age = tcp_ts_getticks();
2358 		tp->ts_recent = to.to_tsval;
2359 	}
2360 
2361 	/*
2362 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN
2363 	 * flag is on (half-synchronized state), then queue data for
2364 	 * later processing; else drop segment and return.
2365 	 */
2366 	if ((thflags & TH_ACK) == 0) {
2367 		if (tp->t_state == TCPS_SYN_RECEIVED ||
2368 		    (tp->t_flags & TF_NEEDSYN)) {
2369 			if (tp->t_state == TCPS_SYN_RECEIVED &&
2370 			    IS_FASTOPEN(tp->t_flags)) {
2371 				tp->snd_wnd = tiwin;
2372 				cc_conn_init(tp);
2373 			}
2374 			goto step6;
2375 		} else if (tp->t_flags & TF_ACKNOW)
2376 			goto dropafterack;
2377 		else
2378 			goto drop;
2379 	}
2380 
2381 	/*
2382 	 * Ack processing.
2383 	 */
2384 	switch (tp->t_state) {
2385 
2386 	/*
2387 	 * In SYN_RECEIVED state, the ack ACKs our SYN, so enter
2388 	 * ESTABLISHED state and continue processing.
2389 	 * The ACK was checked above.
2390 	 */
2391 	case TCPS_SYN_RECEIVED:
2392 
2393 		TCPSTAT_INC(tcps_connects);
2394 		soisconnected(so);
2395 		/* Do window scaling? */
2396 		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2397 			(TF_RCVD_SCALE|TF_REQ_SCALE)) {
2398 			tp->rcv_scale = tp->request_r_scale;
2399 		}
2400 		tp->snd_wnd = tiwin;
2401 		/*
2402 		 * Make transitions:
2403 		 *      SYN-RECEIVED  -> ESTABLISHED
2404 		 *      SYN-RECEIVED* -> FIN-WAIT-1
2405 		 */
2406 		tp->t_starttime = ticks;
2407 		if (IS_FASTOPEN(tp->t_flags) && tp->t_tfo_pending) {
2408 			tcp_fastopen_decrement_counter(tp->t_tfo_pending);
2409 			tp->t_tfo_pending = NULL;
2410 
2411 			/*
2412 			 * Account for the ACK of our SYN prior to
2413 			 * regular ACK processing below.
2414 			 */
2415 			tp->snd_una++;
2416 		}
2417 		if (tp->t_flags & TF_NEEDFIN) {
2418 			tcp_state_change(tp, TCPS_FIN_WAIT_1);
2419 			tp->t_flags &= ~TF_NEEDFIN;
2420 		} else {
2421 			tcp_state_change(tp, TCPS_ESTABLISHED);
2422 			TCP_PROBE5(accept__established, NULL, tp,
2423 			    m, tp, th);
2424 			/*
2425 			 * TFO connections call cc_conn_init() during SYN
2426 			 * processing.  Calling it again here for such
2427 			 * connections is not harmless as it would undo the
2428 			 * snd_cwnd reduction that occurs when a TFO SYN|ACK
2429 			 * is retransmitted.
2430 			 */
2431 			if (!IS_FASTOPEN(tp->t_flags))
2432 				cc_conn_init(tp);
2433 			tcp_timer_activate(tp, TT_KEEP, TP_KEEPIDLE(tp));
2434 		}
2435 		/*
2436 		 * If segment contains data or ACK, will call tcp_reass()
2437 		 * later; if not, do so now to pass queued data to user.
2438 		 */
2439 		if (tlen == 0 && (thflags & TH_FIN) == 0)
2440 			(void) tcp_reass(tp, (struct tcphdr *)0, NULL, 0,
2441 			    (struct mbuf *)0);
2442 		tp->snd_wl1 = th->th_seq - 1;
2443 		/* FALLTHROUGH */
2444 
2445 	/*
2446 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
2447 	 * ACKs.  If the ack is in the range
2448 	 *	tp->snd_una < th->th_ack <= tp->snd_max
2449 	 * then advance tp->snd_una to th->th_ack and drop
2450 	 * data from the retransmission queue.  If this ACK reflects
2451 	 * more up to date window information we update our window information.
2452 	 */
2453 	case TCPS_ESTABLISHED:
2454 	case TCPS_FIN_WAIT_1:
2455 	case TCPS_FIN_WAIT_2:
2456 	case TCPS_CLOSE_WAIT:
2457 	case TCPS_CLOSING:
2458 	case TCPS_LAST_ACK:
2459 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
2460 			TCPSTAT_INC(tcps_rcvacktoomuch);
2461 			goto dropafterack;
2462 		}
2463 		if ((tp->t_flags & TF_SACK_PERMIT) &&
2464 		    ((to.to_flags & TOF_SACK) ||
2465 		     !TAILQ_EMPTY(&tp->snd_holes)))
2466 			sack_changed = tcp_sack_doack(tp, &to, th->th_ack);
2467 		else
2468 			/*
2469 			 * Reset the value so that previous (valid) value
2470 			 * from the last ack with SACK doesn't get used.
2471 			 */
2472 			tp->sackhint.sacked_bytes = 0;
2473 
2474 #ifdef TCP_HHOOK
2475 		/* Run HHOOK_TCP_ESTABLISHED_IN helper hooks. */
2476 		hhook_run_tcp_est_in(tp, th, &to);
2477 #endif
2478 
2479 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
2480 			u_int maxseg;
2481 
2482 			maxseg = tcp_maxseg(tp);
2483 			if (tlen == 0 &&
2484 			    (tiwin == tp->snd_wnd ||
2485 			    (tp->t_flags & TF_SACK_PERMIT))) {
2486 				/*
2487 				 * If this is the first time we've seen a
2488 				 * FIN from the remote, this is not a
2489 				 * duplicate and it needs to be processed
2490 				 * normally.  This happens during a
2491 				 * simultaneous close.
2492 				 */
2493 				if ((thflags & TH_FIN) &&
2494 				    (TCPS_HAVERCVDFIN(tp->t_state) == 0)) {
2495 					tp->t_dupacks = 0;
2496 					break;
2497 				}
2498 				TCPSTAT_INC(tcps_rcvdupack);
2499 				/*
2500 				 * If we have outstanding data (other than
2501 				 * a window probe), this is a completely
2502 				 * duplicate ack (ie, window info didn't
2503 				 * change and FIN isn't set),
2504 				 * the ack is the biggest we've
2505 				 * seen and we've seen exactly our rexmt
2506 				 * threshold of them, assume a packet
2507 				 * has been dropped and retransmit it.
2508 				 * Kludge snd_nxt & the congestion
2509 				 * window so we send only this one
2510 				 * packet.
2511 				 *
2512 				 * We know we're losing at the current
2513 				 * window size so do congestion avoidance
2514 				 * (set ssthresh to half the current window
2515 				 * and pull our congestion window back to
2516 				 * the new ssthresh).
2517 				 *
2518 				 * Dup acks mean that packets have left the
2519 				 * network (they're now cached at the receiver)
2520 				 * so bump cwnd by the amount in the receiver
2521 				 * to keep a constant cwnd packets in the
2522 				 * network.
2523 				 *
2524 				 * When using TCP ECN, notify the peer that
2525 				 * we reduced the cwnd.
2526 				 */
2527 				/*
2528 				 * Following 2 kinds of acks should not affect
2529 				 * dupack counting:
2530 				 * 1) Old acks
2531 				 * 2) Acks with SACK but without any new SACK
2532 				 * information in them. These could result from
2533 				 * any anomaly in the network like a switch
2534 				 * duplicating packets or a possible DoS attack.
2535 				 */
2536 				if (th->th_ack != tp->snd_una ||
2537 				    ((tp->t_flags & TF_SACK_PERMIT) &&
2538 				    !sack_changed))
2539 					break;
2540 				else if (!tcp_timer_active(tp, TT_REXMT))
2541 					tp->t_dupacks = 0;
2542 				else if (++tp->t_dupacks > tcprexmtthresh ||
2543 				     IN_FASTRECOVERY(tp->t_flags)) {
2544 					cc_ack_received(tp, th, nsegs,
2545 					    CC_DUPACK);
2546 					if ((tp->t_flags & TF_SACK_PERMIT) &&
2547 					    IN_FASTRECOVERY(tp->t_flags)) {
2548 						int awnd;
2549 
2550 						/*
2551 						 * Compute the amount of data in flight first.
2552 						 * We can inject new data into the pipe iff
2553 						 * we have less than 1/2 the original window's
2554 						 * worth of data in flight.
2555 						 */
2556 						if (V_tcp_do_rfc6675_pipe)
2557 							awnd = tcp_compute_pipe(tp);
2558 						else
2559 							awnd = (tp->snd_nxt - tp->snd_fack) +
2560 								tp->sackhint.sack_bytes_rexmit;
2561 
2562 						if (awnd < tp->snd_ssthresh) {
2563 							tp->snd_cwnd += maxseg;
2564 							if (tp->snd_cwnd > tp->snd_ssthresh)
2565 								tp->snd_cwnd = tp->snd_ssthresh;
2566 						}
2567 					} else
2568 						tp->snd_cwnd += maxseg;
2569 					(void) tp->t_fb->tfb_tcp_output(tp);
2570 					goto drop;
2571 				} else if (tp->t_dupacks == tcprexmtthresh) {
2572 					tcp_seq onxt = tp->snd_nxt;
2573 
2574 					/*
2575 					 * If we're doing sack, check to
2576 					 * see if we're already in sack
2577 					 * recovery. If we're not doing sack,
2578 					 * check to see if we're in newreno
2579 					 * recovery.
2580 					 */
2581 					if (tp->t_flags & TF_SACK_PERMIT) {
2582 						if (IN_FASTRECOVERY(tp->t_flags)) {
2583 							tp->t_dupacks = 0;
2584 							break;
2585 						}
2586 					} else {
2587 						if (SEQ_LEQ(th->th_ack,
2588 						    tp->snd_recover)) {
2589 							tp->t_dupacks = 0;
2590 							break;
2591 						}
2592 					}
2593 					/* Congestion signal before ack. */
2594 					cc_cong_signal(tp, th, CC_NDUPACK);
2595 					cc_ack_received(tp, th, nsegs,
2596 					    CC_DUPACK);
2597 					tcp_timer_activate(tp, TT_REXMT, 0);
2598 					tp->t_rtttime = 0;
2599 					if (tp->t_flags & TF_SACK_PERMIT) {
2600 						TCPSTAT_INC(
2601 						    tcps_sack_recovery_episode);
2602 						tp->sack_newdata = tp->snd_nxt;
2603 						tp->snd_cwnd = maxseg;
2604 						(void) tp->t_fb->tfb_tcp_output(tp);
2605 						goto drop;
2606 					}
2607 					tp->snd_nxt = th->th_ack;
2608 					tp->snd_cwnd = maxseg;
2609 					(void) tp->t_fb->tfb_tcp_output(tp);
2610 					KASSERT(tp->snd_limited <= 2,
2611 					    ("%s: tp->snd_limited too big",
2612 					    __func__));
2613 					tp->snd_cwnd = tp->snd_ssthresh +
2614 					     maxseg *
2615 					     (tp->t_dupacks - tp->snd_limited);
2616 					if (SEQ_GT(onxt, tp->snd_nxt))
2617 						tp->snd_nxt = onxt;
2618 					goto drop;
2619 				} else if (V_tcp_do_rfc3042) {
2620 					/*
2621 					 * Process first and second duplicate
2622 					 * ACKs. Each indicates a segment
2623 					 * leaving the network, creating room
2624 					 * for more. Make sure we can send a
2625 					 * packet on reception of each duplicate
2626 					 * ACK by increasing snd_cwnd by one
2627 					 * segment. Restore the original
2628 					 * snd_cwnd after packet transmission.
2629 					 */
2630 					cc_ack_received(tp, th, nsegs,
2631 					    CC_DUPACK);
2632 					uint32_t oldcwnd = tp->snd_cwnd;
2633 					tcp_seq oldsndmax = tp->snd_max;
2634 					u_int sent;
2635 					int avail;
2636 
2637 					KASSERT(tp->t_dupacks == 1 ||
2638 					    tp->t_dupacks == 2,
2639 					    ("%s: dupacks not 1 or 2",
2640 					    __func__));
2641 					if (tp->t_dupacks == 1)
2642 						tp->snd_limited = 0;
2643 					tp->snd_cwnd =
2644 					    (tp->snd_nxt - tp->snd_una) +
2645 					    (tp->t_dupacks - tp->snd_limited) *
2646 					    maxseg;
2647 					/*
2648 					 * Only call tcp_output when there
2649 					 * is new data available to be sent.
2650 					 * Otherwise we would send pure ACKs.
2651 					 */
2652 					SOCKBUF_LOCK(&so->so_snd);
2653 					avail = sbavail(&so->so_snd) -
2654 					    (tp->snd_nxt - tp->snd_una);
2655 					SOCKBUF_UNLOCK(&so->so_snd);
2656 					if (avail > 0)
2657 						(void) tp->t_fb->tfb_tcp_output(tp);
2658 					sent = tp->snd_max - oldsndmax;
2659 					if (sent > maxseg) {
2660 						KASSERT((tp->t_dupacks == 2 &&
2661 						    tp->snd_limited == 0) ||
2662 						   (sent == maxseg + 1 &&
2663 						    tp->t_flags & TF_SENTFIN),
2664 						    ("%s: sent too much",
2665 						    __func__));
2666 						tp->snd_limited = 2;
2667 					} else if (sent > 0)
2668 						++tp->snd_limited;
2669 					tp->snd_cwnd = oldcwnd;
2670 					goto drop;
2671 				}
2672 			}
2673 			break;
2674 		} else {
2675 			/*
2676 			 * This ack is advancing the left edge, reset the
2677 			 * counter.
2678 			 */
2679 			tp->t_dupacks = 0;
2680 			/*
2681 			 * If this ack also has new SACK info, increment the
2682 			 * counter as per rfc6675.
2683 			 */
2684 			if ((tp->t_flags & TF_SACK_PERMIT) && sack_changed)
2685 				tp->t_dupacks++;
2686 		}
2687 
2688 		KASSERT(SEQ_GT(th->th_ack, tp->snd_una),
2689 		    ("%s: th_ack <= snd_una", __func__));
2690 
2691 		/*
2692 		 * If the congestion window was inflated to account
2693 		 * for the other side's cached packets, retract it.
2694 		 */
2695 		if (IN_FASTRECOVERY(tp->t_flags)) {
2696 			if (SEQ_LT(th->th_ack, tp->snd_recover)) {
2697 				if (tp->t_flags & TF_SACK_PERMIT)
2698 					tcp_sack_partialack(tp, th);
2699 				else
2700 					tcp_newreno_partial_ack(tp, th);
2701 			} else
2702 				cc_post_recovery(tp, th);
2703 		}
2704 		/*
2705 		 * If we reach this point, ACK is not a duplicate,
2706 		 *     i.e., it ACKs something we sent.
2707 		 */
2708 		if (tp->t_flags & TF_NEEDSYN) {
2709 			/*
2710 			 * T/TCP: Connection was half-synchronized, and our
2711 			 * SYN has been ACK'd (so connection is now fully
2712 			 * synchronized).  Go to non-starred state,
2713 			 * increment snd_una for ACK of SYN, and check if
2714 			 * we can do window scaling.
2715 			 */
2716 			tp->t_flags &= ~TF_NEEDSYN;
2717 			tp->snd_una++;
2718 			/* Do window scaling? */
2719 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2720 				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
2721 				tp->rcv_scale = tp->request_r_scale;
2722 				/* Send window already scaled. */
2723 			}
2724 		}
2725 
2726 process_ACK:
2727 		INP_WLOCK_ASSERT(tp->t_inpcb);
2728 
2729 		acked = BYTES_THIS_ACK(tp, th);
2730 		KASSERT(acked >= 0, ("%s: acked unexepectedly negative "
2731 		    "(tp->snd_una=%u, th->th_ack=%u, tp=%p, m=%p)", __func__,
2732 		    tp->snd_una, th->th_ack, tp, m));
2733 		TCPSTAT_ADD(tcps_rcvackpack, nsegs);
2734 		TCPSTAT_ADD(tcps_rcvackbyte, acked);
2735 
2736 		/*
2737 		 * If we just performed our first retransmit, and the ACK
2738 		 * arrives within our recovery window, then it was a mistake
2739 		 * to do the retransmit in the first place.  Recover our
2740 		 * original cwnd and ssthresh, and proceed to transmit where
2741 		 * we left off.
2742 		 */
2743 		if (tp->t_rxtshift == 1 &&
2744 		    tp->t_flags & TF_PREVVALID &&
2745 		    tp->t_badrxtwin &&
2746 		    SEQ_LT(to.to_tsecr, tp->t_badrxtwin))
2747 			cc_cong_signal(tp, th, CC_RTO_ERR);
2748 
2749 		/*
2750 		 * If we have a timestamp reply, update smoothed
2751 		 * round trip time.  If no timestamp is present but
2752 		 * transmit timer is running and timed sequence
2753 		 * number was acked, update smoothed round trip time.
2754 		 * Since we now have an rtt measurement, cancel the
2755 		 * timer backoff (cf., Phil Karn's retransmit alg.).
2756 		 * Recompute the initial retransmit timer.
2757 		 *
2758 		 * Some boxes send broken timestamp replies
2759 		 * during the SYN+ACK phase, ignore
2760 		 * timestamps of 0 or we could calculate a
2761 		 * huge RTT and blow up the retransmit timer.
2762 		 */
2763 		if ((to.to_flags & TOF_TS) != 0 && to.to_tsecr) {
2764 			uint32_t t;
2765 
2766 			t = tcp_ts_getticks() - to.to_tsecr;
2767 			if (!tp->t_rttlow || tp->t_rttlow > t)
2768 				tp->t_rttlow = t;
2769 			tcp_xmit_timer(tp, TCP_TS_TO_TICKS(t) + 1);
2770 		} else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq)) {
2771 			if (!tp->t_rttlow || tp->t_rttlow > ticks - tp->t_rtttime)
2772 				tp->t_rttlow = ticks - tp->t_rtttime;
2773 			tcp_xmit_timer(tp, ticks - tp->t_rtttime);
2774 		}
2775 
2776 		/*
2777 		 * If all outstanding data is acked, stop retransmit
2778 		 * timer and remember to restart (more output or persist).
2779 		 * If there is more data to be acked, restart retransmit
2780 		 * timer, using current (possibly backed-off) value.
2781 		 */
2782 		if (th->th_ack == tp->snd_max) {
2783 			tcp_timer_activate(tp, TT_REXMT, 0);
2784 			needoutput = 1;
2785 		} else if (!tcp_timer_active(tp, TT_PERSIST))
2786 			tcp_timer_activate(tp, TT_REXMT, tp->t_rxtcur);
2787 
2788 		/*
2789 		 * If no data (only SYN) was ACK'd,
2790 		 *    skip rest of ACK processing.
2791 		 */
2792 		if (acked == 0)
2793 			goto step6;
2794 
2795 		/*
2796 		 * Let the congestion control algorithm update congestion
2797 		 * control related information. This typically means increasing
2798 		 * the congestion window.
2799 		 */
2800 		cc_ack_received(tp, th, nsegs, CC_ACK);
2801 
2802 		SOCKBUF_LOCK(&so->so_snd);
2803 		if (acked > sbavail(&so->so_snd)) {
2804 			if (tp->snd_wnd >= sbavail(&so->so_snd))
2805 				tp->snd_wnd -= sbavail(&so->so_snd);
2806 			else
2807 				tp->snd_wnd = 0;
2808 			mfree = sbcut_locked(&so->so_snd,
2809 			    (int)sbavail(&so->so_snd));
2810 			ourfinisacked = 1;
2811 		} else {
2812 			mfree = sbcut_locked(&so->so_snd, acked);
2813 			if (tp->snd_wnd >= (uint32_t) acked)
2814 				tp->snd_wnd -= acked;
2815 			else
2816 				tp->snd_wnd = 0;
2817 			ourfinisacked = 0;
2818 		}
2819 		/* NB: sowwakeup_locked() does an implicit unlock. */
2820 		sowwakeup_locked(so);
2821 		m_freem(mfree);
2822 		/* Detect una wraparound. */
2823 		if (!IN_RECOVERY(tp->t_flags) &&
2824 		    SEQ_GT(tp->snd_una, tp->snd_recover) &&
2825 		    SEQ_LEQ(th->th_ack, tp->snd_recover))
2826 			tp->snd_recover = th->th_ack - 1;
2827 		/* XXXLAS: Can this be moved up into cc_post_recovery? */
2828 		if (IN_RECOVERY(tp->t_flags) &&
2829 		    SEQ_GEQ(th->th_ack, tp->snd_recover)) {
2830 			EXIT_RECOVERY(tp->t_flags);
2831 		}
2832 		tp->snd_una = th->th_ack;
2833 		if (tp->t_flags & TF_SACK_PERMIT) {
2834 			if (SEQ_GT(tp->snd_una, tp->snd_recover))
2835 				tp->snd_recover = tp->snd_una;
2836 		}
2837 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2838 			tp->snd_nxt = tp->snd_una;
2839 
2840 		switch (tp->t_state) {
2841 
2842 		/*
2843 		 * In FIN_WAIT_1 STATE in addition to the processing
2844 		 * for the ESTABLISHED state if our FIN is now acknowledged
2845 		 * then enter FIN_WAIT_2.
2846 		 */
2847 		case TCPS_FIN_WAIT_1:
2848 			if (ourfinisacked) {
2849 				/*
2850 				 * If we can't receive any more
2851 				 * data, then closing user can proceed.
2852 				 * Starting the timer is contrary to the
2853 				 * specification, but if we don't get a FIN
2854 				 * we'll hang forever.
2855 				 *
2856 				 * XXXjl:
2857 				 * we should release the tp also, and use a
2858 				 * compressed state.
2859 				 */
2860 				if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
2861 					soisdisconnected(so);
2862 					tcp_timer_activate(tp, TT_2MSL,
2863 					    (tcp_fast_finwait2_recycle ?
2864 					    tcp_finwait2_timeout :
2865 					    TP_MAXIDLE(tp)));
2866 				}
2867 				tcp_state_change(tp, TCPS_FIN_WAIT_2);
2868 			}
2869 			break;
2870 
2871 		/*
2872 		 * In CLOSING STATE in addition to the processing for
2873 		 * the ESTABLISHED state if the ACK acknowledges our FIN
2874 		 * then enter the TIME-WAIT state, otherwise ignore
2875 		 * the segment.
2876 		 */
2877 		case TCPS_CLOSING:
2878 			if (ourfinisacked) {
2879 				INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
2880 				tcp_twstart(tp);
2881 				m_freem(m);
2882 				return;
2883 			}
2884 			break;
2885 
2886 		/*
2887 		 * In LAST_ACK, we may still be waiting for data to drain
2888 		 * and/or to be acked, as well as for the ack of our FIN.
2889 		 * If our FIN is now acknowledged, delete the TCB,
2890 		 * enter the closed state and return.
2891 		 */
2892 		case TCPS_LAST_ACK:
2893 			if (ourfinisacked) {
2894 				INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
2895 				tp = tcp_close(tp);
2896 				goto drop;
2897 			}
2898 			break;
2899 		}
2900 	}
2901 
2902 step6:
2903 	INP_WLOCK_ASSERT(tp->t_inpcb);
2904 
2905 	/*
2906 	 * Update window information.
2907 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2908 	 */
2909 	if ((thflags & TH_ACK) &&
2910 	    (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2911 	    (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
2912 	     (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
2913 		/* keep track of pure window updates */
2914 		if (tlen == 0 &&
2915 		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2916 			TCPSTAT_INC(tcps_rcvwinupd);
2917 		tp->snd_wnd = tiwin;
2918 		tp->snd_wl1 = th->th_seq;
2919 		tp->snd_wl2 = th->th_ack;
2920 		if (tp->snd_wnd > tp->max_sndwnd)
2921 			tp->max_sndwnd = tp->snd_wnd;
2922 		needoutput = 1;
2923 	}
2924 
2925 	/*
2926 	 * Process segments with URG.
2927 	 */
2928 	if ((thflags & TH_URG) && th->th_urp &&
2929 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2930 		/*
2931 		 * This is a kludge, but if we receive and accept
2932 		 * random urgent pointers, we'll crash in
2933 		 * soreceive.  It's hard to imagine someone
2934 		 * actually wanting to send this much urgent data.
2935 		 */
2936 		SOCKBUF_LOCK(&so->so_rcv);
2937 		if (th->th_urp + sbavail(&so->so_rcv) > sb_max) {
2938 			th->th_urp = 0;			/* XXX */
2939 			thflags &= ~TH_URG;		/* XXX */
2940 			SOCKBUF_UNLOCK(&so->so_rcv);	/* XXX */
2941 			goto dodata;			/* XXX */
2942 		}
2943 		/*
2944 		 * If this segment advances the known urgent pointer,
2945 		 * then mark the data stream.  This should not happen
2946 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2947 		 * a FIN has been received from the remote side.
2948 		 * In these states we ignore the URG.
2949 		 *
2950 		 * According to RFC961 (Assigned Protocols),
2951 		 * the urgent pointer points to the last octet
2952 		 * of urgent data.  We continue, however,
2953 		 * to consider it to indicate the first octet
2954 		 * of data past the urgent section as the original
2955 		 * spec states (in one of two places).
2956 		 */
2957 		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2958 			tp->rcv_up = th->th_seq + th->th_urp;
2959 			so->so_oobmark = sbavail(&so->so_rcv) +
2960 			    (tp->rcv_up - tp->rcv_nxt) - 1;
2961 			if (so->so_oobmark == 0)
2962 				so->so_rcv.sb_state |= SBS_RCVATMARK;
2963 			sohasoutofband(so);
2964 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2965 		}
2966 		SOCKBUF_UNLOCK(&so->so_rcv);
2967 		/*
2968 		 * Remove out of band data so doesn't get presented to user.
2969 		 * This can happen independent of advancing the URG pointer,
2970 		 * but if two URG's are pending at once, some out-of-band
2971 		 * data may creep in... ick.
2972 		 */
2973 		if (th->th_urp <= (uint32_t)tlen &&
2974 		    !(so->so_options & SO_OOBINLINE)) {
2975 			/* hdr drop is delayed */
2976 			tcp_pulloutofband(so, th, m, drop_hdrlen);
2977 		}
2978 	} else {
2979 		/*
2980 		 * If no out of band data is expected,
2981 		 * pull receive urgent pointer along
2982 		 * with the receive window.
2983 		 */
2984 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2985 			tp->rcv_up = tp->rcv_nxt;
2986 	}
2987 dodata:							/* XXX */
2988 	INP_WLOCK_ASSERT(tp->t_inpcb);
2989 
2990 	/*
2991 	 * Process the segment text, merging it into the TCP sequencing queue,
2992 	 * and arranging for acknowledgment of receipt if necessary.
2993 	 * This process logically involves adjusting tp->rcv_wnd as data
2994 	 * is presented to the user (this happens in tcp_usrreq.c,
2995 	 * case PRU_RCVD).  If a FIN has already been received on this
2996 	 * connection then we just ignore the text.
2997 	 */
2998 	tfo_syn = ((tp->t_state == TCPS_SYN_RECEIVED) &&
2999 		   IS_FASTOPEN(tp->t_flags));
3000 	if ((tlen || (thflags & TH_FIN) || tfo_syn) &&
3001 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
3002 		tcp_seq save_start = th->th_seq;
3003 		tcp_seq save_rnxt  = tp->rcv_nxt;
3004 		int     save_tlen  = tlen;
3005 		m_adj(m, drop_hdrlen);	/* delayed header drop */
3006 		/*
3007 		 * Insert segment which includes th into TCP reassembly queue
3008 		 * with control block tp.  Set thflags to whether reassembly now
3009 		 * includes a segment with FIN.  This handles the common case
3010 		 * inline (segment is the next to be received on an established
3011 		 * connection, and the queue is empty), avoiding linkage into
3012 		 * and removal from the queue and repetition of various
3013 		 * conversions.
3014 		 * Set DELACK for segments received in order, but ack
3015 		 * immediately when segments are out of order (so
3016 		 * fast retransmit can work).
3017 		 */
3018 		if (th->th_seq == tp->rcv_nxt &&
3019 		    SEGQ_EMPTY(tp) &&
3020 		    (TCPS_HAVEESTABLISHED(tp->t_state) ||
3021 		     tfo_syn)) {
3022 			if (DELAY_ACK(tp, tlen) || tfo_syn)
3023 				tp->t_flags |= TF_DELACK;
3024 			else
3025 				tp->t_flags |= TF_ACKNOW;
3026 			tp->rcv_nxt += tlen;
3027 			thflags = th->th_flags & TH_FIN;
3028 			TCPSTAT_INC(tcps_rcvpack);
3029 			TCPSTAT_ADD(tcps_rcvbyte, tlen);
3030 			SOCKBUF_LOCK(&so->so_rcv);
3031 			if (so->so_rcv.sb_state & SBS_CANTRCVMORE)
3032 				m_freem(m);
3033 			else
3034 				sbappendstream_locked(&so->so_rcv, m, 0);
3035 			/* NB: sorwakeup_locked() does an implicit unlock. */
3036 			sorwakeup_locked(so);
3037 		} else {
3038 			/*
3039 			 * XXX: Due to the header drop above "th" is
3040 			 * theoretically invalid by now.  Fortunately
3041 			 * m_adj() doesn't actually frees any mbufs
3042 			 * when trimming from the head.
3043 			 */
3044 			tcp_seq temp = save_start;
3045 			thflags = tcp_reass(tp, th, &temp, &tlen, m);
3046 			tp->t_flags |= TF_ACKNOW;
3047 		}
3048 		if (tp->t_flags & TF_SACK_PERMIT) {
3049 			if (((tlen == 0) && (save_tlen > 0) &&
3050 			    (SEQ_LT(save_start, save_rnxt)))) {
3051 				/*
3052 				 * DSACK actually handled in the fastpath
3053 				 * above.
3054 				 */
3055 				tcp_update_sack_list(tp, save_start, save_start + save_tlen);
3056 			} else
3057 			if ((tlen > 0) && SEQ_GT(tp->rcv_nxt, save_rnxt)) {
3058 				/*
3059 				 * Cleaning sackblks by using zero length
3060 				 * update.
3061 				 */
3062 				tcp_update_sack_list(tp, save_start, save_start);
3063 			} else
3064 			if ((tlen > 0) && (tlen >= save_tlen)) {
3065 				/* Update of sackblks. */
3066 				tcp_update_sack_list(tp, save_start, save_start + save_tlen);
3067 			} else
3068 			if (tlen > 0) {
3069 				tcp_update_sack_list(tp, save_start, save_start+tlen);
3070 			}
3071 		}
3072 #if 0
3073 		/*
3074 		 * Note the amount of data that peer has sent into
3075 		 * our window, in order to estimate the sender's
3076 		 * buffer size.
3077 		 * XXX: Unused.
3078 		 */
3079 		if (SEQ_GT(tp->rcv_adv, tp->rcv_nxt))
3080 			len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
3081 		else
3082 			len = so->so_rcv.sb_hiwat;
3083 #endif
3084 	} else {
3085 		m_freem(m);
3086 		thflags &= ~TH_FIN;
3087 	}
3088 
3089 	/*
3090 	 * If FIN is received ACK the FIN and let the user know
3091 	 * that the connection is closing.
3092 	 */
3093 	if (thflags & TH_FIN) {
3094 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
3095 			socantrcvmore(so);
3096 			/*
3097 			 * If connection is half-synchronized
3098 			 * (ie NEEDSYN flag on) then delay ACK,
3099 			 * so it may be piggybacked when SYN is sent.
3100 			 * Otherwise, since we received a FIN then no
3101 			 * more input can be expected, send ACK now.
3102 			 */
3103 			if (tp->t_flags & TF_NEEDSYN)
3104 				tp->t_flags |= TF_DELACK;
3105 			else
3106 				tp->t_flags |= TF_ACKNOW;
3107 			tp->rcv_nxt++;
3108 		}
3109 		switch (tp->t_state) {
3110 
3111 		/*
3112 		 * In SYN_RECEIVED and ESTABLISHED STATES
3113 		 * enter the CLOSE_WAIT state.
3114 		 */
3115 		case TCPS_SYN_RECEIVED:
3116 			tp->t_starttime = ticks;
3117 			/* FALLTHROUGH */
3118 		case TCPS_ESTABLISHED:
3119 			tcp_state_change(tp, TCPS_CLOSE_WAIT);
3120 			break;
3121 
3122 		/*
3123 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
3124 		 * enter the CLOSING state.
3125 		 */
3126 		case TCPS_FIN_WAIT_1:
3127 			tcp_state_change(tp, TCPS_CLOSING);
3128 			break;
3129 
3130 		/*
3131 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
3132 		 * starting the time-wait timer, turning off the other
3133 		 * standard timers.
3134 		 */
3135 		case TCPS_FIN_WAIT_2:
3136 			INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
3137 
3138 			tcp_twstart(tp);
3139 			return;
3140 		}
3141 	}
3142 #ifdef TCPDEBUG
3143 	if (so->so_options & SO_DEBUG)
3144 		tcp_trace(TA_INPUT, ostate, tp, (void *)tcp_saveipgen,
3145 			  &tcp_savetcp, 0);
3146 #endif
3147 	TCP_PROBE3(debug__input, tp, th, m);
3148 
3149 	/*
3150 	 * Return any desired output.
3151 	 */
3152 	if (needoutput || (tp->t_flags & TF_ACKNOW))
3153 		(void) tp->t_fb->tfb_tcp_output(tp);
3154 
3155 check_delack:
3156 	INP_WLOCK_ASSERT(tp->t_inpcb);
3157 
3158 	if (tp->t_flags & TF_DELACK) {
3159 		tp->t_flags &= ~TF_DELACK;
3160 		tcp_timer_activate(tp, TT_DELACK, tcp_delacktime);
3161 	}
3162 	INP_WUNLOCK(tp->t_inpcb);
3163 	return;
3164 
3165 dropafterack:
3166 	/*
3167 	 * Generate an ACK dropping incoming segment if it occupies
3168 	 * sequence space, where the ACK reflects our state.
3169 	 *
3170 	 * We can now skip the test for the RST flag since all
3171 	 * paths to this code happen after packets containing
3172 	 * RST have been dropped.
3173 	 *
3174 	 * In the SYN-RECEIVED state, don't send an ACK unless the
3175 	 * segment we received passes the SYN-RECEIVED ACK test.
3176 	 * If it fails send a RST.  This breaks the loop in the
3177 	 * "LAND" DoS attack, and also prevents an ACK storm
3178 	 * between two listening ports that have been sent forged
3179 	 * SYN segments, each with the source address of the other.
3180 	 */
3181 	if (tp->t_state == TCPS_SYN_RECEIVED && (thflags & TH_ACK) &&
3182 	    (SEQ_GT(tp->snd_una, th->th_ack) ||
3183 	     SEQ_GT(th->th_ack, tp->snd_max)) ) {
3184 		rstreason = BANDLIM_RST_OPENPORT;
3185 		goto dropwithreset;
3186 	}
3187 #ifdef TCPDEBUG
3188 	if (so->so_options & SO_DEBUG)
3189 		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
3190 			  &tcp_savetcp, 0);
3191 #endif
3192 	TCP_PROBE3(debug__input, tp, th, m);
3193 	tp->t_flags |= TF_ACKNOW;
3194 	(void) tp->t_fb->tfb_tcp_output(tp);
3195 	INP_WUNLOCK(tp->t_inpcb);
3196 	m_freem(m);
3197 	return;
3198 
3199 dropwithreset:
3200 	if (tp != NULL) {
3201 		tcp_dropwithreset(m, th, tp, tlen, rstreason);
3202 		INP_WUNLOCK(tp->t_inpcb);
3203 	} else
3204 		tcp_dropwithreset(m, th, NULL, tlen, rstreason);
3205 	return;
3206 
3207 drop:
3208 	/*
3209 	 * Drop space held by incoming segment and return.
3210 	 */
3211 #ifdef TCPDEBUG
3212 	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
3213 		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
3214 			  &tcp_savetcp, 0);
3215 #endif
3216 	TCP_PROBE3(debug__input, tp, th, m);
3217 	if (tp != NULL)
3218 		INP_WUNLOCK(tp->t_inpcb);
3219 	m_freem(m);
3220 }
3221 
3222 /*
3223  * Issue RST and make ACK acceptable to originator of segment.
3224  * The mbuf must still include the original packet header.
3225  * tp may be NULL.
3226  */
3227 void
3228 tcp_dropwithreset(struct mbuf *m, struct tcphdr *th, struct tcpcb *tp,
3229     int tlen, int rstreason)
3230 {
3231 #ifdef INET
3232 	struct ip *ip;
3233 #endif
3234 #ifdef INET6
3235 	struct ip6_hdr *ip6;
3236 #endif
3237 
3238 	if (tp != NULL) {
3239 		INP_WLOCK_ASSERT(tp->t_inpcb);
3240 	}
3241 
3242 	/* Don't bother if destination was broadcast/multicast. */
3243 	if ((th->th_flags & TH_RST) || m->m_flags & (M_BCAST|M_MCAST))
3244 		goto drop;
3245 #ifdef INET6
3246 	if (mtod(m, struct ip *)->ip_v == 6) {
3247 		ip6 = mtod(m, struct ip6_hdr *);
3248 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
3249 		    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
3250 			goto drop;
3251 		/* IPv6 anycast check is done at tcp6_input() */
3252 	}
3253 #endif
3254 #if defined(INET) && defined(INET6)
3255 	else
3256 #endif
3257 #ifdef INET
3258 	{
3259 		ip = mtod(m, struct ip *);
3260 		if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
3261 		    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
3262 		    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
3263 		    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
3264 			goto drop;
3265 	}
3266 #endif
3267 
3268 	/* Perform bandwidth limiting. */
3269 	if (badport_bandlim(rstreason) < 0)
3270 		goto drop;
3271 
3272 	/* tcp_respond consumes the mbuf chain. */
3273 	if (th->th_flags & TH_ACK) {
3274 		tcp_respond(tp, mtod(m, void *), th, m, (tcp_seq)0,
3275 		    th->th_ack, TH_RST);
3276 	} else {
3277 		if (th->th_flags & TH_SYN)
3278 			tlen++;
3279 		if (th->th_flags & TH_FIN)
3280 			tlen++;
3281 		tcp_respond(tp, mtod(m, void *), th, m, th->th_seq+tlen,
3282 		    (tcp_seq)0, TH_RST|TH_ACK);
3283 	}
3284 	return;
3285 drop:
3286 	m_freem(m);
3287 }
3288 
3289 /*
3290  * Parse TCP options and place in tcpopt.
3291  */
3292 void
3293 tcp_dooptions(struct tcpopt *to, u_char *cp, int cnt, int flags)
3294 {
3295 	int opt, optlen;
3296 
3297 	to->to_flags = 0;
3298 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
3299 		opt = cp[0];
3300 		if (opt == TCPOPT_EOL)
3301 			break;
3302 		if (opt == TCPOPT_NOP)
3303 			optlen = 1;
3304 		else {
3305 			if (cnt < 2)
3306 				break;
3307 			optlen = cp[1];
3308 			if (optlen < 2 || optlen > cnt)
3309 				break;
3310 		}
3311 		switch (opt) {
3312 		case TCPOPT_MAXSEG:
3313 			if (optlen != TCPOLEN_MAXSEG)
3314 				continue;
3315 			if (!(flags & TO_SYN))
3316 				continue;
3317 			to->to_flags |= TOF_MSS;
3318 			bcopy((char *)cp + 2,
3319 			    (char *)&to->to_mss, sizeof(to->to_mss));
3320 			to->to_mss = ntohs(to->to_mss);
3321 			break;
3322 		case TCPOPT_WINDOW:
3323 			if (optlen != TCPOLEN_WINDOW)
3324 				continue;
3325 			if (!(flags & TO_SYN))
3326 				continue;
3327 			to->to_flags |= TOF_SCALE;
3328 			to->to_wscale = min(cp[2], TCP_MAX_WINSHIFT);
3329 			break;
3330 		case TCPOPT_TIMESTAMP:
3331 			if (optlen != TCPOLEN_TIMESTAMP)
3332 				continue;
3333 			to->to_flags |= TOF_TS;
3334 			bcopy((char *)cp + 2,
3335 			    (char *)&to->to_tsval, sizeof(to->to_tsval));
3336 			to->to_tsval = ntohl(to->to_tsval);
3337 			bcopy((char *)cp + 6,
3338 			    (char *)&to->to_tsecr, sizeof(to->to_tsecr));
3339 			to->to_tsecr = ntohl(to->to_tsecr);
3340 			break;
3341 		case TCPOPT_SIGNATURE:
3342 			/*
3343 			 * In order to reply to a host which has set the
3344 			 * TCP_SIGNATURE option in its initial SYN, we have
3345 			 * to record the fact that the option was observed
3346 			 * here for the syncache code to perform the correct
3347 			 * response.
3348 			 */
3349 			if (optlen != TCPOLEN_SIGNATURE)
3350 				continue;
3351 			to->to_flags |= TOF_SIGNATURE;
3352 			to->to_signature = cp + 2;
3353 			break;
3354 		case TCPOPT_SACK_PERMITTED:
3355 			if (optlen != TCPOLEN_SACK_PERMITTED)
3356 				continue;
3357 			if (!(flags & TO_SYN))
3358 				continue;
3359 			if (!V_tcp_do_sack)
3360 				continue;
3361 			to->to_flags |= TOF_SACKPERM;
3362 			break;
3363 		case TCPOPT_SACK:
3364 			if (optlen <= 2 || (optlen - 2) % TCPOLEN_SACK != 0)
3365 				continue;
3366 			if (flags & TO_SYN)
3367 				continue;
3368 			to->to_flags |= TOF_SACK;
3369 			to->to_nsacks = (optlen - 2) / TCPOLEN_SACK;
3370 			to->to_sacks = cp + 2;
3371 			TCPSTAT_INC(tcps_sack_rcv_blocks);
3372 			break;
3373 		case TCPOPT_FAST_OPEN:
3374 			/*
3375 			 * Cookie length validation is performed by the
3376 			 * server side cookie checking code or the client
3377 			 * side cookie cache update code.
3378 			 */
3379 			if (!(flags & TO_SYN))
3380 				continue;
3381 			if (!V_tcp_fastopen_client_enable &&
3382 			    !V_tcp_fastopen_server_enable)
3383 				continue;
3384 			to->to_flags |= TOF_FASTOPEN;
3385 			to->to_tfo_len = optlen - 2;
3386 			to->to_tfo_cookie = to->to_tfo_len ? cp + 2 : NULL;
3387 			break;
3388 		default:
3389 			continue;
3390 		}
3391 	}
3392 }
3393 
3394 /*
3395  * Pull out of band byte out of a segment so
3396  * it doesn't appear in the user's data queue.
3397  * It is still reflected in the segment length for
3398  * sequencing purposes.
3399  */
3400 void
3401 tcp_pulloutofband(struct socket *so, struct tcphdr *th, struct mbuf *m,
3402     int off)
3403 {
3404 	int cnt = off + th->th_urp - 1;
3405 
3406 	while (cnt >= 0) {
3407 		if (m->m_len > cnt) {
3408 			char *cp = mtod(m, caddr_t) + cnt;
3409 			struct tcpcb *tp = sototcpcb(so);
3410 
3411 			INP_WLOCK_ASSERT(tp->t_inpcb);
3412 
3413 			tp->t_iobc = *cp;
3414 			tp->t_oobflags |= TCPOOB_HAVEDATA;
3415 			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
3416 			m->m_len--;
3417 			if (m->m_flags & M_PKTHDR)
3418 				m->m_pkthdr.len--;
3419 			return;
3420 		}
3421 		cnt -= m->m_len;
3422 		m = m->m_next;
3423 		if (m == NULL)
3424 			break;
3425 	}
3426 	panic("tcp_pulloutofband");
3427 }
3428 
3429 /*
3430  * Collect new round-trip time estimate
3431  * and update averages and current timeout.
3432  */
3433 void
3434 tcp_xmit_timer(struct tcpcb *tp, int rtt)
3435 {
3436 	int delta;
3437 
3438 	INP_WLOCK_ASSERT(tp->t_inpcb);
3439 
3440 	TCPSTAT_INC(tcps_rttupdated);
3441 	tp->t_rttupdated++;
3442 	if ((tp->t_srtt != 0) && (tp->t_rxtshift <= TCP_RTT_INVALIDATE)) {
3443 		/*
3444 		 * srtt is stored as fixed point with 5 bits after the
3445 		 * binary point (i.e., scaled by 8).  The following magic
3446 		 * is equivalent to the smoothing algorithm in rfc793 with
3447 		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
3448 		 * point).  Adjust rtt to origin 0.
3449 		 */
3450 		delta = ((rtt - 1) << TCP_DELTA_SHIFT)
3451 			- (tp->t_srtt >> (TCP_RTT_SHIFT - TCP_DELTA_SHIFT));
3452 
3453 		if ((tp->t_srtt += delta) <= 0)
3454 			tp->t_srtt = 1;
3455 
3456 		/*
3457 		 * We accumulate a smoothed rtt variance (actually, a
3458 		 * smoothed mean difference), then set the retransmit
3459 		 * timer to smoothed rtt + 4 times the smoothed variance.
3460 		 * rttvar is stored as fixed point with 4 bits after the
3461 		 * binary point (scaled by 16).  The following is
3462 		 * equivalent to rfc793 smoothing with an alpha of .75
3463 		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
3464 		 * rfc793's wired-in beta.
3465 		 */
3466 		if (delta < 0)
3467 			delta = -delta;
3468 		delta -= tp->t_rttvar >> (TCP_RTTVAR_SHIFT - TCP_DELTA_SHIFT);
3469 		if ((tp->t_rttvar += delta) <= 0)
3470 			tp->t_rttvar = 1;
3471 		if (tp->t_rttbest > tp->t_srtt + tp->t_rttvar)
3472 		    tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
3473 	} else {
3474 		/*
3475 		 * No rtt measurement yet - use the unsmoothed rtt.
3476 		 * Set the variance to half the rtt (so our first
3477 		 * retransmit happens at 3*rtt).
3478 		 */
3479 		tp->t_srtt = rtt << TCP_RTT_SHIFT;
3480 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1);
3481 		tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
3482 	}
3483 	tp->t_rtttime = 0;
3484 	tp->t_rxtshift = 0;
3485 
3486 	/*
3487 	 * the retransmit should happen at rtt + 4 * rttvar.
3488 	 * Because of the way we do the smoothing, srtt and rttvar
3489 	 * will each average +1/2 tick of bias.  When we compute
3490 	 * the retransmit timer, we want 1/2 tick of rounding and
3491 	 * 1 extra tick because of +-1/2 tick uncertainty in the
3492 	 * firing of the timer.  The bias will give us exactly the
3493 	 * 1.5 tick we need.  But, because the bias is
3494 	 * statistical, we have to test that we don't drop below
3495 	 * the minimum feasible timer (which is 2 ticks).
3496 	 */
3497 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
3498 		      max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
3499 
3500 	/*
3501 	 * We received an ack for a packet that wasn't retransmitted;
3502 	 * it is probably safe to discard any error indications we've
3503 	 * received recently.  This isn't quite right, but close enough
3504 	 * for now (a route might have failed after we sent a segment,
3505 	 * and the return path might not be symmetrical).
3506 	 */
3507 	tp->t_softerror = 0;
3508 }
3509 
3510 /*
3511  * Determine a reasonable value for maxseg size.
3512  * If the route is known, check route for mtu.
3513  * If none, use an mss that can be handled on the outgoing interface
3514  * without forcing IP to fragment.  If no route is found, route has no mtu,
3515  * or the destination isn't local, use a default, hopefully conservative
3516  * size (usually 512 or the default IP max size, but no more than the mtu
3517  * of the interface), as we can't discover anything about intervening
3518  * gateways or networks.  We also initialize the congestion/slow start
3519  * window to be a single segment if the destination isn't local.
3520  * While looking at the routing entry, we also initialize other path-dependent
3521  * parameters from pre-set or cached values in the routing entry.
3522  *
3523  * NOTE that resulting t_maxseg doesn't include space for TCP options or
3524  * IP options, e.g. IPSEC data, since length of this data may vary, and
3525  * thus it is calculated for every segment separately in tcp_output().
3526  *
3527  * NOTE that this routine is only called when we process an incoming
3528  * segment, or an ICMP need fragmentation datagram. Outgoing SYN/ACK MSS
3529  * settings are handled in tcp_mssopt().
3530  */
3531 void
3532 tcp_mss_update(struct tcpcb *tp, int offer, int mtuoffer,
3533     struct hc_metrics_lite *metricptr, struct tcp_ifcap *cap)
3534 {
3535 	int mss = 0;
3536 	uint32_t maxmtu = 0;
3537 	struct inpcb *inp = tp->t_inpcb;
3538 	struct hc_metrics_lite metrics;
3539 #ifdef INET6
3540 	int isipv6 = ((inp->inp_vflag & INP_IPV6) != 0) ? 1 : 0;
3541 	size_t min_protoh = isipv6 ?
3542 			    sizeof (struct ip6_hdr) + sizeof (struct tcphdr) :
3543 			    sizeof (struct tcpiphdr);
3544 #else
3545 	const size_t min_protoh = sizeof(struct tcpiphdr);
3546 #endif
3547 
3548 	INP_WLOCK_ASSERT(tp->t_inpcb);
3549 
3550 	if (mtuoffer != -1) {
3551 		KASSERT(offer == -1, ("%s: conflict", __func__));
3552 		offer = mtuoffer - min_protoh;
3553 	}
3554 
3555 	/* Initialize. */
3556 #ifdef INET6
3557 	if (isipv6) {
3558 		maxmtu = tcp_maxmtu6(&inp->inp_inc, cap);
3559 		tp->t_maxseg = V_tcp_v6mssdflt;
3560 	}
3561 #endif
3562 #if defined(INET) && defined(INET6)
3563 	else
3564 #endif
3565 #ifdef INET
3566 	{
3567 		maxmtu = tcp_maxmtu(&inp->inp_inc, cap);
3568 		tp->t_maxseg = V_tcp_mssdflt;
3569 	}
3570 #endif
3571 
3572 	/*
3573 	 * No route to sender, stay with default mss and return.
3574 	 */
3575 	if (maxmtu == 0) {
3576 		/*
3577 		 * In case we return early we need to initialize metrics
3578 		 * to a defined state as tcp_hc_get() would do for us
3579 		 * if there was no cache hit.
3580 		 */
3581 		if (metricptr != NULL)
3582 			bzero(metricptr, sizeof(struct hc_metrics_lite));
3583 		return;
3584 	}
3585 
3586 	/* What have we got? */
3587 	switch (offer) {
3588 		case 0:
3589 			/*
3590 			 * Offer == 0 means that there was no MSS on the SYN
3591 			 * segment, in this case we use tcp_mssdflt as
3592 			 * already assigned to t_maxseg above.
3593 			 */
3594 			offer = tp->t_maxseg;
3595 			break;
3596 
3597 		case -1:
3598 			/*
3599 			 * Offer == -1 means that we didn't receive SYN yet.
3600 			 */
3601 			/* FALLTHROUGH */
3602 
3603 		default:
3604 			/*
3605 			 * Prevent DoS attack with too small MSS. Round up
3606 			 * to at least minmss.
3607 			 */
3608 			offer = max(offer, V_tcp_minmss);
3609 	}
3610 
3611 	/*
3612 	 * rmx information is now retrieved from tcp_hostcache.
3613 	 */
3614 	tcp_hc_get(&inp->inp_inc, &metrics);
3615 	if (metricptr != NULL)
3616 		bcopy(&metrics, metricptr, sizeof(struct hc_metrics_lite));
3617 
3618 	/*
3619 	 * If there's a discovered mtu in tcp hostcache, use it.
3620 	 * Else, use the link mtu.
3621 	 */
3622 	if (metrics.rmx_mtu)
3623 		mss = min(metrics.rmx_mtu, maxmtu) - min_protoh;
3624 	else {
3625 #ifdef INET6
3626 		if (isipv6) {
3627 			mss = maxmtu - min_protoh;
3628 			if (!V_path_mtu_discovery &&
3629 			    !in6_localaddr(&inp->in6p_faddr))
3630 				mss = min(mss, V_tcp_v6mssdflt);
3631 		}
3632 #endif
3633 #if defined(INET) && defined(INET6)
3634 		else
3635 #endif
3636 #ifdef INET
3637 		{
3638 			mss = maxmtu - min_protoh;
3639 			if (!V_path_mtu_discovery &&
3640 			    !in_localaddr(inp->inp_faddr))
3641 				mss = min(mss, V_tcp_mssdflt);
3642 		}
3643 #endif
3644 		/*
3645 		 * XXX - The above conditional (mss = maxmtu - min_protoh)
3646 		 * probably violates the TCP spec.
3647 		 * The problem is that, since we don't know the
3648 		 * other end's MSS, we are supposed to use a conservative
3649 		 * default.  But, if we do that, then MTU discovery will
3650 		 * never actually take place, because the conservative
3651 		 * default is much less than the MTUs typically seen
3652 		 * on the Internet today.  For the moment, we'll sweep
3653 		 * this under the carpet.
3654 		 *
3655 		 * The conservative default might not actually be a problem
3656 		 * if the only case this occurs is when sending an initial
3657 		 * SYN with options and data to a host we've never talked
3658 		 * to before.  Then, they will reply with an MSS value which
3659 		 * will get recorded and the new parameters should get
3660 		 * recomputed.  For Further Study.
3661 		 */
3662 	}
3663 	mss = min(mss, offer);
3664 
3665 	/*
3666 	 * Sanity check: make sure that maxseg will be large
3667 	 * enough to allow some data on segments even if the
3668 	 * all the option space is used (40bytes).  Otherwise
3669 	 * funny things may happen in tcp_output.
3670 	 *
3671 	 * XXXGL: shouldn't we reserve space for IP/IPv6 options?
3672 	 */
3673 	mss = max(mss, 64);
3674 
3675 	tp->t_maxseg = mss;
3676 }
3677 
3678 void
3679 tcp_mss(struct tcpcb *tp, int offer)
3680 {
3681 	int mss;
3682 	uint32_t bufsize;
3683 	struct inpcb *inp;
3684 	struct socket *so;
3685 	struct hc_metrics_lite metrics;
3686 	struct tcp_ifcap cap;
3687 
3688 	KASSERT(tp != NULL, ("%s: tp == NULL", __func__));
3689 
3690 	bzero(&cap, sizeof(cap));
3691 	tcp_mss_update(tp, offer, -1, &metrics, &cap);
3692 
3693 	mss = tp->t_maxseg;
3694 	inp = tp->t_inpcb;
3695 
3696 	/*
3697 	 * If there's a pipesize, change the socket buffer to that size,
3698 	 * don't change if sb_hiwat is different than default (then it
3699 	 * has been changed on purpose with setsockopt).
3700 	 * Make the socket buffers an integral number of mss units;
3701 	 * if the mss is larger than the socket buffer, decrease the mss.
3702 	 */
3703 	so = inp->inp_socket;
3704 	SOCKBUF_LOCK(&so->so_snd);
3705 	if ((so->so_snd.sb_hiwat == V_tcp_sendspace) && metrics.rmx_sendpipe)
3706 		bufsize = metrics.rmx_sendpipe;
3707 	else
3708 		bufsize = so->so_snd.sb_hiwat;
3709 	if (bufsize < mss)
3710 		mss = bufsize;
3711 	else {
3712 		bufsize = roundup(bufsize, mss);
3713 		if (bufsize > sb_max)
3714 			bufsize = sb_max;
3715 		if (bufsize > so->so_snd.sb_hiwat)
3716 			(void)sbreserve_locked(&so->so_snd, bufsize, so, NULL);
3717 	}
3718 	SOCKBUF_UNLOCK(&so->so_snd);
3719 	/*
3720 	 * Sanity check: make sure that maxseg will be large
3721 	 * enough to allow some data on segments even if the
3722 	 * all the option space is used (40bytes).  Otherwise
3723 	 * funny things may happen in tcp_output.
3724 	 *
3725 	 * XXXGL: shouldn't we reserve space for IP/IPv6 options?
3726 	 */
3727 	tp->t_maxseg = max(mss, 64);
3728 
3729 	SOCKBUF_LOCK(&so->so_rcv);
3730 	if ((so->so_rcv.sb_hiwat == V_tcp_recvspace) && metrics.rmx_recvpipe)
3731 		bufsize = metrics.rmx_recvpipe;
3732 	else
3733 		bufsize = so->so_rcv.sb_hiwat;
3734 	if (bufsize > mss) {
3735 		bufsize = roundup(bufsize, mss);
3736 		if (bufsize > sb_max)
3737 			bufsize = sb_max;
3738 		if (bufsize > so->so_rcv.sb_hiwat)
3739 			(void)sbreserve_locked(&so->so_rcv, bufsize, so, NULL);
3740 	}
3741 	SOCKBUF_UNLOCK(&so->so_rcv);
3742 
3743 	/* Check the interface for TSO capabilities. */
3744 	if (cap.ifcap & CSUM_TSO) {
3745 		tp->t_flags |= TF_TSO;
3746 		tp->t_tsomax = cap.tsomax;
3747 		tp->t_tsomaxsegcount = cap.tsomaxsegcount;
3748 		tp->t_tsomaxsegsize = cap.tsomaxsegsize;
3749 	}
3750 }
3751 
3752 /*
3753  * Determine the MSS option to send on an outgoing SYN.
3754  */
3755 int
3756 tcp_mssopt(struct in_conninfo *inc)
3757 {
3758 	int mss = 0;
3759 	uint32_t thcmtu = 0;
3760 	uint32_t maxmtu = 0;
3761 	size_t min_protoh;
3762 
3763 	KASSERT(inc != NULL, ("tcp_mssopt with NULL in_conninfo pointer"));
3764 
3765 #ifdef INET6
3766 	if (inc->inc_flags & INC_ISIPV6) {
3767 		mss = V_tcp_v6mssdflt;
3768 		maxmtu = tcp_maxmtu6(inc, NULL);
3769 		min_protoh = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
3770 	}
3771 #endif
3772 #if defined(INET) && defined(INET6)
3773 	else
3774 #endif
3775 #ifdef INET
3776 	{
3777 		mss = V_tcp_mssdflt;
3778 		maxmtu = tcp_maxmtu(inc, NULL);
3779 		min_protoh = sizeof(struct tcpiphdr);
3780 	}
3781 #endif
3782 #if defined(INET6) || defined(INET)
3783 	thcmtu = tcp_hc_getmtu(inc); /* IPv4 and IPv6 */
3784 #endif
3785 
3786 	if (maxmtu && thcmtu)
3787 		mss = min(maxmtu, thcmtu) - min_protoh;
3788 	else if (maxmtu || thcmtu)
3789 		mss = max(maxmtu, thcmtu) - min_protoh;
3790 
3791 	return (mss);
3792 }
3793 
3794 
3795 /*
3796  * On a partial ack arrives, force the retransmission of the
3797  * next unacknowledged segment.  Do not clear tp->t_dupacks.
3798  * By setting snd_nxt to ti_ack, this forces retransmission timer to
3799  * be started again.
3800  */
3801 void
3802 tcp_newreno_partial_ack(struct tcpcb *tp, struct tcphdr *th)
3803 {
3804 	tcp_seq onxt = tp->snd_nxt;
3805 	uint32_t ocwnd = tp->snd_cwnd;
3806 	u_int maxseg = tcp_maxseg(tp);
3807 
3808 	INP_WLOCK_ASSERT(tp->t_inpcb);
3809 
3810 	tcp_timer_activate(tp, TT_REXMT, 0);
3811 	tp->t_rtttime = 0;
3812 	tp->snd_nxt = th->th_ack;
3813 	/*
3814 	 * Set snd_cwnd to one segment beyond acknowledged offset.
3815 	 * (tp->snd_una has not yet been updated when this function is called.)
3816 	 */
3817 	tp->snd_cwnd = maxseg + BYTES_THIS_ACK(tp, th);
3818 	tp->t_flags |= TF_ACKNOW;
3819 	(void) tp->t_fb->tfb_tcp_output(tp);
3820 	tp->snd_cwnd = ocwnd;
3821 	if (SEQ_GT(onxt, tp->snd_nxt))
3822 		tp->snd_nxt = onxt;
3823 	/*
3824 	 * Partial window deflation.  Relies on fact that tp->snd_una
3825 	 * not updated yet.
3826 	 */
3827 	if (tp->snd_cwnd > BYTES_THIS_ACK(tp, th))
3828 		tp->snd_cwnd -= BYTES_THIS_ACK(tp, th);
3829 	else
3830 		tp->snd_cwnd = 0;
3831 	tp->snd_cwnd += maxseg;
3832 }
3833 
3834 int
3835 tcp_compute_pipe(struct tcpcb *tp)
3836 {
3837 	return (tp->snd_max - tp->snd_una +
3838 		tp->sackhint.sack_bytes_rexmit -
3839 		tp->sackhint.sacked_bytes);
3840 }
3841 
3842 uint32_t
3843 tcp_compute_initwnd(uint32_t maxseg)
3844 {
3845 	/*
3846 	 * Calculate the Initial Window, also used as Restart Window
3847 	 *
3848 	 * RFC5681 Section 3.1 specifies the default conservative values.
3849 	 * RFC3390 specifies slightly more aggressive values.
3850 	 * RFC6928 increases it to ten segments.
3851 	 * Support for user specified value for initial flight size.
3852 	 */
3853 	if (V_tcp_initcwnd_segments)
3854 		return min(V_tcp_initcwnd_segments * maxseg,
3855 		    max(2 * maxseg, V_tcp_initcwnd_segments * 1460));
3856 	else if (V_tcp_do_rfc3390)
3857 		return min(4 * maxseg, max(2 * maxseg, 4380));
3858 	else {
3859 		/* Per RFC5681 Section 3.1 */
3860 		if (maxseg > 2190)
3861 			return (2 * maxseg);
3862 		else if (maxseg > 1095)
3863 			return (3 * maxseg);
3864 		else
3865 			return (4 * maxseg);
3866 	}
3867 }
3868