xref: /freebsd/sys/netinet/tcp_input.c (revision 0e97acdf58fe27b09c4824a474b0344daf997c5f)
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
3  *	The Regents of the University of California.  All rights reserved.
4  * Copyright (c) 2007-2008,2010
5  *	Swinburne University of Technology, Melbourne, Australia.
6  * Copyright (c) 2009-2010 Lawrence Stewart <lstewart@freebsd.org>
7  * Copyright (c) 2010 The FreeBSD Foundation
8  * Copyright (c) 2010-2011 Juniper Networks, Inc.
9  * All rights reserved.
10  *
11  * Portions of this software were developed at the Centre for Advanced Internet
12  * Architectures, Swinburne University of Technology, by Lawrence Stewart,
13  * James Healy and David Hayes, made possible in part by a grant from the Cisco
14  * University Research Program Fund at Community Foundation Silicon Valley.
15  *
16  * Portions of this software were developed at the Centre for Advanced
17  * Internet Architectures, Swinburne University of Technology, Melbourne,
18  * Australia by David Hayes under sponsorship from the FreeBSD Foundation.
19  *
20  * Portions of this software were developed by Robert N. M. Watson under
21  * contract to Juniper Networks, Inc.
22  *
23  * Redistribution and use in source and binary forms, with or without
24  * modification, are permitted provided that the following conditions
25  * are met:
26  * 1. Redistributions of source code must retain the above copyright
27  *    notice, this list of conditions and the following disclaimer.
28  * 2. Redistributions in binary form must reproduce the above copyright
29  *    notice, this list of conditions and the following disclaimer in the
30  *    documentation and/or other materials provided with the distribution.
31  * 4. Neither the name of the University nor the names of its contributors
32  *    may be used to endorse or promote products derived from this software
33  *    without specific prior written permission.
34  *
35  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
36  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
37  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
38  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
39  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
40  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
41  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
42  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
43  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
44  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
45  * SUCH DAMAGE.
46  *
47  *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
48  */
49 
50 #include <sys/cdefs.h>
51 __FBSDID("$FreeBSD$");
52 
53 #include "opt_ipfw.h"		/* for ipfw_fwd	*/
54 #include "opt_inet.h"
55 #include "opt_inet6.h"
56 #include "opt_ipsec.h"
57 #include "opt_tcpdebug.h"
58 
59 #include <sys/param.h>
60 #include <sys/kernel.h>
61 #include <sys/hhook.h>
62 #include <sys/malloc.h>
63 #include <sys/mbuf.h>
64 #include <sys/proc.h>		/* for proc0 declaration */
65 #include <sys/protosw.h>
66 #include <sys/sdt.h>
67 #include <sys/signalvar.h>
68 #include <sys/socket.h>
69 #include <sys/socketvar.h>
70 #include <sys/sysctl.h>
71 #include <sys/syslog.h>
72 #include <sys/systm.h>
73 
74 #include <machine/cpu.h>	/* before tcp_seq.h, for tcp_random18() */
75 
76 #include <vm/uma.h>
77 
78 #include <net/if.h>
79 #include <net/if_var.h>
80 #include <net/route.h>
81 #include <net/vnet.h>
82 
83 #define TCPSTATES		/* for logging */
84 
85 #include <netinet/cc.h>
86 #include <netinet/in.h>
87 #include <netinet/in_kdtrace.h>
88 #include <netinet/in_pcb.h>
89 #include <netinet/in_systm.h>
90 #include <netinet/in_var.h>
91 #include <netinet/ip.h>
92 #include <netinet/ip_icmp.h>	/* required for icmp_var.h */
93 #include <netinet/icmp_var.h>	/* for ICMP_BANDLIM */
94 #include <netinet/ip_var.h>
95 #include <netinet/ip_options.h>
96 #include <netinet/ip6.h>
97 #include <netinet/icmp6.h>
98 #include <netinet6/in6_pcb.h>
99 #include <netinet6/ip6_var.h>
100 #include <netinet6/nd6.h>
101 #include <netinet/tcp_fsm.h>
102 #include <netinet/tcp_seq.h>
103 #include <netinet/tcp_timer.h>
104 #include <netinet/tcp_var.h>
105 #include <netinet6/tcp6_var.h>
106 #include <netinet/tcpip.h>
107 #include <netinet/tcp_syncache.h>
108 #ifdef TCPDEBUG
109 #include <netinet/tcp_debug.h>
110 #endif /* TCPDEBUG */
111 #ifdef TCP_OFFLOAD
112 #include <netinet/tcp_offload.h>
113 #endif
114 
115 #ifdef IPSEC
116 #include <netipsec/ipsec.h>
117 #include <netipsec/ipsec6.h>
118 #endif /*IPSEC*/
119 
120 #include <machine/in_cksum.h>
121 
122 #include <security/mac/mac_framework.h>
123 
124 const int tcprexmtthresh = 3;
125 
126 int tcp_log_in_vain = 0;
127 SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_in_vain, CTLFLAG_RW,
128     &tcp_log_in_vain, 0,
129     "Log all incoming TCP segments to closed ports");
130 
131 VNET_DEFINE(int, blackhole) = 0;
132 #define	V_blackhole		VNET(blackhole)
133 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, blackhole, CTLFLAG_RW,
134     &VNET_NAME(blackhole), 0,
135     "Do not send RST on segments to closed ports");
136 
137 VNET_DEFINE(int, tcp_delack_enabled) = 1;
138 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, delayed_ack, CTLFLAG_RW,
139     &VNET_NAME(tcp_delack_enabled), 0,
140     "Delay ACK to try and piggyback it onto a data packet");
141 
142 VNET_DEFINE(int, drop_synfin) = 0;
143 #define	V_drop_synfin		VNET(drop_synfin)
144 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, drop_synfin, CTLFLAG_RW,
145     &VNET_NAME(drop_synfin), 0,
146     "Drop TCP packets with SYN+FIN set");
147 
148 VNET_DEFINE(int, tcp_do_rfc3042) = 1;
149 #define	V_tcp_do_rfc3042	VNET(tcp_do_rfc3042)
150 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, rfc3042, CTLFLAG_RW,
151     &VNET_NAME(tcp_do_rfc3042), 0,
152     "Enable RFC 3042 (Limited Transmit)");
153 
154 VNET_DEFINE(int, tcp_do_rfc3390) = 1;
155 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, rfc3390, CTLFLAG_RW,
156     &VNET_NAME(tcp_do_rfc3390), 0,
157     "Enable RFC 3390 (Increasing TCP's Initial Congestion Window)");
158 
159 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, experimental, CTLFLAG_RW, 0,
160     "Experimental TCP extensions");
161 
162 VNET_DEFINE(int, tcp_do_initcwnd10) = 1;
163 SYSCTL_VNET_INT(_net_inet_tcp_experimental, OID_AUTO, initcwnd10, CTLFLAG_RW,
164     &VNET_NAME(tcp_do_initcwnd10), 0,
165     "Enable RFC 6928 (Increasing initial CWND to 10)");
166 
167 VNET_DEFINE(int, tcp_do_rfc3465) = 1;
168 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, rfc3465, CTLFLAG_RW,
169     &VNET_NAME(tcp_do_rfc3465), 0,
170     "Enable RFC 3465 (Appropriate Byte Counting)");
171 
172 VNET_DEFINE(int, tcp_abc_l_var) = 2;
173 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, abc_l_var, CTLFLAG_RW,
174     &VNET_NAME(tcp_abc_l_var), 2,
175     "Cap the max cwnd increment during slow-start to this number of segments");
176 
177 static SYSCTL_NODE(_net_inet_tcp, OID_AUTO, ecn, CTLFLAG_RW, 0, "TCP ECN");
178 
179 VNET_DEFINE(int, tcp_do_ecn) = 0;
180 SYSCTL_VNET_INT(_net_inet_tcp_ecn, OID_AUTO, enable, CTLFLAG_RW,
181     &VNET_NAME(tcp_do_ecn), 0,
182     "TCP ECN support");
183 
184 VNET_DEFINE(int, tcp_ecn_maxretries) = 1;
185 SYSCTL_VNET_INT(_net_inet_tcp_ecn, OID_AUTO, maxretries, CTLFLAG_RW,
186     &VNET_NAME(tcp_ecn_maxretries), 0,
187     "Max retries before giving up on ECN");
188 
189 VNET_DEFINE(int, tcp_insecure_syn) = 0;
190 #define	V_tcp_insecure_syn	VNET(tcp_insecure_syn)
191 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, insecure_syn, CTLFLAG_RW,
192     &VNET_NAME(tcp_insecure_syn), 0,
193     "Follow RFC793 instead of RFC5961 criteria for accepting SYN packets");
194 
195 VNET_DEFINE(int, tcp_insecure_rst) = 0;
196 #define	V_tcp_insecure_rst	VNET(tcp_insecure_rst)
197 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, insecure_rst, CTLFLAG_RW,
198     &VNET_NAME(tcp_insecure_rst), 0,
199     "Follow RFC793 instead of RFC5961 criteria for accepting RST packets");
200 
201 VNET_DEFINE(int, tcp_recvspace) = 1024*64;
202 #define	V_tcp_recvspace	VNET(tcp_recvspace)
203 SYSCTL_VNET_INT(_net_inet_tcp, TCPCTL_RECVSPACE, recvspace, CTLFLAG_RW,
204     &VNET_NAME(tcp_recvspace), 0, "Initial receive socket buffer size");
205 
206 VNET_DEFINE(int, tcp_do_autorcvbuf) = 1;
207 #define	V_tcp_do_autorcvbuf	VNET(tcp_do_autorcvbuf)
208 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, recvbuf_auto, CTLFLAG_RW,
209     &VNET_NAME(tcp_do_autorcvbuf), 0,
210     "Enable automatic receive buffer sizing");
211 
212 VNET_DEFINE(int, tcp_autorcvbuf_inc) = 16*1024;
213 #define	V_tcp_autorcvbuf_inc	VNET(tcp_autorcvbuf_inc)
214 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, recvbuf_inc, CTLFLAG_RW,
215     &VNET_NAME(tcp_autorcvbuf_inc), 0,
216     "Incrementor step size of automatic receive buffer");
217 
218 VNET_DEFINE(int, tcp_autorcvbuf_max) = 2*1024*1024;
219 #define	V_tcp_autorcvbuf_max	VNET(tcp_autorcvbuf_max)
220 SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, recvbuf_max, CTLFLAG_RW,
221     &VNET_NAME(tcp_autorcvbuf_max), 0,
222     "Max size of automatic receive buffer");
223 
224 VNET_DEFINE(struct inpcbhead, tcb);
225 #define	tcb6	tcb  /* for KAME src sync over BSD*'s */
226 VNET_DEFINE(struct inpcbinfo, tcbinfo);
227 
228 static void	 tcp_dooptions(struct tcpopt *, u_char *, int, int);
229 static void	 tcp_do_segment(struct mbuf *, struct tcphdr *,
230 		     struct socket *, struct tcpcb *, int, int, uint8_t,
231 		     int);
232 static void	 tcp_dropwithreset(struct mbuf *, struct tcphdr *,
233 		     struct tcpcb *, int, int);
234 static void	 tcp_pulloutofband(struct socket *,
235 		     struct tcphdr *, struct mbuf *, int);
236 static void	 tcp_xmit_timer(struct tcpcb *, int);
237 static void	 tcp_newreno_partial_ack(struct tcpcb *, struct tcphdr *);
238 static void inline	cc_ack_received(struct tcpcb *tp, struct tcphdr *th,
239 			    uint16_t type);
240 static void inline	cc_conn_init(struct tcpcb *tp);
241 static void inline	cc_post_recovery(struct tcpcb *tp, struct tcphdr *th);
242 static void inline	hhook_run_tcp_est_in(struct tcpcb *tp,
243 			    struct tcphdr *th, struct tcpopt *to);
244 
245 /*
246  * TCP statistics are stored in an "array" of counter(9)s.
247  */
248 VNET_PCPUSTAT_DEFINE(struct tcpstat, tcpstat);
249 VNET_PCPUSTAT_SYSINIT(tcpstat);
250 SYSCTL_VNET_PCPUSTAT(_net_inet_tcp, TCPCTL_STATS, stats, struct tcpstat,
251     tcpstat, "TCP statistics (struct tcpstat, netinet/tcp_var.h)");
252 
253 #ifdef VIMAGE
254 VNET_PCPUSTAT_SYSUNINIT(tcpstat);
255 #endif /* VIMAGE */
256 /*
257  * Kernel module interface for updating tcpstat.  The argument is an index
258  * into tcpstat treated as an array.
259  */
260 void
261 kmod_tcpstat_inc(int statnum)
262 {
263 
264 	counter_u64_add(VNET(tcpstat)[statnum], 1);
265 }
266 
267 /*
268  * Wrapper for the TCP established input helper hook.
269  */
270 static void inline
271 hhook_run_tcp_est_in(struct tcpcb *tp, struct tcphdr *th, struct tcpopt *to)
272 {
273 	struct tcp_hhook_data hhook_data;
274 
275 	if (V_tcp_hhh[HHOOK_TCP_EST_IN]->hhh_nhooks > 0) {
276 		hhook_data.tp = tp;
277 		hhook_data.th = th;
278 		hhook_data.to = to;
279 
280 		hhook_run_hooks(V_tcp_hhh[HHOOK_TCP_EST_IN], &hhook_data,
281 		    tp->osd);
282 	}
283 }
284 
285 /*
286  * CC wrapper hook functions
287  */
288 static void inline
289 cc_ack_received(struct tcpcb *tp, struct tcphdr *th, uint16_t type)
290 {
291 	INP_WLOCK_ASSERT(tp->t_inpcb);
292 
293 	tp->ccv->bytes_this_ack = BYTES_THIS_ACK(tp, th);
294 	if (tp->snd_cwnd <= tp->snd_wnd)
295 		tp->ccv->flags |= CCF_CWND_LIMITED;
296 	else
297 		tp->ccv->flags &= ~CCF_CWND_LIMITED;
298 
299 	if (type == CC_ACK) {
300 		if (tp->snd_cwnd > tp->snd_ssthresh) {
301 			tp->t_bytes_acked += min(tp->ccv->bytes_this_ack,
302 			     V_tcp_abc_l_var * tp->t_maxseg);
303 			if (tp->t_bytes_acked >= tp->snd_cwnd) {
304 				tp->t_bytes_acked -= tp->snd_cwnd;
305 				tp->ccv->flags |= CCF_ABC_SENTAWND;
306 			}
307 		} else {
308 				tp->ccv->flags &= ~CCF_ABC_SENTAWND;
309 				tp->t_bytes_acked = 0;
310 		}
311 	}
312 
313 	if (CC_ALGO(tp)->ack_received != NULL) {
314 		/* XXXLAS: Find a way to live without this */
315 		tp->ccv->curack = th->th_ack;
316 		CC_ALGO(tp)->ack_received(tp->ccv, type);
317 	}
318 }
319 
320 static void inline
321 cc_conn_init(struct tcpcb *tp)
322 {
323 	struct hc_metrics_lite metrics;
324 	struct inpcb *inp = tp->t_inpcb;
325 	int rtt;
326 
327 	INP_WLOCK_ASSERT(tp->t_inpcb);
328 
329 	tcp_hc_get(&inp->inp_inc, &metrics);
330 
331 	if (tp->t_srtt == 0 && (rtt = metrics.rmx_rtt)) {
332 		tp->t_srtt = rtt;
333 		tp->t_rttbest = tp->t_srtt + TCP_RTT_SCALE;
334 		TCPSTAT_INC(tcps_usedrtt);
335 		if (metrics.rmx_rttvar) {
336 			tp->t_rttvar = metrics.rmx_rttvar;
337 			TCPSTAT_INC(tcps_usedrttvar);
338 		} else {
339 			/* default variation is +- 1 rtt */
340 			tp->t_rttvar =
341 			    tp->t_srtt * TCP_RTTVAR_SCALE / TCP_RTT_SCALE;
342 		}
343 		TCPT_RANGESET(tp->t_rxtcur,
344 		    ((tp->t_srtt >> 2) + tp->t_rttvar) >> 1,
345 		    tp->t_rttmin, TCPTV_REXMTMAX);
346 	}
347 	if (metrics.rmx_ssthresh) {
348 		/*
349 		 * There's some sort of gateway or interface
350 		 * buffer limit on the path.  Use this to set
351 		 * the slow start threshhold, but set the
352 		 * threshold to no less than 2*mss.
353 		 */
354 		tp->snd_ssthresh = max(2 * tp->t_maxseg, metrics.rmx_ssthresh);
355 		TCPSTAT_INC(tcps_usedssthresh);
356 	}
357 
358 	/*
359 	 * Set the initial slow-start flight size.
360 	 *
361 	 * RFC5681 Section 3.1 specifies the default conservative values.
362 	 * RFC3390 specifies slightly more aggressive values.
363 	 * RFC6928 increases it to ten segments.
364 	 *
365 	 * If a SYN or SYN/ACK was lost and retransmitted, we have to
366 	 * reduce the initial CWND to one segment as congestion is likely
367 	 * requiring us to be cautious.
368 	 */
369 	if (tp->snd_cwnd == 1)
370 		tp->snd_cwnd = tp->t_maxseg;		/* SYN(-ACK) lost */
371 	else if (V_tcp_do_initcwnd10)
372 		tp->snd_cwnd = min(10 * tp->t_maxseg,
373 		    max(2 * tp->t_maxseg, 14600));
374 	else if (V_tcp_do_rfc3390)
375 		tp->snd_cwnd = min(4 * tp->t_maxseg,
376 		    max(2 * tp->t_maxseg, 4380));
377 	else {
378 		/* Per RFC5681 Section 3.1 */
379 		if (tp->t_maxseg > 2190)
380 			tp->snd_cwnd = 2 * tp->t_maxseg;
381 		else if (tp->t_maxseg > 1095)
382 			tp->snd_cwnd = 3 * tp->t_maxseg;
383 		else
384 			tp->snd_cwnd = 4 * tp->t_maxseg;
385 	}
386 
387 	if (CC_ALGO(tp)->conn_init != NULL)
388 		CC_ALGO(tp)->conn_init(tp->ccv);
389 }
390 
391 void inline
392 cc_cong_signal(struct tcpcb *tp, struct tcphdr *th, uint32_t type)
393 {
394 	INP_WLOCK_ASSERT(tp->t_inpcb);
395 
396 	switch(type) {
397 	case CC_NDUPACK:
398 		if (!IN_FASTRECOVERY(tp->t_flags)) {
399 			tp->snd_recover = tp->snd_max;
400 			if (tp->t_flags & TF_ECN_PERMIT)
401 				tp->t_flags |= TF_ECN_SND_CWR;
402 		}
403 		break;
404 	case CC_ECN:
405 		if (!IN_CONGRECOVERY(tp->t_flags)) {
406 			TCPSTAT_INC(tcps_ecn_rcwnd);
407 			tp->snd_recover = tp->snd_max;
408 			if (tp->t_flags & TF_ECN_PERMIT)
409 				tp->t_flags |= TF_ECN_SND_CWR;
410 		}
411 		break;
412 	case CC_RTO:
413 		tp->t_dupacks = 0;
414 		tp->t_bytes_acked = 0;
415 		EXIT_RECOVERY(tp->t_flags);
416 		tp->snd_ssthresh = max(2, min(tp->snd_wnd, tp->snd_cwnd) / 2 /
417 		    tp->t_maxseg) * tp->t_maxseg;
418 		tp->snd_cwnd = tp->t_maxseg;
419 		break;
420 	case CC_RTO_ERR:
421 		TCPSTAT_INC(tcps_sndrexmitbad);
422 		/* RTO was unnecessary, so reset everything. */
423 		tp->snd_cwnd = tp->snd_cwnd_prev;
424 		tp->snd_ssthresh = tp->snd_ssthresh_prev;
425 		tp->snd_recover = tp->snd_recover_prev;
426 		if (tp->t_flags & TF_WASFRECOVERY)
427 			ENTER_FASTRECOVERY(tp->t_flags);
428 		if (tp->t_flags & TF_WASCRECOVERY)
429 			ENTER_CONGRECOVERY(tp->t_flags);
430 		tp->snd_nxt = tp->snd_max;
431 		tp->t_flags &= ~TF_PREVVALID;
432 		tp->t_badrxtwin = 0;
433 		break;
434 	}
435 
436 	if (CC_ALGO(tp)->cong_signal != NULL) {
437 		if (th != NULL)
438 			tp->ccv->curack = th->th_ack;
439 		CC_ALGO(tp)->cong_signal(tp->ccv, type);
440 	}
441 }
442 
443 static void inline
444 cc_post_recovery(struct tcpcb *tp, struct tcphdr *th)
445 {
446 	INP_WLOCK_ASSERT(tp->t_inpcb);
447 
448 	/* XXXLAS: KASSERT that we're in recovery? */
449 
450 	if (CC_ALGO(tp)->post_recovery != NULL) {
451 		tp->ccv->curack = th->th_ack;
452 		CC_ALGO(tp)->post_recovery(tp->ccv);
453 	}
454 	/* XXXLAS: EXIT_RECOVERY ? */
455 	tp->t_bytes_acked = 0;
456 }
457 
458 #ifdef TCP_SIGNATURE
459 static inline int
460 tcp_signature_verify_input(struct mbuf *m, int off0, int tlen, int optlen,
461     struct tcpopt *to, struct tcphdr *th, u_int tcpbflag)
462 {
463 	int ret;
464 
465 	tcp_fields_to_net(th);
466 	ret = tcp_signature_verify(m, off0, tlen, optlen, to, th, tcpbflag);
467 	tcp_fields_to_host(th);
468 	return (ret);
469 }
470 #endif
471 
472 /* Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint. */
473 #ifdef INET6
474 #define ND6_HINT(tp) \
475 do { \
476 	if ((tp) && (tp)->t_inpcb && \
477 	    ((tp)->t_inpcb->inp_vflag & INP_IPV6) != 0) \
478 		nd6_nud_hint(NULL, NULL, 0); \
479 } while (0)
480 #else
481 #define ND6_HINT(tp)
482 #endif
483 
484 /*
485  * Indicate whether this ack should be delayed.  We can delay the ack if
486  * following conditions are met:
487  *	- There is no delayed ack timer in progress.
488  *	- Our last ack wasn't a 0-sized window. We never want to delay
489  *	  the ack that opens up a 0-sized window.
490  *	- LRO wasn't used for this segment. We make sure by checking that the
491  *	  segment size is not larger than the MSS.
492  *	- Delayed acks are enabled or this is a half-synchronized T/TCP
493  *	  connection.
494  */
495 #define DELAY_ACK(tp, tlen)						\
496 	((!tcp_timer_active(tp, TT_DELACK) &&				\
497 	    (tp->t_flags & TF_RXWIN0SENT) == 0) &&			\
498 	    (tlen <= tp->t_maxopd) &&					\
499 	    (V_tcp_delack_enabled || (tp->t_flags & TF_NEEDSYN)))
500 
501 /*
502  * TCP input handling is split into multiple parts:
503  *   tcp6_input is a thin wrapper around tcp_input for the extended
504  *	ip6_protox[] call format in ip6_input
505  *   tcp_input handles primary segment validation, inpcb lookup and
506  *	SYN processing on listen sockets
507  *   tcp_do_segment processes the ACK and text of the segment for
508  *	establishing, established and closing connections
509  */
510 #ifdef INET6
511 int
512 tcp6_input(struct mbuf **mp, int *offp, int proto)
513 {
514 	struct mbuf *m = *mp;
515 	struct in6_ifaddr *ia6;
516 
517 	IP6_EXTHDR_CHECK(m, *offp, sizeof(struct tcphdr), IPPROTO_DONE);
518 
519 	/*
520 	 * draft-itojun-ipv6-tcp-to-anycast
521 	 * better place to put this in?
522 	 */
523 	ia6 = ip6_getdstifaddr(m);
524 	if (ia6 && (ia6->ia6_flags & IN6_IFF_ANYCAST)) {
525 		struct ip6_hdr *ip6;
526 
527 		ifa_free(&ia6->ia_ifa);
528 		ip6 = mtod(m, struct ip6_hdr *);
529 		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
530 			    (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
531 		return (IPPROTO_DONE);
532 	}
533 	if (ia6)
534 		ifa_free(&ia6->ia_ifa);
535 
536 	return (tcp_input(mp, offp, proto));
537 }
538 #endif /* INET6 */
539 
540 int
541 tcp_input(struct mbuf **mp, int *offp, int proto)
542 {
543 	struct mbuf *m = *mp;
544 	struct tcphdr *th = NULL;
545 	struct ip *ip = NULL;
546 	struct inpcb *inp = NULL;
547 	struct tcpcb *tp = NULL;
548 	struct socket *so = NULL;
549 	u_char *optp = NULL;
550 	int off0;
551 	int optlen = 0;
552 #ifdef INET
553 	int len;
554 #endif
555 	int tlen = 0, off;
556 	int drop_hdrlen;
557 	int thflags;
558 	int rstreason = 0;	/* For badport_bandlim accounting purposes */
559 #ifdef TCP_SIGNATURE
560 	uint8_t sig_checked = 0;
561 #endif
562 	uint8_t iptos = 0;
563 	struct m_tag *fwd_tag = NULL;
564 #ifdef INET6
565 	struct ip6_hdr *ip6 = NULL;
566 	int isipv6;
567 #else
568 	const void *ip6 = NULL;
569 #endif /* INET6 */
570 	struct tcpopt to;		/* options in this segment */
571 	char *s = NULL;			/* address and port logging */
572 	int ti_locked;
573 #define	TI_UNLOCKED	1
574 #define	TI_WLOCKED	2
575 
576 #ifdef TCPDEBUG
577 	/*
578 	 * The size of tcp_saveipgen must be the size of the max ip header,
579 	 * now IPv6.
580 	 */
581 	u_char tcp_saveipgen[IP6_HDR_LEN];
582 	struct tcphdr tcp_savetcp;
583 	short ostate = 0;
584 #endif
585 
586 #ifdef INET6
587 	isipv6 = (mtod(m, struct ip *)->ip_v == 6) ? 1 : 0;
588 #endif
589 
590 	off0 = *offp;
591 	m = *mp;
592 	*mp = NULL;
593 	to.to_flags = 0;
594 	TCPSTAT_INC(tcps_rcvtotal);
595 
596 #ifdef INET6
597 	if (isipv6) {
598 		/* IP6_EXTHDR_CHECK() is already done at tcp6_input(). */
599 
600 		if (m->m_len < (sizeof(*ip6) + sizeof(*th))) {
601 			m = m_pullup(m, sizeof(*ip6) + sizeof(*th));
602 			if (m == NULL) {
603 				TCPSTAT_INC(tcps_rcvshort);
604 				return (IPPROTO_DONE);
605 			}
606 		}
607 
608 		ip6 = mtod(m, struct ip6_hdr *);
609 		th = (struct tcphdr *)((caddr_t)ip6 + off0);
610 		tlen = sizeof(*ip6) + ntohs(ip6->ip6_plen) - off0;
611 		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID_IPV6) {
612 			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
613 				th->th_sum = m->m_pkthdr.csum_data;
614 			else
615 				th->th_sum = in6_cksum_pseudo(ip6, tlen,
616 				    IPPROTO_TCP, m->m_pkthdr.csum_data);
617 			th->th_sum ^= 0xffff;
618 		} else
619 			th->th_sum = in6_cksum(m, IPPROTO_TCP, off0, tlen);
620 		if (th->th_sum) {
621 			TCPSTAT_INC(tcps_rcvbadsum);
622 			goto drop;
623 		}
624 
625 		/*
626 		 * Be proactive about unspecified IPv6 address in source.
627 		 * As we use all-zero to indicate unbounded/unconnected pcb,
628 		 * unspecified IPv6 address can be used to confuse us.
629 		 *
630 		 * Note that packets with unspecified IPv6 destination is
631 		 * already dropped in ip6_input.
632 		 */
633 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
634 			/* XXX stat */
635 			goto drop;
636 		}
637 	}
638 #endif
639 #if defined(INET) && defined(INET6)
640 	else
641 #endif
642 #ifdef INET
643 	{
644 		/*
645 		 * Get IP and TCP header together in first mbuf.
646 		 * Note: IP leaves IP header in first mbuf.
647 		 */
648 		if (off0 > sizeof (struct ip)) {
649 			ip_stripoptions(m);
650 			off0 = sizeof(struct ip);
651 		}
652 		if (m->m_len < sizeof (struct tcpiphdr)) {
653 			if ((m = m_pullup(m, sizeof (struct tcpiphdr)))
654 			    == NULL) {
655 				TCPSTAT_INC(tcps_rcvshort);
656 				return (IPPROTO_DONE);
657 			}
658 		}
659 		ip = mtod(m, struct ip *);
660 		th = (struct tcphdr *)((caddr_t)ip + off0);
661 		tlen = ntohs(ip->ip_len) - off0;
662 
663 		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
664 			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
665 				th->th_sum = m->m_pkthdr.csum_data;
666 			else
667 				th->th_sum = in_pseudo(ip->ip_src.s_addr,
668 				    ip->ip_dst.s_addr,
669 				    htonl(m->m_pkthdr.csum_data + tlen +
670 				    IPPROTO_TCP));
671 			th->th_sum ^= 0xffff;
672 		} else {
673 			struct ipovly *ipov = (struct ipovly *)ip;
674 
675 			/*
676 			 * Checksum extended TCP header and data.
677 			 */
678 			len = off0 + tlen;
679 			bzero(ipov->ih_x1, sizeof(ipov->ih_x1));
680 			ipov->ih_len = htons(tlen);
681 			th->th_sum = in_cksum(m, len);
682 			/* Reset length for SDT probes. */
683 			ip->ip_len = htons(tlen + off0);
684 		}
685 
686 		if (th->th_sum) {
687 			TCPSTAT_INC(tcps_rcvbadsum);
688 			goto drop;
689 		}
690 		/* Re-initialization for later version check */
691 		ip->ip_v = IPVERSION;
692 	}
693 #endif /* INET */
694 
695 #ifdef INET6
696 	if (isipv6)
697 		iptos = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
698 #endif
699 #if defined(INET) && defined(INET6)
700 	else
701 #endif
702 #ifdef INET
703 		iptos = ip->ip_tos;
704 #endif
705 
706 	/*
707 	 * Check that TCP offset makes sense,
708 	 * pull out TCP options and adjust length.		XXX
709 	 */
710 	off = th->th_off << 2;
711 	if (off < sizeof (struct tcphdr) || off > tlen) {
712 		TCPSTAT_INC(tcps_rcvbadoff);
713 		goto drop;
714 	}
715 	tlen -= off;	/* tlen is used instead of ti->ti_len */
716 	if (off > sizeof (struct tcphdr)) {
717 #ifdef INET6
718 		if (isipv6) {
719 			IP6_EXTHDR_CHECK(m, off0, off, IPPROTO_DONE);
720 			ip6 = mtod(m, struct ip6_hdr *);
721 			th = (struct tcphdr *)((caddr_t)ip6 + off0);
722 		}
723 #endif
724 #if defined(INET) && defined(INET6)
725 		else
726 #endif
727 #ifdef INET
728 		{
729 			if (m->m_len < sizeof(struct ip) + off) {
730 				if ((m = m_pullup(m, sizeof (struct ip) + off))
731 				    == NULL) {
732 					TCPSTAT_INC(tcps_rcvshort);
733 					return (IPPROTO_DONE);
734 				}
735 				ip = mtod(m, struct ip *);
736 				th = (struct tcphdr *)((caddr_t)ip + off0);
737 			}
738 		}
739 #endif
740 		optlen = off - sizeof (struct tcphdr);
741 		optp = (u_char *)(th + 1);
742 	}
743 	thflags = th->th_flags;
744 
745 	/*
746 	 * Convert TCP protocol specific fields to host format.
747 	 */
748 	tcp_fields_to_host(th);
749 
750 	/*
751 	 * Delay dropping TCP, IP headers, IPv6 ext headers, and TCP options.
752 	 */
753 	drop_hdrlen = off0 + off;
754 
755 	/*
756 	 * Locate pcb for segment; if we're likely to add or remove a
757 	 * connection then first acquire pcbinfo lock.  There are three cases
758 	 * where we might discover later we need a write lock despite the
759 	 * flags: ACKs moving a connection out of the syncache, ACKs for a
760 	 * connection in TIMEWAIT and SYNs not targeting a listening socket.
761 	 */
762 	if ((thflags & (TH_FIN | TH_RST)) != 0) {
763 		INP_INFO_WLOCK(&V_tcbinfo);
764 		ti_locked = TI_WLOCKED;
765 	} else
766 		ti_locked = TI_UNLOCKED;
767 
768 	/*
769 	 * Grab info from PACKET_TAG_IPFORWARD tag prepended to the chain.
770 	 */
771         if (
772 #ifdef INET6
773 	    (isipv6 && (m->m_flags & M_IP6_NEXTHOP))
774 #ifdef INET
775 	    || (!isipv6 && (m->m_flags & M_IP_NEXTHOP))
776 #endif
777 #endif
778 #if defined(INET) && !defined(INET6)
779 	    (m->m_flags & M_IP_NEXTHOP)
780 #endif
781 	    )
782 		fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
783 
784 findpcb:
785 #ifdef INVARIANTS
786 	if (ti_locked == TI_WLOCKED) {
787 		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
788 	} else {
789 		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
790 	}
791 #endif
792 #ifdef INET6
793 	if (isipv6 && fwd_tag != NULL) {
794 		struct sockaddr_in6 *next_hop6;
795 
796 		next_hop6 = (struct sockaddr_in6 *)(fwd_tag + 1);
797 		/*
798 		 * Transparently forwarded. Pretend to be the destination.
799 		 * Already got one like this?
800 		 */
801 		inp = in6_pcblookup_mbuf(&V_tcbinfo,
802 		    &ip6->ip6_src, th->th_sport, &ip6->ip6_dst, th->th_dport,
803 		    INPLOOKUP_WLOCKPCB, m->m_pkthdr.rcvif, m);
804 		if (!inp) {
805 			/*
806 			 * It's new.  Try to find the ambushing socket.
807 			 * Because we've rewritten the destination address,
808 			 * any hardware-generated hash is ignored.
809 			 */
810 			inp = in6_pcblookup(&V_tcbinfo, &ip6->ip6_src,
811 			    th->th_sport, &next_hop6->sin6_addr,
812 			    next_hop6->sin6_port ? ntohs(next_hop6->sin6_port) :
813 			    th->th_dport, INPLOOKUP_WILDCARD |
814 			    INPLOOKUP_WLOCKPCB, m->m_pkthdr.rcvif);
815 		}
816 	} else if (isipv6) {
817 		inp = in6_pcblookup_mbuf(&V_tcbinfo, &ip6->ip6_src,
818 		    th->th_sport, &ip6->ip6_dst, th->th_dport,
819 		    INPLOOKUP_WILDCARD | INPLOOKUP_WLOCKPCB,
820 		    m->m_pkthdr.rcvif, m);
821 	}
822 #endif /* INET6 */
823 #if defined(INET6) && defined(INET)
824 	else
825 #endif
826 #ifdef INET
827 	if (fwd_tag != NULL) {
828 		struct sockaddr_in *next_hop;
829 
830 		next_hop = (struct sockaddr_in *)(fwd_tag+1);
831 		/*
832 		 * Transparently forwarded. Pretend to be the destination.
833 		 * already got one like this?
834 		 */
835 		inp = in_pcblookup_mbuf(&V_tcbinfo, ip->ip_src, th->th_sport,
836 		    ip->ip_dst, th->th_dport, INPLOOKUP_WLOCKPCB,
837 		    m->m_pkthdr.rcvif, m);
838 		if (!inp) {
839 			/*
840 			 * It's new.  Try to find the ambushing socket.
841 			 * Because we've rewritten the destination address,
842 			 * any hardware-generated hash is ignored.
843 			 */
844 			inp = in_pcblookup(&V_tcbinfo, ip->ip_src,
845 			    th->th_sport, next_hop->sin_addr,
846 			    next_hop->sin_port ? ntohs(next_hop->sin_port) :
847 			    th->th_dport, INPLOOKUP_WILDCARD |
848 			    INPLOOKUP_WLOCKPCB, m->m_pkthdr.rcvif);
849 		}
850 	} else
851 		inp = in_pcblookup_mbuf(&V_tcbinfo, ip->ip_src,
852 		    th->th_sport, ip->ip_dst, th->th_dport,
853 		    INPLOOKUP_WILDCARD | INPLOOKUP_WLOCKPCB,
854 		    m->m_pkthdr.rcvif, m);
855 #endif /* INET */
856 
857 	/*
858 	 * If the INPCB does not exist then all data in the incoming
859 	 * segment is discarded and an appropriate RST is sent back.
860 	 * XXX MRT Send RST using which routing table?
861 	 */
862 	if (inp == NULL) {
863 		/*
864 		 * Log communication attempts to ports that are not
865 		 * in use.
866 		 */
867 		if ((tcp_log_in_vain == 1 && (thflags & TH_SYN)) ||
868 		    tcp_log_in_vain == 2) {
869 			if ((s = tcp_log_vain(NULL, th, (void *)ip, ip6)))
870 				log(LOG_INFO, "%s; %s: Connection attempt "
871 				    "to closed port\n", s, __func__);
872 		}
873 		/*
874 		 * When blackholing do not respond with a RST but
875 		 * completely ignore the segment and drop it.
876 		 */
877 		if ((V_blackhole == 1 && (thflags & TH_SYN)) ||
878 		    V_blackhole == 2)
879 			goto dropunlock;
880 
881 		rstreason = BANDLIM_RST_CLOSEDPORT;
882 		goto dropwithreset;
883 	}
884 	INP_WLOCK_ASSERT(inp);
885 	if (!(inp->inp_flags & INP_HW_FLOWID)
886 	    && (m->m_flags & M_FLOWID)
887 	    && ((inp->inp_socket == NULL)
888 		|| !(inp->inp_socket->so_options & SO_ACCEPTCONN))) {
889 		inp->inp_flags |= INP_HW_FLOWID;
890 		inp->inp_flags &= ~INP_SW_FLOWID;
891 		inp->inp_flowid = m->m_pkthdr.flowid;
892 		inp->inp_flowtype = M_HASHTYPE_GET(m);
893 	}
894 #ifdef IPSEC
895 #ifdef INET6
896 	if (isipv6 && ipsec6_in_reject(m, inp)) {
897 		IPSEC6STAT_INC(ips_in_polvio);
898 		goto dropunlock;
899 	} else
900 #endif /* INET6 */
901 	if (ipsec4_in_reject(m, inp) != 0) {
902 		IPSECSTAT_INC(ips_in_polvio);
903 		goto dropunlock;
904 	}
905 #endif /* IPSEC */
906 
907 	/*
908 	 * Check the minimum TTL for socket.
909 	 */
910 	if (inp->inp_ip_minttl != 0) {
911 #ifdef INET6
912 		if (isipv6 && inp->inp_ip_minttl > ip6->ip6_hlim)
913 			goto dropunlock;
914 		else
915 #endif
916 		if (inp->inp_ip_minttl > ip->ip_ttl)
917 			goto dropunlock;
918 	}
919 
920 	/*
921 	 * A previous connection in TIMEWAIT state is supposed to catch stray
922 	 * or duplicate segments arriving late.  If this segment was a
923 	 * legitimate new connection attempt, the old INPCB gets removed and
924 	 * we can try again to find a listening socket.
925 	 *
926 	 * At this point, due to earlier optimism, we may hold only an inpcb
927 	 * lock, and not the inpcbinfo write lock.  If so, we need to try to
928 	 * acquire it, or if that fails, acquire a reference on the inpcb,
929 	 * drop all locks, acquire a global write lock, and then re-acquire
930 	 * the inpcb lock.  We may at that point discover that another thread
931 	 * has tried to free the inpcb, in which case we need to loop back
932 	 * and try to find a new inpcb to deliver to.
933 	 *
934 	 * XXXRW: It may be time to rethink timewait locking.
935 	 */
936 relocked:
937 	if (inp->inp_flags & INP_TIMEWAIT) {
938 		if (ti_locked == TI_UNLOCKED) {
939 			if (INP_INFO_TRY_WLOCK(&V_tcbinfo) == 0) {
940 				in_pcbref(inp);
941 				INP_WUNLOCK(inp);
942 				INP_INFO_WLOCK(&V_tcbinfo);
943 				ti_locked = TI_WLOCKED;
944 				INP_WLOCK(inp);
945 				if (in_pcbrele_wlocked(inp)) {
946 					inp = NULL;
947 					goto findpcb;
948 				}
949 			} else
950 				ti_locked = TI_WLOCKED;
951 		}
952 		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
953 
954 		if (thflags & TH_SYN)
955 			tcp_dooptions(&to, optp, optlen, TO_SYN);
956 		/*
957 		 * NB: tcp_twcheck unlocks the INP and frees the mbuf.
958 		 */
959 		if (tcp_twcheck(inp, &to, th, m, tlen))
960 			goto findpcb;
961 		INP_INFO_WUNLOCK(&V_tcbinfo);
962 		return (IPPROTO_DONE);
963 	}
964 	/*
965 	 * The TCPCB may no longer exist if the connection is winding
966 	 * down or it is in the CLOSED state.  Either way we drop the
967 	 * segment and send an appropriate response.
968 	 */
969 	tp = intotcpcb(inp);
970 	if (tp == NULL || tp->t_state == TCPS_CLOSED) {
971 		rstreason = BANDLIM_RST_CLOSEDPORT;
972 		goto dropwithreset;
973 	}
974 
975 #ifdef TCP_OFFLOAD
976 	if (tp->t_flags & TF_TOE) {
977 		tcp_offload_input(tp, m);
978 		m = NULL;	/* consumed by the TOE driver */
979 		goto dropunlock;
980 	}
981 #endif
982 
983 	/*
984 	 * We've identified a valid inpcb, but it could be that we need an
985 	 * inpcbinfo write lock but don't hold it.  In this case, attempt to
986 	 * acquire using the same strategy as the TIMEWAIT case above.  If we
987 	 * relock, we have to jump back to 'relocked' as the connection might
988 	 * now be in TIMEWAIT.
989 	 */
990 #ifdef INVARIANTS
991 	if ((thflags & (TH_FIN | TH_RST)) != 0)
992 		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
993 #endif
994 	if (!((tp->t_state == TCPS_ESTABLISHED && (thflags & TH_SYN) == 0) ||
995 	    (tp->t_state == TCPS_LISTEN && (thflags & TH_SYN)))) {
996 		if (ti_locked == TI_UNLOCKED) {
997 			if (INP_INFO_TRY_WLOCK(&V_tcbinfo) == 0) {
998 				in_pcbref(inp);
999 				INP_WUNLOCK(inp);
1000 				INP_INFO_WLOCK(&V_tcbinfo);
1001 				ti_locked = TI_WLOCKED;
1002 				INP_WLOCK(inp);
1003 				if (in_pcbrele_wlocked(inp)) {
1004 					inp = NULL;
1005 					goto findpcb;
1006 				}
1007 				goto relocked;
1008 			} else
1009 				ti_locked = TI_WLOCKED;
1010 		}
1011 		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1012 	}
1013 
1014 #ifdef MAC
1015 	INP_WLOCK_ASSERT(inp);
1016 	if (mac_inpcb_check_deliver(inp, m))
1017 		goto dropunlock;
1018 #endif
1019 	so = inp->inp_socket;
1020 	KASSERT(so != NULL, ("%s: so == NULL", __func__));
1021 #ifdef TCPDEBUG
1022 	if (so->so_options & SO_DEBUG) {
1023 		ostate = tp->t_state;
1024 #ifdef INET6
1025 		if (isipv6) {
1026 			bcopy((char *)ip6, (char *)tcp_saveipgen, sizeof(*ip6));
1027 		} else
1028 #endif
1029 			bcopy((char *)ip, (char *)tcp_saveipgen, sizeof(*ip));
1030 		tcp_savetcp = *th;
1031 	}
1032 #endif /* TCPDEBUG */
1033 	/*
1034 	 * When the socket is accepting connections (the INPCB is in LISTEN
1035 	 * state) we look into the SYN cache if this is a new connection
1036 	 * attempt or the completion of a previous one.
1037 	 */
1038 	if (so->so_options & SO_ACCEPTCONN) {
1039 		struct in_conninfo inc;
1040 
1041 		KASSERT(tp->t_state == TCPS_LISTEN, ("%s: so accepting but "
1042 		    "tp not listening", __func__));
1043 		bzero(&inc, sizeof(inc));
1044 #ifdef INET6
1045 		if (isipv6) {
1046 			inc.inc_flags |= INC_ISIPV6;
1047 			inc.inc6_faddr = ip6->ip6_src;
1048 			inc.inc6_laddr = ip6->ip6_dst;
1049 		} else
1050 #endif
1051 		{
1052 			inc.inc_faddr = ip->ip_src;
1053 			inc.inc_laddr = ip->ip_dst;
1054 		}
1055 		inc.inc_fport = th->th_sport;
1056 		inc.inc_lport = th->th_dport;
1057 		inc.inc_fibnum = so->so_fibnum;
1058 
1059 		/*
1060 		 * Check for an existing connection attempt in syncache if
1061 		 * the flag is only ACK.  A successful lookup creates a new
1062 		 * socket appended to the listen queue in SYN_RECEIVED state.
1063 		 */
1064 		if ((thflags & (TH_RST|TH_ACK|TH_SYN)) == TH_ACK) {
1065 
1066 			INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1067 			/*
1068 			 * Parse the TCP options here because
1069 			 * syncookies need access to the reflected
1070 			 * timestamp.
1071 			 */
1072 			tcp_dooptions(&to, optp, optlen, 0);
1073 			/*
1074 			 * NB: syncache_expand() doesn't unlock
1075 			 * inp and tcpinfo locks.
1076 			 */
1077 			if (!syncache_expand(&inc, &to, th, &so, m)) {
1078 				/*
1079 				 * No syncache entry or ACK was not
1080 				 * for our SYN/ACK.  Send a RST.
1081 				 * NB: syncache did its own logging
1082 				 * of the failure cause.
1083 				 */
1084 				rstreason = BANDLIM_RST_OPENPORT;
1085 				goto dropwithreset;
1086 			}
1087 			if (so == NULL) {
1088 				/*
1089 				 * We completed the 3-way handshake
1090 				 * but could not allocate a socket
1091 				 * either due to memory shortage,
1092 				 * listen queue length limits or
1093 				 * global socket limits.  Send RST
1094 				 * or wait and have the remote end
1095 				 * retransmit the ACK for another
1096 				 * try.
1097 				 */
1098 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1099 					log(LOG_DEBUG, "%s; %s: Listen socket: "
1100 					    "Socket allocation failed due to "
1101 					    "limits or memory shortage, %s\n",
1102 					    s, __func__,
1103 					    V_tcp_sc_rst_sock_fail ?
1104 					    "sending RST" : "try again");
1105 				if (V_tcp_sc_rst_sock_fail) {
1106 					rstreason = BANDLIM_UNLIMITED;
1107 					goto dropwithreset;
1108 				} else
1109 					goto dropunlock;
1110 			}
1111 			/*
1112 			 * Socket is created in state SYN_RECEIVED.
1113 			 * Unlock the listen socket, lock the newly
1114 			 * created socket and update the tp variable.
1115 			 */
1116 			INP_WUNLOCK(inp);	/* listen socket */
1117 			inp = sotoinpcb(so);
1118 			INP_WLOCK(inp);		/* new connection */
1119 			tp = intotcpcb(inp);
1120 			KASSERT(tp->t_state == TCPS_SYN_RECEIVED,
1121 			    ("%s: ", __func__));
1122 #ifdef TCP_SIGNATURE
1123 			if (sig_checked == 0)  {
1124 				tcp_dooptions(&to, optp, optlen,
1125 				    (thflags & TH_SYN) ? TO_SYN : 0);
1126 				if (!tcp_signature_verify_input(m, off0, tlen,
1127 				    optlen, &to, th, tp->t_flags)) {
1128 
1129 					/*
1130 					 * In SYN_SENT state if it receives an
1131 					 * RST, it is allowed for further
1132 					 * processing.
1133 					 */
1134 					if ((thflags & TH_RST) == 0 ||
1135 					    (tp->t_state == TCPS_SYN_SENT) == 0)
1136 						goto dropunlock;
1137 				}
1138 				sig_checked = 1;
1139 			}
1140 #endif
1141 
1142 			/*
1143 			 * Process the segment and the data it
1144 			 * contains.  tcp_do_segment() consumes
1145 			 * the mbuf chain and unlocks the inpcb.
1146 			 */
1147 			tcp_do_segment(m, th, so, tp, drop_hdrlen, tlen,
1148 			    iptos, ti_locked);
1149 			INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1150 			return (IPPROTO_DONE);
1151 		}
1152 		/*
1153 		 * Segment flag validation for new connection attempts:
1154 		 *
1155 		 * Our (SYN|ACK) response was rejected.
1156 		 * Check with syncache and remove entry to prevent
1157 		 * retransmits.
1158 		 *
1159 		 * NB: syncache_chkrst does its own logging of failure
1160 		 * causes.
1161 		 */
1162 		if (thflags & TH_RST) {
1163 			syncache_chkrst(&inc, th);
1164 			goto dropunlock;
1165 		}
1166 		/*
1167 		 * We can't do anything without SYN.
1168 		 */
1169 		if ((thflags & TH_SYN) == 0) {
1170 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1171 				log(LOG_DEBUG, "%s; %s: Listen socket: "
1172 				    "SYN is missing, segment ignored\n",
1173 				    s, __func__);
1174 			TCPSTAT_INC(tcps_badsyn);
1175 			goto dropunlock;
1176 		}
1177 		/*
1178 		 * (SYN|ACK) is bogus on a listen socket.
1179 		 */
1180 		if (thflags & TH_ACK) {
1181 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1182 				log(LOG_DEBUG, "%s; %s: Listen socket: "
1183 				    "SYN|ACK invalid, segment rejected\n",
1184 				    s, __func__);
1185 			syncache_badack(&inc);	/* XXX: Not needed! */
1186 			TCPSTAT_INC(tcps_badsyn);
1187 			rstreason = BANDLIM_RST_OPENPORT;
1188 			goto dropwithreset;
1189 		}
1190 		/*
1191 		 * If the drop_synfin option is enabled, drop all
1192 		 * segments with both the SYN and FIN bits set.
1193 		 * This prevents e.g. nmap from identifying the
1194 		 * TCP/IP stack.
1195 		 * XXX: Poor reasoning.  nmap has other methods
1196 		 * and is constantly refining its stack detection
1197 		 * strategies.
1198 		 * XXX: This is a violation of the TCP specification
1199 		 * and was used by RFC1644.
1200 		 */
1201 		if ((thflags & TH_FIN) && V_drop_synfin) {
1202 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1203 				log(LOG_DEBUG, "%s; %s: Listen socket: "
1204 				    "SYN|FIN segment ignored (based on "
1205 				    "sysctl setting)\n", s, __func__);
1206 			TCPSTAT_INC(tcps_badsyn);
1207 			goto dropunlock;
1208 		}
1209 		/*
1210 		 * Segment's flags are (SYN) or (SYN|FIN).
1211 		 *
1212 		 * TH_PUSH, TH_URG, TH_ECE, TH_CWR are ignored
1213 		 * as they do not affect the state of the TCP FSM.
1214 		 * The data pointed to by TH_URG and th_urp is ignored.
1215 		 */
1216 		KASSERT((thflags & (TH_RST|TH_ACK)) == 0,
1217 		    ("%s: Listen socket: TH_RST or TH_ACK set", __func__));
1218 		KASSERT(thflags & (TH_SYN),
1219 		    ("%s: Listen socket: TH_SYN not set", __func__));
1220 #ifdef INET6
1221 		/*
1222 		 * If deprecated address is forbidden,
1223 		 * we do not accept SYN to deprecated interface
1224 		 * address to prevent any new inbound connection from
1225 		 * getting established.
1226 		 * When we do not accept SYN, we send a TCP RST,
1227 		 * with deprecated source address (instead of dropping
1228 		 * it).  We compromise it as it is much better for peer
1229 		 * to send a RST, and RST will be the final packet
1230 		 * for the exchange.
1231 		 *
1232 		 * If we do not forbid deprecated addresses, we accept
1233 		 * the SYN packet.  RFC2462 does not suggest dropping
1234 		 * SYN in this case.
1235 		 * If we decipher RFC2462 5.5.4, it says like this:
1236 		 * 1. use of deprecated addr with existing
1237 		 *    communication is okay - "SHOULD continue to be
1238 		 *    used"
1239 		 * 2. use of it with new communication:
1240 		 *   (2a) "SHOULD NOT be used if alternate address
1241 		 *        with sufficient scope is available"
1242 		 *   (2b) nothing mentioned otherwise.
1243 		 * Here we fall into (2b) case as we have no choice in
1244 		 * our source address selection - we must obey the peer.
1245 		 *
1246 		 * The wording in RFC2462 is confusing, and there are
1247 		 * multiple description text for deprecated address
1248 		 * handling - worse, they are not exactly the same.
1249 		 * I believe 5.5.4 is the best one, so we follow 5.5.4.
1250 		 */
1251 		if (isipv6 && !V_ip6_use_deprecated) {
1252 			struct in6_ifaddr *ia6;
1253 
1254 			ia6 = ip6_getdstifaddr(m);
1255 			if (ia6 != NULL &&
1256 			    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
1257 				ifa_free(&ia6->ia_ifa);
1258 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1259 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1260 					"Connection attempt to deprecated "
1261 					"IPv6 address rejected\n",
1262 					s, __func__);
1263 				rstreason = BANDLIM_RST_OPENPORT;
1264 				goto dropwithreset;
1265 			}
1266 			if (ia6)
1267 				ifa_free(&ia6->ia_ifa);
1268 		}
1269 #endif /* INET6 */
1270 		/*
1271 		 * Basic sanity checks on incoming SYN requests:
1272 		 *   Don't respond if the destination is a link layer
1273 		 *	broadcast according to RFC1122 4.2.3.10, p. 104.
1274 		 *   If it is from this socket it must be forged.
1275 		 *   Don't respond if the source or destination is a
1276 		 *	global or subnet broad- or multicast address.
1277 		 *   Note that it is quite possible to receive unicast
1278 		 *	link-layer packets with a broadcast IP address. Use
1279 		 *	in_broadcast() to find them.
1280 		 */
1281 		if (m->m_flags & (M_BCAST|M_MCAST)) {
1282 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1283 			    log(LOG_DEBUG, "%s; %s: Listen socket: "
1284 				"Connection attempt from broad- or multicast "
1285 				"link layer address ignored\n", s, __func__);
1286 			goto dropunlock;
1287 		}
1288 #ifdef INET6
1289 		if (isipv6) {
1290 			if (th->th_dport == th->th_sport &&
1291 			    IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst, &ip6->ip6_src)) {
1292 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1293 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1294 					"Connection attempt to/from self "
1295 					"ignored\n", s, __func__);
1296 				goto dropunlock;
1297 			}
1298 			if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
1299 			    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
1300 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1301 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1302 					"Connection attempt from/to multicast "
1303 					"address ignored\n", s, __func__);
1304 				goto dropunlock;
1305 			}
1306 		}
1307 #endif
1308 #if defined(INET) && defined(INET6)
1309 		else
1310 #endif
1311 #ifdef INET
1312 		{
1313 			if (th->th_dport == th->th_sport &&
1314 			    ip->ip_dst.s_addr == ip->ip_src.s_addr) {
1315 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1316 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1317 					"Connection attempt from/to self "
1318 					"ignored\n", s, __func__);
1319 				goto dropunlock;
1320 			}
1321 			if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
1322 			    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
1323 			    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
1324 			    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif)) {
1325 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1326 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1327 					"Connection attempt from/to broad- "
1328 					"or multicast address ignored\n",
1329 					s, __func__);
1330 				goto dropunlock;
1331 			}
1332 		}
1333 #endif
1334 		/*
1335 		 * SYN appears to be valid.  Create compressed TCP state
1336 		 * for syncache.
1337 		 */
1338 #ifdef TCPDEBUG
1339 		if (so->so_options & SO_DEBUG)
1340 			tcp_trace(TA_INPUT, ostate, tp,
1341 			    (void *)tcp_saveipgen, &tcp_savetcp, 0);
1342 #endif
1343 		tcp_dooptions(&to, optp, optlen, TO_SYN);
1344 		syncache_add(&inc, &to, th, inp, &so, m, NULL, NULL);
1345 		/*
1346 		 * Entry added to syncache and mbuf consumed.
1347 		 * Only the listen socket is unlocked by syncache_add().
1348 		 */
1349 		if (ti_locked == TI_WLOCKED) {
1350 			INP_INFO_WUNLOCK(&V_tcbinfo);
1351 			ti_locked = TI_UNLOCKED;
1352 		}
1353 		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1354 		return (IPPROTO_DONE);
1355 	} else if (tp->t_state == TCPS_LISTEN) {
1356 		/*
1357 		 * When a listen socket is torn down the SO_ACCEPTCONN
1358 		 * flag is removed first while connections are drained
1359 		 * from the accept queue in a unlock/lock cycle of the
1360 		 * ACCEPT_LOCK, opening a race condition allowing a SYN
1361 		 * attempt go through unhandled.
1362 		 */
1363 		goto dropunlock;
1364 	}
1365 
1366 #ifdef TCP_SIGNATURE
1367 	if (sig_checked == 0)  {
1368 		tcp_dooptions(&to, optp, optlen,
1369 		    (thflags & TH_SYN) ? TO_SYN : 0);
1370 		if (!tcp_signature_verify_input(m, off0, tlen, optlen, &to,
1371 		    th, tp->t_flags)) {
1372 
1373 			/*
1374 			 * In SYN_SENT state if it receives an RST, it is
1375 			 * allowed for further processing.
1376 			 */
1377 			if ((thflags & TH_RST) == 0 ||
1378 			    (tp->t_state == TCPS_SYN_SENT) == 0)
1379 				goto dropunlock;
1380 		}
1381 		sig_checked = 1;
1382 	}
1383 #endif
1384 
1385 	TCP_PROBE5(receive, NULL, tp, mtod(m, const char *), tp, th);
1386 
1387 	/*
1388 	 * Segment belongs to a connection in SYN_SENT, ESTABLISHED or later
1389 	 * state.  tcp_do_segment() always consumes the mbuf chain, unlocks
1390 	 * the inpcb, and unlocks pcbinfo.
1391 	 */
1392 	tcp_do_segment(m, th, so, tp, drop_hdrlen, tlen, iptos, ti_locked);
1393 	INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1394 	return (IPPROTO_DONE);
1395 
1396 dropwithreset:
1397 	TCP_PROBE5(receive, NULL, tp, mtod(m, const char *), tp, th);
1398 
1399 	if (ti_locked == TI_WLOCKED) {
1400 		INP_INFO_WUNLOCK(&V_tcbinfo);
1401 		ti_locked = TI_UNLOCKED;
1402 	}
1403 #ifdef INVARIANTS
1404 	else {
1405 		KASSERT(ti_locked == TI_UNLOCKED, ("%s: dropwithreset "
1406 		    "ti_locked: %d", __func__, ti_locked));
1407 		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1408 	}
1409 #endif
1410 
1411 	if (inp != NULL) {
1412 		tcp_dropwithreset(m, th, tp, tlen, rstreason);
1413 		INP_WUNLOCK(inp);
1414 	} else
1415 		tcp_dropwithreset(m, th, NULL, tlen, rstreason);
1416 	m = NULL;	/* mbuf chain got consumed. */
1417 	goto drop;
1418 
1419 dropunlock:
1420 	if (m != NULL)
1421 		TCP_PROBE5(receive, NULL, tp, mtod(m, const char *), tp, th);
1422 
1423 	if (ti_locked == TI_WLOCKED) {
1424 		INP_INFO_WUNLOCK(&V_tcbinfo);
1425 		ti_locked = TI_UNLOCKED;
1426 	}
1427 #ifdef INVARIANTS
1428 	else {
1429 		KASSERT(ti_locked == TI_UNLOCKED, ("%s: dropunlock "
1430 		    "ti_locked: %d", __func__, ti_locked));
1431 		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1432 	}
1433 #endif
1434 
1435 	if (inp != NULL)
1436 		INP_WUNLOCK(inp);
1437 
1438 drop:
1439 	INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1440 	if (s != NULL)
1441 		free(s, M_TCPLOG);
1442 	if (m != NULL)
1443 		m_freem(m);
1444 	return (IPPROTO_DONE);
1445 }
1446 
1447 static void
1448 tcp_do_segment(struct mbuf *m, struct tcphdr *th, struct socket *so,
1449     struct tcpcb *tp, int drop_hdrlen, int tlen, uint8_t iptos,
1450     int ti_locked)
1451 {
1452 	int thflags, acked, ourfinisacked, needoutput = 0;
1453 	int rstreason, todrop, win;
1454 	u_long tiwin;
1455 	char *s;
1456 	struct in_conninfo *inc;
1457 	struct mbuf *mfree;
1458 	struct tcpopt to;
1459 
1460 #ifdef TCPDEBUG
1461 	/*
1462 	 * The size of tcp_saveipgen must be the size of the max ip header,
1463 	 * now IPv6.
1464 	 */
1465 	u_char tcp_saveipgen[IP6_HDR_LEN];
1466 	struct tcphdr tcp_savetcp;
1467 	short ostate = 0;
1468 #endif
1469 	thflags = th->th_flags;
1470 	inc = &tp->t_inpcb->inp_inc;
1471 	tp->sackhint.last_sack_ack = 0;
1472 
1473 	/*
1474 	 * If this is either a state-changing packet or current state isn't
1475 	 * established, we require a write lock on tcbinfo.  Otherwise, we
1476 	 * allow the tcbinfo to be in either alocked or unlocked, as the
1477 	 * caller may have unnecessarily acquired a write lock due to a race.
1478 	 */
1479 	if ((thflags & (TH_SYN | TH_FIN | TH_RST)) != 0 ||
1480 	    tp->t_state != TCPS_ESTABLISHED) {
1481 		KASSERT(ti_locked == TI_WLOCKED, ("%s ti_locked %d for "
1482 		    "SYN/FIN/RST/!EST", __func__, ti_locked));
1483 		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1484 	} else {
1485 #ifdef INVARIANTS
1486 		if (ti_locked == TI_WLOCKED)
1487 			INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1488 		else {
1489 			KASSERT(ti_locked == TI_UNLOCKED, ("%s: EST "
1490 			    "ti_locked: %d", __func__, ti_locked));
1491 			INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1492 		}
1493 #endif
1494 	}
1495 	INP_WLOCK_ASSERT(tp->t_inpcb);
1496 	KASSERT(tp->t_state > TCPS_LISTEN, ("%s: TCPS_LISTEN",
1497 	    __func__));
1498 	KASSERT(tp->t_state != TCPS_TIME_WAIT, ("%s: TCPS_TIME_WAIT",
1499 	    __func__));
1500 
1501 	/*
1502 	 * Segment received on connection.
1503 	 * Reset idle time and keep-alive timer.
1504 	 * XXX: This should be done after segment
1505 	 * validation to ignore broken/spoofed segs.
1506 	 */
1507 	tp->t_rcvtime = ticks;
1508 	if (TCPS_HAVEESTABLISHED(tp->t_state))
1509 		tcp_timer_activate(tp, TT_KEEP, TP_KEEPIDLE(tp));
1510 
1511 	/*
1512 	 * Unscale the window into a 32-bit value.
1513 	 * For the SYN_SENT state the scale is zero.
1514 	 */
1515 	tiwin = th->th_win << tp->snd_scale;
1516 
1517 	/*
1518 	 * TCP ECN processing.
1519 	 */
1520 	if (tp->t_flags & TF_ECN_PERMIT) {
1521 		if (thflags & TH_CWR)
1522 			tp->t_flags &= ~TF_ECN_SND_ECE;
1523 		switch (iptos & IPTOS_ECN_MASK) {
1524 		case IPTOS_ECN_CE:
1525 			tp->t_flags |= TF_ECN_SND_ECE;
1526 			TCPSTAT_INC(tcps_ecn_ce);
1527 			break;
1528 		case IPTOS_ECN_ECT0:
1529 			TCPSTAT_INC(tcps_ecn_ect0);
1530 			break;
1531 		case IPTOS_ECN_ECT1:
1532 			TCPSTAT_INC(tcps_ecn_ect1);
1533 			break;
1534 		}
1535 		/* Congestion experienced. */
1536 		if (thflags & TH_ECE) {
1537 			cc_cong_signal(tp, th, CC_ECN);
1538 		}
1539 	}
1540 
1541 	/*
1542 	 * Parse options on any incoming segment.
1543 	 */
1544 	tcp_dooptions(&to, (u_char *)(th + 1),
1545 	    (th->th_off << 2) - sizeof(struct tcphdr),
1546 	    (thflags & TH_SYN) ? TO_SYN : 0);
1547 
1548 	/*
1549 	 * If echoed timestamp is later than the current time,
1550 	 * fall back to non RFC1323 RTT calculation.  Normalize
1551 	 * timestamp if syncookies were used when this connection
1552 	 * was established.
1553 	 */
1554 	if ((to.to_flags & TOF_TS) && (to.to_tsecr != 0)) {
1555 		to.to_tsecr -= tp->ts_offset;
1556 		if (TSTMP_GT(to.to_tsecr, tcp_ts_getticks()))
1557 			to.to_tsecr = 0;
1558 	}
1559 	/*
1560 	 * If timestamps were negotiated during SYN/ACK they should
1561 	 * appear on every segment during this session and vice versa.
1562 	 */
1563 	if ((tp->t_flags & TF_RCVD_TSTMP) && !(to.to_flags & TOF_TS)) {
1564 		if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1565 			log(LOG_DEBUG, "%s; %s: Timestamp missing, "
1566 			    "no action\n", s, __func__);
1567 			free(s, M_TCPLOG);
1568 		}
1569 	}
1570 	if (!(tp->t_flags & TF_RCVD_TSTMP) && (to.to_flags & TOF_TS)) {
1571 		if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1572 			log(LOG_DEBUG, "%s; %s: Timestamp not expected, "
1573 			    "no action\n", s, __func__);
1574 			free(s, M_TCPLOG);
1575 		}
1576 	}
1577 
1578 	/*
1579 	 * Process options only when we get SYN/ACK back. The SYN case
1580 	 * for incoming connections is handled in tcp_syncache.
1581 	 * According to RFC1323 the window field in a SYN (i.e., a <SYN>
1582 	 * or <SYN,ACK>) segment itself is never scaled.
1583 	 * XXX this is traditional behavior, may need to be cleaned up.
1584 	 */
1585 	if (tp->t_state == TCPS_SYN_SENT && (thflags & TH_SYN)) {
1586 		if ((to.to_flags & TOF_SCALE) &&
1587 		    (tp->t_flags & TF_REQ_SCALE)) {
1588 			tp->t_flags |= TF_RCVD_SCALE;
1589 			tp->snd_scale = to.to_wscale;
1590 		}
1591 		/*
1592 		 * Initial send window.  It will be updated with
1593 		 * the next incoming segment to the scaled value.
1594 		 */
1595 		tp->snd_wnd = th->th_win;
1596 		if (to.to_flags & TOF_TS) {
1597 			tp->t_flags |= TF_RCVD_TSTMP;
1598 			tp->ts_recent = to.to_tsval;
1599 			tp->ts_recent_age = tcp_ts_getticks();
1600 		}
1601 		if (to.to_flags & TOF_MSS)
1602 			tcp_mss(tp, to.to_mss);
1603 		if ((tp->t_flags & TF_SACK_PERMIT) &&
1604 		    (to.to_flags & TOF_SACKPERM) == 0)
1605 			tp->t_flags &= ~TF_SACK_PERMIT;
1606 	}
1607 
1608 	/*
1609 	 * Header prediction: check for the two common cases
1610 	 * of a uni-directional data xfer.  If the packet has
1611 	 * no control flags, is in-sequence, the window didn't
1612 	 * change and we're not retransmitting, it's a
1613 	 * candidate.  If the length is zero and the ack moved
1614 	 * forward, we're the sender side of the xfer.  Just
1615 	 * free the data acked & wake any higher level process
1616 	 * that was blocked waiting for space.  If the length
1617 	 * is non-zero and the ack didn't move, we're the
1618 	 * receiver side.  If we're getting packets in-order
1619 	 * (the reassembly queue is empty), add the data to
1620 	 * the socket buffer and note that we need a delayed ack.
1621 	 * Make sure that the hidden state-flags are also off.
1622 	 * Since we check for TCPS_ESTABLISHED first, it can only
1623 	 * be TH_NEEDSYN.
1624 	 */
1625 	if (tp->t_state == TCPS_ESTABLISHED &&
1626 	    th->th_seq == tp->rcv_nxt &&
1627 	    (thflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
1628 	    tp->snd_nxt == tp->snd_max &&
1629 	    tiwin && tiwin == tp->snd_wnd &&
1630 	    ((tp->t_flags & (TF_NEEDSYN|TF_NEEDFIN)) == 0) &&
1631 	    tp->t_segq == NULL && ((to.to_flags & TOF_TS) == 0 ||
1632 	     TSTMP_GEQ(to.to_tsval, tp->ts_recent)) ) {
1633 
1634 		/*
1635 		 * If last ACK falls within this segment's sequence numbers,
1636 		 * record the timestamp.
1637 		 * NOTE that the test is modified according to the latest
1638 		 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
1639 		 */
1640 		if ((to.to_flags & TOF_TS) != 0 &&
1641 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1642 			tp->ts_recent_age = tcp_ts_getticks();
1643 			tp->ts_recent = to.to_tsval;
1644 		}
1645 
1646 		if (tlen == 0) {
1647 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
1648 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
1649 			    !IN_RECOVERY(tp->t_flags) &&
1650 			    (to.to_flags & TOF_SACK) == 0 &&
1651 			    TAILQ_EMPTY(&tp->snd_holes)) {
1652 				/*
1653 				 * This is a pure ack for outstanding data.
1654 				 */
1655 				if (ti_locked == TI_WLOCKED)
1656 					INP_INFO_WUNLOCK(&V_tcbinfo);
1657 				ti_locked = TI_UNLOCKED;
1658 
1659 				TCPSTAT_INC(tcps_predack);
1660 
1661 				/*
1662 				 * "bad retransmit" recovery.
1663 				 */
1664 				if (tp->t_rxtshift == 1 &&
1665 				    tp->t_flags & TF_PREVVALID &&
1666 				    (int)(ticks - tp->t_badrxtwin) < 0) {
1667 					cc_cong_signal(tp, th, CC_RTO_ERR);
1668 				}
1669 
1670 				/*
1671 				 * Recalculate the transmit timer / rtt.
1672 				 *
1673 				 * Some boxes send broken timestamp replies
1674 				 * during the SYN+ACK phase, ignore
1675 				 * timestamps of 0 or we could calculate a
1676 				 * huge RTT and blow up the retransmit timer.
1677 				 */
1678 				if ((to.to_flags & TOF_TS) != 0 &&
1679 				    to.to_tsecr) {
1680 					u_int t;
1681 
1682 					t = tcp_ts_getticks() - to.to_tsecr;
1683 					if (!tp->t_rttlow || tp->t_rttlow > t)
1684 						tp->t_rttlow = t;
1685 					tcp_xmit_timer(tp,
1686 					    TCP_TS_TO_TICKS(t) + 1);
1687 				} else if (tp->t_rtttime &&
1688 				    SEQ_GT(th->th_ack, tp->t_rtseq)) {
1689 					if (!tp->t_rttlow ||
1690 					    tp->t_rttlow > ticks - tp->t_rtttime)
1691 						tp->t_rttlow = ticks - tp->t_rtttime;
1692 					tcp_xmit_timer(tp,
1693 							ticks - tp->t_rtttime);
1694 				}
1695 				acked = BYTES_THIS_ACK(tp, th);
1696 
1697 				/* Run HHOOK_TCP_ESTABLISHED_IN helper hooks. */
1698 				hhook_run_tcp_est_in(tp, th, &to);
1699 
1700 				TCPSTAT_INC(tcps_rcvackpack);
1701 				TCPSTAT_ADD(tcps_rcvackbyte, acked);
1702 				sbdrop(&so->so_snd, acked);
1703 				if (SEQ_GT(tp->snd_una, tp->snd_recover) &&
1704 				    SEQ_LEQ(th->th_ack, tp->snd_recover))
1705 					tp->snd_recover = th->th_ack - 1;
1706 
1707 				/*
1708 				 * Let the congestion control algorithm update
1709 				 * congestion control related information. This
1710 				 * typically means increasing the congestion
1711 				 * window.
1712 				 */
1713 				cc_ack_received(tp, th, CC_ACK);
1714 
1715 				tp->snd_una = th->th_ack;
1716 				/*
1717 				 * Pull snd_wl2 up to prevent seq wrap relative
1718 				 * to th_ack.
1719 				 */
1720 				tp->snd_wl2 = th->th_ack;
1721 				tp->t_dupacks = 0;
1722 				m_freem(m);
1723 				ND6_HINT(tp); /* Some progress has been made. */
1724 
1725 				/*
1726 				 * If all outstanding data are acked, stop
1727 				 * retransmit timer, otherwise restart timer
1728 				 * using current (possibly backed-off) value.
1729 				 * If process is waiting for space,
1730 				 * wakeup/selwakeup/signal.  If data
1731 				 * are ready to send, let tcp_output
1732 				 * decide between more output or persist.
1733 				 */
1734 #ifdef TCPDEBUG
1735 				if (so->so_options & SO_DEBUG)
1736 					tcp_trace(TA_INPUT, ostate, tp,
1737 					    (void *)tcp_saveipgen,
1738 					    &tcp_savetcp, 0);
1739 #endif
1740 				if (tp->snd_una == tp->snd_max)
1741 					tcp_timer_activate(tp, TT_REXMT, 0);
1742 				else if (!tcp_timer_active(tp, TT_PERSIST))
1743 					tcp_timer_activate(tp, TT_REXMT,
1744 						      tp->t_rxtcur);
1745 				sowwakeup(so);
1746 				if (so->so_snd.sb_cc)
1747 					(void) tcp_output(tp);
1748 				goto check_delack;
1749 			}
1750 		} else if (th->th_ack == tp->snd_una &&
1751 		    tlen <= sbspace(&so->so_rcv)) {
1752 			int newsize = 0;	/* automatic sockbuf scaling */
1753 
1754 			/*
1755 			 * This is a pure, in-sequence data packet with
1756 			 * nothing on the reassembly queue and we have enough
1757 			 * buffer space to take it.
1758 			 */
1759 			if (ti_locked == TI_WLOCKED)
1760 				INP_INFO_WUNLOCK(&V_tcbinfo);
1761 			ti_locked = TI_UNLOCKED;
1762 
1763 			/* Clean receiver SACK report if present */
1764 			if ((tp->t_flags & TF_SACK_PERMIT) && tp->rcv_numsacks)
1765 				tcp_clean_sackreport(tp);
1766 			TCPSTAT_INC(tcps_preddat);
1767 			tp->rcv_nxt += tlen;
1768 			/*
1769 			 * Pull snd_wl1 up to prevent seq wrap relative to
1770 			 * th_seq.
1771 			 */
1772 			tp->snd_wl1 = th->th_seq;
1773 			/*
1774 			 * Pull rcv_up up to prevent seq wrap relative to
1775 			 * rcv_nxt.
1776 			 */
1777 			tp->rcv_up = tp->rcv_nxt;
1778 			TCPSTAT_INC(tcps_rcvpack);
1779 			TCPSTAT_ADD(tcps_rcvbyte, tlen);
1780 			ND6_HINT(tp);	/* Some progress has been made */
1781 #ifdef TCPDEBUG
1782 			if (so->so_options & SO_DEBUG)
1783 				tcp_trace(TA_INPUT, ostate, tp,
1784 				    (void *)tcp_saveipgen, &tcp_savetcp, 0);
1785 #endif
1786 		/*
1787 		 * Automatic sizing of receive socket buffer.  Often the send
1788 		 * buffer size is not optimally adjusted to the actual network
1789 		 * conditions at hand (delay bandwidth product).  Setting the
1790 		 * buffer size too small limits throughput on links with high
1791 		 * bandwidth and high delay (eg. trans-continental/oceanic links).
1792 		 *
1793 		 * On the receive side the socket buffer memory is only rarely
1794 		 * used to any significant extent.  This allows us to be much
1795 		 * more aggressive in scaling the receive socket buffer.  For
1796 		 * the case that the buffer space is actually used to a large
1797 		 * extent and we run out of kernel memory we can simply drop
1798 		 * the new segments; TCP on the sender will just retransmit it
1799 		 * later.  Setting the buffer size too big may only consume too
1800 		 * much kernel memory if the application doesn't read() from
1801 		 * the socket or packet loss or reordering makes use of the
1802 		 * reassembly queue.
1803 		 *
1804 		 * The criteria to step up the receive buffer one notch are:
1805 		 *  1. Application has not set receive buffer size with
1806 		 *     SO_RCVBUF. Setting SO_RCVBUF clears SB_AUTOSIZE.
1807 		 *  2. the number of bytes received during the time it takes
1808 		 *     one timestamp to be reflected back to us (the RTT);
1809 		 *  3. received bytes per RTT is within seven eighth of the
1810 		 *     current socket buffer size;
1811 		 *  4. receive buffer size has not hit maximal automatic size;
1812 		 *
1813 		 * This algorithm does one step per RTT at most and only if
1814 		 * we receive a bulk stream w/o packet losses or reorderings.
1815 		 * Shrinking the buffer during idle times is not necessary as
1816 		 * it doesn't consume any memory when idle.
1817 		 *
1818 		 * TODO: Only step up if the application is actually serving
1819 		 * the buffer to better manage the socket buffer resources.
1820 		 */
1821 			if (V_tcp_do_autorcvbuf &&
1822 			    to.to_tsecr &&
1823 			    (so->so_rcv.sb_flags & SB_AUTOSIZE)) {
1824 				if (TSTMP_GT(to.to_tsecr, tp->rfbuf_ts) &&
1825 				    to.to_tsecr - tp->rfbuf_ts < hz) {
1826 					if (tp->rfbuf_cnt >
1827 					    (so->so_rcv.sb_hiwat / 8 * 7) &&
1828 					    so->so_rcv.sb_hiwat <
1829 					    V_tcp_autorcvbuf_max) {
1830 						newsize =
1831 						    min(so->so_rcv.sb_hiwat +
1832 						    V_tcp_autorcvbuf_inc,
1833 						    V_tcp_autorcvbuf_max);
1834 					}
1835 					/* Start over with next RTT. */
1836 					tp->rfbuf_ts = 0;
1837 					tp->rfbuf_cnt = 0;
1838 				} else
1839 					tp->rfbuf_cnt += tlen;	/* add up */
1840 			}
1841 
1842 			/* Add data to socket buffer. */
1843 			SOCKBUF_LOCK(&so->so_rcv);
1844 			if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
1845 				m_freem(m);
1846 			} else {
1847 				/*
1848 				 * Set new socket buffer size.
1849 				 * Give up when limit is reached.
1850 				 */
1851 				if (newsize)
1852 					if (!sbreserve_locked(&so->so_rcv,
1853 					    newsize, so, NULL))
1854 						so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
1855 				m_adj(m, drop_hdrlen);	/* delayed header drop */
1856 				sbappendstream_locked(&so->so_rcv, m);
1857 			}
1858 			/* NB: sorwakeup_locked() does an implicit unlock. */
1859 			sorwakeup_locked(so);
1860 			if (DELAY_ACK(tp, tlen)) {
1861 				tp->t_flags |= TF_DELACK;
1862 			} else {
1863 				tp->t_flags |= TF_ACKNOW;
1864 				tcp_output(tp);
1865 			}
1866 			goto check_delack;
1867 		}
1868 	}
1869 
1870 	/*
1871 	 * Calculate amount of space in receive window,
1872 	 * and then do TCP input processing.
1873 	 * Receive window is amount of space in rcv queue,
1874 	 * but not less than advertised window.
1875 	 */
1876 	win = sbspace(&so->so_rcv);
1877 	if (win < 0)
1878 		win = 0;
1879 	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1880 
1881 	/* Reset receive buffer auto scaling when not in bulk receive mode. */
1882 	tp->rfbuf_ts = 0;
1883 	tp->rfbuf_cnt = 0;
1884 
1885 	switch (tp->t_state) {
1886 
1887 	/*
1888 	 * If the state is SYN_RECEIVED:
1889 	 *	if seg contains an ACK, but not for our SYN/ACK, send a RST.
1890 	 */
1891 	case TCPS_SYN_RECEIVED:
1892 		if ((thflags & TH_ACK) &&
1893 		    (SEQ_LEQ(th->th_ack, tp->snd_una) ||
1894 		     SEQ_GT(th->th_ack, tp->snd_max))) {
1895 				rstreason = BANDLIM_RST_OPENPORT;
1896 				goto dropwithreset;
1897 		}
1898 		break;
1899 
1900 	/*
1901 	 * If the state is SYN_SENT:
1902 	 *	if seg contains an ACK, but not for our SYN, drop the input.
1903 	 *	if seg contains a RST, then drop the connection.
1904 	 *	if seg does not contain SYN, then drop it.
1905 	 * Otherwise this is an acceptable SYN segment
1906 	 *	initialize tp->rcv_nxt and tp->irs
1907 	 *	if seg contains ack then advance tp->snd_una
1908 	 *	if seg contains an ECE and ECN support is enabled, the stream
1909 	 *	    is ECN capable.
1910 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1911 	 *	arrange for segment to be acked (eventually)
1912 	 *	continue processing rest of data/controls, beginning with URG
1913 	 */
1914 	case TCPS_SYN_SENT:
1915 		if ((thflags & TH_ACK) &&
1916 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
1917 		     SEQ_GT(th->th_ack, tp->snd_max))) {
1918 			rstreason = BANDLIM_UNLIMITED;
1919 			goto dropwithreset;
1920 		}
1921 		if ((thflags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) {
1922 			TCP_PROBE5(connect__refused, NULL, tp,
1923 			    mtod(m, const char *), tp, th);
1924 			tp = tcp_drop(tp, ECONNREFUSED);
1925 		}
1926 		if (thflags & TH_RST)
1927 			goto drop;
1928 		if (!(thflags & TH_SYN))
1929 			goto drop;
1930 
1931 		tp->irs = th->th_seq;
1932 		tcp_rcvseqinit(tp);
1933 		if (thflags & TH_ACK) {
1934 			TCPSTAT_INC(tcps_connects);
1935 			soisconnected(so);
1936 #ifdef MAC
1937 			mac_socketpeer_set_from_mbuf(m, so);
1938 #endif
1939 			/* Do window scaling on this connection? */
1940 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1941 				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1942 				tp->rcv_scale = tp->request_r_scale;
1943 			}
1944 			tp->rcv_adv += imin(tp->rcv_wnd,
1945 			    TCP_MAXWIN << tp->rcv_scale);
1946 			tp->snd_una++;		/* SYN is acked */
1947 			/*
1948 			 * If there's data, delay ACK; if there's also a FIN
1949 			 * ACKNOW will be turned on later.
1950 			 */
1951 			if (DELAY_ACK(tp, tlen) && tlen != 0)
1952 				tcp_timer_activate(tp, TT_DELACK,
1953 				    tcp_delacktime);
1954 			else
1955 				tp->t_flags |= TF_ACKNOW;
1956 
1957 			if ((thflags & TH_ECE) && V_tcp_do_ecn) {
1958 				tp->t_flags |= TF_ECN_PERMIT;
1959 				TCPSTAT_INC(tcps_ecn_shs);
1960 			}
1961 
1962 			/*
1963 			 * Received <SYN,ACK> in SYN_SENT[*] state.
1964 			 * Transitions:
1965 			 *	SYN_SENT  --> ESTABLISHED
1966 			 *	SYN_SENT* --> FIN_WAIT_1
1967 			 */
1968 			tp->t_starttime = ticks;
1969 			if (tp->t_flags & TF_NEEDFIN) {
1970 				tcp_state_change(tp, TCPS_FIN_WAIT_1);
1971 				tp->t_flags &= ~TF_NEEDFIN;
1972 				thflags &= ~TH_SYN;
1973 			} else {
1974 				tcp_state_change(tp, TCPS_ESTABLISHED);
1975 				TCP_PROBE5(connect__established, NULL, tp,
1976 				    mtod(m, const char *), tp, th);
1977 				cc_conn_init(tp);
1978 				tcp_timer_activate(tp, TT_KEEP,
1979 				    TP_KEEPIDLE(tp));
1980 			}
1981 		} else {
1982 			/*
1983 			 * Received initial SYN in SYN-SENT[*] state =>
1984 			 * simultaneous open.
1985 			 * If it succeeds, connection is * half-synchronized.
1986 			 * Otherwise, do 3-way handshake:
1987 			 *        SYN-SENT -> SYN-RECEIVED
1988 			 *        SYN-SENT* -> SYN-RECEIVED*
1989 			 */
1990 			tp->t_flags |= (TF_ACKNOW | TF_NEEDSYN);
1991 			tcp_timer_activate(tp, TT_REXMT, 0);
1992 			tcp_state_change(tp, TCPS_SYN_RECEIVED);
1993 		}
1994 
1995 		KASSERT(ti_locked == TI_WLOCKED, ("%s: trimthenstep6: "
1996 		    "ti_locked %d", __func__, ti_locked));
1997 		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1998 		INP_WLOCK_ASSERT(tp->t_inpcb);
1999 
2000 		/*
2001 		 * Advance th->th_seq to correspond to first data byte.
2002 		 * If data, trim to stay within window,
2003 		 * dropping FIN if necessary.
2004 		 */
2005 		th->th_seq++;
2006 		if (tlen > tp->rcv_wnd) {
2007 			todrop = tlen - tp->rcv_wnd;
2008 			m_adj(m, -todrop);
2009 			tlen = tp->rcv_wnd;
2010 			thflags &= ~TH_FIN;
2011 			TCPSTAT_INC(tcps_rcvpackafterwin);
2012 			TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop);
2013 		}
2014 		tp->snd_wl1 = th->th_seq - 1;
2015 		tp->rcv_up = th->th_seq;
2016 		/*
2017 		 * Client side of transaction: already sent SYN and data.
2018 		 * If the remote host used T/TCP to validate the SYN,
2019 		 * our data will be ACK'd; if so, enter normal data segment
2020 		 * processing in the middle of step 5, ack processing.
2021 		 * Otherwise, goto step 6.
2022 		 */
2023 		if (thflags & TH_ACK)
2024 			goto process_ACK;
2025 
2026 		goto step6;
2027 
2028 	/*
2029 	 * If the state is LAST_ACK or CLOSING or TIME_WAIT:
2030 	 *      do normal processing.
2031 	 *
2032 	 * NB: Leftover from RFC1644 T/TCP.  Cases to be reused later.
2033 	 */
2034 	case TCPS_LAST_ACK:
2035 	case TCPS_CLOSING:
2036 		break;  /* continue normal processing */
2037 	}
2038 
2039 	/*
2040 	 * States other than LISTEN or SYN_SENT.
2041 	 * First check the RST flag and sequence number since reset segments
2042 	 * are exempt from the timestamp and connection count tests.  This
2043 	 * fixes a bug introduced by the Stevens, vol. 2, p. 960 bugfix
2044 	 * below which allowed reset segments in half the sequence space
2045 	 * to fall though and be processed (which gives forged reset
2046 	 * segments with a random sequence number a 50 percent chance of
2047 	 * killing a connection).
2048 	 * Then check timestamp, if present.
2049 	 * Then check the connection count, if present.
2050 	 * Then check that at least some bytes of segment are within
2051 	 * receive window.  If segment begins before rcv_nxt,
2052 	 * drop leading data (and SYN); if nothing left, just ack.
2053 	 */
2054 	if (thflags & TH_RST) {
2055 		/*
2056 		 * RFC5961 Section 3.2
2057 		 *
2058 		 * - RST drops connection only if SEG.SEQ == RCV.NXT.
2059 		 * - If RST is in window, we send challenge ACK.
2060 		 *
2061 		 * Note: to take into account delayed ACKs, we should
2062 		 *   test against last_ack_sent instead of rcv_nxt.
2063 		 * Note 2: we handle special case of closed window, not
2064 		 *   covered by the RFC.
2065 		 */
2066 		if ((SEQ_GEQ(th->th_seq, tp->last_ack_sent) &&
2067 		    SEQ_LT(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) ||
2068 		    (tp->rcv_wnd == 0 && tp->last_ack_sent == th->th_seq)) {
2069 
2070 			INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2071 			KASSERT(ti_locked == TI_WLOCKED,
2072 			    ("%s: TH_RST ti_locked %d, th %p tp %p",
2073 			    __func__, ti_locked, th, tp));
2074 			KASSERT(tp->t_state != TCPS_SYN_SENT,
2075 			    ("%s: TH_RST for TCPS_SYN_SENT th %p tp %p",
2076 			    __func__, th, tp));
2077 
2078 			if (V_tcp_insecure_rst ||
2079 			    tp->last_ack_sent == th->th_seq) {
2080 				TCPSTAT_INC(tcps_drops);
2081 				/* Drop the connection. */
2082 				switch (tp->t_state) {
2083 				case TCPS_SYN_RECEIVED:
2084 					so->so_error = ECONNREFUSED;
2085 					goto close;
2086 				case TCPS_ESTABLISHED:
2087 				case TCPS_FIN_WAIT_1:
2088 				case TCPS_FIN_WAIT_2:
2089 				case TCPS_CLOSE_WAIT:
2090 					so->so_error = ECONNRESET;
2091 				close:
2092 					tcp_state_change(tp, TCPS_CLOSED);
2093 					/* FALLTHROUGH */
2094 				default:
2095 					tp = tcp_close(tp);
2096 				}
2097 			} else {
2098 				TCPSTAT_INC(tcps_badrst);
2099 				/* Send challenge ACK. */
2100 				tcp_respond(tp, mtod(m, void *), th, m,
2101 				    tp->rcv_nxt, tp->snd_nxt, TH_ACK);
2102 				tp->last_ack_sent = tp->rcv_nxt;
2103 				m = NULL;
2104 			}
2105 		}
2106 		goto drop;
2107 	}
2108 
2109 	/*
2110 	 * RFC5961 Section 4.2
2111 	 * Send challenge ACK for any SYN in synchronized state.
2112 	 */
2113 	if ((thflags & TH_SYN) && tp->t_state != TCPS_SYN_SENT) {
2114 		KASSERT(ti_locked == TI_WLOCKED,
2115 		    ("tcp_do_segment: TH_SYN ti_locked %d", ti_locked));
2116 		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2117 
2118 		TCPSTAT_INC(tcps_badsyn);
2119 		if (V_tcp_insecure_syn &&
2120 		    SEQ_GEQ(th->th_seq, tp->last_ack_sent) &&
2121 		    SEQ_LT(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) {
2122 			tp = tcp_drop(tp, ECONNRESET);
2123 			rstreason = BANDLIM_UNLIMITED;
2124 		} else {
2125 			/* Send challenge ACK. */
2126 			tcp_respond(tp, mtod(m, void *), th, m, tp->rcv_nxt,
2127 			    tp->snd_nxt, TH_ACK);
2128 			tp->last_ack_sent = tp->rcv_nxt;
2129 			m = NULL;
2130 		}
2131 		goto drop;
2132 	}
2133 
2134 	/*
2135 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
2136 	 * and it's less than ts_recent, drop it.
2137 	 */
2138 	if ((to.to_flags & TOF_TS) != 0 && tp->ts_recent &&
2139 	    TSTMP_LT(to.to_tsval, tp->ts_recent)) {
2140 
2141 		/* Check to see if ts_recent is over 24 days old.  */
2142 		if (tcp_ts_getticks() - tp->ts_recent_age > TCP_PAWS_IDLE) {
2143 			/*
2144 			 * Invalidate ts_recent.  If this segment updates
2145 			 * ts_recent, the age will be reset later and ts_recent
2146 			 * will get a valid value.  If it does not, setting
2147 			 * ts_recent to zero will at least satisfy the
2148 			 * requirement that zero be placed in the timestamp
2149 			 * echo reply when ts_recent isn't valid.  The
2150 			 * age isn't reset until we get a valid ts_recent
2151 			 * because we don't want out-of-order segments to be
2152 			 * dropped when ts_recent is old.
2153 			 */
2154 			tp->ts_recent = 0;
2155 		} else {
2156 			TCPSTAT_INC(tcps_rcvduppack);
2157 			TCPSTAT_ADD(tcps_rcvdupbyte, tlen);
2158 			TCPSTAT_INC(tcps_pawsdrop);
2159 			if (tlen)
2160 				goto dropafterack;
2161 			goto drop;
2162 		}
2163 	}
2164 
2165 	/*
2166 	 * In the SYN-RECEIVED state, validate that the packet belongs to
2167 	 * this connection before trimming the data to fit the receive
2168 	 * window.  Check the sequence number versus IRS since we know
2169 	 * the sequence numbers haven't wrapped.  This is a partial fix
2170 	 * for the "LAND" DoS attack.
2171 	 */
2172 	if (tp->t_state == TCPS_SYN_RECEIVED && SEQ_LT(th->th_seq, tp->irs)) {
2173 		rstreason = BANDLIM_RST_OPENPORT;
2174 		goto dropwithreset;
2175 	}
2176 
2177 	todrop = tp->rcv_nxt - th->th_seq;
2178 	if (todrop > 0) {
2179 		if (thflags & TH_SYN) {
2180 			thflags &= ~TH_SYN;
2181 			th->th_seq++;
2182 			if (th->th_urp > 1)
2183 				th->th_urp--;
2184 			else
2185 				thflags &= ~TH_URG;
2186 			todrop--;
2187 		}
2188 		/*
2189 		 * Following if statement from Stevens, vol. 2, p. 960.
2190 		 */
2191 		if (todrop > tlen
2192 		    || (todrop == tlen && (thflags & TH_FIN) == 0)) {
2193 			/*
2194 			 * Any valid FIN must be to the left of the window.
2195 			 * At this point the FIN must be a duplicate or out
2196 			 * of sequence; drop it.
2197 			 */
2198 			thflags &= ~TH_FIN;
2199 
2200 			/*
2201 			 * Send an ACK to resynchronize and drop any data.
2202 			 * But keep on processing for RST or ACK.
2203 			 */
2204 			tp->t_flags |= TF_ACKNOW;
2205 			todrop = tlen;
2206 			TCPSTAT_INC(tcps_rcvduppack);
2207 			TCPSTAT_ADD(tcps_rcvdupbyte, todrop);
2208 		} else {
2209 			TCPSTAT_INC(tcps_rcvpartduppack);
2210 			TCPSTAT_ADD(tcps_rcvpartdupbyte, todrop);
2211 		}
2212 		drop_hdrlen += todrop;	/* drop from the top afterwards */
2213 		th->th_seq += todrop;
2214 		tlen -= todrop;
2215 		if (th->th_urp > todrop)
2216 			th->th_urp -= todrop;
2217 		else {
2218 			thflags &= ~TH_URG;
2219 			th->th_urp = 0;
2220 		}
2221 	}
2222 
2223 	/*
2224 	 * If new data are received on a connection after the
2225 	 * user processes are gone, then RST the other end.
2226 	 */
2227 	if ((so->so_state & SS_NOFDREF) &&
2228 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
2229 		KASSERT(ti_locked == TI_WLOCKED, ("%s: SS_NOFDEREF && "
2230 		    "CLOSE_WAIT && tlen ti_locked %d", __func__, ti_locked));
2231 		INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2232 
2233 		if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
2234 			log(LOG_DEBUG, "%s; %s: %s: Received %d bytes of data "
2235 			    "after socket was closed, "
2236 			    "sending RST and removing tcpcb\n",
2237 			    s, __func__, tcpstates[tp->t_state], tlen);
2238 			free(s, M_TCPLOG);
2239 		}
2240 		tp = tcp_close(tp);
2241 		TCPSTAT_INC(tcps_rcvafterclose);
2242 		rstreason = BANDLIM_UNLIMITED;
2243 		goto dropwithreset;
2244 	}
2245 
2246 	/*
2247 	 * If segment ends after window, drop trailing data
2248 	 * (and PUSH and FIN); if nothing left, just ACK.
2249 	 */
2250 	todrop = (th->th_seq + tlen) - (tp->rcv_nxt + tp->rcv_wnd);
2251 	if (todrop > 0) {
2252 		TCPSTAT_INC(tcps_rcvpackafterwin);
2253 		if (todrop >= tlen) {
2254 			TCPSTAT_ADD(tcps_rcvbyteafterwin, tlen);
2255 			/*
2256 			 * If window is closed can only take segments at
2257 			 * window edge, and have to drop data and PUSH from
2258 			 * incoming segments.  Continue processing, but
2259 			 * remember to ack.  Otherwise, drop segment
2260 			 * and ack.
2261 			 */
2262 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
2263 				tp->t_flags |= TF_ACKNOW;
2264 				TCPSTAT_INC(tcps_rcvwinprobe);
2265 			} else
2266 				goto dropafterack;
2267 		} else
2268 			TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop);
2269 		m_adj(m, -todrop);
2270 		tlen -= todrop;
2271 		thflags &= ~(TH_PUSH|TH_FIN);
2272 	}
2273 
2274 	/*
2275 	 * If last ACK falls within this segment's sequence numbers,
2276 	 * record its timestamp.
2277 	 * NOTE:
2278 	 * 1) That the test incorporates suggestions from the latest
2279 	 *    proposal of the tcplw@cray.com list (Braden 1993/04/26).
2280 	 * 2) That updating only on newer timestamps interferes with
2281 	 *    our earlier PAWS tests, so this check should be solely
2282 	 *    predicated on the sequence space of this segment.
2283 	 * 3) That we modify the segment boundary check to be
2284 	 *        Last.ACK.Sent <= SEG.SEQ + SEG.Len
2285 	 *    instead of RFC1323's
2286 	 *        Last.ACK.Sent < SEG.SEQ + SEG.Len,
2287 	 *    This modified check allows us to overcome RFC1323's
2288 	 *    limitations as described in Stevens TCP/IP Illustrated
2289 	 *    Vol. 2 p.869. In such cases, we can still calculate the
2290 	 *    RTT correctly when RCV.NXT == Last.ACK.Sent.
2291 	 */
2292 	if ((to.to_flags & TOF_TS) != 0 &&
2293 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
2294 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
2295 		((thflags & (TH_SYN|TH_FIN)) != 0))) {
2296 		tp->ts_recent_age = tcp_ts_getticks();
2297 		tp->ts_recent = to.to_tsval;
2298 	}
2299 
2300 	/*
2301 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN
2302 	 * flag is on (half-synchronized state), then queue data for
2303 	 * later processing; else drop segment and return.
2304 	 */
2305 	if ((thflags & TH_ACK) == 0) {
2306 		if (tp->t_state == TCPS_SYN_RECEIVED ||
2307 		    (tp->t_flags & TF_NEEDSYN))
2308 			goto step6;
2309 		else if (tp->t_flags & TF_ACKNOW)
2310 			goto dropafterack;
2311 		else
2312 			goto drop;
2313 	}
2314 
2315 	/*
2316 	 * Ack processing.
2317 	 */
2318 	switch (tp->t_state) {
2319 
2320 	/*
2321 	 * In SYN_RECEIVED state, the ack ACKs our SYN, so enter
2322 	 * ESTABLISHED state and continue processing.
2323 	 * The ACK was checked above.
2324 	 */
2325 	case TCPS_SYN_RECEIVED:
2326 
2327 		TCPSTAT_INC(tcps_connects);
2328 		soisconnected(so);
2329 		/* Do window scaling? */
2330 		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2331 			(TF_RCVD_SCALE|TF_REQ_SCALE)) {
2332 			tp->rcv_scale = tp->request_r_scale;
2333 			tp->snd_wnd = tiwin;
2334 		}
2335 		/*
2336 		 * Make transitions:
2337 		 *      SYN-RECEIVED  -> ESTABLISHED
2338 		 *      SYN-RECEIVED* -> FIN-WAIT-1
2339 		 */
2340 		tp->t_starttime = ticks;
2341 		if (tp->t_flags & TF_NEEDFIN) {
2342 			tcp_state_change(tp, TCPS_FIN_WAIT_1);
2343 			tp->t_flags &= ~TF_NEEDFIN;
2344 		} else {
2345 			tcp_state_change(tp, TCPS_ESTABLISHED);
2346 			TCP_PROBE5(accept__established, NULL, tp,
2347 			    mtod(m, const char *), tp, th);
2348 			cc_conn_init(tp);
2349 			tcp_timer_activate(tp, TT_KEEP, TP_KEEPIDLE(tp));
2350 		}
2351 		/*
2352 		 * If segment contains data or ACK, will call tcp_reass()
2353 		 * later; if not, do so now to pass queued data to user.
2354 		 */
2355 		if (tlen == 0 && (thflags & TH_FIN) == 0)
2356 			(void) tcp_reass(tp, (struct tcphdr *)0, 0,
2357 			    (struct mbuf *)0);
2358 		tp->snd_wl1 = th->th_seq - 1;
2359 		/* FALLTHROUGH */
2360 
2361 	/*
2362 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
2363 	 * ACKs.  If the ack is in the range
2364 	 *	tp->snd_una < th->th_ack <= tp->snd_max
2365 	 * then advance tp->snd_una to th->th_ack and drop
2366 	 * data from the retransmission queue.  If this ACK reflects
2367 	 * more up to date window information we update our window information.
2368 	 */
2369 	case TCPS_ESTABLISHED:
2370 	case TCPS_FIN_WAIT_1:
2371 	case TCPS_FIN_WAIT_2:
2372 	case TCPS_CLOSE_WAIT:
2373 	case TCPS_CLOSING:
2374 	case TCPS_LAST_ACK:
2375 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
2376 			TCPSTAT_INC(tcps_rcvacktoomuch);
2377 			goto dropafterack;
2378 		}
2379 		if ((tp->t_flags & TF_SACK_PERMIT) &&
2380 		    ((to.to_flags & TOF_SACK) ||
2381 		     !TAILQ_EMPTY(&tp->snd_holes)))
2382 			tcp_sack_doack(tp, &to, th->th_ack);
2383 
2384 		/* Run HHOOK_TCP_ESTABLISHED_IN helper hooks. */
2385 		hhook_run_tcp_est_in(tp, th, &to);
2386 
2387 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
2388 			if (tlen == 0 && tiwin == tp->snd_wnd) {
2389 				/*
2390 				 * If this is the first time we've seen a
2391 				 * FIN from the remote, this is not a
2392 				 * duplicate and it needs to be processed
2393 				 * normally.  This happens during a
2394 				 * simultaneous close.
2395 				 */
2396 				if ((thflags & TH_FIN) &&
2397 				    (TCPS_HAVERCVDFIN(tp->t_state) == 0)) {
2398 					tp->t_dupacks = 0;
2399 					break;
2400 				}
2401 				TCPSTAT_INC(tcps_rcvdupack);
2402 				/*
2403 				 * If we have outstanding data (other than
2404 				 * a window probe), this is a completely
2405 				 * duplicate ack (ie, window info didn't
2406 				 * change and FIN isn't set),
2407 				 * the ack is the biggest we've
2408 				 * seen and we've seen exactly our rexmt
2409 				 * threshhold of them, assume a packet
2410 				 * has been dropped and retransmit it.
2411 				 * Kludge snd_nxt & the congestion
2412 				 * window so we send only this one
2413 				 * packet.
2414 				 *
2415 				 * We know we're losing at the current
2416 				 * window size so do congestion avoidance
2417 				 * (set ssthresh to half the current window
2418 				 * and pull our congestion window back to
2419 				 * the new ssthresh).
2420 				 *
2421 				 * Dup acks mean that packets have left the
2422 				 * network (they're now cached at the receiver)
2423 				 * so bump cwnd by the amount in the receiver
2424 				 * to keep a constant cwnd packets in the
2425 				 * network.
2426 				 *
2427 				 * When using TCP ECN, notify the peer that
2428 				 * we reduced the cwnd.
2429 				 */
2430 				if (!tcp_timer_active(tp, TT_REXMT) ||
2431 				    th->th_ack != tp->snd_una)
2432 					tp->t_dupacks = 0;
2433 				else if (++tp->t_dupacks > tcprexmtthresh ||
2434 				     IN_FASTRECOVERY(tp->t_flags)) {
2435 					cc_ack_received(tp, th, CC_DUPACK);
2436 					if ((tp->t_flags & TF_SACK_PERMIT) &&
2437 					    IN_FASTRECOVERY(tp->t_flags)) {
2438 						int awnd;
2439 
2440 						/*
2441 						 * Compute the amount of data in flight first.
2442 						 * We can inject new data into the pipe iff
2443 						 * we have less than 1/2 the original window's
2444 						 * worth of data in flight.
2445 						 */
2446 						awnd = (tp->snd_nxt - tp->snd_fack) +
2447 							tp->sackhint.sack_bytes_rexmit;
2448 						if (awnd < tp->snd_ssthresh) {
2449 							tp->snd_cwnd += tp->t_maxseg;
2450 							if (tp->snd_cwnd > tp->snd_ssthresh)
2451 								tp->snd_cwnd = tp->snd_ssthresh;
2452 						}
2453 					} else
2454 						tp->snd_cwnd += tp->t_maxseg;
2455 					(void) tcp_output(tp);
2456 					goto drop;
2457 				} else if (tp->t_dupacks == tcprexmtthresh) {
2458 					tcp_seq onxt = tp->snd_nxt;
2459 
2460 					/*
2461 					 * If we're doing sack, check to
2462 					 * see if we're already in sack
2463 					 * recovery. If we're not doing sack,
2464 					 * check to see if we're in newreno
2465 					 * recovery.
2466 					 */
2467 					if (tp->t_flags & TF_SACK_PERMIT) {
2468 						if (IN_FASTRECOVERY(tp->t_flags)) {
2469 							tp->t_dupacks = 0;
2470 							break;
2471 						}
2472 					} else {
2473 						if (SEQ_LEQ(th->th_ack,
2474 						    tp->snd_recover)) {
2475 							tp->t_dupacks = 0;
2476 							break;
2477 						}
2478 					}
2479 					/* Congestion signal before ack. */
2480 					cc_cong_signal(tp, th, CC_NDUPACK);
2481 					cc_ack_received(tp, th, CC_DUPACK);
2482 					tcp_timer_activate(tp, TT_REXMT, 0);
2483 					tp->t_rtttime = 0;
2484 					if (tp->t_flags & TF_SACK_PERMIT) {
2485 						TCPSTAT_INC(
2486 						    tcps_sack_recovery_episode);
2487 						tp->sack_newdata = tp->snd_nxt;
2488 						tp->snd_cwnd = tp->t_maxseg;
2489 						(void) tcp_output(tp);
2490 						goto drop;
2491 					}
2492 					tp->snd_nxt = th->th_ack;
2493 					tp->snd_cwnd = tp->t_maxseg;
2494 					(void) tcp_output(tp);
2495 					KASSERT(tp->snd_limited <= 2,
2496 					    ("%s: tp->snd_limited too big",
2497 					    __func__));
2498 					tp->snd_cwnd = tp->snd_ssthresh +
2499 					     tp->t_maxseg *
2500 					     (tp->t_dupacks - tp->snd_limited);
2501 					if (SEQ_GT(onxt, tp->snd_nxt))
2502 						tp->snd_nxt = onxt;
2503 					goto drop;
2504 				} else if (V_tcp_do_rfc3042) {
2505 					cc_ack_received(tp, th, CC_DUPACK);
2506 					u_long oldcwnd = tp->snd_cwnd;
2507 					tcp_seq oldsndmax = tp->snd_max;
2508 					u_int sent;
2509 					int avail;
2510 
2511 					KASSERT(tp->t_dupacks == 1 ||
2512 					    tp->t_dupacks == 2,
2513 					    ("%s: dupacks not 1 or 2",
2514 					    __func__));
2515 					if (tp->t_dupacks == 1)
2516 						tp->snd_limited = 0;
2517 					tp->snd_cwnd =
2518 					    (tp->snd_nxt - tp->snd_una) +
2519 					    (tp->t_dupacks - tp->snd_limited) *
2520 					    tp->t_maxseg;
2521 					/*
2522 					 * Only call tcp_output when there
2523 					 * is new data available to be sent.
2524 					 * Otherwise we would send pure ACKs.
2525 					 */
2526 					SOCKBUF_LOCK(&so->so_snd);
2527 					avail = so->so_snd.sb_cc -
2528 					    (tp->snd_nxt - tp->snd_una);
2529 					SOCKBUF_UNLOCK(&so->so_snd);
2530 					if (avail > 0)
2531 						(void) tcp_output(tp);
2532 					sent = tp->snd_max - oldsndmax;
2533 					if (sent > tp->t_maxseg) {
2534 						KASSERT((tp->t_dupacks == 2 &&
2535 						    tp->snd_limited == 0) ||
2536 						   (sent == tp->t_maxseg + 1 &&
2537 						    tp->t_flags & TF_SENTFIN),
2538 						    ("%s: sent too much",
2539 						    __func__));
2540 						tp->snd_limited = 2;
2541 					} else if (sent > 0)
2542 						++tp->snd_limited;
2543 					tp->snd_cwnd = oldcwnd;
2544 					goto drop;
2545 				}
2546 			} else
2547 				tp->t_dupacks = 0;
2548 			break;
2549 		}
2550 
2551 		KASSERT(SEQ_GT(th->th_ack, tp->snd_una),
2552 		    ("%s: th_ack <= snd_una", __func__));
2553 
2554 		/*
2555 		 * If the congestion window was inflated to account
2556 		 * for the other side's cached packets, retract it.
2557 		 */
2558 		if (IN_FASTRECOVERY(tp->t_flags)) {
2559 			if (SEQ_LT(th->th_ack, tp->snd_recover)) {
2560 				if (tp->t_flags & TF_SACK_PERMIT)
2561 					tcp_sack_partialack(tp, th);
2562 				else
2563 					tcp_newreno_partial_ack(tp, th);
2564 			} else
2565 				cc_post_recovery(tp, th);
2566 		}
2567 		tp->t_dupacks = 0;
2568 		/*
2569 		 * If we reach this point, ACK is not a duplicate,
2570 		 *     i.e., it ACKs something we sent.
2571 		 */
2572 		if (tp->t_flags & TF_NEEDSYN) {
2573 			/*
2574 			 * T/TCP: Connection was half-synchronized, and our
2575 			 * SYN has been ACK'd (so connection is now fully
2576 			 * synchronized).  Go to non-starred state,
2577 			 * increment snd_una for ACK of SYN, and check if
2578 			 * we can do window scaling.
2579 			 */
2580 			tp->t_flags &= ~TF_NEEDSYN;
2581 			tp->snd_una++;
2582 			/* Do window scaling? */
2583 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2584 				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
2585 				tp->rcv_scale = tp->request_r_scale;
2586 				/* Send window already scaled. */
2587 			}
2588 		}
2589 
2590 process_ACK:
2591 		INP_WLOCK_ASSERT(tp->t_inpcb);
2592 
2593 		acked = BYTES_THIS_ACK(tp, th);
2594 		TCPSTAT_INC(tcps_rcvackpack);
2595 		TCPSTAT_ADD(tcps_rcvackbyte, acked);
2596 
2597 		/*
2598 		 * If we just performed our first retransmit, and the ACK
2599 		 * arrives within our recovery window, then it was a mistake
2600 		 * to do the retransmit in the first place.  Recover our
2601 		 * original cwnd and ssthresh, and proceed to transmit where
2602 		 * we left off.
2603 		 */
2604 		if (tp->t_rxtshift == 1 && tp->t_flags & TF_PREVVALID &&
2605 		    (int)(ticks - tp->t_badrxtwin) < 0)
2606 			cc_cong_signal(tp, th, CC_RTO_ERR);
2607 
2608 		/*
2609 		 * If we have a timestamp reply, update smoothed
2610 		 * round trip time.  If no timestamp is present but
2611 		 * transmit timer is running and timed sequence
2612 		 * number was acked, update smoothed round trip time.
2613 		 * Since we now have an rtt measurement, cancel the
2614 		 * timer backoff (cf., Phil Karn's retransmit alg.).
2615 		 * Recompute the initial retransmit timer.
2616 		 *
2617 		 * Some boxes send broken timestamp replies
2618 		 * during the SYN+ACK phase, ignore
2619 		 * timestamps of 0 or we could calculate a
2620 		 * huge RTT and blow up the retransmit timer.
2621 		 */
2622 		if ((to.to_flags & TOF_TS) != 0 && to.to_tsecr) {
2623 			u_int t;
2624 
2625 			t = tcp_ts_getticks() - to.to_tsecr;
2626 			if (!tp->t_rttlow || tp->t_rttlow > t)
2627 				tp->t_rttlow = t;
2628 			tcp_xmit_timer(tp, TCP_TS_TO_TICKS(t) + 1);
2629 		} else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq)) {
2630 			if (!tp->t_rttlow || tp->t_rttlow > ticks - tp->t_rtttime)
2631 				tp->t_rttlow = ticks - tp->t_rtttime;
2632 			tcp_xmit_timer(tp, ticks - tp->t_rtttime);
2633 		}
2634 
2635 		/*
2636 		 * If all outstanding data is acked, stop retransmit
2637 		 * timer and remember to restart (more output or persist).
2638 		 * If there is more data to be acked, restart retransmit
2639 		 * timer, using current (possibly backed-off) value.
2640 		 */
2641 		if (th->th_ack == tp->snd_max) {
2642 			tcp_timer_activate(tp, TT_REXMT, 0);
2643 			needoutput = 1;
2644 		} else if (!tcp_timer_active(tp, TT_PERSIST))
2645 			tcp_timer_activate(tp, TT_REXMT, tp->t_rxtcur);
2646 
2647 		/*
2648 		 * If no data (only SYN) was ACK'd,
2649 		 *    skip rest of ACK processing.
2650 		 */
2651 		if (acked == 0)
2652 			goto step6;
2653 
2654 		/*
2655 		 * Let the congestion control algorithm update congestion
2656 		 * control related information. This typically means increasing
2657 		 * the congestion window.
2658 		 */
2659 		cc_ack_received(tp, th, CC_ACK);
2660 
2661 		SOCKBUF_LOCK(&so->so_snd);
2662 		if (acked > so->so_snd.sb_cc) {
2663 			tp->snd_wnd -= so->so_snd.sb_cc;
2664 			mfree = sbcut_locked(&so->so_snd,
2665 			    (int)so->so_snd.sb_cc);
2666 			ourfinisacked = 1;
2667 		} else {
2668 			mfree = sbcut_locked(&so->so_snd, acked);
2669 			tp->snd_wnd -= acked;
2670 			ourfinisacked = 0;
2671 		}
2672 		/* NB: sowwakeup_locked() does an implicit unlock. */
2673 		sowwakeup_locked(so);
2674 		m_freem(mfree);
2675 		/* Detect una wraparound. */
2676 		if (!IN_RECOVERY(tp->t_flags) &&
2677 		    SEQ_GT(tp->snd_una, tp->snd_recover) &&
2678 		    SEQ_LEQ(th->th_ack, tp->snd_recover))
2679 			tp->snd_recover = th->th_ack - 1;
2680 		/* XXXLAS: Can this be moved up into cc_post_recovery? */
2681 		if (IN_RECOVERY(tp->t_flags) &&
2682 		    SEQ_GEQ(th->th_ack, tp->snd_recover)) {
2683 			EXIT_RECOVERY(tp->t_flags);
2684 		}
2685 		tp->snd_una = th->th_ack;
2686 		if (tp->t_flags & TF_SACK_PERMIT) {
2687 			if (SEQ_GT(tp->snd_una, tp->snd_recover))
2688 				tp->snd_recover = tp->snd_una;
2689 		}
2690 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2691 			tp->snd_nxt = tp->snd_una;
2692 
2693 		switch (tp->t_state) {
2694 
2695 		/*
2696 		 * In FIN_WAIT_1 STATE in addition to the processing
2697 		 * for the ESTABLISHED state if our FIN is now acknowledged
2698 		 * then enter FIN_WAIT_2.
2699 		 */
2700 		case TCPS_FIN_WAIT_1:
2701 			if (ourfinisacked) {
2702 				/*
2703 				 * If we can't receive any more
2704 				 * data, then closing user can proceed.
2705 				 * Starting the timer is contrary to the
2706 				 * specification, but if we don't get a FIN
2707 				 * we'll hang forever.
2708 				 *
2709 				 * XXXjl:
2710 				 * we should release the tp also, and use a
2711 				 * compressed state.
2712 				 */
2713 				if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
2714 					soisdisconnected(so);
2715 					tcp_timer_activate(tp, TT_2MSL,
2716 					    (tcp_fast_finwait2_recycle ?
2717 					    tcp_finwait2_timeout :
2718 					    TP_MAXIDLE(tp)));
2719 				}
2720 				tcp_state_change(tp, TCPS_FIN_WAIT_2);
2721 			}
2722 			break;
2723 
2724 		/*
2725 		 * In CLOSING STATE in addition to the processing for
2726 		 * the ESTABLISHED state if the ACK acknowledges our FIN
2727 		 * then enter the TIME-WAIT state, otherwise ignore
2728 		 * the segment.
2729 		 */
2730 		case TCPS_CLOSING:
2731 			if (ourfinisacked) {
2732 				INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2733 				tcp_twstart(tp);
2734 				INP_INFO_WUNLOCK(&V_tcbinfo);
2735 				m_freem(m);
2736 				return;
2737 			}
2738 			break;
2739 
2740 		/*
2741 		 * In LAST_ACK, we may still be waiting for data to drain
2742 		 * and/or to be acked, as well as for the ack of our FIN.
2743 		 * If our FIN is now acknowledged, delete the TCB,
2744 		 * enter the closed state and return.
2745 		 */
2746 		case TCPS_LAST_ACK:
2747 			if (ourfinisacked) {
2748 				INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2749 				tp = tcp_close(tp);
2750 				goto drop;
2751 			}
2752 			break;
2753 		}
2754 	}
2755 
2756 step6:
2757 	INP_WLOCK_ASSERT(tp->t_inpcb);
2758 
2759 	/*
2760 	 * Update window information.
2761 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2762 	 */
2763 	if ((thflags & TH_ACK) &&
2764 	    (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2765 	    (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
2766 	     (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
2767 		/* keep track of pure window updates */
2768 		if (tlen == 0 &&
2769 		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2770 			TCPSTAT_INC(tcps_rcvwinupd);
2771 		tp->snd_wnd = tiwin;
2772 		tp->snd_wl1 = th->th_seq;
2773 		tp->snd_wl2 = th->th_ack;
2774 		if (tp->snd_wnd > tp->max_sndwnd)
2775 			tp->max_sndwnd = tp->snd_wnd;
2776 		needoutput = 1;
2777 	}
2778 
2779 	/*
2780 	 * Process segments with URG.
2781 	 */
2782 	if ((thflags & TH_URG) && th->th_urp &&
2783 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2784 		/*
2785 		 * This is a kludge, but if we receive and accept
2786 		 * random urgent pointers, we'll crash in
2787 		 * soreceive.  It's hard to imagine someone
2788 		 * actually wanting to send this much urgent data.
2789 		 */
2790 		SOCKBUF_LOCK(&so->so_rcv);
2791 		if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2792 			th->th_urp = 0;			/* XXX */
2793 			thflags &= ~TH_URG;		/* XXX */
2794 			SOCKBUF_UNLOCK(&so->so_rcv);	/* XXX */
2795 			goto dodata;			/* XXX */
2796 		}
2797 		/*
2798 		 * If this segment advances the known urgent pointer,
2799 		 * then mark the data stream.  This should not happen
2800 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2801 		 * a FIN has been received from the remote side.
2802 		 * In these states we ignore the URG.
2803 		 *
2804 		 * According to RFC961 (Assigned Protocols),
2805 		 * the urgent pointer points to the last octet
2806 		 * of urgent data.  We continue, however,
2807 		 * to consider it to indicate the first octet
2808 		 * of data past the urgent section as the original
2809 		 * spec states (in one of two places).
2810 		 */
2811 		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2812 			tp->rcv_up = th->th_seq + th->th_urp;
2813 			so->so_oobmark = so->so_rcv.sb_cc +
2814 			    (tp->rcv_up - tp->rcv_nxt) - 1;
2815 			if (so->so_oobmark == 0)
2816 				so->so_rcv.sb_state |= SBS_RCVATMARK;
2817 			sohasoutofband(so);
2818 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2819 		}
2820 		SOCKBUF_UNLOCK(&so->so_rcv);
2821 		/*
2822 		 * Remove out of band data so doesn't get presented to user.
2823 		 * This can happen independent of advancing the URG pointer,
2824 		 * but if two URG's are pending at once, some out-of-band
2825 		 * data may creep in... ick.
2826 		 */
2827 		if (th->th_urp <= (u_long)tlen &&
2828 		    !(so->so_options & SO_OOBINLINE)) {
2829 			/* hdr drop is delayed */
2830 			tcp_pulloutofband(so, th, m, drop_hdrlen);
2831 		}
2832 	} else {
2833 		/*
2834 		 * If no out of band data is expected,
2835 		 * pull receive urgent pointer along
2836 		 * with the receive window.
2837 		 */
2838 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2839 			tp->rcv_up = tp->rcv_nxt;
2840 	}
2841 dodata:							/* XXX */
2842 	INP_WLOCK_ASSERT(tp->t_inpcb);
2843 
2844 	/*
2845 	 * Process the segment text, merging it into the TCP sequencing queue,
2846 	 * and arranging for acknowledgment of receipt if necessary.
2847 	 * This process logically involves adjusting tp->rcv_wnd as data
2848 	 * is presented to the user (this happens in tcp_usrreq.c,
2849 	 * case PRU_RCVD).  If a FIN has already been received on this
2850 	 * connection then we just ignore the text.
2851 	 */
2852 	if ((tlen || (thflags & TH_FIN)) &&
2853 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2854 		tcp_seq save_start = th->th_seq;
2855 		m_adj(m, drop_hdrlen);	/* delayed header drop */
2856 		/*
2857 		 * Insert segment which includes th into TCP reassembly queue
2858 		 * with control block tp.  Set thflags to whether reassembly now
2859 		 * includes a segment with FIN.  This handles the common case
2860 		 * inline (segment is the next to be received on an established
2861 		 * connection, and the queue is empty), avoiding linkage into
2862 		 * and removal from the queue and repetition of various
2863 		 * conversions.
2864 		 * Set DELACK for segments received in order, but ack
2865 		 * immediately when segments are out of order (so
2866 		 * fast retransmit can work).
2867 		 */
2868 		if (th->th_seq == tp->rcv_nxt && tp->t_segq == NULL &&
2869 		    TCPS_HAVEESTABLISHED(tp->t_state)) {
2870 			if (DELAY_ACK(tp, tlen))
2871 				tp->t_flags |= TF_DELACK;
2872 			else
2873 				tp->t_flags |= TF_ACKNOW;
2874 			tp->rcv_nxt += tlen;
2875 			thflags = th->th_flags & TH_FIN;
2876 			TCPSTAT_INC(tcps_rcvpack);
2877 			TCPSTAT_ADD(tcps_rcvbyte, tlen);
2878 			ND6_HINT(tp);
2879 			SOCKBUF_LOCK(&so->so_rcv);
2880 			if (so->so_rcv.sb_state & SBS_CANTRCVMORE)
2881 				m_freem(m);
2882 			else
2883 				sbappendstream_locked(&so->so_rcv, m);
2884 			/* NB: sorwakeup_locked() does an implicit unlock. */
2885 			sorwakeup_locked(so);
2886 		} else {
2887 			/*
2888 			 * XXX: Due to the header drop above "th" is
2889 			 * theoretically invalid by now.  Fortunately
2890 			 * m_adj() doesn't actually frees any mbufs
2891 			 * when trimming from the head.
2892 			 */
2893 			thflags = tcp_reass(tp, th, &tlen, m);
2894 			tp->t_flags |= TF_ACKNOW;
2895 		}
2896 		if (tlen > 0 && (tp->t_flags & TF_SACK_PERMIT))
2897 			tcp_update_sack_list(tp, save_start, save_start + tlen);
2898 #if 0
2899 		/*
2900 		 * Note the amount of data that peer has sent into
2901 		 * our window, in order to estimate the sender's
2902 		 * buffer size.
2903 		 * XXX: Unused.
2904 		 */
2905 		if (SEQ_GT(tp->rcv_adv, tp->rcv_nxt))
2906 			len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2907 		else
2908 			len = so->so_rcv.sb_hiwat;
2909 #endif
2910 	} else {
2911 		m_freem(m);
2912 		thflags &= ~TH_FIN;
2913 	}
2914 
2915 	/*
2916 	 * If FIN is received ACK the FIN and let the user know
2917 	 * that the connection is closing.
2918 	 */
2919 	if (thflags & TH_FIN) {
2920 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2921 			socantrcvmore(so);
2922 			/*
2923 			 * If connection is half-synchronized
2924 			 * (ie NEEDSYN flag on) then delay ACK,
2925 			 * so it may be piggybacked when SYN is sent.
2926 			 * Otherwise, since we received a FIN then no
2927 			 * more input can be expected, send ACK now.
2928 			 */
2929 			if (tp->t_flags & TF_NEEDSYN)
2930 				tp->t_flags |= TF_DELACK;
2931 			else
2932 				tp->t_flags |= TF_ACKNOW;
2933 			tp->rcv_nxt++;
2934 		}
2935 		switch (tp->t_state) {
2936 
2937 		/*
2938 		 * In SYN_RECEIVED and ESTABLISHED STATES
2939 		 * enter the CLOSE_WAIT state.
2940 		 */
2941 		case TCPS_SYN_RECEIVED:
2942 			tp->t_starttime = ticks;
2943 			/* FALLTHROUGH */
2944 		case TCPS_ESTABLISHED:
2945 			tcp_state_change(tp, TCPS_CLOSE_WAIT);
2946 			break;
2947 
2948 		/*
2949 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2950 		 * enter the CLOSING state.
2951 		 */
2952 		case TCPS_FIN_WAIT_1:
2953 			tcp_state_change(tp, TCPS_CLOSING);
2954 			break;
2955 
2956 		/*
2957 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2958 		 * starting the time-wait timer, turning off the other
2959 		 * standard timers.
2960 		 */
2961 		case TCPS_FIN_WAIT_2:
2962 			INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
2963 			KASSERT(ti_locked == TI_WLOCKED, ("%s: dodata "
2964 			    "TCP_FIN_WAIT_2 ti_locked: %d", __func__,
2965 			    ti_locked));
2966 
2967 			tcp_twstart(tp);
2968 			INP_INFO_WUNLOCK(&V_tcbinfo);
2969 			return;
2970 		}
2971 	}
2972 	if (ti_locked == TI_WLOCKED)
2973 		INP_INFO_WUNLOCK(&V_tcbinfo);
2974 	ti_locked = TI_UNLOCKED;
2975 
2976 #ifdef TCPDEBUG
2977 	if (so->so_options & SO_DEBUG)
2978 		tcp_trace(TA_INPUT, ostate, tp, (void *)tcp_saveipgen,
2979 			  &tcp_savetcp, 0);
2980 #endif
2981 
2982 	/*
2983 	 * Return any desired output.
2984 	 */
2985 	if (needoutput || (tp->t_flags & TF_ACKNOW))
2986 		(void) tcp_output(tp);
2987 
2988 check_delack:
2989 	KASSERT(ti_locked == TI_UNLOCKED, ("%s: check_delack ti_locked %d",
2990 	    __func__, ti_locked));
2991 	INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
2992 	INP_WLOCK_ASSERT(tp->t_inpcb);
2993 
2994 	if (tp->t_flags & TF_DELACK) {
2995 		tp->t_flags &= ~TF_DELACK;
2996 		tcp_timer_activate(tp, TT_DELACK, tcp_delacktime);
2997 	}
2998 	INP_WUNLOCK(tp->t_inpcb);
2999 	return;
3000 
3001 dropafterack:
3002 	/*
3003 	 * Generate an ACK dropping incoming segment if it occupies
3004 	 * sequence space, where the ACK reflects our state.
3005 	 *
3006 	 * We can now skip the test for the RST flag since all
3007 	 * paths to this code happen after packets containing
3008 	 * RST have been dropped.
3009 	 *
3010 	 * In the SYN-RECEIVED state, don't send an ACK unless the
3011 	 * segment we received passes the SYN-RECEIVED ACK test.
3012 	 * If it fails send a RST.  This breaks the loop in the
3013 	 * "LAND" DoS attack, and also prevents an ACK storm
3014 	 * between two listening ports that have been sent forged
3015 	 * SYN segments, each with the source address of the other.
3016 	 */
3017 	if (tp->t_state == TCPS_SYN_RECEIVED && (thflags & TH_ACK) &&
3018 	    (SEQ_GT(tp->snd_una, th->th_ack) ||
3019 	     SEQ_GT(th->th_ack, tp->snd_max)) ) {
3020 		rstreason = BANDLIM_RST_OPENPORT;
3021 		goto dropwithreset;
3022 	}
3023 #ifdef TCPDEBUG
3024 	if (so->so_options & SO_DEBUG)
3025 		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
3026 			  &tcp_savetcp, 0);
3027 #endif
3028 	if (ti_locked == TI_WLOCKED)
3029 		INP_INFO_WUNLOCK(&V_tcbinfo);
3030 	ti_locked = TI_UNLOCKED;
3031 
3032 	tp->t_flags |= TF_ACKNOW;
3033 	(void) tcp_output(tp);
3034 	INP_WUNLOCK(tp->t_inpcb);
3035 	m_freem(m);
3036 	return;
3037 
3038 dropwithreset:
3039 	if (ti_locked == TI_WLOCKED)
3040 		INP_INFO_WUNLOCK(&V_tcbinfo);
3041 	ti_locked = TI_UNLOCKED;
3042 
3043 	if (tp != NULL) {
3044 		tcp_dropwithreset(m, th, tp, tlen, rstreason);
3045 		INP_WUNLOCK(tp->t_inpcb);
3046 	} else
3047 		tcp_dropwithreset(m, th, NULL, tlen, rstreason);
3048 	return;
3049 
3050 drop:
3051 	if (ti_locked == TI_WLOCKED) {
3052 		INP_INFO_WUNLOCK(&V_tcbinfo);
3053 		ti_locked = TI_UNLOCKED;
3054 	}
3055 #ifdef INVARIANTS
3056 	else
3057 		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
3058 #endif
3059 
3060 	/*
3061 	 * Drop space held by incoming segment and return.
3062 	 */
3063 #ifdef TCPDEBUG
3064 	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
3065 		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
3066 			  &tcp_savetcp, 0);
3067 #endif
3068 	if (tp != NULL)
3069 		INP_WUNLOCK(tp->t_inpcb);
3070 	m_freem(m);
3071 }
3072 
3073 /*
3074  * Issue RST and make ACK acceptable to originator of segment.
3075  * The mbuf must still include the original packet header.
3076  * tp may be NULL.
3077  */
3078 static void
3079 tcp_dropwithreset(struct mbuf *m, struct tcphdr *th, struct tcpcb *tp,
3080     int tlen, int rstreason)
3081 {
3082 #ifdef INET
3083 	struct ip *ip;
3084 #endif
3085 #ifdef INET6
3086 	struct ip6_hdr *ip6;
3087 #endif
3088 
3089 	if (tp != NULL) {
3090 		INP_WLOCK_ASSERT(tp->t_inpcb);
3091 	}
3092 
3093 	/* Don't bother if destination was broadcast/multicast. */
3094 	if ((th->th_flags & TH_RST) || m->m_flags & (M_BCAST|M_MCAST))
3095 		goto drop;
3096 #ifdef INET6
3097 	if (mtod(m, struct ip *)->ip_v == 6) {
3098 		ip6 = mtod(m, struct ip6_hdr *);
3099 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
3100 		    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
3101 			goto drop;
3102 		/* IPv6 anycast check is done at tcp6_input() */
3103 	}
3104 #endif
3105 #if defined(INET) && defined(INET6)
3106 	else
3107 #endif
3108 #ifdef INET
3109 	{
3110 		ip = mtod(m, struct ip *);
3111 		if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
3112 		    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
3113 		    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
3114 		    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
3115 			goto drop;
3116 	}
3117 #endif
3118 
3119 	/* Perform bandwidth limiting. */
3120 	if (badport_bandlim(rstreason) < 0)
3121 		goto drop;
3122 
3123 	/* tcp_respond consumes the mbuf chain. */
3124 	if (th->th_flags & TH_ACK) {
3125 		tcp_respond(tp, mtod(m, void *), th, m, (tcp_seq)0,
3126 		    th->th_ack, TH_RST);
3127 	} else {
3128 		if (th->th_flags & TH_SYN)
3129 			tlen++;
3130 		tcp_respond(tp, mtod(m, void *), th, m, th->th_seq+tlen,
3131 		    (tcp_seq)0, TH_RST|TH_ACK);
3132 	}
3133 	return;
3134 drop:
3135 	m_freem(m);
3136 }
3137 
3138 /*
3139  * Parse TCP options and place in tcpopt.
3140  */
3141 static void
3142 tcp_dooptions(struct tcpopt *to, u_char *cp, int cnt, int flags)
3143 {
3144 	int opt, optlen;
3145 
3146 	to->to_flags = 0;
3147 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
3148 		opt = cp[0];
3149 		if (opt == TCPOPT_EOL)
3150 			break;
3151 		if (opt == TCPOPT_NOP)
3152 			optlen = 1;
3153 		else {
3154 			if (cnt < 2)
3155 				break;
3156 			optlen = cp[1];
3157 			if (optlen < 2 || optlen > cnt)
3158 				break;
3159 		}
3160 		switch (opt) {
3161 		case TCPOPT_MAXSEG:
3162 			if (optlen != TCPOLEN_MAXSEG)
3163 				continue;
3164 			if (!(flags & TO_SYN))
3165 				continue;
3166 			to->to_flags |= TOF_MSS;
3167 			bcopy((char *)cp + 2,
3168 			    (char *)&to->to_mss, sizeof(to->to_mss));
3169 			to->to_mss = ntohs(to->to_mss);
3170 			break;
3171 		case TCPOPT_WINDOW:
3172 			if (optlen != TCPOLEN_WINDOW)
3173 				continue;
3174 			if (!(flags & TO_SYN))
3175 				continue;
3176 			to->to_flags |= TOF_SCALE;
3177 			to->to_wscale = min(cp[2], TCP_MAX_WINSHIFT);
3178 			break;
3179 		case TCPOPT_TIMESTAMP:
3180 			if (optlen != TCPOLEN_TIMESTAMP)
3181 				continue;
3182 			to->to_flags |= TOF_TS;
3183 			bcopy((char *)cp + 2,
3184 			    (char *)&to->to_tsval, sizeof(to->to_tsval));
3185 			to->to_tsval = ntohl(to->to_tsval);
3186 			bcopy((char *)cp + 6,
3187 			    (char *)&to->to_tsecr, sizeof(to->to_tsecr));
3188 			to->to_tsecr = ntohl(to->to_tsecr);
3189 			break;
3190 #ifdef TCP_SIGNATURE
3191 		/*
3192 		 * XXX In order to reply to a host which has set the
3193 		 * TCP_SIGNATURE option in its initial SYN, we have to
3194 		 * record the fact that the option was observed here
3195 		 * for the syncache code to perform the correct response.
3196 		 */
3197 		case TCPOPT_SIGNATURE:
3198 			if (optlen != TCPOLEN_SIGNATURE)
3199 				continue;
3200 			to->to_flags |= TOF_SIGNATURE;
3201 			to->to_signature = cp + 2;
3202 			break;
3203 #endif
3204 		case TCPOPT_SACK_PERMITTED:
3205 			if (optlen != TCPOLEN_SACK_PERMITTED)
3206 				continue;
3207 			if (!(flags & TO_SYN))
3208 				continue;
3209 			if (!V_tcp_do_sack)
3210 				continue;
3211 			to->to_flags |= TOF_SACKPERM;
3212 			break;
3213 		case TCPOPT_SACK:
3214 			if (optlen <= 2 || (optlen - 2) % TCPOLEN_SACK != 0)
3215 				continue;
3216 			if (flags & TO_SYN)
3217 				continue;
3218 			to->to_flags |= TOF_SACK;
3219 			to->to_nsacks = (optlen - 2) / TCPOLEN_SACK;
3220 			to->to_sacks = cp + 2;
3221 			TCPSTAT_INC(tcps_sack_rcv_blocks);
3222 			break;
3223 		default:
3224 			continue;
3225 		}
3226 	}
3227 }
3228 
3229 /*
3230  * Pull out of band byte out of a segment so
3231  * it doesn't appear in the user's data queue.
3232  * It is still reflected in the segment length for
3233  * sequencing purposes.
3234  */
3235 static void
3236 tcp_pulloutofband(struct socket *so, struct tcphdr *th, struct mbuf *m,
3237     int off)
3238 {
3239 	int cnt = off + th->th_urp - 1;
3240 
3241 	while (cnt >= 0) {
3242 		if (m->m_len > cnt) {
3243 			char *cp = mtod(m, caddr_t) + cnt;
3244 			struct tcpcb *tp = sototcpcb(so);
3245 
3246 			INP_WLOCK_ASSERT(tp->t_inpcb);
3247 
3248 			tp->t_iobc = *cp;
3249 			tp->t_oobflags |= TCPOOB_HAVEDATA;
3250 			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
3251 			m->m_len--;
3252 			if (m->m_flags & M_PKTHDR)
3253 				m->m_pkthdr.len--;
3254 			return;
3255 		}
3256 		cnt -= m->m_len;
3257 		m = m->m_next;
3258 		if (m == NULL)
3259 			break;
3260 	}
3261 	panic("tcp_pulloutofband");
3262 }
3263 
3264 /*
3265  * Collect new round-trip time estimate
3266  * and update averages and current timeout.
3267  */
3268 static void
3269 tcp_xmit_timer(struct tcpcb *tp, int rtt)
3270 {
3271 	int delta;
3272 
3273 	INP_WLOCK_ASSERT(tp->t_inpcb);
3274 
3275 	TCPSTAT_INC(tcps_rttupdated);
3276 	tp->t_rttupdated++;
3277 	if (tp->t_srtt != 0) {
3278 		/*
3279 		 * srtt is stored as fixed point with 5 bits after the
3280 		 * binary point (i.e., scaled by 8).  The following magic
3281 		 * is equivalent to the smoothing algorithm in rfc793 with
3282 		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
3283 		 * point).  Adjust rtt to origin 0.
3284 		 */
3285 		delta = ((rtt - 1) << TCP_DELTA_SHIFT)
3286 			- (tp->t_srtt >> (TCP_RTT_SHIFT - TCP_DELTA_SHIFT));
3287 
3288 		if ((tp->t_srtt += delta) <= 0)
3289 			tp->t_srtt = 1;
3290 
3291 		/*
3292 		 * We accumulate a smoothed rtt variance (actually, a
3293 		 * smoothed mean difference), then set the retransmit
3294 		 * timer to smoothed rtt + 4 times the smoothed variance.
3295 		 * rttvar is stored as fixed point with 4 bits after the
3296 		 * binary point (scaled by 16).  The following is
3297 		 * equivalent to rfc793 smoothing with an alpha of .75
3298 		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
3299 		 * rfc793's wired-in beta.
3300 		 */
3301 		if (delta < 0)
3302 			delta = -delta;
3303 		delta -= tp->t_rttvar >> (TCP_RTTVAR_SHIFT - TCP_DELTA_SHIFT);
3304 		if ((tp->t_rttvar += delta) <= 0)
3305 			tp->t_rttvar = 1;
3306 		if (tp->t_rttbest > tp->t_srtt + tp->t_rttvar)
3307 		    tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
3308 	} else {
3309 		/*
3310 		 * No rtt measurement yet - use the unsmoothed rtt.
3311 		 * Set the variance to half the rtt (so our first
3312 		 * retransmit happens at 3*rtt).
3313 		 */
3314 		tp->t_srtt = rtt << TCP_RTT_SHIFT;
3315 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1);
3316 		tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
3317 	}
3318 	tp->t_rtttime = 0;
3319 	tp->t_rxtshift = 0;
3320 
3321 	/*
3322 	 * the retransmit should happen at rtt + 4 * rttvar.
3323 	 * Because of the way we do the smoothing, srtt and rttvar
3324 	 * will each average +1/2 tick of bias.  When we compute
3325 	 * the retransmit timer, we want 1/2 tick of rounding and
3326 	 * 1 extra tick because of +-1/2 tick uncertainty in the
3327 	 * firing of the timer.  The bias will give us exactly the
3328 	 * 1.5 tick we need.  But, because the bias is
3329 	 * statistical, we have to test that we don't drop below
3330 	 * the minimum feasible timer (which is 2 ticks).
3331 	 */
3332 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
3333 		      max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
3334 
3335 	/*
3336 	 * We received an ack for a packet that wasn't retransmitted;
3337 	 * it is probably safe to discard any error indications we've
3338 	 * received recently.  This isn't quite right, but close enough
3339 	 * for now (a route might have failed after we sent a segment,
3340 	 * and the return path might not be symmetrical).
3341 	 */
3342 	tp->t_softerror = 0;
3343 }
3344 
3345 /*
3346  * Determine a reasonable value for maxseg size.
3347  * If the route is known, check route for mtu.
3348  * If none, use an mss that can be handled on the outgoing interface
3349  * without forcing IP to fragment.  If no route is found, route has no mtu,
3350  * or the destination isn't local, use a default, hopefully conservative
3351  * size (usually 512 or the default IP max size, but no more than the mtu
3352  * of the interface), as we can't discover anything about intervening
3353  * gateways or networks.  We also initialize the congestion/slow start
3354  * window to be a single segment if the destination isn't local.
3355  * While looking at the routing entry, we also initialize other path-dependent
3356  * parameters from pre-set or cached values in the routing entry.
3357  *
3358  * Also take into account the space needed for options that we
3359  * send regularly.  Make maxseg shorter by that amount to assure
3360  * that we can send maxseg amount of data even when the options
3361  * are present.  Store the upper limit of the length of options plus
3362  * data in maxopd.
3363  *
3364  * NOTE that this routine is only called when we process an incoming
3365  * segment, or an ICMP need fragmentation datagram. Outgoing SYN/ACK MSS
3366  * settings are handled in tcp_mssopt().
3367  */
3368 void
3369 tcp_mss_update(struct tcpcb *tp, int offer, int mtuoffer,
3370     struct hc_metrics_lite *metricptr, struct tcp_ifcap *cap)
3371 {
3372 	int mss = 0;
3373 	u_long maxmtu = 0;
3374 	struct inpcb *inp = tp->t_inpcb;
3375 	struct hc_metrics_lite metrics;
3376 	int origoffer;
3377 #ifdef INET6
3378 	int isipv6 = ((inp->inp_vflag & INP_IPV6) != 0) ? 1 : 0;
3379 	size_t min_protoh = isipv6 ?
3380 			    sizeof (struct ip6_hdr) + sizeof (struct tcphdr) :
3381 			    sizeof (struct tcpiphdr);
3382 #else
3383 	const size_t min_protoh = sizeof(struct tcpiphdr);
3384 #endif
3385 
3386 	INP_WLOCK_ASSERT(tp->t_inpcb);
3387 
3388 	if (mtuoffer != -1) {
3389 		KASSERT(offer == -1, ("%s: conflict", __func__));
3390 		offer = mtuoffer - min_protoh;
3391 	}
3392 	origoffer = offer;
3393 
3394 	/* Initialize. */
3395 #ifdef INET6
3396 	if (isipv6) {
3397 		maxmtu = tcp_maxmtu6(&inp->inp_inc, cap);
3398 		tp->t_maxopd = tp->t_maxseg = V_tcp_v6mssdflt;
3399 	}
3400 #endif
3401 #if defined(INET) && defined(INET6)
3402 	else
3403 #endif
3404 #ifdef INET
3405 	{
3406 		maxmtu = tcp_maxmtu(&inp->inp_inc, cap);
3407 		tp->t_maxopd = tp->t_maxseg = V_tcp_mssdflt;
3408 	}
3409 #endif
3410 
3411 	/*
3412 	 * No route to sender, stay with default mss and return.
3413 	 */
3414 	if (maxmtu == 0) {
3415 		/*
3416 		 * In case we return early we need to initialize metrics
3417 		 * to a defined state as tcp_hc_get() would do for us
3418 		 * if there was no cache hit.
3419 		 */
3420 		if (metricptr != NULL)
3421 			bzero(metricptr, sizeof(struct hc_metrics_lite));
3422 		return;
3423 	}
3424 
3425 	/* What have we got? */
3426 	switch (offer) {
3427 		case 0:
3428 			/*
3429 			 * Offer == 0 means that there was no MSS on the SYN
3430 			 * segment, in this case we use tcp_mssdflt as
3431 			 * already assigned to t_maxopd above.
3432 			 */
3433 			offer = tp->t_maxopd;
3434 			break;
3435 
3436 		case -1:
3437 			/*
3438 			 * Offer == -1 means that we didn't receive SYN yet.
3439 			 */
3440 			/* FALLTHROUGH */
3441 
3442 		default:
3443 			/*
3444 			 * Prevent DoS attack with too small MSS. Round up
3445 			 * to at least minmss.
3446 			 */
3447 			offer = max(offer, V_tcp_minmss);
3448 	}
3449 
3450 	/*
3451 	 * rmx information is now retrieved from tcp_hostcache.
3452 	 */
3453 	tcp_hc_get(&inp->inp_inc, &metrics);
3454 	if (metricptr != NULL)
3455 		bcopy(&metrics, metricptr, sizeof(struct hc_metrics_lite));
3456 
3457 	/*
3458 	 * If there's a discovered mtu in tcp hostcache, use it.
3459 	 * Else, use the link mtu.
3460 	 */
3461 	if (metrics.rmx_mtu)
3462 		mss = min(metrics.rmx_mtu, maxmtu) - min_protoh;
3463 	else {
3464 #ifdef INET6
3465 		if (isipv6) {
3466 			mss = maxmtu - min_protoh;
3467 			if (!V_path_mtu_discovery &&
3468 			    !in6_localaddr(&inp->in6p_faddr))
3469 				mss = min(mss, V_tcp_v6mssdflt);
3470 		}
3471 #endif
3472 #if defined(INET) && defined(INET6)
3473 		else
3474 #endif
3475 #ifdef INET
3476 		{
3477 			mss = maxmtu - min_protoh;
3478 			if (!V_path_mtu_discovery &&
3479 			    !in_localaddr(inp->inp_faddr))
3480 				mss = min(mss, V_tcp_mssdflt);
3481 		}
3482 #endif
3483 		/*
3484 		 * XXX - The above conditional (mss = maxmtu - min_protoh)
3485 		 * probably violates the TCP spec.
3486 		 * The problem is that, since we don't know the
3487 		 * other end's MSS, we are supposed to use a conservative
3488 		 * default.  But, if we do that, then MTU discovery will
3489 		 * never actually take place, because the conservative
3490 		 * default is much less than the MTUs typically seen
3491 		 * on the Internet today.  For the moment, we'll sweep
3492 		 * this under the carpet.
3493 		 *
3494 		 * The conservative default might not actually be a problem
3495 		 * if the only case this occurs is when sending an initial
3496 		 * SYN with options and data to a host we've never talked
3497 		 * to before.  Then, they will reply with an MSS value which
3498 		 * will get recorded and the new parameters should get
3499 		 * recomputed.  For Further Study.
3500 		 */
3501 	}
3502 	mss = min(mss, offer);
3503 
3504 	/*
3505 	 * Sanity check: make sure that maxopd will be large
3506 	 * enough to allow some data on segments even if the
3507 	 * all the option space is used (40bytes).  Otherwise
3508 	 * funny things may happen in tcp_output.
3509 	 */
3510 	mss = max(mss, 64);
3511 
3512 	/*
3513 	 * maxopd stores the maximum length of data AND options
3514 	 * in a segment; maxseg is the amount of data in a normal
3515 	 * segment.  We need to store this value (maxopd) apart
3516 	 * from maxseg, because now every segment carries options
3517 	 * and thus we normally have somewhat less data in segments.
3518 	 */
3519 	tp->t_maxopd = mss;
3520 
3521 	/*
3522 	 * origoffer==-1 indicates that no segments were received yet.
3523 	 * In this case we just guess.
3524 	 */
3525 	if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
3526 	    (origoffer == -1 ||
3527 	     (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP))
3528 		mss -= TCPOLEN_TSTAMP_APPA;
3529 
3530 	tp->t_maxseg = mss;
3531 }
3532 
3533 void
3534 tcp_mss(struct tcpcb *tp, int offer)
3535 {
3536 	int mss;
3537 	u_long bufsize;
3538 	struct inpcb *inp;
3539 	struct socket *so;
3540 	struct hc_metrics_lite metrics;
3541 	struct tcp_ifcap cap;
3542 
3543 	KASSERT(tp != NULL, ("%s: tp == NULL", __func__));
3544 
3545 	bzero(&cap, sizeof(cap));
3546 	tcp_mss_update(tp, offer, -1, &metrics, &cap);
3547 
3548 	mss = tp->t_maxseg;
3549 	inp = tp->t_inpcb;
3550 
3551 	/*
3552 	 * If there's a pipesize, change the socket buffer to that size,
3553 	 * don't change if sb_hiwat is different than default (then it
3554 	 * has been changed on purpose with setsockopt).
3555 	 * Make the socket buffers an integral number of mss units;
3556 	 * if the mss is larger than the socket buffer, decrease the mss.
3557 	 */
3558 	so = inp->inp_socket;
3559 	SOCKBUF_LOCK(&so->so_snd);
3560 	if ((so->so_snd.sb_hiwat == V_tcp_sendspace) && metrics.rmx_sendpipe)
3561 		bufsize = metrics.rmx_sendpipe;
3562 	else
3563 		bufsize = so->so_snd.sb_hiwat;
3564 	if (bufsize < mss)
3565 		mss = bufsize;
3566 	else {
3567 		bufsize = roundup(bufsize, mss);
3568 		if (bufsize > sb_max)
3569 			bufsize = sb_max;
3570 		if (bufsize > so->so_snd.sb_hiwat)
3571 			(void)sbreserve_locked(&so->so_snd, bufsize, so, NULL);
3572 	}
3573 	SOCKBUF_UNLOCK(&so->so_snd);
3574 	tp->t_maxseg = mss;
3575 
3576 	SOCKBUF_LOCK(&so->so_rcv);
3577 	if ((so->so_rcv.sb_hiwat == V_tcp_recvspace) && metrics.rmx_recvpipe)
3578 		bufsize = metrics.rmx_recvpipe;
3579 	else
3580 		bufsize = so->so_rcv.sb_hiwat;
3581 	if (bufsize > mss) {
3582 		bufsize = roundup(bufsize, mss);
3583 		if (bufsize > sb_max)
3584 			bufsize = sb_max;
3585 		if (bufsize > so->so_rcv.sb_hiwat)
3586 			(void)sbreserve_locked(&so->so_rcv, bufsize, so, NULL);
3587 	}
3588 	SOCKBUF_UNLOCK(&so->so_rcv);
3589 
3590 	/* Check the interface for TSO capabilities. */
3591 	if (cap.ifcap & CSUM_TSO) {
3592 		tp->t_flags |= TF_TSO;
3593 		tp->t_tsomax = cap.tsomax;
3594 		tp->t_tsomaxsegcount = cap.tsomaxsegcount;
3595 		tp->t_tsomaxsegsize = cap.tsomaxsegsize;
3596 	}
3597 }
3598 
3599 /*
3600  * Determine the MSS option to send on an outgoing SYN.
3601  */
3602 int
3603 tcp_mssopt(struct in_conninfo *inc)
3604 {
3605 	int mss = 0;
3606 	u_long maxmtu = 0;
3607 	u_long thcmtu = 0;
3608 	size_t min_protoh;
3609 
3610 	KASSERT(inc != NULL, ("tcp_mssopt with NULL in_conninfo pointer"));
3611 
3612 #ifdef INET6
3613 	if (inc->inc_flags & INC_ISIPV6) {
3614 		mss = V_tcp_v6mssdflt;
3615 		maxmtu = tcp_maxmtu6(inc, NULL);
3616 		min_protoh = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
3617 	}
3618 #endif
3619 #if defined(INET) && defined(INET6)
3620 	else
3621 #endif
3622 #ifdef INET
3623 	{
3624 		mss = V_tcp_mssdflt;
3625 		maxmtu = tcp_maxmtu(inc, NULL);
3626 		min_protoh = sizeof(struct tcpiphdr);
3627 	}
3628 #endif
3629 #if defined(INET6) || defined(INET)
3630 	thcmtu = tcp_hc_getmtu(inc); /* IPv4 and IPv6 */
3631 #endif
3632 
3633 	if (maxmtu && thcmtu)
3634 		mss = min(maxmtu, thcmtu) - min_protoh;
3635 	else if (maxmtu || thcmtu)
3636 		mss = max(maxmtu, thcmtu) - min_protoh;
3637 
3638 	return (mss);
3639 }
3640 
3641 
3642 /*
3643  * On a partial ack arrives, force the retransmission of the
3644  * next unacknowledged segment.  Do not clear tp->t_dupacks.
3645  * By setting snd_nxt to ti_ack, this forces retransmission timer to
3646  * be started again.
3647  */
3648 static void
3649 tcp_newreno_partial_ack(struct tcpcb *tp, struct tcphdr *th)
3650 {
3651 	tcp_seq onxt = tp->snd_nxt;
3652 	u_long  ocwnd = tp->snd_cwnd;
3653 
3654 	INP_WLOCK_ASSERT(tp->t_inpcb);
3655 
3656 	tcp_timer_activate(tp, TT_REXMT, 0);
3657 	tp->t_rtttime = 0;
3658 	tp->snd_nxt = th->th_ack;
3659 	/*
3660 	 * Set snd_cwnd to one segment beyond acknowledged offset.
3661 	 * (tp->snd_una has not yet been updated when this function is called.)
3662 	 */
3663 	tp->snd_cwnd = tp->t_maxseg + BYTES_THIS_ACK(tp, th);
3664 	tp->t_flags |= TF_ACKNOW;
3665 	(void) tcp_output(tp);
3666 	tp->snd_cwnd = ocwnd;
3667 	if (SEQ_GT(onxt, tp->snd_nxt))
3668 		tp->snd_nxt = onxt;
3669 	/*
3670 	 * Partial window deflation.  Relies on fact that tp->snd_una
3671 	 * not updated yet.
3672 	 */
3673 	if (tp->snd_cwnd > BYTES_THIS_ACK(tp, th))
3674 		tp->snd_cwnd -= BYTES_THIS_ACK(tp, th);
3675 	else
3676 		tp->snd_cwnd = 0;
3677 	tp->snd_cwnd += tp->t_maxseg;
3678 }
3679