xref: /freebsd/sys/netinet/tcp_input.c (revision 0b3105a37d7adcadcb720112fed4dc4e8040be99)
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
3  *	The Regents of the University of California.  All rights reserved.
4  * Copyright (c) 2007-2008,2010
5  *	Swinburne University of Technology, Melbourne, Australia.
6  * Copyright (c) 2009-2010 Lawrence Stewart <lstewart@freebsd.org>
7  * Copyright (c) 2010 The FreeBSD Foundation
8  * Copyright (c) 2010-2011 Juniper Networks, Inc.
9  * All rights reserved.
10  *
11  * Portions of this software were developed at the Centre for Advanced Internet
12  * Architectures, Swinburne University of Technology, by Lawrence Stewart,
13  * James Healy and David Hayes, made possible in part by a grant from the Cisco
14  * University Research Program Fund at Community Foundation Silicon Valley.
15  *
16  * Portions of this software were developed at the Centre for Advanced
17  * Internet Architectures, Swinburne University of Technology, Melbourne,
18  * Australia by David Hayes under sponsorship from the FreeBSD Foundation.
19  *
20  * Portions of this software were developed by Robert N. M. Watson under
21  * contract to Juniper Networks, Inc.
22  *
23  * Redistribution and use in source and binary forms, with or without
24  * modification, are permitted provided that the following conditions
25  * are met:
26  * 1. Redistributions of source code must retain the above copyright
27  *    notice, this list of conditions and the following disclaimer.
28  * 2. Redistributions in binary form must reproduce the above copyright
29  *    notice, this list of conditions and the following disclaimer in the
30  *    documentation and/or other materials provided with the distribution.
31  * 4. Neither the name of the University nor the names of its contributors
32  *    may be used to endorse or promote products derived from this software
33  *    without specific prior written permission.
34  *
35  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
36  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
37  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
38  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
39  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
40  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
41  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
42  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
43  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
44  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
45  * SUCH DAMAGE.
46  *
47  *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
48  */
49 
50 #include <sys/cdefs.h>
51 __FBSDID("$FreeBSD$");
52 
53 #include "opt_ipfw.h"		/* for ipfw_fwd	*/
54 #include "opt_inet.h"
55 #include "opt_inet6.h"
56 #include "opt_ipsec.h"
57 #include "opt_tcpdebug.h"
58 
59 #include <sys/param.h>
60 #include <sys/kernel.h>
61 #include <sys/hhook.h>
62 #include <sys/malloc.h>
63 #include <sys/mbuf.h>
64 #include <sys/proc.h>		/* for proc0 declaration */
65 #include <sys/protosw.h>
66 #include <sys/sdt.h>
67 #include <sys/signalvar.h>
68 #include <sys/socket.h>
69 #include <sys/socketvar.h>
70 #include <sys/sysctl.h>
71 #include <sys/syslog.h>
72 #include <sys/systm.h>
73 
74 #include <machine/cpu.h>	/* before tcp_seq.h, for tcp_random18() */
75 
76 #include <vm/uma.h>
77 
78 #include <net/if.h>
79 #include <net/if_var.h>
80 #include <net/route.h>
81 #include <net/vnet.h>
82 
83 #define TCPSTATES		/* for logging */
84 
85 #include <netinet/in.h>
86 #include <netinet/in_kdtrace.h>
87 #include <netinet/in_pcb.h>
88 #include <netinet/in_systm.h>
89 #include <netinet/ip.h>
90 #include <netinet/ip_icmp.h>	/* required for icmp_var.h */
91 #include <netinet/icmp_var.h>	/* for ICMP_BANDLIM */
92 #include <netinet/ip_var.h>
93 #include <netinet/ip_options.h>
94 #include <netinet/ip6.h>
95 #include <netinet/icmp6.h>
96 #include <netinet6/in6_pcb.h>
97 #include <netinet6/in6_var.h>
98 #include <netinet6/ip6_var.h>
99 #include <netinet6/nd6.h>
100 #ifdef TCP_RFC7413
101 #include <netinet/tcp_fastopen.h>
102 #endif
103 #include <netinet/tcp.h>
104 #include <netinet/tcp_fsm.h>
105 #include <netinet/tcp_seq.h>
106 #include <netinet/tcp_timer.h>
107 #include <netinet/tcp_var.h>
108 #include <netinet6/tcp6_var.h>
109 #include <netinet/tcpip.h>
110 #include <netinet/cc/cc.h>
111 #ifdef TCPPCAP
112 #include <netinet/tcp_pcap.h>
113 #endif
114 #include <netinet/tcp_syncache.h>
115 #ifdef TCPDEBUG
116 #include <netinet/tcp_debug.h>
117 #endif /* TCPDEBUG */
118 #ifdef TCP_OFFLOAD
119 #include <netinet/tcp_offload.h>
120 #endif
121 
122 #ifdef IPSEC
123 #include <netipsec/ipsec.h>
124 #include <netipsec/ipsec6.h>
125 #endif /*IPSEC*/
126 
127 #include <machine/in_cksum.h>
128 
129 #include <security/mac/mac_framework.h>
130 
131 const int tcprexmtthresh = 3;
132 
133 int tcp_log_in_vain = 0;
134 SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_in_vain, CTLFLAG_RW,
135     &tcp_log_in_vain, 0,
136     "Log all incoming TCP segments to closed ports");
137 
138 VNET_DEFINE(int, blackhole) = 0;
139 #define	V_blackhole		VNET(blackhole)
140 SYSCTL_INT(_net_inet_tcp, OID_AUTO, blackhole, CTLFLAG_VNET | CTLFLAG_RW,
141     &VNET_NAME(blackhole), 0,
142     "Do not send RST on segments to closed ports");
143 
144 VNET_DEFINE(int, tcp_delack_enabled) = 1;
145 SYSCTL_INT(_net_inet_tcp, OID_AUTO, delayed_ack, CTLFLAG_VNET | CTLFLAG_RW,
146     &VNET_NAME(tcp_delack_enabled), 0,
147     "Delay ACK to try and piggyback it onto a data packet");
148 
149 VNET_DEFINE(int, drop_synfin) = 0;
150 #define	V_drop_synfin		VNET(drop_synfin)
151 SYSCTL_INT(_net_inet_tcp, OID_AUTO, drop_synfin, CTLFLAG_VNET | CTLFLAG_RW,
152     &VNET_NAME(drop_synfin), 0,
153     "Drop TCP packets with SYN+FIN set");
154 
155 VNET_DEFINE(int, tcp_do_rfc6675_pipe) = 0;
156 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc6675_pipe, CTLFLAG_VNET | CTLFLAG_RW,
157     &VNET_NAME(tcp_do_rfc6675_pipe), 0,
158     "Use calculated pipe/in-flight bytes per RFC 6675");
159 
160 VNET_DEFINE(int, tcp_do_rfc3042) = 1;
161 #define	V_tcp_do_rfc3042	VNET(tcp_do_rfc3042)
162 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3042, CTLFLAG_VNET | CTLFLAG_RW,
163     &VNET_NAME(tcp_do_rfc3042), 0,
164     "Enable RFC 3042 (Limited Transmit)");
165 
166 VNET_DEFINE(int, tcp_do_rfc3390) = 1;
167 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3390, CTLFLAG_VNET | CTLFLAG_RW,
168     &VNET_NAME(tcp_do_rfc3390), 0,
169     "Enable RFC 3390 (Increasing TCP's Initial Congestion Window)");
170 
171 VNET_DEFINE(int, tcp_initcwnd_segments) = 10;
172 SYSCTL_INT(_net_inet_tcp, OID_AUTO, initcwnd_segments,
173     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(tcp_initcwnd_segments), 0,
174     "Slow-start flight size (initial congestion window) in number of segments");
175 
176 VNET_DEFINE(int, tcp_do_rfc3465) = 1;
177 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3465, CTLFLAG_VNET | CTLFLAG_RW,
178     &VNET_NAME(tcp_do_rfc3465), 0,
179     "Enable RFC 3465 (Appropriate Byte Counting)");
180 
181 VNET_DEFINE(int, tcp_abc_l_var) = 2;
182 SYSCTL_INT(_net_inet_tcp, OID_AUTO, abc_l_var, CTLFLAG_VNET | CTLFLAG_RW,
183     &VNET_NAME(tcp_abc_l_var), 2,
184     "Cap the max cwnd increment during slow-start to this number of segments");
185 
186 static SYSCTL_NODE(_net_inet_tcp, OID_AUTO, ecn, CTLFLAG_RW, 0, "TCP ECN");
187 
188 VNET_DEFINE(int, tcp_do_ecn) = 0;
189 SYSCTL_INT(_net_inet_tcp_ecn, OID_AUTO, enable, CTLFLAG_VNET | CTLFLAG_RW,
190     &VNET_NAME(tcp_do_ecn), 0,
191     "TCP ECN support");
192 
193 VNET_DEFINE(int, tcp_ecn_maxretries) = 1;
194 SYSCTL_INT(_net_inet_tcp_ecn, OID_AUTO, maxretries, CTLFLAG_VNET | CTLFLAG_RW,
195     &VNET_NAME(tcp_ecn_maxretries), 0,
196     "Max retries before giving up on ECN");
197 
198 VNET_DEFINE(int, tcp_insecure_syn) = 0;
199 #define	V_tcp_insecure_syn	VNET(tcp_insecure_syn)
200 SYSCTL_INT(_net_inet_tcp, OID_AUTO, insecure_syn, CTLFLAG_VNET | CTLFLAG_RW,
201     &VNET_NAME(tcp_insecure_syn), 0,
202     "Follow RFC793 instead of RFC5961 criteria for accepting SYN packets");
203 
204 VNET_DEFINE(int, tcp_insecure_rst) = 0;
205 #define	V_tcp_insecure_rst	VNET(tcp_insecure_rst)
206 SYSCTL_INT(_net_inet_tcp, OID_AUTO, insecure_rst, CTLFLAG_VNET | CTLFLAG_RW,
207     &VNET_NAME(tcp_insecure_rst), 0,
208     "Follow RFC793 instead of RFC5961 criteria for accepting RST packets");
209 
210 VNET_DEFINE(int, tcp_recvspace) = 1024*64;
211 #define	V_tcp_recvspace	VNET(tcp_recvspace)
212 SYSCTL_INT(_net_inet_tcp, TCPCTL_RECVSPACE, recvspace, CTLFLAG_VNET | CTLFLAG_RW,
213     &VNET_NAME(tcp_recvspace), 0, "Initial receive socket buffer size");
214 
215 VNET_DEFINE(int, tcp_do_autorcvbuf) = 1;
216 #define	V_tcp_do_autorcvbuf	VNET(tcp_do_autorcvbuf)
217 SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbuf_auto, CTLFLAG_VNET | CTLFLAG_RW,
218     &VNET_NAME(tcp_do_autorcvbuf), 0,
219     "Enable automatic receive buffer sizing");
220 
221 VNET_DEFINE(int, tcp_autorcvbuf_inc) = 16*1024;
222 #define	V_tcp_autorcvbuf_inc	VNET(tcp_autorcvbuf_inc)
223 SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbuf_inc, CTLFLAG_VNET | CTLFLAG_RW,
224     &VNET_NAME(tcp_autorcvbuf_inc), 0,
225     "Incrementor step size of automatic receive buffer");
226 
227 VNET_DEFINE(int, tcp_autorcvbuf_max) = 2*1024*1024;
228 #define	V_tcp_autorcvbuf_max	VNET(tcp_autorcvbuf_max)
229 SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbuf_max, CTLFLAG_VNET | CTLFLAG_RW,
230     &VNET_NAME(tcp_autorcvbuf_max), 0,
231     "Max size of automatic receive buffer");
232 
233 VNET_DEFINE(struct inpcbhead, tcb);
234 #define	tcb6	tcb  /* for KAME src sync over BSD*'s */
235 VNET_DEFINE(struct inpcbinfo, tcbinfo);
236 
237 /*
238  * TCP statistics are stored in an "array" of counter(9)s.
239  */
240 VNET_PCPUSTAT_DEFINE(struct tcpstat, tcpstat);
241 VNET_PCPUSTAT_SYSINIT(tcpstat);
242 SYSCTL_VNET_PCPUSTAT(_net_inet_tcp, TCPCTL_STATS, stats, struct tcpstat,
243     tcpstat, "TCP statistics (struct tcpstat, netinet/tcp_var.h)");
244 
245 #ifdef VIMAGE
246 VNET_PCPUSTAT_SYSUNINIT(tcpstat);
247 #endif /* VIMAGE */
248 /*
249  * Kernel module interface for updating tcpstat.  The argument is an index
250  * into tcpstat treated as an array.
251  */
252 void
253 kmod_tcpstat_inc(int statnum)
254 {
255 
256 	counter_u64_add(VNET(tcpstat)[statnum], 1);
257 }
258 
259 /*
260  * Wrapper for the TCP established input helper hook.
261  */
262 void
263 hhook_run_tcp_est_in(struct tcpcb *tp, struct tcphdr *th, struct tcpopt *to)
264 {
265 	struct tcp_hhook_data hhook_data;
266 
267 	if (V_tcp_hhh[HHOOK_TCP_EST_IN]->hhh_nhooks > 0) {
268 		hhook_data.tp = tp;
269 		hhook_data.th = th;
270 		hhook_data.to = to;
271 
272 		hhook_run_hooks(V_tcp_hhh[HHOOK_TCP_EST_IN], &hhook_data,
273 		    tp->osd);
274 	}
275 }
276 
277 /*
278  * CC wrapper hook functions
279  */
280 void
281 cc_ack_received(struct tcpcb *tp, struct tcphdr *th, uint16_t type)
282 {
283 	INP_WLOCK_ASSERT(tp->t_inpcb);
284 
285 	tp->ccv->bytes_this_ack = BYTES_THIS_ACK(tp, th);
286 	if (tp->snd_cwnd <= tp->snd_wnd)
287 		tp->ccv->flags |= CCF_CWND_LIMITED;
288 	else
289 		tp->ccv->flags &= ~CCF_CWND_LIMITED;
290 
291 	if (type == CC_ACK) {
292 		if (tp->snd_cwnd > tp->snd_ssthresh) {
293 			tp->t_bytes_acked += min(tp->ccv->bytes_this_ack,
294 			     V_tcp_abc_l_var * tcp_maxseg(tp));
295 			if (tp->t_bytes_acked >= tp->snd_cwnd) {
296 				tp->t_bytes_acked -= tp->snd_cwnd;
297 				tp->ccv->flags |= CCF_ABC_SENTAWND;
298 			}
299 		} else {
300 				tp->ccv->flags &= ~CCF_ABC_SENTAWND;
301 				tp->t_bytes_acked = 0;
302 		}
303 	}
304 
305 	if (CC_ALGO(tp)->ack_received != NULL) {
306 		/* XXXLAS: Find a way to live without this */
307 		tp->ccv->curack = th->th_ack;
308 		CC_ALGO(tp)->ack_received(tp->ccv, type);
309 	}
310 }
311 
312 void
313 cc_conn_init(struct tcpcb *tp)
314 {
315 	struct hc_metrics_lite metrics;
316 	struct inpcb *inp = tp->t_inpcb;
317 	u_int maxseg;
318 	int rtt;
319 
320 	INP_WLOCK_ASSERT(tp->t_inpcb);
321 
322 	tcp_hc_get(&inp->inp_inc, &metrics);
323 	maxseg = tcp_maxseg(tp);
324 
325 	if (tp->t_srtt == 0 && (rtt = metrics.rmx_rtt)) {
326 		tp->t_srtt = rtt;
327 		tp->t_rttbest = tp->t_srtt + TCP_RTT_SCALE;
328 		TCPSTAT_INC(tcps_usedrtt);
329 		if (metrics.rmx_rttvar) {
330 			tp->t_rttvar = metrics.rmx_rttvar;
331 			TCPSTAT_INC(tcps_usedrttvar);
332 		} else {
333 			/* default variation is +- 1 rtt */
334 			tp->t_rttvar =
335 			    tp->t_srtt * TCP_RTTVAR_SCALE / TCP_RTT_SCALE;
336 		}
337 		TCPT_RANGESET(tp->t_rxtcur,
338 		    ((tp->t_srtt >> 2) + tp->t_rttvar) >> 1,
339 		    tp->t_rttmin, TCPTV_REXMTMAX);
340 	}
341 	if (metrics.rmx_ssthresh) {
342 		/*
343 		 * There's some sort of gateway or interface
344 		 * buffer limit on the path.  Use this to set
345 		 * the slow start threshhold, but set the
346 		 * threshold to no less than 2*mss.
347 		 */
348 		tp->snd_ssthresh = max(2 * maxseg, metrics.rmx_ssthresh);
349 		TCPSTAT_INC(tcps_usedssthresh);
350 	}
351 
352 	/*
353 	 * Set the initial slow-start flight size.
354 	 *
355 	 * RFC5681 Section 3.1 specifies the default conservative values.
356 	 * RFC3390 specifies slightly more aggressive values.
357 	 * RFC6928 increases it to ten segments.
358 	 * Support for user specified value for initial flight size.
359 	 *
360 	 * If a SYN or SYN/ACK was lost and retransmitted, we have to
361 	 * reduce the initial CWND to one segment as congestion is likely
362 	 * requiring us to be cautious.
363 	 */
364 	if (tp->snd_cwnd == 1)
365 		tp->snd_cwnd = maxseg;		/* SYN(-ACK) lost */
366 	else if (V_tcp_initcwnd_segments)
367 		tp->snd_cwnd = min(V_tcp_initcwnd_segments * maxseg,
368 		    max(2 * maxseg, V_tcp_initcwnd_segments * 1460));
369 	else if (V_tcp_do_rfc3390)
370 		tp->snd_cwnd = min(4 * maxseg, max(2 * maxseg, 4380));
371 	else {
372 		/* Per RFC5681 Section 3.1 */
373 		if (maxseg > 2190)
374 			tp->snd_cwnd = 2 * maxseg;
375 		else if (maxseg > 1095)
376 			tp->snd_cwnd = 3 * maxseg;
377 		else
378 			tp->snd_cwnd = 4 * maxseg;
379 	}
380 
381 	if (CC_ALGO(tp)->conn_init != NULL)
382 		CC_ALGO(tp)->conn_init(tp->ccv);
383 }
384 
385 void inline
386 cc_cong_signal(struct tcpcb *tp, struct tcphdr *th, uint32_t type)
387 {
388 	u_int maxseg;
389 
390 	INP_WLOCK_ASSERT(tp->t_inpcb);
391 
392 	switch(type) {
393 	case CC_NDUPACK:
394 		if (!IN_FASTRECOVERY(tp->t_flags)) {
395 			tp->snd_recover = tp->snd_max;
396 			if (tp->t_flags & TF_ECN_PERMIT)
397 				tp->t_flags |= TF_ECN_SND_CWR;
398 		}
399 		break;
400 	case CC_ECN:
401 		if (!IN_CONGRECOVERY(tp->t_flags)) {
402 			TCPSTAT_INC(tcps_ecn_rcwnd);
403 			tp->snd_recover = tp->snd_max;
404 			if (tp->t_flags & TF_ECN_PERMIT)
405 				tp->t_flags |= TF_ECN_SND_CWR;
406 		}
407 		break;
408 	case CC_RTO:
409 		maxseg = tcp_maxseg(tp);
410 		tp->t_dupacks = 0;
411 		tp->t_bytes_acked = 0;
412 		EXIT_RECOVERY(tp->t_flags);
413 		tp->snd_ssthresh = max(2, min(tp->snd_wnd, tp->snd_cwnd) / 2 /
414 		    maxseg) * maxseg;
415 		tp->snd_cwnd = maxseg;
416 		break;
417 	case CC_RTO_ERR:
418 		TCPSTAT_INC(tcps_sndrexmitbad);
419 		/* RTO was unnecessary, so reset everything. */
420 		tp->snd_cwnd = tp->snd_cwnd_prev;
421 		tp->snd_ssthresh = tp->snd_ssthresh_prev;
422 		tp->snd_recover = tp->snd_recover_prev;
423 		if (tp->t_flags & TF_WASFRECOVERY)
424 			ENTER_FASTRECOVERY(tp->t_flags);
425 		if (tp->t_flags & TF_WASCRECOVERY)
426 			ENTER_CONGRECOVERY(tp->t_flags);
427 		tp->snd_nxt = tp->snd_max;
428 		tp->t_flags &= ~TF_PREVVALID;
429 		tp->t_badrxtwin = 0;
430 		break;
431 	}
432 
433 	if (CC_ALGO(tp)->cong_signal != NULL) {
434 		if (th != NULL)
435 			tp->ccv->curack = th->th_ack;
436 		CC_ALGO(tp)->cong_signal(tp->ccv, type);
437 	}
438 }
439 
440 void inline
441 cc_post_recovery(struct tcpcb *tp, struct tcphdr *th)
442 {
443 	INP_WLOCK_ASSERT(tp->t_inpcb);
444 
445 	/* XXXLAS: KASSERT that we're in recovery? */
446 
447 	if (CC_ALGO(tp)->post_recovery != NULL) {
448 		tp->ccv->curack = th->th_ack;
449 		CC_ALGO(tp)->post_recovery(tp->ccv);
450 	}
451 	/* XXXLAS: EXIT_RECOVERY ? */
452 	tp->t_bytes_acked = 0;
453 }
454 
455 #ifdef TCP_SIGNATURE
456 static inline int
457 tcp_signature_verify_input(struct mbuf *m, int off0, int tlen, int optlen,
458     struct tcpopt *to, struct tcphdr *th, u_int tcpbflag)
459 {
460 	int ret;
461 
462 	tcp_fields_to_net(th);
463 	ret = tcp_signature_verify(m, off0, tlen, optlen, to, th, tcpbflag);
464 	tcp_fields_to_host(th);
465 	return (ret);
466 }
467 #endif
468 
469 /*
470  * Indicate whether this ack should be delayed.  We can delay the ack if
471  * following conditions are met:
472  *	- There is no delayed ack timer in progress.
473  *	- Our last ack wasn't a 0-sized window. We never want to delay
474  *	  the ack that opens up a 0-sized window.
475  *	- LRO wasn't used for this segment. We make sure by checking that the
476  *	  segment size is not larger than the MSS.
477  */
478 #define DELAY_ACK(tp, tlen)						\
479 	((!tcp_timer_active(tp, TT_DELACK) &&				\
480 	    (tp->t_flags & TF_RXWIN0SENT) == 0) &&			\
481 	    (tlen <= tp->t_maxseg) &&					\
482 	    (V_tcp_delack_enabled || (tp->t_flags & TF_NEEDSYN)))
483 
484 static void inline
485 cc_ecnpkt_handler(struct tcpcb *tp, struct tcphdr *th, uint8_t iptos)
486 {
487 	INP_WLOCK_ASSERT(tp->t_inpcb);
488 
489 	if (CC_ALGO(tp)->ecnpkt_handler != NULL) {
490 		switch (iptos & IPTOS_ECN_MASK) {
491 		case IPTOS_ECN_CE:
492 		    tp->ccv->flags |= CCF_IPHDR_CE;
493 		    break;
494 		case IPTOS_ECN_ECT0:
495 		    tp->ccv->flags &= ~CCF_IPHDR_CE;
496 		    break;
497 		case IPTOS_ECN_ECT1:
498 		    tp->ccv->flags &= ~CCF_IPHDR_CE;
499 		    break;
500 		}
501 
502 		if (th->th_flags & TH_CWR)
503 			tp->ccv->flags |= CCF_TCPHDR_CWR;
504 		else
505 			tp->ccv->flags &= ~CCF_TCPHDR_CWR;
506 
507 		if (tp->t_flags & TF_DELACK)
508 			tp->ccv->flags |= CCF_DELACK;
509 		else
510 			tp->ccv->flags &= ~CCF_DELACK;
511 
512 		CC_ALGO(tp)->ecnpkt_handler(tp->ccv);
513 
514 		if (tp->ccv->flags & CCF_ACKNOW)
515 			tcp_timer_activate(tp, TT_DELACK, tcp_delacktime);
516 	}
517 }
518 
519 /*
520  * TCP input handling is split into multiple parts:
521  *   tcp6_input is a thin wrapper around tcp_input for the extended
522  *	ip6_protox[] call format in ip6_input
523  *   tcp_input handles primary segment validation, inpcb lookup and
524  *	SYN processing on listen sockets
525  *   tcp_do_segment processes the ACK and text of the segment for
526  *	establishing, established and closing connections
527  */
528 #ifdef INET6
529 int
530 tcp6_input(struct mbuf **mp, int *offp, int proto)
531 {
532 	struct mbuf *m = *mp;
533 	struct in6_ifaddr *ia6;
534 	struct ip6_hdr *ip6;
535 
536 	IP6_EXTHDR_CHECK(m, *offp, sizeof(struct tcphdr), IPPROTO_DONE);
537 
538 	/*
539 	 * draft-itojun-ipv6-tcp-to-anycast
540 	 * better place to put this in?
541 	 */
542 	ip6 = mtod(m, struct ip6_hdr *);
543 	ia6 = in6ifa_ifwithaddr(&ip6->ip6_dst, 0 /* XXX */);
544 	if (ia6 && (ia6->ia6_flags & IN6_IFF_ANYCAST)) {
545 		struct ip6_hdr *ip6;
546 
547 		ifa_free(&ia6->ia_ifa);
548 		ip6 = mtod(m, struct ip6_hdr *);
549 		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
550 			    (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
551 		return (IPPROTO_DONE);
552 	}
553 	if (ia6)
554 		ifa_free(&ia6->ia_ifa);
555 
556 	return (tcp_input(mp, offp, proto));
557 }
558 #endif /* INET6 */
559 
560 int
561 tcp_input(struct mbuf **mp, int *offp, int proto)
562 {
563 	struct mbuf *m = *mp;
564 	struct tcphdr *th = NULL;
565 	struct ip *ip = NULL;
566 	struct inpcb *inp = NULL;
567 	struct tcpcb *tp = NULL;
568 	struct socket *so = NULL;
569 	u_char *optp = NULL;
570 	int off0;
571 	int optlen = 0;
572 #ifdef INET
573 	int len;
574 #endif
575 	int tlen = 0, off;
576 	int drop_hdrlen;
577 	int thflags;
578 	int rstreason = 0;	/* For badport_bandlim accounting purposes */
579 #ifdef TCP_SIGNATURE
580 	uint8_t sig_checked = 0;
581 #endif
582 	uint8_t iptos = 0;
583 	struct m_tag *fwd_tag = NULL;
584 #ifdef INET6
585 	struct ip6_hdr *ip6 = NULL;
586 	int isipv6;
587 #else
588 	const void *ip6 = NULL;
589 #endif /* INET6 */
590 	struct tcpopt to;		/* options in this segment */
591 	char *s = NULL;			/* address and port logging */
592 	int ti_locked;
593 #ifdef TCPDEBUG
594 	/*
595 	 * The size of tcp_saveipgen must be the size of the max ip header,
596 	 * now IPv6.
597 	 */
598 	u_char tcp_saveipgen[IP6_HDR_LEN];
599 	struct tcphdr tcp_savetcp;
600 	short ostate = 0;
601 #endif
602 
603 #ifdef INET6
604 	isipv6 = (mtod(m, struct ip *)->ip_v == 6) ? 1 : 0;
605 #endif
606 
607 	off0 = *offp;
608 	m = *mp;
609 	*mp = NULL;
610 	to.to_flags = 0;
611 	TCPSTAT_INC(tcps_rcvtotal);
612 
613 #ifdef INET6
614 	if (isipv6) {
615 		/* IP6_EXTHDR_CHECK() is already done at tcp6_input(). */
616 
617 		if (m->m_len < (sizeof(*ip6) + sizeof(*th))) {
618 			m = m_pullup(m, sizeof(*ip6) + sizeof(*th));
619 			if (m == NULL) {
620 				TCPSTAT_INC(tcps_rcvshort);
621 				return (IPPROTO_DONE);
622 			}
623 		}
624 
625 		ip6 = mtod(m, struct ip6_hdr *);
626 		th = (struct tcphdr *)((caddr_t)ip6 + off0);
627 		tlen = sizeof(*ip6) + ntohs(ip6->ip6_plen) - off0;
628 		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID_IPV6) {
629 			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
630 				th->th_sum = m->m_pkthdr.csum_data;
631 			else
632 				th->th_sum = in6_cksum_pseudo(ip6, tlen,
633 				    IPPROTO_TCP, m->m_pkthdr.csum_data);
634 			th->th_sum ^= 0xffff;
635 		} else
636 			th->th_sum = in6_cksum(m, IPPROTO_TCP, off0, tlen);
637 		if (th->th_sum) {
638 			TCPSTAT_INC(tcps_rcvbadsum);
639 			goto drop;
640 		}
641 
642 		/*
643 		 * Be proactive about unspecified IPv6 address in source.
644 		 * As we use all-zero to indicate unbounded/unconnected pcb,
645 		 * unspecified IPv6 address can be used to confuse us.
646 		 *
647 		 * Note that packets with unspecified IPv6 destination is
648 		 * already dropped in ip6_input.
649 		 */
650 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
651 			/* XXX stat */
652 			goto drop;
653 		}
654 	}
655 #endif
656 #if defined(INET) && defined(INET6)
657 	else
658 #endif
659 #ifdef INET
660 	{
661 		/*
662 		 * Get IP and TCP header together in first mbuf.
663 		 * Note: IP leaves IP header in first mbuf.
664 		 */
665 		if (off0 > sizeof (struct ip)) {
666 			ip_stripoptions(m);
667 			off0 = sizeof(struct ip);
668 		}
669 		if (m->m_len < sizeof (struct tcpiphdr)) {
670 			if ((m = m_pullup(m, sizeof (struct tcpiphdr)))
671 			    == NULL) {
672 				TCPSTAT_INC(tcps_rcvshort);
673 				return (IPPROTO_DONE);
674 			}
675 		}
676 		ip = mtod(m, struct ip *);
677 		th = (struct tcphdr *)((caddr_t)ip + off0);
678 		tlen = ntohs(ip->ip_len) - off0;
679 
680 		if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
681 			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
682 				th->th_sum = m->m_pkthdr.csum_data;
683 			else
684 				th->th_sum = in_pseudo(ip->ip_src.s_addr,
685 				    ip->ip_dst.s_addr,
686 				    htonl(m->m_pkthdr.csum_data + tlen +
687 				    IPPROTO_TCP));
688 			th->th_sum ^= 0xffff;
689 		} else {
690 			struct ipovly *ipov = (struct ipovly *)ip;
691 
692 			/*
693 			 * Checksum extended TCP header and data.
694 			 */
695 			len = off0 + tlen;
696 			bzero(ipov->ih_x1, sizeof(ipov->ih_x1));
697 			ipov->ih_len = htons(tlen);
698 			th->th_sum = in_cksum(m, len);
699 			/* Reset length for SDT probes. */
700 			ip->ip_len = htons(tlen + off0);
701 		}
702 
703 		if (th->th_sum) {
704 			TCPSTAT_INC(tcps_rcvbadsum);
705 			goto drop;
706 		}
707 		/* Re-initialization for later version check */
708 		ip->ip_v = IPVERSION;
709 	}
710 #endif /* INET */
711 
712 #ifdef INET6
713 	if (isipv6)
714 		iptos = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
715 #endif
716 #if defined(INET) && defined(INET6)
717 	else
718 #endif
719 #ifdef INET
720 		iptos = ip->ip_tos;
721 #endif
722 
723 	/*
724 	 * Check that TCP offset makes sense,
725 	 * pull out TCP options and adjust length.		XXX
726 	 */
727 	off = th->th_off << 2;
728 	if (off < sizeof (struct tcphdr) || off > tlen) {
729 		TCPSTAT_INC(tcps_rcvbadoff);
730 		goto drop;
731 	}
732 	tlen -= off;	/* tlen is used instead of ti->ti_len */
733 	if (off > sizeof (struct tcphdr)) {
734 #ifdef INET6
735 		if (isipv6) {
736 			IP6_EXTHDR_CHECK(m, off0, off, IPPROTO_DONE);
737 			ip6 = mtod(m, struct ip6_hdr *);
738 			th = (struct tcphdr *)((caddr_t)ip6 + off0);
739 		}
740 #endif
741 #if defined(INET) && defined(INET6)
742 		else
743 #endif
744 #ifdef INET
745 		{
746 			if (m->m_len < sizeof(struct ip) + off) {
747 				if ((m = m_pullup(m, sizeof (struct ip) + off))
748 				    == NULL) {
749 					TCPSTAT_INC(tcps_rcvshort);
750 					return (IPPROTO_DONE);
751 				}
752 				ip = mtod(m, struct ip *);
753 				th = (struct tcphdr *)((caddr_t)ip + off0);
754 			}
755 		}
756 #endif
757 		optlen = off - sizeof (struct tcphdr);
758 		optp = (u_char *)(th + 1);
759 	}
760 	thflags = th->th_flags;
761 
762 	/*
763 	 * Convert TCP protocol specific fields to host format.
764 	 */
765 	tcp_fields_to_host(th);
766 
767 	/*
768 	 * Delay dropping TCP, IP headers, IPv6 ext headers, and TCP options.
769 	 */
770 	drop_hdrlen = off0 + off;
771 
772 	/*
773 	 * Locate pcb for segment; if we're likely to add or remove a
774 	 * connection then first acquire pcbinfo lock.  There are three cases
775 	 * where we might discover later we need a write lock despite the
776 	 * flags: ACKs moving a connection out of the syncache, ACKs for a
777 	 * connection in TIMEWAIT and SYNs not targeting a listening socket.
778 	 */
779 	if ((thflags & (TH_FIN | TH_RST)) != 0) {
780 		INP_INFO_RLOCK(&V_tcbinfo);
781 		ti_locked = TI_RLOCKED;
782 	} else
783 		ti_locked = TI_UNLOCKED;
784 
785 	/*
786 	 * Grab info from PACKET_TAG_IPFORWARD tag prepended to the chain.
787 	 */
788         if (
789 #ifdef INET6
790 	    (isipv6 && (m->m_flags & M_IP6_NEXTHOP))
791 #ifdef INET
792 	    || (!isipv6 && (m->m_flags & M_IP_NEXTHOP))
793 #endif
794 #endif
795 #if defined(INET) && !defined(INET6)
796 	    (m->m_flags & M_IP_NEXTHOP)
797 #endif
798 	    )
799 		fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
800 
801 findpcb:
802 #ifdef INVARIANTS
803 	if (ti_locked == TI_RLOCKED) {
804 		INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
805 	} else {
806 		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
807 	}
808 #endif
809 #ifdef INET6
810 	if (isipv6 && fwd_tag != NULL) {
811 		struct sockaddr_in6 *next_hop6;
812 
813 		next_hop6 = (struct sockaddr_in6 *)(fwd_tag + 1);
814 		/*
815 		 * Transparently forwarded. Pretend to be the destination.
816 		 * Already got one like this?
817 		 */
818 		inp = in6_pcblookup_mbuf(&V_tcbinfo,
819 		    &ip6->ip6_src, th->th_sport, &ip6->ip6_dst, th->th_dport,
820 		    INPLOOKUP_WLOCKPCB, m->m_pkthdr.rcvif, m);
821 		if (!inp) {
822 			/*
823 			 * It's new.  Try to find the ambushing socket.
824 			 * Because we've rewritten the destination address,
825 			 * any hardware-generated hash is ignored.
826 			 */
827 			inp = in6_pcblookup(&V_tcbinfo, &ip6->ip6_src,
828 			    th->th_sport, &next_hop6->sin6_addr,
829 			    next_hop6->sin6_port ? ntohs(next_hop6->sin6_port) :
830 			    th->th_dport, INPLOOKUP_WILDCARD |
831 			    INPLOOKUP_WLOCKPCB, m->m_pkthdr.rcvif);
832 		}
833 	} else if (isipv6) {
834 		inp = in6_pcblookup_mbuf(&V_tcbinfo, &ip6->ip6_src,
835 		    th->th_sport, &ip6->ip6_dst, th->th_dport,
836 		    INPLOOKUP_WILDCARD | INPLOOKUP_WLOCKPCB,
837 		    m->m_pkthdr.rcvif, m);
838 	}
839 #endif /* INET6 */
840 #if defined(INET6) && defined(INET)
841 	else
842 #endif
843 #ifdef INET
844 	if (fwd_tag != NULL) {
845 		struct sockaddr_in *next_hop;
846 
847 		next_hop = (struct sockaddr_in *)(fwd_tag+1);
848 		/*
849 		 * Transparently forwarded. Pretend to be the destination.
850 		 * already got one like this?
851 		 */
852 		inp = in_pcblookup_mbuf(&V_tcbinfo, ip->ip_src, th->th_sport,
853 		    ip->ip_dst, th->th_dport, INPLOOKUP_WLOCKPCB,
854 		    m->m_pkthdr.rcvif, m);
855 		if (!inp) {
856 			/*
857 			 * It's new.  Try to find the ambushing socket.
858 			 * Because we've rewritten the destination address,
859 			 * any hardware-generated hash is ignored.
860 			 */
861 			inp = in_pcblookup(&V_tcbinfo, ip->ip_src,
862 			    th->th_sport, next_hop->sin_addr,
863 			    next_hop->sin_port ? ntohs(next_hop->sin_port) :
864 			    th->th_dport, INPLOOKUP_WILDCARD |
865 			    INPLOOKUP_WLOCKPCB, m->m_pkthdr.rcvif);
866 		}
867 	} else
868 		inp = in_pcblookup_mbuf(&V_tcbinfo, ip->ip_src,
869 		    th->th_sport, ip->ip_dst, th->th_dport,
870 		    INPLOOKUP_WILDCARD | INPLOOKUP_WLOCKPCB,
871 		    m->m_pkthdr.rcvif, m);
872 #endif /* INET */
873 
874 	/*
875 	 * If the INPCB does not exist then all data in the incoming
876 	 * segment is discarded and an appropriate RST is sent back.
877 	 * XXX MRT Send RST using which routing table?
878 	 */
879 	if (inp == NULL) {
880 		/*
881 		 * Log communication attempts to ports that are not
882 		 * in use.
883 		 */
884 		if ((tcp_log_in_vain == 1 && (thflags & TH_SYN)) ||
885 		    tcp_log_in_vain == 2) {
886 			if ((s = tcp_log_vain(NULL, th, (void *)ip, ip6)))
887 				log(LOG_INFO, "%s; %s: Connection attempt "
888 				    "to closed port\n", s, __func__);
889 		}
890 		/*
891 		 * When blackholing do not respond with a RST but
892 		 * completely ignore the segment and drop it.
893 		 */
894 		if ((V_blackhole == 1 && (thflags & TH_SYN)) ||
895 		    V_blackhole == 2)
896 			goto dropunlock;
897 
898 		rstreason = BANDLIM_RST_CLOSEDPORT;
899 		goto dropwithreset;
900 	}
901 	INP_WLOCK_ASSERT(inp);
902 	if ((inp->inp_flowtype == M_HASHTYPE_NONE) &&
903 	    (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) &&
904 	    ((inp->inp_socket == NULL) ||
905 	    (inp->inp_socket->so_options & SO_ACCEPTCONN) == 0)) {
906 		inp->inp_flowid = m->m_pkthdr.flowid;
907 		inp->inp_flowtype = M_HASHTYPE_GET(m);
908 	}
909 #ifdef IPSEC
910 #ifdef INET6
911 	if (isipv6 && ipsec6_in_reject(m, inp)) {
912 		goto dropunlock;
913 	} else
914 #endif /* INET6 */
915 	if (ipsec4_in_reject(m, inp) != 0) {
916 		goto dropunlock;
917 	}
918 #endif /* IPSEC */
919 
920 	/*
921 	 * Check the minimum TTL for socket.
922 	 */
923 	if (inp->inp_ip_minttl != 0) {
924 #ifdef INET6
925 		if (isipv6) {
926 			if (inp->inp_ip_minttl > ip6->ip6_hlim)
927 				goto dropunlock;
928 		} else
929 #endif
930 		if (inp->inp_ip_minttl > ip->ip_ttl)
931 			goto dropunlock;
932 	}
933 
934 	/*
935 	 * A previous connection in TIMEWAIT state is supposed to catch stray
936 	 * or duplicate segments arriving late.  If this segment was a
937 	 * legitimate new connection attempt, the old INPCB gets removed and
938 	 * we can try again to find a listening socket.
939 	 *
940 	 * At this point, due to earlier optimism, we may hold only an inpcb
941 	 * lock, and not the inpcbinfo write lock.  If so, we need to try to
942 	 * acquire it, or if that fails, acquire a reference on the inpcb,
943 	 * drop all locks, acquire a global write lock, and then re-acquire
944 	 * the inpcb lock.  We may at that point discover that another thread
945 	 * has tried to free the inpcb, in which case we need to loop back
946 	 * and try to find a new inpcb to deliver to.
947 	 *
948 	 * XXXRW: It may be time to rethink timewait locking.
949 	 */
950 relocked:
951 	if (inp->inp_flags & INP_TIMEWAIT) {
952 		if (ti_locked == TI_UNLOCKED) {
953 			if (INP_INFO_TRY_RLOCK(&V_tcbinfo) == 0) {
954 				in_pcbref(inp);
955 				INP_WUNLOCK(inp);
956 				INP_INFO_RLOCK(&V_tcbinfo);
957 				ti_locked = TI_RLOCKED;
958 				INP_WLOCK(inp);
959 				if (in_pcbrele_wlocked(inp)) {
960 					inp = NULL;
961 					goto findpcb;
962 				}
963 			} else
964 				ti_locked = TI_RLOCKED;
965 		}
966 		INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
967 
968 		if (thflags & TH_SYN)
969 			tcp_dooptions(&to, optp, optlen, TO_SYN);
970 		/*
971 		 * NB: tcp_twcheck unlocks the INP and frees the mbuf.
972 		 */
973 		if (tcp_twcheck(inp, &to, th, m, tlen))
974 			goto findpcb;
975 		INP_INFO_RUNLOCK(&V_tcbinfo);
976 		return (IPPROTO_DONE);
977 	}
978 	/*
979 	 * The TCPCB may no longer exist if the connection is winding
980 	 * down or it is in the CLOSED state.  Either way we drop the
981 	 * segment and send an appropriate response.
982 	 */
983 	tp = intotcpcb(inp);
984 	if (tp == NULL || tp->t_state == TCPS_CLOSED) {
985 		rstreason = BANDLIM_RST_CLOSEDPORT;
986 		goto dropwithreset;
987 	}
988 
989 #ifdef TCP_OFFLOAD
990 	if (tp->t_flags & TF_TOE) {
991 		tcp_offload_input(tp, m);
992 		m = NULL;	/* consumed by the TOE driver */
993 		goto dropunlock;
994 	}
995 #endif
996 
997 	/*
998 	 * We've identified a valid inpcb, but it could be that we need an
999 	 * inpcbinfo write lock but don't hold it.  In this case, attempt to
1000 	 * acquire using the same strategy as the TIMEWAIT case above.  If we
1001 	 * relock, we have to jump back to 'relocked' as the connection might
1002 	 * now be in TIMEWAIT.
1003 	 */
1004 #ifdef INVARIANTS
1005 	if ((thflags & (TH_FIN | TH_RST)) != 0)
1006 		INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
1007 #endif
1008 	if (!((tp->t_state == TCPS_ESTABLISHED && (thflags & TH_SYN) == 0) ||
1009 	      (tp->t_state == TCPS_LISTEN && (thflags & TH_SYN) &&
1010 	       !(tp->t_flags & TF_FASTOPEN)))) {
1011 		if (ti_locked == TI_UNLOCKED) {
1012 			if (INP_INFO_TRY_RLOCK(&V_tcbinfo) == 0) {
1013 				in_pcbref(inp);
1014 				INP_WUNLOCK(inp);
1015 				INP_INFO_RLOCK(&V_tcbinfo);
1016 				ti_locked = TI_RLOCKED;
1017 				INP_WLOCK(inp);
1018 				if (in_pcbrele_wlocked(inp)) {
1019 					inp = NULL;
1020 					goto findpcb;
1021 				}
1022 				goto relocked;
1023 			} else
1024 				ti_locked = TI_RLOCKED;
1025 		}
1026 		INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
1027 	}
1028 
1029 #ifdef MAC
1030 	INP_WLOCK_ASSERT(inp);
1031 	if (mac_inpcb_check_deliver(inp, m))
1032 		goto dropunlock;
1033 #endif
1034 	so = inp->inp_socket;
1035 	KASSERT(so != NULL, ("%s: so == NULL", __func__));
1036 #ifdef TCPDEBUG
1037 	if (so->so_options & SO_DEBUG) {
1038 		ostate = tp->t_state;
1039 #ifdef INET6
1040 		if (isipv6) {
1041 			bcopy((char *)ip6, (char *)tcp_saveipgen, sizeof(*ip6));
1042 		} else
1043 #endif
1044 			bcopy((char *)ip, (char *)tcp_saveipgen, sizeof(*ip));
1045 		tcp_savetcp = *th;
1046 	}
1047 #endif /* TCPDEBUG */
1048 	/*
1049 	 * When the socket is accepting connections (the INPCB is in LISTEN
1050 	 * state) we look into the SYN cache if this is a new connection
1051 	 * attempt or the completion of a previous one.
1052 	 */
1053 	if (so->so_options & SO_ACCEPTCONN) {
1054 		struct in_conninfo inc;
1055 
1056 		KASSERT(tp->t_state == TCPS_LISTEN, ("%s: so accepting but "
1057 		    "tp not listening", __func__));
1058 		bzero(&inc, sizeof(inc));
1059 #ifdef INET6
1060 		if (isipv6) {
1061 			inc.inc_flags |= INC_ISIPV6;
1062 			inc.inc6_faddr = ip6->ip6_src;
1063 			inc.inc6_laddr = ip6->ip6_dst;
1064 		} else
1065 #endif
1066 		{
1067 			inc.inc_faddr = ip->ip_src;
1068 			inc.inc_laddr = ip->ip_dst;
1069 		}
1070 		inc.inc_fport = th->th_sport;
1071 		inc.inc_lport = th->th_dport;
1072 		inc.inc_fibnum = so->so_fibnum;
1073 
1074 		/*
1075 		 * Check for an existing connection attempt in syncache if
1076 		 * the flag is only ACK.  A successful lookup creates a new
1077 		 * socket appended to the listen queue in SYN_RECEIVED state.
1078 		 */
1079 		if ((thflags & (TH_RST|TH_ACK|TH_SYN)) == TH_ACK) {
1080 
1081 			INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
1082 			/*
1083 			 * Parse the TCP options here because
1084 			 * syncookies need access to the reflected
1085 			 * timestamp.
1086 			 */
1087 			tcp_dooptions(&to, optp, optlen, 0);
1088 			/*
1089 			 * NB: syncache_expand() doesn't unlock
1090 			 * inp and tcpinfo locks.
1091 			 */
1092 			if (!syncache_expand(&inc, &to, th, &so, m)) {
1093 				/*
1094 				 * No syncache entry or ACK was not
1095 				 * for our SYN/ACK.  Send a RST.
1096 				 * NB: syncache did its own logging
1097 				 * of the failure cause.
1098 				 */
1099 				rstreason = BANDLIM_RST_OPENPORT;
1100 				goto dropwithreset;
1101 			}
1102 #ifdef TCP_RFC7413
1103 new_tfo_socket:
1104 #endif
1105 			if (so == NULL) {
1106 				/*
1107 				 * We completed the 3-way handshake
1108 				 * but could not allocate a socket
1109 				 * either due to memory shortage,
1110 				 * listen queue length limits or
1111 				 * global socket limits.  Send RST
1112 				 * or wait and have the remote end
1113 				 * retransmit the ACK for another
1114 				 * try.
1115 				 */
1116 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1117 					log(LOG_DEBUG, "%s; %s: Listen socket: "
1118 					    "Socket allocation failed due to "
1119 					    "limits or memory shortage, %s\n",
1120 					    s, __func__,
1121 					    V_tcp_sc_rst_sock_fail ?
1122 					    "sending RST" : "try again");
1123 				if (V_tcp_sc_rst_sock_fail) {
1124 					rstreason = BANDLIM_UNLIMITED;
1125 					goto dropwithreset;
1126 				} else
1127 					goto dropunlock;
1128 			}
1129 			/*
1130 			 * Socket is created in state SYN_RECEIVED.
1131 			 * Unlock the listen socket, lock the newly
1132 			 * created socket and update the tp variable.
1133 			 */
1134 			INP_WUNLOCK(inp);	/* listen socket */
1135 			inp = sotoinpcb(so);
1136 			/*
1137 			 * New connection inpcb is already locked by
1138 			 * syncache_expand().
1139 			 */
1140 			INP_WLOCK_ASSERT(inp);
1141 			tp = intotcpcb(inp);
1142 			KASSERT(tp->t_state == TCPS_SYN_RECEIVED,
1143 			    ("%s: ", __func__));
1144 #ifdef TCP_SIGNATURE
1145 			if (sig_checked == 0)  {
1146 				tcp_dooptions(&to, optp, optlen,
1147 				    (thflags & TH_SYN) ? TO_SYN : 0);
1148 				if (!tcp_signature_verify_input(m, off0, tlen,
1149 				    optlen, &to, th, tp->t_flags)) {
1150 
1151 					/*
1152 					 * In SYN_SENT state if it receives an
1153 					 * RST, it is allowed for further
1154 					 * processing.
1155 					 */
1156 					if ((thflags & TH_RST) == 0 ||
1157 					    (tp->t_state == TCPS_SYN_SENT) == 0)
1158 						goto dropunlock;
1159 				}
1160 				sig_checked = 1;
1161 			}
1162 #endif
1163 
1164 			/*
1165 			 * Process the segment and the data it
1166 			 * contains.  tcp_do_segment() consumes
1167 			 * the mbuf chain and unlocks the inpcb.
1168 			 */
1169 			tp->t_fb->tfb_tcp_do_segment(m, th, so, tp, drop_hdrlen, tlen,
1170 			    iptos, ti_locked);
1171 			INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1172 			return (IPPROTO_DONE);
1173 		}
1174 		/*
1175 		 * Segment flag validation for new connection attempts:
1176 		 *
1177 		 * Our (SYN|ACK) response was rejected.
1178 		 * Check with syncache and remove entry to prevent
1179 		 * retransmits.
1180 		 *
1181 		 * NB: syncache_chkrst does its own logging of failure
1182 		 * causes.
1183 		 */
1184 		if (thflags & TH_RST) {
1185 			syncache_chkrst(&inc, th);
1186 			goto dropunlock;
1187 		}
1188 		/*
1189 		 * We can't do anything without SYN.
1190 		 */
1191 		if ((thflags & TH_SYN) == 0) {
1192 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1193 				log(LOG_DEBUG, "%s; %s: Listen socket: "
1194 				    "SYN is missing, segment ignored\n",
1195 				    s, __func__);
1196 			TCPSTAT_INC(tcps_badsyn);
1197 			goto dropunlock;
1198 		}
1199 		/*
1200 		 * (SYN|ACK) is bogus on a listen socket.
1201 		 */
1202 		if (thflags & TH_ACK) {
1203 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1204 				log(LOG_DEBUG, "%s; %s: Listen socket: "
1205 				    "SYN|ACK invalid, segment rejected\n",
1206 				    s, __func__);
1207 			syncache_badack(&inc);	/* XXX: Not needed! */
1208 			TCPSTAT_INC(tcps_badsyn);
1209 			rstreason = BANDLIM_RST_OPENPORT;
1210 			goto dropwithreset;
1211 		}
1212 		/*
1213 		 * If the drop_synfin option is enabled, drop all
1214 		 * segments with both the SYN and FIN bits set.
1215 		 * This prevents e.g. nmap from identifying the
1216 		 * TCP/IP stack.
1217 		 * XXX: Poor reasoning.  nmap has other methods
1218 		 * and is constantly refining its stack detection
1219 		 * strategies.
1220 		 * XXX: This is a violation of the TCP specification
1221 		 * and was used by RFC1644.
1222 		 */
1223 		if ((thflags & TH_FIN) && V_drop_synfin) {
1224 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1225 				log(LOG_DEBUG, "%s; %s: Listen socket: "
1226 				    "SYN|FIN segment ignored (based on "
1227 				    "sysctl setting)\n", s, __func__);
1228 			TCPSTAT_INC(tcps_badsyn);
1229 			goto dropunlock;
1230 		}
1231 		/*
1232 		 * Segment's flags are (SYN) or (SYN|FIN).
1233 		 *
1234 		 * TH_PUSH, TH_URG, TH_ECE, TH_CWR are ignored
1235 		 * as they do not affect the state of the TCP FSM.
1236 		 * The data pointed to by TH_URG and th_urp is ignored.
1237 		 */
1238 		KASSERT((thflags & (TH_RST|TH_ACK)) == 0,
1239 		    ("%s: Listen socket: TH_RST or TH_ACK set", __func__));
1240 		KASSERT(thflags & (TH_SYN),
1241 		    ("%s: Listen socket: TH_SYN not set", __func__));
1242 #ifdef INET6
1243 		/*
1244 		 * If deprecated address is forbidden,
1245 		 * we do not accept SYN to deprecated interface
1246 		 * address to prevent any new inbound connection from
1247 		 * getting established.
1248 		 * When we do not accept SYN, we send a TCP RST,
1249 		 * with deprecated source address (instead of dropping
1250 		 * it).  We compromise it as it is much better for peer
1251 		 * to send a RST, and RST will be the final packet
1252 		 * for the exchange.
1253 		 *
1254 		 * If we do not forbid deprecated addresses, we accept
1255 		 * the SYN packet.  RFC2462 does not suggest dropping
1256 		 * SYN in this case.
1257 		 * If we decipher RFC2462 5.5.4, it says like this:
1258 		 * 1. use of deprecated addr with existing
1259 		 *    communication is okay - "SHOULD continue to be
1260 		 *    used"
1261 		 * 2. use of it with new communication:
1262 		 *   (2a) "SHOULD NOT be used if alternate address
1263 		 *        with sufficient scope is available"
1264 		 *   (2b) nothing mentioned otherwise.
1265 		 * Here we fall into (2b) case as we have no choice in
1266 		 * our source address selection - we must obey the peer.
1267 		 *
1268 		 * The wording in RFC2462 is confusing, and there are
1269 		 * multiple description text for deprecated address
1270 		 * handling - worse, they are not exactly the same.
1271 		 * I believe 5.5.4 is the best one, so we follow 5.5.4.
1272 		 */
1273 		if (isipv6 && !V_ip6_use_deprecated) {
1274 			struct in6_ifaddr *ia6;
1275 
1276 			ia6 = in6ifa_ifwithaddr(&ip6->ip6_dst, 0 /* XXX */);
1277 			if (ia6 != NULL &&
1278 			    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
1279 				ifa_free(&ia6->ia_ifa);
1280 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1281 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1282 					"Connection attempt to deprecated "
1283 					"IPv6 address rejected\n",
1284 					s, __func__);
1285 				rstreason = BANDLIM_RST_OPENPORT;
1286 				goto dropwithreset;
1287 			}
1288 			if (ia6)
1289 				ifa_free(&ia6->ia_ifa);
1290 		}
1291 #endif /* INET6 */
1292 		/*
1293 		 * Basic sanity checks on incoming SYN requests:
1294 		 *   Don't respond if the destination is a link layer
1295 		 *	broadcast according to RFC1122 4.2.3.10, p. 104.
1296 		 *   If it is from this socket it must be forged.
1297 		 *   Don't respond if the source or destination is a
1298 		 *	global or subnet broad- or multicast address.
1299 		 *   Note that it is quite possible to receive unicast
1300 		 *	link-layer packets with a broadcast IP address. Use
1301 		 *	in_broadcast() to find them.
1302 		 */
1303 		if (m->m_flags & (M_BCAST|M_MCAST)) {
1304 			if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1305 			    log(LOG_DEBUG, "%s; %s: Listen socket: "
1306 				"Connection attempt from broad- or multicast "
1307 				"link layer address ignored\n", s, __func__);
1308 			goto dropunlock;
1309 		}
1310 #ifdef INET6
1311 		if (isipv6) {
1312 			if (th->th_dport == th->th_sport &&
1313 			    IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst, &ip6->ip6_src)) {
1314 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1315 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1316 					"Connection attempt to/from self "
1317 					"ignored\n", s, __func__);
1318 				goto dropunlock;
1319 			}
1320 			if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
1321 			    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
1322 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1323 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1324 					"Connection attempt from/to multicast "
1325 					"address ignored\n", s, __func__);
1326 				goto dropunlock;
1327 			}
1328 		}
1329 #endif
1330 #if defined(INET) && defined(INET6)
1331 		else
1332 #endif
1333 #ifdef INET
1334 		{
1335 			if (th->th_dport == th->th_sport &&
1336 			    ip->ip_dst.s_addr == ip->ip_src.s_addr) {
1337 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1338 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1339 					"Connection attempt from/to self "
1340 					"ignored\n", s, __func__);
1341 				goto dropunlock;
1342 			}
1343 			if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
1344 			    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
1345 			    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
1346 			    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif)) {
1347 				if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1348 				    log(LOG_DEBUG, "%s; %s: Listen socket: "
1349 					"Connection attempt from/to broad- "
1350 					"or multicast address ignored\n",
1351 					s, __func__);
1352 				goto dropunlock;
1353 			}
1354 		}
1355 #endif
1356 		/*
1357 		 * SYN appears to be valid.  Create compressed TCP state
1358 		 * for syncache.
1359 		 */
1360 #ifdef TCPDEBUG
1361 		if (so->so_options & SO_DEBUG)
1362 			tcp_trace(TA_INPUT, ostate, tp,
1363 			    (void *)tcp_saveipgen, &tcp_savetcp, 0);
1364 #endif
1365 		TCP_PROBE3(debug__input, tp, th, mtod(m, const char *));
1366 		tcp_dooptions(&to, optp, optlen, TO_SYN);
1367 #ifdef TCP_RFC7413
1368 		if (syncache_add(&inc, &to, th, inp, &so, m, NULL, NULL))
1369 			goto new_tfo_socket;
1370 #else
1371 		syncache_add(&inc, &to, th, inp, &so, m, NULL, NULL);
1372 #endif
1373 		/*
1374 		 * Entry added to syncache and mbuf consumed.
1375 		 * Only the listen socket is unlocked by syncache_add().
1376 		 */
1377 		if (ti_locked == TI_RLOCKED) {
1378 			INP_INFO_RUNLOCK(&V_tcbinfo);
1379 			ti_locked = TI_UNLOCKED;
1380 		}
1381 		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1382 		return (IPPROTO_DONE);
1383 	} else if (tp->t_state == TCPS_LISTEN) {
1384 		/*
1385 		 * When a listen socket is torn down the SO_ACCEPTCONN
1386 		 * flag is removed first while connections are drained
1387 		 * from the accept queue in a unlock/lock cycle of the
1388 		 * ACCEPT_LOCK, opening a race condition allowing a SYN
1389 		 * attempt go through unhandled.
1390 		 */
1391 		goto dropunlock;
1392 	}
1393 
1394 #ifdef TCP_SIGNATURE
1395 	if (sig_checked == 0)  {
1396 		tcp_dooptions(&to, optp, optlen,
1397 		    (thflags & TH_SYN) ? TO_SYN : 0);
1398 		if (!tcp_signature_verify_input(m, off0, tlen, optlen, &to,
1399 		    th, tp->t_flags)) {
1400 
1401 			/*
1402 			 * In SYN_SENT state if it receives an RST, it is
1403 			 * allowed for further processing.
1404 			 */
1405 			if ((thflags & TH_RST) == 0 ||
1406 			    (tp->t_state == TCPS_SYN_SENT) == 0)
1407 				goto dropunlock;
1408 		}
1409 		sig_checked = 1;
1410 	}
1411 #endif
1412 
1413 	TCP_PROBE5(receive, NULL, tp, mtod(m, const char *), tp, th);
1414 
1415 	/*
1416 	 * Segment belongs to a connection in SYN_SENT, ESTABLISHED or later
1417 	 * state.  tcp_do_segment() always consumes the mbuf chain, unlocks
1418 	 * the inpcb, and unlocks pcbinfo.
1419 	 */
1420 	tp->t_fb->tfb_tcp_do_segment(m, th, so, tp, drop_hdrlen, tlen, iptos, ti_locked);
1421 	INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1422 	return (IPPROTO_DONE);
1423 
1424 dropwithreset:
1425 	TCP_PROBE5(receive, NULL, tp, mtod(m, const char *), tp, th);
1426 
1427 	if (ti_locked == TI_RLOCKED) {
1428 		INP_INFO_RUNLOCK(&V_tcbinfo);
1429 		ti_locked = TI_UNLOCKED;
1430 	}
1431 #ifdef INVARIANTS
1432 	else {
1433 		KASSERT(ti_locked == TI_UNLOCKED, ("%s: dropwithreset "
1434 		    "ti_locked: %d", __func__, ti_locked));
1435 		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1436 	}
1437 #endif
1438 
1439 	if (inp != NULL) {
1440 		tcp_dropwithreset(m, th, tp, tlen, rstreason);
1441 		INP_WUNLOCK(inp);
1442 	} else
1443 		tcp_dropwithreset(m, th, NULL, tlen, rstreason);
1444 	m = NULL;	/* mbuf chain got consumed. */
1445 	goto drop;
1446 
1447 dropunlock:
1448 	if (m != NULL)
1449 		TCP_PROBE5(receive, NULL, tp, mtod(m, const char *), tp, th);
1450 
1451 	if (ti_locked == TI_RLOCKED) {
1452 		INP_INFO_RUNLOCK(&V_tcbinfo);
1453 		ti_locked = TI_UNLOCKED;
1454 	}
1455 #ifdef INVARIANTS
1456 	else {
1457 		KASSERT(ti_locked == TI_UNLOCKED, ("%s: dropunlock "
1458 		    "ti_locked: %d", __func__, ti_locked));
1459 		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1460 	}
1461 #endif
1462 
1463 	if (inp != NULL)
1464 		INP_WUNLOCK(inp);
1465 
1466 drop:
1467 	INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1468 	if (s != NULL)
1469 		free(s, M_TCPLOG);
1470 	if (m != NULL)
1471 		m_freem(m);
1472 	return (IPPROTO_DONE);
1473 }
1474 
1475 void
1476 tcp_do_segment(struct mbuf *m, struct tcphdr *th, struct socket *so,
1477     struct tcpcb *tp, int drop_hdrlen, int tlen, uint8_t iptos,
1478     int ti_locked)
1479 {
1480 	int thflags, acked, ourfinisacked, needoutput = 0, sack_changed;
1481 	int rstreason, todrop, win;
1482 	u_long tiwin;
1483 	char *s;
1484 	struct in_conninfo *inc;
1485 	struct mbuf *mfree;
1486 	struct tcpopt to;
1487 	int tfo_syn;
1488 
1489 #ifdef TCPDEBUG
1490 	/*
1491 	 * The size of tcp_saveipgen must be the size of the max ip header,
1492 	 * now IPv6.
1493 	 */
1494 	u_char tcp_saveipgen[IP6_HDR_LEN];
1495 	struct tcphdr tcp_savetcp;
1496 	short ostate = 0;
1497 #endif
1498 	thflags = th->th_flags;
1499 	inc = &tp->t_inpcb->inp_inc;
1500 	tp->sackhint.last_sack_ack = 0;
1501 	sack_changed = 0;
1502 
1503 	/*
1504 	 * If this is either a state-changing packet or current state isn't
1505 	 * established, we require a write lock on tcbinfo.  Otherwise, we
1506 	 * allow the tcbinfo to be in either alocked or unlocked, as the
1507 	 * caller may have unnecessarily acquired a write lock due to a race.
1508 	 */
1509 	if ((thflags & (TH_SYN | TH_FIN | TH_RST)) != 0 ||
1510 	    tp->t_state != TCPS_ESTABLISHED) {
1511 		KASSERT(ti_locked == TI_RLOCKED, ("%s ti_locked %d for "
1512 		    "SYN/FIN/RST/!EST", __func__, ti_locked));
1513 		INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
1514 	} else {
1515 #ifdef INVARIANTS
1516 		if (ti_locked == TI_RLOCKED)
1517 			INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
1518 		else {
1519 			KASSERT(ti_locked == TI_UNLOCKED, ("%s: EST "
1520 			    "ti_locked: %d", __func__, ti_locked));
1521 			INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1522 		}
1523 #endif
1524 	}
1525 	INP_WLOCK_ASSERT(tp->t_inpcb);
1526 	KASSERT(tp->t_state > TCPS_LISTEN, ("%s: TCPS_LISTEN",
1527 	    __func__));
1528 	KASSERT(tp->t_state != TCPS_TIME_WAIT, ("%s: TCPS_TIME_WAIT",
1529 	    __func__));
1530 
1531 #ifdef TCPPCAP
1532 	/* Save segment, if requested. */
1533 	tcp_pcap_add(th, m, &(tp->t_inpkts));
1534 #endif
1535 
1536 	/*
1537 	 * Segment received on connection.
1538 	 * Reset idle time and keep-alive timer.
1539 	 * XXX: This should be done after segment
1540 	 * validation to ignore broken/spoofed segs.
1541 	 */
1542 	tp->t_rcvtime = ticks;
1543 	if (TCPS_HAVEESTABLISHED(tp->t_state))
1544 		tcp_timer_activate(tp, TT_KEEP, TP_KEEPIDLE(tp));
1545 
1546 	/*
1547 	 * Scale up the window into a 32-bit value.
1548 	 * For the SYN_SENT state the scale is zero.
1549 	 */
1550 	tiwin = th->th_win << tp->snd_scale;
1551 
1552 	/*
1553 	 * TCP ECN processing.
1554 	 */
1555 	if (tp->t_flags & TF_ECN_PERMIT) {
1556 		if (thflags & TH_CWR)
1557 			tp->t_flags &= ~TF_ECN_SND_ECE;
1558 		switch (iptos & IPTOS_ECN_MASK) {
1559 		case IPTOS_ECN_CE:
1560 			tp->t_flags |= TF_ECN_SND_ECE;
1561 			TCPSTAT_INC(tcps_ecn_ce);
1562 			break;
1563 		case IPTOS_ECN_ECT0:
1564 			TCPSTAT_INC(tcps_ecn_ect0);
1565 			break;
1566 		case IPTOS_ECN_ECT1:
1567 			TCPSTAT_INC(tcps_ecn_ect1);
1568 			break;
1569 		}
1570 
1571 		/* Process a packet differently from RFC3168. */
1572 		cc_ecnpkt_handler(tp, th, iptos);
1573 
1574 		/* Congestion experienced. */
1575 		if (thflags & TH_ECE) {
1576 			cc_cong_signal(tp, th, CC_ECN);
1577 		}
1578 	}
1579 
1580 	/*
1581 	 * Parse options on any incoming segment.
1582 	 */
1583 	tcp_dooptions(&to, (u_char *)(th + 1),
1584 	    (th->th_off << 2) - sizeof(struct tcphdr),
1585 	    (thflags & TH_SYN) ? TO_SYN : 0);
1586 
1587 	/*
1588 	 * If echoed timestamp is later than the current time,
1589 	 * fall back to non RFC1323 RTT calculation.  Normalize
1590 	 * timestamp if syncookies were used when this connection
1591 	 * was established.
1592 	 */
1593 	if ((to.to_flags & TOF_TS) && (to.to_tsecr != 0)) {
1594 		to.to_tsecr -= tp->ts_offset;
1595 		if (TSTMP_GT(to.to_tsecr, tcp_ts_getticks()))
1596 			to.to_tsecr = 0;
1597 	}
1598 	/*
1599 	 * If timestamps were negotiated during SYN/ACK they should
1600 	 * appear on every segment during this session and vice versa.
1601 	 */
1602 	if ((tp->t_flags & TF_RCVD_TSTMP) && !(to.to_flags & TOF_TS)) {
1603 		if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1604 			log(LOG_DEBUG, "%s; %s: Timestamp missing, "
1605 			    "no action\n", s, __func__);
1606 			free(s, M_TCPLOG);
1607 		}
1608 	}
1609 	if (!(tp->t_flags & TF_RCVD_TSTMP) && (to.to_flags & TOF_TS)) {
1610 		if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1611 			log(LOG_DEBUG, "%s; %s: Timestamp not expected, "
1612 			    "no action\n", s, __func__);
1613 			free(s, M_TCPLOG);
1614 		}
1615 	}
1616 
1617 	/*
1618 	 * Process options only when we get SYN/ACK back. The SYN case
1619 	 * for incoming connections is handled in tcp_syncache.
1620 	 * According to RFC1323 the window field in a SYN (i.e., a <SYN>
1621 	 * or <SYN,ACK>) segment itself is never scaled.
1622 	 * XXX this is traditional behavior, may need to be cleaned up.
1623 	 */
1624 	if (tp->t_state == TCPS_SYN_SENT && (thflags & TH_SYN)) {
1625 		if ((to.to_flags & TOF_SCALE) &&
1626 		    (tp->t_flags & TF_REQ_SCALE)) {
1627 			tp->t_flags |= TF_RCVD_SCALE;
1628 			tp->snd_scale = to.to_wscale;
1629 		}
1630 		/*
1631 		 * Initial send window.  It will be updated with
1632 		 * the next incoming segment to the scaled value.
1633 		 */
1634 		tp->snd_wnd = th->th_win;
1635 		if (to.to_flags & TOF_TS) {
1636 			tp->t_flags |= TF_RCVD_TSTMP;
1637 			tp->ts_recent = to.to_tsval;
1638 			tp->ts_recent_age = tcp_ts_getticks();
1639 		}
1640 		if (to.to_flags & TOF_MSS)
1641 			tcp_mss(tp, to.to_mss);
1642 		if ((tp->t_flags & TF_SACK_PERMIT) &&
1643 		    (to.to_flags & TOF_SACKPERM) == 0)
1644 			tp->t_flags &= ~TF_SACK_PERMIT;
1645 	}
1646 
1647 	/*
1648 	 * Header prediction: check for the two common cases
1649 	 * of a uni-directional data xfer.  If the packet has
1650 	 * no control flags, is in-sequence, the window didn't
1651 	 * change and we're not retransmitting, it's a
1652 	 * candidate.  If the length is zero and the ack moved
1653 	 * forward, we're the sender side of the xfer.  Just
1654 	 * free the data acked & wake any higher level process
1655 	 * that was blocked waiting for space.  If the length
1656 	 * is non-zero and the ack didn't move, we're the
1657 	 * receiver side.  If we're getting packets in-order
1658 	 * (the reassembly queue is empty), add the data to
1659 	 * the socket buffer and note that we need a delayed ack.
1660 	 * Make sure that the hidden state-flags are also off.
1661 	 * Since we check for TCPS_ESTABLISHED first, it can only
1662 	 * be TH_NEEDSYN.
1663 	 */
1664 	if (tp->t_state == TCPS_ESTABLISHED &&
1665 	    th->th_seq == tp->rcv_nxt &&
1666 	    (thflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
1667 	    tp->snd_nxt == tp->snd_max &&
1668 	    tiwin && tiwin == tp->snd_wnd &&
1669 	    ((tp->t_flags & (TF_NEEDSYN|TF_NEEDFIN)) == 0) &&
1670 	    LIST_EMPTY(&tp->t_segq) &&
1671 	    ((to.to_flags & TOF_TS) == 0 ||
1672 	     TSTMP_GEQ(to.to_tsval, tp->ts_recent)) ) {
1673 
1674 		/*
1675 		 * If last ACK falls within this segment's sequence numbers,
1676 		 * record the timestamp.
1677 		 * NOTE that the test is modified according to the latest
1678 		 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
1679 		 */
1680 		if ((to.to_flags & TOF_TS) != 0 &&
1681 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1682 			tp->ts_recent_age = tcp_ts_getticks();
1683 			tp->ts_recent = to.to_tsval;
1684 		}
1685 
1686 		if (tlen == 0) {
1687 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
1688 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
1689 			    !IN_RECOVERY(tp->t_flags) &&
1690 			    (to.to_flags & TOF_SACK) == 0 &&
1691 			    TAILQ_EMPTY(&tp->snd_holes)) {
1692 				/*
1693 				 * This is a pure ack for outstanding data.
1694 				 */
1695 				if (ti_locked == TI_RLOCKED)
1696 					INP_INFO_RUNLOCK(&V_tcbinfo);
1697 				ti_locked = TI_UNLOCKED;
1698 
1699 				TCPSTAT_INC(tcps_predack);
1700 
1701 				/*
1702 				 * "bad retransmit" recovery.
1703 				 */
1704 				if (tp->t_rxtshift == 1 &&
1705 				    tp->t_flags & TF_PREVVALID &&
1706 				    (int)(ticks - tp->t_badrxtwin) < 0) {
1707 					cc_cong_signal(tp, th, CC_RTO_ERR);
1708 				}
1709 
1710 				/*
1711 				 * Recalculate the transmit timer / rtt.
1712 				 *
1713 				 * Some boxes send broken timestamp replies
1714 				 * during the SYN+ACK phase, ignore
1715 				 * timestamps of 0 or we could calculate a
1716 				 * huge RTT and blow up the retransmit timer.
1717 				 */
1718 				if ((to.to_flags & TOF_TS) != 0 &&
1719 				    to.to_tsecr) {
1720 					u_int t;
1721 
1722 					t = tcp_ts_getticks() - to.to_tsecr;
1723 					if (!tp->t_rttlow || tp->t_rttlow > t)
1724 						tp->t_rttlow = t;
1725 					tcp_xmit_timer(tp,
1726 					    TCP_TS_TO_TICKS(t) + 1);
1727 				} else if (tp->t_rtttime &&
1728 				    SEQ_GT(th->th_ack, tp->t_rtseq)) {
1729 					if (!tp->t_rttlow ||
1730 					    tp->t_rttlow > ticks - tp->t_rtttime)
1731 						tp->t_rttlow = ticks - tp->t_rtttime;
1732 					tcp_xmit_timer(tp,
1733 							ticks - tp->t_rtttime);
1734 				}
1735 				acked = BYTES_THIS_ACK(tp, th);
1736 
1737 				/* Run HHOOK_TCP_ESTABLISHED_IN helper hooks. */
1738 				hhook_run_tcp_est_in(tp, th, &to);
1739 
1740 				TCPSTAT_INC(tcps_rcvackpack);
1741 				TCPSTAT_ADD(tcps_rcvackbyte, acked);
1742 				sbdrop(&so->so_snd, acked);
1743 				if (SEQ_GT(tp->snd_una, tp->snd_recover) &&
1744 				    SEQ_LEQ(th->th_ack, tp->snd_recover))
1745 					tp->snd_recover = th->th_ack - 1;
1746 
1747 				/*
1748 				 * Let the congestion control algorithm update
1749 				 * congestion control related information. This
1750 				 * typically means increasing the congestion
1751 				 * window.
1752 				 */
1753 				cc_ack_received(tp, th, CC_ACK);
1754 
1755 				tp->snd_una = th->th_ack;
1756 				/*
1757 				 * Pull snd_wl2 up to prevent seq wrap relative
1758 				 * to th_ack.
1759 				 */
1760 				tp->snd_wl2 = th->th_ack;
1761 				tp->t_dupacks = 0;
1762 				m_freem(m);
1763 
1764 				/*
1765 				 * If all outstanding data are acked, stop
1766 				 * retransmit timer, otherwise restart timer
1767 				 * using current (possibly backed-off) value.
1768 				 * If process is waiting for space,
1769 				 * wakeup/selwakeup/signal.  If data
1770 				 * are ready to send, let tcp_output
1771 				 * decide between more output or persist.
1772 				 */
1773 #ifdef TCPDEBUG
1774 				if (so->so_options & SO_DEBUG)
1775 					tcp_trace(TA_INPUT, ostate, tp,
1776 					    (void *)tcp_saveipgen,
1777 					    &tcp_savetcp, 0);
1778 #endif
1779 				TCP_PROBE3(debug__input, tp, th,
1780 					mtod(m, const char *));
1781 				if (tp->snd_una == tp->snd_max)
1782 					tcp_timer_activate(tp, TT_REXMT, 0);
1783 				else if (!tcp_timer_active(tp, TT_PERSIST))
1784 					tcp_timer_activate(tp, TT_REXMT,
1785 						      tp->t_rxtcur);
1786 				sowwakeup(so);
1787 				if (sbavail(&so->so_snd))
1788 					(void) tp->t_fb->tfb_tcp_output(tp);
1789 				goto check_delack;
1790 			}
1791 		} else if (th->th_ack == tp->snd_una &&
1792 		    tlen <= sbspace(&so->so_rcv)) {
1793 			int newsize = 0;	/* automatic sockbuf scaling */
1794 
1795 			/*
1796 			 * This is a pure, in-sequence data packet with
1797 			 * nothing on the reassembly queue and we have enough
1798 			 * buffer space to take it.
1799 			 */
1800 			if (ti_locked == TI_RLOCKED)
1801 				INP_INFO_RUNLOCK(&V_tcbinfo);
1802 			ti_locked = TI_UNLOCKED;
1803 
1804 			/* Clean receiver SACK report if present */
1805 			if ((tp->t_flags & TF_SACK_PERMIT) && tp->rcv_numsacks)
1806 				tcp_clean_sackreport(tp);
1807 			TCPSTAT_INC(tcps_preddat);
1808 			tp->rcv_nxt += tlen;
1809 			/*
1810 			 * Pull snd_wl1 up to prevent seq wrap relative to
1811 			 * th_seq.
1812 			 */
1813 			tp->snd_wl1 = th->th_seq;
1814 			/*
1815 			 * Pull rcv_up up to prevent seq wrap relative to
1816 			 * rcv_nxt.
1817 			 */
1818 			tp->rcv_up = tp->rcv_nxt;
1819 			TCPSTAT_INC(tcps_rcvpack);
1820 			TCPSTAT_ADD(tcps_rcvbyte, tlen);
1821 #ifdef TCPDEBUG
1822 			if (so->so_options & SO_DEBUG)
1823 				tcp_trace(TA_INPUT, ostate, tp,
1824 				    (void *)tcp_saveipgen, &tcp_savetcp, 0);
1825 #endif
1826 			TCP_PROBE3(debug__input, tp, th, mtod(m, const char *));
1827 
1828 		/*
1829 		 * Automatic sizing of receive socket buffer.  Often the send
1830 		 * buffer size is not optimally adjusted to the actual network
1831 		 * conditions at hand (delay bandwidth product).  Setting the
1832 		 * buffer size too small limits throughput on links with high
1833 		 * bandwidth and high delay (eg. trans-continental/oceanic links).
1834 		 *
1835 		 * On the receive side the socket buffer memory is only rarely
1836 		 * used to any significant extent.  This allows us to be much
1837 		 * more aggressive in scaling the receive socket buffer.  For
1838 		 * the case that the buffer space is actually used to a large
1839 		 * extent and we run out of kernel memory we can simply drop
1840 		 * the new segments; TCP on the sender will just retransmit it
1841 		 * later.  Setting the buffer size too big may only consume too
1842 		 * much kernel memory if the application doesn't read() from
1843 		 * the socket or packet loss or reordering makes use of the
1844 		 * reassembly queue.
1845 		 *
1846 		 * The criteria to step up the receive buffer one notch are:
1847 		 *  1. Application has not set receive buffer size with
1848 		 *     SO_RCVBUF. Setting SO_RCVBUF clears SB_AUTOSIZE.
1849 		 *  2. the number of bytes received during the time it takes
1850 		 *     one timestamp to be reflected back to us (the RTT);
1851 		 *  3. received bytes per RTT is within seven eighth of the
1852 		 *     current socket buffer size;
1853 		 *  4. receive buffer size has not hit maximal automatic size;
1854 		 *
1855 		 * This algorithm does one step per RTT at most and only if
1856 		 * we receive a bulk stream w/o packet losses or reorderings.
1857 		 * Shrinking the buffer during idle times is not necessary as
1858 		 * it doesn't consume any memory when idle.
1859 		 *
1860 		 * TODO: Only step up if the application is actually serving
1861 		 * the buffer to better manage the socket buffer resources.
1862 		 */
1863 			if (V_tcp_do_autorcvbuf &&
1864 			    (to.to_flags & TOF_TS) &&
1865 			    to.to_tsecr &&
1866 			    (so->so_rcv.sb_flags & SB_AUTOSIZE)) {
1867 				if (TSTMP_GT(to.to_tsecr, tp->rfbuf_ts) &&
1868 				    to.to_tsecr - tp->rfbuf_ts < hz) {
1869 					if (tp->rfbuf_cnt >
1870 					    (so->so_rcv.sb_hiwat / 8 * 7) &&
1871 					    so->so_rcv.sb_hiwat <
1872 					    V_tcp_autorcvbuf_max) {
1873 						newsize =
1874 						    min(so->so_rcv.sb_hiwat +
1875 						    V_tcp_autorcvbuf_inc,
1876 						    V_tcp_autorcvbuf_max);
1877 					}
1878 					/* Start over with next RTT. */
1879 					tp->rfbuf_ts = 0;
1880 					tp->rfbuf_cnt = 0;
1881 				} else
1882 					tp->rfbuf_cnt += tlen;	/* add up */
1883 			}
1884 
1885 			/* Add data to socket buffer. */
1886 			SOCKBUF_LOCK(&so->so_rcv);
1887 			if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
1888 				m_freem(m);
1889 			} else {
1890 				/*
1891 				 * Set new socket buffer size.
1892 				 * Give up when limit is reached.
1893 				 */
1894 				if (newsize)
1895 					if (!sbreserve_locked(&so->so_rcv,
1896 					    newsize, so, NULL))
1897 						so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
1898 				m_adj(m, drop_hdrlen);	/* delayed header drop */
1899 				sbappendstream_locked(&so->so_rcv, m, 0);
1900 			}
1901 			/* NB: sorwakeup_locked() does an implicit unlock. */
1902 			sorwakeup_locked(so);
1903 			if (DELAY_ACK(tp, tlen)) {
1904 				tp->t_flags |= TF_DELACK;
1905 			} else {
1906 				tp->t_flags |= TF_ACKNOW;
1907 				tp->t_fb->tfb_tcp_output(tp);
1908 			}
1909 			goto check_delack;
1910 		}
1911 	}
1912 
1913 	/*
1914 	 * Calculate amount of space in receive window,
1915 	 * and then do TCP input processing.
1916 	 * Receive window is amount of space in rcv queue,
1917 	 * but not less than advertised window.
1918 	 */
1919 	win = sbspace(&so->so_rcv);
1920 	if (win < 0)
1921 		win = 0;
1922 	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1923 
1924 	/* Reset receive buffer auto scaling when not in bulk receive mode. */
1925 	tp->rfbuf_ts = 0;
1926 	tp->rfbuf_cnt = 0;
1927 
1928 	switch (tp->t_state) {
1929 
1930 	/*
1931 	 * If the state is SYN_RECEIVED:
1932 	 *	if seg contains an ACK, but not for our SYN/ACK, send a RST.
1933 	 */
1934 	case TCPS_SYN_RECEIVED:
1935 		if ((thflags & TH_ACK) &&
1936 		    (SEQ_LEQ(th->th_ack, tp->snd_una) ||
1937 		     SEQ_GT(th->th_ack, tp->snd_max))) {
1938 				rstreason = BANDLIM_RST_OPENPORT;
1939 				goto dropwithreset;
1940 		}
1941 #ifdef TCP_RFC7413
1942 		if (tp->t_flags & TF_FASTOPEN) {
1943 			/*
1944 			 * When a TFO connection is in SYN_RECEIVED, the
1945 			 * only valid packets are the initial SYN, a
1946 			 * retransmit/copy of the initial SYN (possibly with
1947 			 * a subset of the original data), a valid ACK, a
1948 			 * FIN, or a RST.
1949 			 */
1950 			if ((thflags & (TH_SYN|TH_ACK)) == (TH_SYN|TH_ACK)) {
1951 				rstreason = BANDLIM_RST_OPENPORT;
1952 				goto dropwithreset;
1953 			} else if (thflags & TH_SYN) {
1954 				/* non-initial SYN is ignored */
1955 				if ((tcp_timer_active(tp, TT_DELACK) ||
1956 				     tcp_timer_active(tp, TT_REXMT)))
1957 					goto drop;
1958 			} else if (!(thflags & (TH_ACK|TH_FIN|TH_RST))) {
1959 				goto drop;
1960 			}
1961 		}
1962 #endif
1963 		break;
1964 
1965 	/*
1966 	 * If the state is SYN_SENT:
1967 	 *	if seg contains an ACK, but not for our SYN, drop the input.
1968 	 *	if seg contains a RST, then drop the connection.
1969 	 *	if seg does not contain SYN, then drop it.
1970 	 * Otherwise this is an acceptable SYN segment
1971 	 *	initialize tp->rcv_nxt and tp->irs
1972 	 *	if seg contains ack then advance tp->snd_una
1973 	 *	if seg contains an ECE and ECN support is enabled, the stream
1974 	 *	    is ECN capable.
1975 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1976 	 *	arrange for segment to be acked (eventually)
1977 	 *	continue processing rest of data/controls, beginning with URG
1978 	 */
1979 	case TCPS_SYN_SENT:
1980 		if ((thflags & TH_ACK) &&
1981 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
1982 		     SEQ_GT(th->th_ack, tp->snd_max))) {
1983 			rstreason = BANDLIM_UNLIMITED;
1984 			goto dropwithreset;
1985 		}
1986 		if ((thflags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) {
1987 			TCP_PROBE5(connect__refused, NULL, tp,
1988 			    mtod(m, const char *), tp, th);
1989 			tp = tcp_drop(tp, ECONNREFUSED);
1990 		}
1991 		if (thflags & TH_RST)
1992 			goto drop;
1993 		if (!(thflags & TH_SYN))
1994 			goto drop;
1995 
1996 		tp->irs = th->th_seq;
1997 		tcp_rcvseqinit(tp);
1998 		if (thflags & TH_ACK) {
1999 			TCPSTAT_INC(tcps_connects);
2000 			soisconnected(so);
2001 #ifdef MAC
2002 			mac_socketpeer_set_from_mbuf(m, so);
2003 #endif
2004 			/* Do window scaling on this connection? */
2005 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2006 				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
2007 				tp->rcv_scale = tp->request_r_scale;
2008 			}
2009 			tp->rcv_adv += imin(tp->rcv_wnd,
2010 			    TCP_MAXWIN << tp->rcv_scale);
2011 			tp->snd_una++;		/* SYN is acked */
2012 			/*
2013 			 * If there's data, delay ACK; if there's also a FIN
2014 			 * ACKNOW will be turned on later.
2015 			 */
2016 			if (DELAY_ACK(tp, tlen) && tlen != 0)
2017 				tcp_timer_activate(tp, TT_DELACK,
2018 				    tcp_delacktime);
2019 			else
2020 				tp->t_flags |= TF_ACKNOW;
2021 
2022 			if ((thflags & TH_ECE) && V_tcp_do_ecn) {
2023 				tp->t_flags |= TF_ECN_PERMIT;
2024 				TCPSTAT_INC(tcps_ecn_shs);
2025 			}
2026 
2027 			/*
2028 			 * Received <SYN,ACK> in SYN_SENT[*] state.
2029 			 * Transitions:
2030 			 *	SYN_SENT  --> ESTABLISHED
2031 			 *	SYN_SENT* --> FIN_WAIT_1
2032 			 */
2033 			tp->t_starttime = ticks;
2034 			if (tp->t_flags & TF_NEEDFIN) {
2035 				tcp_state_change(tp, TCPS_FIN_WAIT_1);
2036 				tp->t_flags &= ~TF_NEEDFIN;
2037 				thflags &= ~TH_SYN;
2038 			} else {
2039 				tcp_state_change(tp, TCPS_ESTABLISHED);
2040 				TCP_PROBE5(connect__established, NULL, tp,
2041 				    mtod(m, const char *), tp, th);
2042 				cc_conn_init(tp);
2043 				tcp_timer_activate(tp, TT_KEEP,
2044 				    TP_KEEPIDLE(tp));
2045 			}
2046 		} else {
2047 			/*
2048 			 * Received initial SYN in SYN-SENT[*] state =>
2049 			 * simultaneous open.
2050 			 * If it succeeds, connection is * half-synchronized.
2051 			 * Otherwise, do 3-way handshake:
2052 			 *        SYN-SENT -> SYN-RECEIVED
2053 			 *        SYN-SENT* -> SYN-RECEIVED*
2054 			 */
2055 			tp->t_flags |= (TF_ACKNOW | TF_NEEDSYN);
2056 			tcp_timer_activate(tp, TT_REXMT, 0);
2057 			tcp_state_change(tp, TCPS_SYN_RECEIVED);
2058 		}
2059 
2060 		KASSERT(ti_locked == TI_RLOCKED, ("%s: trimthenstep6: "
2061 		    "ti_locked %d", __func__, ti_locked));
2062 		INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
2063 		INP_WLOCK_ASSERT(tp->t_inpcb);
2064 
2065 		/*
2066 		 * Advance th->th_seq to correspond to first data byte.
2067 		 * If data, trim to stay within window,
2068 		 * dropping FIN if necessary.
2069 		 */
2070 		th->th_seq++;
2071 		if (tlen > tp->rcv_wnd) {
2072 			todrop = tlen - tp->rcv_wnd;
2073 			m_adj(m, -todrop);
2074 			tlen = tp->rcv_wnd;
2075 			thflags &= ~TH_FIN;
2076 			TCPSTAT_INC(tcps_rcvpackafterwin);
2077 			TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop);
2078 		}
2079 		tp->snd_wl1 = th->th_seq - 1;
2080 		tp->rcv_up = th->th_seq;
2081 		/*
2082 		 * Client side of transaction: already sent SYN and data.
2083 		 * If the remote host used T/TCP to validate the SYN,
2084 		 * our data will be ACK'd; if so, enter normal data segment
2085 		 * processing in the middle of step 5, ack processing.
2086 		 * Otherwise, goto step 6.
2087 		 */
2088 		if (thflags & TH_ACK)
2089 			goto process_ACK;
2090 
2091 		goto step6;
2092 
2093 	/*
2094 	 * If the state is LAST_ACK or CLOSING or TIME_WAIT:
2095 	 *      do normal processing.
2096 	 *
2097 	 * NB: Leftover from RFC1644 T/TCP.  Cases to be reused later.
2098 	 */
2099 	case TCPS_LAST_ACK:
2100 	case TCPS_CLOSING:
2101 		break;  /* continue normal processing */
2102 	}
2103 
2104 	/*
2105 	 * States other than LISTEN or SYN_SENT.
2106 	 * First check the RST flag and sequence number since reset segments
2107 	 * are exempt from the timestamp and connection count tests.  This
2108 	 * fixes a bug introduced by the Stevens, vol. 2, p. 960 bugfix
2109 	 * below which allowed reset segments in half the sequence space
2110 	 * to fall though and be processed (which gives forged reset
2111 	 * segments with a random sequence number a 50 percent chance of
2112 	 * killing a connection).
2113 	 * Then check timestamp, if present.
2114 	 * Then check the connection count, if present.
2115 	 * Then check that at least some bytes of segment are within
2116 	 * receive window.  If segment begins before rcv_nxt,
2117 	 * drop leading data (and SYN); if nothing left, just ack.
2118 	 */
2119 	if (thflags & TH_RST) {
2120 		/*
2121 		 * RFC5961 Section 3.2
2122 		 *
2123 		 * - RST drops connection only if SEG.SEQ == RCV.NXT.
2124 		 * - If RST is in window, we send challenge ACK.
2125 		 *
2126 		 * Note: to take into account delayed ACKs, we should
2127 		 *   test against last_ack_sent instead of rcv_nxt.
2128 		 * Note 2: we handle special case of closed window, not
2129 		 *   covered by the RFC.
2130 		 */
2131 		if ((SEQ_GEQ(th->th_seq, tp->last_ack_sent) &&
2132 		    SEQ_LT(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) ||
2133 		    (tp->rcv_wnd == 0 && tp->last_ack_sent == th->th_seq)) {
2134 
2135 			INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
2136 			KASSERT(ti_locked == TI_RLOCKED,
2137 			    ("%s: TH_RST ti_locked %d, th %p tp %p",
2138 			    __func__, ti_locked, th, tp));
2139 			KASSERT(tp->t_state != TCPS_SYN_SENT,
2140 			    ("%s: TH_RST for TCPS_SYN_SENT th %p tp %p",
2141 			    __func__, th, tp));
2142 
2143 			if (V_tcp_insecure_rst ||
2144 			    tp->last_ack_sent == th->th_seq) {
2145 				TCPSTAT_INC(tcps_drops);
2146 				/* Drop the connection. */
2147 				switch (tp->t_state) {
2148 				case TCPS_SYN_RECEIVED:
2149 					so->so_error = ECONNREFUSED;
2150 					goto close;
2151 				case TCPS_ESTABLISHED:
2152 				case TCPS_FIN_WAIT_1:
2153 				case TCPS_FIN_WAIT_2:
2154 				case TCPS_CLOSE_WAIT:
2155 					so->so_error = ECONNRESET;
2156 				close:
2157 					tcp_state_change(tp, TCPS_CLOSED);
2158 					/* FALLTHROUGH */
2159 				default:
2160 					tp = tcp_close(tp);
2161 				}
2162 			} else {
2163 				TCPSTAT_INC(tcps_badrst);
2164 				/* Send challenge ACK. */
2165 				tcp_respond(tp, mtod(m, void *), th, m,
2166 				    tp->rcv_nxt, tp->snd_nxt, TH_ACK);
2167 				tp->last_ack_sent = tp->rcv_nxt;
2168 				m = NULL;
2169 			}
2170 		}
2171 		goto drop;
2172 	}
2173 
2174 	/*
2175 	 * RFC5961 Section 4.2
2176 	 * Send challenge ACK for any SYN in synchronized state.
2177 	 */
2178 	if ((thflags & TH_SYN) && tp->t_state != TCPS_SYN_SENT &&
2179 	    tp->t_state != TCPS_SYN_RECEIVED) {
2180 		KASSERT(ti_locked == TI_RLOCKED,
2181 		    ("tcp_do_segment: TH_SYN ti_locked %d", ti_locked));
2182 		INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
2183 
2184 		TCPSTAT_INC(tcps_badsyn);
2185 		if (V_tcp_insecure_syn &&
2186 		    SEQ_GEQ(th->th_seq, tp->last_ack_sent) &&
2187 		    SEQ_LT(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) {
2188 			tp = tcp_drop(tp, ECONNRESET);
2189 			rstreason = BANDLIM_UNLIMITED;
2190 		} else {
2191 			/* Send challenge ACK. */
2192 			tcp_respond(tp, mtod(m, void *), th, m, tp->rcv_nxt,
2193 			    tp->snd_nxt, TH_ACK);
2194 			tp->last_ack_sent = tp->rcv_nxt;
2195 			m = NULL;
2196 		}
2197 		goto drop;
2198 	}
2199 
2200 	/*
2201 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
2202 	 * and it's less than ts_recent, drop it.
2203 	 */
2204 	if ((to.to_flags & TOF_TS) != 0 && tp->ts_recent &&
2205 	    TSTMP_LT(to.to_tsval, tp->ts_recent)) {
2206 
2207 		/* Check to see if ts_recent is over 24 days old.  */
2208 		if (tcp_ts_getticks() - tp->ts_recent_age > TCP_PAWS_IDLE) {
2209 			/*
2210 			 * Invalidate ts_recent.  If this segment updates
2211 			 * ts_recent, the age will be reset later and ts_recent
2212 			 * will get a valid value.  If it does not, setting
2213 			 * ts_recent to zero will at least satisfy the
2214 			 * requirement that zero be placed in the timestamp
2215 			 * echo reply when ts_recent isn't valid.  The
2216 			 * age isn't reset until we get a valid ts_recent
2217 			 * because we don't want out-of-order segments to be
2218 			 * dropped when ts_recent is old.
2219 			 */
2220 			tp->ts_recent = 0;
2221 		} else {
2222 			TCPSTAT_INC(tcps_rcvduppack);
2223 			TCPSTAT_ADD(tcps_rcvdupbyte, tlen);
2224 			TCPSTAT_INC(tcps_pawsdrop);
2225 			if (tlen)
2226 				goto dropafterack;
2227 			goto drop;
2228 		}
2229 	}
2230 
2231 	/*
2232 	 * In the SYN-RECEIVED state, validate that the packet belongs to
2233 	 * this connection before trimming the data to fit the receive
2234 	 * window.  Check the sequence number versus IRS since we know
2235 	 * the sequence numbers haven't wrapped.  This is a partial fix
2236 	 * for the "LAND" DoS attack.
2237 	 */
2238 	if (tp->t_state == TCPS_SYN_RECEIVED && SEQ_LT(th->th_seq, tp->irs)) {
2239 		rstreason = BANDLIM_RST_OPENPORT;
2240 		goto dropwithreset;
2241 	}
2242 
2243 	todrop = tp->rcv_nxt - th->th_seq;
2244 	if (todrop > 0) {
2245 		if (thflags & TH_SYN) {
2246 			thflags &= ~TH_SYN;
2247 			th->th_seq++;
2248 			if (th->th_urp > 1)
2249 				th->th_urp--;
2250 			else
2251 				thflags &= ~TH_URG;
2252 			todrop--;
2253 		}
2254 		/*
2255 		 * Following if statement from Stevens, vol. 2, p. 960.
2256 		 */
2257 		if (todrop > tlen
2258 		    || (todrop == tlen && (thflags & TH_FIN) == 0)) {
2259 			/*
2260 			 * Any valid FIN must be to the left of the window.
2261 			 * At this point the FIN must be a duplicate or out
2262 			 * of sequence; drop it.
2263 			 */
2264 			thflags &= ~TH_FIN;
2265 
2266 			/*
2267 			 * Send an ACK to resynchronize and drop any data.
2268 			 * But keep on processing for RST or ACK.
2269 			 */
2270 			tp->t_flags |= TF_ACKNOW;
2271 			todrop = tlen;
2272 			TCPSTAT_INC(tcps_rcvduppack);
2273 			TCPSTAT_ADD(tcps_rcvdupbyte, todrop);
2274 		} else {
2275 			TCPSTAT_INC(tcps_rcvpartduppack);
2276 			TCPSTAT_ADD(tcps_rcvpartdupbyte, todrop);
2277 		}
2278 		drop_hdrlen += todrop;	/* drop from the top afterwards */
2279 		th->th_seq += todrop;
2280 		tlen -= todrop;
2281 		if (th->th_urp > todrop)
2282 			th->th_urp -= todrop;
2283 		else {
2284 			thflags &= ~TH_URG;
2285 			th->th_urp = 0;
2286 		}
2287 	}
2288 
2289 	/*
2290 	 * If new data are received on a connection after the
2291 	 * user processes are gone, then RST the other end.
2292 	 */
2293 	if ((so->so_state & SS_NOFDREF) &&
2294 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
2295 		KASSERT(ti_locked == TI_RLOCKED, ("%s: SS_NOFDEREF && "
2296 		    "CLOSE_WAIT && tlen ti_locked %d", __func__, ti_locked));
2297 		INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
2298 
2299 		if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
2300 			log(LOG_DEBUG, "%s; %s: %s: Received %d bytes of data "
2301 			    "after socket was closed, "
2302 			    "sending RST and removing tcpcb\n",
2303 			    s, __func__, tcpstates[tp->t_state], tlen);
2304 			free(s, M_TCPLOG);
2305 		}
2306 		tp = tcp_close(tp);
2307 		TCPSTAT_INC(tcps_rcvafterclose);
2308 		rstreason = BANDLIM_UNLIMITED;
2309 		goto dropwithreset;
2310 	}
2311 
2312 	/*
2313 	 * If segment ends after window, drop trailing data
2314 	 * (and PUSH and FIN); if nothing left, just ACK.
2315 	 */
2316 	todrop = (th->th_seq + tlen) - (tp->rcv_nxt + tp->rcv_wnd);
2317 	if (todrop > 0) {
2318 		TCPSTAT_INC(tcps_rcvpackafterwin);
2319 		if (todrop >= tlen) {
2320 			TCPSTAT_ADD(tcps_rcvbyteafterwin, tlen);
2321 			/*
2322 			 * If window is closed can only take segments at
2323 			 * window edge, and have to drop data and PUSH from
2324 			 * incoming segments.  Continue processing, but
2325 			 * remember to ack.  Otherwise, drop segment
2326 			 * and ack.
2327 			 */
2328 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
2329 				tp->t_flags |= TF_ACKNOW;
2330 				TCPSTAT_INC(tcps_rcvwinprobe);
2331 			} else
2332 				goto dropafterack;
2333 		} else
2334 			TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop);
2335 		m_adj(m, -todrop);
2336 		tlen -= todrop;
2337 		thflags &= ~(TH_PUSH|TH_FIN);
2338 	}
2339 
2340 	/*
2341 	 * If last ACK falls within this segment's sequence numbers,
2342 	 * record its timestamp.
2343 	 * NOTE:
2344 	 * 1) That the test incorporates suggestions from the latest
2345 	 *    proposal of the tcplw@cray.com list (Braden 1993/04/26).
2346 	 * 2) That updating only on newer timestamps interferes with
2347 	 *    our earlier PAWS tests, so this check should be solely
2348 	 *    predicated on the sequence space of this segment.
2349 	 * 3) That we modify the segment boundary check to be
2350 	 *        Last.ACK.Sent <= SEG.SEQ + SEG.Len
2351 	 *    instead of RFC1323's
2352 	 *        Last.ACK.Sent < SEG.SEQ + SEG.Len,
2353 	 *    This modified check allows us to overcome RFC1323's
2354 	 *    limitations as described in Stevens TCP/IP Illustrated
2355 	 *    Vol. 2 p.869. In such cases, we can still calculate the
2356 	 *    RTT correctly when RCV.NXT == Last.ACK.Sent.
2357 	 */
2358 	if ((to.to_flags & TOF_TS) != 0 &&
2359 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
2360 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
2361 		((thflags & (TH_SYN|TH_FIN)) != 0))) {
2362 		tp->ts_recent_age = tcp_ts_getticks();
2363 		tp->ts_recent = to.to_tsval;
2364 	}
2365 
2366 	/*
2367 	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN
2368 	 * flag is on (half-synchronized state), then queue data for
2369 	 * later processing; else drop segment and return.
2370 	 */
2371 	if ((thflags & TH_ACK) == 0) {
2372 		if (tp->t_state == TCPS_SYN_RECEIVED ||
2373 		    (tp->t_flags & TF_NEEDSYN)) {
2374 #ifdef TCP_RFC7413
2375 			if (tp->t_state == TCPS_SYN_RECEIVED &&
2376 			    tp->t_flags & TF_FASTOPEN) {
2377 				tp->snd_wnd = tiwin;
2378 				cc_conn_init(tp);
2379 			}
2380 #endif
2381 			goto step6;
2382 		} else if (tp->t_flags & TF_ACKNOW)
2383 			goto dropafterack;
2384 		else
2385 			goto drop;
2386 	}
2387 
2388 	/*
2389 	 * Ack processing.
2390 	 */
2391 	switch (tp->t_state) {
2392 
2393 	/*
2394 	 * In SYN_RECEIVED state, the ack ACKs our SYN, so enter
2395 	 * ESTABLISHED state and continue processing.
2396 	 * The ACK was checked above.
2397 	 */
2398 	case TCPS_SYN_RECEIVED:
2399 
2400 		TCPSTAT_INC(tcps_connects);
2401 		soisconnected(so);
2402 		/* Do window scaling? */
2403 		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2404 			(TF_RCVD_SCALE|TF_REQ_SCALE)) {
2405 			tp->rcv_scale = tp->request_r_scale;
2406 			tp->snd_wnd = tiwin;
2407 		}
2408 		/*
2409 		 * Make transitions:
2410 		 *      SYN-RECEIVED  -> ESTABLISHED
2411 		 *      SYN-RECEIVED* -> FIN-WAIT-1
2412 		 */
2413 		tp->t_starttime = ticks;
2414 		if (tp->t_flags & TF_NEEDFIN) {
2415 			tcp_state_change(tp, TCPS_FIN_WAIT_1);
2416 			tp->t_flags &= ~TF_NEEDFIN;
2417 		} else {
2418 			tcp_state_change(tp, TCPS_ESTABLISHED);
2419 			TCP_PROBE5(accept__established, NULL, tp,
2420 			    mtod(m, const char *), tp, th);
2421 #ifdef TCP_RFC7413
2422 			if (tp->t_tfo_pending) {
2423 				tcp_fastopen_decrement_counter(tp->t_tfo_pending);
2424 				tp->t_tfo_pending = NULL;
2425 
2426 				/*
2427 				 * Account for the ACK of our SYN prior to
2428 				 * regular ACK processing below.
2429 				 */
2430 				tp->snd_una++;
2431 			}
2432 			/*
2433 			 * TFO connections call cc_conn_init() during SYN
2434 			 * processing.  Calling it again here for such
2435 			 * connections is not harmless as it would undo the
2436 			 * snd_cwnd reduction that occurs when a TFO SYN|ACK
2437 			 * is retransmitted.
2438 			 */
2439 			if (!(tp->t_flags & TF_FASTOPEN))
2440 #endif
2441 				cc_conn_init(tp);
2442 			tcp_timer_activate(tp, TT_KEEP, TP_KEEPIDLE(tp));
2443 		}
2444 		/*
2445 		 * If segment contains data or ACK, will call tcp_reass()
2446 		 * later; if not, do so now to pass queued data to user.
2447 		 */
2448 		if (tlen == 0 && (thflags & TH_FIN) == 0)
2449 			(void) tcp_reass(tp, (struct tcphdr *)0, 0,
2450 			    (struct mbuf *)0);
2451 		tp->snd_wl1 = th->th_seq - 1;
2452 		/* FALLTHROUGH */
2453 
2454 	/*
2455 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
2456 	 * ACKs.  If the ack is in the range
2457 	 *	tp->snd_una < th->th_ack <= tp->snd_max
2458 	 * then advance tp->snd_una to th->th_ack and drop
2459 	 * data from the retransmission queue.  If this ACK reflects
2460 	 * more up to date window information we update our window information.
2461 	 */
2462 	case TCPS_ESTABLISHED:
2463 	case TCPS_FIN_WAIT_1:
2464 	case TCPS_FIN_WAIT_2:
2465 	case TCPS_CLOSE_WAIT:
2466 	case TCPS_CLOSING:
2467 	case TCPS_LAST_ACK:
2468 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
2469 			TCPSTAT_INC(tcps_rcvacktoomuch);
2470 			goto dropafterack;
2471 		}
2472 		if ((tp->t_flags & TF_SACK_PERMIT) &&
2473 		    ((to.to_flags & TOF_SACK) ||
2474 		     !TAILQ_EMPTY(&tp->snd_holes)))
2475 			sack_changed = tcp_sack_doack(tp, &to, th->th_ack);
2476 		else
2477 			/*
2478 			 * Reset the value so that previous (valid) value
2479 			 * from the last ack with SACK doesn't get used.
2480 			 */
2481 			tp->sackhint.sacked_bytes = 0;
2482 
2483 		/* Run HHOOK_TCP_ESTABLISHED_IN helper hooks. */
2484 		hhook_run_tcp_est_in(tp, th, &to);
2485 
2486 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
2487 			u_int maxseg;
2488 
2489 			maxseg = tcp_maxseg(tp);
2490 			if (tlen == 0 &&
2491 			    (tiwin == tp->snd_wnd ||
2492 			    (tp->t_flags & TF_SACK_PERMIT))) {
2493 				/*
2494 				 * If this is the first time we've seen a
2495 				 * FIN from the remote, this is not a
2496 				 * duplicate and it needs to be processed
2497 				 * normally.  This happens during a
2498 				 * simultaneous close.
2499 				 */
2500 				if ((thflags & TH_FIN) &&
2501 				    (TCPS_HAVERCVDFIN(tp->t_state) == 0)) {
2502 					tp->t_dupacks = 0;
2503 					break;
2504 				}
2505 				TCPSTAT_INC(tcps_rcvdupack);
2506 				/*
2507 				 * If we have outstanding data (other than
2508 				 * a window probe), this is a completely
2509 				 * duplicate ack (ie, window info didn't
2510 				 * change and FIN isn't set),
2511 				 * the ack is the biggest we've
2512 				 * seen and we've seen exactly our rexmt
2513 				 * threshhold of them, assume a packet
2514 				 * has been dropped and retransmit it.
2515 				 * Kludge snd_nxt & the congestion
2516 				 * window so we send only this one
2517 				 * packet.
2518 				 *
2519 				 * We know we're losing at the current
2520 				 * window size so do congestion avoidance
2521 				 * (set ssthresh to half the current window
2522 				 * and pull our congestion window back to
2523 				 * the new ssthresh).
2524 				 *
2525 				 * Dup acks mean that packets have left the
2526 				 * network (they're now cached at the receiver)
2527 				 * so bump cwnd by the amount in the receiver
2528 				 * to keep a constant cwnd packets in the
2529 				 * network.
2530 				 *
2531 				 * When using TCP ECN, notify the peer that
2532 				 * we reduced the cwnd.
2533 				 */
2534 				/*
2535 				 * Following 2 kinds of acks should not affect
2536 				 * dupack counting:
2537 				 * 1) Old acks
2538 				 * 2) Acks with SACK but without any new SACK
2539 				 * information in them. These could result from
2540 				 * any anomaly in the network like a switch
2541 				 * duplicating packets or a possible DoS attack.
2542 				 */
2543 				if (th->th_ack != tp->snd_una ||
2544 				    ((tp->t_flags & TF_SACK_PERMIT) &&
2545 				    !sack_changed))
2546 					break;
2547 				else if (!tcp_timer_active(tp, TT_REXMT))
2548 					tp->t_dupacks = 0;
2549 				else if (++tp->t_dupacks > tcprexmtthresh ||
2550 				     IN_FASTRECOVERY(tp->t_flags)) {
2551 					cc_ack_received(tp, th, CC_DUPACK);
2552 					if ((tp->t_flags & TF_SACK_PERMIT) &&
2553 					    IN_FASTRECOVERY(tp->t_flags)) {
2554 						int awnd;
2555 
2556 						/*
2557 						 * Compute the amount of data in flight first.
2558 						 * We can inject new data into the pipe iff
2559 						 * we have less than 1/2 the original window's
2560 						 * worth of data in flight.
2561 						 */
2562 						if (V_tcp_do_rfc6675_pipe)
2563 							awnd = tcp_compute_pipe(tp);
2564 						else
2565 							awnd = (tp->snd_nxt - tp->snd_fack) +
2566 								tp->sackhint.sack_bytes_rexmit;
2567 
2568 						if (awnd < tp->snd_ssthresh) {
2569 							tp->snd_cwnd += maxseg;
2570 							if (tp->snd_cwnd > tp->snd_ssthresh)
2571 								tp->snd_cwnd = tp->snd_ssthresh;
2572 						}
2573 					} else
2574 						tp->snd_cwnd += maxseg;
2575 					(void) tp->t_fb->tfb_tcp_output(tp);
2576 					goto drop;
2577 				} else if (tp->t_dupacks == tcprexmtthresh) {
2578 					tcp_seq onxt = tp->snd_nxt;
2579 
2580 					/*
2581 					 * If we're doing sack, check to
2582 					 * see if we're already in sack
2583 					 * recovery. If we're not doing sack,
2584 					 * check to see if we're in newreno
2585 					 * recovery.
2586 					 */
2587 					if (tp->t_flags & TF_SACK_PERMIT) {
2588 						if (IN_FASTRECOVERY(tp->t_flags)) {
2589 							tp->t_dupacks = 0;
2590 							break;
2591 						}
2592 					} else {
2593 						if (SEQ_LEQ(th->th_ack,
2594 						    tp->snd_recover)) {
2595 							tp->t_dupacks = 0;
2596 							break;
2597 						}
2598 					}
2599 					/* Congestion signal before ack. */
2600 					cc_cong_signal(tp, th, CC_NDUPACK);
2601 					cc_ack_received(tp, th, CC_DUPACK);
2602 					tcp_timer_activate(tp, TT_REXMT, 0);
2603 					tp->t_rtttime = 0;
2604 					if (tp->t_flags & TF_SACK_PERMIT) {
2605 						TCPSTAT_INC(
2606 						    tcps_sack_recovery_episode);
2607 						tp->sack_newdata = tp->snd_nxt;
2608 						tp->snd_cwnd = maxseg;
2609 						(void) tp->t_fb->tfb_tcp_output(tp);
2610 						goto drop;
2611 					}
2612 					tp->snd_nxt = th->th_ack;
2613 					tp->snd_cwnd = maxseg;
2614 					(void) tp->t_fb->tfb_tcp_output(tp);
2615 					KASSERT(tp->snd_limited <= 2,
2616 					    ("%s: tp->snd_limited too big",
2617 					    __func__));
2618 					tp->snd_cwnd = tp->snd_ssthresh +
2619 					     maxseg *
2620 					     (tp->t_dupacks - tp->snd_limited);
2621 					if (SEQ_GT(onxt, tp->snd_nxt))
2622 						tp->snd_nxt = onxt;
2623 					goto drop;
2624 				} else if (V_tcp_do_rfc3042) {
2625 					/*
2626 					 * Process first and second duplicate
2627 					 * ACKs. Each indicates a segment
2628 					 * leaving the network, creating room
2629 					 * for more. Make sure we can send a
2630 					 * packet on reception of each duplicate
2631 					 * ACK by increasing snd_cwnd by one
2632 					 * segment. Restore the original
2633 					 * snd_cwnd after packet transmission.
2634 					 */
2635 					cc_ack_received(tp, th, CC_DUPACK);
2636 					u_long oldcwnd = tp->snd_cwnd;
2637 					tcp_seq oldsndmax = tp->snd_max;
2638 					u_int sent;
2639 					int avail;
2640 
2641 					KASSERT(tp->t_dupacks == 1 ||
2642 					    tp->t_dupacks == 2,
2643 					    ("%s: dupacks not 1 or 2",
2644 					    __func__));
2645 					if (tp->t_dupacks == 1)
2646 						tp->snd_limited = 0;
2647 					tp->snd_cwnd =
2648 					    (tp->snd_nxt - tp->snd_una) +
2649 					    (tp->t_dupacks - tp->snd_limited) *
2650 					    maxseg;
2651 					/*
2652 					 * Only call tcp_output when there
2653 					 * is new data available to be sent.
2654 					 * Otherwise we would send pure ACKs.
2655 					 */
2656 					SOCKBUF_LOCK(&so->so_snd);
2657 					avail = sbavail(&so->so_snd) -
2658 					    (tp->snd_nxt - tp->snd_una);
2659 					SOCKBUF_UNLOCK(&so->so_snd);
2660 					if (avail > 0)
2661 						(void) tp->t_fb->tfb_tcp_output(tp);
2662 					sent = tp->snd_max - oldsndmax;
2663 					if (sent > maxseg) {
2664 						KASSERT((tp->t_dupacks == 2 &&
2665 						    tp->snd_limited == 0) ||
2666 						   (sent == maxseg + 1 &&
2667 						    tp->t_flags & TF_SENTFIN),
2668 						    ("%s: sent too much",
2669 						    __func__));
2670 						tp->snd_limited = 2;
2671 					} else if (sent > 0)
2672 						++tp->snd_limited;
2673 					tp->snd_cwnd = oldcwnd;
2674 					goto drop;
2675 				}
2676 			}
2677 			break;
2678 		} else {
2679 			/*
2680 			 * This ack is advancing the left edge, reset the
2681 			 * counter.
2682 			 */
2683 			tp->t_dupacks = 0;
2684 			/*
2685 			 * If this ack also has new SACK info, increment the
2686 			 * counter as per rfc6675.
2687 			 */
2688 			if ((tp->t_flags & TF_SACK_PERMIT) && sack_changed)
2689 				tp->t_dupacks++;
2690 		}
2691 
2692 		KASSERT(SEQ_GT(th->th_ack, tp->snd_una),
2693 		    ("%s: th_ack <= snd_una", __func__));
2694 
2695 		/*
2696 		 * If the congestion window was inflated to account
2697 		 * for the other side's cached packets, retract it.
2698 		 */
2699 		if (IN_FASTRECOVERY(tp->t_flags)) {
2700 			if (SEQ_LT(th->th_ack, tp->snd_recover)) {
2701 				if (tp->t_flags & TF_SACK_PERMIT)
2702 					tcp_sack_partialack(tp, th);
2703 				else
2704 					tcp_newreno_partial_ack(tp, th);
2705 			} else
2706 				cc_post_recovery(tp, th);
2707 		}
2708 		/*
2709 		 * If we reach this point, ACK is not a duplicate,
2710 		 *     i.e., it ACKs something we sent.
2711 		 */
2712 		if (tp->t_flags & TF_NEEDSYN) {
2713 			/*
2714 			 * T/TCP: Connection was half-synchronized, and our
2715 			 * SYN has been ACK'd (so connection is now fully
2716 			 * synchronized).  Go to non-starred state,
2717 			 * increment snd_una for ACK of SYN, and check if
2718 			 * we can do window scaling.
2719 			 */
2720 			tp->t_flags &= ~TF_NEEDSYN;
2721 			tp->snd_una++;
2722 			/* Do window scaling? */
2723 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2724 				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
2725 				tp->rcv_scale = tp->request_r_scale;
2726 				/* Send window already scaled. */
2727 			}
2728 		}
2729 
2730 process_ACK:
2731 		INP_WLOCK_ASSERT(tp->t_inpcb);
2732 
2733 		acked = BYTES_THIS_ACK(tp, th);
2734 		TCPSTAT_INC(tcps_rcvackpack);
2735 		TCPSTAT_ADD(tcps_rcvackbyte, acked);
2736 
2737 		/*
2738 		 * If we just performed our first retransmit, and the ACK
2739 		 * arrives within our recovery window, then it was a mistake
2740 		 * to do the retransmit in the first place.  Recover our
2741 		 * original cwnd and ssthresh, and proceed to transmit where
2742 		 * we left off.
2743 		 */
2744 		if (tp->t_rxtshift == 1 && tp->t_flags & TF_PREVVALID &&
2745 		    (int)(ticks - tp->t_badrxtwin) < 0)
2746 			cc_cong_signal(tp, th, CC_RTO_ERR);
2747 
2748 		/*
2749 		 * If we have a timestamp reply, update smoothed
2750 		 * round trip time.  If no timestamp is present but
2751 		 * transmit timer is running and timed sequence
2752 		 * number was acked, update smoothed round trip time.
2753 		 * Since we now have an rtt measurement, cancel the
2754 		 * timer backoff (cf., Phil Karn's retransmit alg.).
2755 		 * Recompute the initial retransmit timer.
2756 		 *
2757 		 * Some boxes send broken timestamp replies
2758 		 * during the SYN+ACK phase, ignore
2759 		 * timestamps of 0 or we could calculate a
2760 		 * huge RTT and blow up the retransmit timer.
2761 		 */
2762 		if ((to.to_flags & TOF_TS) != 0 && to.to_tsecr) {
2763 			u_int t;
2764 
2765 			t = tcp_ts_getticks() - to.to_tsecr;
2766 			if (!tp->t_rttlow || tp->t_rttlow > t)
2767 				tp->t_rttlow = t;
2768 			tcp_xmit_timer(tp, TCP_TS_TO_TICKS(t) + 1);
2769 		} else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq)) {
2770 			if (!tp->t_rttlow || tp->t_rttlow > ticks - tp->t_rtttime)
2771 				tp->t_rttlow = ticks - tp->t_rtttime;
2772 			tcp_xmit_timer(tp, ticks - tp->t_rtttime);
2773 		}
2774 
2775 		/*
2776 		 * If all outstanding data is acked, stop retransmit
2777 		 * timer and remember to restart (more output or persist).
2778 		 * If there is more data to be acked, restart retransmit
2779 		 * timer, using current (possibly backed-off) value.
2780 		 */
2781 		if (th->th_ack == tp->snd_max) {
2782 			tcp_timer_activate(tp, TT_REXMT, 0);
2783 			needoutput = 1;
2784 		} else if (!tcp_timer_active(tp, TT_PERSIST))
2785 			tcp_timer_activate(tp, TT_REXMT, tp->t_rxtcur);
2786 
2787 		/*
2788 		 * If no data (only SYN) was ACK'd,
2789 		 *    skip rest of ACK processing.
2790 		 */
2791 		if (acked == 0)
2792 			goto step6;
2793 
2794 		/*
2795 		 * Let the congestion control algorithm update congestion
2796 		 * control related information. This typically means increasing
2797 		 * the congestion window.
2798 		 */
2799 		cc_ack_received(tp, th, CC_ACK);
2800 
2801 		SOCKBUF_LOCK(&so->so_snd);
2802 		if (acked > sbavail(&so->so_snd)) {
2803 			tp->snd_wnd -= sbavail(&so->so_snd);
2804 			mfree = sbcut_locked(&so->so_snd,
2805 			    (int)sbavail(&so->so_snd));
2806 			ourfinisacked = 1;
2807 		} else {
2808 			mfree = sbcut_locked(&so->so_snd, acked);
2809 			tp->snd_wnd -= acked;
2810 			ourfinisacked = 0;
2811 		}
2812 		/* NB: sowwakeup_locked() does an implicit unlock. */
2813 		sowwakeup_locked(so);
2814 		m_freem(mfree);
2815 		/* Detect una wraparound. */
2816 		if (!IN_RECOVERY(tp->t_flags) &&
2817 		    SEQ_GT(tp->snd_una, tp->snd_recover) &&
2818 		    SEQ_LEQ(th->th_ack, tp->snd_recover))
2819 			tp->snd_recover = th->th_ack - 1;
2820 		/* XXXLAS: Can this be moved up into cc_post_recovery? */
2821 		if (IN_RECOVERY(tp->t_flags) &&
2822 		    SEQ_GEQ(th->th_ack, tp->snd_recover)) {
2823 			EXIT_RECOVERY(tp->t_flags);
2824 		}
2825 		tp->snd_una = th->th_ack;
2826 		if (tp->t_flags & TF_SACK_PERMIT) {
2827 			if (SEQ_GT(tp->snd_una, tp->snd_recover))
2828 				tp->snd_recover = tp->snd_una;
2829 		}
2830 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2831 			tp->snd_nxt = tp->snd_una;
2832 
2833 		switch (tp->t_state) {
2834 
2835 		/*
2836 		 * In FIN_WAIT_1 STATE in addition to the processing
2837 		 * for the ESTABLISHED state if our FIN is now acknowledged
2838 		 * then enter FIN_WAIT_2.
2839 		 */
2840 		case TCPS_FIN_WAIT_1:
2841 			if (ourfinisacked) {
2842 				/*
2843 				 * If we can't receive any more
2844 				 * data, then closing user can proceed.
2845 				 * Starting the timer is contrary to the
2846 				 * specification, but if we don't get a FIN
2847 				 * we'll hang forever.
2848 				 *
2849 				 * XXXjl:
2850 				 * we should release the tp also, and use a
2851 				 * compressed state.
2852 				 */
2853 				if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
2854 					soisdisconnected(so);
2855 					tcp_timer_activate(tp, TT_2MSL,
2856 					    (tcp_fast_finwait2_recycle ?
2857 					    tcp_finwait2_timeout :
2858 					    TP_MAXIDLE(tp)));
2859 				}
2860 				tcp_state_change(tp, TCPS_FIN_WAIT_2);
2861 			}
2862 			break;
2863 
2864 		/*
2865 		 * In CLOSING STATE in addition to the processing for
2866 		 * the ESTABLISHED state if the ACK acknowledges our FIN
2867 		 * then enter the TIME-WAIT state, otherwise ignore
2868 		 * the segment.
2869 		 */
2870 		case TCPS_CLOSING:
2871 			if (ourfinisacked) {
2872 				INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
2873 				tcp_twstart(tp);
2874 				INP_INFO_RUNLOCK(&V_tcbinfo);
2875 				m_freem(m);
2876 				return;
2877 			}
2878 			break;
2879 
2880 		/*
2881 		 * In LAST_ACK, we may still be waiting for data to drain
2882 		 * and/or to be acked, as well as for the ack of our FIN.
2883 		 * If our FIN is now acknowledged, delete the TCB,
2884 		 * enter the closed state and return.
2885 		 */
2886 		case TCPS_LAST_ACK:
2887 			if (ourfinisacked) {
2888 				INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
2889 				tp = tcp_close(tp);
2890 				goto drop;
2891 			}
2892 			break;
2893 		}
2894 	}
2895 
2896 step6:
2897 	INP_WLOCK_ASSERT(tp->t_inpcb);
2898 
2899 	/*
2900 	 * Update window information.
2901 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2902 	 */
2903 	if ((thflags & TH_ACK) &&
2904 	    (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2905 	    (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
2906 	     (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
2907 		/* keep track of pure window updates */
2908 		if (tlen == 0 &&
2909 		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2910 			TCPSTAT_INC(tcps_rcvwinupd);
2911 		tp->snd_wnd = tiwin;
2912 		tp->snd_wl1 = th->th_seq;
2913 		tp->snd_wl2 = th->th_ack;
2914 		if (tp->snd_wnd > tp->max_sndwnd)
2915 			tp->max_sndwnd = tp->snd_wnd;
2916 		needoutput = 1;
2917 	}
2918 
2919 	/*
2920 	 * Process segments with URG.
2921 	 */
2922 	if ((thflags & TH_URG) && th->th_urp &&
2923 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2924 		/*
2925 		 * This is a kludge, but if we receive and accept
2926 		 * random urgent pointers, we'll crash in
2927 		 * soreceive.  It's hard to imagine someone
2928 		 * actually wanting to send this much urgent data.
2929 		 */
2930 		SOCKBUF_LOCK(&so->so_rcv);
2931 		if (th->th_urp + sbavail(&so->so_rcv) > sb_max) {
2932 			th->th_urp = 0;			/* XXX */
2933 			thflags &= ~TH_URG;		/* XXX */
2934 			SOCKBUF_UNLOCK(&so->so_rcv);	/* XXX */
2935 			goto dodata;			/* XXX */
2936 		}
2937 		/*
2938 		 * If this segment advances the known urgent pointer,
2939 		 * then mark the data stream.  This should not happen
2940 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2941 		 * a FIN has been received from the remote side.
2942 		 * In these states we ignore the URG.
2943 		 *
2944 		 * According to RFC961 (Assigned Protocols),
2945 		 * the urgent pointer points to the last octet
2946 		 * of urgent data.  We continue, however,
2947 		 * to consider it to indicate the first octet
2948 		 * of data past the urgent section as the original
2949 		 * spec states (in one of two places).
2950 		 */
2951 		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2952 			tp->rcv_up = th->th_seq + th->th_urp;
2953 			so->so_oobmark = sbavail(&so->so_rcv) +
2954 			    (tp->rcv_up - tp->rcv_nxt) - 1;
2955 			if (so->so_oobmark == 0)
2956 				so->so_rcv.sb_state |= SBS_RCVATMARK;
2957 			sohasoutofband(so);
2958 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2959 		}
2960 		SOCKBUF_UNLOCK(&so->so_rcv);
2961 		/*
2962 		 * Remove out of band data so doesn't get presented to user.
2963 		 * This can happen independent of advancing the URG pointer,
2964 		 * but if two URG's are pending at once, some out-of-band
2965 		 * data may creep in... ick.
2966 		 */
2967 		if (th->th_urp <= (u_long)tlen &&
2968 		    !(so->so_options & SO_OOBINLINE)) {
2969 			/* hdr drop is delayed */
2970 			tcp_pulloutofband(so, th, m, drop_hdrlen);
2971 		}
2972 	} else {
2973 		/*
2974 		 * If no out of band data is expected,
2975 		 * pull receive urgent pointer along
2976 		 * with the receive window.
2977 		 */
2978 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2979 			tp->rcv_up = tp->rcv_nxt;
2980 	}
2981 dodata:							/* XXX */
2982 	INP_WLOCK_ASSERT(tp->t_inpcb);
2983 
2984 	/*
2985 	 * Process the segment text, merging it into the TCP sequencing queue,
2986 	 * and arranging for acknowledgment of receipt if necessary.
2987 	 * This process logically involves adjusting tp->rcv_wnd as data
2988 	 * is presented to the user (this happens in tcp_usrreq.c,
2989 	 * case PRU_RCVD).  If a FIN has already been received on this
2990 	 * connection then we just ignore the text.
2991 	 */
2992 	tfo_syn = ((tp->t_state == TCPS_SYN_RECEIVED) &&
2993 		   (tp->t_flags & TF_FASTOPEN));
2994 	if ((tlen || (thflags & TH_FIN) || tfo_syn) &&
2995 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2996 		tcp_seq save_start = th->th_seq;
2997 		m_adj(m, drop_hdrlen);	/* delayed header drop */
2998 		/*
2999 		 * Insert segment which includes th into TCP reassembly queue
3000 		 * with control block tp.  Set thflags to whether reassembly now
3001 		 * includes a segment with FIN.  This handles the common case
3002 		 * inline (segment is the next to be received on an established
3003 		 * connection, and the queue is empty), avoiding linkage into
3004 		 * and removal from the queue and repetition of various
3005 		 * conversions.
3006 		 * Set DELACK for segments received in order, but ack
3007 		 * immediately when segments are out of order (so
3008 		 * fast retransmit can work).
3009 		 */
3010 		if (th->th_seq == tp->rcv_nxt &&
3011 		    LIST_EMPTY(&tp->t_segq) &&
3012 		    (TCPS_HAVEESTABLISHED(tp->t_state) ||
3013 		     tfo_syn)) {
3014 			if (DELAY_ACK(tp, tlen) || tfo_syn)
3015 				tp->t_flags |= TF_DELACK;
3016 			else
3017 				tp->t_flags |= TF_ACKNOW;
3018 			tp->rcv_nxt += tlen;
3019 			thflags = th->th_flags & TH_FIN;
3020 			TCPSTAT_INC(tcps_rcvpack);
3021 			TCPSTAT_ADD(tcps_rcvbyte, tlen);
3022 			SOCKBUF_LOCK(&so->so_rcv);
3023 			if (so->so_rcv.sb_state & SBS_CANTRCVMORE)
3024 				m_freem(m);
3025 			else
3026 				sbappendstream_locked(&so->so_rcv, m, 0);
3027 			/* NB: sorwakeup_locked() does an implicit unlock. */
3028 			sorwakeup_locked(so);
3029 		} else {
3030 			/*
3031 			 * XXX: Due to the header drop above "th" is
3032 			 * theoretically invalid by now.  Fortunately
3033 			 * m_adj() doesn't actually frees any mbufs
3034 			 * when trimming from the head.
3035 			 */
3036 			thflags = tcp_reass(tp, th, &tlen, m);
3037 			tp->t_flags |= TF_ACKNOW;
3038 		}
3039 		if (tlen > 0 && (tp->t_flags & TF_SACK_PERMIT))
3040 			tcp_update_sack_list(tp, save_start, save_start + tlen);
3041 #if 0
3042 		/*
3043 		 * Note the amount of data that peer has sent into
3044 		 * our window, in order to estimate the sender's
3045 		 * buffer size.
3046 		 * XXX: Unused.
3047 		 */
3048 		if (SEQ_GT(tp->rcv_adv, tp->rcv_nxt))
3049 			len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
3050 		else
3051 			len = so->so_rcv.sb_hiwat;
3052 #endif
3053 	} else {
3054 		m_freem(m);
3055 		thflags &= ~TH_FIN;
3056 	}
3057 
3058 	/*
3059 	 * If FIN is received ACK the FIN and let the user know
3060 	 * that the connection is closing.
3061 	 */
3062 	if (thflags & TH_FIN) {
3063 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
3064 			socantrcvmore(so);
3065 			/*
3066 			 * If connection is half-synchronized
3067 			 * (ie NEEDSYN flag on) then delay ACK,
3068 			 * so it may be piggybacked when SYN is sent.
3069 			 * Otherwise, since we received a FIN then no
3070 			 * more input can be expected, send ACK now.
3071 			 */
3072 			if (tp->t_flags & TF_NEEDSYN)
3073 				tp->t_flags |= TF_DELACK;
3074 			else
3075 				tp->t_flags |= TF_ACKNOW;
3076 			tp->rcv_nxt++;
3077 		}
3078 		switch (tp->t_state) {
3079 
3080 		/*
3081 		 * In SYN_RECEIVED and ESTABLISHED STATES
3082 		 * enter the CLOSE_WAIT state.
3083 		 */
3084 		case TCPS_SYN_RECEIVED:
3085 			tp->t_starttime = ticks;
3086 			/* FALLTHROUGH */
3087 		case TCPS_ESTABLISHED:
3088 			tcp_state_change(tp, TCPS_CLOSE_WAIT);
3089 			break;
3090 
3091 		/*
3092 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
3093 		 * enter the CLOSING state.
3094 		 */
3095 		case TCPS_FIN_WAIT_1:
3096 			tcp_state_change(tp, TCPS_CLOSING);
3097 			break;
3098 
3099 		/*
3100 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
3101 		 * starting the time-wait timer, turning off the other
3102 		 * standard timers.
3103 		 */
3104 		case TCPS_FIN_WAIT_2:
3105 			INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
3106 			KASSERT(ti_locked == TI_RLOCKED, ("%s: dodata "
3107 			    "TCP_FIN_WAIT_2 ti_locked: %d", __func__,
3108 			    ti_locked));
3109 
3110 			tcp_twstart(tp);
3111 			INP_INFO_RUNLOCK(&V_tcbinfo);
3112 			return;
3113 		}
3114 	}
3115 	if (ti_locked == TI_RLOCKED)
3116 		INP_INFO_RUNLOCK(&V_tcbinfo);
3117 	ti_locked = TI_UNLOCKED;
3118 
3119 #ifdef TCPDEBUG
3120 	if (so->so_options & SO_DEBUG)
3121 		tcp_trace(TA_INPUT, ostate, tp, (void *)tcp_saveipgen,
3122 			  &tcp_savetcp, 0);
3123 #endif
3124 	TCP_PROBE3(debug__input, tp, th, mtod(m, const char *));
3125 
3126 	/*
3127 	 * Return any desired output.
3128 	 */
3129 	if (needoutput || (tp->t_flags & TF_ACKNOW))
3130 		(void) tp->t_fb->tfb_tcp_output(tp);
3131 
3132 check_delack:
3133 	KASSERT(ti_locked == TI_UNLOCKED, ("%s: check_delack ti_locked %d",
3134 	    __func__, ti_locked));
3135 	INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
3136 	INP_WLOCK_ASSERT(tp->t_inpcb);
3137 
3138 	if (tp->t_flags & TF_DELACK) {
3139 		tp->t_flags &= ~TF_DELACK;
3140 		tcp_timer_activate(tp, TT_DELACK, tcp_delacktime);
3141 	}
3142 	INP_WUNLOCK(tp->t_inpcb);
3143 	return;
3144 
3145 dropafterack:
3146 	/*
3147 	 * Generate an ACK dropping incoming segment if it occupies
3148 	 * sequence space, where the ACK reflects our state.
3149 	 *
3150 	 * We can now skip the test for the RST flag since all
3151 	 * paths to this code happen after packets containing
3152 	 * RST have been dropped.
3153 	 *
3154 	 * In the SYN-RECEIVED state, don't send an ACK unless the
3155 	 * segment we received passes the SYN-RECEIVED ACK test.
3156 	 * If it fails send a RST.  This breaks the loop in the
3157 	 * "LAND" DoS attack, and also prevents an ACK storm
3158 	 * between two listening ports that have been sent forged
3159 	 * SYN segments, each with the source address of the other.
3160 	 */
3161 	if (tp->t_state == TCPS_SYN_RECEIVED && (thflags & TH_ACK) &&
3162 	    (SEQ_GT(tp->snd_una, th->th_ack) ||
3163 	     SEQ_GT(th->th_ack, tp->snd_max)) ) {
3164 		rstreason = BANDLIM_RST_OPENPORT;
3165 		goto dropwithreset;
3166 	}
3167 #ifdef TCPDEBUG
3168 	if (so->so_options & SO_DEBUG)
3169 		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
3170 			  &tcp_savetcp, 0);
3171 #endif
3172 	TCP_PROBE3(debug__input, tp, th, mtod(m, const char *));
3173 	if (ti_locked == TI_RLOCKED)
3174 		INP_INFO_RUNLOCK(&V_tcbinfo);
3175 	ti_locked = TI_UNLOCKED;
3176 
3177 	tp->t_flags |= TF_ACKNOW;
3178 	(void) tp->t_fb->tfb_tcp_output(tp);
3179 	INP_WUNLOCK(tp->t_inpcb);
3180 	m_freem(m);
3181 	return;
3182 
3183 dropwithreset:
3184 	if (ti_locked == TI_RLOCKED)
3185 		INP_INFO_RUNLOCK(&V_tcbinfo);
3186 	ti_locked = TI_UNLOCKED;
3187 
3188 	if (tp != NULL) {
3189 		tcp_dropwithreset(m, th, tp, tlen, rstreason);
3190 		INP_WUNLOCK(tp->t_inpcb);
3191 	} else
3192 		tcp_dropwithreset(m, th, NULL, tlen, rstreason);
3193 	return;
3194 
3195 drop:
3196 	if (ti_locked == TI_RLOCKED) {
3197 		INP_INFO_RUNLOCK(&V_tcbinfo);
3198 		ti_locked = TI_UNLOCKED;
3199 	}
3200 #ifdef INVARIANTS
3201 	else
3202 		INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
3203 #endif
3204 
3205 	/*
3206 	 * Drop space held by incoming segment and return.
3207 	 */
3208 #ifdef TCPDEBUG
3209 	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
3210 		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
3211 			  &tcp_savetcp, 0);
3212 #endif
3213 	TCP_PROBE3(debug__input, tp, th, mtod(m, const char *));
3214 	if (tp != NULL)
3215 		INP_WUNLOCK(tp->t_inpcb);
3216 	m_freem(m);
3217 }
3218 
3219 /*
3220  * Issue RST and make ACK acceptable to originator of segment.
3221  * The mbuf must still include the original packet header.
3222  * tp may be NULL.
3223  */
3224 void
3225 tcp_dropwithreset(struct mbuf *m, struct tcphdr *th, struct tcpcb *tp,
3226     int tlen, int rstreason)
3227 {
3228 #ifdef INET
3229 	struct ip *ip;
3230 #endif
3231 #ifdef INET6
3232 	struct ip6_hdr *ip6;
3233 #endif
3234 
3235 	if (tp != NULL) {
3236 		INP_WLOCK_ASSERT(tp->t_inpcb);
3237 	}
3238 
3239 	/* Don't bother if destination was broadcast/multicast. */
3240 	if ((th->th_flags & TH_RST) || m->m_flags & (M_BCAST|M_MCAST))
3241 		goto drop;
3242 #ifdef INET6
3243 	if (mtod(m, struct ip *)->ip_v == 6) {
3244 		ip6 = mtod(m, struct ip6_hdr *);
3245 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
3246 		    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
3247 			goto drop;
3248 		/* IPv6 anycast check is done at tcp6_input() */
3249 	}
3250 #endif
3251 #if defined(INET) && defined(INET6)
3252 	else
3253 #endif
3254 #ifdef INET
3255 	{
3256 		ip = mtod(m, struct ip *);
3257 		if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
3258 		    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
3259 		    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
3260 		    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
3261 			goto drop;
3262 	}
3263 #endif
3264 
3265 	/* Perform bandwidth limiting. */
3266 	if (badport_bandlim(rstreason) < 0)
3267 		goto drop;
3268 
3269 	/* tcp_respond consumes the mbuf chain. */
3270 	if (th->th_flags & TH_ACK) {
3271 		tcp_respond(tp, mtod(m, void *), th, m, (tcp_seq)0,
3272 		    th->th_ack, TH_RST);
3273 	} else {
3274 		if (th->th_flags & TH_SYN)
3275 			tlen++;
3276 		tcp_respond(tp, mtod(m, void *), th, m, th->th_seq+tlen,
3277 		    (tcp_seq)0, TH_RST|TH_ACK);
3278 	}
3279 	return;
3280 drop:
3281 	m_freem(m);
3282 }
3283 
3284 /*
3285  * Parse TCP options and place in tcpopt.
3286  */
3287 void
3288 tcp_dooptions(struct tcpopt *to, u_char *cp, int cnt, int flags)
3289 {
3290 	int opt, optlen;
3291 
3292 	to->to_flags = 0;
3293 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
3294 		opt = cp[0];
3295 		if (opt == TCPOPT_EOL)
3296 			break;
3297 		if (opt == TCPOPT_NOP)
3298 			optlen = 1;
3299 		else {
3300 			if (cnt < 2)
3301 				break;
3302 			optlen = cp[1];
3303 			if (optlen < 2 || optlen > cnt)
3304 				break;
3305 		}
3306 		switch (opt) {
3307 		case TCPOPT_MAXSEG:
3308 			if (optlen != TCPOLEN_MAXSEG)
3309 				continue;
3310 			if (!(flags & TO_SYN))
3311 				continue;
3312 			to->to_flags |= TOF_MSS;
3313 			bcopy((char *)cp + 2,
3314 			    (char *)&to->to_mss, sizeof(to->to_mss));
3315 			to->to_mss = ntohs(to->to_mss);
3316 			break;
3317 		case TCPOPT_WINDOW:
3318 			if (optlen != TCPOLEN_WINDOW)
3319 				continue;
3320 			if (!(flags & TO_SYN))
3321 				continue;
3322 			to->to_flags |= TOF_SCALE;
3323 			to->to_wscale = min(cp[2], TCP_MAX_WINSHIFT);
3324 			break;
3325 		case TCPOPT_TIMESTAMP:
3326 			if (optlen != TCPOLEN_TIMESTAMP)
3327 				continue;
3328 			to->to_flags |= TOF_TS;
3329 			bcopy((char *)cp + 2,
3330 			    (char *)&to->to_tsval, sizeof(to->to_tsval));
3331 			to->to_tsval = ntohl(to->to_tsval);
3332 			bcopy((char *)cp + 6,
3333 			    (char *)&to->to_tsecr, sizeof(to->to_tsecr));
3334 			to->to_tsecr = ntohl(to->to_tsecr);
3335 			break;
3336 #ifdef TCP_SIGNATURE
3337 		/*
3338 		 * XXX In order to reply to a host which has set the
3339 		 * TCP_SIGNATURE option in its initial SYN, we have to
3340 		 * record the fact that the option was observed here
3341 		 * for the syncache code to perform the correct response.
3342 		 */
3343 		case TCPOPT_SIGNATURE:
3344 			if (optlen != TCPOLEN_SIGNATURE)
3345 				continue;
3346 			to->to_flags |= TOF_SIGNATURE;
3347 			to->to_signature = cp + 2;
3348 			break;
3349 #endif
3350 		case TCPOPT_SACK_PERMITTED:
3351 			if (optlen != TCPOLEN_SACK_PERMITTED)
3352 				continue;
3353 			if (!(flags & TO_SYN))
3354 				continue;
3355 			if (!V_tcp_do_sack)
3356 				continue;
3357 			to->to_flags |= TOF_SACKPERM;
3358 			break;
3359 		case TCPOPT_SACK:
3360 			if (optlen <= 2 || (optlen - 2) % TCPOLEN_SACK != 0)
3361 				continue;
3362 			if (flags & TO_SYN)
3363 				continue;
3364 			to->to_flags |= TOF_SACK;
3365 			to->to_nsacks = (optlen - 2) / TCPOLEN_SACK;
3366 			to->to_sacks = cp + 2;
3367 			TCPSTAT_INC(tcps_sack_rcv_blocks);
3368 			break;
3369 #ifdef TCP_RFC7413
3370 		case TCPOPT_FAST_OPEN:
3371 			if ((optlen != TCPOLEN_FAST_OPEN_EMPTY) &&
3372 			    (optlen < TCPOLEN_FAST_OPEN_MIN) &&
3373 			    (optlen > TCPOLEN_FAST_OPEN_MAX))
3374 				continue;
3375 			if (!(flags & TO_SYN))
3376 				continue;
3377 			if (!V_tcp_fastopen_enabled)
3378 				continue;
3379 			to->to_flags |= TOF_FASTOPEN;
3380 			to->to_tfo_len = optlen - 2;
3381 			to->to_tfo_cookie = to->to_tfo_len ? cp + 2 : NULL;
3382 			break;
3383 #endif
3384 		default:
3385 			continue;
3386 		}
3387 	}
3388 }
3389 
3390 /*
3391  * Pull out of band byte out of a segment so
3392  * it doesn't appear in the user's data queue.
3393  * It is still reflected in the segment length for
3394  * sequencing purposes.
3395  */
3396 void
3397 tcp_pulloutofband(struct socket *so, struct tcphdr *th, struct mbuf *m,
3398     int off)
3399 {
3400 	int cnt = off + th->th_urp - 1;
3401 
3402 	while (cnt >= 0) {
3403 		if (m->m_len > cnt) {
3404 			char *cp = mtod(m, caddr_t) + cnt;
3405 			struct tcpcb *tp = sototcpcb(so);
3406 
3407 			INP_WLOCK_ASSERT(tp->t_inpcb);
3408 
3409 			tp->t_iobc = *cp;
3410 			tp->t_oobflags |= TCPOOB_HAVEDATA;
3411 			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
3412 			m->m_len--;
3413 			if (m->m_flags & M_PKTHDR)
3414 				m->m_pkthdr.len--;
3415 			return;
3416 		}
3417 		cnt -= m->m_len;
3418 		m = m->m_next;
3419 		if (m == NULL)
3420 			break;
3421 	}
3422 	panic("tcp_pulloutofband");
3423 }
3424 
3425 /*
3426  * Collect new round-trip time estimate
3427  * and update averages and current timeout.
3428  */
3429 void
3430 tcp_xmit_timer(struct tcpcb *tp, int rtt)
3431 {
3432 	int delta;
3433 
3434 	INP_WLOCK_ASSERT(tp->t_inpcb);
3435 
3436 	TCPSTAT_INC(tcps_rttupdated);
3437 	tp->t_rttupdated++;
3438 	if (tp->t_srtt != 0) {
3439 		/*
3440 		 * srtt is stored as fixed point with 5 bits after the
3441 		 * binary point (i.e., scaled by 8).  The following magic
3442 		 * is equivalent to the smoothing algorithm in rfc793 with
3443 		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
3444 		 * point).  Adjust rtt to origin 0.
3445 		 */
3446 		delta = ((rtt - 1) << TCP_DELTA_SHIFT)
3447 			- (tp->t_srtt >> (TCP_RTT_SHIFT - TCP_DELTA_SHIFT));
3448 
3449 		if ((tp->t_srtt += delta) <= 0)
3450 			tp->t_srtt = 1;
3451 
3452 		/*
3453 		 * We accumulate a smoothed rtt variance (actually, a
3454 		 * smoothed mean difference), then set the retransmit
3455 		 * timer to smoothed rtt + 4 times the smoothed variance.
3456 		 * rttvar is stored as fixed point with 4 bits after the
3457 		 * binary point (scaled by 16).  The following is
3458 		 * equivalent to rfc793 smoothing with an alpha of .75
3459 		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
3460 		 * rfc793's wired-in beta.
3461 		 */
3462 		if (delta < 0)
3463 			delta = -delta;
3464 		delta -= tp->t_rttvar >> (TCP_RTTVAR_SHIFT - TCP_DELTA_SHIFT);
3465 		if ((tp->t_rttvar += delta) <= 0)
3466 			tp->t_rttvar = 1;
3467 		if (tp->t_rttbest > tp->t_srtt + tp->t_rttvar)
3468 		    tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
3469 	} else {
3470 		/*
3471 		 * No rtt measurement yet - use the unsmoothed rtt.
3472 		 * Set the variance to half the rtt (so our first
3473 		 * retransmit happens at 3*rtt).
3474 		 */
3475 		tp->t_srtt = rtt << TCP_RTT_SHIFT;
3476 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1);
3477 		tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
3478 	}
3479 	tp->t_rtttime = 0;
3480 	tp->t_rxtshift = 0;
3481 
3482 	/*
3483 	 * the retransmit should happen at rtt + 4 * rttvar.
3484 	 * Because of the way we do the smoothing, srtt and rttvar
3485 	 * will each average +1/2 tick of bias.  When we compute
3486 	 * the retransmit timer, we want 1/2 tick of rounding and
3487 	 * 1 extra tick because of +-1/2 tick uncertainty in the
3488 	 * firing of the timer.  The bias will give us exactly the
3489 	 * 1.5 tick we need.  But, because the bias is
3490 	 * statistical, we have to test that we don't drop below
3491 	 * the minimum feasible timer (which is 2 ticks).
3492 	 */
3493 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
3494 		      max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
3495 
3496 	/*
3497 	 * We received an ack for a packet that wasn't retransmitted;
3498 	 * it is probably safe to discard any error indications we've
3499 	 * received recently.  This isn't quite right, but close enough
3500 	 * for now (a route might have failed after we sent a segment,
3501 	 * and the return path might not be symmetrical).
3502 	 */
3503 	tp->t_softerror = 0;
3504 }
3505 
3506 /*
3507  * Determine a reasonable value for maxseg size.
3508  * If the route is known, check route for mtu.
3509  * If none, use an mss that can be handled on the outgoing interface
3510  * without forcing IP to fragment.  If no route is found, route has no mtu,
3511  * or the destination isn't local, use a default, hopefully conservative
3512  * size (usually 512 or the default IP max size, but no more than the mtu
3513  * of the interface), as we can't discover anything about intervening
3514  * gateways or networks.  We also initialize the congestion/slow start
3515  * window to be a single segment if the destination isn't local.
3516  * While looking at the routing entry, we also initialize other path-dependent
3517  * parameters from pre-set or cached values in the routing entry.
3518  *
3519  * NOTE that resulting t_maxseg doesn't include space for TCP options or
3520  * IP options, e.g. IPSEC data, since length of this data may vary, and
3521  * thus it is calculated for every segment separately in tcp_output().
3522  *
3523  * NOTE that this routine is only called when we process an incoming
3524  * segment, or an ICMP need fragmentation datagram. Outgoing SYN/ACK MSS
3525  * settings are handled in tcp_mssopt().
3526  */
3527 void
3528 tcp_mss_update(struct tcpcb *tp, int offer, int mtuoffer,
3529     struct hc_metrics_lite *metricptr, struct tcp_ifcap *cap)
3530 {
3531 	int mss = 0;
3532 	u_long maxmtu = 0;
3533 	struct inpcb *inp = tp->t_inpcb;
3534 	struct hc_metrics_lite metrics;
3535 #ifdef INET6
3536 	int isipv6 = ((inp->inp_vflag & INP_IPV6) != 0) ? 1 : 0;
3537 	size_t min_protoh = isipv6 ?
3538 			    sizeof (struct ip6_hdr) + sizeof (struct tcphdr) :
3539 			    sizeof (struct tcpiphdr);
3540 #else
3541 	const size_t min_protoh = sizeof(struct tcpiphdr);
3542 #endif
3543 
3544 	INP_WLOCK_ASSERT(tp->t_inpcb);
3545 
3546 	if (mtuoffer != -1) {
3547 		KASSERT(offer == -1, ("%s: conflict", __func__));
3548 		offer = mtuoffer - min_protoh;
3549 	}
3550 
3551 	/* Initialize. */
3552 #ifdef INET6
3553 	if (isipv6) {
3554 		maxmtu = tcp_maxmtu6(&inp->inp_inc, cap);
3555 		tp->t_maxseg = V_tcp_v6mssdflt;
3556 	}
3557 #endif
3558 #if defined(INET) && defined(INET6)
3559 	else
3560 #endif
3561 #ifdef INET
3562 	{
3563 		maxmtu = tcp_maxmtu(&inp->inp_inc, cap);
3564 		tp->t_maxseg = V_tcp_mssdflt;
3565 	}
3566 #endif
3567 
3568 	/*
3569 	 * No route to sender, stay with default mss and return.
3570 	 */
3571 	if (maxmtu == 0) {
3572 		/*
3573 		 * In case we return early we need to initialize metrics
3574 		 * to a defined state as tcp_hc_get() would do for us
3575 		 * if there was no cache hit.
3576 		 */
3577 		if (metricptr != NULL)
3578 			bzero(metricptr, sizeof(struct hc_metrics_lite));
3579 		return;
3580 	}
3581 
3582 	/* What have we got? */
3583 	switch (offer) {
3584 		case 0:
3585 			/*
3586 			 * Offer == 0 means that there was no MSS on the SYN
3587 			 * segment, in this case we use tcp_mssdflt as
3588 			 * already assigned to t_maxseg above.
3589 			 */
3590 			offer = tp->t_maxseg;
3591 			break;
3592 
3593 		case -1:
3594 			/*
3595 			 * Offer == -1 means that we didn't receive SYN yet.
3596 			 */
3597 			/* FALLTHROUGH */
3598 
3599 		default:
3600 			/*
3601 			 * Prevent DoS attack with too small MSS. Round up
3602 			 * to at least minmss.
3603 			 */
3604 			offer = max(offer, V_tcp_minmss);
3605 	}
3606 
3607 	/*
3608 	 * rmx information is now retrieved from tcp_hostcache.
3609 	 */
3610 	tcp_hc_get(&inp->inp_inc, &metrics);
3611 	if (metricptr != NULL)
3612 		bcopy(&metrics, metricptr, sizeof(struct hc_metrics_lite));
3613 
3614 	/*
3615 	 * If there's a discovered mtu in tcp hostcache, use it.
3616 	 * Else, use the link mtu.
3617 	 */
3618 	if (metrics.rmx_mtu)
3619 		mss = min(metrics.rmx_mtu, maxmtu) - min_protoh;
3620 	else {
3621 #ifdef INET6
3622 		if (isipv6) {
3623 			mss = maxmtu - min_protoh;
3624 			if (!V_path_mtu_discovery &&
3625 			    !in6_localaddr(&inp->in6p_faddr))
3626 				mss = min(mss, V_tcp_v6mssdflt);
3627 		}
3628 #endif
3629 #if defined(INET) && defined(INET6)
3630 		else
3631 #endif
3632 #ifdef INET
3633 		{
3634 			mss = maxmtu - min_protoh;
3635 			if (!V_path_mtu_discovery &&
3636 			    !in_localaddr(inp->inp_faddr))
3637 				mss = min(mss, V_tcp_mssdflt);
3638 		}
3639 #endif
3640 		/*
3641 		 * XXX - The above conditional (mss = maxmtu - min_protoh)
3642 		 * probably violates the TCP spec.
3643 		 * The problem is that, since we don't know the
3644 		 * other end's MSS, we are supposed to use a conservative
3645 		 * default.  But, if we do that, then MTU discovery will
3646 		 * never actually take place, because the conservative
3647 		 * default is much less than the MTUs typically seen
3648 		 * on the Internet today.  For the moment, we'll sweep
3649 		 * this under the carpet.
3650 		 *
3651 		 * The conservative default might not actually be a problem
3652 		 * if the only case this occurs is when sending an initial
3653 		 * SYN with options and data to a host we've never talked
3654 		 * to before.  Then, they will reply with an MSS value which
3655 		 * will get recorded and the new parameters should get
3656 		 * recomputed.  For Further Study.
3657 		 */
3658 	}
3659 	mss = min(mss, offer);
3660 
3661 	/*
3662 	 * Sanity check: make sure that maxseg will be large
3663 	 * enough to allow some data on segments even if the
3664 	 * all the option space is used (40bytes).  Otherwise
3665 	 * funny things may happen in tcp_output.
3666 	 *
3667 	 * XXXGL: shouldn't we reserve space for IP/IPv6 options?
3668 	 */
3669 	mss = max(mss, 64);
3670 
3671 	tp->t_maxseg = mss;
3672 }
3673 
3674 void
3675 tcp_mss(struct tcpcb *tp, int offer)
3676 {
3677 	int mss;
3678 	u_long bufsize;
3679 	struct inpcb *inp;
3680 	struct socket *so;
3681 	struct hc_metrics_lite metrics;
3682 	struct tcp_ifcap cap;
3683 
3684 	KASSERT(tp != NULL, ("%s: tp == NULL", __func__));
3685 
3686 	bzero(&cap, sizeof(cap));
3687 	tcp_mss_update(tp, offer, -1, &metrics, &cap);
3688 
3689 	mss = tp->t_maxseg;
3690 	inp = tp->t_inpcb;
3691 
3692 	/*
3693 	 * If there's a pipesize, change the socket buffer to that size,
3694 	 * don't change if sb_hiwat is different than default (then it
3695 	 * has been changed on purpose with setsockopt).
3696 	 * Make the socket buffers an integral number of mss units;
3697 	 * if the mss is larger than the socket buffer, decrease the mss.
3698 	 */
3699 	so = inp->inp_socket;
3700 	SOCKBUF_LOCK(&so->so_snd);
3701 	if ((so->so_snd.sb_hiwat == V_tcp_sendspace) && metrics.rmx_sendpipe)
3702 		bufsize = metrics.rmx_sendpipe;
3703 	else
3704 		bufsize = so->so_snd.sb_hiwat;
3705 	if (bufsize < mss)
3706 		mss = bufsize;
3707 	else {
3708 		bufsize = roundup(bufsize, mss);
3709 		if (bufsize > sb_max)
3710 			bufsize = sb_max;
3711 		if (bufsize > so->so_snd.sb_hiwat)
3712 			(void)sbreserve_locked(&so->so_snd, bufsize, so, NULL);
3713 	}
3714 	SOCKBUF_UNLOCK(&so->so_snd);
3715 	tp->t_maxseg = mss;
3716 
3717 	SOCKBUF_LOCK(&so->so_rcv);
3718 	if ((so->so_rcv.sb_hiwat == V_tcp_recvspace) && metrics.rmx_recvpipe)
3719 		bufsize = metrics.rmx_recvpipe;
3720 	else
3721 		bufsize = so->so_rcv.sb_hiwat;
3722 	if (bufsize > mss) {
3723 		bufsize = roundup(bufsize, mss);
3724 		if (bufsize > sb_max)
3725 			bufsize = sb_max;
3726 		if (bufsize > so->so_rcv.sb_hiwat)
3727 			(void)sbreserve_locked(&so->so_rcv, bufsize, so, NULL);
3728 	}
3729 	SOCKBUF_UNLOCK(&so->so_rcv);
3730 
3731 	/* Check the interface for TSO capabilities. */
3732 	if (cap.ifcap & CSUM_TSO) {
3733 		tp->t_flags |= TF_TSO;
3734 		tp->t_tsomax = cap.tsomax;
3735 		tp->t_tsomaxsegcount = cap.tsomaxsegcount;
3736 		tp->t_tsomaxsegsize = cap.tsomaxsegsize;
3737 	}
3738 }
3739 
3740 /*
3741  * Determine the MSS option to send on an outgoing SYN.
3742  */
3743 int
3744 tcp_mssopt(struct in_conninfo *inc)
3745 {
3746 	int mss = 0;
3747 	u_long maxmtu = 0;
3748 	u_long thcmtu = 0;
3749 	size_t min_protoh;
3750 
3751 	KASSERT(inc != NULL, ("tcp_mssopt with NULL in_conninfo pointer"));
3752 
3753 #ifdef INET6
3754 	if (inc->inc_flags & INC_ISIPV6) {
3755 		mss = V_tcp_v6mssdflt;
3756 		maxmtu = tcp_maxmtu6(inc, NULL);
3757 		min_protoh = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
3758 	}
3759 #endif
3760 #if defined(INET) && defined(INET6)
3761 	else
3762 #endif
3763 #ifdef INET
3764 	{
3765 		mss = V_tcp_mssdflt;
3766 		maxmtu = tcp_maxmtu(inc, NULL);
3767 		min_protoh = sizeof(struct tcpiphdr);
3768 	}
3769 #endif
3770 #if defined(INET6) || defined(INET)
3771 	thcmtu = tcp_hc_getmtu(inc); /* IPv4 and IPv6 */
3772 #endif
3773 
3774 	if (maxmtu && thcmtu)
3775 		mss = min(maxmtu, thcmtu) - min_protoh;
3776 	else if (maxmtu || thcmtu)
3777 		mss = max(maxmtu, thcmtu) - min_protoh;
3778 
3779 	return (mss);
3780 }
3781 
3782 
3783 /*
3784  * On a partial ack arrives, force the retransmission of the
3785  * next unacknowledged segment.  Do not clear tp->t_dupacks.
3786  * By setting snd_nxt to ti_ack, this forces retransmission timer to
3787  * be started again.
3788  */
3789 void
3790 tcp_newreno_partial_ack(struct tcpcb *tp, struct tcphdr *th)
3791 {
3792 	tcp_seq onxt = tp->snd_nxt;
3793 	u_long ocwnd = tp->snd_cwnd;
3794 	u_int maxseg = tcp_maxseg(tp);
3795 
3796 	INP_WLOCK_ASSERT(tp->t_inpcb);
3797 
3798 	tcp_timer_activate(tp, TT_REXMT, 0);
3799 	tp->t_rtttime = 0;
3800 	tp->snd_nxt = th->th_ack;
3801 	/*
3802 	 * Set snd_cwnd to one segment beyond acknowledged offset.
3803 	 * (tp->snd_una has not yet been updated when this function is called.)
3804 	 */
3805 	tp->snd_cwnd = maxseg + BYTES_THIS_ACK(tp, th);
3806 	tp->t_flags |= TF_ACKNOW;
3807 	(void) tp->t_fb->tfb_tcp_output(tp);
3808 	tp->snd_cwnd = ocwnd;
3809 	if (SEQ_GT(onxt, tp->snd_nxt))
3810 		tp->snd_nxt = onxt;
3811 	/*
3812 	 * Partial window deflation.  Relies on fact that tp->snd_una
3813 	 * not updated yet.
3814 	 */
3815 	if (tp->snd_cwnd > BYTES_THIS_ACK(tp, th))
3816 		tp->snd_cwnd -= BYTES_THIS_ACK(tp, th);
3817 	else
3818 		tp->snd_cwnd = 0;
3819 	tp->snd_cwnd += maxseg;
3820 }
3821 
3822 int
3823 tcp_compute_pipe(struct tcpcb *tp)
3824 {
3825 	return (tp->snd_max - tp->snd_una +
3826 		tp->sackhint.sack_bytes_rexmit -
3827 		tp->sackhint.sacked_bytes);
3828 }
3829