1 /*- 2 * Copyright (c) 2016-2018 Netflix, Inc. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 1. Redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer. 9 * 2. Redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution. 12 * 13 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 14 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 16 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 17 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 18 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 19 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 20 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 21 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 22 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 23 * SUCH DAMAGE. 24 * 25 */ 26 #include <sys/cdefs.h> 27 #include "opt_inet.h" 28 #include "opt_inet6.h" 29 #include "opt_rss.h" 30 31 /** 32 * Some notes about usage. 33 * 34 * The tcp_hpts system is designed to provide a high precision timer 35 * system for tcp. Its main purpose is to provide a mechanism for 36 * pacing packets out onto the wire. It can be used in two ways 37 * by a given TCP stack (and those two methods can be used simultaneously). 38 * 39 * First, and probably the main thing its used by Rack and BBR, it can 40 * be used to call tcp_output() of a transport stack at some time in the future. 41 * The normal way this is done is that tcp_output() of the stack schedules 42 * itself to be called again by calling tcp_hpts_insert(tcpcb, slot). The 43 * slot is the time from now that the stack wants to be called but it 44 * must be converted to tcp_hpts's notion of slot. This is done with 45 * one of the macros HPTS_MS_TO_SLOTS or HPTS_USEC_TO_SLOTS. So a typical 46 * call from the tcp_output() routine might look like: 47 * 48 * tcp_hpts_insert(tp, HPTS_USEC_TO_SLOTS(550)); 49 * 50 * The above would schedule tcp_output() to be called in 550 useconds. 51 * Note that if using this mechanism the stack will want to add near 52 * its top a check to prevent unwanted calls (from user land or the 53 * arrival of incoming ack's). So it would add something like: 54 * 55 * if (tcp_in_hpts(inp)) 56 * return; 57 * 58 * to prevent output processing until the time alotted has gone by. 59 * Of course this is a bare bones example and the stack will probably 60 * have more consideration then just the above. 61 * 62 * In order to run input queued segments from the HPTS context the 63 * tcp stack must define an input function for 64 * tfb_do_queued_segments(). This function understands 65 * how to dequeue a array of packets that were input and 66 * knows how to call the correct processing routine. 67 * 68 * Locking in this is important as well so most likely the 69 * stack will need to define the tfb_do_segment_nounlock() 70 * splitting tfb_do_segment() into two parts. The main processing 71 * part that does not unlock the INP and returns a value of 1 or 0. 72 * It returns 0 if all is well and the lock was not released. It 73 * returns 1 if we had to destroy the TCB (a reset received etc). 74 * The remains of tfb_do_segment() then become just a simple call 75 * to the tfb_do_segment_nounlock() function and check the return 76 * code and possibly unlock. 77 * 78 * The stack must also set the flag on the INP that it supports this 79 * feature i.e. INP_SUPPORTS_MBUFQ. The LRO code recoginizes 80 * this flag as well and will queue packets when it is set. 81 * There are other flags as well INP_MBUF_QUEUE_READY and 82 * INP_DONT_SACK_QUEUE. The first flag tells the LRO code 83 * that we are in the pacer for output so there is no 84 * need to wake up the hpts system to get immediate 85 * input. The second tells the LRO code that its okay 86 * if a SACK arrives you can still defer input and let 87 * the current hpts timer run (this is usually set when 88 * a rack timer is up so we know SACK's are happening 89 * on the connection already and don't want to wakeup yet). 90 * 91 * There is a common functions within the rack_bbr_common code 92 * version i.e. ctf_do_queued_segments(). This function 93 * knows how to take the input queue of packets from tp->t_inqueue 94 * and process them digging out all the arguments, calling any bpf tap and 95 * calling into tfb_do_segment_nounlock(). The common 96 * function (ctf_do_queued_segments()) requires that 97 * you have defined the tfb_do_segment_nounlock() as 98 * described above. 99 */ 100 101 #include <sys/param.h> 102 #include <sys/bus.h> 103 #include <sys/interrupt.h> 104 #include <sys/module.h> 105 #include <sys/kernel.h> 106 #include <sys/hhook.h> 107 #include <sys/malloc.h> 108 #include <sys/mbuf.h> 109 #include <sys/proc.h> /* for proc0 declaration */ 110 #include <sys/socket.h> 111 #include <sys/socketvar.h> 112 #include <sys/sysctl.h> 113 #include <sys/systm.h> 114 #include <sys/refcount.h> 115 #include <sys/sched.h> 116 #include <sys/queue.h> 117 #include <sys/smp.h> 118 #include <sys/counter.h> 119 #include <sys/time.h> 120 #include <sys/kthread.h> 121 #include <sys/kern_prefetch.h> 122 123 #include <vm/uma.h> 124 #include <vm/vm.h> 125 126 #include <net/route.h> 127 #include <net/vnet.h> 128 129 #ifdef RSS 130 #include <net/netisr.h> 131 #include <net/rss_config.h> 132 #endif 133 134 #define TCPSTATES /* for logging */ 135 136 #include <netinet/in.h> 137 #include <netinet/in_kdtrace.h> 138 #include <netinet/in_pcb.h> 139 #include <netinet/ip.h> 140 #include <netinet/ip_icmp.h> /* required for icmp_var.h */ 141 #include <netinet/icmp_var.h> /* for ICMP_BANDLIM */ 142 #include <netinet/ip_var.h> 143 #include <netinet/ip6.h> 144 #include <netinet6/in6_pcb.h> 145 #include <netinet6/ip6_var.h> 146 #include <netinet/tcp.h> 147 #include <netinet/tcp_fsm.h> 148 #include <netinet/tcp_seq.h> 149 #include <netinet/tcp_timer.h> 150 #include <netinet/tcp_var.h> 151 #include <netinet/tcpip.h> 152 #include <netinet/cc/cc.h> 153 #include <netinet/tcp_hpts.h> 154 #include <netinet/tcp_log_buf.h> 155 156 #ifdef tcp_offload 157 #include <netinet/tcp_offload.h> 158 #endif 159 160 /* 161 * The hpts uses a 102400 wheel. The wheel 162 * defines the time in 10 usec increments (102400 x 10). 163 * This gives a range of 10usec - 1024ms to place 164 * an entry within. If the user requests more than 165 * 1.024 second, a remaineder is attached and the hpts 166 * when seeing the remainder will re-insert the 167 * inpcb forward in time from where it is until 168 * the remainder is zero. 169 */ 170 171 #define NUM_OF_HPTSI_SLOTS 102400 172 173 /* The number of connections after which the dynamic sleep logic kicks in. */ 174 #define DEFAULT_CONNECTION_THRESHOLD 100 175 176 /* 177 * When using the hpts, a TCP stack must make sure 178 * that once a INP_DROPPED flag is applied to a INP 179 * that it does not expect tcp_output() to ever be 180 * called by the hpts. The hpts will *not* call 181 * any output (or input) functions on a TCB that 182 * is in the DROPPED state. 183 * 184 * This implies final ACK's and RST's that might 185 * be sent when a TCB is still around must be 186 * sent from a routine like tcp_respond(). 187 */ 188 #define LOWEST_SLEEP_ALLOWED 50 189 #define DEFAULT_MIN_SLEEP 250 /* How many usec's is default for hpts sleep 190 * this determines min granularity of the 191 * hpts. If 1, granularity is 10useconds at 192 * the cost of more CPU (context switching). 193 * Note do not set this to 0. 194 */ 195 #define DYNAMIC_MIN_SLEEP DEFAULT_MIN_SLEEP 196 #define DYNAMIC_MAX_SLEEP 5000 /* 5ms */ 197 198 /* Thresholds for raising/lowering sleep */ 199 #define SLOTS_INDICATE_MORE_SLEEP 100 /* This would be 1ms */ 200 #define SLOTS_INDICATE_LESS_SLEEP 1000 /* This would indicate 10ms */ 201 /** 202 * 203 * Dynamic adjustment of sleeping times is done in "new" mode 204 * where we are depending on syscall returns and lro returns 205 * to push hpts forward mainly and the timer is only a backstop. 206 * 207 * When we are in the "new" mode i.e. conn_cnt > conn_cnt_thresh 208 * then we do a dynamic adjustment on the time we sleep. 209 * Our threshold is if the lateness of the first client served (in ticks) is 210 * greater than or equal too slots_indicate_more_sleep (10ms 211 * or 10000 ticks). If we were that late, the actual sleep time 212 * is adjusted down by 50%. If the ticks_ran is less than 213 * slots_indicate_more_sleep (100 ticks or 1000usecs). 214 * 215 */ 216 217 /* Each hpts has its own p_mtx which is used for locking */ 218 #define HPTS_MTX_ASSERT(hpts) mtx_assert(&(hpts)->p_mtx, MA_OWNED) 219 #define HPTS_LOCK(hpts) mtx_lock(&(hpts)->p_mtx) 220 #define HPTS_TRYLOCK(hpts) mtx_trylock(&(hpts)->p_mtx) 221 #define HPTS_UNLOCK(hpts) mtx_unlock(&(hpts)->p_mtx) 222 struct tcp_hpts_entry { 223 /* Cache line 0x00 */ 224 struct mtx p_mtx; /* Mutex for hpts */ 225 struct timeval p_mysleep; /* Our min sleep time */ 226 uint64_t syscall_cnt; 227 uint64_t sleeping; /* What the actual sleep was (if sleeping) */ 228 uint16_t p_hpts_active; /* Flag that says hpts is awake */ 229 uint8_t p_wheel_complete; /* have we completed the wheel arc walk? */ 230 uint32_t p_curtick; /* Tick in 10 us the hpts is going to */ 231 uint32_t p_runningslot; /* Current tick we are at if we are running */ 232 uint32_t p_prev_slot; /* Previous slot we were on */ 233 uint32_t p_cur_slot; /* Current slot in wheel hpts is draining */ 234 uint32_t p_nxt_slot; /* The next slot outside the current range of 235 * slots that the hpts is running on. */ 236 int32_t p_on_queue_cnt; /* Count on queue in this hpts */ 237 uint32_t p_lasttick; /* Last tick before the current one */ 238 uint8_t p_direct_wake :1, /* boolean */ 239 p_on_min_sleep:1, /* boolean */ 240 p_hpts_wake_scheduled:1, /* boolean */ 241 hit_callout_thresh:1, 242 p_avail:4; 243 uint8_t p_fill[3]; /* Fill to 32 bits */ 244 /* Cache line 0x40 */ 245 struct hptsh { 246 TAILQ_HEAD(, tcpcb) head; 247 uint32_t count; 248 uint32_t gencnt; 249 } *p_hptss; /* Hptsi wheel */ 250 uint32_t p_hpts_sleep_time; /* Current sleep interval having a max 251 * of 255ms */ 252 uint32_t overidden_sleep; /* what was overrided by min-sleep for logging */ 253 uint32_t saved_lasttick; /* for logging */ 254 uint32_t saved_curtick; /* for logging */ 255 uint32_t saved_curslot; /* for logging */ 256 uint32_t saved_prev_slot; /* for logging */ 257 uint32_t p_delayed_by; /* How much were we delayed by */ 258 /* Cache line 0x80 */ 259 struct sysctl_ctx_list hpts_ctx; 260 struct sysctl_oid *hpts_root; 261 struct intr_event *ie; 262 void *ie_cookie; 263 uint16_t p_num; /* The hpts number one per cpu */ 264 uint16_t p_cpu; /* The hpts CPU */ 265 /* There is extra space in here */ 266 /* Cache line 0x100 */ 267 struct callout co __aligned(CACHE_LINE_SIZE); 268 } __aligned(CACHE_LINE_SIZE); 269 270 static struct tcp_hptsi { 271 struct cpu_group **grps; 272 struct tcp_hpts_entry **rp_ent; /* Array of hptss */ 273 uint32_t *cts_last_ran; 274 uint32_t grp_cnt; 275 uint32_t rp_num_hptss; /* Number of hpts threads */ 276 } tcp_pace; 277 278 static MALLOC_DEFINE(M_TCPHPTS, "tcp_hpts", "TCP hpts"); 279 #ifdef RSS 280 static int tcp_bind_threads = 1; 281 #else 282 static int tcp_bind_threads = 2; 283 #endif 284 static int tcp_use_irq_cpu = 0; 285 static int hpts_does_tp_logging = 0; 286 287 static int32_t tcp_hptsi(struct tcp_hpts_entry *hpts, bool from_callout); 288 static void tcp_hpts_thread(void *ctx); 289 290 int32_t tcp_min_hptsi_time = DEFAULT_MIN_SLEEP; 291 static int conn_cnt_thresh = DEFAULT_CONNECTION_THRESHOLD; 292 static int32_t dynamic_min_sleep = DYNAMIC_MIN_SLEEP; 293 static int32_t dynamic_max_sleep = DYNAMIC_MAX_SLEEP; 294 295 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, hpts, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 296 "TCP Hpts controls"); 297 SYSCTL_NODE(_net_inet_tcp_hpts, OID_AUTO, stats, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 298 "TCP Hpts statistics"); 299 300 #define timersub(tvp, uvp, vvp) \ 301 do { \ 302 (vvp)->tv_sec = (tvp)->tv_sec - (uvp)->tv_sec; \ 303 (vvp)->tv_usec = (tvp)->tv_usec - (uvp)->tv_usec; \ 304 if ((vvp)->tv_usec < 0) { \ 305 (vvp)->tv_sec--; \ 306 (vvp)->tv_usec += 1000000; \ 307 } \ 308 } while (0) 309 310 static int32_t tcp_hpts_precision = 120; 311 312 static struct hpts_domain_info { 313 int count; 314 int cpu[MAXCPU]; 315 } hpts_domains[MAXMEMDOM]; 316 317 counter_u64_t hpts_hopelessly_behind; 318 319 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, hopeless, CTLFLAG_RD, 320 &hpts_hopelessly_behind, 321 "Number of times hpts could not catch up and was behind hopelessly"); 322 323 counter_u64_t hpts_loops; 324 325 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, loops, CTLFLAG_RD, 326 &hpts_loops, "Number of times hpts had to loop to catch up"); 327 328 counter_u64_t back_tosleep; 329 330 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, no_tcbsfound, CTLFLAG_RD, 331 &back_tosleep, "Number of times hpts found no tcbs"); 332 333 counter_u64_t combined_wheel_wrap; 334 335 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, comb_wheel_wrap, CTLFLAG_RD, 336 &combined_wheel_wrap, "Number of times the wheel lagged enough to have an insert see wrap"); 337 338 counter_u64_t wheel_wrap; 339 340 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, wheel_wrap, CTLFLAG_RD, 341 &wheel_wrap, "Number of times the wheel lagged enough to have an insert see wrap"); 342 343 counter_u64_t hpts_direct_call; 344 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, direct_call, CTLFLAG_RD, 345 &hpts_direct_call, "Number of times hpts was called by syscall/trap or other entry"); 346 347 counter_u64_t hpts_wake_timeout; 348 349 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, timeout_wakeup, CTLFLAG_RD, 350 &hpts_wake_timeout, "Number of times hpts threads woke up via the callout expiring"); 351 352 counter_u64_t hpts_direct_awakening; 353 354 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, direct_awakening, CTLFLAG_RD, 355 &hpts_direct_awakening, "Number of times hpts threads woke up via the callout expiring"); 356 357 counter_u64_t hpts_back_tosleep; 358 359 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, back_tosleep, CTLFLAG_RD, 360 &hpts_back_tosleep, "Number of times hpts threads woke up via the callout expiring and went back to sleep no work"); 361 362 counter_u64_t cpu_uses_flowid; 363 counter_u64_t cpu_uses_random; 364 365 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, cpusel_flowid, CTLFLAG_RD, 366 &cpu_uses_flowid, "Number of times when setting cpuid we used the flowid field"); 367 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, cpusel_random, CTLFLAG_RD, 368 &cpu_uses_random, "Number of times when setting cpuid we used the a random value"); 369 370 TUNABLE_INT("net.inet.tcp.bind_hptss", &tcp_bind_threads); 371 TUNABLE_INT("net.inet.tcp.use_irq", &tcp_use_irq_cpu); 372 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, bind_hptss, CTLFLAG_RD, 373 &tcp_bind_threads, 2, 374 "Thread Binding tunable"); 375 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, use_irq, CTLFLAG_RD, 376 &tcp_use_irq_cpu, 0, 377 "Use of irq CPU tunable"); 378 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, precision, CTLFLAG_RW, 379 &tcp_hpts_precision, 120, 380 "Value for PRE() precision of callout"); 381 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, cnt_thresh, CTLFLAG_RW, 382 &conn_cnt_thresh, 0, 383 "How many connections (below) make us use the callout based mechanism"); 384 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, logging, CTLFLAG_RW, 385 &hpts_does_tp_logging, 0, 386 "Do we add to any tp that has logging on pacer logs"); 387 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, dyn_minsleep, CTLFLAG_RW, 388 &dynamic_min_sleep, 250, 389 "What is the dynamic minsleep value?"); 390 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, dyn_maxsleep, CTLFLAG_RW, 391 &dynamic_max_sleep, 5000, 392 "What is the dynamic maxsleep value?"); 393 394 static int32_t max_pacer_loops = 10; 395 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, loopmax, CTLFLAG_RW, 396 &max_pacer_loops, 10, 397 "What is the maximum number of times the pacer will loop trying to catch up"); 398 399 #define HPTS_MAX_SLEEP_ALLOWED (NUM_OF_HPTSI_SLOTS/2) 400 401 static uint32_t hpts_sleep_max = HPTS_MAX_SLEEP_ALLOWED; 402 403 static int 404 sysctl_net_inet_tcp_hpts_max_sleep(SYSCTL_HANDLER_ARGS) 405 { 406 int error; 407 uint32_t new; 408 409 new = hpts_sleep_max; 410 error = sysctl_handle_int(oidp, &new, 0, req); 411 if (error == 0 && req->newptr) { 412 if ((new < (dynamic_min_sleep/HPTS_USECS_PER_SLOT)) || 413 (new > HPTS_MAX_SLEEP_ALLOWED)) 414 error = EINVAL; 415 else 416 hpts_sleep_max = new; 417 } 418 return (error); 419 } 420 421 static int 422 sysctl_net_inet_tcp_hpts_min_sleep(SYSCTL_HANDLER_ARGS) 423 { 424 int error; 425 uint32_t new; 426 427 new = tcp_min_hptsi_time; 428 error = sysctl_handle_int(oidp, &new, 0, req); 429 if (error == 0 && req->newptr) { 430 if (new < LOWEST_SLEEP_ALLOWED) 431 error = EINVAL; 432 else 433 tcp_min_hptsi_time = new; 434 } 435 return (error); 436 } 437 438 SYSCTL_PROC(_net_inet_tcp_hpts, OID_AUTO, maxsleep, 439 CTLTYPE_UINT | CTLFLAG_RW, 440 &hpts_sleep_max, 0, 441 &sysctl_net_inet_tcp_hpts_max_sleep, "IU", 442 "Maximum time hpts will sleep in slots"); 443 444 SYSCTL_PROC(_net_inet_tcp_hpts, OID_AUTO, minsleep, 445 CTLTYPE_UINT | CTLFLAG_RW, 446 &tcp_min_hptsi_time, 0, 447 &sysctl_net_inet_tcp_hpts_min_sleep, "IU", 448 "The minimum time the hpts must sleep before processing more slots"); 449 450 static int slots_indicate_more_sleep = SLOTS_INDICATE_MORE_SLEEP; 451 static int slots_indicate_less_sleep = SLOTS_INDICATE_LESS_SLEEP; 452 static int tcp_hpts_no_wake_over_thresh = 1; 453 454 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, more_sleep, CTLFLAG_RW, 455 &slots_indicate_more_sleep, 0, 456 "If we only process this many or less on a timeout, we need longer sleep on the next callout"); 457 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, less_sleep, CTLFLAG_RW, 458 &slots_indicate_less_sleep, 0, 459 "If we process this many or more on a timeout, we need less sleep on the next callout"); 460 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, nowake_over_thresh, CTLFLAG_RW, 461 &tcp_hpts_no_wake_over_thresh, 0, 462 "When we are over the threshold on the pacer do we prohibit wakeups?"); 463 464 static uint16_t 465 hpts_random_cpu(void) 466 { 467 uint16_t cpuid; 468 uint32_t ran; 469 470 ran = arc4random(); 471 cpuid = (((ran & 0xffff) % mp_ncpus) % tcp_pace.rp_num_hptss); 472 return (cpuid); 473 } 474 475 static void 476 tcp_hpts_log(struct tcp_hpts_entry *hpts, struct tcpcb *tp, struct timeval *tv, 477 int slots_to_run, int idx, bool from_callout) 478 { 479 if (hpts_does_tp_logging && tcp_bblogging_on(tp)) { 480 union tcp_log_stackspecific log; 481 /* 482 * Unused logs are 483 * 64 bit - delRate, rttProp, bw_inuse 484 * 16 bit - cwnd_gain 485 * 8 bit - bbr_state, bbr_substate, inhpts; 486 */ 487 memset(&log, 0, sizeof(log)); 488 log.u_bbr.flex1 = hpts->p_nxt_slot; 489 log.u_bbr.flex2 = hpts->p_cur_slot; 490 log.u_bbr.flex3 = hpts->p_prev_slot; 491 log.u_bbr.flex4 = idx; 492 log.u_bbr.flex5 = hpts->p_curtick; 493 log.u_bbr.flex6 = hpts->p_on_queue_cnt; 494 log.u_bbr.flex7 = hpts->p_cpu; 495 log.u_bbr.flex8 = (uint8_t)from_callout; 496 log.u_bbr.inflight = slots_to_run; 497 log.u_bbr.applimited = hpts->overidden_sleep; 498 log.u_bbr.delivered = hpts->saved_curtick; 499 log.u_bbr.timeStamp = tcp_tv_to_usec(tv); 500 log.u_bbr.epoch = hpts->saved_curslot; 501 log.u_bbr.lt_epoch = hpts->saved_prev_slot; 502 log.u_bbr.pkts_out = hpts->p_delayed_by; 503 log.u_bbr.lost = hpts->p_hpts_sleep_time; 504 log.u_bbr.pacing_gain = hpts->p_cpu; 505 log.u_bbr.pkt_epoch = hpts->p_runningslot; 506 log.u_bbr.use_lt_bw = 1; 507 TCP_LOG_EVENTP(tp, NULL, 508 &tptosocket(tp)->so_rcv, 509 &tptosocket(tp)->so_snd, 510 BBR_LOG_HPTSDIAG, 0, 511 0, &log, false, tv); 512 } 513 } 514 515 static void 516 tcp_wakehpts(struct tcp_hpts_entry *hpts) 517 { 518 HPTS_MTX_ASSERT(hpts); 519 520 if (tcp_hpts_no_wake_over_thresh && (hpts->p_on_queue_cnt >= conn_cnt_thresh)) { 521 hpts->p_direct_wake = 0; 522 return; 523 } 524 if (hpts->p_hpts_wake_scheduled == 0) { 525 hpts->p_hpts_wake_scheduled = 1; 526 swi_sched(hpts->ie_cookie, 0); 527 } 528 } 529 530 static void 531 hpts_timeout_swi(void *arg) 532 { 533 struct tcp_hpts_entry *hpts; 534 535 hpts = (struct tcp_hpts_entry *)arg; 536 swi_sched(hpts->ie_cookie, 0); 537 } 538 539 static void 540 tcp_hpts_insert_internal(struct tcpcb *tp, struct tcp_hpts_entry *hpts) 541 { 542 struct inpcb *inp = tptoinpcb(tp); 543 struct hptsh *hptsh; 544 545 INP_WLOCK_ASSERT(inp); 546 HPTS_MTX_ASSERT(hpts); 547 MPASS(hpts->p_cpu == tp->t_hpts_cpu); 548 MPASS(!(inp->inp_flags & INP_DROPPED)); 549 550 hptsh = &hpts->p_hptss[tp->t_hpts_slot]; 551 552 if (tp->t_in_hpts == IHPTS_NONE) { 553 tp->t_in_hpts = IHPTS_ONQUEUE; 554 in_pcbref(inp); 555 } else if (tp->t_in_hpts == IHPTS_MOVING) { 556 tp->t_in_hpts = IHPTS_ONQUEUE; 557 } else 558 MPASS(tp->t_in_hpts == IHPTS_ONQUEUE); 559 tp->t_hpts_gencnt = hptsh->gencnt; 560 561 TAILQ_INSERT_TAIL(&hptsh->head, tp, t_hpts); 562 hptsh->count++; 563 hpts->p_on_queue_cnt++; 564 } 565 566 static struct tcp_hpts_entry * 567 tcp_hpts_lock(struct tcpcb *tp) 568 { 569 struct tcp_hpts_entry *hpts; 570 571 INP_LOCK_ASSERT(tptoinpcb(tp)); 572 573 hpts = tcp_pace.rp_ent[tp->t_hpts_cpu]; 574 HPTS_LOCK(hpts); 575 576 return (hpts); 577 } 578 579 static void 580 tcp_hpts_release(struct tcpcb *tp) 581 { 582 bool released __diagused; 583 584 tp->t_in_hpts = IHPTS_NONE; 585 released = in_pcbrele_wlocked(tptoinpcb(tp)); 586 MPASS(released == false); 587 } 588 589 /* 590 * Initialize tcpcb to get ready for use with HPTS. We will know which CPU 591 * is preferred on the first incoming packet. Before that avoid crowding 592 * a single CPU with newborn connections and use a random one. 593 * This initialization is normally called on a newborn tcpcb, but potentially 594 * can be called once again if stack is switched. In that case we inherit CPU 595 * that the previous stack has set, be it random or not. In extreme cases, 596 * e.g. syzkaller fuzzing, a tcpcb can already be in HPTS in IHPTS_MOVING state 597 * and has never received a first packet. 598 */ 599 void 600 tcp_hpts_init(struct tcpcb *tp) 601 { 602 603 if (__predict_true(tp->t_hpts_cpu == HPTS_CPU_NONE)) { 604 tp->t_hpts_cpu = hpts_random_cpu(); 605 MPASS(!(tp->t_flags2 & TF2_HPTS_CPU_SET)); 606 } 607 } 608 609 /* 610 * Called normally with the INP_LOCKED but it 611 * does not matter, the hpts lock is the key 612 * but the lock order allows us to hold the 613 * INP lock and then get the hpts lock. 614 */ 615 void 616 tcp_hpts_remove(struct tcpcb *tp) 617 { 618 struct tcp_hpts_entry *hpts; 619 struct hptsh *hptsh; 620 621 INP_WLOCK_ASSERT(tptoinpcb(tp)); 622 623 hpts = tcp_hpts_lock(tp); 624 if (tp->t_in_hpts == IHPTS_ONQUEUE) { 625 hptsh = &hpts->p_hptss[tp->t_hpts_slot]; 626 tp->t_hpts_request = 0; 627 if (__predict_true(tp->t_hpts_gencnt == hptsh->gencnt)) { 628 TAILQ_REMOVE(&hptsh->head, tp, t_hpts); 629 MPASS(hptsh->count > 0); 630 hptsh->count--; 631 MPASS(hpts->p_on_queue_cnt > 0); 632 hpts->p_on_queue_cnt--; 633 tcp_hpts_release(tp); 634 } else { 635 /* 636 * tcp_hptsi() now owns the TAILQ head of this inp. 637 * Can't TAILQ_REMOVE, just mark it. 638 */ 639 #ifdef INVARIANTS 640 struct tcpcb *tmp; 641 642 TAILQ_FOREACH(tmp, &hptsh->head, t_hpts) 643 MPASS(tmp != tp); 644 #endif 645 tp->t_in_hpts = IHPTS_MOVING; 646 tp->t_hpts_slot = -1; 647 } 648 } else if (tp->t_in_hpts == IHPTS_MOVING) { 649 /* 650 * Handle a special race condition: 651 * tcp_hptsi() moves inpcb to detached tailq 652 * tcp_hpts_remove() marks as IHPTS_MOVING, slot = -1 653 * tcp_hpts_insert() sets slot to a meaningful value 654 * tcp_hpts_remove() again (we are here!), then in_pcbdrop() 655 * tcp_hptsi() finds pcb with meaningful slot and INP_DROPPED 656 */ 657 tp->t_hpts_slot = -1; 658 } 659 HPTS_UNLOCK(hpts); 660 } 661 662 static inline int 663 hpts_slot(uint32_t wheel_slot, uint32_t plus) 664 { 665 /* 666 * Given a slot on the wheel, what slot 667 * is that plus ticks out? 668 */ 669 KASSERT(wheel_slot < NUM_OF_HPTSI_SLOTS, ("Invalid tick %u not on wheel", wheel_slot)); 670 return ((wheel_slot + plus) % NUM_OF_HPTSI_SLOTS); 671 } 672 673 static inline int 674 tick_to_wheel(uint32_t cts_in_wticks) 675 { 676 /* 677 * Given a timestamp in ticks (so by 678 * default to get it to a real time one 679 * would multiply by 10.. i.e the number 680 * of ticks in a slot) map it to our limited 681 * space wheel. 682 */ 683 return (cts_in_wticks % NUM_OF_HPTSI_SLOTS); 684 } 685 686 static inline int 687 hpts_slots_diff(int prev_slot, int slot_now) 688 { 689 /* 690 * Given two slots that are someplace 691 * on our wheel. How far are they apart? 692 */ 693 if (slot_now > prev_slot) 694 return (slot_now - prev_slot); 695 else if (slot_now == prev_slot) 696 /* 697 * Special case, same means we can go all of our 698 * wheel less one slot. 699 */ 700 return (NUM_OF_HPTSI_SLOTS - 1); 701 else 702 return ((NUM_OF_HPTSI_SLOTS - prev_slot) + slot_now); 703 } 704 705 /* 706 * Given a slot on the wheel that is the current time 707 * mapped to the wheel (wheel_slot), what is the maximum 708 * distance forward that can be obtained without 709 * wrapping past either prev_slot or running_slot 710 * depending on the htps state? Also if passed 711 * a uint32_t *, fill it with the slot location. 712 * 713 * Note if you do not give this function the current 714 * time (that you think it is) mapped to the wheel slot 715 * then the results will not be what you expect and 716 * could lead to invalid inserts. 717 */ 718 static inline int32_t 719 max_slots_available(struct tcp_hpts_entry *hpts, uint32_t wheel_slot, uint32_t *target_slot) 720 { 721 uint32_t dis_to_travel, end_slot, pacer_to_now, avail_on_wheel; 722 723 if ((hpts->p_hpts_active == 1) && 724 (hpts->p_wheel_complete == 0)) { 725 end_slot = hpts->p_runningslot; 726 /* Back up one tick */ 727 if (end_slot == 0) 728 end_slot = NUM_OF_HPTSI_SLOTS - 1; 729 else 730 end_slot--; 731 if (target_slot) 732 *target_slot = end_slot; 733 } else { 734 /* 735 * For the case where we are 736 * not active, or we have 737 * completed the pass over 738 * the wheel, we can use the 739 * prev tick and subtract one from it. This puts us 740 * as far out as possible on the wheel. 741 */ 742 end_slot = hpts->p_prev_slot; 743 if (end_slot == 0) 744 end_slot = NUM_OF_HPTSI_SLOTS - 1; 745 else 746 end_slot--; 747 if (target_slot) 748 *target_slot = end_slot; 749 /* 750 * Now we have close to the full wheel left minus the 751 * time it has been since the pacer went to sleep. Note 752 * that wheel_tick, passed in, should be the current time 753 * from the perspective of the caller, mapped to the wheel. 754 */ 755 if (hpts->p_prev_slot != wheel_slot) 756 dis_to_travel = hpts_slots_diff(hpts->p_prev_slot, wheel_slot); 757 else 758 dis_to_travel = 1; 759 /* 760 * dis_to_travel in this case is the space from when the 761 * pacer stopped (p_prev_slot) and where our wheel_slot 762 * is now. To know how many slots we can put it in we 763 * subtract from the wheel size. We would not want 764 * to place something after p_prev_slot or it will 765 * get ran too soon. 766 */ 767 return (NUM_OF_HPTSI_SLOTS - dis_to_travel); 768 } 769 /* 770 * So how many slots are open between p_runningslot -> p_cur_slot 771 * that is what is currently un-available for insertion. Special 772 * case when we are at the last slot, this gets 1, so that 773 * the answer to how many slots are available is all but 1. 774 */ 775 if (hpts->p_runningslot == hpts->p_cur_slot) 776 dis_to_travel = 1; 777 else 778 dis_to_travel = hpts_slots_diff(hpts->p_runningslot, hpts->p_cur_slot); 779 /* 780 * How long has the pacer been running? 781 */ 782 if (hpts->p_cur_slot != wheel_slot) { 783 /* The pacer is a bit late */ 784 pacer_to_now = hpts_slots_diff(hpts->p_cur_slot, wheel_slot); 785 } else { 786 /* The pacer is right on time, now == pacers start time */ 787 pacer_to_now = 0; 788 } 789 /* 790 * To get the number left we can insert into we simply 791 * subtract the distance the pacer has to run from how 792 * many slots there are. 793 */ 794 avail_on_wheel = NUM_OF_HPTSI_SLOTS - dis_to_travel; 795 /* 796 * Now how many of those we will eat due to the pacer's 797 * time (p_cur_slot) of start being behind the 798 * real time (wheel_slot)? 799 */ 800 if (avail_on_wheel <= pacer_to_now) { 801 /* 802 * Wheel wrap, we can't fit on the wheel, that 803 * is unusual the system must be way overloaded! 804 * Insert into the assured slot, and return special 805 * "0". 806 */ 807 counter_u64_add(combined_wheel_wrap, 1); 808 if (target_slot) 809 *target_slot = hpts->p_nxt_slot; 810 return (0); 811 } else { 812 /* 813 * We know how many slots are open 814 * on the wheel (the reverse of what 815 * is left to run. Take away the time 816 * the pacer started to now (wheel_slot) 817 * and that tells you how many slots are 818 * open that can be inserted into that won't 819 * be touched by the pacer until later. 820 */ 821 return (avail_on_wheel - pacer_to_now); 822 } 823 } 824 825 826 #ifdef INVARIANTS 827 static void 828 check_if_slot_would_be_wrong(struct tcp_hpts_entry *hpts, struct tcpcb *tp, 829 uint32_t hptsslot, int line) 830 { 831 /* 832 * Sanity checks for the pacer with invariants 833 * on insert. 834 */ 835 KASSERT(hptsslot < NUM_OF_HPTSI_SLOTS, 836 ("hpts:%p tp:%p slot:%d > max", hpts, tp, hptsslot)); 837 if ((hpts->p_hpts_active) && 838 (hpts->p_wheel_complete == 0)) { 839 /* 840 * If the pacer is processing a arc 841 * of the wheel, we need to make 842 * sure we are not inserting within 843 * that arc. 844 */ 845 int distance, yet_to_run; 846 847 distance = hpts_slots_diff(hpts->p_runningslot, hptsslot); 848 if (hpts->p_runningslot != hpts->p_cur_slot) 849 yet_to_run = hpts_slots_diff(hpts->p_runningslot, hpts->p_cur_slot); 850 else 851 yet_to_run = 0; /* processing last slot */ 852 KASSERT(yet_to_run <= distance, ("hpts:%p tp:%p slot:%d " 853 "distance:%d yet_to_run:%d rs:%d cs:%d", hpts, tp, 854 hptsslot, distance, yet_to_run, hpts->p_runningslot, 855 hpts->p_cur_slot)); 856 } 857 } 858 #endif 859 860 uint32_t 861 tcp_hpts_insert_diag(struct tcpcb *tp, uint32_t slot, int32_t line, struct hpts_diag *diag) 862 { 863 struct tcp_hpts_entry *hpts; 864 struct timeval tv; 865 uint32_t slot_on, wheel_cts, last_slot, need_new_to = 0; 866 int32_t wheel_slot, maxslots; 867 bool need_wakeup = false; 868 869 INP_WLOCK_ASSERT(tptoinpcb(tp)); 870 MPASS(!(tptoinpcb(tp)->inp_flags & INP_DROPPED)); 871 MPASS(!(tp->t_in_hpts == IHPTS_ONQUEUE)); 872 873 /* 874 * We now return the next-slot the hpts will be on, beyond its 875 * current run (if up) or where it was when it stopped if it is 876 * sleeping. 877 */ 878 hpts = tcp_hpts_lock(tp); 879 microuptime(&tv); 880 if (diag) { 881 memset(diag, 0, sizeof(struct hpts_diag)); 882 diag->p_hpts_active = hpts->p_hpts_active; 883 diag->p_prev_slot = hpts->p_prev_slot; 884 diag->p_runningslot = hpts->p_runningslot; 885 diag->p_nxt_slot = hpts->p_nxt_slot; 886 diag->p_cur_slot = hpts->p_cur_slot; 887 diag->p_curtick = hpts->p_curtick; 888 diag->p_lasttick = hpts->p_lasttick; 889 diag->slot_req = slot; 890 diag->p_on_min_sleep = hpts->p_on_min_sleep; 891 diag->hpts_sleep_time = hpts->p_hpts_sleep_time; 892 } 893 if (slot == 0) { 894 /* Ok we need to set it on the hpts in the current slot */ 895 tp->t_hpts_request = 0; 896 if ((hpts->p_hpts_active == 0) || (hpts->p_wheel_complete)) { 897 /* 898 * A sleeping hpts we want in next slot to run 899 * note that in this state p_prev_slot == p_cur_slot 900 */ 901 tp->t_hpts_slot = hpts_slot(hpts->p_prev_slot, 1); 902 if ((hpts->p_on_min_sleep == 0) && 903 (hpts->p_hpts_active == 0)) 904 need_wakeup = true; 905 } else 906 tp->t_hpts_slot = hpts->p_runningslot; 907 if (__predict_true(tp->t_in_hpts != IHPTS_MOVING)) 908 tcp_hpts_insert_internal(tp, hpts); 909 if (need_wakeup) { 910 /* 911 * Activate the hpts if it is sleeping and its 912 * timeout is not 1. 913 */ 914 hpts->p_direct_wake = 1; 915 tcp_wakehpts(hpts); 916 } 917 slot_on = hpts->p_nxt_slot; 918 HPTS_UNLOCK(hpts); 919 920 return (slot_on); 921 } 922 /* Get the current time relative to the wheel */ 923 wheel_cts = tcp_tv_to_hpts_slot(&tv); 924 /* Map it onto the wheel */ 925 wheel_slot = tick_to_wheel(wheel_cts); 926 /* Now what's the max we can place it at? */ 927 maxslots = max_slots_available(hpts, wheel_slot, &last_slot); 928 if (diag) { 929 diag->wheel_slot = wheel_slot; 930 diag->maxslots = maxslots; 931 diag->wheel_cts = wheel_cts; 932 } 933 if (maxslots == 0) { 934 /* The pacer is in a wheel wrap behind, yikes! */ 935 if (slot > 1) { 936 /* 937 * Reduce by 1 to prevent a forever loop in 938 * case something else is wrong. Note this 939 * probably does not hurt because the pacer 940 * if its true is so far behind we will be 941 * > 1second late calling anyway. 942 */ 943 slot--; 944 } 945 tp->t_hpts_slot = last_slot; 946 tp->t_hpts_request = slot; 947 } else if (maxslots >= slot) { 948 /* It all fits on the wheel */ 949 tp->t_hpts_request = 0; 950 tp->t_hpts_slot = hpts_slot(wheel_slot, slot); 951 } else { 952 /* It does not fit */ 953 tp->t_hpts_request = slot - maxslots; 954 tp->t_hpts_slot = last_slot; 955 } 956 if (diag) { 957 diag->slot_remaining = tp->t_hpts_request; 958 diag->inp_hptsslot = tp->t_hpts_slot; 959 } 960 #ifdef INVARIANTS 961 check_if_slot_would_be_wrong(hpts, tp, tp->t_hpts_slot, line); 962 #endif 963 if (__predict_true(tp->t_in_hpts != IHPTS_MOVING)) 964 tcp_hpts_insert_internal(tp, hpts); 965 if ((hpts->p_hpts_active == 0) && 966 (tp->t_hpts_request == 0) && 967 (hpts->p_on_min_sleep == 0)) { 968 /* 969 * The hpts is sleeping and NOT on a minimum 970 * sleep time, we need to figure out where 971 * it will wake up at and if we need to reschedule 972 * its time-out. 973 */ 974 uint32_t have_slept, yet_to_sleep; 975 976 /* Now do we need to restart the hpts's timer? */ 977 have_slept = hpts_slots_diff(hpts->p_prev_slot, wheel_slot); 978 if (have_slept < hpts->p_hpts_sleep_time) 979 yet_to_sleep = hpts->p_hpts_sleep_time - have_slept; 980 else { 981 /* We are over-due */ 982 yet_to_sleep = 0; 983 need_wakeup = 1; 984 } 985 if (diag) { 986 diag->have_slept = have_slept; 987 diag->yet_to_sleep = yet_to_sleep; 988 } 989 if (yet_to_sleep && 990 (yet_to_sleep > slot)) { 991 /* 992 * We need to reschedule the hpts's time-out. 993 */ 994 hpts->p_hpts_sleep_time = slot; 995 need_new_to = slot * HPTS_USECS_PER_SLOT; 996 } 997 } 998 /* 999 * Now how far is the hpts sleeping to? if active is 1, its 1000 * up and ticking we do nothing, otherwise we may need to 1001 * reschedule its callout if need_new_to is set from above. 1002 */ 1003 if (need_wakeup) { 1004 hpts->p_direct_wake = 1; 1005 tcp_wakehpts(hpts); 1006 if (diag) { 1007 diag->need_new_to = 0; 1008 diag->co_ret = 0xffff0000; 1009 } 1010 } else if (need_new_to) { 1011 int32_t co_ret; 1012 struct timeval tv; 1013 sbintime_t sb; 1014 1015 tv.tv_sec = 0; 1016 tv.tv_usec = 0; 1017 while (need_new_to > HPTS_USEC_IN_SEC) { 1018 tv.tv_sec++; 1019 need_new_to -= HPTS_USEC_IN_SEC; 1020 } 1021 tv.tv_usec = need_new_to; 1022 sb = tvtosbt(tv); 1023 co_ret = callout_reset_sbt_on(&hpts->co, sb, 0, 1024 hpts_timeout_swi, hpts, hpts->p_cpu, 1025 (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision))); 1026 if (diag) { 1027 diag->need_new_to = need_new_to; 1028 diag->co_ret = co_ret; 1029 } 1030 } 1031 slot_on = hpts->p_nxt_slot; 1032 HPTS_UNLOCK(hpts); 1033 1034 return (slot_on); 1035 } 1036 1037 static uint16_t 1038 hpts_cpuid(struct tcpcb *tp, int *failed) 1039 { 1040 struct inpcb *inp = tptoinpcb(tp); 1041 u_int cpuid; 1042 #ifdef NUMA 1043 struct hpts_domain_info *di; 1044 #endif 1045 1046 *failed = 0; 1047 if (tp->t_flags2 & TF2_HPTS_CPU_SET) { 1048 return (tp->t_hpts_cpu); 1049 } 1050 /* 1051 * If we are using the irq cpu set by LRO or 1052 * the driver then it overrides all other domains. 1053 */ 1054 if (tcp_use_irq_cpu) { 1055 if (tp->t_lro_cpu == HPTS_CPU_NONE) { 1056 *failed = 1; 1057 return (0); 1058 } 1059 return (tp->t_lro_cpu); 1060 } 1061 /* If one is set the other must be the same */ 1062 #ifdef RSS 1063 cpuid = rss_hash2cpuid(inp->inp_flowid, inp->inp_flowtype); 1064 if (cpuid == NETISR_CPUID_NONE) 1065 return (hpts_random_cpu()); 1066 else 1067 return (cpuid); 1068 #endif 1069 /* 1070 * We don't have a flowid -> cpuid mapping, so cheat and just map 1071 * unknown cpuids to curcpu. Not the best, but apparently better 1072 * than defaulting to swi 0. 1073 */ 1074 if (inp->inp_flowtype == M_HASHTYPE_NONE) { 1075 counter_u64_add(cpu_uses_random, 1); 1076 return (hpts_random_cpu()); 1077 } 1078 /* 1079 * Hash to a thread based on the flowid. If we are using numa, 1080 * then restrict the hash to the numa domain where the inp lives. 1081 */ 1082 1083 #ifdef NUMA 1084 if ((vm_ndomains == 1) || 1085 (inp->inp_numa_domain == M_NODOM)) { 1086 #endif 1087 cpuid = inp->inp_flowid % mp_ncpus; 1088 #ifdef NUMA 1089 } else { 1090 /* Hash into the cpu's that use that domain */ 1091 di = &hpts_domains[inp->inp_numa_domain]; 1092 cpuid = di->cpu[inp->inp_flowid % di->count]; 1093 } 1094 #endif 1095 counter_u64_add(cpu_uses_flowid, 1); 1096 return (cpuid); 1097 } 1098 1099 static void 1100 tcp_hpts_set_max_sleep(struct tcp_hpts_entry *hpts, int wrap_loop_cnt) 1101 { 1102 uint32_t t = 0, i; 1103 1104 if ((hpts->p_on_queue_cnt) && (wrap_loop_cnt < 2)) { 1105 /* 1106 * Find next slot that is occupied and use that to 1107 * be the sleep time. 1108 */ 1109 for (i = 0, t = hpts_slot(hpts->p_cur_slot, 1); i < NUM_OF_HPTSI_SLOTS; i++) { 1110 if (TAILQ_EMPTY(&hpts->p_hptss[t].head) == 0) { 1111 break; 1112 } 1113 t = (t + 1) % NUM_OF_HPTSI_SLOTS; 1114 } 1115 KASSERT((i != NUM_OF_HPTSI_SLOTS), ("Hpts:%p cnt:%d but none found", hpts, hpts->p_on_queue_cnt)); 1116 hpts->p_hpts_sleep_time = min((i + 1), hpts_sleep_max); 1117 } else { 1118 /* No one on the wheel sleep for all but 400 slots or sleep max */ 1119 hpts->p_hpts_sleep_time = hpts_sleep_max; 1120 } 1121 } 1122 1123 static int32_t 1124 tcp_hptsi(struct tcp_hpts_entry *hpts, bool from_callout) 1125 { 1126 struct tcpcb *tp; 1127 struct timeval tv; 1128 int32_t slots_to_run, i, error; 1129 int32_t loop_cnt = 0; 1130 int32_t did_prefetch = 0; 1131 int32_t prefetch_tp = 0; 1132 int32_t wrap_loop_cnt = 0; 1133 int32_t slot_pos_of_endpoint = 0; 1134 int32_t orig_exit_slot; 1135 bool completed_measure, seen_endpoint; 1136 1137 completed_measure = false; 1138 seen_endpoint = false; 1139 1140 HPTS_MTX_ASSERT(hpts); 1141 NET_EPOCH_ASSERT(); 1142 /* record previous info for any logging */ 1143 hpts->saved_lasttick = hpts->p_lasttick; 1144 hpts->saved_curtick = hpts->p_curtick; 1145 hpts->saved_curslot = hpts->p_cur_slot; 1146 hpts->saved_prev_slot = hpts->p_prev_slot; 1147 1148 hpts->p_lasttick = hpts->p_curtick; 1149 hpts->p_curtick = tcp_gethptstick(&tv); 1150 tcp_pace.cts_last_ran[hpts->p_num] = tcp_tv_to_usec(&tv); 1151 orig_exit_slot = hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick); 1152 if ((hpts->p_on_queue_cnt == 0) || 1153 (hpts->p_lasttick == hpts->p_curtick)) { 1154 /* 1155 * No time has yet passed, 1156 * or nothing to do. 1157 */ 1158 hpts->p_prev_slot = hpts->p_cur_slot; 1159 hpts->p_lasttick = hpts->p_curtick; 1160 goto no_run; 1161 } 1162 again: 1163 hpts->p_wheel_complete = 0; 1164 HPTS_MTX_ASSERT(hpts); 1165 slots_to_run = hpts_slots_diff(hpts->p_prev_slot, hpts->p_cur_slot); 1166 if (((hpts->p_curtick - hpts->p_lasttick) > (NUM_OF_HPTSI_SLOTS - 1)) && 1167 (hpts->p_on_queue_cnt != 0)) { 1168 /* 1169 * Wheel wrap is occuring, basically we 1170 * are behind and the distance between 1171 * run's has spread so much it has exceeded 1172 * the time on the wheel (1.024 seconds). This 1173 * is ugly and should NOT be happening. We 1174 * need to run the entire wheel. We last processed 1175 * p_prev_slot, so that needs to be the last slot 1176 * we run. The next slot after that should be our 1177 * reserved first slot for new, and then starts 1178 * the running position. Now the problem is the 1179 * reserved "not to yet" place does not exist 1180 * and there may be inp's in there that need 1181 * running. We can merge those into the 1182 * first slot at the head. 1183 */ 1184 wrap_loop_cnt++; 1185 hpts->p_nxt_slot = hpts_slot(hpts->p_prev_slot, 1); 1186 hpts->p_runningslot = hpts_slot(hpts->p_prev_slot, 2); 1187 /* 1188 * Adjust p_cur_slot to be where we are starting from 1189 * hopefully we will catch up (fat chance if something 1190 * is broken this bad :( ) 1191 */ 1192 hpts->p_cur_slot = hpts->p_prev_slot; 1193 /* 1194 * The next slot has guys to run too, and that would 1195 * be where we would normally start, lets move them into 1196 * the next slot (p_prev_slot + 2) so that we will 1197 * run them, the extra 10usecs of late (by being 1198 * put behind) does not really matter in this situation. 1199 */ 1200 TAILQ_FOREACH(tp, &hpts->p_hptss[hpts->p_nxt_slot].head, 1201 t_hpts) { 1202 MPASS(tp->t_hpts_slot == hpts->p_nxt_slot); 1203 MPASS(tp->t_hpts_gencnt == 1204 hpts->p_hptss[hpts->p_nxt_slot].gencnt); 1205 MPASS(tp->t_in_hpts == IHPTS_ONQUEUE); 1206 1207 /* 1208 * Update gencnt and nextslot accordingly to match 1209 * the new location. This is safe since it takes both 1210 * the INP lock and the pacer mutex to change the 1211 * t_hptsslot and t_hpts_gencnt. 1212 */ 1213 tp->t_hpts_gencnt = 1214 hpts->p_hptss[hpts->p_runningslot].gencnt; 1215 tp->t_hpts_slot = hpts->p_runningslot; 1216 } 1217 TAILQ_CONCAT(&hpts->p_hptss[hpts->p_runningslot].head, 1218 &hpts->p_hptss[hpts->p_nxt_slot].head, t_hpts); 1219 hpts->p_hptss[hpts->p_runningslot].count += 1220 hpts->p_hptss[hpts->p_nxt_slot].count; 1221 hpts->p_hptss[hpts->p_nxt_slot].count = 0; 1222 hpts->p_hptss[hpts->p_nxt_slot].gencnt++; 1223 slots_to_run = NUM_OF_HPTSI_SLOTS - 1; 1224 counter_u64_add(wheel_wrap, 1); 1225 } else { 1226 /* 1227 * Nxt slot is always one after p_runningslot though 1228 * its not used usually unless we are doing wheel wrap. 1229 */ 1230 hpts->p_nxt_slot = hpts->p_prev_slot; 1231 hpts->p_runningslot = hpts_slot(hpts->p_prev_slot, 1); 1232 } 1233 if (hpts->p_on_queue_cnt == 0) { 1234 goto no_one; 1235 } 1236 for (i = 0; i < slots_to_run; i++) { 1237 struct tcpcb *tp, *ntp; 1238 TAILQ_HEAD(, tcpcb) head = TAILQ_HEAD_INITIALIZER(head); 1239 struct hptsh *hptsh; 1240 uint32_t runningslot; 1241 1242 /* 1243 * Calculate our delay, if there are no extra ticks there 1244 * was not any (i.e. if slots_to_run == 1, no delay). 1245 */ 1246 hpts->p_delayed_by = (slots_to_run - (i + 1)) * 1247 HPTS_USECS_PER_SLOT; 1248 1249 runningslot = hpts->p_runningslot; 1250 hptsh = &hpts->p_hptss[runningslot]; 1251 TAILQ_SWAP(&head, &hptsh->head, tcpcb, t_hpts); 1252 hpts->p_on_queue_cnt -= hptsh->count; 1253 hptsh->count = 0; 1254 hptsh->gencnt++; 1255 1256 HPTS_UNLOCK(hpts); 1257 1258 TAILQ_FOREACH_SAFE(tp, &head, t_hpts, ntp) { 1259 struct inpcb *inp = tptoinpcb(tp); 1260 bool set_cpu; 1261 1262 if (ntp != NULL) { 1263 /* 1264 * If we have a next tcpcb, see if we can 1265 * prefetch it. Note this may seem 1266 * "risky" since we have no locks (other 1267 * than the previous inp) and there no 1268 * assurance that ntp was not pulled while 1269 * we were processing tp and freed. If this 1270 * occurred it could mean that either: 1271 * 1272 * a) Its NULL (which is fine we won't go 1273 * here) <or> b) Its valid (which is cool we 1274 * will prefetch it) <or> c) The inp got 1275 * freed back to the slab which was 1276 * reallocated. Then the piece of memory was 1277 * re-used and something else (not an 1278 * address) is in inp_ppcb. If that occurs 1279 * we don't crash, but take a TLB shootdown 1280 * performance hit (same as if it was NULL 1281 * and we tried to pre-fetch it). 1282 * 1283 * Considering that the likelyhood of <c> is 1284 * quite rare we will take a risk on doing 1285 * this. If performance drops after testing 1286 * we can always take this out. NB: the 1287 * kern_prefetch on amd64 actually has 1288 * protection against a bad address now via 1289 * the DMAP_() tests. This will prevent the 1290 * TLB hit, and instead if <c> occurs just 1291 * cause us to load cache with a useless 1292 * address (to us). 1293 * 1294 * XXXGL: this comment and the prefetch action 1295 * could be outdated after tp == inp change. 1296 */ 1297 kern_prefetch(ntp, &prefetch_tp); 1298 prefetch_tp = 1; 1299 } 1300 1301 /* For debugging */ 1302 if (!seen_endpoint) { 1303 seen_endpoint = true; 1304 orig_exit_slot = slot_pos_of_endpoint = 1305 runningslot; 1306 } else if (!completed_measure) { 1307 /* Record the new position */ 1308 orig_exit_slot = runningslot; 1309 } 1310 1311 INP_WLOCK(inp); 1312 if ((tp->t_flags2 & TF2_HPTS_CPU_SET) == 0) { 1313 set_cpu = true; 1314 } else { 1315 set_cpu = false; 1316 } 1317 1318 if (__predict_false(tp->t_in_hpts == IHPTS_MOVING)) { 1319 if (tp->t_hpts_slot == -1) { 1320 tp->t_in_hpts = IHPTS_NONE; 1321 if (in_pcbrele_wlocked(inp) == false) 1322 INP_WUNLOCK(inp); 1323 } else { 1324 HPTS_LOCK(hpts); 1325 tcp_hpts_insert_internal(tp, hpts); 1326 HPTS_UNLOCK(hpts); 1327 INP_WUNLOCK(inp); 1328 } 1329 continue; 1330 } 1331 1332 MPASS(tp->t_in_hpts == IHPTS_ONQUEUE); 1333 MPASS(!(inp->inp_flags & INP_DROPPED)); 1334 KASSERT(runningslot == tp->t_hpts_slot, 1335 ("Hpts:%p inp:%p slot mis-aligned %u vs %u", 1336 hpts, inp, runningslot, tp->t_hpts_slot)); 1337 1338 if (tp->t_hpts_request) { 1339 /* 1340 * This guy is deferred out further in time 1341 * then our wheel had available on it. 1342 * Push him back on the wheel or run it 1343 * depending. 1344 */ 1345 uint32_t maxslots, last_slot, remaining_slots; 1346 1347 remaining_slots = slots_to_run - (i + 1); 1348 if (tp->t_hpts_request > remaining_slots) { 1349 HPTS_LOCK(hpts); 1350 /* 1351 * How far out can we go? 1352 */ 1353 maxslots = max_slots_available(hpts, 1354 hpts->p_cur_slot, &last_slot); 1355 if (maxslots >= tp->t_hpts_request) { 1356 /* We can place it finally to 1357 * be processed. */ 1358 tp->t_hpts_slot = hpts_slot( 1359 hpts->p_runningslot, 1360 tp->t_hpts_request); 1361 tp->t_hpts_request = 0; 1362 } else { 1363 /* Work off some more time */ 1364 tp->t_hpts_slot = last_slot; 1365 tp->t_hpts_request -= 1366 maxslots; 1367 } 1368 tcp_hpts_insert_internal(tp, hpts); 1369 HPTS_UNLOCK(hpts); 1370 INP_WUNLOCK(inp); 1371 continue; 1372 } 1373 tp->t_hpts_request = 0; 1374 /* Fall through we will so do it now */ 1375 } 1376 1377 tcp_hpts_release(tp); 1378 if (set_cpu) { 1379 /* 1380 * Setup so the next time we will move to 1381 * the right CPU. This should be a rare 1382 * event. It will sometimes happens when we 1383 * are the client side (usually not the 1384 * server). Somehow tcp_output() gets called 1385 * before the tcp_do_segment() sets the 1386 * intial state. This means the r_cpu and 1387 * r_hpts_cpu is 0. We get on the hpts, and 1388 * then tcp_input() gets called setting up 1389 * the r_cpu to the correct value. The hpts 1390 * goes off and sees the mis-match. We 1391 * simply correct it here and the CPU will 1392 * switch to the new hpts nextime the tcb 1393 * gets added to the hpts (not this one) 1394 * :-) 1395 */ 1396 tcp_set_hpts(tp); 1397 } 1398 CURVNET_SET(inp->inp_vnet); 1399 /* Lets do any logging that we might want to */ 1400 tcp_hpts_log(hpts, tp, &tv, slots_to_run, i, from_callout); 1401 1402 if (tp->t_fb_ptr != NULL) { 1403 kern_prefetch(tp->t_fb_ptr, &did_prefetch); 1404 did_prefetch = 1; 1405 } 1406 /* 1407 * We set TF2_HPTS_CALLS before any possible output. 1408 * The contract with the transport is that if it cares 1409 * about hpts calling it should clear the flag. That 1410 * way next time it is called it will know it is hpts. 1411 * 1412 * We also only call tfb_do_queued_segments() <or> 1413 * tcp_output(). It is expected that if segments are 1414 * queued and come in that the final input mbuf will 1415 * cause a call to output if it is needed so we do 1416 * not need a second call to tcp_output(). So we do 1417 * one or the other but not both. 1418 * 1419 * XXXGL: some KPI abuse here. tfb_do_queued_segments 1420 * returns unlocked with positive error (always 1) and 1421 * tcp_output returns unlocked with negative error. 1422 */ 1423 tp->t_flags2 |= TF2_HPTS_CALLS; 1424 if ((tp->t_flags2 & TF2_SUPPORTS_MBUFQ) && 1425 !STAILQ_EMPTY(&tp->t_inqueue)) 1426 error = -(*tp->t_fb->tfb_do_queued_segments)(tp, 1427 0); 1428 else 1429 error = tcp_output(tp); 1430 if (__predict_true(error >= 0)) 1431 INP_WUNLOCK(inp); 1432 CURVNET_RESTORE(); 1433 } 1434 if (seen_endpoint) { 1435 /* 1436 * We now have a accurate distance between 1437 * slot_pos_of_endpoint <-> orig_exit_slot 1438 * to tell us how late we were, orig_exit_slot 1439 * is where we calculated the end of our cycle to 1440 * be when we first entered. 1441 */ 1442 completed_measure = true; 1443 } 1444 HPTS_LOCK(hpts); 1445 hpts->p_runningslot++; 1446 if (hpts->p_runningslot >= NUM_OF_HPTSI_SLOTS) { 1447 hpts->p_runningslot = 0; 1448 } 1449 } 1450 no_one: 1451 HPTS_MTX_ASSERT(hpts); 1452 hpts->p_delayed_by = 0; 1453 /* 1454 * Check to see if we took an excess amount of time and need to run 1455 * more ticks (if we did not hit eno-bufs). 1456 */ 1457 hpts->p_prev_slot = hpts->p_cur_slot; 1458 hpts->p_lasttick = hpts->p_curtick; 1459 if (!from_callout || (loop_cnt > max_pacer_loops)) { 1460 /* 1461 * Something is serious slow we have 1462 * looped through processing the wheel 1463 * and by the time we cleared the 1464 * needs to run max_pacer_loops time 1465 * we still needed to run. That means 1466 * the system is hopelessly behind and 1467 * can never catch up :( 1468 * 1469 * We will just lie to this thread 1470 * and let it thing p_curtick is 1471 * correct. When it next awakens 1472 * it will find itself further behind. 1473 */ 1474 if (from_callout) 1475 counter_u64_add(hpts_hopelessly_behind, 1); 1476 goto no_run; 1477 } 1478 hpts->p_curtick = tcp_gethptstick(&tv); 1479 hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick); 1480 if (!seen_endpoint) { 1481 /* We saw no endpoint but we may be looping */ 1482 orig_exit_slot = hpts->p_cur_slot; 1483 } 1484 if ((wrap_loop_cnt < 2) && 1485 (hpts->p_lasttick != hpts->p_curtick)) { 1486 counter_u64_add(hpts_loops, 1); 1487 loop_cnt++; 1488 goto again; 1489 } 1490 no_run: 1491 tcp_pace.cts_last_ran[hpts->p_num] = tcp_tv_to_usec(&tv); 1492 /* 1493 * Set flag to tell that we are done for 1494 * any slot input that happens during 1495 * input. 1496 */ 1497 hpts->p_wheel_complete = 1; 1498 /* 1499 * Now did we spend too long running input and need to run more ticks? 1500 * Note that if wrap_loop_cnt < 2 then we should have the conditions 1501 * in the KASSERT's true. But if the wheel is behind i.e. wrap_loop_cnt 1502 * is greater than 2, then the condtion most likely are *not* true. 1503 * Also if we are called not from the callout, we don't run the wheel 1504 * multiple times so the slots may not align either. 1505 */ 1506 KASSERT(((hpts->p_prev_slot == hpts->p_cur_slot) || 1507 (wrap_loop_cnt >= 2) || !from_callout), 1508 ("H:%p p_prev_slot:%u not equal to p_cur_slot:%u", hpts, 1509 hpts->p_prev_slot, hpts->p_cur_slot)); 1510 KASSERT(((hpts->p_lasttick == hpts->p_curtick) 1511 || (wrap_loop_cnt >= 2) || !from_callout), 1512 ("H:%p p_lasttick:%u not equal to p_curtick:%u", hpts, 1513 hpts->p_lasttick, hpts->p_curtick)); 1514 if (from_callout && (hpts->p_lasttick != hpts->p_curtick)) { 1515 hpts->p_curtick = tcp_gethptstick(&tv); 1516 counter_u64_add(hpts_loops, 1); 1517 hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick); 1518 goto again; 1519 } 1520 1521 if (from_callout) { 1522 tcp_hpts_set_max_sleep(hpts, wrap_loop_cnt); 1523 } 1524 if (seen_endpoint) 1525 return(hpts_slots_diff(slot_pos_of_endpoint, orig_exit_slot)); 1526 else 1527 return (0); 1528 } 1529 1530 void 1531 tcp_set_hpts(struct tcpcb *tp) 1532 { 1533 struct tcp_hpts_entry *hpts; 1534 int failed; 1535 1536 INP_WLOCK_ASSERT(tptoinpcb(tp)); 1537 1538 hpts = tcp_hpts_lock(tp); 1539 if (tp->t_in_hpts == IHPTS_NONE && !(tp->t_flags2 & TF2_HPTS_CPU_SET)) { 1540 tp->t_hpts_cpu = hpts_cpuid(tp, &failed); 1541 if (failed == 0) 1542 tp->t_flags2 |= TF2_HPTS_CPU_SET; 1543 } 1544 HPTS_UNLOCK(hpts); 1545 } 1546 1547 static struct tcp_hpts_entry * 1548 tcp_choose_hpts_to_run(void) 1549 { 1550 int i, oldest_idx, start, end; 1551 uint32_t cts, time_since_ran, calc; 1552 1553 cts = tcp_get_usecs(NULL); 1554 time_since_ran = 0; 1555 /* Default is all one group */ 1556 start = 0; 1557 end = tcp_pace.rp_num_hptss; 1558 /* 1559 * If we have more than one L3 group figure out which one 1560 * this CPU is in. 1561 */ 1562 if (tcp_pace.grp_cnt > 1) { 1563 for (i = 0; i < tcp_pace.grp_cnt; i++) { 1564 if (CPU_ISSET(curcpu, &tcp_pace.grps[i]->cg_mask)) { 1565 start = tcp_pace.grps[i]->cg_first; 1566 end = (tcp_pace.grps[i]->cg_last + 1); 1567 break; 1568 } 1569 } 1570 } 1571 oldest_idx = -1; 1572 for (i = start; i < end; i++) { 1573 if (TSTMP_GT(cts, tcp_pace.cts_last_ran[i])) 1574 calc = cts - tcp_pace.cts_last_ran[i]; 1575 else 1576 calc = 0; 1577 if (calc > time_since_ran) { 1578 oldest_idx = i; 1579 time_since_ran = calc; 1580 } 1581 } 1582 if (oldest_idx >= 0) 1583 return(tcp_pace.rp_ent[oldest_idx]); 1584 else 1585 return(tcp_pace.rp_ent[(curcpu % tcp_pace.rp_num_hptss)]); 1586 } 1587 1588 static void 1589 __tcp_run_hpts(void) 1590 { 1591 struct epoch_tracker et; 1592 struct tcp_hpts_entry *hpts; 1593 int ticks_ran; 1594 1595 hpts = tcp_choose_hpts_to_run(); 1596 1597 if (hpts->p_hpts_active) { 1598 /* Already active */ 1599 return; 1600 } 1601 if (!HPTS_TRYLOCK(hpts)) { 1602 /* Someone else got the lock */ 1603 return; 1604 } 1605 NET_EPOCH_ENTER(et); 1606 if (hpts->p_hpts_active) 1607 goto out_with_mtx; 1608 hpts->syscall_cnt++; 1609 counter_u64_add(hpts_direct_call, 1); 1610 hpts->p_hpts_active = 1; 1611 ticks_ran = tcp_hptsi(hpts, false); 1612 /* We may want to adjust the sleep values here */ 1613 if (hpts->p_on_queue_cnt >= conn_cnt_thresh) { 1614 if (ticks_ran > slots_indicate_less_sleep) { 1615 struct timeval tv; 1616 sbintime_t sb; 1617 1618 hpts->p_mysleep.tv_usec /= 2; 1619 if (hpts->p_mysleep.tv_usec < dynamic_min_sleep) 1620 hpts->p_mysleep.tv_usec = dynamic_min_sleep; 1621 /* Reschedule with new to value */ 1622 tcp_hpts_set_max_sleep(hpts, 0); 1623 tv.tv_sec = 0; 1624 tv.tv_usec = hpts->p_hpts_sleep_time * HPTS_USECS_PER_SLOT; 1625 /* Validate its in the right ranges */ 1626 if (tv.tv_usec < hpts->p_mysleep.tv_usec) { 1627 hpts->overidden_sleep = tv.tv_usec; 1628 tv.tv_usec = hpts->p_mysleep.tv_usec; 1629 } else if (tv.tv_usec > dynamic_max_sleep) { 1630 /* Lets not let sleep get above this value */ 1631 hpts->overidden_sleep = tv.tv_usec; 1632 tv.tv_usec = dynamic_max_sleep; 1633 } 1634 /* 1635 * In this mode the timer is a backstop to 1636 * all the userret/lro_flushes so we use 1637 * the dynamic value and set the on_min_sleep 1638 * flag so we will not be awoken. 1639 */ 1640 sb = tvtosbt(tv); 1641 /* Store off to make visible the actual sleep time */ 1642 hpts->sleeping = tv.tv_usec; 1643 callout_reset_sbt_on(&hpts->co, sb, 0, 1644 hpts_timeout_swi, hpts, hpts->p_cpu, 1645 (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision))); 1646 } else if (ticks_ran < slots_indicate_more_sleep) { 1647 /* For the further sleep, don't reschedule hpts */ 1648 hpts->p_mysleep.tv_usec *= 2; 1649 if (hpts->p_mysleep.tv_usec > dynamic_max_sleep) 1650 hpts->p_mysleep.tv_usec = dynamic_max_sleep; 1651 } 1652 hpts->p_on_min_sleep = 1; 1653 } 1654 hpts->p_hpts_active = 0; 1655 out_with_mtx: 1656 HPTS_UNLOCK(hpts); 1657 NET_EPOCH_EXIT(et); 1658 } 1659 1660 static void 1661 tcp_hpts_thread(void *ctx) 1662 { 1663 struct tcp_hpts_entry *hpts; 1664 struct epoch_tracker et; 1665 struct timeval tv; 1666 sbintime_t sb; 1667 int ticks_ran; 1668 1669 hpts = (struct tcp_hpts_entry *)ctx; 1670 HPTS_LOCK(hpts); 1671 if (hpts->p_direct_wake) { 1672 /* Signaled by input or output with low occupancy count. */ 1673 callout_stop(&hpts->co); 1674 counter_u64_add(hpts_direct_awakening, 1); 1675 } else { 1676 /* Timed out, the normal case. */ 1677 counter_u64_add(hpts_wake_timeout, 1); 1678 if (callout_pending(&hpts->co) || 1679 !callout_active(&hpts->co)) { 1680 HPTS_UNLOCK(hpts); 1681 return; 1682 } 1683 } 1684 callout_deactivate(&hpts->co); 1685 hpts->p_hpts_wake_scheduled = 0; 1686 NET_EPOCH_ENTER(et); 1687 if (hpts->p_hpts_active) { 1688 /* 1689 * We are active already. This means that a syscall 1690 * trap or LRO is running in behalf of hpts. In that case 1691 * we need to double our timeout since there seems to be 1692 * enough activity in the system that we don't need to 1693 * run as often (if we were not directly woken). 1694 */ 1695 tv.tv_sec = 0; 1696 if (hpts->p_direct_wake == 0) { 1697 counter_u64_add(hpts_back_tosleep, 1); 1698 if (hpts->p_on_queue_cnt >= conn_cnt_thresh) { 1699 hpts->p_mysleep.tv_usec *= 2; 1700 if (hpts->p_mysleep.tv_usec > dynamic_max_sleep) 1701 hpts->p_mysleep.tv_usec = dynamic_max_sleep; 1702 tv.tv_usec = hpts->p_mysleep.tv_usec; 1703 hpts->p_on_min_sleep = 1; 1704 } else { 1705 /* 1706 * Here we have low count on the wheel, but 1707 * somehow we still collided with one of the 1708 * connections. Lets go back to sleep for a 1709 * min sleep time, but clear the flag so we 1710 * can be awoken by insert. 1711 */ 1712 hpts->p_on_min_sleep = 0; 1713 tv.tv_usec = tcp_min_hptsi_time; 1714 } 1715 } else { 1716 /* 1717 * Directly woken most likely to reset the 1718 * callout time. 1719 */ 1720 tv.tv_usec = hpts->p_mysleep.tv_usec; 1721 } 1722 goto back_to_sleep; 1723 } 1724 hpts->sleeping = 0; 1725 hpts->p_hpts_active = 1; 1726 ticks_ran = tcp_hptsi(hpts, true); 1727 tv.tv_sec = 0; 1728 tv.tv_usec = hpts->p_hpts_sleep_time * HPTS_USECS_PER_SLOT; 1729 if ((hpts->p_on_queue_cnt > conn_cnt_thresh) && (hpts->hit_callout_thresh == 0)) { 1730 hpts->hit_callout_thresh = 1; 1731 atomic_add_int(&hpts_that_need_softclock, 1); 1732 } else if ((hpts->p_on_queue_cnt <= conn_cnt_thresh) && (hpts->hit_callout_thresh == 1)) { 1733 hpts->hit_callout_thresh = 0; 1734 atomic_subtract_int(&hpts_that_need_softclock, 1); 1735 } 1736 if (hpts->p_on_queue_cnt >= conn_cnt_thresh) { 1737 if(hpts->p_direct_wake == 0) { 1738 /* 1739 * Only adjust sleep time if we were 1740 * called from the callout i.e. direct_wake == 0. 1741 */ 1742 if (ticks_ran < slots_indicate_more_sleep) { 1743 hpts->p_mysleep.tv_usec *= 2; 1744 if (hpts->p_mysleep.tv_usec > dynamic_max_sleep) 1745 hpts->p_mysleep.tv_usec = dynamic_max_sleep; 1746 } else if (ticks_ran > slots_indicate_less_sleep) { 1747 hpts->p_mysleep.tv_usec /= 2; 1748 if (hpts->p_mysleep.tv_usec < dynamic_min_sleep) 1749 hpts->p_mysleep.tv_usec = dynamic_min_sleep; 1750 } 1751 } 1752 if (tv.tv_usec < hpts->p_mysleep.tv_usec) { 1753 hpts->overidden_sleep = tv.tv_usec; 1754 tv.tv_usec = hpts->p_mysleep.tv_usec; 1755 } else if (tv.tv_usec > dynamic_max_sleep) { 1756 /* Lets not let sleep get above this value */ 1757 hpts->overidden_sleep = tv.tv_usec; 1758 tv.tv_usec = dynamic_max_sleep; 1759 } 1760 /* 1761 * In this mode the timer is a backstop to 1762 * all the userret/lro_flushes so we use 1763 * the dynamic value and set the on_min_sleep 1764 * flag so we will not be awoken. 1765 */ 1766 hpts->p_on_min_sleep = 1; 1767 } else if (hpts->p_on_queue_cnt == 0) { 1768 /* 1769 * No one on the wheel, please wake us up 1770 * if you insert on the wheel. 1771 */ 1772 hpts->p_on_min_sleep = 0; 1773 hpts->overidden_sleep = 0; 1774 } else { 1775 /* 1776 * We hit here when we have a low number of 1777 * clients on the wheel (our else clause). 1778 * We may need to go on min sleep, if we set 1779 * the flag we will not be awoken if someone 1780 * is inserted ahead of us. Clearing the flag 1781 * means we can be awoken. This is "old mode" 1782 * where the timer is what runs hpts mainly. 1783 */ 1784 if (tv.tv_usec < tcp_min_hptsi_time) { 1785 /* 1786 * Yes on min sleep, which means 1787 * we cannot be awoken. 1788 */ 1789 hpts->overidden_sleep = tv.tv_usec; 1790 tv.tv_usec = tcp_min_hptsi_time; 1791 hpts->p_on_min_sleep = 1; 1792 } else { 1793 /* Clear the min sleep flag */ 1794 hpts->overidden_sleep = 0; 1795 hpts->p_on_min_sleep = 0; 1796 } 1797 } 1798 HPTS_MTX_ASSERT(hpts); 1799 hpts->p_hpts_active = 0; 1800 back_to_sleep: 1801 hpts->p_direct_wake = 0; 1802 sb = tvtosbt(tv); 1803 /* Store off to make visible the actual sleep time */ 1804 hpts->sleeping = tv.tv_usec; 1805 callout_reset_sbt_on(&hpts->co, sb, 0, 1806 hpts_timeout_swi, hpts, hpts->p_cpu, 1807 (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision))); 1808 NET_EPOCH_EXIT(et); 1809 HPTS_UNLOCK(hpts); 1810 } 1811 1812 #undef timersub 1813 1814 static int32_t 1815 hpts_count_level(struct cpu_group *cg) 1816 { 1817 int32_t count_l3, i; 1818 1819 count_l3 = 0; 1820 if (cg->cg_level == CG_SHARE_L3) 1821 count_l3++; 1822 /* Walk all the children looking for L3 */ 1823 for (i = 0; i < cg->cg_children; i++) { 1824 count_l3 += hpts_count_level(&cg->cg_child[i]); 1825 } 1826 return (count_l3); 1827 } 1828 1829 static void 1830 hpts_gather_grps(struct cpu_group **grps, int32_t *at, int32_t max, struct cpu_group *cg) 1831 { 1832 int32_t idx, i; 1833 1834 idx = *at; 1835 if (cg->cg_level == CG_SHARE_L3) { 1836 grps[idx] = cg; 1837 idx++; 1838 if (idx == max) { 1839 *at = idx; 1840 return; 1841 } 1842 } 1843 *at = idx; 1844 /* Walk all the children looking for L3 */ 1845 for (i = 0; i < cg->cg_children; i++) { 1846 hpts_gather_grps(grps, at, max, &cg->cg_child[i]); 1847 } 1848 } 1849 1850 static void 1851 tcp_hpts_mod_load(void) 1852 { 1853 struct cpu_group *cpu_top; 1854 int32_t error __diagused; 1855 int32_t i, j, bound = 0, created = 0; 1856 size_t sz, asz; 1857 struct timeval tv; 1858 sbintime_t sb; 1859 struct tcp_hpts_entry *hpts; 1860 struct pcpu *pc; 1861 char unit[16]; 1862 uint32_t ncpus = mp_ncpus ? mp_ncpus : MAXCPU; 1863 int count, domain; 1864 1865 #ifdef SMP 1866 cpu_top = smp_topo(); 1867 #else 1868 cpu_top = NULL; 1869 #endif 1870 tcp_pace.rp_num_hptss = ncpus; 1871 hpts_hopelessly_behind = counter_u64_alloc(M_WAITOK); 1872 hpts_loops = counter_u64_alloc(M_WAITOK); 1873 back_tosleep = counter_u64_alloc(M_WAITOK); 1874 combined_wheel_wrap = counter_u64_alloc(M_WAITOK); 1875 wheel_wrap = counter_u64_alloc(M_WAITOK); 1876 hpts_wake_timeout = counter_u64_alloc(M_WAITOK); 1877 hpts_direct_awakening = counter_u64_alloc(M_WAITOK); 1878 hpts_back_tosleep = counter_u64_alloc(M_WAITOK); 1879 hpts_direct_call = counter_u64_alloc(M_WAITOK); 1880 cpu_uses_flowid = counter_u64_alloc(M_WAITOK); 1881 cpu_uses_random = counter_u64_alloc(M_WAITOK); 1882 1883 sz = (tcp_pace.rp_num_hptss * sizeof(struct tcp_hpts_entry *)); 1884 tcp_pace.rp_ent = malloc(sz, M_TCPHPTS, M_WAITOK | M_ZERO); 1885 sz = (sizeof(uint32_t) * tcp_pace.rp_num_hptss); 1886 tcp_pace.cts_last_ran = malloc(sz, M_TCPHPTS, M_WAITOK); 1887 tcp_pace.grp_cnt = 0; 1888 if (cpu_top == NULL) { 1889 tcp_pace.grp_cnt = 1; 1890 } else { 1891 /* Find out how many cache level 3 domains we have */ 1892 count = 0; 1893 tcp_pace.grp_cnt = hpts_count_level(cpu_top); 1894 if (tcp_pace.grp_cnt == 0) { 1895 tcp_pace.grp_cnt = 1; 1896 } 1897 sz = (tcp_pace.grp_cnt * sizeof(struct cpu_group *)); 1898 tcp_pace.grps = malloc(sz, M_TCPHPTS, M_WAITOK); 1899 /* Now populate the groups */ 1900 if (tcp_pace.grp_cnt == 1) { 1901 /* 1902 * All we need is the top level all cpu's are in 1903 * the same cache so when we use grp[0]->cg_mask 1904 * with the cg_first <-> cg_last it will include 1905 * all cpu's in it. The level here is probably 1906 * zero which is ok. 1907 */ 1908 tcp_pace.grps[0] = cpu_top; 1909 } else { 1910 /* 1911 * Here we must find all the level three cache domains 1912 * and setup our pointers to them. 1913 */ 1914 count = 0; 1915 hpts_gather_grps(tcp_pace.grps, &count, tcp_pace.grp_cnt, cpu_top); 1916 } 1917 } 1918 asz = sizeof(struct hptsh) * NUM_OF_HPTSI_SLOTS; 1919 for (i = 0; i < tcp_pace.rp_num_hptss; i++) { 1920 tcp_pace.rp_ent[i] = malloc(sizeof(struct tcp_hpts_entry), 1921 M_TCPHPTS, M_WAITOK | M_ZERO); 1922 tcp_pace.rp_ent[i]->p_hptss = malloc(asz, M_TCPHPTS, M_WAITOK); 1923 hpts = tcp_pace.rp_ent[i]; 1924 /* 1925 * Init all the hpts structures that are not specifically 1926 * zero'd by the allocations. Also lets attach them to the 1927 * appropriate sysctl block as well. 1928 */ 1929 mtx_init(&hpts->p_mtx, "tcp_hpts_lck", 1930 "hpts", MTX_DEF | MTX_DUPOK); 1931 for (j = 0; j < NUM_OF_HPTSI_SLOTS; j++) { 1932 TAILQ_INIT(&hpts->p_hptss[j].head); 1933 hpts->p_hptss[j].count = 0; 1934 hpts->p_hptss[j].gencnt = 0; 1935 } 1936 sysctl_ctx_init(&hpts->hpts_ctx); 1937 sprintf(unit, "%d", i); 1938 hpts->hpts_root = SYSCTL_ADD_NODE(&hpts->hpts_ctx, 1939 SYSCTL_STATIC_CHILDREN(_net_inet_tcp_hpts), 1940 OID_AUTO, 1941 unit, 1942 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 1943 ""); 1944 SYSCTL_ADD_INT(&hpts->hpts_ctx, 1945 SYSCTL_CHILDREN(hpts->hpts_root), 1946 OID_AUTO, "out_qcnt", CTLFLAG_RD, 1947 &hpts->p_on_queue_cnt, 0, 1948 "Count TCB's awaiting output processing"); 1949 SYSCTL_ADD_U16(&hpts->hpts_ctx, 1950 SYSCTL_CHILDREN(hpts->hpts_root), 1951 OID_AUTO, "active", CTLFLAG_RD, 1952 &hpts->p_hpts_active, 0, 1953 "Is the hpts active"); 1954 SYSCTL_ADD_UINT(&hpts->hpts_ctx, 1955 SYSCTL_CHILDREN(hpts->hpts_root), 1956 OID_AUTO, "curslot", CTLFLAG_RD, 1957 &hpts->p_cur_slot, 0, 1958 "What the current running pacers goal"); 1959 SYSCTL_ADD_UINT(&hpts->hpts_ctx, 1960 SYSCTL_CHILDREN(hpts->hpts_root), 1961 OID_AUTO, "runtick", CTLFLAG_RD, 1962 &hpts->p_runningslot, 0, 1963 "What the running pacers current slot is"); 1964 SYSCTL_ADD_UINT(&hpts->hpts_ctx, 1965 SYSCTL_CHILDREN(hpts->hpts_root), 1966 OID_AUTO, "curtick", CTLFLAG_RD, 1967 &hpts->p_curtick, 0, 1968 "What the running pacers last tick mapped to the wheel was"); 1969 SYSCTL_ADD_UINT(&hpts->hpts_ctx, 1970 SYSCTL_CHILDREN(hpts->hpts_root), 1971 OID_AUTO, "lastran", CTLFLAG_RD, 1972 &tcp_pace.cts_last_ran[i], 0, 1973 "The last usec tick that this hpts ran"); 1974 SYSCTL_ADD_LONG(&hpts->hpts_ctx, 1975 SYSCTL_CHILDREN(hpts->hpts_root), 1976 OID_AUTO, "cur_min_sleep", CTLFLAG_RD, 1977 &hpts->p_mysleep.tv_usec, 1978 "What the running pacers is using for p_mysleep.tv_usec"); 1979 SYSCTL_ADD_U64(&hpts->hpts_ctx, 1980 SYSCTL_CHILDREN(hpts->hpts_root), 1981 OID_AUTO, "now_sleeping", CTLFLAG_RD, 1982 &hpts->sleeping, 0, 1983 "What the running pacers is actually sleeping for"); 1984 SYSCTL_ADD_U64(&hpts->hpts_ctx, 1985 SYSCTL_CHILDREN(hpts->hpts_root), 1986 OID_AUTO, "syscall_cnt", CTLFLAG_RD, 1987 &hpts->syscall_cnt, 0, 1988 "How many times we had syscalls on this hpts"); 1989 1990 hpts->p_hpts_sleep_time = hpts_sleep_max; 1991 hpts->p_num = i; 1992 hpts->p_curtick = tcp_gethptstick(&tv); 1993 tcp_pace.cts_last_ran[i] = tcp_tv_to_usec(&tv); 1994 hpts->p_prev_slot = hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick); 1995 hpts->p_cpu = 0xffff; 1996 hpts->p_nxt_slot = hpts_slot(hpts->p_cur_slot, 1); 1997 callout_init(&hpts->co, 1); 1998 } 1999 /* Don't try to bind to NUMA domains if we don't have any */ 2000 if (vm_ndomains == 1 && tcp_bind_threads == 2) 2001 tcp_bind_threads = 0; 2002 2003 /* 2004 * Now lets start ithreads to handle the hptss. 2005 */ 2006 for (i = 0; i < tcp_pace.rp_num_hptss; i++) { 2007 hpts = tcp_pace.rp_ent[i]; 2008 hpts->p_cpu = i; 2009 2010 error = swi_add(&hpts->ie, "hpts", 2011 tcp_hpts_thread, (void *)hpts, 2012 SWI_NET, INTR_MPSAFE, &hpts->ie_cookie); 2013 KASSERT(error == 0, 2014 ("Can't add hpts:%p i:%d err:%d", 2015 hpts, i, error)); 2016 created++; 2017 hpts->p_mysleep.tv_sec = 0; 2018 hpts->p_mysleep.tv_usec = tcp_min_hptsi_time; 2019 if (tcp_bind_threads == 1) { 2020 if (intr_event_bind(hpts->ie, i) == 0) 2021 bound++; 2022 } else if (tcp_bind_threads == 2) { 2023 /* Find the group for this CPU (i) and bind into it */ 2024 for (j = 0; j < tcp_pace.grp_cnt; j++) { 2025 if (CPU_ISSET(i, &tcp_pace.grps[j]->cg_mask)) { 2026 if (intr_event_bind_ithread_cpuset(hpts->ie, 2027 &tcp_pace.grps[j]->cg_mask) == 0) { 2028 bound++; 2029 pc = pcpu_find(i); 2030 domain = pc->pc_domain; 2031 count = hpts_domains[domain].count; 2032 hpts_domains[domain].cpu[count] = i; 2033 hpts_domains[domain].count++; 2034 break; 2035 } 2036 } 2037 } 2038 } 2039 tv.tv_sec = 0; 2040 tv.tv_usec = hpts->p_hpts_sleep_time * HPTS_USECS_PER_SLOT; 2041 hpts->sleeping = tv.tv_usec; 2042 sb = tvtosbt(tv); 2043 callout_reset_sbt_on(&hpts->co, sb, 0, 2044 hpts_timeout_swi, hpts, hpts->p_cpu, 2045 (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision))); 2046 } 2047 /* 2048 * If we somehow have an empty domain, fall back to choosing 2049 * among all htps threads. 2050 */ 2051 for (i = 0; i < vm_ndomains; i++) { 2052 if (hpts_domains[i].count == 0) { 2053 tcp_bind_threads = 0; 2054 break; 2055 } 2056 } 2057 tcp_hpts_softclock = __tcp_run_hpts; 2058 tcp_lro_hpts_init(); 2059 printf("TCP Hpts created %d swi interrupt threads and bound %d to %s\n", 2060 created, bound, 2061 tcp_bind_threads == 2 ? "NUMA domains" : "cpus"); 2062 } 2063 2064 static void 2065 tcp_hpts_mod_unload(void) 2066 { 2067 int rv __diagused; 2068 2069 tcp_lro_hpts_uninit(); 2070 atomic_store_ptr(&tcp_hpts_softclock, NULL); 2071 2072 for (int i = 0; i < tcp_pace.rp_num_hptss; i++) { 2073 struct tcp_hpts_entry *hpts = tcp_pace.rp_ent[i]; 2074 2075 rv = callout_drain(&hpts->co); 2076 MPASS(rv != 0); 2077 2078 rv = swi_remove(hpts->ie_cookie); 2079 MPASS(rv == 0); 2080 2081 rv = sysctl_ctx_free(&hpts->hpts_ctx); 2082 MPASS(rv == 0); 2083 2084 mtx_destroy(&hpts->p_mtx); 2085 free(hpts->p_hptss, M_TCPHPTS); 2086 free(hpts, M_TCPHPTS); 2087 } 2088 2089 free(tcp_pace.rp_ent, M_TCPHPTS); 2090 free(tcp_pace.cts_last_ran, M_TCPHPTS); 2091 #ifdef SMP 2092 free(tcp_pace.grps, M_TCPHPTS); 2093 #endif 2094 2095 counter_u64_free(hpts_hopelessly_behind); 2096 counter_u64_free(hpts_loops); 2097 counter_u64_free(back_tosleep); 2098 counter_u64_free(combined_wheel_wrap); 2099 counter_u64_free(wheel_wrap); 2100 counter_u64_free(hpts_wake_timeout); 2101 counter_u64_free(hpts_direct_awakening); 2102 counter_u64_free(hpts_back_tosleep); 2103 counter_u64_free(hpts_direct_call); 2104 counter_u64_free(cpu_uses_flowid); 2105 counter_u64_free(cpu_uses_random); 2106 } 2107 2108 static int 2109 tcp_hpts_modevent(module_t mod, int what, void *arg) 2110 { 2111 2112 switch (what) { 2113 case MOD_LOAD: 2114 tcp_hpts_mod_load(); 2115 return (0); 2116 case MOD_QUIESCE: 2117 /* 2118 * Since we are a dependency of TCP stack modules, they should 2119 * already be unloaded, and the HPTS ring is empty. However, 2120 * function pointer manipulations aren't 100% safe. Although, 2121 * tcp_hpts_mod_unload() use atomic(9) the userret() doesn't. 2122 * Thus, allow only forced unload of HPTS. 2123 */ 2124 return (EBUSY); 2125 case MOD_UNLOAD: 2126 tcp_hpts_mod_unload(); 2127 return (0); 2128 default: 2129 return (EINVAL); 2130 }; 2131 } 2132 2133 static moduledata_t tcp_hpts_module = { 2134 .name = "tcphpts", 2135 .evhand = tcp_hpts_modevent, 2136 }; 2137 2138 DECLARE_MODULE(tcphpts, tcp_hpts_module, SI_SUB_SOFTINTR, SI_ORDER_ANY); 2139 MODULE_VERSION(tcphpts, 1); 2140