1 /*- 2 * Copyright (c) 2016-2018 Netflix, Inc. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 1. Redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer. 9 * 2. Redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution. 12 * 13 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 14 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 16 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 17 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 18 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 19 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 20 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 21 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 22 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 23 * SUCH DAMAGE. 24 * 25 */ 26 #include <sys/cdefs.h> 27 __FBSDID("$FreeBSD$"); 28 29 #include "opt_inet.h" 30 #include "opt_inet6.h" 31 #include "opt_rss.h" 32 #include "opt_tcpdebug.h" 33 34 /** 35 * Some notes about usage. 36 * 37 * The tcp_hpts system is designed to provide a high precision timer 38 * system for tcp. Its main purpose is to provide a mechanism for 39 * pacing packets out onto the wire. It can be used in two ways 40 * by a given TCP stack (and those two methods can be used simultaneously). 41 * 42 * First, and probably the main thing its used by Rack and BBR, it can 43 * be used to call tcp_output() of a transport stack at some time in the future. 44 * The normal way this is done is that tcp_output() of the stack schedules 45 * itself to be called again by calling tcp_hpts_insert(tcpcb, slot). The 46 * slot is the time from now that the stack wants to be called but it 47 * must be converted to tcp_hpts's notion of slot. This is done with 48 * one of the macros HPTS_MS_TO_SLOTS or HPTS_USEC_TO_SLOTS. So a typical 49 * call from the tcp_output() routine might look like: 50 * 51 * tcp_hpts_insert(tp, HPTS_USEC_TO_SLOTS(550)); 52 * 53 * The above would schedule tcp_ouput() to be called in 550 useconds. 54 * Note that if using this mechanism the stack will want to add near 55 * its top a check to prevent unwanted calls (from user land or the 56 * arrival of incoming ack's). So it would add something like: 57 * 58 * if (tcp_in_hpts(inp)) 59 * return; 60 * 61 * to prevent output processing until the time alotted has gone by. 62 * Of course this is a bare bones example and the stack will probably 63 * have more consideration then just the above. 64 * 65 * In order to run input queued segments from the HPTS context the 66 * tcp stack must define an input function for 67 * tfb_do_queued_segments(). This function understands 68 * how to dequeue a array of packets that were input and 69 * knows how to call the correct processing routine. 70 * 71 * Locking in this is important as well so most likely the 72 * stack will need to define the tfb_do_segment_nounlock() 73 * splitting tfb_do_segment() into two parts. The main processing 74 * part that does not unlock the INP and returns a value of 1 or 0. 75 * It returns 0 if all is well and the lock was not released. It 76 * returns 1 if we had to destroy the TCB (a reset received etc). 77 * The remains of tfb_do_segment() then become just a simple call 78 * to the tfb_do_segment_nounlock() function and check the return 79 * code and possibly unlock. 80 * 81 * The stack must also set the flag on the INP that it supports this 82 * feature i.e. INP_SUPPORTS_MBUFQ. The LRO code recoginizes 83 * this flag as well and will queue packets when it is set. 84 * There are other flags as well INP_MBUF_QUEUE_READY and 85 * INP_DONT_SACK_QUEUE. The first flag tells the LRO code 86 * that we are in the pacer for output so there is no 87 * need to wake up the hpts system to get immediate 88 * input. The second tells the LRO code that its okay 89 * if a SACK arrives you can still defer input and let 90 * the current hpts timer run (this is usually set when 91 * a rack timer is up so we know SACK's are happening 92 * on the connection already and don't want to wakeup yet). 93 * 94 * There is a common functions within the rack_bbr_common code 95 * version i.e. ctf_do_queued_segments(). This function 96 * knows how to take the input queue of packets from 97 * tp->t_in_pkts and process them digging out 98 * all the arguments, calling any bpf tap and 99 * calling into tfb_do_segment_nounlock(). The common 100 * function (ctf_do_queued_segments()) requires that 101 * you have defined the tfb_do_segment_nounlock() as 102 * described above. 103 */ 104 105 #include <sys/param.h> 106 #include <sys/bus.h> 107 #include <sys/interrupt.h> 108 #include <sys/module.h> 109 #include <sys/kernel.h> 110 #include <sys/hhook.h> 111 #include <sys/malloc.h> 112 #include <sys/mbuf.h> 113 #include <sys/proc.h> /* for proc0 declaration */ 114 #include <sys/socket.h> 115 #include <sys/socketvar.h> 116 #include <sys/sysctl.h> 117 #include <sys/systm.h> 118 #include <sys/refcount.h> 119 #include <sys/sched.h> 120 #include <sys/queue.h> 121 #include <sys/smp.h> 122 #include <sys/counter.h> 123 #include <sys/time.h> 124 #include <sys/kthread.h> 125 #include <sys/kern_prefetch.h> 126 127 #include <vm/uma.h> 128 #include <vm/vm.h> 129 130 #include <net/route.h> 131 #include <net/vnet.h> 132 133 #ifdef RSS 134 #include <net/netisr.h> 135 #include <net/rss_config.h> 136 #endif 137 138 #define TCPSTATES /* for logging */ 139 140 #include <netinet/in.h> 141 #include <netinet/in_kdtrace.h> 142 #include <netinet/in_pcb.h> 143 #include <netinet/ip.h> 144 #include <netinet/ip_icmp.h> /* required for icmp_var.h */ 145 #include <netinet/icmp_var.h> /* for ICMP_BANDLIM */ 146 #include <netinet/ip_var.h> 147 #include <netinet/ip6.h> 148 #include <netinet6/in6_pcb.h> 149 #include <netinet6/ip6_var.h> 150 #include <netinet/tcp.h> 151 #include <netinet/tcp_fsm.h> 152 #include <netinet/tcp_seq.h> 153 #include <netinet/tcp_timer.h> 154 #include <netinet/tcp_var.h> 155 #include <netinet/tcpip.h> 156 #include <netinet/cc/cc.h> 157 #include <netinet/tcp_hpts.h> 158 #include <netinet/tcp_log_buf.h> 159 160 #ifdef tcpdebug 161 #include <netinet/tcp_debug.h> 162 #endif /* tcpdebug */ 163 #ifdef tcp_offload 164 #include <netinet/tcp_offload.h> 165 #endif 166 167 /* 168 * The hpts uses a 102400 wheel. The wheel 169 * defines the time in 10 usec increments (102400 x 10). 170 * This gives a range of 10usec - 1024ms to place 171 * an entry within. If the user requests more than 172 * 1.024 second, a remaineder is attached and the hpts 173 * when seeing the remainder will re-insert the 174 * inpcb forward in time from where it is until 175 * the remainder is zero. 176 */ 177 178 #define NUM_OF_HPTSI_SLOTS 102400 179 180 /* Each hpts has its own p_mtx which is used for locking */ 181 #define HPTS_MTX_ASSERT(hpts) mtx_assert(&(hpts)->p_mtx, MA_OWNED) 182 #define HPTS_LOCK(hpts) mtx_lock(&(hpts)->p_mtx) 183 #define HPTS_UNLOCK(hpts) mtx_unlock(&(hpts)->p_mtx) 184 struct tcp_hpts_entry { 185 /* Cache line 0x00 */ 186 struct mtx p_mtx; /* Mutex for hpts */ 187 struct timeval p_mysleep; /* Our min sleep time */ 188 uint64_t syscall_cnt; 189 uint64_t sleeping; /* What the actual sleep was (if sleeping) */ 190 uint16_t p_hpts_active; /* Flag that says hpts is awake */ 191 uint8_t p_wheel_complete; /* have we completed the wheel arc walk? */ 192 uint32_t p_curtick; /* Tick in 10 us the hpts is going to */ 193 uint32_t p_runningslot; /* Current tick we are at if we are running */ 194 uint32_t p_prev_slot; /* Previous slot we were on */ 195 uint32_t p_cur_slot; /* Current slot in wheel hpts is draining */ 196 uint32_t p_nxt_slot; /* The next slot outside the current range of 197 * slots that the hpts is running on. */ 198 int32_t p_on_queue_cnt; /* Count on queue in this hpts */ 199 uint32_t p_lasttick; /* Last tick before the current one */ 200 uint8_t p_direct_wake :1, /* boolean */ 201 p_on_min_sleep:1, /* boolean */ 202 p_hpts_wake_scheduled:1, /* boolean */ 203 p_avail:5; 204 uint8_t p_fill[3]; /* Fill to 32 bits */ 205 /* Cache line 0x40 */ 206 struct hptsh { 207 TAILQ_HEAD(, inpcb) head; 208 uint32_t count; 209 uint32_t gencnt; 210 } *p_hptss; /* Hptsi wheel */ 211 uint32_t p_hpts_sleep_time; /* Current sleep interval having a max 212 * of 255ms */ 213 uint32_t overidden_sleep; /* what was overrided by min-sleep for logging */ 214 uint32_t saved_lasttick; /* for logging */ 215 uint32_t saved_curtick; /* for logging */ 216 uint32_t saved_curslot; /* for logging */ 217 uint32_t saved_prev_slot; /* for logging */ 218 uint32_t p_delayed_by; /* How much were we delayed by */ 219 /* Cache line 0x80 */ 220 struct sysctl_ctx_list hpts_ctx; 221 struct sysctl_oid *hpts_root; 222 struct intr_event *ie; 223 void *ie_cookie; 224 uint16_t p_num; /* The hpts number one per cpu */ 225 uint16_t p_cpu; /* The hpts CPU */ 226 /* There is extra space in here */ 227 /* Cache line 0x100 */ 228 struct callout co __aligned(CACHE_LINE_SIZE); 229 } __aligned(CACHE_LINE_SIZE); 230 231 static struct tcp_hptsi { 232 struct cpu_group **grps; 233 struct tcp_hpts_entry **rp_ent; /* Array of hptss */ 234 uint32_t *cts_last_ran; 235 uint32_t grp_cnt; 236 uint32_t rp_num_hptss; /* Number of hpts threads */ 237 } tcp_pace; 238 239 MALLOC_DEFINE(M_TCPHPTS, "tcp_hpts", "TCP hpts"); 240 #ifdef RSS 241 static int tcp_bind_threads = 1; 242 #else 243 static int tcp_bind_threads = 2; 244 #endif 245 static int tcp_use_irq_cpu = 0; 246 static uint32_t *cts_last_ran; 247 static int hpts_does_tp_logging = 0; 248 249 static int32_t tcp_hptsi(struct tcp_hpts_entry *hpts, int from_callout); 250 static void tcp_hpts_thread(void *ctx); 251 static void tcp_init_hptsi(void *st); 252 253 int32_t tcp_min_hptsi_time = DEFAULT_MIN_SLEEP; 254 static int conn_cnt_thresh = DEFAULT_CONNECTION_THESHOLD; 255 static int32_t dynamic_min_sleep = DYNAMIC_MIN_SLEEP; 256 static int32_t dynamic_max_sleep = DYNAMIC_MAX_SLEEP; 257 258 259 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, hpts, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 260 "TCP Hpts controls"); 261 SYSCTL_NODE(_net_inet_tcp_hpts, OID_AUTO, stats, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 262 "TCP Hpts statistics"); 263 264 #define timersub(tvp, uvp, vvp) \ 265 do { \ 266 (vvp)->tv_sec = (tvp)->tv_sec - (uvp)->tv_sec; \ 267 (vvp)->tv_usec = (tvp)->tv_usec - (uvp)->tv_usec; \ 268 if ((vvp)->tv_usec < 0) { \ 269 (vvp)->tv_sec--; \ 270 (vvp)->tv_usec += 1000000; \ 271 } \ 272 } while (0) 273 274 static int32_t tcp_hpts_precision = 120; 275 276 static struct hpts_domain_info { 277 int count; 278 int cpu[MAXCPU]; 279 } hpts_domains[MAXMEMDOM]; 280 281 enum { 282 IHPTS_NONE = 0, 283 IHPTS_ONQUEUE, 284 IHPTS_MOVING, 285 }; 286 287 counter_u64_t hpts_hopelessly_behind; 288 289 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, hopeless, CTLFLAG_RD, 290 &hpts_hopelessly_behind, 291 "Number of times hpts could not catch up and was behind hopelessly"); 292 293 counter_u64_t hpts_loops; 294 295 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, loops, CTLFLAG_RD, 296 &hpts_loops, "Number of times hpts had to loop to catch up"); 297 298 counter_u64_t back_tosleep; 299 300 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, no_tcbsfound, CTLFLAG_RD, 301 &back_tosleep, "Number of times hpts found no tcbs"); 302 303 counter_u64_t combined_wheel_wrap; 304 305 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, comb_wheel_wrap, CTLFLAG_RD, 306 &combined_wheel_wrap, "Number of times the wheel lagged enough to have an insert see wrap"); 307 308 counter_u64_t wheel_wrap; 309 310 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, wheel_wrap, CTLFLAG_RD, 311 &wheel_wrap, "Number of times the wheel lagged enough to have an insert see wrap"); 312 313 counter_u64_t hpts_direct_call; 314 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, direct_call, CTLFLAG_RD, 315 &hpts_direct_call, "Number of times hpts was called by syscall/trap or other entry"); 316 317 counter_u64_t hpts_wake_timeout; 318 319 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, timeout_wakeup, CTLFLAG_RD, 320 &hpts_wake_timeout, "Number of times hpts threads woke up via the callout expiring"); 321 322 counter_u64_t hpts_direct_awakening; 323 324 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, direct_awakening, CTLFLAG_RD, 325 &hpts_direct_awakening, "Number of times hpts threads woke up via the callout expiring"); 326 327 counter_u64_t hpts_back_tosleep; 328 329 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, back_tosleep, CTLFLAG_RD, 330 &hpts_back_tosleep, "Number of times hpts threads woke up via the callout expiring and went back to sleep no work"); 331 332 counter_u64_t cpu_uses_flowid; 333 counter_u64_t cpu_uses_random; 334 335 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, cpusel_flowid, CTLFLAG_RD, 336 &cpu_uses_flowid, "Number of times when setting cpuid we used the flowid field"); 337 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, cpusel_random, CTLFLAG_RD, 338 &cpu_uses_random, "Number of times when setting cpuid we used the a random value"); 339 340 TUNABLE_INT("net.inet.tcp.bind_hptss", &tcp_bind_threads); 341 TUNABLE_INT("net.inet.tcp.use_irq", &tcp_use_irq_cpu); 342 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, bind_hptss, CTLFLAG_RD, 343 &tcp_bind_threads, 2, 344 "Thread Binding tunable"); 345 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, use_irq, CTLFLAG_RD, 346 &tcp_use_irq_cpu, 0, 347 "Use of irq CPU tunable"); 348 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, precision, CTLFLAG_RW, 349 &tcp_hpts_precision, 120, 350 "Value for PRE() precision of callout"); 351 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, cnt_thresh, CTLFLAG_RW, 352 &conn_cnt_thresh, 0, 353 "How many connections (below) make us use the callout based mechanism"); 354 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, logging, CTLFLAG_RW, 355 &hpts_does_tp_logging, 0, 356 "Do we add to any tp that has logging on pacer logs"); 357 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, dyn_minsleep, CTLFLAG_RW, 358 &dynamic_min_sleep, 250, 359 "What is the dynamic minsleep value?"); 360 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, dyn_maxsleep, CTLFLAG_RW, 361 &dynamic_max_sleep, 5000, 362 "What is the dynamic maxsleep value?"); 363 364 static int32_t max_pacer_loops = 10; 365 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, loopmax, CTLFLAG_RW, 366 &max_pacer_loops, 10, 367 "What is the maximum number of times the pacer will loop trying to catch up"); 368 369 #define HPTS_MAX_SLEEP_ALLOWED (NUM_OF_HPTSI_SLOTS/2) 370 371 static uint32_t hpts_sleep_max = HPTS_MAX_SLEEP_ALLOWED; 372 373 static int 374 sysctl_net_inet_tcp_hpts_max_sleep(SYSCTL_HANDLER_ARGS) 375 { 376 int error; 377 uint32_t new; 378 379 new = hpts_sleep_max; 380 error = sysctl_handle_int(oidp, &new, 0, req); 381 if (error == 0 && req->newptr) { 382 if ((new < (dynamic_min_sleep/HPTS_TICKS_PER_SLOT)) || 383 (new > HPTS_MAX_SLEEP_ALLOWED)) 384 error = EINVAL; 385 else 386 hpts_sleep_max = new; 387 } 388 return (error); 389 } 390 391 static int 392 sysctl_net_inet_tcp_hpts_min_sleep(SYSCTL_HANDLER_ARGS) 393 { 394 int error; 395 uint32_t new; 396 397 new = tcp_min_hptsi_time; 398 error = sysctl_handle_int(oidp, &new, 0, req); 399 if (error == 0 && req->newptr) { 400 if (new < LOWEST_SLEEP_ALLOWED) 401 error = EINVAL; 402 else 403 tcp_min_hptsi_time = new; 404 } 405 return (error); 406 } 407 408 SYSCTL_PROC(_net_inet_tcp_hpts, OID_AUTO, maxsleep, 409 CTLTYPE_UINT | CTLFLAG_RW, 410 &hpts_sleep_max, 0, 411 &sysctl_net_inet_tcp_hpts_max_sleep, "IU", 412 "Maximum time hpts will sleep in slots"); 413 414 SYSCTL_PROC(_net_inet_tcp_hpts, OID_AUTO, minsleep, 415 CTLTYPE_UINT | CTLFLAG_RW, 416 &tcp_min_hptsi_time, 0, 417 &sysctl_net_inet_tcp_hpts_min_sleep, "IU", 418 "The minimum time the hpts must sleep before processing more slots"); 419 420 static int ticks_indicate_more_sleep = TICKS_INDICATE_MORE_SLEEP; 421 static int ticks_indicate_less_sleep = TICKS_INDICATE_LESS_SLEEP; 422 static int tcp_hpts_no_wake_over_thresh = 1; 423 424 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, more_sleep, CTLFLAG_RW, 425 &ticks_indicate_more_sleep, 0, 426 "If we only process this many or less on a timeout, we need longer sleep on the next callout"); 427 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, less_sleep, CTLFLAG_RW, 428 &ticks_indicate_less_sleep, 0, 429 "If we process this many or more on a timeout, we need less sleep on the next callout"); 430 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, nowake_over_thresh, CTLFLAG_RW, 431 &tcp_hpts_no_wake_over_thresh, 0, 432 "When we are over the threshold on the pacer do we prohibit wakeups?"); 433 434 static void 435 tcp_hpts_log(struct tcp_hpts_entry *hpts, struct tcpcb *tp, struct timeval *tv, 436 int slots_to_run, int idx, int from_callout) 437 { 438 union tcp_log_stackspecific log; 439 /* 440 * Unused logs are 441 * 64 bit - delRate, rttProp, bw_inuse 442 * 16 bit - cwnd_gain 443 * 8 bit - bbr_state, bbr_substate, inhpts; 444 */ 445 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 446 log.u_bbr.flex1 = hpts->p_nxt_slot; 447 log.u_bbr.flex2 = hpts->p_cur_slot; 448 log.u_bbr.flex3 = hpts->p_prev_slot; 449 log.u_bbr.flex4 = idx; 450 log.u_bbr.flex5 = hpts->p_curtick; 451 log.u_bbr.flex6 = hpts->p_on_queue_cnt; 452 log.u_bbr.flex7 = hpts->p_cpu; 453 log.u_bbr.flex8 = (uint8_t)from_callout; 454 log.u_bbr.inflight = slots_to_run; 455 log.u_bbr.applimited = hpts->overidden_sleep; 456 log.u_bbr.delivered = hpts->saved_curtick; 457 log.u_bbr.timeStamp = tcp_tv_to_usectick(tv); 458 log.u_bbr.epoch = hpts->saved_curslot; 459 log.u_bbr.lt_epoch = hpts->saved_prev_slot; 460 log.u_bbr.pkts_out = hpts->p_delayed_by; 461 log.u_bbr.lost = hpts->p_hpts_sleep_time; 462 log.u_bbr.pacing_gain = hpts->p_cpu; 463 log.u_bbr.pkt_epoch = hpts->p_runningslot; 464 log.u_bbr.use_lt_bw = 1; 465 TCP_LOG_EVENTP(tp, NULL, 466 &tp->t_inpcb->inp_socket->so_rcv, 467 &tp->t_inpcb->inp_socket->so_snd, 468 BBR_LOG_HPTSDIAG, 0, 469 0, &log, false, tv); 470 } 471 472 static void 473 tcp_wakehpts(struct tcp_hpts_entry *hpts) 474 { 475 HPTS_MTX_ASSERT(hpts); 476 477 if (tcp_hpts_no_wake_over_thresh && (hpts->p_on_queue_cnt >= conn_cnt_thresh)) { 478 hpts->p_direct_wake = 0; 479 return; 480 } 481 if (hpts->p_hpts_wake_scheduled == 0) { 482 hpts->p_hpts_wake_scheduled = 1; 483 swi_sched(hpts->ie_cookie, 0); 484 } 485 } 486 487 static void 488 hpts_timeout_swi(void *arg) 489 { 490 struct tcp_hpts_entry *hpts; 491 492 hpts = (struct tcp_hpts_entry *)arg; 493 swi_sched(hpts->ie_cookie, 0); 494 } 495 496 static void 497 inp_hpts_insert(struct inpcb *inp, struct tcp_hpts_entry *hpts) 498 { 499 struct hptsh *hptsh; 500 501 INP_WLOCK_ASSERT(inp); 502 HPTS_MTX_ASSERT(hpts); 503 MPASS(hpts->p_cpu == inp->inp_hpts_cpu); 504 MPASS(!(inp->inp_flags & (INP_DROPPED|INP_TIMEWAIT))); 505 506 hptsh = &hpts->p_hptss[inp->inp_hptsslot]; 507 508 if (inp->inp_in_hpts == IHPTS_NONE) { 509 inp->inp_in_hpts = IHPTS_ONQUEUE; 510 in_pcbref(inp); 511 } else if (inp->inp_in_hpts == IHPTS_MOVING) { 512 inp->inp_in_hpts = IHPTS_ONQUEUE; 513 } else 514 MPASS(inp->inp_in_hpts == IHPTS_ONQUEUE); 515 inp->inp_hpts_gencnt = hptsh->gencnt; 516 517 TAILQ_INSERT_TAIL(&hptsh->head, inp, inp_hpts); 518 hptsh->count++; 519 hpts->p_on_queue_cnt++; 520 } 521 522 static struct tcp_hpts_entry * 523 tcp_hpts_lock(struct inpcb *inp) 524 { 525 struct tcp_hpts_entry *hpts; 526 527 INP_LOCK_ASSERT(inp); 528 529 hpts = tcp_pace.rp_ent[inp->inp_hpts_cpu]; 530 HPTS_LOCK(hpts); 531 532 return (hpts); 533 } 534 535 static void 536 inp_hpts_release(struct inpcb *inp) 537 { 538 bool released __diagused; 539 540 inp->inp_in_hpts = IHPTS_NONE; 541 released = in_pcbrele_wlocked(inp); 542 MPASS(released == false); 543 } 544 545 /* 546 * Called normally with the INP_LOCKED but it 547 * does not matter, the hpts lock is the key 548 * but the lock order allows us to hold the 549 * INP lock and then get the hpts lock. 550 */ 551 void 552 tcp_hpts_remove(struct inpcb *inp) 553 { 554 struct tcp_hpts_entry *hpts; 555 struct hptsh *hptsh; 556 557 INP_WLOCK_ASSERT(inp); 558 559 hpts = tcp_hpts_lock(inp); 560 if (inp->inp_in_hpts == IHPTS_ONQUEUE) { 561 hptsh = &hpts->p_hptss[inp->inp_hptsslot]; 562 inp->inp_hpts_request = 0; 563 if (__predict_true(inp->inp_hpts_gencnt == hptsh->gencnt)) { 564 TAILQ_REMOVE(&hptsh->head, inp, inp_hpts); 565 MPASS(hptsh->count > 0); 566 hptsh->count--; 567 MPASS(hpts->p_on_queue_cnt > 0); 568 hpts->p_on_queue_cnt--; 569 inp_hpts_release(inp); 570 } else { 571 /* 572 * tcp_hptsi() now owns the TAILQ head of this inp. 573 * Can't TAILQ_REMOVE, just mark it. 574 */ 575 #ifdef INVARIANTS 576 struct inpcb *tmp; 577 578 TAILQ_FOREACH(tmp, &hptsh->head, inp_hpts) 579 MPASS(tmp != inp); 580 #endif 581 inp->inp_in_hpts = IHPTS_MOVING; 582 inp->inp_hptsslot = -1; 583 } 584 } else if (inp->inp_in_hpts == IHPTS_MOVING) { 585 /* 586 * Handle a special race condition: 587 * tcp_hptsi() moves inpcb to detached tailq 588 * tcp_hpts_remove() marks as IHPTS_MOVING, slot = -1 589 * tcp_hpts_insert() sets slot to a meaningful value 590 * tcp_hpts_remove() again (we are here!), then in_pcbdrop() 591 * tcp_hptsi() finds pcb with meaningful slot and INP_DROPPED 592 */ 593 inp->inp_hptsslot = -1; 594 } 595 HPTS_UNLOCK(hpts); 596 } 597 598 bool 599 tcp_in_hpts(struct inpcb *inp) 600 { 601 602 return (inp->inp_in_hpts == IHPTS_ONQUEUE); 603 } 604 605 static inline int 606 hpts_slot(uint32_t wheel_slot, uint32_t plus) 607 { 608 /* 609 * Given a slot on the wheel, what slot 610 * is that plus ticks out? 611 */ 612 KASSERT(wheel_slot < NUM_OF_HPTSI_SLOTS, ("Invalid tick %u not on wheel", wheel_slot)); 613 return ((wheel_slot + plus) % NUM_OF_HPTSI_SLOTS); 614 } 615 616 static inline int 617 tick_to_wheel(uint32_t cts_in_wticks) 618 { 619 /* 620 * Given a timestamp in ticks (so by 621 * default to get it to a real time one 622 * would multiply by 10.. i.e the number 623 * of ticks in a slot) map it to our limited 624 * space wheel. 625 */ 626 return (cts_in_wticks % NUM_OF_HPTSI_SLOTS); 627 } 628 629 static inline int 630 hpts_slots_diff(int prev_slot, int slot_now) 631 { 632 /* 633 * Given two slots that are someplace 634 * on our wheel. How far are they apart? 635 */ 636 if (slot_now > prev_slot) 637 return (slot_now - prev_slot); 638 else if (slot_now == prev_slot) 639 /* 640 * Special case, same means we can go all of our 641 * wheel less one slot. 642 */ 643 return (NUM_OF_HPTSI_SLOTS - 1); 644 else 645 return ((NUM_OF_HPTSI_SLOTS - prev_slot) + slot_now); 646 } 647 648 /* 649 * Given a slot on the wheel that is the current time 650 * mapped to the wheel (wheel_slot), what is the maximum 651 * distance forward that can be obtained without 652 * wrapping past either prev_slot or running_slot 653 * depending on the htps state? Also if passed 654 * a uint32_t *, fill it with the slot location. 655 * 656 * Note if you do not give this function the current 657 * time (that you think it is) mapped to the wheel slot 658 * then the results will not be what you expect and 659 * could lead to invalid inserts. 660 */ 661 static inline int32_t 662 max_slots_available(struct tcp_hpts_entry *hpts, uint32_t wheel_slot, uint32_t *target_slot) 663 { 664 uint32_t dis_to_travel, end_slot, pacer_to_now, avail_on_wheel; 665 666 if ((hpts->p_hpts_active == 1) && 667 (hpts->p_wheel_complete == 0)) { 668 end_slot = hpts->p_runningslot; 669 /* Back up one tick */ 670 if (end_slot == 0) 671 end_slot = NUM_OF_HPTSI_SLOTS - 1; 672 else 673 end_slot--; 674 if (target_slot) 675 *target_slot = end_slot; 676 } else { 677 /* 678 * For the case where we are 679 * not active, or we have 680 * completed the pass over 681 * the wheel, we can use the 682 * prev tick and subtract one from it. This puts us 683 * as far out as possible on the wheel. 684 */ 685 end_slot = hpts->p_prev_slot; 686 if (end_slot == 0) 687 end_slot = NUM_OF_HPTSI_SLOTS - 1; 688 else 689 end_slot--; 690 if (target_slot) 691 *target_slot = end_slot; 692 /* 693 * Now we have close to the full wheel left minus the 694 * time it has been since the pacer went to sleep. Note 695 * that wheel_tick, passed in, should be the current time 696 * from the perspective of the caller, mapped to the wheel. 697 */ 698 if (hpts->p_prev_slot != wheel_slot) 699 dis_to_travel = hpts_slots_diff(hpts->p_prev_slot, wheel_slot); 700 else 701 dis_to_travel = 1; 702 /* 703 * dis_to_travel in this case is the space from when the 704 * pacer stopped (p_prev_slot) and where our wheel_slot 705 * is now. To know how many slots we can put it in we 706 * subtract from the wheel size. We would not want 707 * to place something after p_prev_slot or it will 708 * get ran too soon. 709 */ 710 return (NUM_OF_HPTSI_SLOTS - dis_to_travel); 711 } 712 /* 713 * So how many slots are open between p_runningslot -> p_cur_slot 714 * that is what is currently un-available for insertion. Special 715 * case when we are at the last slot, this gets 1, so that 716 * the answer to how many slots are available is all but 1. 717 */ 718 if (hpts->p_runningslot == hpts->p_cur_slot) 719 dis_to_travel = 1; 720 else 721 dis_to_travel = hpts_slots_diff(hpts->p_runningslot, hpts->p_cur_slot); 722 /* 723 * How long has the pacer been running? 724 */ 725 if (hpts->p_cur_slot != wheel_slot) { 726 /* The pacer is a bit late */ 727 pacer_to_now = hpts_slots_diff(hpts->p_cur_slot, wheel_slot); 728 } else { 729 /* The pacer is right on time, now == pacers start time */ 730 pacer_to_now = 0; 731 } 732 /* 733 * To get the number left we can insert into we simply 734 * subract the distance the pacer has to run from how 735 * many slots there are. 736 */ 737 avail_on_wheel = NUM_OF_HPTSI_SLOTS - dis_to_travel; 738 /* 739 * Now how many of those we will eat due to the pacer's 740 * time (p_cur_slot) of start being behind the 741 * real time (wheel_slot)? 742 */ 743 if (avail_on_wheel <= pacer_to_now) { 744 /* 745 * Wheel wrap, we can't fit on the wheel, that 746 * is unusual the system must be way overloaded! 747 * Insert into the assured slot, and return special 748 * "0". 749 */ 750 counter_u64_add(combined_wheel_wrap, 1); 751 *target_slot = hpts->p_nxt_slot; 752 return (0); 753 } else { 754 /* 755 * We know how many slots are open 756 * on the wheel (the reverse of what 757 * is left to run. Take away the time 758 * the pacer started to now (wheel_slot) 759 * and that tells you how many slots are 760 * open that can be inserted into that won't 761 * be touched by the pacer until later. 762 */ 763 return (avail_on_wheel - pacer_to_now); 764 } 765 } 766 767 768 #ifdef INVARIANTS 769 static void 770 check_if_slot_would_be_wrong(struct tcp_hpts_entry *hpts, struct inpcb *inp, uint32_t inp_hptsslot, int line) 771 { 772 /* 773 * Sanity checks for the pacer with invariants 774 * on insert. 775 */ 776 KASSERT(inp_hptsslot < NUM_OF_HPTSI_SLOTS, 777 ("hpts:%p inp:%p slot:%d > max", 778 hpts, inp, inp_hptsslot)); 779 if ((hpts->p_hpts_active) && 780 (hpts->p_wheel_complete == 0)) { 781 /* 782 * If the pacer is processing a arc 783 * of the wheel, we need to make 784 * sure we are not inserting within 785 * that arc. 786 */ 787 int distance, yet_to_run; 788 789 distance = hpts_slots_diff(hpts->p_runningslot, inp_hptsslot); 790 if (hpts->p_runningslot != hpts->p_cur_slot) 791 yet_to_run = hpts_slots_diff(hpts->p_runningslot, hpts->p_cur_slot); 792 else 793 yet_to_run = 0; /* processing last slot */ 794 KASSERT(yet_to_run <= distance, 795 ("hpts:%p inp:%p slot:%d distance:%d yet_to_run:%d rs:%d cs:%d", 796 hpts, inp, inp_hptsslot, 797 distance, yet_to_run, 798 hpts->p_runningslot, hpts->p_cur_slot)); 799 } 800 } 801 #endif 802 803 uint32_t 804 tcp_hpts_insert_diag(struct inpcb *inp, uint32_t slot, int32_t line, struct hpts_diag *diag) 805 { 806 struct tcp_hpts_entry *hpts; 807 struct timeval tv; 808 uint32_t slot_on, wheel_cts, last_slot, need_new_to = 0; 809 int32_t wheel_slot, maxslots; 810 bool need_wakeup = false; 811 812 INP_WLOCK_ASSERT(inp); 813 MPASS(!tcp_in_hpts(inp)); 814 MPASS(!(inp->inp_flags & (INP_DROPPED|INP_TIMEWAIT))); 815 816 /* 817 * We now return the next-slot the hpts will be on, beyond its 818 * current run (if up) or where it was when it stopped if it is 819 * sleeping. 820 */ 821 hpts = tcp_hpts_lock(inp); 822 microuptime(&tv); 823 if (diag) { 824 memset(diag, 0, sizeof(struct hpts_diag)); 825 diag->p_hpts_active = hpts->p_hpts_active; 826 diag->p_prev_slot = hpts->p_prev_slot; 827 diag->p_runningslot = hpts->p_runningslot; 828 diag->p_nxt_slot = hpts->p_nxt_slot; 829 diag->p_cur_slot = hpts->p_cur_slot; 830 diag->p_curtick = hpts->p_curtick; 831 diag->p_lasttick = hpts->p_lasttick; 832 diag->slot_req = slot; 833 diag->p_on_min_sleep = hpts->p_on_min_sleep; 834 diag->hpts_sleep_time = hpts->p_hpts_sleep_time; 835 } 836 if (slot == 0) { 837 /* Ok we need to set it on the hpts in the current slot */ 838 inp->inp_hpts_request = 0; 839 if ((hpts->p_hpts_active == 0) || (hpts->p_wheel_complete)) { 840 /* 841 * A sleeping hpts we want in next slot to run 842 * note that in this state p_prev_slot == p_cur_slot 843 */ 844 inp->inp_hptsslot = hpts_slot(hpts->p_prev_slot, 1); 845 if ((hpts->p_on_min_sleep == 0) && 846 (hpts->p_hpts_active == 0)) 847 need_wakeup = true; 848 } else 849 inp->inp_hptsslot = hpts->p_runningslot; 850 if (__predict_true(inp->inp_in_hpts != IHPTS_MOVING)) 851 inp_hpts_insert(inp, hpts); 852 if (need_wakeup) { 853 /* 854 * Activate the hpts if it is sleeping and its 855 * timeout is not 1. 856 */ 857 hpts->p_direct_wake = 1; 858 tcp_wakehpts(hpts); 859 } 860 slot_on = hpts->p_nxt_slot; 861 HPTS_UNLOCK(hpts); 862 863 return (slot_on); 864 } 865 /* Get the current time relative to the wheel */ 866 wheel_cts = tcp_tv_to_hptstick(&tv); 867 /* Map it onto the wheel */ 868 wheel_slot = tick_to_wheel(wheel_cts); 869 /* Now what's the max we can place it at? */ 870 maxslots = max_slots_available(hpts, wheel_slot, &last_slot); 871 if (diag) { 872 diag->wheel_slot = wheel_slot; 873 diag->maxslots = maxslots; 874 diag->wheel_cts = wheel_cts; 875 } 876 if (maxslots == 0) { 877 /* The pacer is in a wheel wrap behind, yikes! */ 878 if (slot > 1) { 879 /* 880 * Reduce by 1 to prevent a forever loop in 881 * case something else is wrong. Note this 882 * probably does not hurt because the pacer 883 * if its true is so far behind we will be 884 * > 1second late calling anyway. 885 */ 886 slot--; 887 } 888 inp->inp_hptsslot = last_slot; 889 inp->inp_hpts_request = slot; 890 } else if (maxslots >= slot) { 891 /* It all fits on the wheel */ 892 inp->inp_hpts_request = 0; 893 inp->inp_hptsslot = hpts_slot(wheel_slot, slot); 894 } else { 895 /* It does not fit */ 896 inp->inp_hpts_request = slot - maxslots; 897 inp->inp_hptsslot = last_slot; 898 } 899 if (diag) { 900 diag->slot_remaining = inp->inp_hpts_request; 901 diag->inp_hptsslot = inp->inp_hptsslot; 902 } 903 #ifdef INVARIANTS 904 check_if_slot_would_be_wrong(hpts, inp, inp->inp_hptsslot, line); 905 #endif 906 if (__predict_true(inp->inp_in_hpts != IHPTS_MOVING)) 907 inp_hpts_insert(inp, hpts); 908 if ((hpts->p_hpts_active == 0) && 909 (inp->inp_hpts_request == 0) && 910 (hpts->p_on_min_sleep == 0)) { 911 /* 912 * The hpts is sleeping and NOT on a minimum 913 * sleep time, we need to figure out where 914 * it will wake up at and if we need to reschedule 915 * its time-out. 916 */ 917 uint32_t have_slept, yet_to_sleep; 918 919 /* Now do we need to restart the hpts's timer? */ 920 have_slept = hpts_slots_diff(hpts->p_prev_slot, wheel_slot); 921 if (have_slept < hpts->p_hpts_sleep_time) 922 yet_to_sleep = hpts->p_hpts_sleep_time - have_slept; 923 else { 924 /* We are over-due */ 925 yet_to_sleep = 0; 926 need_wakeup = 1; 927 } 928 if (diag) { 929 diag->have_slept = have_slept; 930 diag->yet_to_sleep = yet_to_sleep; 931 } 932 if (yet_to_sleep && 933 (yet_to_sleep > slot)) { 934 /* 935 * We need to reschedule the hpts's time-out. 936 */ 937 hpts->p_hpts_sleep_time = slot; 938 need_new_to = slot * HPTS_TICKS_PER_SLOT; 939 } 940 } 941 /* 942 * Now how far is the hpts sleeping to? if active is 1, its 943 * up and ticking we do nothing, otherwise we may need to 944 * reschedule its callout if need_new_to is set from above. 945 */ 946 if (need_wakeup) { 947 hpts->p_direct_wake = 1; 948 tcp_wakehpts(hpts); 949 if (diag) { 950 diag->need_new_to = 0; 951 diag->co_ret = 0xffff0000; 952 } 953 } else if (need_new_to) { 954 int32_t co_ret; 955 struct timeval tv; 956 sbintime_t sb; 957 958 tv.tv_sec = 0; 959 tv.tv_usec = 0; 960 while (need_new_to > HPTS_USEC_IN_SEC) { 961 tv.tv_sec++; 962 need_new_to -= HPTS_USEC_IN_SEC; 963 } 964 tv.tv_usec = need_new_to; 965 sb = tvtosbt(tv); 966 co_ret = callout_reset_sbt_on(&hpts->co, sb, 0, 967 hpts_timeout_swi, hpts, hpts->p_cpu, 968 (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision))); 969 if (diag) { 970 diag->need_new_to = need_new_to; 971 diag->co_ret = co_ret; 972 } 973 } 974 slot_on = hpts->p_nxt_slot; 975 HPTS_UNLOCK(hpts); 976 977 return (slot_on); 978 } 979 980 uint16_t 981 hpts_random_cpu(struct inpcb *inp){ 982 /* 983 * No flow type set distribute the load randomly. 984 */ 985 uint16_t cpuid; 986 uint32_t ran; 987 988 /* 989 * Shortcut if it is already set. XXXGL: does it happen? 990 */ 991 if (inp->inp_hpts_cpu_set) { 992 return (inp->inp_hpts_cpu); 993 } 994 /* Nothing set use a random number */ 995 ran = arc4random(); 996 cpuid = (((ran & 0xffff) % mp_ncpus) % tcp_pace.rp_num_hptss); 997 return (cpuid); 998 } 999 1000 static uint16_t 1001 hpts_cpuid(struct inpcb *inp, int *failed) 1002 { 1003 u_int cpuid; 1004 #ifdef NUMA 1005 struct hpts_domain_info *di; 1006 #endif 1007 1008 *failed = 0; 1009 if (inp->inp_hpts_cpu_set) { 1010 return (inp->inp_hpts_cpu); 1011 } 1012 /* 1013 * If we are using the irq cpu set by LRO or 1014 * the driver then it overrides all other domains. 1015 */ 1016 if (tcp_use_irq_cpu) { 1017 if (inp->inp_irq_cpu_set == 0) { 1018 *failed = 1; 1019 return(0); 1020 } 1021 return(inp->inp_irq_cpu); 1022 } 1023 /* If one is set the other must be the same */ 1024 #ifdef RSS 1025 cpuid = rss_hash2cpuid(inp->inp_flowid, inp->inp_flowtype); 1026 if (cpuid == NETISR_CPUID_NONE) 1027 return (hpts_random_cpu(inp)); 1028 else 1029 return (cpuid); 1030 #endif 1031 /* 1032 * We don't have a flowid -> cpuid mapping, so cheat and just map 1033 * unknown cpuids to curcpu. Not the best, but apparently better 1034 * than defaulting to swi 0. 1035 */ 1036 if (inp->inp_flowtype == M_HASHTYPE_NONE) { 1037 counter_u64_add(cpu_uses_random, 1); 1038 return (hpts_random_cpu(inp)); 1039 } 1040 /* 1041 * Hash to a thread based on the flowid. If we are using numa, 1042 * then restrict the hash to the numa domain where the inp lives. 1043 */ 1044 1045 #ifdef NUMA 1046 if ((vm_ndomains == 1) || 1047 (inp->inp_numa_domain == M_NODOM)) { 1048 #endif 1049 cpuid = inp->inp_flowid % mp_ncpus; 1050 #ifdef NUMA 1051 } else { 1052 /* Hash into the cpu's that use that domain */ 1053 di = &hpts_domains[inp->inp_numa_domain]; 1054 cpuid = di->cpu[inp->inp_flowid % di->count]; 1055 } 1056 #endif 1057 counter_u64_add(cpu_uses_flowid, 1); 1058 return (cpuid); 1059 } 1060 1061 #ifdef not_longer_used_gleb 1062 static void 1063 tcp_drop_in_pkts(struct tcpcb *tp) 1064 { 1065 struct mbuf *m, *n; 1066 1067 m = tp->t_in_pkt; 1068 if (m) 1069 n = m->m_nextpkt; 1070 else 1071 n = NULL; 1072 tp->t_in_pkt = NULL; 1073 while (m) { 1074 m_freem(m); 1075 m = n; 1076 if (m) 1077 n = m->m_nextpkt; 1078 } 1079 } 1080 #endif 1081 1082 static void 1083 tcp_hpts_set_max_sleep(struct tcp_hpts_entry *hpts, int wrap_loop_cnt) 1084 { 1085 uint32_t t = 0, i; 1086 1087 if ((hpts->p_on_queue_cnt) && (wrap_loop_cnt < 2)) { 1088 /* 1089 * Find next slot that is occupied and use that to 1090 * be the sleep time. 1091 */ 1092 for (i = 0, t = hpts_slot(hpts->p_cur_slot, 1); i < NUM_OF_HPTSI_SLOTS; i++) { 1093 if (TAILQ_EMPTY(&hpts->p_hptss[t].head) == 0) { 1094 break; 1095 } 1096 t = (t + 1) % NUM_OF_HPTSI_SLOTS; 1097 } 1098 KASSERT((i != NUM_OF_HPTSI_SLOTS), ("Hpts:%p cnt:%d but none found", hpts, hpts->p_on_queue_cnt)); 1099 hpts->p_hpts_sleep_time = min((i + 1), hpts_sleep_max); 1100 } else { 1101 /* No one on the wheel sleep for all but 400 slots or sleep max */ 1102 hpts->p_hpts_sleep_time = hpts_sleep_max; 1103 } 1104 } 1105 1106 static int32_t 1107 tcp_hptsi(struct tcp_hpts_entry *hpts, int from_callout) 1108 { 1109 struct tcpcb *tp; 1110 struct inpcb *inp; 1111 struct timeval tv; 1112 int32_t slots_to_run, i, error; 1113 int32_t loop_cnt = 0; 1114 int32_t did_prefetch = 0; 1115 int32_t prefetch_ninp = 0; 1116 int32_t prefetch_tp = 0; 1117 int32_t wrap_loop_cnt = 0; 1118 int32_t slot_pos_of_endpoint = 0; 1119 int32_t orig_exit_slot; 1120 int8_t completed_measure = 0, seen_endpoint = 0; 1121 1122 HPTS_MTX_ASSERT(hpts); 1123 NET_EPOCH_ASSERT(); 1124 /* record previous info for any logging */ 1125 hpts->saved_lasttick = hpts->p_lasttick; 1126 hpts->saved_curtick = hpts->p_curtick; 1127 hpts->saved_curslot = hpts->p_cur_slot; 1128 hpts->saved_prev_slot = hpts->p_prev_slot; 1129 1130 hpts->p_lasttick = hpts->p_curtick; 1131 hpts->p_curtick = tcp_gethptstick(&tv); 1132 cts_last_ran[hpts->p_num] = tcp_tv_to_usectick(&tv); 1133 orig_exit_slot = hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick); 1134 if ((hpts->p_on_queue_cnt == 0) || 1135 (hpts->p_lasttick == hpts->p_curtick)) { 1136 /* 1137 * No time has yet passed, 1138 * or nothing to do. 1139 */ 1140 hpts->p_prev_slot = hpts->p_cur_slot; 1141 hpts->p_lasttick = hpts->p_curtick; 1142 goto no_run; 1143 } 1144 again: 1145 hpts->p_wheel_complete = 0; 1146 HPTS_MTX_ASSERT(hpts); 1147 slots_to_run = hpts_slots_diff(hpts->p_prev_slot, hpts->p_cur_slot); 1148 if (((hpts->p_curtick - hpts->p_lasttick) > 1149 ((NUM_OF_HPTSI_SLOTS-1) * HPTS_TICKS_PER_SLOT)) && 1150 (hpts->p_on_queue_cnt != 0)) { 1151 /* 1152 * Wheel wrap is occuring, basically we 1153 * are behind and the distance between 1154 * run's has spread so much it has exceeded 1155 * the time on the wheel (1.024 seconds). This 1156 * is ugly and should NOT be happening. We 1157 * need to run the entire wheel. We last processed 1158 * p_prev_slot, so that needs to be the last slot 1159 * we run. The next slot after that should be our 1160 * reserved first slot for new, and then starts 1161 * the running position. Now the problem is the 1162 * reserved "not to yet" place does not exist 1163 * and there may be inp's in there that need 1164 * running. We can merge those into the 1165 * first slot at the head. 1166 */ 1167 wrap_loop_cnt++; 1168 hpts->p_nxt_slot = hpts_slot(hpts->p_prev_slot, 1); 1169 hpts->p_runningslot = hpts_slot(hpts->p_prev_slot, 2); 1170 /* 1171 * Adjust p_cur_slot to be where we are starting from 1172 * hopefully we will catch up (fat chance if something 1173 * is broken this bad :( ) 1174 */ 1175 hpts->p_cur_slot = hpts->p_prev_slot; 1176 /* 1177 * The next slot has guys to run too, and that would 1178 * be where we would normally start, lets move them into 1179 * the next slot (p_prev_slot + 2) so that we will 1180 * run them, the extra 10usecs of late (by being 1181 * put behind) does not really matter in this situation. 1182 */ 1183 TAILQ_FOREACH(inp, &hpts->p_hptss[hpts->p_nxt_slot].head, 1184 inp_hpts) { 1185 MPASS(inp->inp_hptsslot == hpts->p_nxt_slot); 1186 MPASS(inp->inp_hpts_gencnt == 1187 hpts->p_hptss[hpts->p_nxt_slot].gencnt); 1188 MPASS(inp->inp_in_hpts == IHPTS_ONQUEUE); 1189 1190 /* 1191 * Update gencnt and nextslot accordingly to match 1192 * the new location. This is safe since it takes both 1193 * the INP lock and the pacer mutex to change the 1194 * inp_hptsslot and inp_hpts_gencnt. 1195 */ 1196 inp->inp_hpts_gencnt = 1197 hpts->p_hptss[hpts->p_runningslot].gencnt; 1198 inp->inp_hptsslot = hpts->p_runningslot; 1199 } 1200 TAILQ_CONCAT(&hpts->p_hptss[hpts->p_runningslot].head, 1201 &hpts->p_hptss[hpts->p_nxt_slot].head, inp_hpts); 1202 hpts->p_hptss[hpts->p_runningslot].count += 1203 hpts->p_hptss[hpts->p_nxt_slot].count; 1204 hpts->p_hptss[hpts->p_nxt_slot].count = 0; 1205 hpts->p_hptss[hpts->p_nxt_slot].gencnt++; 1206 slots_to_run = NUM_OF_HPTSI_SLOTS - 1; 1207 counter_u64_add(wheel_wrap, 1); 1208 } else { 1209 /* 1210 * Nxt slot is always one after p_runningslot though 1211 * its not used usually unless we are doing wheel wrap. 1212 */ 1213 hpts->p_nxt_slot = hpts->p_prev_slot; 1214 hpts->p_runningslot = hpts_slot(hpts->p_prev_slot, 1); 1215 } 1216 if (hpts->p_on_queue_cnt == 0) { 1217 goto no_one; 1218 } 1219 for (i = 0; i < slots_to_run; i++) { 1220 struct inpcb *inp, *ninp; 1221 TAILQ_HEAD(, inpcb) head = TAILQ_HEAD_INITIALIZER(head); 1222 struct hptsh *hptsh; 1223 uint32_t runningslot; 1224 1225 /* 1226 * Calculate our delay, if there are no extra ticks there 1227 * was not any (i.e. if slots_to_run == 1, no delay). 1228 */ 1229 hpts->p_delayed_by = (slots_to_run - (i + 1)) * 1230 HPTS_TICKS_PER_SLOT; 1231 1232 runningslot = hpts->p_runningslot; 1233 hptsh = &hpts->p_hptss[runningslot]; 1234 TAILQ_SWAP(&head, &hptsh->head, inpcb, inp_hpts); 1235 hpts->p_on_queue_cnt -= hptsh->count; 1236 hptsh->count = 0; 1237 hptsh->gencnt++; 1238 1239 HPTS_UNLOCK(hpts); 1240 1241 TAILQ_FOREACH_SAFE(inp, &head, inp_hpts, ninp) { 1242 bool set_cpu; 1243 1244 if (ninp != NULL) { 1245 /* We prefetch the next inp if possible */ 1246 kern_prefetch(ninp, &prefetch_ninp); 1247 prefetch_ninp = 1; 1248 } 1249 1250 /* For debugging */ 1251 if (seen_endpoint == 0) { 1252 seen_endpoint = 1; 1253 orig_exit_slot = slot_pos_of_endpoint = 1254 runningslot; 1255 } else if (completed_measure == 0) { 1256 /* Record the new position */ 1257 orig_exit_slot = runningslot; 1258 } 1259 1260 INP_WLOCK(inp); 1261 if (inp->inp_hpts_cpu_set == 0) { 1262 set_cpu = true; 1263 } else { 1264 set_cpu = false; 1265 } 1266 1267 if (__predict_false(inp->inp_in_hpts == IHPTS_MOVING)) { 1268 if (inp->inp_hptsslot == -1) { 1269 inp->inp_in_hpts = IHPTS_NONE; 1270 if (in_pcbrele_wlocked(inp) == false) 1271 INP_WUNLOCK(inp); 1272 } else { 1273 HPTS_LOCK(hpts); 1274 inp_hpts_insert(inp, hpts); 1275 HPTS_UNLOCK(hpts); 1276 INP_WUNLOCK(inp); 1277 } 1278 continue; 1279 } 1280 1281 MPASS(inp->inp_in_hpts == IHPTS_ONQUEUE); 1282 MPASS(!(inp->inp_flags & (INP_DROPPED|INP_TIMEWAIT))); 1283 KASSERT(runningslot == inp->inp_hptsslot, 1284 ("Hpts:%p inp:%p slot mis-aligned %u vs %u", 1285 hpts, inp, runningslot, inp->inp_hptsslot)); 1286 1287 if (inp->inp_hpts_request) { 1288 /* 1289 * This guy is deferred out further in time 1290 * then our wheel had available on it. 1291 * Push him back on the wheel or run it 1292 * depending. 1293 */ 1294 uint32_t maxslots, last_slot, remaining_slots; 1295 1296 remaining_slots = slots_to_run - (i + 1); 1297 if (inp->inp_hpts_request > remaining_slots) { 1298 HPTS_LOCK(hpts); 1299 /* 1300 * How far out can we go? 1301 */ 1302 maxslots = max_slots_available(hpts, 1303 hpts->p_cur_slot, &last_slot); 1304 if (maxslots >= inp->inp_hpts_request) { 1305 /* We can place it finally to 1306 * be processed. */ 1307 inp->inp_hptsslot = hpts_slot( 1308 hpts->p_runningslot, 1309 inp->inp_hpts_request); 1310 inp->inp_hpts_request = 0; 1311 } else { 1312 /* Work off some more time */ 1313 inp->inp_hptsslot = last_slot; 1314 inp->inp_hpts_request -= 1315 maxslots; 1316 } 1317 inp_hpts_insert(inp, hpts); 1318 HPTS_UNLOCK(hpts); 1319 INP_WUNLOCK(inp); 1320 continue; 1321 } 1322 inp->inp_hpts_request = 0; 1323 /* Fall through we will so do it now */ 1324 } 1325 1326 inp_hpts_release(inp); 1327 tp = intotcpcb(inp); 1328 MPASS(tp); 1329 if (set_cpu) { 1330 /* 1331 * Setup so the next time we will move to 1332 * the right CPU. This should be a rare 1333 * event. It will sometimes happens when we 1334 * are the client side (usually not the 1335 * server). Somehow tcp_output() gets called 1336 * before the tcp_do_segment() sets the 1337 * intial state. This means the r_cpu and 1338 * r_hpts_cpu is 0. We get on the hpts, and 1339 * then tcp_input() gets called setting up 1340 * the r_cpu to the correct value. The hpts 1341 * goes off and sees the mis-match. We 1342 * simply correct it here and the CPU will 1343 * switch to the new hpts nextime the tcb 1344 * gets added to the hpts (not this one) 1345 * :-) 1346 */ 1347 tcp_set_hpts(inp); 1348 } 1349 CURVNET_SET(inp->inp_vnet); 1350 /* Lets do any logging that we might want to */ 1351 if (hpts_does_tp_logging && (tp->t_logstate != TCP_LOG_STATE_OFF)) { 1352 tcp_hpts_log(hpts, tp, &tv, slots_to_run, i, from_callout); 1353 } 1354 1355 if (tp->t_fb_ptr != NULL) { 1356 kern_prefetch(tp->t_fb_ptr, &did_prefetch); 1357 did_prefetch = 1; 1358 } 1359 if ((inp->inp_flags2 & INP_SUPPORTS_MBUFQ) && tp->t_in_pkt) { 1360 error = (*tp->t_fb->tfb_do_queued_segments)(inp->inp_socket, tp, 0); 1361 if (error) { 1362 /* The input killed the connection */ 1363 goto skip_pacing; 1364 } 1365 } 1366 inp->inp_hpts_calls = 1; 1367 error = tcp_output(tp); 1368 if (error < 0) 1369 goto skip_pacing; 1370 inp->inp_hpts_calls = 0; 1371 if (ninp && ninp->inp_ppcb) { 1372 /* 1373 * If we have a nxt inp, see if we can 1374 * prefetch its ppcb. Note this may seem 1375 * "risky" since we have no locks (other 1376 * than the previous inp) and there no 1377 * assurance that ninp was not pulled while 1378 * we were processing inp and freed. If this 1379 * occurred it could mean that either: 1380 * 1381 * a) Its NULL (which is fine we won't go 1382 * here) <or> b) Its valid (which is cool we 1383 * will prefetch it) <or> c) The inp got 1384 * freed back to the slab which was 1385 * reallocated. Then the piece of memory was 1386 * re-used and something else (not an 1387 * address) is in inp_ppcb. If that occurs 1388 * we don't crash, but take a TLB shootdown 1389 * performance hit (same as if it was NULL 1390 * and we tried to pre-fetch it). 1391 * 1392 * Considering that the likelyhood of <c> is 1393 * quite rare we will take a risk on doing 1394 * this. If performance drops after testing 1395 * we can always take this out. NB: the 1396 * kern_prefetch on amd64 actually has 1397 * protection against a bad address now via 1398 * the DMAP_() tests. This will prevent the 1399 * TLB hit, and instead if <c> occurs just 1400 * cause us to load cache with a useless 1401 * address (to us). 1402 */ 1403 kern_prefetch(ninp->inp_ppcb, &prefetch_tp); 1404 prefetch_tp = 1; 1405 } 1406 INP_WUNLOCK(inp); 1407 skip_pacing: 1408 CURVNET_RESTORE(); 1409 } 1410 if (seen_endpoint) { 1411 /* 1412 * We now have a accurate distance between 1413 * slot_pos_of_endpoint <-> orig_exit_slot 1414 * to tell us how late we were, orig_exit_slot 1415 * is where we calculated the end of our cycle to 1416 * be when we first entered. 1417 */ 1418 completed_measure = 1; 1419 } 1420 HPTS_LOCK(hpts); 1421 hpts->p_runningslot++; 1422 if (hpts->p_runningslot >= NUM_OF_HPTSI_SLOTS) { 1423 hpts->p_runningslot = 0; 1424 } 1425 } 1426 no_one: 1427 HPTS_MTX_ASSERT(hpts); 1428 hpts->p_delayed_by = 0; 1429 /* 1430 * Check to see if we took an excess amount of time and need to run 1431 * more ticks (if we did not hit eno-bufs). 1432 */ 1433 hpts->p_prev_slot = hpts->p_cur_slot; 1434 hpts->p_lasttick = hpts->p_curtick; 1435 if ((from_callout == 0) || (loop_cnt > max_pacer_loops)) { 1436 /* 1437 * Something is serious slow we have 1438 * looped through processing the wheel 1439 * and by the time we cleared the 1440 * needs to run max_pacer_loops time 1441 * we still needed to run. That means 1442 * the system is hopelessly behind and 1443 * can never catch up :( 1444 * 1445 * We will just lie to this thread 1446 * and let it thing p_curtick is 1447 * correct. When it next awakens 1448 * it will find itself further behind. 1449 */ 1450 if (from_callout) 1451 counter_u64_add(hpts_hopelessly_behind, 1); 1452 goto no_run; 1453 } 1454 hpts->p_curtick = tcp_gethptstick(&tv); 1455 hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick); 1456 if (seen_endpoint == 0) { 1457 /* We saw no endpoint but we may be looping */ 1458 orig_exit_slot = hpts->p_cur_slot; 1459 } 1460 if ((wrap_loop_cnt < 2) && 1461 (hpts->p_lasttick != hpts->p_curtick)) { 1462 counter_u64_add(hpts_loops, 1); 1463 loop_cnt++; 1464 goto again; 1465 } 1466 no_run: 1467 cts_last_ran[hpts->p_num] = tcp_tv_to_usectick(&tv); 1468 /* 1469 * Set flag to tell that we are done for 1470 * any slot input that happens during 1471 * input. 1472 */ 1473 hpts->p_wheel_complete = 1; 1474 /* 1475 * Now did we spend too long running input and need to run more ticks? 1476 * Note that if wrap_loop_cnt < 2 then we should have the conditions 1477 * in the KASSERT's true. But if the wheel is behind i.e. wrap_loop_cnt 1478 * is greater than 2, then the condtion most likely are *not* true. 1479 * Also if we are called not from the callout, we don't run the wheel 1480 * multiple times so the slots may not align either. 1481 */ 1482 KASSERT(((hpts->p_prev_slot == hpts->p_cur_slot) || 1483 (wrap_loop_cnt >= 2) || (from_callout == 0)), 1484 ("H:%p p_prev_slot:%u not equal to p_cur_slot:%u", hpts, 1485 hpts->p_prev_slot, hpts->p_cur_slot)); 1486 KASSERT(((hpts->p_lasttick == hpts->p_curtick) 1487 || (wrap_loop_cnt >= 2) || (from_callout == 0)), 1488 ("H:%p p_lasttick:%u not equal to p_curtick:%u", hpts, 1489 hpts->p_lasttick, hpts->p_curtick)); 1490 if (from_callout && (hpts->p_lasttick != hpts->p_curtick)) { 1491 hpts->p_curtick = tcp_gethptstick(&tv); 1492 counter_u64_add(hpts_loops, 1); 1493 hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick); 1494 goto again; 1495 } 1496 1497 if (from_callout){ 1498 tcp_hpts_set_max_sleep(hpts, wrap_loop_cnt); 1499 } 1500 if (seen_endpoint) 1501 return(hpts_slots_diff(slot_pos_of_endpoint, orig_exit_slot)); 1502 else 1503 return (0); 1504 } 1505 1506 void 1507 __tcp_set_hpts(struct inpcb *inp, int32_t line) 1508 { 1509 struct tcp_hpts_entry *hpts; 1510 int failed; 1511 1512 INP_WLOCK_ASSERT(inp); 1513 hpts = tcp_hpts_lock(inp); 1514 if ((inp->inp_in_hpts == 0) && 1515 (inp->inp_hpts_cpu_set == 0)) { 1516 inp->inp_hpts_cpu = hpts_cpuid(inp, &failed); 1517 if (failed == 0) 1518 inp->inp_hpts_cpu_set = 1; 1519 } 1520 mtx_unlock(&hpts->p_mtx); 1521 } 1522 1523 static void 1524 __tcp_run_hpts(struct tcp_hpts_entry *hpts) 1525 { 1526 int ticks_ran; 1527 1528 if (hpts->p_hpts_active) { 1529 /* Already active */ 1530 return; 1531 } 1532 if (mtx_trylock(&hpts->p_mtx) == 0) { 1533 /* Someone else got the lock */ 1534 return; 1535 } 1536 if (hpts->p_hpts_active) 1537 goto out_with_mtx; 1538 hpts->syscall_cnt++; 1539 counter_u64_add(hpts_direct_call, 1); 1540 hpts->p_hpts_active = 1; 1541 ticks_ran = tcp_hptsi(hpts, 0); 1542 /* We may want to adjust the sleep values here */ 1543 if (hpts->p_on_queue_cnt >= conn_cnt_thresh) { 1544 if (ticks_ran > ticks_indicate_less_sleep) { 1545 struct timeval tv; 1546 sbintime_t sb; 1547 1548 hpts->p_mysleep.tv_usec /= 2; 1549 if (hpts->p_mysleep.tv_usec < dynamic_min_sleep) 1550 hpts->p_mysleep.tv_usec = dynamic_min_sleep; 1551 /* Reschedule with new to value */ 1552 tcp_hpts_set_max_sleep(hpts, 0); 1553 tv.tv_usec = hpts->p_hpts_sleep_time * HPTS_TICKS_PER_SLOT; 1554 /* Validate its in the right ranges */ 1555 if (tv.tv_usec < hpts->p_mysleep.tv_usec) { 1556 hpts->overidden_sleep = tv.tv_usec; 1557 tv.tv_usec = hpts->p_mysleep.tv_usec; 1558 } else if (tv.tv_usec > dynamic_max_sleep) { 1559 /* Lets not let sleep get above this value */ 1560 hpts->overidden_sleep = tv.tv_usec; 1561 tv.tv_usec = dynamic_max_sleep; 1562 } 1563 /* 1564 * In this mode the timer is a backstop to 1565 * all the userret/lro_flushes so we use 1566 * the dynamic value and set the on_min_sleep 1567 * flag so we will not be awoken. 1568 */ 1569 sb = tvtosbt(tv); 1570 /* Store off to make visible the actual sleep time */ 1571 hpts->sleeping = tv.tv_usec; 1572 callout_reset_sbt_on(&hpts->co, sb, 0, 1573 hpts_timeout_swi, hpts, hpts->p_cpu, 1574 (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision))); 1575 } else if (ticks_ran < ticks_indicate_more_sleep) { 1576 /* For the further sleep, don't reschedule hpts */ 1577 hpts->p_mysleep.tv_usec *= 2; 1578 if (hpts->p_mysleep.tv_usec > dynamic_max_sleep) 1579 hpts->p_mysleep.tv_usec = dynamic_max_sleep; 1580 } 1581 hpts->p_on_min_sleep = 1; 1582 } 1583 hpts->p_hpts_active = 0; 1584 out_with_mtx: 1585 HPTS_MTX_ASSERT(hpts); 1586 mtx_unlock(&hpts->p_mtx); 1587 } 1588 1589 static struct tcp_hpts_entry * 1590 tcp_choose_hpts_to_run(void) 1591 { 1592 int i, oldest_idx, start, end; 1593 uint32_t cts, time_since_ran, calc; 1594 1595 cts = tcp_get_usecs(NULL); 1596 time_since_ran = 0; 1597 /* Default is all one group */ 1598 start = 0; 1599 end = tcp_pace.rp_num_hptss; 1600 /* 1601 * If we have more than one L3 group figure out which one 1602 * this CPU is in. 1603 */ 1604 if (tcp_pace.grp_cnt > 1) { 1605 for (i = 0; i < tcp_pace.grp_cnt; i++) { 1606 if (CPU_ISSET(curcpu, &tcp_pace.grps[i]->cg_mask)) { 1607 start = tcp_pace.grps[i]->cg_first; 1608 end = (tcp_pace.grps[i]->cg_last + 1); 1609 break; 1610 } 1611 } 1612 } 1613 oldest_idx = -1; 1614 for (i = start; i < end; i++) { 1615 if (TSTMP_GT(cts, cts_last_ran[i])) 1616 calc = cts - cts_last_ran[i]; 1617 else 1618 calc = 0; 1619 if (calc > time_since_ran) { 1620 oldest_idx = i; 1621 time_since_ran = calc; 1622 } 1623 } 1624 if (oldest_idx >= 0) 1625 return(tcp_pace.rp_ent[oldest_idx]); 1626 else 1627 return(tcp_pace.rp_ent[(curcpu % tcp_pace.rp_num_hptss)]); 1628 } 1629 1630 1631 void 1632 tcp_run_hpts(void) 1633 { 1634 static struct tcp_hpts_entry *hpts; 1635 struct epoch_tracker et; 1636 1637 NET_EPOCH_ENTER(et); 1638 hpts = tcp_choose_hpts_to_run(); 1639 __tcp_run_hpts(hpts); 1640 NET_EPOCH_EXIT(et); 1641 } 1642 1643 1644 static void 1645 tcp_hpts_thread(void *ctx) 1646 { 1647 struct tcp_hpts_entry *hpts; 1648 struct epoch_tracker et; 1649 struct timeval tv; 1650 sbintime_t sb; 1651 int ticks_ran; 1652 1653 hpts = (struct tcp_hpts_entry *)ctx; 1654 mtx_lock(&hpts->p_mtx); 1655 if (hpts->p_direct_wake) { 1656 /* Signaled by input or output with low occupancy count. */ 1657 callout_stop(&hpts->co); 1658 counter_u64_add(hpts_direct_awakening, 1); 1659 } else { 1660 /* Timed out, the normal case. */ 1661 counter_u64_add(hpts_wake_timeout, 1); 1662 if (callout_pending(&hpts->co) || 1663 !callout_active(&hpts->co)) { 1664 mtx_unlock(&hpts->p_mtx); 1665 return; 1666 } 1667 } 1668 callout_deactivate(&hpts->co); 1669 hpts->p_hpts_wake_scheduled = 0; 1670 NET_EPOCH_ENTER(et); 1671 if (hpts->p_hpts_active) { 1672 /* 1673 * We are active already. This means that a syscall 1674 * trap or LRO is running in behalf of hpts. In that case 1675 * we need to double our timeout since there seems to be 1676 * enough activity in the system that we don't need to 1677 * run as often (if we were not directly woken). 1678 */ 1679 if (hpts->p_direct_wake == 0) { 1680 counter_u64_add(hpts_back_tosleep, 1); 1681 if (hpts->p_on_queue_cnt >= conn_cnt_thresh) { 1682 hpts->p_mysleep.tv_usec *= 2; 1683 if (hpts->p_mysleep.tv_usec > dynamic_max_sleep) 1684 hpts->p_mysleep.tv_usec = dynamic_max_sleep; 1685 tv.tv_usec = hpts->p_mysleep.tv_usec; 1686 hpts->p_on_min_sleep = 1; 1687 } else { 1688 /* 1689 * Here we have low count on the wheel, but 1690 * somehow we still collided with one of the 1691 * connections. Lets go back to sleep for a 1692 * min sleep time, but clear the flag so we 1693 * can be awoken by insert. 1694 */ 1695 hpts->p_on_min_sleep = 0; 1696 tv.tv_usec = tcp_min_hptsi_time; 1697 } 1698 } else { 1699 /* 1700 * Directly woken most likely to reset the 1701 * callout time. 1702 */ 1703 tv.tv_sec = 0; 1704 tv.tv_usec = hpts->p_mysleep.tv_usec; 1705 } 1706 goto back_to_sleep; 1707 } 1708 hpts->sleeping = 0; 1709 hpts->p_hpts_active = 1; 1710 ticks_ran = tcp_hptsi(hpts, 1); 1711 tv.tv_sec = 0; 1712 tv.tv_usec = hpts->p_hpts_sleep_time * HPTS_TICKS_PER_SLOT; 1713 if (hpts->p_on_queue_cnt >= conn_cnt_thresh) { 1714 if(hpts->p_direct_wake == 0) { 1715 /* 1716 * Only adjust sleep time if we were 1717 * called from the callout i.e. direct_wake == 0. 1718 */ 1719 if (ticks_ran < ticks_indicate_more_sleep) { 1720 hpts->p_mysleep.tv_usec *= 2; 1721 if (hpts->p_mysleep.tv_usec > dynamic_max_sleep) 1722 hpts->p_mysleep.tv_usec = dynamic_max_sleep; 1723 } else if (ticks_ran > ticks_indicate_less_sleep) { 1724 hpts->p_mysleep.tv_usec /= 2; 1725 if (hpts->p_mysleep.tv_usec < dynamic_min_sleep) 1726 hpts->p_mysleep.tv_usec = dynamic_min_sleep; 1727 } 1728 } 1729 if (tv.tv_usec < hpts->p_mysleep.tv_usec) { 1730 hpts->overidden_sleep = tv.tv_usec; 1731 tv.tv_usec = hpts->p_mysleep.tv_usec; 1732 } else if (tv.tv_usec > dynamic_max_sleep) { 1733 /* Lets not let sleep get above this value */ 1734 hpts->overidden_sleep = tv.tv_usec; 1735 tv.tv_usec = dynamic_max_sleep; 1736 } 1737 /* 1738 * In this mode the timer is a backstop to 1739 * all the userret/lro_flushes so we use 1740 * the dynamic value and set the on_min_sleep 1741 * flag so we will not be awoken. 1742 */ 1743 hpts->p_on_min_sleep = 1; 1744 } else if (hpts->p_on_queue_cnt == 0) { 1745 /* 1746 * No one on the wheel, please wake us up 1747 * if you insert on the wheel. 1748 */ 1749 hpts->p_on_min_sleep = 0; 1750 hpts->overidden_sleep = 0; 1751 } else { 1752 /* 1753 * We hit here when we have a low number of 1754 * clients on the wheel (our else clause). 1755 * We may need to go on min sleep, if we set 1756 * the flag we will not be awoken if someone 1757 * is inserted ahead of us. Clearing the flag 1758 * means we can be awoken. This is "old mode" 1759 * where the timer is what runs hpts mainly. 1760 */ 1761 if (tv.tv_usec < tcp_min_hptsi_time) { 1762 /* 1763 * Yes on min sleep, which means 1764 * we cannot be awoken. 1765 */ 1766 hpts->overidden_sleep = tv.tv_usec; 1767 tv.tv_usec = tcp_min_hptsi_time; 1768 hpts->p_on_min_sleep = 1; 1769 } else { 1770 /* Clear the min sleep flag */ 1771 hpts->overidden_sleep = 0; 1772 hpts->p_on_min_sleep = 0; 1773 } 1774 } 1775 HPTS_MTX_ASSERT(hpts); 1776 hpts->p_hpts_active = 0; 1777 back_to_sleep: 1778 hpts->p_direct_wake = 0; 1779 sb = tvtosbt(tv); 1780 /* Store off to make visible the actual sleep time */ 1781 hpts->sleeping = tv.tv_usec; 1782 callout_reset_sbt_on(&hpts->co, sb, 0, 1783 hpts_timeout_swi, hpts, hpts->p_cpu, 1784 (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision))); 1785 NET_EPOCH_EXIT(et); 1786 mtx_unlock(&hpts->p_mtx); 1787 } 1788 1789 #undef timersub 1790 1791 static int32_t 1792 hpts_count_level(struct cpu_group *cg) 1793 { 1794 int32_t count_l3, i; 1795 1796 count_l3 = 0; 1797 if (cg->cg_level == CG_SHARE_L3) 1798 count_l3++; 1799 /* Walk all the children looking for L3 */ 1800 for (i = 0; i < cg->cg_children; i++) { 1801 count_l3 += hpts_count_level(&cg->cg_child[i]); 1802 } 1803 return (count_l3); 1804 } 1805 1806 static void 1807 hpts_gather_grps(struct cpu_group **grps, int32_t *at, int32_t max, struct cpu_group *cg) 1808 { 1809 int32_t idx, i; 1810 1811 idx = *at; 1812 if (cg->cg_level == CG_SHARE_L3) { 1813 grps[idx] = cg; 1814 idx++; 1815 if (idx == max) { 1816 *at = idx; 1817 return; 1818 } 1819 } 1820 *at = idx; 1821 /* Walk all the children looking for L3 */ 1822 for (i = 0; i < cg->cg_children; i++) { 1823 hpts_gather_grps(grps, at, max, &cg->cg_child[i]); 1824 } 1825 } 1826 1827 static void 1828 tcp_init_hptsi(void *st) 1829 { 1830 struct cpu_group *cpu_top; 1831 int32_t error __diagused; 1832 int32_t i, j, bound = 0, created = 0; 1833 size_t sz, asz; 1834 struct timeval tv; 1835 sbintime_t sb; 1836 struct tcp_hpts_entry *hpts; 1837 struct pcpu *pc; 1838 char unit[16]; 1839 uint32_t ncpus = mp_ncpus ? mp_ncpus : MAXCPU; 1840 int count, domain; 1841 1842 #ifdef SMP 1843 cpu_top = smp_topo(); 1844 #else 1845 cpu_top = NULL; 1846 #endif 1847 tcp_pace.rp_num_hptss = ncpus; 1848 hpts_hopelessly_behind = counter_u64_alloc(M_WAITOK); 1849 hpts_loops = counter_u64_alloc(M_WAITOK); 1850 back_tosleep = counter_u64_alloc(M_WAITOK); 1851 combined_wheel_wrap = counter_u64_alloc(M_WAITOK); 1852 wheel_wrap = counter_u64_alloc(M_WAITOK); 1853 hpts_wake_timeout = counter_u64_alloc(M_WAITOK); 1854 hpts_direct_awakening = counter_u64_alloc(M_WAITOK); 1855 hpts_back_tosleep = counter_u64_alloc(M_WAITOK); 1856 hpts_direct_call = counter_u64_alloc(M_WAITOK); 1857 cpu_uses_flowid = counter_u64_alloc(M_WAITOK); 1858 cpu_uses_random = counter_u64_alloc(M_WAITOK); 1859 1860 sz = (tcp_pace.rp_num_hptss * sizeof(struct tcp_hpts_entry *)); 1861 tcp_pace.rp_ent = malloc(sz, M_TCPHPTS, M_WAITOK | M_ZERO); 1862 sz = (sizeof(uint32_t) * tcp_pace.rp_num_hptss); 1863 cts_last_ran = malloc(sz, M_TCPHPTS, M_WAITOK); 1864 tcp_pace.grp_cnt = 0; 1865 if (cpu_top == NULL) { 1866 tcp_pace.grp_cnt = 1; 1867 } else { 1868 /* Find out how many cache level 3 domains we have */ 1869 count = 0; 1870 tcp_pace.grp_cnt = hpts_count_level(cpu_top); 1871 if (tcp_pace.grp_cnt == 0) { 1872 tcp_pace.grp_cnt = 1; 1873 } 1874 sz = (tcp_pace.grp_cnt * sizeof(struct cpu_group *)); 1875 tcp_pace.grps = malloc(sz, M_TCPHPTS, M_WAITOK); 1876 /* Now populate the groups */ 1877 if (tcp_pace.grp_cnt == 1) { 1878 /* 1879 * All we need is the top level all cpu's are in 1880 * the same cache so when we use grp[0]->cg_mask 1881 * with the cg_first <-> cg_last it will include 1882 * all cpu's in it. The level here is probably 1883 * zero which is ok. 1884 */ 1885 tcp_pace.grps[0] = cpu_top; 1886 } else { 1887 /* 1888 * Here we must find all the level three cache domains 1889 * and setup our pointers to them. 1890 */ 1891 count = 0; 1892 hpts_gather_grps(tcp_pace.grps, &count, tcp_pace.grp_cnt, cpu_top); 1893 } 1894 } 1895 asz = sizeof(struct hptsh) * NUM_OF_HPTSI_SLOTS; 1896 for (i = 0; i < tcp_pace.rp_num_hptss; i++) { 1897 tcp_pace.rp_ent[i] = malloc(sizeof(struct tcp_hpts_entry), 1898 M_TCPHPTS, M_WAITOK | M_ZERO); 1899 tcp_pace.rp_ent[i]->p_hptss = malloc(asz, M_TCPHPTS, M_WAITOK); 1900 hpts = tcp_pace.rp_ent[i]; 1901 /* 1902 * Init all the hpts structures that are not specifically 1903 * zero'd by the allocations. Also lets attach them to the 1904 * appropriate sysctl block as well. 1905 */ 1906 mtx_init(&hpts->p_mtx, "tcp_hpts_lck", 1907 "hpts", MTX_DEF | MTX_DUPOK); 1908 for (j = 0; j < NUM_OF_HPTSI_SLOTS; j++) { 1909 TAILQ_INIT(&hpts->p_hptss[j].head); 1910 hpts->p_hptss[j].count = 0; 1911 hpts->p_hptss[j].gencnt = 0; 1912 } 1913 sysctl_ctx_init(&hpts->hpts_ctx); 1914 sprintf(unit, "%d", i); 1915 hpts->hpts_root = SYSCTL_ADD_NODE(&hpts->hpts_ctx, 1916 SYSCTL_STATIC_CHILDREN(_net_inet_tcp_hpts), 1917 OID_AUTO, 1918 unit, 1919 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 1920 ""); 1921 SYSCTL_ADD_INT(&hpts->hpts_ctx, 1922 SYSCTL_CHILDREN(hpts->hpts_root), 1923 OID_AUTO, "out_qcnt", CTLFLAG_RD, 1924 &hpts->p_on_queue_cnt, 0, 1925 "Count TCB's awaiting output processing"); 1926 SYSCTL_ADD_U16(&hpts->hpts_ctx, 1927 SYSCTL_CHILDREN(hpts->hpts_root), 1928 OID_AUTO, "active", CTLFLAG_RD, 1929 &hpts->p_hpts_active, 0, 1930 "Is the hpts active"); 1931 SYSCTL_ADD_UINT(&hpts->hpts_ctx, 1932 SYSCTL_CHILDREN(hpts->hpts_root), 1933 OID_AUTO, "curslot", CTLFLAG_RD, 1934 &hpts->p_cur_slot, 0, 1935 "What the current running pacers goal"); 1936 SYSCTL_ADD_UINT(&hpts->hpts_ctx, 1937 SYSCTL_CHILDREN(hpts->hpts_root), 1938 OID_AUTO, "runtick", CTLFLAG_RD, 1939 &hpts->p_runningslot, 0, 1940 "What the running pacers current slot is"); 1941 SYSCTL_ADD_UINT(&hpts->hpts_ctx, 1942 SYSCTL_CHILDREN(hpts->hpts_root), 1943 OID_AUTO, "curtick", CTLFLAG_RD, 1944 &hpts->p_curtick, 0, 1945 "What the running pacers last tick mapped to the wheel was"); 1946 SYSCTL_ADD_UINT(&hpts->hpts_ctx, 1947 SYSCTL_CHILDREN(hpts->hpts_root), 1948 OID_AUTO, "lastran", CTLFLAG_RD, 1949 &cts_last_ran[i], 0, 1950 "The last usec tick that this hpts ran"); 1951 SYSCTL_ADD_LONG(&hpts->hpts_ctx, 1952 SYSCTL_CHILDREN(hpts->hpts_root), 1953 OID_AUTO, "cur_min_sleep", CTLFLAG_RD, 1954 &hpts->p_mysleep.tv_usec, 1955 "What the running pacers is using for p_mysleep.tv_usec"); 1956 SYSCTL_ADD_U64(&hpts->hpts_ctx, 1957 SYSCTL_CHILDREN(hpts->hpts_root), 1958 OID_AUTO, "now_sleeping", CTLFLAG_RD, 1959 &hpts->sleeping, 0, 1960 "What the running pacers is actually sleeping for"); 1961 SYSCTL_ADD_U64(&hpts->hpts_ctx, 1962 SYSCTL_CHILDREN(hpts->hpts_root), 1963 OID_AUTO, "syscall_cnt", CTLFLAG_RD, 1964 &hpts->syscall_cnt, 0, 1965 "How many times we had syscalls on this hpts"); 1966 1967 hpts->p_hpts_sleep_time = hpts_sleep_max; 1968 hpts->p_num = i; 1969 hpts->p_curtick = tcp_gethptstick(&tv); 1970 cts_last_ran[i] = tcp_tv_to_usectick(&tv); 1971 hpts->p_prev_slot = hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick); 1972 hpts->p_cpu = 0xffff; 1973 hpts->p_nxt_slot = hpts_slot(hpts->p_cur_slot, 1); 1974 callout_init(&hpts->co, 1); 1975 } 1976 /* Don't try to bind to NUMA domains if we don't have any */ 1977 if (vm_ndomains == 1 && tcp_bind_threads == 2) 1978 tcp_bind_threads = 0; 1979 1980 /* 1981 * Now lets start ithreads to handle the hptss. 1982 */ 1983 for (i = 0; i < tcp_pace.rp_num_hptss; i++) { 1984 hpts = tcp_pace.rp_ent[i]; 1985 hpts->p_cpu = i; 1986 1987 error = swi_add(&hpts->ie, "hpts", 1988 tcp_hpts_thread, (void *)hpts, 1989 SWI_NET, INTR_MPSAFE, &hpts->ie_cookie); 1990 KASSERT(error == 0, 1991 ("Can't add hpts:%p i:%d err:%d", 1992 hpts, i, error)); 1993 created++; 1994 hpts->p_mysleep.tv_sec = 0; 1995 hpts->p_mysleep.tv_usec = tcp_min_hptsi_time; 1996 if (tcp_bind_threads == 1) { 1997 if (intr_event_bind(hpts->ie, i) == 0) 1998 bound++; 1999 } else if (tcp_bind_threads == 2) { 2000 /* Find the group for this CPU (i) and bind into it */ 2001 for (j = 0; j < tcp_pace.grp_cnt; j++) { 2002 if (CPU_ISSET(i, &tcp_pace.grps[j]->cg_mask)) { 2003 if (intr_event_bind_ithread_cpuset(hpts->ie, 2004 &tcp_pace.grps[j]->cg_mask) == 0) { 2005 bound++; 2006 pc = pcpu_find(i); 2007 domain = pc->pc_domain; 2008 count = hpts_domains[domain].count; 2009 hpts_domains[domain].cpu[count] = i; 2010 hpts_domains[domain].count++; 2011 break; 2012 } 2013 } 2014 } 2015 } 2016 tv.tv_sec = 0; 2017 tv.tv_usec = hpts->p_hpts_sleep_time * HPTS_TICKS_PER_SLOT; 2018 hpts->sleeping = tv.tv_usec; 2019 sb = tvtosbt(tv); 2020 callout_reset_sbt_on(&hpts->co, sb, 0, 2021 hpts_timeout_swi, hpts, hpts->p_cpu, 2022 (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision))); 2023 } 2024 /* 2025 * If we somehow have an empty domain, fall back to choosing 2026 * among all htps threads. 2027 */ 2028 for (i = 0; i < vm_ndomains; i++) { 2029 if (hpts_domains[i].count == 0) { 2030 tcp_bind_threads = 0; 2031 break; 2032 } 2033 } 2034 printf("TCP Hpts created %d swi interrupt threads and bound %d to %s\n", 2035 created, bound, 2036 tcp_bind_threads == 2 ? "NUMA domains" : "cpus"); 2037 #ifdef INVARIANTS 2038 printf("HPTS is in INVARIANT mode!!\n"); 2039 #endif 2040 } 2041 2042 SYSINIT(tcphptsi, SI_SUB_SOFTINTR, SI_ORDER_ANY, tcp_init_hptsi, NULL); 2043 MODULE_VERSION(tcphpts, 1); 2044