1 /*- 2 * Copyright (c) 2016-2018 Netflix, Inc. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 1. Redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer. 9 * 2. Redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution. 12 * 13 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 14 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 16 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 17 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 18 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 19 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 20 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 21 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 22 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 23 * SUCH DAMAGE. 24 * 25 */ 26 #include <sys/cdefs.h> 27 #include "opt_inet.h" 28 #include "opt_inet6.h" 29 #include "opt_rss.h" 30 31 /** 32 * Some notes about usage. 33 * 34 * The tcp_hpts system is designed to provide a high precision timer 35 * system for tcp. Its main purpose is to provide a mechanism for 36 * pacing packets out onto the wire. It can be used in two ways 37 * by a given TCP stack (and those two methods can be used simultaneously). 38 * 39 * First, and probably the main thing its used by Rack and BBR, it can 40 * be used to call tcp_output() of a transport stack at some time in the future. 41 * The normal way this is done is that tcp_output() of the stack schedules 42 * itself to be called again by calling tcp_hpts_insert(tcpcb, usecs). The 43 * usecs is the time from now that the stack wants to be called and is 44 * passing time directly in microseconds. So a typical 45 * call from the tcp_output() routine might look like: 46 * 47 * tcp_hpts_insert(tp, 550, NULL); 48 * 49 * The above would schedule tcp_output() to be called in 550 microseconds. 50 * Note that if using this mechanism the stack will want to add near 51 * its top a check to prevent unwanted calls (from user land or the 52 * arrival of incoming ack's). So it would add something like: 53 * 54 * if (tcp_in_hpts(inp)) 55 * return; 56 * 57 * to prevent output processing until the time alotted has gone by. 58 * Of course this is a bare bones example and the stack will probably 59 * have more consideration then just the above. 60 * 61 * In order to run input queued segments from the HPTS context the 62 * tcp stack must define an input function for 63 * tfb_do_queued_segments(). This function understands 64 * how to dequeue a array of packets that were input and 65 * knows how to call the correct processing routine. 66 * 67 * Locking in this is important as well so most likely the 68 * stack will need to define the tfb_do_segment_nounlock() 69 * splitting tfb_do_segment() into two parts. The main processing 70 * part that does not unlock the INP and returns a value of 1 or 0. 71 * It returns 0 if all is well and the lock was not released. It 72 * returns 1 if we had to destroy the TCB (a reset received etc). 73 * The remains of tfb_do_segment() then become just a simple call 74 * to the tfb_do_segment_nounlock() function and check the return 75 * code and possibly unlock. 76 * 77 * The stack must also set the flag on the INP that it supports this 78 * feature i.e. INP_SUPPORTS_MBUFQ. The LRO code recoginizes 79 * this flag as well and will queue packets when it is set. 80 * There are other flags as well INP_MBUF_QUEUE_READY and 81 * INP_DONT_SACK_QUEUE. The first flag tells the LRO code 82 * that we are in the pacer for output so there is no 83 * need to wake up the hpts system to get immediate 84 * input. The second tells the LRO code that its okay 85 * if a SACK arrives you can still defer input and let 86 * the current hpts timer run (this is usually set when 87 * a rack timer is up so we know SACK's are happening 88 * on the connection already and don't want to wakeup yet). 89 * 90 * There is a common functions within the rack_bbr_common code 91 * version i.e. ctf_do_queued_segments(). This function 92 * knows how to take the input queue of packets from tp->t_inqueue 93 * and process them digging out all the arguments, calling any bpf tap and 94 * calling into tfb_do_segment_nounlock(). The common 95 * function (ctf_do_queued_segments()) requires that 96 * you have defined the tfb_do_segment_nounlock() as 97 * described above. 98 */ 99 100 #include <sys/param.h> 101 #include <sys/bus.h> 102 #include <sys/interrupt.h> 103 #include <sys/module.h> 104 #include <sys/kernel.h> 105 #include <sys/hhook.h> 106 #include <sys/malloc.h> 107 #include <sys/mbuf.h> 108 #include <sys/proc.h> /* for proc0 declaration */ 109 #include <sys/socket.h> 110 #include <sys/socketvar.h> 111 #include <sys/sysctl.h> 112 #include <sys/systm.h> 113 #include <sys/refcount.h> 114 #include <sys/sched.h> 115 #include <sys/queue.h> 116 #include <sys/smp.h> 117 #include <sys/counter.h> 118 #include <sys/time.h> 119 #include <sys/kthread.h> 120 #include <sys/kern_prefetch.h> 121 122 #include <vm/uma.h> 123 #include <vm/vm.h> 124 125 #include <net/route.h> 126 #include <net/vnet.h> 127 128 #ifdef RSS 129 #include <net/netisr.h> 130 #include <net/rss_config.h> 131 #endif 132 133 #define TCPSTATES /* for logging */ 134 135 #include <netinet/in.h> 136 #include <netinet/in_kdtrace.h> 137 #include <netinet/in_pcb.h> 138 #include <netinet/ip.h> 139 #include <netinet/ip_var.h> 140 #include <netinet/ip6.h> 141 #include <netinet6/in6_pcb.h> 142 #include <netinet6/ip6_var.h> 143 #include <netinet/tcp.h> 144 #include <netinet/tcp_fsm.h> 145 #include <netinet/tcp_seq.h> 146 #include <netinet/tcp_timer.h> 147 #include <netinet/tcp_var.h> 148 #include <netinet/tcpip.h> 149 #include <netinet/cc/cc.h> 150 #include <netinet/tcp_hpts.h> 151 #include <netinet/tcp_hpts_internal.h> 152 #include <netinet/tcp_log_buf.h> 153 154 #ifdef tcp_offload 155 #include <netinet/tcp_offload.h> 156 #endif 157 158 /* Global instance for TCP HPTS */ 159 struct tcp_hptsi *tcp_hptsi_pace; 160 161 /* Default function table for production use. */ 162 const struct tcp_hptsi_funcs tcp_hptsi_default_funcs = { 163 .microuptime = microuptime, 164 .swi_add = swi_add, 165 .swi_remove = swi_remove, 166 .swi_sched = swi_sched, 167 .intr_event_bind = intr_event_bind, 168 .intr_event_bind_ithread_cpuset = intr_event_bind_ithread_cpuset, 169 .callout_init = callout_init, 170 .callout_reset_sbt_on = callout_reset_sbt_on, 171 ._callout_stop_safe = _callout_stop_safe, 172 }; 173 174 #ifdef TCP_HPTS_KTEST 175 #define microuptime pace->funcs->microuptime 176 #define swi_add pace->funcs->swi_add 177 #define swi_remove pace->funcs->swi_remove 178 #define swi_sched pace->funcs->swi_sched 179 #define intr_event_bind pace->funcs->intr_event_bind 180 #define intr_event_bind_ithread_cpuset pace->funcs->intr_event_bind_ithread_cpuset 181 #define callout_init pace->funcs->callout_init 182 #define callout_reset_sbt_on pace->funcs->callout_reset_sbt_on 183 #define _callout_stop_safe pace->funcs->_callout_stop_safe 184 #endif 185 186 static MALLOC_DEFINE(M_TCPHPTS, "tcp_hpts", "TCP hpts"); 187 188 static void tcp_hpts_thread(void *ctx); 189 190 /* 191 * When using the hpts, a TCP stack must make sure 192 * that once a INP_DROPPED flag is applied to a INP 193 * that it does not expect tcp_output() to ever be 194 * called by the hpts. The hpts will *not* call 195 * any output (or input) functions on a TCB that 196 * is in the DROPPED state. 197 * 198 * This implies final ACK's and RST's that might 199 * be sent when a TCB is still around must be 200 * sent from a routine like tcp_respond(). 201 */ 202 #define LOWEST_SLEEP_ALLOWED 50 203 #define DEFAULT_MIN_SLEEP 250 /* How many usec's is default for hpts sleep 204 * this determines min granularity of the 205 * hpts. If 1, granularity is 10useconds at 206 * the cost of more CPU (context switching). 207 * Note do not set this to 0. 208 */ 209 #define DYNAMIC_MIN_SLEEP DEFAULT_MIN_SLEEP 210 #define DYNAMIC_MAX_SLEEP 5000 /* 5ms */ 211 212 /* Thresholds for raising/lowering sleep */ 213 #define SLOTS_INDICATE_MORE_SLEEP 100 /* This would be 1ms */ 214 #define SLOTS_INDICATE_LESS_SLEEP 1000 /* This would indicate 10ms */ 215 /** 216 * 217 * Dynamic adjustment of sleeping times is done in "new" mode 218 * where we are depending on syscall returns and lro returns 219 * to push hpts forward mainly and the timer is only a backstop. 220 * 221 * When we are in the "new" mode i.e. conn_cnt > conn_cnt_thresh 222 * then we do a dynamic adjustment on the time we sleep. 223 * Our threshold is if the lateness of the first client served (in slots) is 224 * greater than or equal too slots_indicate_more_sleep (10ms 225 * or 10000 slots). If we were that late, the actual sleep time 226 * is adjusted down by 50%. If the slots_ran is less than 227 * slots_indicate_more_sleep (100 slots or 1000usecs). 228 * 229 */ 230 231 #ifdef RSS 232 int tcp_bind_threads = 1; 233 #else 234 int tcp_bind_threads = 2; 235 #endif 236 static int tcp_use_irq_cpu = 0; 237 static int hpts_does_tp_logging = 0; 238 static int32_t tcp_hpts_precision = 120; 239 int32_t tcp_min_hptsi_time = DEFAULT_MIN_SLEEP; 240 static int conn_cnt_thresh = DEFAULT_CONNECTION_THRESHOLD; 241 static int32_t dynamic_min_sleep = DYNAMIC_MIN_SLEEP; 242 static int32_t dynamic_max_sleep = DYNAMIC_MAX_SLEEP; 243 244 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, hpts, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 245 "TCP Hpts controls"); 246 SYSCTL_NODE(_net_inet_tcp_hpts, OID_AUTO, stats, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 247 "TCP Hpts statistics"); 248 249 counter_u64_t hpts_hopelessly_behind; 250 251 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, hopeless, CTLFLAG_RD, 252 &hpts_hopelessly_behind, 253 "Number of times hpts could not catch up and was behind hopelessly"); 254 255 counter_u64_t hpts_loops; 256 257 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, loops, CTLFLAG_RD, 258 &hpts_loops, "Number of times hpts had to loop to catch up"); 259 260 counter_u64_t back_tosleep; 261 262 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, no_tcbsfound, CTLFLAG_RD, 263 &back_tosleep, "Number of times hpts found no tcbs"); 264 265 counter_u64_t combined_wheel_wrap; 266 267 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, comb_wheel_wrap, CTLFLAG_RD, 268 &combined_wheel_wrap, "Number of times the wheel lagged enough to have an insert see wrap"); 269 270 counter_u64_t wheel_wrap; 271 272 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, wheel_wrap, CTLFLAG_RD, 273 &wheel_wrap, "Number of times the wheel lagged enough to have an insert see wrap"); 274 275 counter_u64_t hpts_direct_call; 276 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, direct_call, CTLFLAG_RD, 277 &hpts_direct_call, "Number of times hpts was called by syscall/trap or other entry"); 278 279 counter_u64_t hpts_wake_timeout; 280 281 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, timeout_wakeup, CTLFLAG_RD, 282 &hpts_wake_timeout, "Number of times hpts threads woke up via the callout expiring"); 283 284 counter_u64_t hpts_direct_awakening; 285 286 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, direct_awakening, CTLFLAG_RD, 287 &hpts_direct_awakening, "Number of times hpts threads woke up via the callout expiring"); 288 289 counter_u64_t hpts_back_tosleep; 290 291 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, back_tosleep, CTLFLAG_RD, 292 &hpts_back_tosleep, "Number of times hpts threads woke up via the callout expiring and went back to sleep no work"); 293 294 counter_u64_t cpu_uses_flowid; 295 counter_u64_t cpu_uses_random; 296 297 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, cpusel_flowid, CTLFLAG_RD, 298 &cpu_uses_flowid, "Number of times when setting cpuid we used the flowid field"); 299 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, cpusel_random, CTLFLAG_RD, 300 &cpu_uses_random, "Number of times when setting cpuid we used the a random value"); 301 302 TUNABLE_INT("net.inet.tcp.bind_hptss", &tcp_bind_threads); 303 TUNABLE_INT("net.inet.tcp.use_irq", &tcp_use_irq_cpu); 304 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, bind_hptss, CTLFLAG_RD, 305 &tcp_bind_threads, 2, 306 "Thread Binding tunable"); 307 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, use_irq, CTLFLAG_RD, 308 &tcp_use_irq_cpu, 0, 309 "Use of irq CPU tunable"); 310 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, precision, CTLFLAG_RW, 311 &tcp_hpts_precision, 120, 312 "Value for PRE() precision of callout"); 313 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, cnt_thresh, CTLFLAG_RW, 314 &conn_cnt_thresh, 0, 315 "How many connections (below) make us use the callout based mechanism"); 316 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, logging, CTLFLAG_RW, 317 &hpts_does_tp_logging, 0, 318 "Do we add to any tp that has logging on pacer logs"); 319 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, dyn_minsleep, CTLFLAG_RW, 320 &dynamic_min_sleep, 250, 321 "What is the dynamic minsleep value?"); 322 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, dyn_maxsleep, CTLFLAG_RW, 323 &dynamic_max_sleep, 5000, 324 "What is the dynamic maxsleep value?"); 325 326 static int32_t max_pacer_loops = 10; 327 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, loopmax, CTLFLAG_RW, 328 &max_pacer_loops, 10, 329 "What is the maximum number of times the pacer will loop trying to catch up"); 330 331 #define HPTS_MAX_SLEEP_ALLOWED (NUM_OF_HPTSI_SLOTS/2) 332 333 static uint32_t hpts_sleep_max = HPTS_MAX_SLEEP_ALLOWED; 334 335 static int 336 sysctl_net_inet_tcp_hpts_max_sleep(SYSCTL_HANDLER_ARGS) 337 { 338 int error; 339 uint32_t new; 340 341 new = hpts_sleep_max; 342 error = sysctl_handle_int(oidp, &new, 0, req); 343 if (error == 0 && req->newptr) { 344 if ((new < (dynamic_min_sleep/HPTS_USECS_PER_SLOT)) || 345 (new > HPTS_MAX_SLEEP_ALLOWED)) 346 error = EINVAL; 347 else 348 hpts_sleep_max = new; 349 } 350 return (error); 351 } 352 353 static int 354 sysctl_net_inet_tcp_hpts_min_sleep(SYSCTL_HANDLER_ARGS) 355 { 356 int error; 357 uint32_t new; 358 359 new = tcp_min_hptsi_time; 360 error = sysctl_handle_int(oidp, &new, 0, req); 361 if (error == 0 && req->newptr) { 362 if (new < LOWEST_SLEEP_ALLOWED) 363 error = EINVAL; 364 else 365 tcp_min_hptsi_time = new; 366 } 367 return (error); 368 } 369 370 SYSCTL_PROC(_net_inet_tcp_hpts, OID_AUTO, maxsleep, 371 CTLTYPE_UINT | CTLFLAG_RW, 372 &hpts_sleep_max, 0, 373 &sysctl_net_inet_tcp_hpts_max_sleep, "IU", 374 "Maximum time hpts will sleep in slots"); 375 376 SYSCTL_PROC(_net_inet_tcp_hpts, OID_AUTO, minsleep, 377 CTLTYPE_UINT | CTLFLAG_RW, 378 &tcp_min_hptsi_time, 0, 379 &sysctl_net_inet_tcp_hpts_min_sleep, "IU", 380 "The minimum time the hpts must sleep before processing more slots"); 381 382 static int slots_indicate_more_sleep = SLOTS_INDICATE_MORE_SLEEP; 383 static int slots_indicate_less_sleep = SLOTS_INDICATE_LESS_SLEEP; 384 static int tcp_hpts_no_wake_over_thresh = 1; 385 386 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, more_sleep, CTLFLAG_RW, 387 &slots_indicate_more_sleep, 0, 388 "If we only process this many or less on a timeout, we need longer sleep on the next callout"); 389 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, less_sleep, CTLFLAG_RW, 390 &slots_indicate_less_sleep, 0, 391 "If we process this many or more on a timeout, we need less sleep on the next callout"); 392 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, nowake_over_thresh, CTLFLAG_RW, 393 &tcp_hpts_no_wake_over_thresh, 0, 394 "When we are over the threshold on the pacer do we prohibit wakeups?"); 395 396 uint16_t 397 tcp_hptsi_random_cpu(struct tcp_hptsi *pace) 398 { 399 uint16_t cpuid; 400 uint32_t ran; 401 402 ran = arc4random(); 403 cpuid = (((ran & 0xffff) % mp_ncpus) % pace->rp_num_hptss); 404 return (cpuid); 405 } 406 407 static void 408 tcp_hpts_log(struct tcp_hpts_entry *hpts, struct tcpcb *tp, struct timeval *tv, 409 int slots_to_run, int idx, bool from_callout) 410 { 411 if (hpts_does_tp_logging && tcp_bblogging_on(tp)) { 412 union tcp_log_stackspecific log; 413 /* 414 * Unused logs are 415 * 64 bit - delRate, rttProp, bw_inuse 416 * 16 bit - cwnd_gain 417 * 8 bit - bbr_state, bbr_substate, inhpts; 418 */ 419 memset(&log, 0, sizeof(log)); 420 log.u_bbr.flex1 = hpts->p_nxt_slot; 421 log.u_bbr.flex2 = hpts->p_cur_slot; 422 log.u_bbr.flex3 = hpts->p_prev_slot; 423 log.u_bbr.flex4 = idx; 424 log.u_bbr.flex6 = hpts->p_on_queue_cnt; 425 log.u_bbr.flex7 = hpts->p_cpu; 426 log.u_bbr.flex8 = (uint8_t)from_callout; 427 log.u_bbr.inflight = slots_to_run; 428 log.u_bbr.applimited = hpts->overidden_sleep; 429 log.u_bbr.timeStamp = tcp_tv_to_usec(tv); 430 log.u_bbr.epoch = hpts->saved_curslot; 431 log.u_bbr.lt_epoch = hpts->saved_prev_slot; 432 log.u_bbr.pkts_out = hpts->p_delayed_by; 433 log.u_bbr.lost = hpts->p_hpts_sleep_time; 434 log.u_bbr.pacing_gain = hpts->p_cpu; 435 log.u_bbr.pkt_epoch = hpts->p_runningslot; 436 log.u_bbr.use_lt_bw = 1; 437 TCP_LOG_EVENTP(tp, NULL, 438 &tptosocket(tp)->so_rcv, 439 &tptosocket(tp)->so_snd, 440 BBR_LOG_HPTSDIAG, 0, 441 0, &log, false, tv); 442 } 443 } 444 445 /* 446 * Timeout handler for the HPTS sleep callout. It immediately schedules the SWI 447 * for the HPTS entry to run. 448 */ 449 static void 450 tcp_hpts_sleep_timeout(void *arg) 451 { 452 #ifdef TCP_HPTS_KTEST 453 struct tcp_hptsi *pace; 454 #endif 455 struct tcp_hpts_entry *hpts; 456 457 hpts = (struct tcp_hpts_entry *)arg; 458 #ifdef TCP_HPTS_KTEST 459 pace = hpts->p_hptsi; 460 #endif 461 swi_sched(hpts->ie_cookie, 0); 462 } 463 464 /* 465 * Reset the HPTS callout timer with the provided timeval. Returns the results 466 * of the callout_reset_sbt_on() function. 467 */ 468 static int 469 tcp_hpts_sleep(struct tcp_hpts_entry *hpts, struct timeval *tv) 470 { 471 #ifdef TCP_HPTS_KTEST 472 struct tcp_hptsi *pace; 473 #endif 474 sbintime_t sb; 475 476 #ifdef TCP_HPTS_KTEST 477 pace = hpts->p_hptsi; 478 #endif 479 480 /* Store off to make visible the actual sleep time */ 481 hpts->sleeping = tv->tv_usec; 482 483 sb = tvtosbt(*tv); 484 return (callout_reset_sbt_on( 485 &hpts->co, sb, 0, tcp_hpts_sleep_timeout, hpts, hpts->p_cpu, 486 (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision)))); 487 } 488 489 /* 490 * Schedules the SWI for the HTPS entry to run, if not already scheduled or 491 * running. 492 */ 493 void 494 tcp_hpts_wake(struct tcp_hpts_entry *hpts) 495 { 496 #ifdef TCP_HPTS_KTEST 497 struct tcp_hptsi *pace; 498 #endif 499 500 HPTS_MTX_ASSERT(hpts); 501 502 #ifdef TCP_HPTS_KTEST 503 pace = hpts->p_hptsi; 504 #endif 505 506 if (tcp_hpts_no_wake_over_thresh && (hpts->p_on_queue_cnt >= conn_cnt_thresh)) { 507 hpts->p_direct_wake = 0; 508 return; 509 } 510 if (hpts->p_hpts_wake_scheduled == 0) { 511 hpts->p_hpts_wake_scheduled = 1; 512 swi_sched(hpts->ie_cookie, 0); 513 } 514 } 515 516 static void 517 tcp_hpts_insert_internal(struct tcpcb *tp, struct tcp_hpts_entry *hpts) 518 { 519 struct inpcb *inp = tptoinpcb(tp); 520 struct hptsh *hptsh; 521 522 INP_WLOCK_ASSERT(inp); 523 HPTS_MTX_ASSERT(hpts); 524 MPASS(hpts->p_cpu == tp->t_hpts_cpu); 525 MPASS(!(inp->inp_flags & INP_DROPPED)); 526 527 hptsh = &hpts->p_hptss[tp->t_hpts_slot]; 528 529 if (tp->t_in_hpts == IHPTS_NONE) { 530 tp->t_in_hpts = IHPTS_ONQUEUE; 531 in_pcbref(inp); 532 } else if (tp->t_in_hpts == IHPTS_MOVING) { 533 tp->t_in_hpts = IHPTS_ONQUEUE; 534 } else 535 MPASS(tp->t_in_hpts == IHPTS_ONQUEUE); 536 tp->t_hpts_gencnt = hptsh->gencnt; 537 538 TAILQ_INSERT_TAIL(&hptsh->head, tp, t_hpts); 539 hptsh->count++; 540 hpts->p_on_queue_cnt++; 541 } 542 543 static struct tcp_hpts_entry * 544 tcp_hpts_lock(struct tcp_hptsi *pace, struct tcpcb *tp) 545 { 546 struct tcp_hpts_entry *hpts; 547 548 INP_LOCK_ASSERT(tptoinpcb(tp)); 549 550 hpts = pace->rp_ent[tp->t_hpts_cpu]; 551 HPTS_LOCK(hpts); 552 553 return (hpts); 554 } 555 556 static void 557 tcp_hpts_release(struct tcpcb *tp) 558 { 559 bool released __diagused; 560 561 tp->t_in_hpts = IHPTS_NONE; 562 released = in_pcbrele_wlocked(tptoinpcb(tp)); 563 MPASS(released == false); 564 } 565 566 /* 567 * Initialize tcpcb to get ready for use with HPTS. We will know which CPU 568 * is preferred on the first incoming packet. Before that avoid crowding 569 * a single CPU with newborn connections and use a random one. 570 * This initialization is normally called on a newborn tcpcb, but potentially 571 * can be called once again if stack is switched. In that case we inherit CPU 572 * that the previous stack has set, be it random or not. In extreme cases, 573 * e.g. syzkaller fuzzing, a tcpcb can already be in HPTS in IHPTS_MOVING state 574 * and has never received a first packet. 575 */ 576 void 577 __tcp_hpts_init(struct tcp_hptsi *pace, struct tcpcb *tp) 578 { 579 if (__predict_true(tp->t_hpts_cpu == HPTS_CPU_NONE)) { 580 tp->t_hpts_cpu = tcp_hptsi_random_cpu(pace); 581 MPASS(!(tp->t_flags2 & TF2_HPTS_CPU_SET)); 582 } 583 } 584 585 /* 586 * Called normally with the INP_LOCKED but it 587 * does not matter, the hpts lock is the key 588 * but the lock order allows us to hold the 589 * INP lock and then get the hpts lock. 590 */ 591 void 592 __tcp_hpts_remove(struct tcp_hptsi *pace, struct tcpcb *tp) 593 { 594 struct tcp_hpts_entry *hpts; 595 struct hptsh *hptsh; 596 597 INP_WLOCK_ASSERT(tptoinpcb(tp)); 598 599 hpts = tcp_hpts_lock(pace, tp); 600 if (tp->t_in_hpts == IHPTS_ONQUEUE) { 601 hptsh = &hpts->p_hptss[tp->t_hpts_slot]; 602 tp->t_hpts_request = 0; 603 if (__predict_true(tp->t_hpts_gencnt == hptsh->gencnt)) { 604 TAILQ_REMOVE(&hptsh->head, tp, t_hpts); 605 MPASS(hptsh->count > 0); 606 hptsh->count--; 607 MPASS(hpts->p_on_queue_cnt > 0); 608 hpts->p_on_queue_cnt--; 609 tcp_hpts_release(tp); 610 } else { 611 /* 612 * tcp_hptsi() now owns the TAILQ head of this inp. 613 * Can't TAILQ_REMOVE, just mark it. 614 */ 615 #ifdef INVARIANTS 616 struct tcpcb *tmp; 617 618 TAILQ_FOREACH(tmp, &hptsh->head, t_hpts) 619 MPASS(tmp != tp); 620 #endif 621 tp->t_in_hpts = IHPTS_MOVING; 622 tp->t_hpts_slot = -1; 623 } 624 } else if (tp->t_in_hpts == IHPTS_MOVING) { 625 /* 626 * Handle a special race condition: 627 * tcp_hptsi() moves inpcb to detached tailq 628 * tcp_hpts_remove() marks as IHPTS_MOVING, slot = -1 629 * tcp_hpts_insert() sets slot to a meaningful value 630 * tcp_hpts_remove() again (we are here!), then in_pcbdrop() 631 * tcp_hptsi() finds pcb with meaningful slot and INP_DROPPED 632 */ 633 tp->t_hpts_slot = -1; 634 } 635 HPTS_UNLOCK(hpts); 636 } 637 638 static inline int 639 hpts_slot(uint32_t wheel_slot, uint32_t plus) 640 { 641 /* 642 * Given a slot on the wheel, what slot 643 * is that plus slots out? 644 */ 645 KASSERT(wheel_slot < NUM_OF_HPTSI_SLOTS, ("Invalid slot %u not on wheel", wheel_slot)); 646 return ((wheel_slot + plus) % NUM_OF_HPTSI_SLOTS); 647 } 648 649 static inline int 650 cts_to_wheel(uint32_t cts) 651 { 652 /* 653 * Given a timestamp in useconds map it to our limited space wheel. 654 */ 655 return ((cts / HPTS_USECS_PER_SLOT) % NUM_OF_HPTSI_SLOTS); 656 } 657 658 static inline int 659 hpts_slots_diff(int prev_slot, int slot_now) 660 { 661 /* 662 * Given two slots that are someplace 663 * on our wheel. How far are they apart? 664 */ 665 if (slot_now > prev_slot) 666 return (slot_now - prev_slot); 667 else if (slot_now == prev_slot) 668 /* 669 * Special case, same means we can go all of our 670 * wheel less one slot. 671 */ 672 return (NUM_OF_HPTSI_SLOTS - 1); 673 else 674 return ((NUM_OF_HPTSI_SLOTS - prev_slot) + slot_now); 675 } 676 677 /* 678 * Given a slot on the wheel that is the current time 679 * mapped to the wheel (wheel_slot), what is the maximum 680 * distance forward that can be obtained without 681 * wrapping past either prev_slot or running_slot 682 * depending on the htps state? Also if passed 683 * a uint32_t *, fill it with the slot location. 684 * 685 * Note if you do not give this function the current 686 * time (that you think it is) mapped to the wheel slot 687 * then the results will not be what you expect and 688 * could lead to invalid inserts. 689 */ 690 static inline int32_t 691 max_slots_available(struct tcp_hpts_entry *hpts, uint32_t wheel_slot, uint32_t *target_slot) 692 { 693 uint32_t dis_to_travel, end_slot, pacer_to_now, avail_on_wheel; 694 695 if ((hpts->p_hpts_active == 1) && 696 (hpts->p_wheel_complete == 0)) { 697 end_slot = hpts->p_runningslot; 698 /* Back up one slot */ 699 if (end_slot == 0) 700 end_slot = NUM_OF_HPTSI_SLOTS - 1; 701 else 702 end_slot--; 703 if (target_slot) 704 *target_slot = end_slot; 705 } else { 706 /* 707 * For the case where we are 708 * not active, or we have 709 * completed the pass over 710 * the wheel, we can use the 711 * prev slot and subtract one from it. This puts us 712 * as far out as possible on the wheel. 713 */ 714 end_slot = hpts->p_prev_slot; 715 if (end_slot == 0) 716 end_slot = NUM_OF_HPTSI_SLOTS - 1; 717 else 718 end_slot--; 719 if (target_slot) 720 *target_slot = end_slot; 721 /* 722 * Now we have close to the full wheel left minus the 723 * time it has been since the pacer went to sleep. Note 724 * that wheel_slot, passed in, should be the current time 725 * from the perspective of the caller, mapped to the wheel. 726 */ 727 if (hpts->p_prev_slot != wheel_slot) 728 dis_to_travel = hpts_slots_diff(hpts->p_prev_slot, wheel_slot); 729 else 730 dis_to_travel = 1; 731 /* 732 * dis_to_travel in this case is the space from when the 733 * pacer stopped (p_prev_slot) and where our wheel_slot 734 * is now. To know how many slots we can put it in we 735 * subtract from the wheel size. We would not want 736 * to place something after p_prev_slot or it will 737 * get ran too soon. 738 */ 739 return (NUM_OF_HPTSI_SLOTS - dis_to_travel); 740 } 741 /* 742 * So how many slots are open between p_runningslot -> p_cur_slot 743 * that is what is currently un-available for insertion. Special 744 * case when we are at the last slot, this gets 1, so that 745 * the answer to how many slots are available is all but 1. 746 */ 747 if (hpts->p_runningslot == hpts->p_cur_slot) 748 dis_to_travel = 1; 749 else 750 dis_to_travel = hpts_slots_diff(hpts->p_runningslot, hpts->p_cur_slot); 751 /* 752 * How long has the pacer been running? 753 */ 754 if (hpts->p_cur_slot != wheel_slot) { 755 /* The pacer is a bit late */ 756 pacer_to_now = hpts_slots_diff(hpts->p_cur_slot, wheel_slot); 757 } else { 758 /* The pacer is right on time, now == pacers start time */ 759 pacer_to_now = 0; 760 } 761 /* 762 * To get the number left we can insert into we simply 763 * subtract the distance the pacer has to run from how 764 * many slots there are. 765 */ 766 avail_on_wheel = NUM_OF_HPTSI_SLOTS - dis_to_travel; 767 /* 768 * Now how many of those we will eat due to the pacer's 769 * time (p_cur_slot) of start being behind the 770 * real time (wheel_slot)? 771 */ 772 if (avail_on_wheel <= pacer_to_now) { 773 /* 774 * Wheel wrap, we can't fit on the wheel, that 775 * is unusual the system must be way overloaded! 776 * Insert into the assured slot, and return special 777 * "0". 778 */ 779 counter_u64_add(combined_wheel_wrap, 1); 780 if (target_slot) 781 *target_slot = hpts->p_nxt_slot; 782 return (0); 783 } else { 784 /* 785 * We know how many slots are open 786 * on the wheel (the reverse of what 787 * is left to run. Take away the time 788 * the pacer started to now (wheel_slot) 789 * and that tells you how many slots are 790 * open that can be inserted into that won't 791 * be touched by the pacer until later. 792 */ 793 return (avail_on_wheel - pacer_to_now); 794 } 795 } 796 797 798 #ifdef INVARIANTS 799 static void 800 check_if_slot_would_be_wrong(struct tcp_hpts_entry *hpts, struct tcpcb *tp, 801 uint32_t hptsslot) 802 { 803 /* 804 * Sanity checks for the pacer with invariants 805 * on insert. 806 */ 807 KASSERT(hptsslot < NUM_OF_HPTSI_SLOTS, 808 ("hpts:%p tp:%p slot:%d > max", hpts, tp, hptsslot)); 809 if ((hpts->p_hpts_active) && 810 (hpts->p_wheel_complete == 0)) { 811 /* 812 * If the pacer is processing a arc 813 * of the wheel, we need to make 814 * sure we are not inserting within 815 * that arc. 816 */ 817 int distance, yet_to_run; 818 819 distance = hpts_slots_diff(hpts->p_runningslot, hptsslot); 820 if (hpts->p_runningslot != hpts->p_cur_slot) 821 yet_to_run = hpts_slots_diff(hpts->p_runningslot, hpts->p_cur_slot); 822 else 823 yet_to_run = 0; /* processing last slot */ 824 KASSERT(yet_to_run <= distance, ("hpts:%p tp:%p slot:%d " 825 "distance:%d yet_to_run:%d rs:%d cs:%d", hpts, tp, 826 hptsslot, distance, yet_to_run, hpts->p_runningslot, 827 hpts->p_cur_slot)); 828 } 829 } 830 #endif 831 832 void 833 __tcp_hpts_insert(struct tcp_hptsi *pace, struct tcpcb *tp, uint32_t usecs, 834 struct hpts_diag *diag) 835 { 836 struct tcp_hpts_entry *hpts; 837 struct timeval tv; 838 uint32_t slot, wheel_cts, last_slot, need_new_to = 0; 839 int32_t wheel_slot, maxslots; 840 bool need_wakeup = false; 841 842 INP_WLOCK_ASSERT(tptoinpcb(tp)); 843 MPASS(!(tptoinpcb(tp)->inp_flags & INP_DROPPED)); 844 MPASS(!(tp->t_in_hpts == IHPTS_ONQUEUE)); 845 846 /* 847 * Convert microseconds to slots for internal use. 848 * We now return the next-slot the hpts will be on, beyond its 849 * current run (if up) or where it was when it stopped if it is 850 * sleeping. 851 */ 852 slot = HPTS_USEC_TO_SLOTS(usecs); 853 hpts = tcp_hpts_lock(pace, tp); 854 microuptime(&tv); 855 if (diag) { 856 memset(diag, 0, sizeof(struct hpts_diag)); 857 diag->p_hpts_active = hpts->p_hpts_active; 858 diag->p_prev_slot = hpts->p_prev_slot; 859 diag->p_runningslot = hpts->p_runningslot; 860 diag->p_nxt_slot = hpts->p_nxt_slot; 861 diag->p_cur_slot = hpts->p_cur_slot; 862 diag->slot_req = slot; 863 diag->p_on_min_sleep = hpts->p_on_min_sleep; 864 diag->hpts_sleep_time = hpts->p_hpts_sleep_time; 865 } 866 if (slot == 0) { 867 /* Ok we need to set it on the hpts in the current slot */ 868 tp->t_hpts_request = 0; 869 if ((hpts->p_hpts_active == 0) || (hpts->p_wheel_complete)) { 870 /* 871 * A sleeping hpts we want in next slot to run 872 * note that in this state p_prev_slot == p_cur_slot 873 */ 874 tp->t_hpts_slot = hpts_slot(hpts->p_prev_slot, 1); 875 if ((hpts->p_on_min_sleep == 0) && 876 (hpts->p_hpts_active == 0)) 877 need_wakeup = true; 878 } else 879 tp->t_hpts_slot = hpts->p_runningslot; 880 if (__predict_true(tp->t_in_hpts != IHPTS_MOVING)) 881 tcp_hpts_insert_internal(tp, hpts); 882 if (need_wakeup) { 883 /* 884 * Activate the hpts if it is sleeping and its 885 * timeout is not 1. 886 */ 887 hpts->p_direct_wake = 1; 888 tcp_hpts_wake(hpts); 889 } 890 HPTS_UNLOCK(hpts); 891 892 return; 893 } 894 /* Get the current time stamp and map it onto the wheel */ 895 wheel_cts = tcp_tv_to_usec(&tv); 896 wheel_slot = cts_to_wheel(wheel_cts); 897 /* Now what's the max we can place it at? */ 898 maxslots = max_slots_available(hpts, wheel_slot, &last_slot); 899 if (diag) { 900 diag->wheel_slot = wheel_slot; 901 diag->maxslots = maxslots; 902 diag->wheel_cts = wheel_cts; 903 } 904 if (maxslots == 0) { 905 /* The pacer is in a wheel wrap behind, yikes! */ 906 if (slot > 1) { 907 /* 908 * Reduce by 1 to prevent a forever loop in 909 * case something else is wrong. Note this 910 * probably does not hurt because the pacer 911 * if its true is so far behind we will be 912 * > 1second late calling anyway. 913 */ 914 slot--; 915 } 916 tp->t_hpts_slot = last_slot; 917 tp->t_hpts_request = slot; 918 } else if (maxslots >= slot) { 919 /* It all fits on the wheel */ 920 tp->t_hpts_request = 0; 921 tp->t_hpts_slot = hpts_slot(wheel_slot, slot); 922 } else { 923 /* It does not fit */ 924 tp->t_hpts_request = slot - maxslots; 925 tp->t_hpts_slot = last_slot; 926 } 927 if (diag) { 928 diag->time_remaining = tp->t_hpts_request; 929 diag->inp_hptsslot = tp->t_hpts_slot; 930 } 931 #ifdef INVARIANTS 932 check_if_slot_would_be_wrong(hpts, tp, tp->t_hpts_slot); 933 #endif 934 if (__predict_true(tp->t_in_hpts != IHPTS_MOVING)) 935 tcp_hpts_insert_internal(tp, hpts); 936 if ((hpts->p_hpts_active == 0) && 937 (tp->t_hpts_request == 0) && 938 (hpts->p_on_min_sleep == 0)) { 939 /* 940 * The hpts is sleeping and NOT on a minimum 941 * sleep time, we need to figure out where 942 * it will wake up at and if we need to reschedule 943 * its time-out. 944 */ 945 uint32_t have_slept, yet_to_sleep; 946 947 /* Now do we need to restart the hpts's timer? */ 948 have_slept = hpts_slots_diff(hpts->p_prev_slot, wheel_slot); 949 if (have_slept < hpts->p_hpts_sleep_time) 950 yet_to_sleep = hpts->p_hpts_sleep_time - have_slept; 951 else { 952 /* We are over-due */ 953 yet_to_sleep = 0; 954 need_wakeup = 1; 955 } 956 if (diag) { 957 diag->have_slept = have_slept; 958 diag->yet_to_sleep = yet_to_sleep; 959 } 960 if (yet_to_sleep && 961 (yet_to_sleep > slot)) { 962 /* 963 * We need to reschedule the hpts's time-out. 964 */ 965 hpts->p_hpts_sleep_time = slot; 966 need_new_to = slot * HPTS_USECS_PER_SLOT; 967 } 968 } 969 /* 970 * Now how far is the hpts sleeping to? if active is 1, its 971 * up and running we do nothing, otherwise we may need to 972 * reschedule its callout if need_new_to is set from above. 973 */ 974 if (need_wakeup) { 975 hpts->p_direct_wake = 1; 976 tcp_hpts_wake(hpts); 977 if (diag) { 978 diag->need_new_to = 0; 979 diag->co_ret = 0xffff0000; 980 } 981 } else if (need_new_to) { 982 int32_t co_ret; 983 struct timeval tv; 984 985 tv.tv_sec = 0; 986 tv.tv_usec = 0; 987 while (need_new_to > HPTS_USEC_IN_SEC) { 988 tv.tv_sec++; 989 need_new_to -= HPTS_USEC_IN_SEC; 990 } 991 tv.tv_usec = need_new_to; /* XXX: Why is this sleeping over the max? */ 992 co_ret = tcp_hpts_sleep(hpts, &tv); 993 if (diag) { 994 diag->need_new_to = need_new_to; 995 diag->co_ret = co_ret; 996 } 997 } 998 HPTS_UNLOCK(hpts); 999 } 1000 1001 static uint16_t 1002 hpts_cpuid(struct tcp_hptsi *pace, struct tcpcb *tp, int *failed) 1003 { 1004 struct inpcb *inp = tptoinpcb(tp); 1005 u_int cpuid; 1006 #ifdef NUMA 1007 struct hpts_domain_info *di; 1008 #endif 1009 1010 *failed = 0; 1011 if (tp->t_flags2 & TF2_HPTS_CPU_SET) { 1012 return (tp->t_hpts_cpu); 1013 } 1014 /* 1015 * If we are using the irq cpu set by LRO or 1016 * the driver then it overrides all other domains. 1017 */ 1018 if (tcp_use_irq_cpu) { 1019 if (tp->t_lro_cpu == HPTS_CPU_NONE) { 1020 *failed = 1; 1021 return (0); 1022 } 1023 return (tp->t_lro_cpu); 1024 } 1025 /* If one is set the other must be the same */ 1026 #ifdef RSS 1027 cpuid = rss_hash2cpuid(inp->inp_flowid, inp->inp_flowtype); 1028 if (cpuid == NETISR_CPUID_NONE) 1029 return (tcp_hptsi_random_cpu(pace)); 1030 else 1031 return (cpuid); 1032 #endif 1033 /* 1034 * We don't have a flowid -> cpuid mapping, so cheat and just map 1035 * unknown cpuids to curcpu. Not the best, but apparently better 1036 * than defaulting to swi 0. 1037 */ 1038 if (inp->inp_flowtype == M_HASHTYPE_NONE) { 1039 counter_u64_add(cpu_uses_random, 1); 1040 return (tcp_hptsi_random_cpu(pace)); 1041 } 1042 /* 1043 * Hash to a thread based on the flowid. If we are using numa, 1044 * then restrict the hash to the numa domain where the inp lives. 1045 */ 1046 1047 #ifdef NUMA 1048 if ((vm_ndomains == 1) || 1049 (inp->inp_numa_domain == M_NODOM)) { 1050 #endif 1051 cpuid = inp->inp_flowid % mp_ncpus; 1052 #ifdef NUMA 1053 } else { 1054 /* Hash into the cpu's that use that domain */ 1055 di = &pace->domains[inp->inp_numa_domain]; 1056 cpuid = di->cpu[inp->inp_flowid % di->count]; 1057 } 1058 #endif 1059 counter_u64_add(cpu_uses_flowid, 1); 1060 return (cpuid); 1061 } 1062 1063 static void 1064 tcp_hpts_set_max_sleep(struct tcp_hpts_entry *hpts, int wrap_loop_cnt) 1065 { 1066 uint32_t t = 0, i; 1067 1068 if ((hpts->p_on_queue_cnt) && (wrap_loop_cnt < 2)) { 1069 /* 1070 * Find next slot that is occupied and use that to 1071 * be the sleep time. 1072 */ 1073 for (i = 0, t = hpts_slot(hpts->p_cur_slot, 1); i < NUM_OF_HPTSI_SLOTS; i++) { 1074 if (TAILQ_EMPTY(&hpts->p_hptss[t].head) == 0) { 1075 break; 1076 } 1077 t = (t + 1) % NUM_OF_HPTSI_SLOTS; 1078 } 1079 KASSERT((i != NUM_OF_HPTSI_SLOTS), ("Hpts:%p cnt:%d but none found", hpts, hpts->p_on_queue_cnt)); 1080 hpts->p_hpts_sleep_time = min((i + 1), hpts_sleep_max); 1081 } else { 1082 /* No one on the wheel sleep for all but 400 slots or sleep max */ 1083 hpts->p_hpts_sleep_time = hpts_sleep_max; 1084 } 1085 } 1086 1087 static bool 1088 tcp_hpts_different_slots(uint32_t cts, uint32_t cts_last_run) 1089 { 1090 return ((cts / HPTS_USECS_PER_SLOT) != (cts_last_run / HPTS_USECS_PER_SLOT)); 1091 } 1092 1093 int32_t 1094 tcp_hptsi(struct tcp_hpts_entry *hpts, bool from_callout) 1095 { 1096 struct tcp_hptsi *pace; 1097 struct tcpcb *tp; 1098 struct timeval tv; 1099 int32_t slots_to_run, i, error; 1100 int32_t loop_cnt = 0; 1101 int32_t did_prefetch = 0; 1102 int32_t prefetch_tp = 0; 1103 int32_t wrap_loop_cnt = 0; 1104 int32_t slot_pos_of_endpoint = 0; 1105 int32_t orig_exit_slot; 1106 uint32_t cts, cts_last_run; 1107 bool completed_measure, seen_endpoint; 1108 1109 completed_measure = false; 1110 seen_endpoint = false; 1111 1112 HPTS_MTX_ASSERT(hpts); 1113 NET_EPOCH_ASSERT(); 1114 1115 pace = hpts->p_hptsi; 1116 MPASS(pace != NULL); 1117 1118 /* record previous info for any logging */ 1119 hpts->saved_curslot = hpts->p_cur_slot; 1120 hpts->saved_prev_slot = hpts->p_prev_slot; 1121 1122 microuptime(&tv); 1123 cts_last_run = pace->cts_last_ran[hpts->p_cpu]; 1124 pace->cts_last_ran[hpts->p_cpu] = cts = tcp_tv_to_usec(&tv); 1125 1126 orig_exit_slot = hpts->p_cur_slot = cts_to_wheel(cts); 1127 if ((hpts->p_on_queue_cnt == 0) || 1128 !tcp_hpts_different_slots(cts, cts_last_run)) { 1129 /* 1130 * Not enough time has yet passed or nothing to do. 1131 */ 1132 hpts->p_prev_slot = hpts->p_cur_slot; 1133 goto no_run; 1134 } 1135 again: 1136 hpts->p_wheel_complete = 0; 1137 HPTS_MTX_ASSERT(hpts); 1138 slots_to_run = hpts_slots_diff(hpts->p_prev_slot, hpts->p_cur_slot); 1139 if ((hpts->p_on_queue_cnt != 0) && 1140 ((cts - cts_last_run) > 1141 ((NUM_OF_HPTSI_SLOTS-1) * HPTS_USECS_PER_SLOT))) { 1142 /* 1143 * Wheel wrap is occuring, basically we 1144 * are behind and the distance between 1145 * run's has spread so much it has exceeded 1146 * the time on the wheel (1.024 seconds). This 1147 * is ugly and should NOT be happening. We 1148 * need to run the entire wheel. We last processed 1149 * p_prev_slot, so that needs to be the last slot 1150 * we run. The next slot after that should be our 1151 * reserved first slot for new, and then starts 1152 * the running position. Now the problem is the 1153 * reserved "not to yet" place does not exist 1154 * and there may be inp's in there that need 1155 * running. We can merge those into the 1156 * first slot at the head. 1157 */ 1158 wrap_loop_cnt++; 1159 hpts->p_nxt_slot = hpts_slot(hpts->p_prev_slot, 1); 1160 hpts->p_runningslot = hpts_slot(hpts->p_prev_slot, 2); 1161 /* 1162 * Adjust p_cur_slot to be where we are starting from 1163 * hopefully we will catch up (fat chance if something 1164 * is broken this bad :( ) 1165 */ 1166 hpts->p_cur_slot = hpts->p_prev_slot; 1167 /* 1168 * The next slot has guys to run too, and that would 1169 * be where we would normally start, lets move them into 1170 * the next slot (p_prev_slot + 2) so that we will 1171 * run them, the extra 10usecs of late (by being 1172 * put behind) does not really matter in this situation. 1173 */ 1174 TAILQ_FOREACH(tp, &hpts->p_hptss[hpts->p_nxt_slot].head, 1175 t_hpts) { 1176 MPASS(tp->t_hpts_slot == hpts->p_nxt_slot); 1177 MPASS(tp->t_hpts_gencnt == 1178 hpts->p_hptss[hpts->p_nxt_slot].gencnt); 1179 MPASS(tp->t_in_hpts == IHPTS_ONQUEUE); 1180 1181 /* 1182 * Update gencnt and nextslot accordingly to match 1183 * the new location. This is safe since it takes both 1184 * the INP lock and the pacer mutex to change the 1185 * t_hptsslot and t_hpts_gencnt. 1186 */ 1187 tp->t_hpts_gencnt = 1188 hpts->p_hptss[hpts->p_runningslot].gencnt; 1189 tp->t_hpts_slot = hpts->p_runningslot; 1190 } 1191 TAILQ_CONCAT(&hpts->p_hptss[hpts->p_runningslot].head, 1192 &hpts->p_hptss[hpts->p_nxt_slot].head, t_hpts); 1193 hpts->p_hptss[hpts->p_runningslot].count += 1194 hpts->p_hptss[hpts->p_nxt_slot].count; 1195 hpts->p_hptss[hpts->p_nxt_slot].count = 0; 1196 hpts->p_hptss[hpts->p_nxt_slot].gencnt++; 1197 slots_to_run = NUM_OF_HPTSI_SLOTS - 1; 1198 counter_u64_add(wheel_wrap, 1); 1199 } else { 1200 /* 1201 * Nxt slot is always one after p_runningslot though 1202 * its not used usually unless we are doing wheel wrap. 1203 */ 1204 hpts->p_nxt_slot = hpts->p_prev_slot; 1205 hpts->p_runningslot = hpts_slot(hpts->p_prev_slot, 1); 1206 } 1207 if (hpts->p_on_queue_cnt == 0) { 1208 goto no_one; 1209 } 1210 for (i = 0; i < slots_to_run; i++) { 1211 struct tcpcb *tp, *ntp; 1212 TAILQ_HEAD(, tcpcb) head = TAILQ_HEAD_INITIALIZER(head); 1213 struct hptsh *hptsh; 1214 uint32_t runningslot; 1215 1216 /* 1217 * Calculate our delay, if there are no extra slots there 1218 * was not any (i.e. if slots_to_run == 1, no delay). 1219 */ 1220 hpts->p_delayed_by = (slots_to_run - (i + 1)) * 1221 HPTS_USECS_PER_SLOT; 1222 1223 runningslot = hpts->p_runningslot; 1224 hptsh = &hpts->p_hptss[runningslot]; 1225 TAILQ_SWAP(&head, &hptsh->head, tcpcb, t_hpts); 1226 hpts->p_on_queue_cnt -= hptsh->count; 1227 hptsh->count = 0; 1228 hptsh->gencnt++; 1229 1230 HPTS_UNLOCK(hpts); 1231 1232 TAILQ_FOREACH_SAFE(tp, &head, t_hpts, ntp) { 1233 struct inpcb *inp = tptoinpcb(tp); 1234 bool set_cpu; 1235 1236 if (ntp != NULL) { 1237 /* 1238 * If we have a next tcpcb, see if we can 1239 * prefetch it. Note this may seem 1240 * "risky" since we have no locks (other 1241 * than the previous inp) and there no 1242 * assurance that ntp was not pulled while 1243 * we were processing tp and freed. If this 1244 * occurred it could mean that either: 1245 * 1246 * a) Its NULL (which is fine we won't go 1247 * here) <or> b) Its valid (which is cool we 1248 * will prefetch it) <or> c) The inp got 1249 * freed back to the slab which was 1250 * reallocated. Then the piece of memory was 1251 * re-used and something else (not an 1252 * address) is in inp_ppcb. If that occurs 1253 * we don't crash, but take a TLB shootdown 1254 * performance hit (same as if it was NULL 1255 * and we tried to pre-fetch it). 1256 * 1257 * Considering that the likelyhood of <c> is 1258 * quite rare we will take a risk on doing 1259 * this. If performance drops after testing 1260 * we can always take this out. NB: the 1261 * kern_prefetch on amd64 actually has 1262 * protection against a bad address now via 1263 * the DMAP_() tests. This will prevent the 1264 * TLB hit, and instead if <c> occurs just 1265 * cause us to load cache with a useless 1266 * address (to us). 1267 * 1268 * XXXGL: this comment and the prefetch action 1269 * could be outdated after tp == inp change. 1270 */ 1271 kern_prefetch(ntp, &prefetch_tp); 1272 prefetch_tp = 1; 1273 } 1274 1275 /* For debugging */ 1276 if (!seen_endpoint) { 1277 seen_endpoint = true; 1278 orig_exit_slot = slot_pos_of_endpoint = 1279 runningslot; 1280 } else if (!completed_measure) { 1281 /* Record the new position */ 1282 orig_exit_slot = runningslot; 1283 } 1284 1285 INP_WLOCK(inp); 1286 if ((tp->t_flags2 & TF2_HPTS_CPU_SET) == 0) { 1287 set_cpu = true; 1288 } else { 1289 set_cpu = false; 1290 } 1291 1292 if (__predict_false(tp->t_in_hpts == IHPTS_MOVING)) { 1293 if (tp->t_hpts_slot == -1) { 1294 tp->t_in_hpts = IHPTS_NONE; 1295 if (in_pcbrele_wlocked(inp) == false) 1296 INP_WUNLOCK(inp); 1297 } else { 1298 HPTS_LOCK(hpts); 1299 tcp_hpts_insert_internal(tp, hpts); 1300 HPTS_UNLOCK(hpts); 1301 INP_WUNLOCK(inp); 1302 } 1303 continue; 1304 } 1305 1306 MPASS(tp->t_in_hpts == IHPTS_ONQUEUE); 1307 MPASS(!(inp->inp_flags & INP_DROPPED)); 1308 KASSERT(runningslot == tp->t_hpts_slot, 1309 ("Hpts:%p inp:%p slot mis-aligned %u vs %u", 1310 hpts, inp, runningslot, tp->t_hpts_slot)); 1311 1312 if (tp->t_hpts_request) { 1313 /* 1314 * This guy is deferred out further in time 1315 * then our wheel had available on it. 1316 * Push him back on the wheel or run it 1317 * depending. 1318 */ 1319 uint32_t maxslots, last_slot, remaining_slots; 1320 1321 remaining_slots = slots_to_run - (i + 1); 1322 if (tp->t_hpts_request > remaining_slots) { 1323 HPTS_LOCK(hpts); 1324 /* 1325 * How far out can we go? 1326 */ 1327 maxslots = max_slots_available(hpts, 1328 hpts->p_cur_slot, &last_slot); 1329 if (maxslots >= tp->t_hpts_request) { 1330 /* We can place it finally to 1331 * be processed. */ 1332 tp->t_hpts_slot = hpts_slot( 1333 hpts->p_runningslot, 1334 tp->t_hpts_request); 1335 tp->t_hpts_request = 0; 1336 } else { 1337 /* Work off some more time */ 1338 tp->t_hpts_slot = last_slot; 1339 tp->t_hpts_request -= 1340 maxslots; 1341 } 1342 tcp_hpts_insert_internal(tp, hpts); 1343 HPTS_UNLOCK(hpts); 1344 INP_WUNLOCK(inp); 1345 continue; 1346 } 1347 tp->t_hpts_request = 0; 1348 /* Fall through we will so do it now */ 1349 } 1350 1351 tcp_hpts_release(tp); 1352 if (set_cpu) { 1353 /* 1354 * Setup so the next time we will move to 1355 * the right CPU. This should be a rare 1356 * event. It will sometimes happens when we 1357 * are the client side (usually not the 1358 * server). Somehow tcp_output() gets called 1359 * before the tcp_do_segment() sets the 1360 * intial state. This means the r_cpu and 1361 * r_hpts_cpu is 0. We get on the hpts, and 1362 * then tcp_input() gets called setting up 1363 * the r_cpu to the correct value. The hpts 1364 * goes off and sees the mis-match. We 1365 * simply correct it here and the CPU will 1366 * switch to the new hpts nextime the tcb 1367 * gets added to the hpts (not this one) 1368 * :-) 1369 */ 1370 __tcp_set_hpts(pace, tp); 1371 } 1372 CURVNET_SET(inp->inp_vnet); 1373 /* Lets do any logging that we might want to */ 1374 tcp_hpts_log(hpts, tp, &tv, slots_to_run, i, from_callout); 1375 1376 if (tp->t_fb_ptr != NULL) { 1377 kern_prefetch(tp->t_fb_ptr, &did_prefetch); 1378 did_prefetch = 1; 1379 } 1380 /* 1381 * We set TF2_HPTS_CALLS before any possible output. 1382 * The contract with the transport is that if it cares 1383 * about hpts calling it should clear the flag. That 1384 * way next time it is called it will know it is hpts. 1385 * 1386 * We also only call tfb_do_queued_segments() <or> 1387 * tcp_output(). It is expected that if segments are 1388 * queued and come in that the final input mbuf will 1389 * cause a call to output if it is needed so we do 1390 * not need a second call to tcp_output(). So we do 1391 * one or the other but not both. 1392 * 1393 * XXXGL: some KPI abuse here. tfb_do_queued_segments 1394 * returns unlocked with positive error (always 1) and 1395 * tcp_output returns unlocked with negative error. 1396 */ 1397 tp->t_flags2 |= TF2_HPTS_CALLS; 1398 if ((tp->t_flags2 & TF2_SUPPORTS_MBUFQ) && 1399 !STAILQ_EMPTY(&tp->t_inqueue)) 1400 error = -(*tp->t_fb->tfb_do_queued_segments)(tp, 1401 0); 1402 else 1403 error = tcp_output(tp); 1404 if (__predict_true(error >= 0)) 1405 INP_WUNLOCK(inp); 1406 CURVNET_RESTORE(); 1407 } 1408 if (seen_endpoint) { 1409 /* 1410 * We now have a accurate distance between 1411 * slot_pos_of_endpoint <-> orig_exit_slot 1412 * to tell us how late we were, orig_exit_slot 1413 * is where we calculated the end of our cycle to 1414 * be when we first entered. 1415 */ 1416 completed_measure = true; 1417 } 1418 HPTS_LOCK(hpts); 1419 hpts->p_runningslot++; 1420 if (hpts->p_runningslot >= NUM_OF_HPTSI_SLOTS) { 1421 hpts->p_runningslot = 0; 1422 } 1423 } 1424 no_one: 1425 HPTS_MTX_ASSERT(hpts); 1426 hpts->p_delayed_by = 0; 1427 /* 1428 * Check to see if we took an excess amount of time and need to run 1429 * more slots (if we did not hit eno-bufs). 1430 */ 1431 hpts->p_prev_slot = hpts->p_cur_slot; 1432 microuptime(&tv); 1433 cts_last_run = cts; 1434 cts = tcp_tv_to_usec(&tv); 1435 if (!from_callout || (loop_cnt > max_pacer_loops)) { 1436 /* 1437 * Something is serious slow we have 1438 * looped through processing the wheel 1439 * and by the time we cleared the 1440 * needs to run max_pacer_loops time 1441 * we still needed to run. That means 1442 * the system is hopelessly behind and 1443 * can never catch up :( 1444 * 1445 * We will just lie to this thread 1446 * and let it think p_curslot is 1447 * correct. When it next awakens 1448 * it will find itself further behind. 1449 */ 1450 if (from_callout) 1451 counter_u64_add(hpts_hopelessly_behind, 1); 1452 goto no_run; 1453 } 1454 1455 hpts->p_cur_slot = cts_to_wheel(cts); 1456 if (!seen_endpoint) { 1457 /* We saw no endpoint but we may be looping */ 1458 orig_exit_slot = hpts->p_cur_slot; 1459 } 1460 if ((wrap_loop_cnt < 2) && tcp_hpts_different_slots(cts, cts_last_run)) { 1461 counter_u64_add(hpts_loops, 1); 1462 loop_cnt++; 1463 goto again; 1464 } 1465 no_run: 1466 pace->cts_last_ran[hpts->p_cpu] = cts; 1467 /* 1468 * Set flag to tell that we are done for 1469 * any slot input that happens during 1470 * input. 1471 */ 1472 hpts->p_wheel_complete = 1; 1473 /* 1474 * If enough time has elapsed that we should be processing the next 1475 * slot(s), then we should have kept running and not marked the wheel as 1476 * complete. 1477 * 1478 * But there are several other conditions where we would have stopped 1479 * processing, so the prev/cur slots and cts variables won't match. 1480 * These conditions are: 1481 * 1482 * - Calls not from callouts don't run multiple times 1483 * - The wheel is empty 1484 * - We've processed more than max_pacer_loops times 1485 * - We've wrapped more than 2 times 1486 * 1487 * This assert catches when the logic above has violated this design. 1488 * 1489 */ 1490 KASSERT((!from_callout || (hpts->p_on_queue_cnt == 0) || 1491 (loop_cnt > max_pacer_loops) || (wrap_loop_cnt >= 2) || 1492 ((hpts->p_prev_slot == hpts->p_cur_slot) && 1493 !tcp_hpts_different_slots(cts, cts_last_run))), 1494 ("H:%p Shouldn't be done! prev_slot:%u, cur_slot:%u, " 1495 "cts_last_run:%u, cts:%u, loop_cnt:%d, wrap_loop_cnt:%d", 1496 hpts, hpts->p_prev_slot, hpts->p_cur_slot, 1497 cts_last_run, cts, loop_cnt, wrap_loop_cnt)); 1498 1499 if (from_callout && tcp_hpts_different_slots(cts, cts_last_run)) { 1500 microuptime(&tv); 1501 cts = tcp_tv_to_usec(&tv); 1502 hpts->p_cur_slot = cts_to_wheel(cts); 1503 counter_u64_add(hpts_loops, 1); 1504 goto again; 1505 } 1506 1507 if (from_callout) { 1508 tcp_hpts_set_max_sleep(hpts, wrap_loop_cnt); 1509 } 1510 if (seen_endpoint) 1511 return(hpts_slots_diff(slot_pos_of_endpoint, orig_exit_slot)); 1512 else 1513 return (0); 1514 } 1515 1516 void 1517 __tcp_set_hpts(struct tcp_hptsi *pace, struct tcpcb *tp) 1518 { 1519 struct tcp_hpts_entry *hpts; 1520 int failed; 1521 1522 INP_WLOCK_ASSERT(tptoinpcb(tp)); 1523 1524 hpts = tcp_hpts_lock(pace, tp); 1525 if (tp->t_in_hpts == IHPTS_NONE && !(tp->t_flags2 & TF2_HPTS_CPU_SET)) { 1526 tp->t_hpts_cpu = hpts_cpuid(pace, tp, &failed); 1527 if (failed == 0) 1528 tp->t_flags2 |= TF2_HPTS_CPU_SET; 1529 } 1530 HPTS_UNLOCK(hpts); 1531 } 1532 1533 static struct tcp_hpts_entry * 1534 tcp_choose_hpts_to_run(struct tcp_hptsi *pace) 1535 { 1536 struct timeval tv; 1537 int i, oldest_idx, start, end; 1538 uint32_t cts, time_since_ran, calc; 1539 1540 microuptime(&tv); 1541 cts = tcp_tv_to_usec(&tv); 1542 time_since_ran = 0; 1543 /* Default is all one group */ 1544 start = 0; 1545 end = pace->rp_num_hptss; 1546 /* 1547 * If we have more than one L3 group figure out which one 1548 * this CPU is in. 1549 */ 1550 if (pace->grp_cnt > 1) { 1551 for (i = 0; i < pace->grp_cnt; i++) { 1552 if (CPU_ISSET(curcpu, &pace->grps[i]->cg_mask)) { 1553 start = pace->grps[i]->cg_first; 1554 end = (pace->grps[i]->cg_last + 1); 1555 break; 1556 } 1557 } 1558 } 1559 oldest_idx = -1; 1560 for (i = start; i < end; i++) { 1561 if (TSTMP_GT(cts, pace->cts_last_ran[i])) 1562 calc = cts - pace->cts_last_ran[i]; 1563 else 1564 calc = 0; 1565 if (calc > time_since_ran) { 1566 oldest_idx = i; 1567 time_since_ran = calc; 1568 } 1569 } 1570 if (oldest_idx >= 0) 1571 return(pace->rp_ent[oldest_idx]); 1572 else 1573 return(pace->rp_ent[(curcpu % pace->rp_num_hptss)]); 1574 } 1575 1576 static void 1577 __tcp_run_hpts(void) 1578 { 1579 struct epoch_tracker et; 1580 struct tcp_hpts_entry *hpts; 1581 int slots_ran; 1582 1583 hpts = tcp_choose_hpts_to_run(tcp_hptsi_pace); 1584 1585 if (hpts->p_hpts_active) { 1586 /* Already active */ 1587 return; 1588 } 1589 if (!HPTS_TRYLOCK(hpts)) { 1590 /* Someone else got the lock */ 1591 return; 1592 } 1593 NET_EPOCH_ENTER(et); 1594 if (hpts->p_hpts_active) 1595 goto out_with_mtx; 1596 hpts->syscall_cnt++; 1597 counter_u64_add(hpts_direct_call, 1); 1598 hpts->p_hpts_active = 1; 1599 slots_ran = tcp_hptsi(hpts, false); 1600 /* We may want to adjust the sleep values here */ 1601 if (hpts->p_on_queue_cnt >= conn_cnt_thresh) { 1602 if (slots_ran > slots_indicate_less_sleep) { 1603 struct timeval tv; 1604 1605 hpts->p_mysleep.tv_usec /= 2; 1606 if (hpts->p_mysleep.tv_usec < dynamic_min_sleep) 1607 hpts->p_mysleep.tv_usec = dynamic_min_sleep; 1608 /* Reschedule with new to value */ 1609 tcp_hpts_set_max_sleep(hpts, 0); 1610 tv.tv_sec = 0; 1611 tv.tv_usec = hpts->p_hpts_sleep_time * HPTS_USECS_PER_SLOT; 1612 /* Validate its in the right ranges */ 1613 if (tv.tv_usec < hpts->p_mysleep.tv_usec) { 1614 hpts->overidden_sleep = tv.tv_usec; 1615 tv.tv_usec = hpts->p_mysleep.tv_usec; 1616 } else if (tv.tv_usec > dynamic_max_sleep) { 1617 /* Lets not let sleep get above this value */ 1618 hpts->overidden_sleep = tv.tv_usec; 1619 tv.tv_usec = dynamic_max_sleep; 1620 } 1621 /* 1622 * In this mode the timer is a backstop to 1623 * all the userret/lro_flushes so we use 1624 * the dynamic value and set the on_min_sleep 1625 * flag so we will not be awoken. 1626 */ 1627 (void)tcp_hpts_sleep(hpts, &tv); 1628 } else if (slots_ran < slots_indicate_more_sleep) { 1629 /* For the further sleep, don't reschedule hpts */ 1630 hpts->p_mysleep.tv_usec *= 2; 1631 if (hpts->p_mysleep.tv_usec > dynamic_max_sleep) 1632 hpts->p_mysleep.tv_usec = dynamic_max_sleep; 1633 } 1634 hpts->p_on_min_sleep = 1; 1635 } 1636 hpts->p_hpts_active = 0; 1637 out_with_mtx: 1638 HPTS_UNLOCK(hpts); 1639 NET_EPOCH_EXIT(et); 1640 } 1641 1642 static void 1643 tcp_hpts_thread(void *ctx) 1644 { 1645 #ifdef TCP_HPTS_KTEST 1646 struct tcp_hptsi *pace; 1647 #endif 1648 struct tcp_hpts_entry *hpts; 1649 struct epoch_tracker et; 1650 struct timeval tv; 1651 int slots_ran; 1652 1653 hpts = (struct tcp_hpts_entry *)ctx; 1654 #ifdef TCP_HPTS_KTEST 1655 pace = hpts->p_hptsi; 1656 #endif 1657 HPTS_LOCK(hpts); 1658 if (hpts->p_direct_wake) { 1659 /* Signaled by input or output with low occupancy count. */ 1660 _callout_stop_safe(&hpts->co, 0); 1661 counter_u64_add(hpts_direct_awakening, 1); 1662 } else { 1663 /* Timed out, the normal case. */ 1664 counter_u64_add(hpts_wake_timeout, 1); 1665 if (callout_pending(&hpts->co) || 1666 !callout_active(&hpts->co)) { 1667 HPTS_UNLOCK(hpts); 1668 return; 1669 } 1670 } 1671 callout_deactivate(&hpts->co); 1672 hpts->p_hpts_wake_scheduled = 0; 1673 NET_EPOCH_ENTER(et); 1674 if (hpts->p_hpts_active) { 1675 /* 1676 * We are active already. This means that a syscall 1677 * trap or LRO is running in behalf of hpts. In that case 1678 * we need to double our timeout since there seems to be 1679 * enough activity in the system that we don't need to 1680 * run as often (if we were not directly woken). 1681 */ 1682 tv.tv_sec = 0; 1683 if (hpts->p_direct_wake == 0) { 1684 counter_u64_add(hpts_back_tosleep, 1); 1685 if (hpts->p_on_queue_cnt >= conn_cnt_thresh) { 1686 hpts->p_mysleep.tv_usec *= 2; 1687 if (hpts->p_mysleep.tv_usec > dynamic_max_sleep) 1688 hpts->p_mysleep.tv_usec = dynamic_max_sleep; 1689 tv.tv_usec = hpts->p_mysleep.tv_usec; 1690 hpts->p_on_min_sleep = 1; 1691 } else { 1692 /* 1693 * Here we have low count on the wheel, but 1694 * somehow we still collided with one of the 1695 * connections. Lets go back to sleep for a 1696 * min sleep time, but clear the flag so we 1697 * can be awoken by insert. 1698 */ 1699 hpts->p_on_min_sleep = 0; 1700 tv.tv_usec = tcp_min_hptsi_time; 1701 } 1702 } else { 1703 /* 1704 * Directly woken most likely to reset the 1705 * callout time. 1706 */ 1707 tv.tv_usec = hpts->p_mysleep.tv_usec; 1708 } 1709 goto back_to_sleep; 1710 } 1711 hpts->sleeping = 0; 1712 hpts->p_hpts_active = 1; 1713 slots_ran = tcp_hptsi(hpts, true); 1714 tv.tv_sec = 0; 1715 tv.tv_usec = hpts->p_hpts_sleep_time * HPTS_USECS_PER_SLOT; 1716 if ((hpts->p_on_queue_cnt > conn_cnt_thresh) && (hpts->hit_callout_thresh == 0)) { 1717 hpts->hit_callout_thresh = 1; 1718 atomic_add_int(&hpts_that_need_softclock, 1); 1719 } else if ((hpts->p_on_queue_cnt <= conn_cnt_thresh) && (hpts->hit_callout_thresh == 1)) { 1720 hpts->hit_callout_thresh = 0; 1721 atomic_subtract_int(&hpts_that_need_softclock, 1); 1722 } 1723 if (hpts->p_on_queue_cnt >= conn_cnt_thresh) { 1724 if(hpts->p_direct_wake == 0) { 1725 /* 1726 * Only adjust sleep time if we were 1727 * called from the callout i.e. direct_wake == 0. 1728 */ 1729 if (slots_ran < slots_indicate_more_sleep) { 1730 hpts->p_mysleep.tv_usec *= 2; 1731 if (hpts->p_mysleep.tv_usec > dynamic_max_sleep) 1732 hpts->p_mysleep.tv_usec = dynamic_max_sleep; 1733 } else if (slots_ran > slots_indicate_less_sleep) { 1734 hpts->p_mysleep.tv_usec /= 2; 1735 if (hpts->p_mysleep.tv_usec < dynamic_min_sleep) 1736 hpts->p_mysleep.tv_usec = dynamic_min_sleep; 1737 } 1738 } 1739 if (tv.tv_usec < hpts->p_mysleep.tv_usec) { 1740 hpts->overidden_sleep = tv.tv_usec; 1741 tv.tv_usec = hpts->p_mysleep.tv_usec; 1742 } else if (tv.tv_usec > dynamic_max_sleep) { 1743 /* Lets not let sleep get above this value */ 1744 hpts->overidden_sleep = tv.tv_usec; 1745 tv.tv_usec = dynamic_max_sleep; 1746 } 1747 /* 1748 * In this mode the timer is a backstop to 1749 * all the userret/lro_flushes so we use 1750 * the dynamic value and set the on_min_sleep 1751 * flag so we will not be awoken. 1752 */ 1753 hpts->p_on_min_sleep = 1; 1754 } else if (hpts->p_on_queue_cnt == 0) { 1755 /* 1756 * No one on the wheel, please wake us up 1757 * if you insert on the wheel. 1758 */ 1759 hpts->p_on_min_sleep = 0; 1760 hpts->overidden_sleep = 0; 1761 } else { 1762 /* 1763 * We hit here when we have a low number of 1764 * clients on the wheel (our else clause). 1765 * We may need to go on min sleep, if we set 1766 * the flag we will not be awoken if someone 1767 * is inserted ahead of us. Clearing the flag 1768 * means we can be awoken. This is "old mode" 1769 * where the timer is what runs hpts mainly. 1770 */ 1771 if (tv.tv_usec < tcp_min_hptsi_time) { 1772 /* 1773 * Yes on min sleep, which means 1774 * we cannot be awoken. 1775 */ 1776 hpts->overidden_sleep = tv.tv_usec; 1777 tv.tv_usec = tcp_min_hptsi_time; 1778 hpts->p_on_min_sleep = 1; 1779 } else { 1780 /* Clear the min sleep flag */ 1781 hpts->overidden_sleep = 0; 1782 hpts->p_on_min_sleep = 0; 1783 } 1784 } 1785 HPTS_MTX_ASSERT(hpts); 1786 hpts->p_hpts_active = 0; 1787 back_to_sleep: 1788 hpts->p_direct_wake = 0; 1789 (void)tcp_hpts_sleep(hpts, &tv); 1790 NET_EPOCH_EXIT(et); 1791 HPTS_UNLOCK(hpts); 1792 } 1793 1794 static int32_t 1795 hpts_count_level(struct cpu_group *cg) 1796 { 1797 int32_t count_l3, i; 1798 1799 count_l3 = 0; 1800 if (cg->cg_level == CG_SHARE_L3) 1801 count_l3++; 1802 /* Walk all the children looking for L3 */ 1803 for (i = 0; i < cg->cg_children; i++) { 1804 count_l3 += hpts_count_level(&cg->cg_child[i]); 1805 } 1806 return (count_l3); 1807 } 1808 1809 static void 1810 hpts_gather_grps(struct cpu_group **grps, int32_t *at, int32_t max, struct cpu_group *cg) 1811 { 1812 int32_t idx, i; 1813 1814 idx = *at; 1815 if (cg->cg_level == CG_SHARE_L3) { 1816 grps[idx] = cg; 1817 idx++; 1818 if (idx == max) { 1819 *at = idx; 1820 return; 1821 } 1822 } 1823 *at = idx; 1824 /* Walk all the children looking for L3 */ 1825 for (i = 0; i < cg->cg_children; i++) { 1826 hpts_gather_grps(grps, at, max, &cg->cg_child[i]); 1827 } 1828 } 1829 1830 /* 1831 * Initialize a tcp_hptsi structure. This performs the core initialization 1832 * without starting threads. 1833 */ 1834 struct tcp_hptsi* 1835 tcp_hptsi_create(const struct tcp_hptsi_funcs *funcs, bool enable_sysctl) 1836 { 1837 struct tcp_hptsi *pace; 1838 struct cpu_group *cpu_top; 1839 uint32_t i, j, cts; 1840 int32_t count; 1841 size_t sz, asz; 1842 struct timeval tv; 1843 struct tcp_hpts_entry *hpts; 1844 char unit[16]; 1845 uint32_t ncpus = mp_ncpus ? mp_ncpus : MAXCPU; 1846 1847 KASSERT(funcs != NULL, ("funcs is NULL")); 1848 1849 /* Allocate the main structure */ 1850 pace = malloc(sizeof(struct tcp_hptsi), M_TCPHPTS, M_WAITOK | M_ZERO); 1851 if (pace == NULL) 1852 return (NULL); 1853 1854 memset(pace, 0, sizeof(*pace)); 1855 pace->funcs = funcs; 1856 1857 /* Setup CPU topology information */ 1858 #ifdef SMP 1859 cpu_top = smp_topo(); 1860 #else 1861 cpu_top = NULL; 1862 #endif 1863 pace->rp_num_hptss = ncpus; 1864 1865 /* Allocate hpts entry array */ 1866 sz = (pace->rp_num_hptss * sizeof(struct tcp_hpts_entry *)); 1867 pace->rp_ent = malloc(sz, M_TCPHPTS, M_WAITOK | M_ZERO); 1868 1869 /* Allocate timestamp tracking array */ 1870 sz = (sizeof(uint32_t) * pace->rp_num_hptss); 1871 pace->cts_last_ran = malloc(sz, M_TCPHPTS, M_WAITOK); 1872 1873 /* Setup CPU groups */ 1874 if (cpu_top == NULL) { 1875 pace->grp_cnt = 1; 1876 } else { 1877 /* Find out how many cache level 3 domains we have */ 1878 count = 0; 1879 pace->grp_cnt = hpts_count_level(cpu_top); 1880 if (pace->grp_cnt == 0) { 1881 pace->grp_cnt = 1; 1882 } 1883 sz = (pace->grp_cnt * sizeof(struct cpu_group *)); 1884 pace->grps = malloc(sz, M_TCPHPTS, M_WAITOK); 1885 /* Now populate the groups */ 1886 if (pace->grp_cnt == 1) { 1887 /* 1888 * All we need is the top level all cpu's are in 1889 * the same cache so when we use grp[0]->cg_mask 1890 * with the cg_first <-> cg_last it will include 1891 * all cpu's in it. The level here is probably 1892 * zero which is ok. 1893 */ 1894 pace->grps[0] = cpu_top; 1895 } else { 1896 /* 1897 * Here we must find all the level three cache domains 1898 * and setup our pointers to them. 1899 */ 1900 count = 0; 1901 hpts_gather_grps(pace->grps, &count, pace->grp_cnt, cpu_top); 1902 } 1903 } 1904 1905 /* Cache the current time for initializing the hpts entries */ 1906 microuptime(&tv); 1907 cts = tcp_tv_to_usec(&tv); 1908 1909 /* Initialize each hpts entry */ 1910 asz = sizeof(struct hptsh) * NUM_OF_HPTSI_SLOTS; 1911 for (i = 0; i < pace->rp_num_hptss; i++) { 1912 pace->rp_ent[i] = malloc(sizeof(struct tcp_hpts_entry), 1913 M_TCPHPTS, M_WAITOK | M_ZERO); 1914 pace->rp_ent[i]->p_hptss = malloc(asz, M_TCPHPTS, 1915 M_WAITOK | M_ZERO); 1916 hpts = pace->rp_ent[i]; 1917 1918 /* Basic initialization */ 1919 hpts->p_hpts_sleep_time = hpts_sleep_max; 1920 hpts->p_cpu = i; 1921 pace->cts_last_ran[i] = cts; 1922 hpts->p_cur_slot = cts_to_wheel(cts); 1923 hpts->p_prev_slot = hpts->p_cur_slot; 1924 hpts->p_nxt_slot = hpts_slot(hpts->p_cur_slot, 1); 1925 callout_init(&hpts->co, 1); 1926 hpts->p_hptsi = pace; 1927 mtx_init(&hpts->p_mtx, "tcp_hpts_lck", "hpts", 1928 MTX_DEF | MTX_DUPOK); 1929 for (j = 0; j < NUM_OF_HPTSI_SLOTS; j++) { 1930 TAILQ_INIT(&hpts->p_hptss[j].head); 1931 } 1932 1933 /* Setup SYSCTL if requested */ 1934 if (enable_sysctl) { 1935 sysctl_ctx_init(&hpts->hpts_ctx); 1936 sprintf(unit, "%d", i); 1937 hpts->hpts_root = SYSCTL_ADD_NODE(&hpts->hpts_ctx, 1938 SYSCTL_STATIC_CHILDREN(_net_inet_tcp_hpts), 1939 OID_AUTO, 1940 unit, 1941 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 1942 ""); 1943 SYSCTL_ADD_INT(&hpts->hpts_ctx, 1944 SYSCTL_CHILDREN(hpts->hpts_root), 1945 OID_AUTO, "out_qcnt", CTLFLAG_RD, 1946 &hpts->p_on_queue_cnt, 0, 1947 "Count TCB's awaiting output processing"); 1948 SYSCTL_ADD_U16(&hpts->hpts_ctx, 1949 SYSCTL_CHILDREN(hpts->hpts_root), 1950 OID_AUTO, "active", CTLFLAG_RD, 1951 &hpts->p_hpts_active, 0, 1952 "Is the hpts active"); 1953 SYSCTL_ADD_UINT(&hpts->hpts_ctx, 1954 SYSCTL_CHILDREN(hpts->hpts_root), 1955 OID_AUTO, "curslot", CTLFLAG_RD, 1956 &hpts->p_cur_slot, 0, 1957 "What the current running pacers goal"); 1958 SYSCTL_ADD_UINT(&hpts->hpts_ctx, 1959 SYSCTL_CHILDREN(hpts->hpts_root), 1960 OID_AUTO, "runslot", CTLFLAG_RD, 1961 &hpts->p_runningslot, 0, 1962 "What the running pacers current slot is"); 1963 SYSCTL_ADD_UINT(&hpts->hpts_ctx, 1964 SYSCTL_CHILDREN(hpts->hpts_root), 1965 OID_AUTO, "lastran", CTLFLAG_RD, 1966 &pace->cts_last_ran[i], 0, 1967 "The last usec timestamp that this hpts ran"); 1968 SYSCTL_ADD_LONG(&hpts->hpts_ctx, 1969 SYSCTL_CHILDREN(hpts->hpts_root), 1970 OID_AUTO, "cur_min_sleep", CTLFLAG_RD, 1971 &hpts->p_mysleep.tv_usec, 1972 "What the running pacers is using for p_mysleep.tv_usec"); 1973 SYSCTL_ADD_U64(&hpts->hpts_ctx, 1974 SYSCTL_CHILDREN(hpts->hpts_root), 1975 OID_AUTO, "now_sleeping", CTLFLAG_RD, 1976 &hpts->sleeping, 0, 1977 "What the running pacers is actually sleeping for"); 1978 SYSCTL_ADD_U64(&hpts->hpts_ctx, 1979 SYSCTL_CHILDREN(hpts->hpts_root), 1980 OID_AUTO, "syscall_cnt", CTLFLAG_RD, 1981 &hpts->syscall_cnt, 0, 1982 "How many times we had syscalls on this hpts"); 1983 } 1984 } 1985 1986 return (pace); 1987 } 1988 1989 /* 1990 * Create threads for a tcp_hptsi structure and starts timers for the current 1991 * (minimum) sleep interval. 1992 */ 1993 void 1994 tcp_hptsi_start(struct tcp_hptsi *pace) 1995 { 1996 struct tcp_hpts_entry *hpts; 1997 struct pcpu *pc; 1998 struct timeval tv; 1999 uint32_t i, j; 2000 int count, domain; 2001 int error __diagused; 2002 2003 KASSERT(pace != NULL, ("tcp_hptsi_start: pace is NULL")); 2004 2005 /* Start threads for each hpts entry */ 2006 for (i = 0; i < pace->rp_num_hptss; i++) { 2007 hpts = pace->rp_ent[i]; 2008 2009 KASSERT(hpts->ie_cookie == NULL, 2010 ("tcp_hptsi_start: hpts[%d]->ie_cookie is not NULL", i)); 2011 2012 error = swi_add(&hpts->ie, "hpts", 2013 tcp_hpts_thread, (void *)hpts, 2014 SWI_NET, INTR_MPSAFE, &hpts->ie_cookie); 2015 KASSERT(error == 0, 2016 ("Can't add hpts:%p i:%d err:%d", hpts, i, error)); 2017 2018 if (tcp_bind_threads == 1) { 2019 (void)intr_event_bind(hpts->ie, i); 2020 } else if (tcp_bind_threads == 2) { 2021 /* Find the group for this CPU (i) and bind into it */ 2022 for (j = 0; j < pace->grp_cnt; j++) { 2023 if (CPU_ISSET(i, &pace->grps[j]->cg_mask)) { 2024 if (intr_event_bind_ithread_cpuset(hpts->ie, 2025 &pace->grps[j]->cg_mask) == 0) { 2026 pc = pcpu_find(i); 2027 domain = pc->pc_domain; 2028 count = pace->domains[domain].count; 2029 pace->domains[domain].cpu[count] = i; 2030 pace->domains[domain].count++; 2031 break; 2032 } 2033 } 2034 } 2035 } 2036 2037 hpts->p_mysleep.tv_sec = 0; 2038 hpts->p_mysleep.tv_usec = tcp_min_hptsi_time; 2039 tv.tv_sec = 0; 2040 tv.tv_usec = hpts->p_hpts_sleep_time * HPTS_USECS_PER_SLOT; 2041 (void)tcp_hpts_sleep(hpts, &tv); 2042 } 2043 } 2044 2045 /* 2046 * Stop all callouts/threads for a tcp_hptsi structure. 2047 */ 2048 void 2049 tcp_hptsi_stop(struct tcp_hptsi *pace) 2050 { 2051 struct tcp_hpts_entry *hpts; 2052 int rv __diagused; 2053 uint32_t i; 2054 2055 KASSERT(pace != NULL, ("tcp_hptsi_stop: pace is NULL")); 2056 2057 for (i = 0; i < pace->rp_num_hptss; i++) { 2058 hpts = pace->rp_ent[i]; 2059 KASSERT(hpts != NULL, ("tcp_hptsi_stop: hpts[%d] is NULL", i)); 2060 KASSERT(hpts->ie_cookie != NULL, 2061 ("tcp_hptsi_stop: hpts[%d]->ie_cookie is NULL", i)); 2062 2063 rv = _callout_stop_safe(&hpts->co, CS_DRAIN); 2064 MPASS(rv != 0); 2065 2066 rv = swi_remove(hpts->ie_cookie); 2067 MPASS(rv == 0); 2068 hpts->ie_cookie = NULL; 2069 } 2070 } 2071 2072 /* 2073 * Destroy a tcp_hptsi structure initialized by tcp_hptsi_create. 2074 */ 2075 void 2076 tcp_hptsi_destroy(struct tcp_hptsi *pace) 2077 { 2078 struct tcp_hpts_entry *hpts; 2079 uint32_t i; 2080 2081 KASSERT(pace != NULL, ("tcp_hptsi_destroy: pace is NULL")); 2082 KASSERT(pace->rp_ent != NULL, ("tcp_hptsi_destroy: pace->rp_ent is NULL")); 2083 2084 /* Cleanup each hpts entry */ 2085 for (i = 0; i < pace->rp_num_hptss; i++) { 2086 hpts = pace->rp_ent[i]; 2087 if (hpts != NULL) { 2088 /* Cleanup SYSCTL if it was initialized */ 2089 if (hpts->hpts_root != NULL) { 2090 sysctl_ctx_free(&hpts->hpts_ctx); 2091 } 2092 2093 mtx_destroy(&hpts->p_mtx); 2094 free(hpts->p_hptss, M_TCPHPTS); 2095 free(hpts, M_TCPHPTS); 2096 } 2097 } 2098 2099 /* Cleanup main arrays */ 2100 free(pace->rp_ent, M_TCPHPTS); 2101 free(pace->cts_last_ran, M_TCPHPTS); 2102 #ifdef SMP 2103 free(pace->grps, M_TCPHPTS); 2104 #endif 2105 2106 /* Free the main structure */ 2107 free(pace, M_TCPHPTS); 2108 } 2109 2110 static int 2111 tcp_hpts_mod_load(void) 2112 { 2113 int i; 2114 2115 /* Don't try to bind to NUMA domains if we don't have any */ 2116 if (vm_ndomains == 1 && tcp_bind_threads == 2) 2117 tcp_bind_threads = 0; 2118 2119 /* Create the tcp_hptsi structure */ 2120 tcp_hptsi_pace = tcp_hptsi_create(&tcp_hptsi_default_funcs, true); 2121 if (tcp_hptsi_pace == NULL) 2122 return (ENOMEM); 2123 2124 /* Initialize global counters */ 2125 hpts_hopelessly_behind = counter_u64_alloc(M_WAITOK); 2126 hpts_loops = counter_u64_alloc(M_WAITOK); 2127 back_tosleep = counter_u64_alloc(M_WAITOK); 2128 combined_wheel_wrap = counter_u64_alloc(M_WAITOK); 2129 wheel_wrap = counter_u64_alloc(M_WAITOK); 2130 hpts_wake_timeout = counter_u64_alloc(M_WAITOK); 2131 hpts_direct_awakening = counter_u64_alloc(M_WAITOK); 2132 hpts_back_tosleep = counter_u64_alloc(M_WAITOK); 2133 hpts_direct_call = counter_u64_alloc(M_WAITOK); 2134 cpu_uses_flowid = counter_u64_alloc(M_WAITOK); 2135 cpu_uses_random = counter_u64_alloc(M_WAITOK); 2136 2137 /* Start the threads */ 2138 tcp_hptsi_start(tcp_hptsi_pace); 2139 2140 /* Enable the global HPTS softclock function */ 2141 tcp_hpts_softclock = __tcp_run_hpts; 2142 2143 /* Initialize LRO HPTS */ 2144 tcp_lro_hpts_init(); 2145 2146 /* 2147 * If we somehow have an empty domain, fall back to choosing among all 2148 * HPTS threads. 2149 */ 2150 for (i = 0; i < vm_ndomains; i++) { 2151 if (tcp_hptsi_pace->domains[i].count == 0) { 2152 tcp_bind_threads = 0; 2153 break; 2154 } 2155 } 2156 2157 printf("TCP HPTS started %u (%s) swi interrupt threads\n", 2158 tcp_hptsi_pace->rp_num_hptss, (tcp_bind_threads == 0) ? 2159 "(unbounded)" : 2160 (tcp_bind_threads == 1 ? "per-cpu" : "per-NUMA-domain")); 2161 2162 return (0); 2163 } 2164 2165 static void 2166 tcp_hpts_mod_unload(void) 2167 { 2168 tcp_lro_hpts_uninit(); 2169 2170 /* Disable the global HPTS softclock function */ 2171 atomic_store_ptr(&tcp_hpts_softclock, NULL); 2172 2173 tcp_hptsi_stop(tcp_hptsi_pace); 2174 tcp_hptsi_destroy(tcp_hptsi_pace); 2175 tcp_hptsi_pace = NULL; 2176 2177 /* Cleanup global counters */ 2178 counter_u64_free(hpts_hopelessly_behind); 2179 counter_u64_free(hpts_loops); 2180 counter_u64_free(back_tosleep); 2181 counter_u64_free(combined_wheel_wrap); 2182 counter_u64_free(wheel_wrap); 2183 counter_u64_free(hpts_wake_timeout); 2184 counter_u64_free(hpts_direct_awakening); 2185 counter_u64_free(hpts_back_tosleep); 2186 counter_u64_free(hpts_direct_call); 2187 counter_u64_free(cpu_uses_flowid); 2188 counter_u64_free(cpu_uses_random); 2189 } 2190 2191 static int 2192 tcp_hpts_mod_event(module_t mod, int what, void *arg) 2193 { 2194 switch (what) { 2195 case MOD_LOAD: 2196 return (tcp_hpts_mod_load()); 2197 case MOD_QUIESCE: 2198 /* 2199 * Since we are a dependency of TCP stack modules, they should 2200 * already be unloaded, and the HPTS ring is empty. However, 2201 * function pointer manipulations aren't 100% safe. Although, 2202 * tcp_hpts_mod_unload() use atomic(9) the userret() doesn't. 2203 * Thus, allow only forced unload of HPTS. 2204 */ 2205 return (EBUSY); 2206 case MOD_UNLOAD: 2207 tcp_hpts_mod_unload(); 2208 return (0); 2209 default: 2210 return (EINVAL); 2211 }; 2212 } 2213 2214 static moduledata_t tcp_hpts_module = { 2215 .name = "tcphpts", 2216 .evhand = tcp_hpts_mod_event, 2217 }; 2218 2219 DECLARE_MODULE(tcphpts, tcp_hpts_module, SI_SUB_SOFTINTR, SI_ORDER_ANY); 2220 MODULE_VERSION(tcphpts, 1); 2221