1 /*- 2 * Copyright (c) 2016-2018 Netflix, Inc. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 1. Redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer. 9 * 2. Redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution. 12 * 13 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 14 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 16 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 17 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 18 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 19 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 20 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 21 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 22 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 23 * SUCH DAMAGE. 24 * 25 */ 26 #include <sys/cdefs.h> 27 __FBSDID("$FreeBSD$"); 28 29 #include "opt_inet.h" 30 #include "opt_inet6.h" 31 #include "opt_rss.h" 32 #include "opt_tcpdebug.h" 33 34 /** 35 * Some notes about usage. 36 * 37 * The tcp_hpts system is designed to provide a high precision timer 38 * system for tcp. Its main purpose is to provide a mechanism for 39 * pacing packets out onto the wire. It can be used in two ways 40 * by a given TCP stack (and those two methods can be used simultaneously). 41 * 42 * First, and probably the main thing its used by Rack and BBR, it can 43 * be used to call tcp_output() of a transport stack at some time in the future. 44 * The normal way this is done is that tcp_output() of the stack schedules 45 * itself to be called again by calling tcp_hpts_insert(tcpcb, slot). The 46 * slot is the time from now that the stack wants to be called but it 47 * must be converted to tcp_hpts's notion of slot. This is done with 48 * one of the macros HPTS_MS_TO_SLOTS or HPTS_USEC_TO_SLOTS. So a typical 49 * call from the tcp_output() routine might look like: 50 * 51 * tcp_hpts_insert(tp, HPTS_USEC_TO_SLOTS(550)); 52 * 53 * The above would schedule tcp_ouput() to be called in 550 useconds. 54 * Note that if using this mechanism the stack will want to add near 55 * its top a check to prevent unwanted calls (from user land or the 56 * arrival of incoming ack's). So it would add something like: 57 * 58 * if (inp->inp_in_hpts) 59 * return; 60 * 61 * to prevent output processing until the time alotted has gone by. 62 * Of course this is a bare bones example and the stack will probably 63 * have more consideration then just the above. 64 * 65 * Now the second function (actually two functions I guess :D) 66 * the tcp_hpts system provides is the ability to either abort 67 * a connection (later) or process input on a connection. 68 * Why would you want to do this? To keep processor locality 69 * and or not have to worry about untangling any recursive 70 * locks. The input function now is hooked to the new LRO 71 * system as well. 72 * 73 * In order to use the input redirection function the 74 * tcp stack must define an input function for 75 * tfb_do_queued_segments(). This function understands 76 * how to dequeue a array of packets that were input and 77 * knows how to call the correct processing routine. 78 * 79 * Locking in this is important as well so most likely the 80 * stack will need to define the tfb_do_segment_nounlock() 81 * splitting tfb_do_segment() into two parts. The main processing 82 * part that does not unlock the INP and returns a value of 1 or 0. 83 * It returns 0 if all is well and the lock was not released. It 84 * returns 1 if we had to destroy the TCB (a reset received etc). 85 * The remains of tfb_do_segment() then become just a simple call 86 * to the tfb_do_segment_nounlock() function and check the return 87 * code and possibly unlock. 88 * 89 * The stack must also set the flag on the INP that it supports this 90 * feature i.e. INP_SUPPORTS_MBUFQ. The LRO code recoginizes 91 * this flag as well and will queue packets when it is set. 92 * There are other flags as well INP_MBUF_QUEUE_READY and 93 * INP_DONT_SACK_QUEUE. The first flag tells the LRO code 94 * that we are in the pacer for output so there is no 95 * need to wake up the hpts system to get immediate 96 * input. The second tells the LRO code that its okay 97 * if a SACK arrives you can still defer input and let 98 * the current hpts timer run (this is usually set when 99 * a rack timer is up so we know SACK's are happening 100 * on the connection already and don't want to wakeup yet). 101 * 102 * There is a common functions within the rack_bbr_common code 103 * version i.e. ctf_do_queued_segments(). This function 104 * knows how to take the input queue of packets from 105 * tp->t_in_pkts and process them digging out 106 * all the arguments, calling any bpf tap and 107 * calling into tfb_do_segment_nounlock(). The common 108 * function (ctf_do_queued_segments()) requires that 109 * you have defined the tfb_do_segment_nounlock() as 110 * described above. 111 * 112 * The second feature of the input side of hpts is the 113 * dropping of a connection. This is due to the way that 114 * locking may have occured on the INP_WLOCK. So if 115 * a stack wants to drop a connection it calls: 116 * 117 * tcp_set_inp_to_drop(tp, ETIMEDOUT) 118 * 119 * To schedule the tcp_hpts system to call 120 * 121 * tcp_drop(tp, drop_reason) 122 * 123 * at a future point. This is quite handy to prevent locking 124 * issues when dropping connections. 125 * 126 */ 127 128 #include <sys/param.h> 129 #include <sys/bus.h> 130 #include <sys/interrupt.h> 131 #include <sys/module.h> 132 #include <sys/kernel.h> 133 #include <sys/hhook.h> 134 #include <sys/malloc.h> 135 #include <sys/mbuf.h> 136 #include <sys/proc.h> /* for proc0 declaration */ 137 #include <sys/socket.h> 138 #include <sys/socketvar.h> 139 #include <sys/sysctl.h> 140 #include <sys/systm.h> 141 #include <sys/refcount.h> 142 #include <sys/sched.h> 143 #include <sys/queue.h> 144 #include <sys/smp.h> 145 #include <sys/counter.h> 146 #include <sys/time.h> 147 #include <sys/kthread.h> 148 #include <sys/kern_prefetch.h> 149 150 #include <vm/uma.h> 151 #include <vm/vm.h> 152 153 #include <net/route.h> 154 #include <net/vnet.h> 155 156 #ifdef RSS 157 #include <net/netisr.h> 158 #include <net/rss_config.h> 159 #endif 160 161 #define TCPSTATES /* for logging */ 162 163 #include <netinet/in.h> 164 #include <netinet/in_kdtrace.h> 165 #include <netinet/in_pcb.h> 166 #include <netinet/ip.h> 167 #include <netinet/ip_icmp.h> /* required for icmp_var.h */ 168 #include <netinet/icmp_var.h> /* for ICMP_BANDLIM */ 169 #include <netinet/ip_var.h> 170 #include <netinet/ip6.h> 171 #include <netinet6/in6_pcb.h> 172 #include <netinet6/ip6_var.h> 173 #include <netinet/tcp.h> 174 #include <netinet/tcp_fsm.h> 175 #include <netinet/tcp_seq.h> 176 #include <netinet/tcp_timer.h> 177 #include <netinet/tcp_var.h> 178 #include <netinet/tcpip.h> 179 #include <netinet/cc/cc.h> 180 #include <netinet/tcp_hpts.h> 181 #include <netinet/tcp_log_buf.h> 182 183 #ifdef tcpdebug 184 #include <netinet/tcp_debug.h> 185 #endif /* tcpdebug */ 186 #ifdef tcp_offload 187 #include <netinet/tcp_offload.h> 188 #endif 189 190 MALLOC_DEFINE(M_TCPHPTS, "tcp_hpts", "TCP hpts"); 191 #ifdef RSS 192 static int tcp_bind_threads = 1; 193 #else 194 static int tcp_bind_threads = 2; 195 #endif 196 TUNABLE_INT("net.inet.tcp.bind_hptss", &tcp_bind_threads); 197 198 static struct tcp_hptsi tcp_pace; 199 static int hpts_does_tp_logging = 0; 200 201 static void tcp_wakehpts(struct tcp_hpts_entry *p); 202 static void tcp_wakeinput(struct tcp_hpts_entry *p); 203 static void tcp_input_data(struct tcp_hpts_entry *hpts, struct timeval *tv); 204 static void tcp_hptsi(struct tcp_hpts_entry *hpts); 205 static void tcp_hpts_thread(void *ctx); 206 static void tcp_init_hptsi(void *st); 207 208 int32_t tcp_min_hptsi_time = DEFAULT_MIN_SLEEP; 209 static int32_t tcp_hpts_callout_skip_swi = 0; 210 211 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, hpts, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 212 "TCP Hpts controls"); 213 214 #define timersub(tvp, uvp, vvp) \ 215 do { \ 216 (vvp)->tv_sec = (tvp)->tv_sec - (uvp)->tv_sec; \ 217 (vvp)->tv_usec = (tvp)->tv_usec - (uvp)->tv_usec; \ 218 if ((vvp)->tv_usec < 0) { \ 219 (vvp)->tv_sec--; \ 220 (vvp)->tv_usec += 1000000; \ 221 } \ 222 } while (0) 223 224 static int32_t tcp_hpts_precision = 120; 225 226 struct hpts_domain_info { 227 int count; 228 int cpu[MAXCPU]; 229 }; 230 231 struct hpts_domain_info hpts_domains[MAXMEMDOM]; 232 233 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, precision, CTLFLAG_RW, 234 &tcp_hpts_precision, 120, 235 "Value for PRE() precision of callout"); 236 237 counter_u64_t hpts_hopelessly_behind; 238 239 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts, OID_AUTO, hopeless, CTLFLAG_RD, 240 &hpts_hopelessly_behind, 241 "Number of times hpts could not catch up and was behind hopelessly"); 242 243 counter_u64_t hpts_loops; 244 245 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts, OID_AUTO, loops, CTLFLAG_RD, 246 &hpts_loops, "Number of times hpts had to loop to catch up"); 247 248 counter_u64_t back_tosleep; 249 250 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts, OID_AUTO, no_tcbsfound, CTLFLAG_RD, 251 &back_tosleep, "Number of times hpts found no tcbs"); 252 253 counter_u64_t combined_wheel_wrap; 254 255 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts, OID_AUTO, comb_wheel_wrap, CTLFLAG_RD, 256 &combined_wheel_wrap, "Number of times the wheel lagged enough to have an insert see wrap"); 257 258 counter_u64_t wheel_wrap; 259 260 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts, OID_AUTO, wheel_wrap, CTLFLAG_RD, 261 &wheel_wrap, "Number of times the wheel lagged enough to have an insert see wrap"); 262 263 static int32_t out_ts_percision = 0; 264 265 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, out_tspercision, CTLFLAG_RW, 266 &out_ts_percision, 0, 267 "Do we use a percise timestamp for every output cts"); 268 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, logging, CTLFLAG_RW, 269 &hpts_does_tp_logging, 0, 270 "Do we add to any tp that has logging on pacer logs"); 271 272 static int32_t max_pacer_loops = 10; 273 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, loopmax, CTLFLAG_RW, 274 &max_pacer_loops, 10, 275 "What is the maximum number of times the pacer will loop trying to catch up"); 276 277 #define HPTS_MAX_SLEEP_ALLOWED (NUM_OF_HPTSI_SLOTS/2) 278 279 static uint32_t hpts_sleep_max = HPTS_MAX_SLEEP_ALLOWED; 280 281 static int 282 sysctl_net_inet_tcp_hpts_max_sleep(SYSCTL_HANDLER_ARGS) 283 { 284 int error; 285 uint32_t new; 286 287 new = hpts_sleep_max; 288 error = sysctl_handle_int(oidp, &new, 0, req); 289 if (error == 0 && req->newptr) { 290 if ((new < (NUM_OF_HPTSI_SLOTS / 4)) || 291 (new > HPTS_MAX_SLEEP_ALLOWED)) 292 error = EINVAL; 293 else 294 hpts_sleep_max = new; 295 } 296 return (error); 297 } 298 299 SYSCTL_PROC(_net_inet_tcp_hpts, OID_AUTO, maxsleep, 300 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 301 &hpts_sleep_max, 0, 302 &sysctl_net_inet_tcp_hpts_max_sleep, "IU", 303 "Maximum time hpts will sleep"); 304 305 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, minsleep, CTLFLAG_RW, 306 &tcp_min_hptsi_time, 0, 307 "The minimum time the hpts must sleep before processing more slots"); 308 309 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, skip_swi, CTLFLAG_RW, 310 &tcp_hpts_callout_skip_swi, 0, 311 "Do we have the callout call directly to the hpts?"); 312 313 static void 314 tcp_hpts_log(struct tcp_hpts_entry *hpts, struct tcpcb *tp, struct timeval *tv, 315 int ticks_to_run, int idx) 316 { 317 union tcp_log_stackspecific log; 318 319 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 320 log.u_bbr.flex1 = hpts->p_nxt_slot; 321 log.u_bbr.flex2 = hpts->p_cur_slot; 322 log.u_bbr.flex3 = hpts->p_prev_slot; 323 log.u_bbr.flex4 = idx; 324 log.u_bbr.flex5 = hpts->p_curtick; 325 log.u_bbr.flex6 = hpts->p_on_queue_cnt; 326 log.u_bbr.use_lt_bw = 1; 327 log.u_bbr.inflight = ticks_to_run; 328 log.u_bbr.applimited = hpts->overidden_sleep; 329 log.u_bbr.delivered = hpts->saved_curtick; 330 log.u_bbr.timeStamp = tcp_tv_to_usectick(tv); 331 log.u_bbr.epoch = hpts->saved_curslot; 332 log.u_bbr.lt_epoch = hpts->saved_prev_slot; 333 log.u_bbr.pkts_out = hpts->p_delayed_by; 334 log.u_bbr.lost = hpts->p_hpts_sleep_time; 335 log.u_bbr.cur_del_rate = hpts->p_runningtick; 336 TCP_LOG_EVENTP(tp, NULL, 337 &tp->t_inpcb->inp_socket->so_rcv, 338 &tp->t_inpcb->inp_socket->so_snd, 339 BBR_LOG_HPTSDIAG, 0, 340 0, &log, false, tv); 341 } 342 343 static void 344 hpts_timeout_swi(void *arg) 345 { 346 struct tcp_hpts_entry *hpts; 347 348 hpts = (struct tcp_hpts_entry *)arg; 349 swi_sched(hpts->ie_cookie, 0); 350 } 351 352 static void 353 hpts_timeout_dir(void *arg) 354 { 355 tcp_hpts_thread(arg); 356 } 357 358 static inline void 359 hpts_sane_pace_remove(struct tcp_hpts_entry *hpts, struct inpcb *inp, struct hptsh *head, int clear) 360 { 361 #ifdef INVARIANTS 362 if (mtx_owned(&hpts->p_mtx) == 0) { 363 /* We don't own the mutex? */ 364 panic("%s: hpts:%p inp:%p no hpts mutex", __FUNCTION__, hpts, inp); 365 } 366 if (hpts->p_cpu != inp->inp_hpts_cpu) { 367 /* It is not the right cpu/mutex? */ 368 panic("%s: hpts:%p inp:%p incorrect CPU", __FUNCTION__, hpts, inp); 369 } 370 if (inp->inp_in_hpts == 0) { 371 /* We are not on the hpts? */ 372 panic("%s: hpts:%p inp:%p not on the hpts?", __FUNCTION__, hpts, inp); 373 } 374 #endif 375 TAILQ_REMOVE(head, inp, inp_hpts); 376 hpts->p_on_queue_cnt--; 377 if (hpts->p_on_queue_cnt < 0) { 378 /* Count should not go negative .. */ 379 #ifdef INVARIANTS 380 panic("Hpts goes negative inp:%p hpts:%p", 381 inp, hpts); 382 #endif 383 hpts->p_on_queue_cnt = 0; 384 } 385 if (clear) { 386 inp->inp_hpts_request = 0; 387 inp->inp_in_hpts = 0; 388 } 389 } 390 391 static inline void 392 hpts_sane_pace_insert(struct tcp_hpts_entry *hpts, struct inpcb *inp, struct hptsh *head, int line, int noref) 393 { 394 #ifdef INVARIANTS 395 if (mtx_owned(&hpts->p_mtx) == 0) { 396 /* We don't own the mutex? */ 397 panic("%s: hpts:%p inp:%p no hpts mutex", __FUNCTION__, hpts, inp); 398 } 399 if (hpts->p_cpu != inp->inp_hpts_cpu) { 400 /* It is not the right cpu/mutex? */ 401 panic("%s: hpts:%p inp:%p incorrect CPU", __FUNCTION__, hpts, inp); 402 } 403 if ((noref == 0) && (inp->inp_in_hpts == 1)) { 404 /* We are already on the hpts? */ 405 panic("%s: hpts:%p inp:%p already on the hpts?", __FUNCTION__, hpts, inp); 406 } 407 #endif 408 TAILQ_INSERT_TAIL(head, inp, inp_hpts); 409 inp->inp_in_hpts = 1; 410 hpts->p_on_queue_cnt++; 411 if (noref == 0) { 412 in_pcbref(inp); 413 } 414 } 415 416 static inline void 417 hpts_sane_input_remove(struct tcp_hpts_entry *hpts, struct inpcb *inp, int clear) 418 { 419 #ifdef INVARIANTS 420 if (mtx_owned(&hpts->p_mtx) == 0) { 421 /* We don't own the mutex? */ 422 panic("%s: hpts:%p inp:%p no hpts mutex", __FUNCTION__, hpts, inp); 423 } 424 if (hpts->p_cpu != inp->inp_input_cpu) { 425 /* It is not the right cpu/mutex? */ 426 panic("%s: hpts:%p inp:%p incorrect CPU", __FUNCTION__, hpts, inp); 427 } 428 if (inp->inp_in_input == 0) { 429 /* We are not on the input hpts? */ 430 panic("%s: hpts:%p inp:%p not on the input hpts?", __FUNCTION__, hpts, inp); 431 } 432 #endif 433 TAILQ_REMOVE(&hpts->p_input, inp, inp_input); 434 hpts->p_on_inqueue_cnt--; 435 if (hpts->p_on_inqueue_cnt < 0) { 436 #ifdef INVARIANTS 437 panic("Hpts in goes negative inp:%p hpts:%p", 438 inp, hpts); 439 #endif 440 hpts->p_on_inqueue_cnt = 0; 441 } 442 #ifdef INVARIANTS 443 if (TAILQ_EMPTY(&hpts->p_input) && 444 (hpts->p_on_inqueue_cnt != 0)) { 445 /* We should not be empty with a queue count */ 446 panic("%s hpts:%p in_hpts input empty but cnt:%d", 447 __FUNCTION__, hpts, hpts->p_on_inqueue_cnt); 448 } 449 #endif 450 if (clear) 451 inp->inp_in_input = 0; 452 } 453 454 static inline void 455 hpts_sane_input_insert(struct tcp_hpts_entry *hpts, struct inpcb *inp, int line) 456 { 457 #ifdef INVARIANTS 458 if (mtx_owned(&hpts->p_mtx) == 0) { 459 /* We don't own the mutex? */ 460 panic("%s: hpts:%p inp:%p no hpts mutex", __FUNCTION__, hpts, inp); 461 } 462 if (hpts->p_cpu != inp->inp_input_cpu) { 463 /* It is not the right cpu/mutex? */ 464 panic("%s: hpts:%p inp:%p incorrect CPU", __FUNCTION__, hpts, inp); 465 } 466 if (inp->inp_in_input == 1) { 467 /* We are already on the input hpts? */ 468 panic("%s: hpts:%p inp:%p already on the input hpts?", __FUNCTION__, hpts, inp); 469 } 470 #endif 471 TAILQ_INSERT_TAIL(&hpts->p_input, inp, inp_input); 472 inp->inp_in_input = 1; 473 hpts->p_on_inqueue_cnt++; 474 in_pcbref(inp); 475 } 476 477 static void 478 tcp_wakehpts(struct tcp_hpts_entry *hpts) 479 { 480 HPTS_MTX_ASSERT(hpts); 481 if (hpts->p_hpts_wake_scheduled == 0) { 482 hpts->p_hpts_wake_scheduled = 1; 483 swi_sched(hpts->ie_cookie, 0); 484 } 485 } 486 487 static void 488 tcp_wakeinput(struct tcp_hpts_entry *hpts) 489 { 490 HPTS_MTX_ASSERT(hpts); 491 if (hpts->p_hpts_wake_scheduled == 0) { 492 hpts->p_hpts_wake_scheduled = 1; 493 swi_sched(hpts->ie_cookie, 0); 494 } 495 } 496 497 struct tcp_hpts_entry * 498 tcp_cur_hpts(struct inpcb *inp) 499 { 500 int32_t hpts_num; 501 struct tcp_hpts_entry *hpts; 502 503 hpts_num = inp->inp_hpts_cpu; 504 hpts = tcp_pace.rp_ent[hpts_num]; 505 return (hpts); 506 } 507 508 struct tcp_hpts_entry * 509 tcp_hpts_lock(struct inpcb *inp) 510 { 511 struct tcp_hpts_entry *hpts; 512 int32_t hpts_num; 513 514 again: 515 hpts_num = inp->inp_hpts_cpu; 516 hpts = tcp_pace.rp_ent[hpts_num]; 517 #ifdef INVARIANTS 518 if (mtx_owned(&hpts->p_mtx)) { 519 panic("Hpts:%p owns mtx prior-to lock line:%d", 520 hpts, __LINE__); 521 } 522 #endif 523 mtx_lock(&hpts->p_mtx); 524 if (hpts_num != inp->inp_hpts_cpu) { 525 mtx_unlock(&hpts->p_mtx); 526 goto again; 527 } 528 return (hpts); 529 } 530 531 struct tcp_hpts_entry * 532 tcp_input_lock(struct inpcb *inp) 533 { 534 struct tcp_hpts_entry *hpts; 535 int32_t hpts_num; 536 537 again: 538 hpts_num = inp->inp_input_cpu; 539 hpts = tcp_pace.rp_ent[hpts_num]; 540 #ifdef INVARIANTS 541 if (mtx_owned(&hpts->p_mtx)) { 542 panic("Hpts:%p owns mtx prior-to lock line:%d", 543 hpts, __LINE__); 544 } 545 #endif 546 mtx_lock(&hpts->p_mtx); 547 if (hpts_num != inp->inp_input_cpu) { 548 mtx_unlock(&hpts->p_mtx); 549 goto again; 550 } 551 return (hpts); 552 } 553 554 static void 555 tcp_remove_hpts_ref(struct inpcb *inp, struct tcp_hpts_entry *hpts, int line) 556 { 557 int32_t add_freed; 558 559 if (inp->inp_flags2 & INP_FREED) { 560 /* 561 * Need to play a special trick so that in_pcbrele_wlocked 562 * does not return 1 when it really should have returned 0. 563 */ 564 add_freed = 1; 565 inp->inp_flags2 &= ~INP_FREED; 566 } else { 567 add_freed = 0; 568 } 569 #ifndef INP_REF_DEBUG 570 if (in_pcbrele_wlocked(inp)) { 571 /* 572 * This should not happen. We have the inpcb referred to by 573 * the main socket (why we are called) and the hpts. It 574 * should always return 0. 575 */ 576 panic("inpcb:%p release ret 1", 577 inp); 578 } 579 #else 580 if (__in_pcbrele_wlocked(inp, line)) { 581 /* 582 * This should not happen. We have the inpcb referred to by 583 * the main socket (why we are called) and the hpts. It 584 * should always return 0. 585 */ 586 panic("inpcb:%p release ret 1", 587 inp); 588 } 589 #endif 590 if (add_freed) { 591 inp->inp_flags2 |= INP_FREED; 592 } 593 } 594 595 static void 596 tcp_hpts_remove_locked_output(struct tcp_hpts_entry *hpts, struct inpcb *inp, int32_t flags, int32_t line) 597 { 598 if (inp->inp_in_hpts) { 599 hpts_sane_pace_remove(hpts, inp, &hpts->p_hptss[inp->inp_hptsslot], 1); 600 tcp_remove_hpts_ref(inp, hpts, line); 601 } 602 } 603 604 static void 605 tcp_hpts_remove_locked_input(struct tcp_hpts_entry *hpts, struct inpcb *inp, int32_t flags, int32_t line) 606 { 607 HPTS_MTX_ASSERT(hpts); 608 if (inp->inp_in_input) { 609 hpts_sane_input_remove(hpts, inp, 1); 610 tcp_remove_hpts_ref(inp, hpts, line); 611 } 612 } 613 614 /* 615 * Called normally with the INP_LOCKED but it 616 * does not matter, the hpts lock is the key 617 * but the lock order allows us to hold the 618 * INP lock and then get the hpts lock. 619 * 620 * Valid values in the flags are 621 * HPTS_REMOVE_OUTPUT - remove from the output of the hpts. 622 * HPTS_REMOVE_INPUT - remove from the input of the hpts. 623 * Note that you can use one or both values together 624 * and get two actions. 625 */ 626 void 627 __tcp_hpts_remove(struct inpcb *inp, int32_t flags, int32_t line) 628 { 629 struct tcp_hpts_entry *hpts; 630 631 INP_WLOCK_ASSERT(inp); 632 if (flags & HPTS_REMOVE_OUTPUT) { 633 hpts = tcp_hpts_lock(inp); 634 tcp_hpts_remove_locked_output(hpts, inp, flags, line); 635 mtx_unlock(&hpts->p_mtx); 636 } 637 if (flags & HPTS_REMOVE_INPUT) { 638 hpts = tcp_input_lock(inp); 639 tcp_hpts_remove_locked_input(hpts, inp, flags, line); 640 mtx_unlock(&hpts->p_mtx); 641 } 642 } 643 644 static inline int 645 hpts_tick(uint32_t wheel_tick, uint32_t plus) 646 { 647 /* 648 * Given a slot on the wheel, what slot 649 * is that plus ticks out? 650 */ 651 KASSERT(wheel_tick < NUM_OF_HPTSI_SLOTS, ("Invalid tick %u not on wheel", wheel_tick)); 652 return ((wheel_tick + plus) % NUM_OF_HPTSI_SLOTS); 653 } 654 655 static inline int 656 tick_to_wheel(uint32_t cts_in_wticks) 657 { 658 /* 659 * Given a timestamp in wheel ticks (10usec inc's) 660 * map it to our limited space wheel. 661 */ 662 return (cts_in_wticks % NUM_OF_HPTSI_SLOTS); 663 } 664 665 static inline int 666 hpts_ticks_diff(int prev_tick, int tick_now) 667 { 668 /* 669 * Given two ticks that are someplace 670 * on our wheel. How far are they apart? 671 */ 672 if (tick_now > prev_tick) 673 return (tick_now - prev_tick); 674 else if (tick_now == prev_tick) 675 /* 676 * Special case, same means we can go all of our 677 * wheel less one slot. 678 */ 679 return (NUM_OF_HPTSI_SLOTS - 1); 680 else 681 return ((NUM_OF_HPTSI_SLOTS - prev_tick) + tick_now); 682 } 683 684 /* 685 * Given a tick on the wheel that is the current time 686 * mapped to the wheel (wheel_tick), what is the maximum 687 * distance forward that can be obtained without 688 * wrapping past either prev_tick or running_tick 689 * depending on the htps state? Also if passed 690 * a uint32_t *, fill it with the tick location. 691 * 692 * Note if you do not give this function the current 693 * time (that you think it is) mapped to the wheel 694 * then the results will not be what you expect and 695 * could lead to invalid inserts. 696 */ 697 static inline int32_t 698 max_ticks_available(struct tcp_hpts_entry *hpts, uint32_t wheel_tick, uint32_t *target_tick) 699 { 700 uint32_t dis_to_travel, end_tick, pacer_to_now, avail_on_wheel; 701 702 if ((hpts->p_hpts_active == 1) && 703 (hpts->p_wheel_complete == 0)) { 704 end_tick = hpts->p_runningtick; 705 /* Back up one tick */ 706 if (end_tick == 0) 707 end_tick = NUM_OF_HPTSI_SLOTS - 1; 708 else 709 end_tick--; 710 if (target_tick) 711 *target_tick = end_tick; 712 } else { 713 /* 714 * For the case where we are 715 * not active, or we have 716 * completed the pass over 717 * the wheel, we can use the 718 * prev tick and subtract one from it. This puts us 719 * as far out as possible on the wheel. 720 */ 721 end_tick = hpts->p_prev_slot; 722 if (end_tick == 0) 723 end_tick = NUM_OF_HPTSI_SLOTS - 1; 724 else 725 end_tick--; 726 if (target_tick) 727 *target_tick = end_tick; 728 /* 729 * Now we have close to the full wheel left minus the 730 * time it has been since the pacer went to sleep. Note 731 * that wheel_tick, passed in, should be the current time 732 * from the perspective of the caller, mapped to the wheel. 733 */ 734 if (hpts->p_prev_slot != wheel_tick) 735 dis_to_travel = hpts_ticks_diff(hpts->p_prev_slot, wheel_tick); 736 else 737 dis_to_travel = 1; 738 /* 739 * dis_to_travel in this case is the space from when the 740 * pacer stopped (p_prev_slot) and where our wheel_tick 741 * is now. To know how many slots we can put it in we 742 * subtract from the wheel size. We would not want 743 * to place something after p_prev_slot or it will 744 * get ran too soon. 745 */ 746 return (NUM_OF_HPTSI_SLOTS - dis_to_travel); 747 } 748 /* 749 * So how many slots are open between p_runningtick -> p_cur_slot 750 * that is what is currently un-available for insertion. Special 751 * case when we are at the last slot, this gets 1, so that 752 * the answer to how many slots are available is all but 1. 753 */ 754 if (hpts->p_runningtick == hpts->p_cur_slot) 755 dis_to_travel = 1; 756 else 757 dis_to_travel = hpts_ticks_diff(hpts->p_runningtick, hpts->p_cur_slot); 758 /* 759 * How long has the pacer been running? 760 */ 761 if (hpts->p_cur_slot != wheel_tick) { 762 /* The pacer is a bit late */ 763 pacer_to_now = hpts_ticks_diff(hpts->p_cur_slot, wheel_tick); 764 } else { 765 /* The pacer is right on time, now == pacers start time */ 766 pacer_to_now = 0; 767 } 768 /* 769 * To get the number left we can insert into we simply 770 * subract the distance the pacer has to run from how 771 * many slots there are. 772 */ 773 avail_on_wheel = NUM_OF_HPTSI_SLOTS - dis_to_travel; 774 /* 775 * Now how many of those we will eat due to the pacer's 776 * time (p_cur_slot) of start being behind the 777 * real time (wheel_tick)? 778 */ 779 if (avail_on_wheel <= pacer_to_now) { 780 /* 781 * Wheel wrap, we can't fit on the wheel, that 782 * is unusual the system must be way overloaded! 783 * Insert into the assured tick, and return special 784 * "0". 785 */ 786 counter_u64_add(combined_wheel_wrap, 1); 787 *target_tick = hpts->p_nxt_slot; 788 return (0); 789 } else { 790 /* 791 * We know how many slots are open 792 * on the wheel (the reverse of what 793 * is left to run. Take away the time 794 * the pacer started to now (wheel_tick) 795 * and that tells you how many slots are 796 * open that can be inserted into that won't 797 * be touched by the pacer until later. 798 */ 799 return (avail_on_wheel - pacer_to_now); 800 } 801 } 802 803 static int 804 tcp_queue_to_hpts_immediate_locked(struct inpcb *inp, struct tcp_hpts_entry *hpts, int32_t line, int32_t noref) 805 { 806 uint32_t need_wake = 0; 807 808 HPTS_MTX_ASSERT(hpts); 809 if (inp->inp_in_hpts == 0) { 810 /* Ok we need to set it on the hpts in the current slot */ 811 inp->inp_hpts_request = 0; 812 if ((hpts->p_hpts_active == 0) || 813 (hpts->p_wheel_complete)) { 814 /* 815 * A sleeping hpts we want in next slot to run 816 * note that in this state p_prev_slot == p_cur_slot 817 */ 818 inp->inp_hptsslot = hpts_tick(hpts->p_prev_slot, 1); 819 if ((hpts->p_on_min_sleep == 0) && (hpts->p_hpts_active == 0)) 820 need_wake = 1; 821 } else if ((void *)inp == hpts->p_inp) { 822 /* 823 * The hpts system is running and the caller 824 * was awoken by the hpts system. 825 * We can't allow you to go into the same slot we 826 * are in (we don't want a loop :-D). 827 */ 828 inp->inp_hptsslot = hpts->p_nxt_slot; 829 } else 830 inp->inp_hptsslot = hpts->p_runningtick; 831 hpts_sane_pace_insert(hpts, inp, &hpts->p_hptss[inp->inp_hptsslot], line, noref); 832 if (need_wake) { 833 /* 834 * Activate the hpts if it is sleeping and its 835 * timeout is not 1. 836 */ 837 hpts->p_direct_wake = 1; 838 tcp_wakehpts(hpts); 839 } 840 } 841 return (need_wake); 842 } 843 844 int 845 __tcp_queue_to_hpts_immediate(struct inpcb *inp, int32_t line) 846 { 847 int32_t ret; 848 struct tcp_hpts_entry *hpts; 849 850 INP_WLOCK_ASSERT(inp); 851 hpts = tcp_hpts_lock(inp); 852 ret = tcp_queue_to_hpts_immediate_locked(inp, hpts, line, 0); 853 mtx_unlock(&hpts->p_mtx); 854 return (ret); 855 } 856 857 #ifdef INVARIANTS 858 static void 859 check_if_slot_would_be_wrong(struct tcp_hpts_entry *hpts, struct inpcb *inp, uint32_t inp_hptsslot, int line) 860 { 861 /* 862 * Sanity checks for the pacer with invariants 863 * on insert. 864 */ 865 if (inp_hptsslot >= NUM_OF_HPTSI_SLOTS) 866 panic("hpts:%p inp:%p slot:%d > max", 867 hpts, inp, inp_hptsslot); 868 if ((hpts->p_hpts_active) && 869 (hpts->p_wheel_complete == 0)) { 870 /* 871 * If the pacer is processing a arc 872 * of the wheel, we need to make 873 * sure we are not inserting within 874 * that arc. 875 */ 876 int distance, yet_to_run; 877 878 distance = hpts_ticks_diff(hpts->p_runningtick, inp_hptsslot); 879 if (hpts->p_runningtick != hpts->p_cur_slot) 880 yet_to_run = hpts_ticks_diff(hpts->p_runningtick, hpts->p_cur_slot); 881 else 882 yet_to_run = 0; /* processing last slot */ 883 if (yet_to_run > distance) { 884 panic("hpts:%p inp:%p slot:%d distance:%d yet_to_run:%d rs:%d cs:%d", 885 hpts, inp, inp_hptsslot, 886 distance, yet_to_run, 887 hpts->p_runningtick, hpts->p_cur_slot); 888 } 889 } 890 } 891 #endif 892 893 static void 894 tcp_hpts_insert_locked(struct tcp_hpts_entry *hpts, struct inpcb *inp, uint32_t slot, int32_t line, 895 struct hpts_diag *diag, struct timeval *tv) 896 { 897 uint32_t need_new_to = 0; 898 uint32_t wheel_cts, last_tick; 899 int32_t wheel_tick, maxticks; 900 int8_t need_wakeup = 0; 901 902 HPTS_MTX_ASSERT(hpts); 903 if (diag) { 904 memset(diag, 0, sizeof(struct hpts_diag)); 905 diag->p_hpts_active = hpts->p_hpts_active; 906 diag->p_prev_slot = hpts->p_prev_slot; 907 diag->p_runningtick = hpts->p_runningtick; 908 diag->p_nxt_slot = hpts->p_nxt_slot; 909 diag->p_cur_slot = hpts->p_cur_slot; 910 diag->p_curtick = hpts->p_curtick; 911 diag->p_lasttick = hpts->p_lasttick; 912 diag->slot_req = slot; 913 diag->p_on_min_sleep = hpts->p_on_min_sleep; 914 diag->hpts_sleep_time = hpts->p_hpts_sleep_time; 915 } 916 if (inp->inp_in_hpts == 0) { 917 if (slot == 0) { 918 /* Immediate */ 919 tcp_queue_to_hpts_immediate_locked(inp, hpts, line, 0); 920 return; 921 } 922 /* Get the current time relative to the wheel */ 923 wheel_cts = tcp_tv_to_hptstick(tv); 924 /* Map it onto the wheel */ 925 wheel_tick = tick_to_wheel(wheel_cts); 926 /* Now what's the max we can place it at? */ 927 maxticks = max_ticks_available(hpts, wheel_tick, &last_tick); 928 if (diag) { 929 diag->wheel_tick = wheel_tick; 930 diag->maxticks = maxticks; 931 diag->wheel_cts = wheel_cts; 932 } 933 if (maxticks == 0) { 934 /* The pacer is in a wheel wrap behind, yikes! */ 935 if (slot > 1) { 936 /* 937 * Reduce by 1 to prevent a forever loop in 938 * case something else is wrong. Note this 939 * probably does not hurt because the pacer 940 * if its true is so far behind we will be 941 * > 1second late calling anyway. 942 */ 943 slot--; 944 } 945 inp->inp_hptsslot = last_tick; 946 inp->inp_hpts_request = slot; 947 } else if (maxticks >= slot) { 948 /* It all fits on the wheel */ 949 inp->inp_hpts_request = 0; 950 inp->inp_hptsslot = hpts_tick(wheel_tick, slot); 951 } else { 952 /* It does not fit */ 953 inp->inp_hpts_request = slot - maxticks; 954 inp->inp_hptsslot = last_tick; 955 } 956 if (diag) { 957 diag->slot_remaining = inp->inp_hpts_request; 958 diag->inp_hptsslot = inp->inp_hptsslot; 959 } 960 #ifdef INVARIANTS 961 check_if_slot_would_be_wrong(hpts, inp, inp->inp_hptsslot, line); 962 #endif 963 hpts_sane_pace_insert(hpts, inp, &hpts->p_hptss[inp->inp_hptsslot], line, 0); 964 if ((hpts->p_hpts_active == 0) && 965 (inp->inp_hpts_request == 0) && 966 (hpts->p_on_min_sleep == 0)) { 967 /* 968 * The hpts is sleeping and not on a minimum 969 * sleep time, we need to figure out where 970 * it will wake up at and if we need to reschedule 971 * its time-out. 972 */ 973 uint32_t have_slept, yet_to_sleep; 974 975 /* Now do we need to restart the hpts's timer? */ 976 have_slept = hpts_ticks_diff(hpts->p_prev_slot, wheel_tick); 977 if (have_slept < hpts->p_hpts_sleep_time) 978 yet_to_sleep = hpts->p_hpts_sleep_time - have_slept; 979 else { 980 /* We are over-due */ 981 yet_to_sleep = 0; 982 need_wakeup = 1; 983 } 984 if (diag) { 985 diag->have_slept = have_slept; 986 diag->yet_to_sleep = yet_to_sleep; 987 } 988 if (yet_to_sleep && 989 (yet_to_sleep > slot)) { 990 /* 991 * We need to reschedule the hpts's time-out. 992 */ 993 hpts->p_hpts_sleep_time = slot; 994 need_new_to = slot * HPTS_TICKS_PER_USEC; 995 } 996 } 997 /* 998 * Now how far is the hpts sleeping to? if active is 1, its 999 * up and ticking we do nothing, otherwise we may need to 1000 * reschedule its callout if need_new_to is set from above. 1001 */ 1002 if (need_wakeup) { 1003 hpts->p_direct_wake = 1; 1004 tcp_wakehpts(hpts); 1005 if (diag) { 1006 diag->need_new_to = 0; 1007 diag->co_ret = 0xffff0000; 1008 } 1009 } else if (need_new_to) { 1010 int32_t co_ret; 1011 struct timeval tv; 1012 sbintime_t sb; 1013 1014 tv.tv_sec = 0; 1015 tv.tv_usec = 0; 1016 while (need_new_to > HPTS_USEC_IN_SEC) { 1017 tv.tv_sec++; 1018 need_new_to -= HPTS_USEC_IN_SEC; 1019 } 1020 tv.tv_usec = need_new_to; 1021 sb = tvtosbt(tv); 1022 if (tcp_hpts_callout_skip_swi == 0) { 1023 co_ret = callout_reset_sbt_on(&hpts->co, sb, 0, 1024 hpts_timeout_swi, hpts, hpts->p_cpu, 1025 (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision))); 1026 } else { 1027 co_ret = callout_reset_sbt_on(&hpts->co, sb, 0, 1028 hpts_timeout_dir, hpts, 1029 hpts->p_cpu, 1030 C_PREL(tcp_hpts_precision)); 1031 } 1032 if (diag) { 1033 diag->need_new_to = need_new_to; 1034 diag->co_ret = co_ret; 1035 } 1036 } 1037 } else { 1038 #ifdef INVARIANTS 1039 panic("Hpts:%p tp:%p already on hpts and add?", hpts, inp); 1040 #endif 1041 } 1042 } 1043 1044 uint32_t 1045 tcp_hpts_insert_diag(struct inpcb *inp, uint32_t slot, int32_t line, struct hpts_diag *diag) 1046 { 1047 struct tcp_hpts_entry *hpts; 1048 uint32_t slot_on; 1049 struct timeval tv; 1050 1051 /* 1052 * We now return the next-slot the hpts will be on, beyond its 1053 * current run (if up) or where it was when it stopped if it is 1054 * sleeping. 1055 */ 1056 INP_WLOCK_ASSERT(inp); 1057 hpts = tcp_hpts_lock(inp); 1058 microuptime(&tv); 1059 tcp_hpts_insert_locked(hpts, inp, slot, line, diag, &tv); 1060 slot_on = hpts->p_nxt_slot; 1061 mtx_unlock(&hpts->p_mtx); 1062 return (slot_on); 1063 } 1064 1065 uint32_t 1066 __tcp_hpts_insert(struct inpcb *inp, uint32_t slot, int32_t line){ 1067 return (tcp_hpts_insert_diag(inp, slot, line, NULL)); 1068 } 1069 int 1070 __tcp_queue_to_input_locked(struct inpcb *inp, struct tcp_hpts_entry *hpts, int32_t line) 1071 { 1072 int32_t retval = 0; 1073 1074 HPTS_MTX_ASSERT(hpts); 1075 if (inp->inp_in_input == 0) { 1076 /* Ok we need to set it on the hpts in the current slot */ 1077 hpts_sane_input_insert(hpts, inp, line); 1078 retval = 1; 1079 if (hpts->p_hpts_active == 0) { 1080 /* 1081 * Activate the hpts if it is sleeping. 1082 */ 1083 retval = 2; 1084 hpts->p_direct_wake = 1; 1085 tcp_wakeinput(hpts); 1086 } 1087 } else if (hpts->p_hpts_active == 0) { 1088 retval = 4; 1089 hpts->p_direct_wake = 1; 1090 tcp_wakeinput(hpts); 1091 } 1092 return (retval); 1093 } 1094 1095 int32_t 1096 __tcp_queue_to_input(struct inpcb *inp, int line) 1097 { 1098 struct tcp_hpts_entry *hpts; 1099 int32_t ret; 1100 1101 hpts = tcp_input_lock(inp); 1102 ret = __tcp_queue_to_input_locked(inp, hpts, line); 1103 mtx_unlock(&hpts->p_mtx); 1104 return (ret); 1105 } 1106 1107 void 1108 __tcp_set_inp_to_drop(struct inpcb *inp, uint16_t reason, int32_t line) 1109 { 1110 struct tcp_hpts_entry *hpts; 1111 struct tcpcb *tp; 1112 1113 tp = intotcpcb(inp); 1114 hpts = tcp_input_lock(tp->t_inpcb); 1115 if (inp->inp_in_input == 0) { 1116 /* Ok we need to set it on the hpts in the current slot */ 1117 hpts_sane_input_insert(hpts, inp, line); 1118 if (hpts->p_hpts_active == 0) { 1119 /* 1120 * Activate the hpts if it is sleeping. 1121 */ 1122 hpts->p_direct_wake = 1; 1123 tcp_wakeinput(hpts); 1124 } 1125 } else if (hpts->p_hpts_active == 0) { 1126 hpts->p_direct_wake = 1; 1127 tcp_wakeinput(hpts); 1128 } 1129 inp->inp_hpts_drop_reas = reason; 1130 mtx_unlock(&hpts->p_mtx); 1131 } 1132 1133 static uint16_t 1134 hpts_random_cpu(struct inpcb *inp){ 1135 /* 1136 * No flow type set distribute the load randomly. 1137 */ 1138 uint16_t cpuid; 1139 uint32_t ran; 1140 1141 /* 1142 * If one has been set use it i.e. we want both in and out on the 1143 * same hpts. 1144 */ 1145 if (inp->inp_input_cpu_set) { 1146 return (inp->inp_input_cpu); 1147 } else if (inp->inp_hpts_cpu_set) { 1148 return (inp->inp_hpts_cpu); 1149 } 1150 /* Nothing set use a random number */ 1151 ran = arc4random(); 1152 cpuid = (ran & 0xffff) % mp_ncpus; 1153 return (cpuid); 1154 } 1155 1156 static uint16_t 1157 hpts_cpuid(struct inpcb *inp) 1158 { 1159 u_int cpuid; 1160 #if !defined(RSS) && defined(NUMA) 1161 struct hpts_domain_info *di; 1162 #endif 1163 1164 /* 1165 * If one has been set use it i.e. we want both in and out on the 1166 * same hpts. 1167 */ 1168 if (inp->inp_input_cpu_set) { 1169 return (inp->inp_input_cpu); 1170 } else if (inp->inp_hpts_cpu_set) { 1171 return (inp->inp_hpts_cpu); 1172 } 1173 /* If one is set the other must be the same */ 1174 #ifdef RSS 1175 cpuid = rss_hash2cpuid(inp->inp_flowid, inp->inp_flowtype); 1176 if (cpuid == NETISR_CPUID_NONE) 1177 return (hpts_random_cpu(inp)); 1178 else 1179 return (cpuid); 1180 #else 1181 /* 1182 * We don't have a flowid -> cpuid mapping, so cheat and just map 1183 * unknown cpuids to curcpu. Not the best, but apparently better 1184 * than defaulting to swi 0. 1185 */ 1186 1187 if (inp->inp_flowtype == M_HASHTYPE_NONE) 1188 return (hpts_random_cpu(inp)); 1189 /* 1190 * Hash to a thread based on the flowid. If we are using numa, 1191 * then restrict the hash to the numa domain where the inp lives. 1192 */ 1193 #ifdef NUMA 1194 if (tcp_bind_threads == 2 && inp->inp_numa_domain != M_NODOM) { 1195 di = &hpts_domains[inp->inp_numa_domain]; 1196 cpuid = di->cpu[inp->inp_flowid % di->count]; 1197 } else 1198 #endif 1199 cpuid = inp->inp_flowid % mp_ncpus; 1200 1201 return (cpuid); 1202 #endif 1203 } 1204 1205 static void 1206 tcp_drop_in_pkts(struct tcpcb *tp) 1207 { 1208 struct mbuf *m, *n; 1209 1210 m = tp->t_in_pkt; 1211 if (m) 1212 n = m->m_nextpkt; 1213 else 1214 n = NULL; 1215 tp->t_in_pkt = NULL; 1216 while (m) { 1217 m_freem(m); 1218 m = n; 1219 if (m) 1220 n = m->m_nextpkt; 1221 } 1222 } 1223 1224 /* 1225 * Do NOT try to optimize the processing of inp's 1226 * by first pulling off all the inp's into a temporary 1227 * list (e.g. TAILQ_CONCAT). If you do that the subtle 1228 * interactions of switching CPU's will kill because of 1229 * problems in the linked list manipulation. Basically 1230 * you would switch cpu's with the hpts mutex locked 1231 * but then while you were processing one of the inp's 1232 * some other one that you switch will get a new 1233 * packet on the different CPU. It will insert it 1234 * on the new hpts's input list. Creating a temporary 1235 * link in the inp will not fix it either, since 1236 * the other hpts will be doing the same thing and 1237 * you will both end up using the temporary link. 1238 * 1239 * You will die in an ASSERT for tailq corruption if you 1240 * run INVARIANTS or you will die horribly without 1241 * INVARIANTS in some unknown way with a corrupt linked 1242 * list. 1243 */ 1244 static void 1245 tcp_input_data(struct tcp_hpts_entry *hpts, struct timeval *tv) 1246 { 1247 struct tcpcb *tp; 1248 struct inpcb *inp; 1249 uint16_t drop_reason; 1250 int16_t set_cpu; 1251 uint32_t did_prefetch = 0; 1252 int dropped; 1253 1254 HPTS_MTX_ASSERT(hpts); 1255 NET_EPOCH_ASSERT(); 1256 1257 while ((inp = TAILQ_FIRST(&hpts->p_input)) != NULL) { 1258 HPTS_MTX_ASSERT(hpts); 1259 hpts_sane_input_remove(hpts, inp, 0); 1260 if (inp->inp_input_cpu_set == 0) { 1261 set_cpu = 1; 1262 } else { 1263 set_cpu = 0; 1264 } 1265 hpts->p_inp = inp; 1266 drop_reason = inp->inp_hpts_drop_reas; 1267 inp->inp_in_input = 0; 1268 mtx_unlock(&hpts->p_mtx); 1269 INP_WLOCK(inp); 1270 #ifdef VIMAGE 1271 CURVNET_SET(inp->inp_vnet); 1272 #endif 1273 if ((inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) || 1274 (inp->inp_flags2 & INP_FREED)) { 1275 out: 1276 hpts->p_inp = NULL; 1277 if (in_pcbrele_wlocked(inp) == 0) { 1278 INP_WUNLOCK(inp); 1279 } 1280 #ifdef VIMAGE 1281 CURVNET_RESTORE(); 1282 #endif 1283 mtx_lock(&hpts->p_mtx); 1284 continue; 1285 } 1286 tp = intotcpcb(inp); 1287 if ((tp == NULL) || (tp->t_inpcb == NULL)) { 1288 goto out; 1289 } 1290 if (drop_reason) { 1291 /* This tcb is being destroyed for drop_reason */ 1292 tcp_drop_in_pkts(tp); 1293 tp = tcp_drop(tp, drop_reason); 1294 if (tp == NULL) { 1295 INP_WLOCK(inp); 1296 } 1297 if (in_pcbrele_wlocked(inp) == 0) 1298 INP_WUNLOCK(inp); 1299 #ifdef VIMAGE 1300 CURVNET_RESTORE(); 1301 #endif 1302 mtx_lock(&hpts->p_mtx); 1303 continue; 1304 } 1305 if (set_cpu) { 1306 /* 1307 * Setup so the next time we will move to the right 1308 * CPU. This should be a rare event. It will 1309 * sometimes happens when we are the client side 1310 * (usually not the server). Somehow tcp_output() 1311 * gets called before the tcp_do_segment() sets the 1312 * intial state. This means the r_cpu and r_hpts_cpu 1313 * is 0. We get on the hpts, and then tcp_input() 1314 * gets called setting up the r_cpu to the correct 1315 * value. The hpts goes off and sees the mis-match. 1316 * We simply correct it here and the CPU will switch 1317 * to the new hpts nextime the tcb gets added to the 1318 * the hpts (not this time) :-) 1319 */ 1320 tcp_set_hpts(inp); 1321 } 1322 if (tp->t_fb_ptr != NULL) { 1323 kern_prefetch(tp->t_fb_ptr, &did_prefetch); 1324 did_prefetch = 1; 1325 } 1326 if ((inp->inp_flags2 & INP_SUPPORTS_MBUFQ) && tp->t_in_pkt) { 1327 if (inp->inp_in_input) 1328 tcp_hpts_remove(inp, HPTS_REMOVE_INPUT); 1329 dropped = (*tp->t_fb->tfb_do_queued_segments)(inp->inp_socket, tp, 0); 1330 if (dropped) { 1331 /* Re-acquire the wlock so we can release the reference */ 1332 INP_WLOCK(inp); 1333 } 1334 } else if (tp->t_in_pkt) { 1335 /* 1336 * We reach here only if we had a 1337 * stack that supported INP_SUPPORTS_MBUFQ 1338 * and then somehow switched to a stack that 1339 * does not. The packets are basically stranded 1340 * and would hang with the connection until 1341 * cleanup without this code. Its not the 1342 * best way but I know of no other way to 1343 * handle it since the stack needs functions 1344 * it does not have to handle queued packets. 1345 */ 1346 tcp_drop_in_pkts(tp); 1347 } 1348 if (in_pcbrele_wlocked(inp) == 0) 1349 INP_WUNLOCK(inp); 1350 INP_UNLOCK_ASSERT(inp); 1351 #ifdef VIMAGE 1352 CURVNET_RESTORE(); 1353 #endif 1354 mtx_lock(&hpts->p_mtx); 1355 hpts->p_inp = NULL; 1356 } 1357 } 1358 1359 static void 1360 tcp_hptsi(struct tcp_hpts_entry *hpts) 1361 { 1362 struct tcpcb *tp; 1363 struct inpcb *inp = NULL, *ninp; 1364 struct timeval tv; 1365 int32_t ticks_to_run, i, error; 1366 int32_t paced_cnt = 0; 1367 int32_t loop_cnt = 0; 1368 int32_t did_prefetch = 0; 1369 int32_t prefetch_ninp = 0; 1370 int32_t prefetch_tp = 0; 1371 int32_t wrap_loop_cnt = 0; 1372 int16_t set_cpu; 1373 1374 HPTS_MTX_ASSERT(hpts); 1375 NET_EPOCH_ASSERT(); 1376 1377 /* record previous info for any logging */ 1378 hpts->saved_lasttick = hpts->p_lasttick; 1379 hpts->saved_curtick = hpts->p_curtick; 1380 hpts->saved_curslot = hpts->p_cur_slot; 1381 hpts->saved_prev_slot = hpts->p_prev_slot; 1382 1383 hpts->p_lasttick = hpts->p_curtick; 1384 hpts->p_curtick = tcp_gethptstick(&tv); 1385 hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick); 1386 if ((hpts->p_on_queue_cnt == 0) || 1387 (hpts->p_lasttick == hpts->p_curtick)) { 1388 /* 1389 * No time has yet passed, 1390 * or nothing to do. 1391 */ 1392 hpts->p_prev_slot = hpts->p_cur_slot; 1393 hpts->p_lasttick = hpts->p_curtick; 1394 goto no_run; 1395 } 1396 again: 1397 hpts->p_wheel_complete = 0; 1398 HPTS_MTX_ASSERT(hpts); 1399 ticks_to_run = hpts_ticks_diff(hpts->p_prev_slot, hpts->p_cur_slot); 1400 if (((hpts->p_curtick - hpts->p_lasttick) > ticks_to_run) && 1401 (hpts->p_on_queue_cnt != 0)) { 1402 /* 1403 * Wheel wrap is occuring, basically we 1404 * are behind and the distance between 1405 * run's has spread so much it has exceeded 1406 * the time on the wheel (1.024 seconds). This 1407 * is ugly and should NOT be happening. We 1408 * need to run the entire wheel. We last processed 1409 * p_prev_slot, so that needs to be the last slot 1410 * we run. The next slot after that should be our 1411 * reserved first slot for new, and then starts 1412 * the running postion. Now the problem is the 1413 * reserved "not to yet" place does not exist 1414 * and there may be inp's in there that need 1415 * running. We can merge those into the 1416 * first slot at the head. 1417 */ 1418 wrap_loop_cnt++; 1419 hpts->p_nxt_slot = hpts_tick(hpts->p_prev_slot, 1); 1420 hpts->p_runningtick = hpts_tick(hpts->p_prev_slot, 2); 1421 /* 1422 * Adjust p_cur_slot to be where we are starting from 1423 * hopefully we will catch up (fat chance if something 1424 * is broken this bad :( ) 1425 */ 1426 hpts->p_cur_slot = hpts->p_prev_slot; 1427 /* 1428 * The next slot has guys to run too, and that would 1429 * be where we would normally start, lets move them into 1430 * the next slot (p_prev_slot + 2) so that we will 1431 * run them, the extra 10usecs of late (by being 1432 * put behind) does not really matter in this situation. 1433 */ 1434 #ifdef INVARIANTS 1435 /* 1436 * To prevent a panic we need to update the inpslot to the 1437 * new location. This is safe since it takes both the 1438 * INP lock and the pacer mutex to change the inp_hptsslot. 1439 */ 1440 TAILQ_FOREACH(inp, &hpts->p_hptss[hpts->p_nxt_slot], inp_hpts) { 1441 inp->inp_hptsslot = hpts->p_runningtick; 1442 } 1443 #endif 1444 TAILQ_CONCAT(&hpts->p_hptss[hpts->p_runningtick], 1445 &hpts->p_hptss[hpts->p_nxt_slot], inp_hpts); 1446 ticks_to_run = NUM_OF_HPTSI_SLOTS - 1; 1447 counter_u64_add(wheel_wrap, 1); 1448 } else { 1449 /* 1450 * Nxt slot is always one after p_runningtick though 1451 * its not used usually unless we are doing wheel wrap. 1452 */ 1453 hpts->p_nxt_slot = hpts->p_prev_slot; 1454 hpts->p_runningtick = hpts_tick(hpts->p_prev_slot, 1); 1455 } 1456 #ifdef INVARIANTS 1457 if (TAILQ_EMPTY(&hpts->p_input) && 1458 (hpts->p_on_inqueue_cnt != 0)) { 1459 panic("tp:%p in_hpts input empty but cnt:%d", 1460 hpts, hpts->p_on_inqueue_cnt); 1461 } 1462 #endif 1463 HPTS_MTX_ASSERT(hpts); 1464 if (hpts->p_on_queue_cnt == 0) { 1465 goto no_one; 1466 } 1467 HPTS_MTX_ASSERT(hpts); 1468 for (i = 0; i < ticks_to_run; i++) { 1469 /* 1470 * Calculate our delay, if there are no extra ticks there 1471 * was not any (i.e. if ticks_to_run == 1, no delay). 1472 */ 1473 hpts->p_delayed_by = (ticks_to_run - (i + 1)) * HPTS_TICKS_PER_USEC; 1474 HPTS_MTX_ASSERT(hpts); 1475 while ((inp = TAILQ_FIRST(&hpts->p_hptss[hpts->p_runningtick])) != NULL) { 1476 /* For debugging */ 1477 hpts->p_inp = inp; 1478 paced_cnt++; 1479 #ifdef INVARIANTS 1480 if (hpts->p_runningtick != inp->inp_hptsslot) { 1481 panic("Hpts:%p inp:%p slot mis-aligned %u vs %u", 1482 hpts, inp, hpts->p_runningtick, inp->inp_hptsslot); 1483 } 1484 #endif 1485 /* Now pull it */ 1486 if (inp->inp_hpts_cpu_set == 0) { 1487 set_cpu = 1; 1488 } else { 1489 set_cpu = 0; 1490 } 1491 hpts_sane_pace_remove(hpts, inp, &hpts->p_hptss[hpts->p_runningtick], 0); 1492 if ((ninp = TAILQ_FIRST(&hpts->p_hptss[hpts->p_runningtick])) != NULL) { 1493 /* We prefetch the next inp if possible */ 1494 kern_prefetch(ninp, &prefetch_ninp); 1495 prefetch_ninp = 1; 1496 } 1497 if (inp->inp_hpts_request) { 1498 /* 1499 * This guy is deferred out further in time 1500 * then our wheel had available on it. 1501 * Push him back on the wheel or run it 1502 * depending. 1503 */ 1504 uint32_t maxticks, last_tick, remaining_slots; 1505 1506 remaining_slots = ticks_to_run - (i + 1); 1507 if (inp->inp_hpts_request > remaining_slots) { 1508 /* 1509 * How far out can we go? 1510 */ 1511 maxticks = max_ticks_available(hpts, hpts->p_cur_slot, &last_tick); 1512 if (maxticks >= inp->inp_hpts_request) { 1513 /* we can place it finally to be processed */ 1514 inp->inp_hptsslot = hpts_tick(hpts->p_runningtick, inp->inp_hpts_request); 1515 inp->inp_hpts_request = 0; 1516 } else { 1517 /* Work off some more time */ 1518 inp->inp_hptsslot = last_tick; 1519 inp->inp_hpts_request-= maxticks; 1520 } 1521 hpts_sane_pace_insert(hpts, inp, &hpts->p_hptss[inp->inp_hptsslot], __LINE__, 1); 1522 hpts->p_inp = NULL; 1523 continue; 1524 } 1525 inp->inp_hpts_request = 0; 1526 /* Fall through we will so do it now */ 1527 } 1528 /* 1529 * We clear the hpts flag here after dealing with 1530 * remaining slots. This way anyone looking with the 1531 * TCB lock will see its on the hpts until just 1532 * before we unlock. 1533 */ 1534 inp->inp_in_hpts = 0; 1535 mtx_unlock(&hpts->p_mtx); 1536 INP_WLOCK(inp); 1537 if (in_pcbrele_wlocked(inp)) { 1538 mtx_lock(&hpts->p_mtx); 1539 hpts->p_inp = NULL; 1540 continue; 1541 } 1542 if ((inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) || 1543 (inp->inp_flags2 & INP_FREED)) { 1544 out_now: 1545 #ifdef INVARIANTS 1546 if (mtx_owned(&hpts->p_mtx)) { 1547 panic("Hpts:%p owns mtx prior-to lock line:%d", 1548 hpts, __LINE__); 1549 } 1550 #endif 1551 INP_WUNLOCK(inp); 1552 mtx_lock(&hpts->p_mtx); 1553 hpts->p_inp = NULL; 1554 continue; 1555 } 1556 tp = intotcpcb(inp); 1557 if ((tp == NULL) || (tp->t_inpcb == NULL)) { 1558 goto out_now; 1559 } 1560 if (set_cpu) { 1561 /* 1562 * Setup so the next time we will move to 1563 * the right CPU. This should be a rare 1564 * event. It will sometimes happens when we 1565 * are the client side (usually not the 1566 * server). Somehow tcp_output() gets called 1567 * before the tcp_do_segment() sets the 1568 * intial state. This means the r_cpu and 1569 * r_hpts_cpu is 0. We get on the hpts, and 1570 * then tcp_input() gets called setting up 1571 * the r_cpu to the correct value. The hpts 1572 * goes off and sees the mis-match. We 1573 * simply correct it here and the CPU will 1574 * switch to the new hpts nextime the tcb 1575 * gets added to the the hpts (not this one) 1576 * :-) 1577 */ 1578 tcp_set_hpts(inp); 1579 } 1580 #ifdef VIMAGE 1581 CURVNET_SET(inp->inp_vnet); 1582 #endif 1583 /* Lets do any logging that we might want to */ 1584 if (hpts_does_tp_logging && (tp->t_logstate != TCP_LOG_STATE_OFF)) { 1585 tcp_hpts_log(hpts, tp, &tv, ticks_to_run, i); 1586 } 1587 /* 1588 * There is a hole here, we get the refcnt on the 1589 * inp so it will still be preserved but to make 1590 * sure we can get the INP we need to hold the p_mtx 1591 * above while we pull out the tp/inp, as long as 1592 * fini gets the lock first we are assured of having 1593 * a sane INP we can lock and test. 1594 */ 1595 #ifdef INVARIANTS 1596 if (mtx_owned(&hpts->p_mtx)) { 1597 panic("Hpts:%p owns mtx before tcp-output:%d", 1598 hpts, __LINE__); 1599 } 1600 #endif 1601 if (tp->t_fb_ptr != NULL) { 1602 kern_prefetch(tp->t_fb_ptr, &did_prefetch); 1603 did_prefetch = 1; 1604 } 1605 if ((inp->inp_flags2 & INP_SUPPORTS_MBUFQ) && tp->t_in_pkt) { 1606 error = (*tp->t_fb->tfb_do_queued_segments)(inp->inp_socket, tp, 0); 1607 if (error) { 1608 /* The input killed the connection */ 1609 goto skip_pacing; 1610 } 1611 } 1612 inp->inp_hpts_calls = 1; 1613 error = tp->t_fb->tfb_tcp_output(tp); 1614 inp->inp_hpts_calls = 0; 1615 if (ninp && ninp->inp_ppcb) { 1616 /* 1617 * If we have a nxt inp, see if we can 1618 * prefetch its ppcb. Note this may seem 1619 * "risky" since we have no locks (other 1620 * than the previous inp) and there no 1621 * assurance that ninp was not pulled while 1622 * we were processing inp and freed. If this 1623 * occured it could mean that either: 1624 * 1625 * a) Its NULL (which is fine we won't go 1626 * here) <or> b) Its valid (which is cool we 1627 * will prefetch it) <or> c) The inp got 1628 * freed back to the slab which was 1629 * reallocated. Then the piece of memory was 1630 * re-used and something else (not an 1631 * address) is in inp_ppcb. If that occurs 1632 * we don't crash, but take a TLB shootdown 1633 * performance hit (same as if it was NULL 1634 * and we tried to pre-fetch it). 1635 * 1636 * Considering that the likelyhood of <c> is 1637 * quite rare we will take a risk on doing 1638 * this. If performance drops after testing 1639 * we can always take this out. NB: the 1640 * kern_prefetch on amd64 actually has 1641 * protection against a bad address now via 1642 * the DMAP_() tests. This will prevent the 1643 * TLB hit, and instead if <c> occurs just 1644 * cause us to load cache with a useless 1645 * address (to us). 1646 */ 1647 kern_prefetch(ninp->inp_ppcb, &prefetch_tp); 1648 prefetch_tp = 1; 1649 } 1650 INP_WUNLOCK(inp); 1651 skip_pacing: 1652 #ifdef VIMAGE 1653 CURVNET_RESTORE(); 1654 #endif 1655 INP_UNLOCK_ASSERT(inp); 1656 #ifdef INVARIANTS 1657 if (mtx_owned(&hpts->p_mtx)) { 1658 panic("Hpts:%p owns mtx prior-to lock line:%d", 1659 hpts, __LINE__); 1660 } 1661 #endif 1662 mtx_lock(&hpts->p_mtx); 1663 hpts->p_inp = NULL; 1664 } 1665 HPTS_MTX_ASSERT(hpts); 1666 hpts->p_inp = NULL; 1667 hpts->p_runningtick++; 1668 if (hpts->p_runningtick >= NUM_OF_HPTSI_SLOTS) { 1669 hpts->p_runningtick = 0; 1670 } 1671 } 1672 no_one: 1673 HPTS_MTX_ASSERT(hpts); 1674 hpts->p_delayed_by = 0; 1675 /* 1676 * Check to see if we took an excess amount of time and need to run 1677 * more ticks (if we did not hit eno-bufs). 1678 */ 1679 #ifdef INVARIANTS 1680 if (TAILQ_EMPTY(&hpts->p_input) && 1681 (hpts->p_on_inqueue_cnt != 0)) { 1682 panic("tp:%p in_hpts input empty but cnt:%d", 1683 hpts, hpts->p_on_inqueue_cnt); 1684 } 1685 #endif 1686 hpts->p_prev_slot = hpts->p_cur_slot; 1687 hpts->p_lasttick = hpts->p_curtick; 1688 if (loop_cnt > max_pacer_loops) { 1689 /* 1690 * Something is serious slow we have 1691 * looped through processing the wheel 1692 * and by the time we cleared the 1693 * needs to run max_pacer_loops time 1694 * we still needed to run. That means 1695 * the system is hopelessly behind and 1696 * can never catch up :( 1697 * 1698 * We will just lie to this thread 1699 * and let it thing p_curtick is 1700 * correct. When it next awakens 1701 * it will find itself further behind. 1702 */ 1703 counter_u64_add(hpts_hopelessly_behind, 1); 1704 goto no_run; 1705 } 1706 hpts->p_curtick = tcp_gethptstick(&tv); 1707 hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick); 1708 if ((wrap_loop_cnt < 2) && 1709 (hpts->p_lasttick != hpts->p_curtick)) { 1710 counter_u64_add(hpts_loops, 1); 1711 loop_cnt++; 1712 goto again; 1713 } 1714 no_run: 1715 /* 1716 * Set flag to tell that we are done for 1717 * any slot input that happens during 1718 * input. 1719 */ 1720 hpts->p_wheel_complete = 1; 1721 /* 1722 * Run any input that may be there not covered 1723 * in running data. 1724 */ 1725 if (!TAILQ_EMPTY(&hpts->p_input)) { 1726 tcp_input_data(hpts, &tv); 1727 /* 1728 * Now did we spend too long running 1729 * input and need to run more ticks? 1730 */ 1731 KASSERT(hpts->p_prev_slot == hpts->p_cur_slot, 1732 ("H:%p p_prev_slot:%u not equal to p_cur_slot:%u", hpts, 1733 hpts->p_prev_slot, hpts->p_cur_slot)); 1734 KASSERT(hpts->p_lasttick == hpts->p_curtick, 1735 ("H:%p p_lasttick:%u not equal to p_curtick:%u", hpts, 1736 hpts->p_lasttick, hpts->p_curtick)); 1737 hpts->p_curtick = tcp_gethptstick(&tv); 1738 if (hpts->p_lasttick != hpts->p_curtick) { 1739 counter_u64_add(hpts_loops, 1); 1740 hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick); 1741 goto again; 1742 } 1743 } 1744 { 1745 uint32_t t = 0, i, fnd = 0; 1746 1747 if ((hpts->p_on_queue_cnt) && (wrap_loop_cnt < 2)) { 1748 /* 1749 * Find next slot that is occupied and use that to 1750 * be the sleep time. 1751 */ 1752 for (i = 0, t = hpts_tick(hpts->p_cur_slot, 1); i < NUM_OF_HPTSI_SLOTS; i++) { 1753 if (TAILQ_EMPTY(&hpts->p_hptss[t]) == 0) { 1754 fnd = 1; 1755 break; 1756 } 1757 t = (t + 1) % NUM_OF_HPTSI_SLOTS; 1758 } 1759 if (fnd) { 1760 hpts->p_hpts_sleep_time = min((i + 1), hpts_sleep_max); 1761 } else { 1762 #ifdef INVARIANTS 1763 panic("Hpts:%p cnt:%d but none found", hpts, hpts->p_on_queue_cnt); 1764 #endif 1765 counter_u64_add(back_tosleep, 1); 1766 hpts->p_on_queue_cnt = 0; 1767 goto non_found; 1768 } 1769 } else if (wrap_loop_cnt >= 2) { 1770 /* Special case handling */ 1771 hpts->p_hpts_sleep_time = tcp_min_hptsi_time; 1772 } else { 1773 /* No one on the wheel sleep for all but 400 slots or sleep max */ 1774 non_found: 1775 hpts->p_hpts_sleep_time = hpts_sleep_max; 1776 } 1777 } 1778 } 1779 1780 void 1781 __tcp_set_hpts(struct inpcb *inp, int32_t line) 1782 { 1783 struct tcp_hpts_entry *hpts; 1784 1785 INP_WLOCK_ASSERT(inp); 1786 hpts = tcp_hpts_lock(inp); 1787 if ((inp->inp_in_hpts == 0) && 1788 (inp->inp_hpts_cpu_set == 0)) { 1789 inp->inp_hpts_cpu = hpts_cpuid(inp); 1790 inp->inp_hpts_cpu_set = 1; 1791 } 1792 mtx_unlock(&hpts->p_mtx); 1793 hpts = tcp_input_lock(inp); 1794 if ((inp->inp_input_cpu_set == 0) && 1795 (inp->inp_in_input == 0)) { 1796 inp->inp_input_cpu = hpts_cpuid(inp); 1797 inp->inp_input_cpu_set = 1; 1798 } 1799 mtx_unlock(&hpts->p_mtx); 1800 } 1801 1802 uint16_t 1803 tcp_hpts_delayedby(struct inpcb *inp){ 1804 return (tcp_pace.rp_ent[inp->inp_hpts_cpu]->p_delayed_by); 1805 } 1806 1807 static void 1808 tcp_hpts_thread(void *ctx) 1809 { 1810 struct tcp_hpts_entry *hpts; 1811 struct epoch_tracker et; 1812 struct timeval tv; 1813 sbintime_t sb; 1814 1815 hpts = (struct tcp_hpts_entry *)ctx; 1816 mtx_lock(&hpts->p_mtx); 1817 if (hpts->p_direct_wake) { 1818 /* Signaled by input */ 1819 callout_stop(&hpts->co); 1820 } else { 1821 /* Timed out */ 1822 if (callout_pending(&hpts->co) || 1823 !callout_active(&hpts->co)) { 1824 mtx_unlock(&hpts->p_mtx); 1825 return; 1826 } 1827 callout_deactivate(&hpts->co); 1828 } 1829 hpts->p_hpts_wake_scheduled = 0; 1830 hpts->p_hpts_active = 1; 1831 NET_EPOCH_ENTER(et); 1832 tcp_hptsi(hpts); 1833 NET_EPOCH_EXIT(et); 1834 HPTS_MTX_ASSERT(hpts); 1835 tv.tv_sec = 0; 1836 tv.tv_usec = hpts->p_hpts_sleep_time * HPTS_TICKS_PER_USEC; 1837 if (tcp_min_hptsi_time && (tv.tv_usec < tcp_min_hptsi_time)) { 1838 hpts->overidden_sleep = tv.tv_usec; 1839 tv.tv_usec = tcp_min_hptsi_time; 1840 hpts->p_on_min_sleep = 1; 1841 } else { 1842 /* Clear the min sleep flag */ 1843 hpts->overidden_sleep = 0; 1844 hpts->p_on_min_sleep = 0; 1845 } 1846 hpts->p_hpts_active = 0; 1847 sb = tvtosbt(tv); 1848 if (tcp_hpts_callout_skip_swi == 0) { 1849 callout_reset_sbt_on(&hpts->co, sb, 0, 1850 hpts_timeout_swi, hpts, hpts->p_cpu, 1851 (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision))); 1852 } else { 1853 callout_reset_sbt_on(&hpts->co, sb, 0, 1854 hpts_timeout_dir, hpts, 1855 hpts->p_cpu, 1856 C_PREL(tcp_hpts_precision)); 1857 } 1858 hpts->p_direct_wake = 0; 1859 mtx_unlock(&hpts->p_mtx); 1860 } 1861 1862 #undef timersub 1863 1864 static void 1865 tcp_init_hptsi(void *st) 1866 { 1867 int32_t i, j, error, bound = 0, created = 0; 1868 size_t sz, asz; 1869 struct timeval tv; 1870 sbintime_t sb; 1871 struct tcp_hpts_entry *hpts; 1872 struct pcpu *pc; 1873 cpuset_t cs; 1874 char unit[16]; 1875 uint32_t ncpus = mp_ncpus ? mp_ncpus : MAXCPU; 1876 int count, domain; 1877 1878 tcp_pace.rp_proc = NULL; 1879 tcp_pace.rp_num_hptss = ncpus; 1880 hpts_hopelessly_behind = counter_u64_alloc(M_WAITOK); 1881 hpts_loops = counter_u64_alloc(M_WAITOK); 1882 back_tosleep = counter_u64_alloc(M_WAITOK); 1883 combined_wheel_wrap = counter_u64_alloc(M_WAITOK); 1884 wheel_wrap = counter_u64_alloc(M_WAITOK); 1885 sz = (tcp_pace.rp_num_hptss * sizeof(struct tcp_hpts_entry *)); 1886 tcp_pace.rp_ent = malloc(sz, M_TCPHPTS, M_WAITOK | M_ZERO); 1887 asz = sizeof(struct hptsh) * NUM_OF_HPTSI_SLOTS; 1888 for (i = 0; i < tcp_pace.rp_num_hptss; i++) { 1889 tcp_pace.rp_ent[i] = malloc(sizeof(struct tcp_hpts_entry), 1890 M_TCPHPTS, M_WAITOK | M_ZERO); 1891 tcp_pace.rp_ent[i]->p_hptss = malloc(asz, 1892 M_TCPHPTS, M_WAITOK); 1893 hpts = tcp_pace.rp_ent[i]; 1894 /* 1895 * Init all the hpts structures that are not specifically 1896 * zero'd by the allocations. Also lets attach them to the 1897 * appropriate sysctl block as well. 1898 */ 1899 mtx_init(&hpts->p_mtx, "tcp_hpts_lck", 1900 "hpts", MTX_DEF | MTX_DUPOK); 1901 TAILQ_INIT(&hpts->p_input); 1902 for (j = 0; j < NUM_OF_HPTSI_SLOTS; j++) { 1903 TAILQ_INIT(&hpts->p_hptss[j]); 1904 } 1905 sysctl_ctx_init(&hpts->hpts_ctx); 1906 sprintf(unit, "%d", i); 1907 hpts->hpts_root = SYSCTL_ADD_NODE(&hpts->hpts_ctx, 1908 SYSCTL_STATIC_CHILDREN(_net_inet_tcp_hpts), 1909 OID_AUTO, 1910 unit, 1911 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 1912 ""); 1913 SYSCTL_ADD_INT(&hpts->hpts_ctx, 1914 SYSCTL_CHILDREN(hpts->hpts_root), 1915 OID_AUTO, "in_qcnt", CTLFLAG_RD, 1916 &hpts->p_on_inqueue_cnt, 0, 1917 "Count TCB's awaiting input processing"); 1918 SYSCTL_ADD_INT(&hpts->hpts_ctx, 1919 SYSCTL_CHILDREN(hpts->hpts_root), 1920 OID_AUTO, "out_qcnt", CTLFLAG_RD, 1921 &hpts->p_on_queue_cnt, 0, 1922 "Count TCB's awaiting output processing"); 1923 SYSCTL_ADD_U16(&hpts->hpts_ctx, 1924 SYSCTL_CHILDREN(hpts->hpts_root), 1925 OID_AUTO, "active", CTLFLAG_RD, 1926 &hpts->p_hpts_active, 0, 1927 "Is the hpts active"); 1928 SYSCTL_ADD_UINT(&hpts->hpts_ctx, 1929 SYSCTL_CHILDREN(hpts->hpts_root), 1930 OID_AUTO, "curslot", CTLFLAG_RD, 1931 &hpts->p_cur_slot, 0, 1932 "What the current running pacers goal"); 1933 SYSCTL_ADD_UINT(&hpts->hpts_ctx, 1934 SYSCTL_CHILDREN(hpts->hpts_root), 1935 OID_AUTO, "runtick", CTLFLAG_RD, 1936 &hpts->p_runningtick, 0, 1937 "What the running pacers current slot is"); 1938 SYSCTL_ADD_UINT(&hpts->hpts_ctx, 1939 SYSCTL_CHILDREN(hpts->hpts_root), 1940 OID_AUTO, "curtick", CTLFLAG_RD, 1941 &hpts->p_curtick, 0, 1942 "What the running pacers last tick mapped to the wheel was"); 1943 hpts->p_hpts_sleep_time = hpts_sleep_max; 1944 hpts->p_num = i; 1945 hpts->p_curtick = tcp_gethptstick(&tv); 1946 hpts->p_prev_slot = hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick); 1947 hpts->p_cpu = 0xffff; 1948 hpts->p_nxt_slot = hpts_tick(hpts->p_cur_slot, 1); 1949 callout_init(&hpts->co, 1); 1950 } 1951 1952 /* Don't try to bind to NUMA domains if we don't have any */ 1953 if (vm_ndomains == 1 && tcp_bind_threads == 2) 1954 tcp_bind_threads = 0; 1955 1956 /* 1957 * Now lets start ithreads to handle the hptss. 1958 */ 1959 CPU_FOREACH(i) { 1960 hpts = tcp_pace.rp_ent[i]; 1961 hpts->p_cpu = i; 1962 error = swi_add(&hpts->ie, "hpts", 1963 tcp_hpts_thread, (void *)hpts, 1964 SWI_NET, INTR_MPSAFE, &hpts->ie_cookie); 1965 if (error) { 1966 panic("Can't add hpts:%p i:%d err:%d", 1967 hpts, i, error); 1968 } 1969 created++; 1970 if (tcp_bind_threads == 1) { 1971 if (intr_event_bind(hpts->ie, i) == 0) 1972 bound++; 1973 } else if (tcp_bind_threads == 2) { 1974 pc = pcpu_find(i); 1975 domain = pc->pc_domain; 1976 CPU_COPY(&cpuset_domain[domain], &cs); 1977 if (intr_event_bind_ithread_cpuset(hpts->ie, &cs) 1978 == 0) { 1979 bound++; 1980 count = hpts_domains[domain].count; 1981 hpts_domains[domain].cpu[count] = i; 1982 hpts_domains[domain].count++; 1983 } 1984 } 1985 tv.tv_sec = 0; 1986 tv.tv_usec = hpts->p_hpts_sleep_time * HPTS_TICKS_PER_USEC; 1987 sb = tvtosbt(tv); 1988 if (tcp_hpts_callout_skip_swi == 0) { 1989 callout_reset_sbt_on(&hpts->co, sb, 0, 1990 hpts_timeout_swi, hpts, hpts->p_cpu, 1991 (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision))); 1992 } else { 1993 callout_reset_sbt_on(&hpts->co, sb, 0, 1994 hpts_timeout_dir, hpts, 1995 hpts->p_cpu, 1996 C_PREL(tcp_hpts_precision)); 1997 } 1998 } 1999 /* 2000 * If we somehow have an empty domain, fall back to choosing 2001 * among all htps threads. 2002 */ 2003 for (i = 0; i < vm_ndomains; i++) { 2004 if (hpts_domains[i].count == 0) { 2005 tcp_bind_threads = 0; 2006 break; 2007 } 2008 } 2009 2010 printf("TCP Hpts created %d swi interrupt threads and bound %d to %s\n", 2011 created, bound, 2012 tcp_bind_threads == 2 ? "NUMA domains" : "cpus"); 2013 } 2014 2015 SYSINIT(tcphptsi, SI_SUB_KTHREAD_IDLE, SI_ORDER_ANY, tcp_init_hptsi, NULL); 2016 MODULE_VERSION(tcphpts, 1); 2017