xref: /freebsd/sys/netinet/tcp_hpts.c (revision d6eb98610fa65663bf0df4574b7cb2c5c4ffda71)
1 /*-
2  * Copyright (c) 2016-2018 Netflix, Inc.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  * 1. Redistributions of source code must retain the above copyright
8  *    notice, this list of conditions and the following disclaimer.
9  * 2. Redistributions in binary form must reproduce the above copyright
10  *    notice, this list of conditions and the following disclaimer in the
11  *    documentation and/or other materials provided with the distribution.
12  *
13  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
14  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
17  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23  * SUCH DAMAGE.
24  *
25  */
26 #include <sys/cdefs.h>
27 __FBSDID("$FreeBSD$");
28 
29 #include "opt_inet.h"
30 #include "opt_inet6.h"
31 #include "opt_tcpdebug.h"
32 /**
33  * Some notes about usage.
34  *
35  * The tcp_hpts system is designed to provide a high precision timer
36  * system for tcp. Its main purpose is to provide a mechanism for
37  * pacing packets out onto the wire. It can be used in two ways
38  * by a given TCP stack (and those two methods can be used simultaneously).
39  *
40  * First, and probably the main thing its used by Rack and BBR, it can
41  * be used to call tcp_output() of a transport stack at some time in the future.
42  * The normal way this is done is that tcp_output() of the stack schedules
43  * itself to be called again by calling tcp_hpts_insert(tcpcb, slot). The
44  * slot is the time from now that the stack wants to be called but it
45  * must be converted to tcp_hpts's notion of slot. This is done with
46  * one of the macros HPTS_MS_TO_SLOTS or HPTS_USEC_TO_SLOTS. So a typical
47  * call from the tcp_output() routine might look like:
48  *
49  * tcp_hpts_insert(tp, HPTS_USEC_TO_SLOTS(550));
50  *
51  * The above would schedule tcp_ouput() to be called in 550 useconds.
52  * Note that if using this mechanism the stack will want to add near
53  * its top a check to prevent unwanted calls (from user land or the
54  * arrival of incoming ack's). So it would add something like:
55  *
56  * if (inp->inp_in_hpts)
57  *    return;
58  *
59  * to prevent output processing until the time alotted has gone by.
60  * Of course this is a bare bones example and the stack will probably
61  * have more consideration then just the above.
62  *
63  * Now the second function (actually two functions I guess :D)
64  * the tcp_hpts system provides is the  ability to either abort
65  * a connection (later) or process input on a connection.
66  * Why would you want to do this? To keep processor locality
67  * and or not have to worry about untangling any recursive
68  * locks. The input function now is hooked to the new LRO
69  * system as well.
70  *
71  * In order to use the input redirection function the
72  * tcp stack must define an input function for
73  * tfb_do_queued_segments(). This function understands
74  * how to dequeue a array of packets that were input and
75  * knows how to call the correct processing routine.
76  *
77  * Locking in this is important as well so most likely the
78  * stack will need to define the tfb_do_segment_nounlock()
79  * splitting tfb_do_segment() into two parts. The main processing
80  * part that does not unlock the INP and returns a value of 1 or 0.
81  * It returns 0 if all is well and the lock was not released. It
82  * returns 1 if we had to destroy the TCB (a reset received etc).
83  * The remains of tfb_do_segment() then become just a simple call
84  * to the tfb_do_segment_nounlock() function and check the return
85  * code and possibly unlock.
86  *
87  * The stack must also set the flag on the INP that it supports this
88  * feature i.e. INP_SUPPORTS_MBUFQ. The LRO code recoginizes
89  * this flag as well and will queue packets when it is set.
90  * There are other flags as well INP_MBUF_QUEUE_READY and
91  * INP_DONT_SACK_QUEUE. The first flag tells the LRO code
92  * that we are in the pacer for output so there is no
93  * need to wake up the hpts system to get immediate
94  * input. The second tells the LRO code that its okay
95  * if a SACK arrives you can still defer input and let
96  * the current hpts timer run (this is usually set when
97  * a rack timer is up so we know SACK's are happening
98  * on the connection already and don't want to wakeup yet).
99  *
100  * There is a common functions within the rack_bbr_common code
101  * version i.e. ctf_do_queued_segments(). This function
102  * knows how to take the input queue of packets from
103  * tp->t_in_pkts and process them digging out
104  * all the arguments, calling any bpf tap and
105  * calling into tfb_do_segment_nounlock(). The common
106  * function (ctf_do_queued_segments())  requires that
107  * you have defined the tfb_do_segment_nounlock() as
108  * described above.
109  *
110  * The second feature of the input side of hpts is the
111  * dropping of a connection. This is due to the way that
112  * locking may have occured on the INP_WLOCK. So if
113  * a stack wants to drop a connection it calls:
114  *
115  *     tcp_set_inp_to_drop(tp, ETIMEDOUT)
116  *
117  * To schedule the tcp_hpts system to call
118  *
119  *    tcp_drop(tp, drop_reason)
120  *
121  * at a future point. This is quite handy to prevent locking
122  * issues when dropping connections.
123  *
124  */
125 
126 #include <sys/param.h>
127 #include <sys/bus.h>
128 #include <sys/interrupt.h>
129 #include <sys/module.h>
130 #include <sys/kernel.h>
131 #include <sys/hhook.h>
132 #include <sys/malloc.h>
133 #include <sys/mbuf.h>
134 #include <sys/proc.h>		/* for proc0 declaration */
135 #include <sys/socket.h>
136 #include <sys/socketvar.h>
137 #include <sys/sysctl.h>
138 #include <sys/systm.h>
139 #include <sys/refcount.h>
140 #include <sys/sched.h>
141 #include <sys/queue.h>
142 #include <sys/smp.h>
143 #include <sys/counter.h>
144 #include <sys/time.h>
145 #include <sys/kthread.h>
146 #include <sys/kern_prefetch.h>
147 
148 #include <vm/uma.h>
149 #include <vm/vm.h>
150 
151 #include <net/route.h>
152 #include <net/vnet.h>
153 
154 #define TCPSTATES		/* for logging */
155 
156 #include <netinet/in.h>
157 #include <netinet/in_kdtrace.h>
158 #include <netinet/in_pcb.h>
159 #include <netinet/ip.h>
160 #include <netinet/ip_icmp.h>	/* required for icmp_var.h */
161 #include <netinet/icmp_var.h>	/* for ICMP_BANDLIM */
162 #include <netinet/ip_var.h>
163 #include <netinet/ip6.h>
164 #include <netinet6/in6_pcb.h>
165 #include <netinet6/ip6_var.h>
166 #include <netinet/tcp.h>
167 #include <netinet/tcp_fsm.h>
168 #include <netinet/tcp_seq.h>
169 #include <netinet/tcp_timer.h>
170 #include <netinet/tcp_var.h>
171 #include <netinet/tcpip.h>
172 #include <netinet/cc/cc.h>
173 #include <netinet/tcp_hpts.h>
174 #include <netinet/tcp_log_buf.h>
175 
176 #ifdef tcpdebug
177 #include <netinet/tcp_debug.h>
178 #endif				/* tcpdebug */
179 #ifdef tcp_offload
180 #include <netinet/tcp_offload.h>
181 #endif
182 
183 #include "opt_rss.h"
184 
185 MALLOC_DEFINE(M_TCPHPTS, "tcp_hpts", "TCP hpts");
186 #ifdef RSS
187 static int tcp_bind_threads = 1;
188 #else
189 static int tcp_bind_threads = 2;
190 #endif
191 TUNABLE_INT("net.inet.tcp.bind_hptss", &tcp_bind_threads);
192 
193 static struct tcp_hptsi tcp_pace;
194 static int hpts_does_tp_logging = 0;
195 
196 static void tcp_wakehpts(struct tcp_hpts_entry *p);
197 static void tcp_wakeinput(struct tcp_hpts_entry *p);
198 static void tcp_input_data(struct tcp_hpts_entry *hpts, struct timeval *tv);
199 static void tcp_hptsi(struct tcp_hpts_entry *hpts);
200 static void tcp_hpts_thread(void *ctx);
201 static void tcp_init_hptsi(void *st);
202 
203 int32_t tcp_min_hptsi_time = DEFAULT_MIN_SLEEP;
204 static int32_t tcp_hpts_callout_skip_swi = 0;
205 
206 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, hpts, CTLFLAG_RW, 0, "TCP Hpts controls");
207 
208 #define	timersub(tvp, uvp, vvp)						\
209 	do {								\
210 		(vvp)->tv_sec = (tvp)->tv_sec - (uvp)->tv_sec;		\
211 		(vvp)->tv_usec = (tvp)->tv_usec - (uvp)->tv_usec;	\
212 		if ((vvp)->tv_usec < 0) {				\
213 			(vvp)->tv_sec--;				\
214 			(vvp)->tv_usec += 1000000;			\
215 		}							\
216 	} while (0)
217 
218 static int32_t tcp_hpts_precision = 120;
219 
220 struct hpts_domain_info {
221 	int count;
222 	int cpu[MAXCPU];
223 };
224 
225 struct hpts_domain_info hpts_domains[MAXMEMDOM];
226 
227 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, precision, CTLFLAG_RW,
228     &tcp_hpts_precision, 120,
229     "Value for PRE() precision of callout");
230 
231 counter_u64_t hpts_hopelessly_behind;
232 
233 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts, OID_AUTO, hopeless, CTLFLAG_RD,
234     &hpts_hopelessly_behind,
235     "Number of times hpts could not catch up and was behind hopelessly");
236 
237 counter_u64_t hpts_loops;
238 
239 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts, OID_AUTO, loops, CTLFLAG_RD,
240     &hpts_loops, "Number of times hpts had to loop to catch up");
241 
242 
243 counter_u64_t back_tosleep;
244 
245 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts, OID_AUTO, no_tcbsfound, CTLFLAG_RD,
246     &back_tosleep, "Number of times hpts found no tcbs");
247 
248 counter_u64_t combined_wheel_wrap;
249 
250 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts, OID_AUTO, comb_wheel_wrap, CTLFLAG_RD,
251     &combined_wheel_wrap, "Number of times the wheel lagged enough to have an insert see wrap");
252 
253 counter_u64_t wheel_wrap;
254 
255 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts, OID_AUTO, wheel_wrap, CTLFLAG_RD,
256     &wheel_wrap, "Number of times the wheel lagged enough to have an insert see wrap");
257 
258 static int32_t out_ts_percision = 0;
259 
260 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, out_tspercision, CTLFLAG_RW,
261     &out_ts_percision, 0,
262     "Do we use a percise timestamp for every output cts");
263 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, logging, CTLFLAG_RW,
264     &hpts_does_tp_logging, 0,
265     "Do we add to any tp that has logging on pacer logs");
266 
267 static int32_t max_pacer_loops = 10;
268 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, loopmax, CTLFLAG_RW,
269     &max_pacer_loops, 10,
270     "What is the maximum number of times the pacer will loop trying to catch up");
271 
272 #define HPTS_MAX_SLEEP_ALLOWED (NUM_OF_HPTSI_SLOTS/2)
273 
274 static uint32_t hpts_sleep_max = HPTS_MAX_SLEEP_ALLOWED;
275 
276 
277 static int
278 sysctl_net_inet_tcp_hpts_max_sleep(SYSCTL_HANDLER_ARGS)
279 {
280 	int error;
281 	uint32_t new;
282 
283 	new = hpts_sleep_max;
284 	error = sysctl_handle_int(oidp, &new, 0, req);
285 	if (error == 0 && req->newptr) {
286 		if ((new < (NUM_OF_HPTSI_SLOTS / 4)) ||
287 		    (new > HPTS_MAX_SLEEP_ALLOWED))
288 			error = EINVAL;
289 		else
290 			hpts_sleep_max = new;
291 	}
292 	return (error);
293 }
294 
295 SYSCTL_PROC(_net_inet_tcp_hpts, OID_AUTO, maxsleep,
296     CTLTYPE_UINT | CTLFLAG_RW,
297     &hpts_sleep_max, 0,
298     &sysctl_net_inet_tcp_hpts_max_sleep, "IU",
299     "Maximum time hpts will sleep");
300 
301 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, minsleep, CTLFLAG_RW,
302     &tcp_min_hptsi_time, 0,
303     "The minimum time the hpts must sleep before processing more slots");
304 
305 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, skip_swi, CTLFLAG_RW,
306     &tcp_hpts_callout_skip_swi, 0,
307     "Do we have the callout call directly to the hpts?");
308 
309 static void
310 tcp_hpts_log(struct tcp_hpts_entry *hpts, struct tcpcb *tp, struct timeval *tv,
311 	     int ticks_to_run, int idx)
312 {
313 	union tcp_log_stackspecific log;
314 
315 	memset(&log.u_bbr, 0, sizeof(log.u_bbr));
316 	log.u_bbr.flex1 = hpts->p_nxt_slot;
317 	log.u_bbr.flex2 = hpts->p_cur_slot;
318 	log.u_bbr.flex3 = hpts->p_prev_slot;
319 	log.u_bbr.flex4 = idx;
320 	log.u_bbr.flex5 = hpts->p_curtick;
321 	log.u_bbr.flex6 = hpts->p_on_queue_cnt;
322 	log.u_bbr.use_lt_bw = 1;
323 	log.u_bbr.inflight = ticks_to_run;
324 	log.u_bbr.applimited = hpts->overidden_sleep;
325 	log.u_bbr.delivered = hpts->saved_curtick;
326 	log.u_bbr.timeStamp = tcp_tv_to_usectick(tv);
327 	log.u_bbr.epoch = hpts->saved_curslot;
328 	log.u_bbr.lt_epoch = hpts->saved_prev_slot;
329 	log.u_bbr.pkts_out = hpts->p_delayed_by;
330 	log.u_bbr.lost = hpts->p_hpts_sleep_time;
331 	log.u_bbr.cur_del_rate = hpts->p_runningtick;
332 	TCP_LOG_EVENTP(tp, NULL,
333 		       &tp->t_inpcb->inp_socket->so_rcv,
334 		       &tp->t_inpcb->inp_socket->so_snd,
335 		       BBR_LOG_HPTSDIAG, 0,
336 		       0, &log, false, tv);
337 }
338 
339 static void
340 hpts_timeout_swi(void *arg)
341 {
342 	struct tcp_hpts_entry *hpts;
343 
344 	hpts = (struct tcp_hpts_entry *)arg;
345 	swi_sched(hpts->ie_cookie, 0);
346 }
347 
348 static void
349 hpts_timeout_dir(void *arg)
350 {
351 	tcp_hpts_thread(arg);
352 }
353 
354 static inline void
355 hpts_sane_pace_remove(struct tcp_hpts_entry *hpts, struct inpcb *inp, struct hptsh *head, int clear)
356 {
357 #ifdef INVARIANTS
358 	if (mtx_owned(&hpts->p_mtx) == 0) {
359 		/* We don't own the mutex? */
360 		panic("%s: hpts:%p inp:%p no hpts mutex", __FUNCTION__, hpts, inp);
361 	}
362 	if (hpts->p_cpu != inp->inp_hpts_cpu) {
363 		/* It is not the right cpu/mutex? */
364 		panic("%s: hpts:%p inp:%p incorrect CPU", __FUNCTION__, hpts, inp);
365 	}
366 	if (inp->inp_in_hpts == 0) {
367 		/* We are not on the hpts? */
368 		panic("%s: hpts:%p inp:%p not on the hpts?", __FUNCTION__, hpts, inp);
369 	}
370 #endif
371 	TAILQ_REMOVE(head, inp, inp_hpts);
372 	hpts->p_on_queue_cnt--;
373 	if (hpts->p_on_queue_cnt < 0) {
374 		/* Count should not go negative .. */
375 #ifdef INVARIANTS
376 		panic("Hpts goes negative inp:%p hpts:%p",
377 		    inp, hpts);
378 #endif
379 		hpts->p_on_queue_cnt = 0;
380 	}
381 	if (clear) {
382 		inp->inp_hpts_request = 0;
383 		inp->inp_in_hpts = 0;
384 	}
385 }
386 
387 static inline void
388 hpts_sane_pace_insert(struct tcp_hpts_entry *hpts, struct inpcb *inp, struct hptsh *head, int line, int noref)
389 {
390 #ifdef INVARIANTS
391 	if (mtx_owned(&hpts->p_mtx) == 0) {
392 		/* We don't own the mutex? */
393 		panic("%s: hpts:%p inp:%p no hpts mutex", __FUNCTION__, hpts, inp);
394 	}
395 	if (hpts->p_cpu != inp->inp_hpts_cpu) {
396 		/* It is not the right cpu/mutex? */
397 		panic("%s: hpts:%p inp:%p incorrect CPU", __FUNCTION__, hpts, inp);
398 	}
399 	if ((noref == 0) && (inp->inp_in_hpts == 1)) {
400 		/* We are already on the hpts? */
401 		panic("%s: hpts:%p inp:%p already on the hpts?", __FUNCTION__, hpts, inp);
402 	}
403 #endif
404 	TAILQ_INSERT_TAIL(head, inp, inp_hpts);
405 	inp->inp_in_hpts = 1;
406 	hpts->p_on_queue_cnt++;
407 	if (noref == 0) {
408 		in_pcbref(inp);
409 	}
410 }
411 
412 static inline void
413 hpts_sane_input_remove(struct tcp_hpts_entry *hpts, struct inpcb *inp, int clear)
414 {
415 #ifdef INVARIANTS
416 	if (mtx_owned(&hpts->p_mtx) == 0) {
417 		/* We don't own the mutex? */
418 		panic("%s: hpts:%p inp:%p no hpts mutex", __FUNCTION__, hpts, inp);
419 	}
420 	if (hpts->p_cpu != inp->inp_input_cpu) {
421 		/* It is not the right cpu/mutex? */
422 		panic("%s: hpts:%p inp:%p incorrect CPU", __FUNCTION__, hpts, inp);
423 	}
424 	if (inp->inp_in_input == 0) {
425 		/* We are not on the input hpts? */
426 		panic("%s: hpts:%p inp:%p not on the input hpts?", __FUNCTION__, hpts, inp);
427 	}
428 #endif
429 	TAILQ_REMOVE(&hpts->p_input, inp, inp_input);
430 	hpts->p_on_inqueue_cnt--;
431 	if (hpts->p_on_inqueue_cnt < 0) {
432 #ifdef INVARIANTS
433 		panic("Hpts in goes negative inp:%p hpts:%p",
434 		    inp, hpts);
435 #endif
436 		hpts->p_on_inqueue_cnt = 0;
437 	}
438 #ifdef INVARIANTS
439 	if (TAILQ_EMPTY(&hpts->p_input) &&
440 	    (hpts->p_on_inqueue_cnt != 0)) {
441 		/* We should not be empty with a queue count */
442 		panic("%s hpts:%p in_hpts input empty but cnt:%d",
443 		    __FUNCTION__, hpts, hpts->p_on_inqueue_cnt);
444 	}
445 #endif
446 	if (clear)
447 		inp->inp_in_input = 0;
448 }
449 
450 static inline void
451 hpts_sane_input_insert(struct tcp_hpts_entry *hpts, struct inpcb *inp, int line)
452 {
453 #ifdef INVARIANTS
454 	if (mtx_owned(&hpts->p_mtx) == 0) {
455 		/* We don't own the mutex? */
456 		panic("%s: hpts:%p inp:%p no hpts mutex", __FUNCTION__, hpts, inp);
457 	}
458 	if (hpts->p_cpu != inp->inp_input_cpu) {
459 		/* It is not the right cpu/mutex? */
460 		panic("%s: hpts:%p inp:%p incorrect CPU", __FUNCTION__, hpts, inp);
461 	}
462 	if (inp->inp_in_input == 1) {
463 		/* We are already on the input hpts? */
464 		panic("%s: hpts:%p inp:%p already on the input hpts?", __FUNCTION__, hpts, inp);
465 	}
466 #endif
467 	TAILQ_INSERT_TAIL(&hpts->p_input, inp, inp_input);
468 	inp->inp_in_input = 1;
469 	hpts->p_on_inqueue_cnt++;
470 	in_pcbref(inp);
471 }
472 
473 static void
474 tcp_wakehpts(struct tcp_hpts_entry *hpts)
475 {
476 	HPTS_MTX_ASSERT(hpts);
477 	if (hpts->p_hpts_wake_scheduled == 0) {
478 		hpts->p_hpts_wake_scheduled = 1;
479 		swi_sched(hpts->ie_cookie, 0);
480 	}
481 }
482 
483 static void
484 tcp_wakeinput(struct tcp_hpts_entry *hpts)
485 {
486 	HPTS_MTX_ASSERT(hpts);
487 	if (hpts->p_hpts_wake_scheduled == 0) {
488 		hpts->p_hpts_wake_scheduled = 1;
489 		swi_sched(hpts->ie_cookie, 0);
490 	}
491 }
492 
493 struct tcp_hpts_entry *
494 tcp_cur_hpts(struct inpcb *inp)
495 {
496 	int32_t hpts_num;
497 	struct tcp_hpts_entry *hpts;
498 
499 	hpts_num = inp->inp_hpts_cpu;
500 	hpts = tcp_pace.rp_ent[hpts_num];
501 	return (hpts);
502 }
503 
504 struct tcp_hpts_entry *
505 tcp_hpts_lock(struct inpcb *inp)
506 {
507 	struct tcp_hpts_entry *hpts;
508 	int32_t hpts_num;
509 
510 again:
511 	hpts_num = inp->inp_hpts_cpu;
512 	hpts = tcp_pace.rp_ent[hpts_num];
513 #ifdef INVARIANTS
514 	if (mtx_owned(&hpts->p_mtx)) {
515 		panic("Hpts:%p owns mtx prior-to lock line:%d",
516 		    hpts, __LINE__);
517 	}
518 #endif
519 	mtx_lock(&hpts->p_mtx);
520 	if (hpts_num != inp->inp_hpts_cpu) {
521 		mtx_unlock(&hpts->p_mtx);
522 		goto again;
523 	}
524 	return (hpts);
525 }
526 
527 struct tcp_hpts_entry *
528 tcp_input_lock(struct inpcb *inp)
529 {
530 	struct tcp_hpts_entry *hpts;
531 	int32_t hpts_num;
532 
533 again:
534 	hpts_num = inp->inp_input_cpu;
535 	hpts = tcp_pace.rp_ent[hpts_num];
536 #ifdef INVARIANTS
537 	if (mtx_owned(&hpts->p_mtx)) {
538 		panic("Hpts:%p owns mtx prior-to lock line:%d",
539 		    hpts, __LINE__);
540 	}
541 #endif
542 	mtx_lock(&hpts->p_mtx);
543 	if (hpts_num != inp->inp_input_cpu) {
544 		mtx_unlock(&hpts->p_mtx);
545 		goto again;
546 	}
547 	return (hpts);
548 }
549 
550 static void
551 tcp_remove_hpts_ref(struct inpcb *inp, struct tcp_hpts_entry *hpts, int line)
552 {
553 	int32_t add_freed;
554 
555 	if (inp->inp_flags2 & INP_FREED) {
556 		/*
557 		 * Need to play a special trick so that in_pcbrele_wlocked
558 		 * does not return 1 when it really should have returned 0.
559 		 */
560 		add_freed = 1;
561 		inp->inp_flags2 &= ~INP_FREED;
562 	} else {
563 		add_freed = 0;
564 	}
565 #ifndef INP_REF_DEBUG
566 	if (in_pcbrele_wlocked(inp)) {
567 		/*
568 		 * This should not happen. We have the inpcb referred to by
569 		 * the main socket (why we are called) and the hpts. It
570 		 * should always return 0.
571 		 */
572 		panic("inpcb:%p release ret 1",
573 		    inp);
574 	}
575 #else
576 	if (__in_pcbrele_wlocked(inp, line)) {
577 		/*
578 		 * This should not happen. We have the inpcb referred to by
579 		 * the main socket (why we are called) and the hpts. It
580 		 * should always return 0.
581 		 */
582 		panic("inpcb:%p release ret 1",
583 		    inp);
584 	}
585 #endif
586 	if (add_freed) {
587 		inp->inp_flags2 |= INP_FREED;
588 	}
589 }
590 
591 static void
592 tcp_hpts_remove_locked_output(struct tcp_hpts_entry *hpts, struct inpcb *inp, int32_t flags, int32_t line)
593 {
594 	if (inp->inp_in_hpts) {
595 		hpts_sane_pace_remove(hpts, inp, &hpts->p_hptss[inp->inp_hptsslot], 1);
596 		tcp_remove_hpts_ref(inp, hpts, line);
597 	}
598 }
599 
600 static void
601 tcp_hpts_remove_locked_input(struct tcp_hpts_entry *hpts, struct inpcb *inp, int32_t flags, int32_t line)
602 {
603 	HPTS_MTX_ASSERT(hpts);
604 	if (inp->inp_in_input) {
605 		hpts_sane_input_remove(hpts, inp, 1);
606 		tcp_remove_hpts_ref(inp, hpts, line);
607 	}
608 }
609 
610 /*
611  * Called normally with the INP_LOCKED but it
612  * does not matter, the hpts lock is the key
613  * but the lock order allows us to hold the
614  * INP lock and then get the hpts lock.
615  *
616  * Valid values in the flags are
617  * HPTS_REMOVE_OUTPUT - remove from the output of the hpts.
618  * HPTS_REMOVE_INPUT - remove from the input of the hpts.
619  * Note that you can use one or both values together
620  * and get two actions.
621  */
622 void
623 __tcp_hpts_remove(struct inpcb *inp, int32_t flags, int32_t line)
624 {
625 	struct tcp_hpts_entry *hpts;
626 
627 	INP_WLOCK_ASSERT(inp);
628 	if (flags & HPTS_REMOVE_OUTPUT) {
629 		hpts = tcp_hpts_lock(inp);
630 		tcp_hpts_remove_locked_output(hpts, inp, flags, line);
631 		mtx_unlock(&hpts->p_mtx);
632 	}
633 	if (flags & HPTS_REMOVE_INPUT) {
634 		hpts = tcp_input_lock(inp);
635 		tcp_hpts_remove_locked_input(hpts, inp, flags, line);
636 		mtx_unlock(&hpts->p_mtx);
637 	}
638 }
639 
640 static inline int
641 hpts_tick(uint32_t wheel_tick, uint32_t plus)
642 {
643 	/*
644 	 * Given a slot on the wheel, what slot
645 	 * is that plus ticks out?
646 	 */
647 	KASSERT(wheel_tick < NUM_OF_HPTSI_SLOTS, ("Invalid tick %u not on wheel", wheel_tick));
648 	return ((wheel_tick + plus) % NUM_OF_HPTSI_SLOTS);
649 }
650 
651 static inline int
652 tick_to_wheel(uint32_t cts_in_wticks)
653 {
654 	/*
655 	 * Given a timestamp in wheel ticks (10usec inc's)
656 	 * map it to our limited space wheel.
657 	 */
658 	return (cts_in_wticks % NUM_OF_HPTSI_SLOTS);
659 }
660 
661 static inline int
662 hpts_ticks_diff(int prev_tick, int tick_now)
663 {
664 	/*
665 	 * Given two ticks that are someplace
666 	 * on our wheel. How far are they apart?
667 	 */
668 	if (tick_now > prev_tick)
669 		return (tick_now - prev_tick);
670 	else if (tick_now == prev_tick)
671 		/*
672 		 * Special case, same means we can go all of our
673 		 * wheel less one slot.
674 		 */
675 		return (NUM_OF_HPTSI_SLOTS - 1);
676 	else
677 		return ((NUM_OF_HPTSI_SLOTS - prev_tick) + tick_now);
678 }
679 
680 /*
681  * Given a tick on the wheel that is the current time
682  * mapped to the wheel (wheel_tick), what is the maximum
683  * distance forward that can be obtained without
684  * wrapping past either prev_tick or running_tick
685  * depending on the htps state? Also if passed
686  * a uint32_t *, fill it with the tick location.
687  *
688  * Note if you do not give this function the current
689  * time (that you think it is) mapped to the wheel
690  * then the results will not be what you expect and
691  * could lead to invalid inserts.
692  */
693 static inline int32_t
694 max_ticks_available(struct tcp_hpts_entry *hpts, uint32_t wheel_tick, uint32_t *target_tick)
695 {
696 	uint32_t dis_to_travel, end_tick, pacer_to_now, avail_on_wheel;
697 
698 	if ((hpts->p_hpts_active == 1) &&
699 	    (hpts->p_wheel_complete == 0)) {
700 		end_tick = hpts->p_runningtick;
701 		/* Back up one tick */
702 		if (end_tick == 0)
703 			end_tick = NUM_OF_HPTSI_SLOTS - 1;
704 		else
705 			end_tick--;
706 		if (target_tick)
707 			*target_tick = end_tick;
708 	} else {
709 		/*
710 		 * For the case where we are
711 		 * not active, or we have
712 		 * completed the pass over
713 		 * the wheel, we can use the
714 		 * prev tick and subtract one from it. This puts us
715 		 * as far out as possible on the wheel.
716 		 */
717 		end_tick = hpts->p_prev_slot;
718 		if (end_tick == 0)
719 			end_tick = NUM_OF_HPTSI_SLOTS - 1;
720 		else
721 			end_tick--;
722 		if (target_tick)
723 			*target_tick = end_tick;
724 		/*
725 		 * Now we have close to the full wheel left minus the
726 		 * time it has been since the pacer went to sleep. Note
727 		 * that wheel_tick, passed in, should be the current time
728 		 * from the perspective of the caller, mapped to the wheel.
729 		 */
730 		if (hpts->p_prev_slot != wheel_tick)
731 			dis_to_travel = hpts_ticks_diff(hpts->p_prev_slot, wheel_tick);
732 		else
733 			dis_to_travel = 1;
734 		/*
735 		 * dis_to_travel in this case is the space from when the
736 		 * pacer stopped (p_prev_slot) and where our wheel_tick
737 		 * is now. To know how many slots we can put it in we
738 		 * subtract from the wheel size. We would not want
739 		 * to place something after p_prev_slot or it will
740 		 * get ran too soon.
741 		 */
742 		return (NUM_OF_HPTSI_SLOTS - dis_to_travel);
743 	}
744 	/*
745 	 * So how many slots are open between p_runningtick -> p_cur_slot
746 	 * that is what is currently un-available for insertion. Special
747 	 * case when we are at the last slot, this gets 1, so that
748 	 * the answer to how many slots are available is all but 1.
749 	 */
750 	if (hpts->p_runningtick == hpts->p_cur_slot)
751 		dis_to_travel = 1;
752 	else
753 		dis_to_travel = hpts_ticks_diff(hpts->p_runningtick, hpts->p_cur_slot);
754 	/*
755 	 * How long has the pacer been running?
756 	 */
757 	if (hpts->p_cur_slot != wheel_tick) {
758 		/* The pacer is a bit late */
759 		pacer_to_now = hpts_ticks_diff(hpts->p_cur_slot, wheel_tick);
760 	} else {
761 		/* The pacer is right on time, now == pacers start time */
762 		pacer_to_now = 0;
763 	}
764 	/*
765 	 * To get the number left we can insert into we simply
766 	 * subract the distance the pacer has to run from how
767 	 * many slots there are.
768 	 */
769 	avail_on_wheel = NUM_OF_HPTSI_SLOTS - dis_to_travel;
770 	/*
771 	 * Now how many of those we will eat due to the pacer's
772 	 * time (p_cur_slot) of start being behind the
773 	 * real time (wheel_tick)?
774 	 */
775 	if (avail_on_wheel <= pacer_to_now) {
776 		/*
777 		 * Wheel wrap, we can't fit on the wheel, that
778 		 * is unusual the system must be way overloaded!
779 		 * Insert into the assured tick, and return special
780 		 * "0".
781 		 */
782 		counter_u64_add(combined_wheel_wrap, 1);
783 		*target_tick = hpts->p_nxt_slot;
784 		return (0);
785 	} else {
786 		/*
787 		 * We know how many slots are open
788 		 * on the wheel (the reverse of what
789 		 * is left to run. Take away the time
790 		 * the pacer started to now (wheel_tick)
791 		 * and that tells you how many slots are
792 		 * open that can be inserted into that won't
793 		 * be touched by the pacer until later.
794 		 */
795 		return (avail_on_wheel - pacer_to_now);
796 	}
797 }
798 
799 static int
800 tcp_queue_to_hpts_immediate_locked(struct inpcb *inp, struct tcp_hpts_entry *hpts, int32_t line, int32_t noref)
801 {
802 	uint32_t need_wake = 0;
803 
804 	HPTS_MTX_ASSERT(hpts);
805 	if (inp->inp_in_hpts == 0) {
806 		/* Ok we need to set it on the hpts in the current slot */
807 		inp->inp_hpts_request = 0;
808 		if ((hpts->p_hpts_active == 0) ||
809 		    (hpts->p_wheel_complete)) {
810 			/*
811 			 * A sleeping hpts we want in next slot to run
812 			 * note that in this state p_prev_slot == p_cur_slot
813 			 */
814 			inp->inp_hptsslot = hpts_tick(hpts->p_prev_slot, 1);
815 			if ((hpts->p_on_min_sleep == 0) && (hpts->p_hpts_active == 0))
816 				need_wake = 1;
817 		} else if ((void *)inp == hpts->p_inp) {
818 			/*
819 			 * The hpts system is running and the caller
820 			 * was awoken by the hpts system.
821 			 * We can't allow you to go into the same slot we
822 			 * are in (we don't want a loop :-D).
823 			 */
824 			inp->inp_hptsslot = hpts->p_nxt_slot;
825 		} else
826 			inp->inp_hptsslot = hpts->p_runningtick;
827 		hpts_sane_pace_insert(hpts, inp, &hpts->p_hptss[inp->inp_hptsslot], line, noref);
828 		if (need_wake) {
829 			/*
830 			 * Activate the hpts if it is sleeping and its
831 			 * timeout is not 1.
832 			 */
833 			hpts->p_direct_wake = 1;
834 			tcp_wakehpts(hpts);
835 		}
836 	}
837 	return (need_wake);
838 }
839 
840 int
841 __tcp_queue_to_hpts_immediate(struct inpcb *inp, int32_t line)
842 {
843 	int32_t ret;
844 	struct tcp_hpts_entry *hpts;
845 
846 	INP_WLOCK_ASSERT(inp);
847 	hpts = tcp_hpts_lock(inp);
848 	ret = tcp_queue_to_hpts_immediate_locked(inp, hpts, line, 0);
849 	mtx_unlock(&hpts->p_mtx);
850 	return (ret);
851 }
852 
853 #ifdef INVARIANTS
854 static void
855 check_if_slot_would_be_wrong(struct tcp_hpts_entry *hpts, struct inpcb *inp, uint32_t inp_hptsslot, int line)
856 {
857 	/*
858 	 * Sanity checks for the pacer with invariants
859 	 * on insert.
860 	 */
861 	if (inp_hptsslot >= NUM_OF_HPTSI_SLOTS)
862 		panic("hpts:%p inp:%p slot:%d > max",
863 		      hpts, inp, inp_hptsslot);
864 	if ((hpts->p_hpts_active) &&
865 	    (hpts->p_wheel_complete == 0)) {
866 		/*
867 		 * If the pacer is processing a arc
868 		 * of the wheel, we need to make
869 		 * sure we are not inserting within
870 		 * that arc.
871 		 */
872 		int distance, yet_to_run;
873 
874 		distance = hpts_ticks_diff(hpts->p_runningtick, inp_hptsslot);
875 		if (hpts->p_runningtick != hpts->p_cur_slot)
876 			yet_to_run = hpts_ticks_diff(hpts->p_runningtick, hpts->p_cur_slot);
877 		else
878 			yet_to_run = 0;	/* processing last slot */
879 		if (yet_to_run > distance) {
880 			panic("hpts:%p inp:%p slot:%d distance:%d yet_to_run:%d rs:%d cs:%d",
881 			      hpts, inp, inp_hptsslot,
882 			      distance, yet_to_run,
883 			      hpts->p_runningtick, hpts->p_cur_slot);
884 		}
885 	}
886 }
887 #endif
888 
889 static void
890 tcp_hpts_insert_locked(struct tcp_hpts_entry *hpts, struct inpcb *inp, uint32_t slot, int32_t line,
891 		       struct hpts_diag *diag, struct timeval *tv)
892 {
893 	uint32_t need_new_to = 0;
894 	uint32_t wheel_cts, last_tick;
895 	int32_t wheel_tick, maxticks;
896 	int8_t need_wakeup = 0;
897 
898 	HPTS_MTX_ASSERT(hpts);
899 	if (diag) {
900 		memset(diag, 0, sizeof(struct hpts_diag));
901 		diag->p_hpts_active = hpts->p_hpts_active;
902 		diag->p_prev_slot = hpts->p_prev_slot;
903 		diag->p_runningtick = hpts->p_runningtick;
904 		diag->p_nxt_slot = hpts->p_nxt_slot;
905 		diag->p_cur_slot = hpts->p_cur_slot;
906 		diag->p_curtick = hpts->p_curtick;
907 		diag->p_lasttick = hpts->p_lasttick;
908 		diag->slot_req = slot;
909 		diag->p_on_min_sleep = hpts->p_on_min_sleep;
910 		diag->hpts_sleep_time = hpts->p_hpts_sleep_time;
911 	}
912 	if (inp->inp_in_hpts == 0) {
913 		if (slot == 0) {
914 			/* Immediate */
915 			tcp_queue_to_hpts_immediate_locked(inp, hpts, line, 0);
916 			return;
917 		}
918 		/* Get the current time relative to the wheel */
919 		wheel_cts = tcp_tv_to_hptstick(tv);
920 		/* Map it onto the wheel */
921 		wheel_tick = tick_to_wheel(wheel_cts);
922 		/* Now what's the max we can place it at? */
923 		maxticks = max_ticks_available(hpts, wheel_tick, &last_tick);
924 		if (diag) {
925 			diag->wheel_tick = wheel_tick;
926 			diag->maxticks = maxticks;
927 			diag->wheel_cts = wheel_cts;
928 		}
929 		if (maxticks == 0) {
930 			/* The pacer is in a wheel wrap behind, yikes! */
931 			if (slot > 1) {
932 				/*
933 				 * Reduce by 1 to prevent a forever loop in
934 				 * case something else is wrong. Note this
935 				 * probably does not hurt because the pacer
936 				 * if its true is so far behind we will be
937 				 * > 1second late calling anyway.
938 				 */
939 				slot--;
940 			}
941 			inp->inp_hptsslot = last_tick;
942 			inp->inp_hpts_request = slot;
943 		} else 	if (maxticks >= slot) {
944 			/* It all fits on the wheel */
945 			inp->inp_hpts_request = 0;
946 			inp->inp_hptsslot = hpts_tick(wheel_tick, slot);
947 		} else {
948 			/* It does not fit */
949 			inp->inp_hpts_request = slot - maxticks;
950 			inp->inp_hptsslot = last_tick;
951 		}
952 		if (diag) {
953 			diag->slot_remaining = inp->inp_hpts_request;
954 			diag->inp_hptsslot = inp->inp_hptsslot;
955 		}
956 #ifdef INVARIANTS
957 		check_if_slot_would_be_wrong(hpts, inp, inp->inp_hptsslot, line);
958 #endif
959 		hpts_sane_pace_insert(hpts, inp, &hpts->p_hptss[inp->inp_hptsslot], line, 0);
960 		if ((hpts->p_hpts_active == 0) &&
961 		    (inp->inp_hpts_request == 0) &&
962 		    (hpts->p_on_min_sleep == 0)) {
963 			/*
964 			 * The hpts is sleeping and not on a minimum
965 			 * sleep time, we need to figure out where
966 			 * it will wake up at and if we need to reschedule
967 			 * its time-out.
968 			 */
969 			uint32_t have_slept, yet_to_sleep;
970 
971 			/* Now do we need to restart the hpts's timer? */
972 			have_slept = hpts_ticks_diff(hpts->p_prev_slot, wheel_tick);
973 			if (have_slept < hpts->p_hpts_sleep_time)
974 				yet_to_sleep = hpts->p_hpts_sleep_time - have_slept;
975 			else {
976 				/* We are over-due */
977 				yet_to_sleep = 0;
978 				need_wakeup = 1;
979 			}
980 			if (diag) {
981 				diag->have_slept = have_slept;
982 				diag->yet_to_sleep = yet_to_sleep;
983 			}
984 			if (yet_to_sleep &&
985 			    (yet_to_sleep > slot)) {
986 				/*
987 				 * We need to reschedule the hpts's time-out.
988 				 */
989 				hpts->p_hpts_sleep_time = slot;
990 				need_new_to = slot * HPTS_TICKS_PER_USEC;
991 			}
992 		}
993 		/*
994 		 * Now how far is the hpts sleeping to? if active is 1, its
995 		 * up and ticking we do nothing, otherwise we may need to
996 		 * reschedule its callout if need_new_to is set from above.
997 		 */
998 		if (need_wakeup) {
999 			hpts->p_direct_wake = 1;
1000 			tcp_wakehpts(hpts);
1001 			if (diag) {
1002 				diag->need_new_to = 0;
1003 				diag->co_ret = 0xffff0000;
1004 			}
1005 		} else if (need_new_to) {
1006 			int32_t co_ret;
1007 			struct timeval tv;
1008 			sbintime_t sb;
1009 
1010 			tv.tv_sec = 0;
1011 			tv.tv_usec = 0;
1012 			while (need_new_to > HPTS_USEC_IN_SEC) {
1013 				tv.tv_sec++;
1014 				need_new_to -= HPTS_USEC_IN_SEC;
1015 			}
1016 			tv.tv_usec = need_new_to;
1017 			sb = tvtosbt(tv);
1018 			if (tcp_hpts_callout_skip_swi == 0) {
1019 				co_ret = callout_reset_sbt_on(&hpts->co, sb, 0,
1020 				    hpts_timeout_swi, hpts, hpts->p_cpu,
1021 				    (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision)));
1022 			} else {
1023 				co_ret = callout_reset_sbt_on(&hpts->co, sb, 0,
1024 				    hpts_timeout_dir, hpts,
1025 				    hpts->p_cpu,
1026 				    C_PREL(tcp_hpts_precision));
1027 			}
1028 			if (diag) {
1029 				diag->need_new_to = need_new_to;
1030 				diag->co_ret = co_ret;
1031 			}
1032 		}
1033 	} else {
1034 #ifdef INVARIANTS
1035 		panic("Hpts:%p tp:%p already on hpts and add?", hpts, inp);
1036 #endif
1037 	}
1038 }
1039 
1040 uint32_t
1041 tcp_hpts_insert_diag(struct inpcb *inp, uint32_t slot, int32_t line, struct hpts_diag *diag)
1042 {
1043 	struct tcp_hpts_entry *hpts;
1044 	uint32_t slot_on;
1045 	struct timeval tv;
1046 
1047 	/*
1048 	 * We now return the next-slot the hpts will be on, beyond its
1049 	 * current run (if up) or where it was when it stopped if it is
1050 	 * sleeping.
1051 	 */
1052 	INP_WLOCK_ASSERT(inp);
1053 	hpts = tcp_hpts_lock(inp);
1054 	microuptime(&tv);
1055 	tcp_hpts_insert_locked(hpts, inp, slot, line, diag, &tv);
1056 	slot_on = hpts->p_nxt_slot;
1057 	mtx_unlock(&hpts->p_mtx);
1058 	return (slot_on);
1059 }
1060 
1061 uint32_t
1062 __tcp_hpts_insert(struct inpcb *inp, uint32_t slot, int32_t line){
1063 	return (tcp_hpts_insert_diag(inp, slot, line, NULL));
1064 }
1065 int
1066 __tcp_queue_to_input_locked(struct inpcb *inp, struct tcp_hpts_entry *hpts, int32_t line)
1067 {
1068 	int32_t retval = 0;
1069 
1070 	HPTS_MTX_ASSERT(hpts);
1071 	if (inp->inp_in_input == 0) {
1072 		/* Ok we need to set it on the hpts in the current slot */
1073 		hpts_sane_input_insert(hpts, inp, line);
1074 		retval = 1;
1075 		if (hpts->p_hpts_active == 0) {
1076 			/*
1077 			 * Activate the hpts if it is sleeping.
1078 			 */
1079 			retval = 2;
1080 			hpts->p_direct_wake = 1;
1081 			tcp_wakeinput(hpts);
1082 		}
1083 	} else if (hpts->p_hpts_active == 0) {
1084 		retval = 4;
1085 		hpts->p_direct_wake = 1;
1086 		tcp_wakeinput(hpts);
1087 	}
1088 	return (retval);
1089 }
1090 
1091 int32_t
1092 __tcp_queue_to_input(struct inpcb *inp, int line)
1093 {
1094 	struct tcp_hpts_entry *hpts;
1095 	int32_t ret;
1096 
1097 	hpts = tcp_input_lock(inp);
1098 	ret = __tcp_queue_to_input_locked(inp, hpts, line);
1099 	mtx_unlock(&hpts->p_mtx);
1100 	return (ret);
1101 }
1102 
1103 void
1104 __tcp_set_inp_to_drop(struct inpcb *inp, uint16_t reason, int32_t line)
1105 {
1106 	struct tcp_hpts_entry *hpts;
1107 	struct tcpcb *tp;
1108 
1109 	tp = intotcpcb(inp);
1110 	hpts = tcp_input_lock(tp->t_inpcb);
1111 	if (inp->inp_in_input == 0) {
1112 		/* Ok we need to set it on the hpts in the current slot */
1113 		hpts_sane_input_insert(hpts, inp, line);
1114 		if (hpts->p_hpts_active == 0) {
1115 			/*
1116 			 * Activate the hpts if it is sleeping.
1117 			 */
1118 			hpts->p_direct_wake = 1;
1119 			tcp_wakeinput(hpts);
1120 		}
1121 	} else if (hpts->p_hpts_active == 0) {
1122 		hpts->p_direct_wake = 1;
1123 		tcp_wakeinput(hpts);
1124 	}
1125 	inp->inp_hpts_drop_reas = reason;
1126 	mtx_unlock(&hpts->p_mtx);
1127 }
1128 
1129 static uint16_t
1130 hpts_random_cpu(struct inpcb *inp){
1131 	/*
1132 	 * No flow type set distribute the load randomly.
1133 	 */
1134 	uint16_t cpuid;
1135 	uint32_t ran;
1136 
1137 	/*
1138 	 * If one has been set use it i.e. we want both in and out on the
1139 	 * same hpts.
1140 	 */
1141 	if (inp->inp_input_cpu_set) {
1142 		return (inp->inp_input_cpu);
1143 	} else if (inp->inp_hpts_cpu_set) {
1144 		return (inp->inp_hpts_cpu);
1145 	}
1146 	/* Nothing set use a random number */
1147 	ran = arc4random();
1148 	cpuid = (ran & 0xffff) % mp_ncpus;
1149 	return (cpuid);
1150 }
1151 
1152 static uint16_t
1153 hpts_cpuid(struct inpcb *inp){
1154 	u_int cpuid;
1155 #ifdef NUMA
1156 	struct hpts_domain_info *di;
1157 #endif
1158 
1159 	/*
1160 	 * If one has been set use it i.e. we want both in and out on the
1161 	 * same hpts.
1162 	 */
1163 	if (inp->inp_input_cpu_set) {
1164 		return (inp->inp_input_cpu);
1165 	} else if (inp->inp_hpts_cpu_set) {
1166 		return (inp->inp_hpts_cpu);
1167 	}
1168 	/* If one is set the other must be the same */
1169 #ifdef	RSS
1170 	cpuid = rss_hash2cpuid(inp->inp_flowid, inp->inp_flowtype);
1171 	if (cpuid == NETISR_CPUID_NONE)
1172 		return (hpts_random_cpu(inp));
1173 	else
1174 		return (cpuid);
1175 #else
1176 	/*
1177 	 * We don't have a flowid -> cpuid mapping, so cheat and just map
1178 	 * unknown cpuids to curcpu.  Not the best, but apparently better
1179 	 * than defaulting to swi 0.
1180 	 */
1181 
1182 	if (inp->inp_flowtype == M_HASHTYPE_NONE)
1183 		return (hpts_random_cpu(inp));
1184 	/*
1185 	 * Hash to a thread based on the flowid.  If we are using numa,
1186 	 * then restrict the hash to the numa domain where the inp lives.
1187 	 */
1188 #ifdef NUMA
1189 	if (tcp_bind_threads == 2 && inp->inp_numa_domain != M_NODOM) {
1190 		di = &hpts_domains[inp->inp_numa_domain];
1191 		cpuid = di->cpu[inp->inp_flowid % di->count];
1192 	} else
1193 #endif
1194 		cpuid = inp->inp_flowid % mp_ncpus;
1195 
1196 	return (cpuid);
1197 #endif
1198 }
1199 
1200 static void
1201 tcp_drop_in_pkts(struct tcpcb *tp)
1202 {
1203 	struct mbuf *m, *n;
1204 
1205 	m = tp->t_in_pkt;
1206 	if (m)
1207 		n = m->m_nextpkt;
1208 	else
1209 		n = NULL;
1210 	tp->t_in_pkt = NULL;
1211 	while (m) {
1212 		m_freem(m);
1213 		m = n;
1214 		if (m)
1215 			n = m->m_nextpkt;
1216 	}
1217 }
1218 
1219 /*
1220  * Do NOT try to optimize the processing of inp's
1221  * by first pulling off all the inp's into a temporary
1222  * list (e.g. TAILQ_CONCAT). If you do that the subtle
1223  * interactions of switching CPU's will kill because of
1224  * problems in the linked list manipulation. Basically
1225  * you would switch cpu's with the hpts mutex locked
1226  * but then while you were processing one of the inp's
1227  * some other one that you switch will get a new
1228  * packet on the different CPU. It will insert it
1229  * on the new hpts's input list. Creating a temporary
1230  * link in the inp will not fix it either, since
1231  * the other hpts will be doing the same thing and
1232  * you will both end up using the temporary link.
1233  *
1234  * You will die in an ASSERT for tailq corruption if you
1235  * run INVARIANTS or you will die horribly without
1236  * INVARIANTS in some unknown way with a corrupt linked
1237  * list.
1238  */
1239 static void
1240 tcp_input_data(struct tcp_hpts_entry *hpts, struct timeval *tv)
1241 {
1242 	struct tcpcb *tp;
1243 	struct inpcb *inp;
1244 	uint16_t drop_reason;
1245 	int16_t set_cpu;
1246 	uint32_t did_prefetch = 0;
1247 	int dropped;
1248 	struct epoch_tracker et;
1249 
1250 	HPTS_MTX_ASSERT(hpts);
1251 #ifndef VIMAGE
1252 	INP_INFO_RLOCK_ET(&V_tcbinfo, et);
1253 #endif
1254 	while ((inp = TAILQ_FIRST(&hpts->p_input)) != NULL) {
1255 		HPTS_MTX_ASSERT(hpts);
1256 		hpts_sane_input_remove(hpts, inp, 0);
1257 		if (inp->inp_input_cpu_set == 0) {
1258 			set_cpu = 1;
1259 		} else {
1260 			set_cpu = 0;
1261 		}
1262 		hpts->p_inp = inp;
1263 		drop_reason = inp->inp_hpts_drop_reas;
1264 		inp->inp_in_input = 0;
1265 		mtx_unlock(&hpts->p_mtx);
1266 		INP_WLOCK(inp);
1267 #ifdef VIMAGE
1268 		CURVNET_SET(inp->inp_vnet);
1269 		INP_INFO_RLOCK_ET(&V_tcbinfo, et);
1270 #endif
1271 		if ((inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) ||
1272 		    (inp->inp_flags2 & INP_FREED)) {
1273 out:
1274 			hpts->p_inp = NULL;
1275 			if (in_pcbrele_wlocked(inp) == 0) {
1276 				INP_WUNLOCK(inp);
1277 			}
1278 #ifdef VIMAGE
1279 			INP_INFO_RUNLOCK_ET(&V_tcbinfo, et);
1280 			CURVNET_RESTORE();
1281 #endif
1282 			mtx_lock(&hpts->p_mtx);
1283 			continue;
1284 		}
1285 		tp = intotcpcb(inp);
1286 		if ((tp == NULL) || (tp->t_inpcb == NULL)) {
1287 			goto out;
1288 		}
1289 		if (drop_reason) {
1290 			/* This tcb is being destroyed for drop_reason */
1291 			tcp_drop_in_pkts(tp);
1292 			tp = tcp_drop(tp, drop_reason);
1293 			if (tp == NULL) {
1294 				INP_WLOCK(inp);
1295 			}
1296 			if (in_pcbrele_wlocked(inp) == 0)
1297 				INP_WUNLOCK(inp);
1298 #ifdef VIMAGE
1299 			INP_INFO_RUNLOCK_ET(&V_tcbinfo, et);
1300 			CURVNET_RESTORE();
1301 #endif
1302 			mtx_lock(&hpts->p_mtx);
1303 			continue;
1304 		}
1305 		if (set_cpu) {
1306 			/*
1307 			 * Setup so the next time we will move to the right
1308 			 * CPU. This should be a rare event. It will
1309 			 * sometimes happens when we are the client side
1310 			 * (usually not the server). Somehow tcp_output()
1311 			 * gets called before the tcp_do_segment() sets the
1312 			 * intial state. This means the r_cpu and r_hpts_cpu
1313 			 * is 0. We get on the hpts, and then tcp_input()
1314 			 * gets called setting up the r_cpu to the correct
1315 			 * value. The hpts goes off and sees the mis-match.
1316 			 * We simply correct it here and the CPU will switch
1317 			 * to the new hpts nextime the tcb gets added to the
1318 			 * the hpts (not this time) :-)
1319 			 */
1320 			tcp_set_hpts(inp);
1321 		}
1322 		if (tp->t_fb_ptr != NULL) {
1323 			kern_prefetch(tp->t_fb_ptr, &did_prefetch);
1324 			did_prefetch = 1;
1325 		}
1326 		if ((inp->inp_flags2 & INP_SUPPORTS_MBUFQ) && tp->t_in_pkt) {
1327 			if (inp->inp_in_input)
1328 				tcp_hpts_remove(inp, HPTS_REMOVE_INPUT);
1329 			dropped = (*tp->t_fb->tfb_do_queued_segments)(inp->inp_socket, tp, 0);
1330 			if (dropped) {
1331 				/* Re-acquire the wlock so we can release the reference */
1332 				INP_WLOCK(inp);
1333 			}
1334 		} else if (tp->t_in_pkt) {
1335 			/*
1336 			 * We reach here only if we had a
1337 			 * stack that supported INP_SUPPORTS_MBUFQ
1338 			 * and then somehow switched to a stack that
1339 			 * does not. The packets are basically stranded
1340 			 * and would hang with the connection until
1341 			 * cleanup without this code. Its not the
1342 			 * best way but I know of no other way to
1343 			 * handle it since the stack needs functions
1344 			 * it does not have to handle queued packets.
1345 			 */
1346 			tcp_drop_in_pkts(tp);
1347 		}
1348 		if (in_pcbrele_wlocked(inp) == 0)
1349 			INP_WUNLOCK(inp);
1350 		INP_UNLOCK_ASSERT(inp);
1351 #ifdef VIMAGE
1352 		INP_INFO_RUNLOCK_ET(&V_tcbinfo, et);
1353 		CURVNET_RESTORE();
1354 #endif
1355 		mtx_lock(&hpts->p_mtx);
1356 		hpts->p_inp = NULL;
1357 	}
1358 #ifndef VIMAGE
1359 	INP_INFO_RUNLOCK_ET(&V_tcbinfo, et);
1360 	INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
1361 #endif
1362 }
1363 
1364 static void
1365 tcp_hptsi(struct tcp_hpts_entry *hpts)
1366 {
1367 	struct epoch_tracker et;
1368 	struct tcpcb *tp;
1369 	struct inpcb *inp = NULL, *ninp;
1370 	struct timeval tv;
1371 	int32_t ticks_to_run, i, error;
1372 	int32_t paced_cnt = 0;
1373 	int32_t loop_cnt = 0;
1374 	int32_t did_prefetch = 0;
1375 	int32_t prefetch_ninp = 0;
1376 	int32_t prefetch_tp = 0;
1377 	int32_t wrap_loop_cnt = 0;
1378 	int16_t set_cpu;
1379 
1380 	HPTS_MTX_ASSERT(hpts);
1381 	/* record previous info for any logging */
1382 	hpts->saved_lasttick = hpts->p_lasttick;
1383 	hpts->saved_curtick = hpts->p_curtick;
1384 	hpts->saved_curslot = hpts->p_cur_slot;
1385 	hpts->saved_prev_slot = hpts->p_prev_slot;
1386 
1387 	hpts->p_lasttick = hpts->p_curtick;
1388 	hpts->p_curtick = tcp_gethptstick(&tv);
1389 	hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick);
1390 	if ((hpts->p_on_queue_cnt == 0) ||
1391 	    (hpts->p_lasttick == hpts->p_curtick)) {
1392 		/*
1393 		 * No time has yet passed,
1394 		 * or nothing to do.
1395 		 */
1396 		hpts->p_prev_slot = hpts->p_cur_slot;
1397 		hpts->p_lasttick = hpts->p_curtick;
1398 		goto no_run;
1399 	}
1400 again:
1401 	hpts->p_wheel_complete = 0;
1402 	HPTS_MTX_ASSERT(hpts);
1403 	ticks_to_run = hpts_ticks_diff(hpts->p_prev_slot, hpts->p_cur_slot);
1404 	if (((hpts->p_curtick - hpts->p_lasttick) > ticks_to_run) &&
1405 	    (hpts->p_on_queue_cnt != 0)) {
1406 		/*
1407 		 * Wheel wrap is occuring, basically we
1408 		 * are behind and the distance between
1409 		 * run's has spread so much it has exceeded
1410 		 * the time on the wheel (1.024 seconds). This
1411 		 * is ugly and should NOT be happening. We
1412 		 * need to run the entire wheel. We last processed
1413 		 * p_prev_slot, so that needs to be the last slot
1414 		 * we run. The next slot after that should be our
1415 		 * reserved first slot for new, and then starts
1416 		 * the running postion. Now the problem is the
1417 		 * reserved "not to yet" place does not exist
1418 		 * and there may be inp's in there that need
1419 		 * running. We can merge those into the
1420 		 * first slot at the head.
1421 		 */
1422 		wrap_loop_cnt++;
1423 		hpts->p_nxt_slot = hpts_tick(hpts->p_prev_slot, 1);
1424 		hpts->p_runningtick = hpts_tick(hpts->p_prev_slot, 2);
1425 		/*
1426 		 * Adjust p_cur_slot to be where we are starting from
1427 		 * hopefully we will catch up (fat chance if something
1428 		 * is broken this bad :( )
1429 		 */
1430 		hpts->p_cur_slot = hpts->p_prev_slot;
1431 		/*
1432 		 * The next slot has guys to run too, and that would
1433 		 * be where we would normally start, lets move them into
1434 		 * the next slot (p_prev_slot + 2) so that we will
1435 		 * run them, the extra 10usecs of late (by being
1436 		 * put behind) does not really matter in this situation.
1437 		 */
1438 #ifdef INVARIANTS
1439 		/*
1440 		 * To prevent a panic we need to update the inpslot to the
1441 		 * new location. This is safe since it takes both the
1442 		 * INP lock and the pacer mutex to change the inp_hptsslot.
1443 		 */
1444 		TAILQ_FOREACH(inp, &hpts->p_hptss[hpts->p_nxt_slot], inp_hpts) {
1445 			inp->inp_hptsslot = hpts->p_runningtick;
1446 		}
1447 #endif
1448 		TAILQ_CONCAT(&hpts->p_hptss[hpts->p_runningtick],
1449 			     &hpts->p_hptss[hpts->p_nxt_slot], inp_hpts);
1450 		ticks_to_run = NUM_OF_HPTSI_SLOTS - 1;
1451 		counter_u64_add(wheel_wrap, 1);
1452 	} else {
1453 		/*
1454 		 * Nxt slot is always one after p_runningtick though
1455 		 * its not used usually unless we are doing wheel wrap.
1456 		 */
1457 		hpts->p_nxt_slot = hpts->p_prev_slot;
1458 		hpts->p_runningtick = hpts_tick(hpts->p_prev_slot, 1);
1459 	}
1460 #ifdef INVARIANTS
1461 	if (TAILQ_EMPTY(&hpts->p_input) &&
1462 	    (hpts->p_on_inqueue_cnt != 0)) {
1463 		panic("tp:%p in_hpts input empty but cnt:%d",
1464 		      hpts, hpts->p_on_inqueue_cnt);
1465 	}
1466 #endif
1467 	HPTS_MTX_ASSERT(hpts);
1468 	if (hpts->p_on_queue_cnt == 0) {
1469 		goto no_one;
1470 	}
1471 	HPTS_MTX_ASSERT(hpts);
1472 #ifndef VIMAGE
1473 	INP_INFO_RLOCK_ET(&V_tcbinfo, et);
1474 #endif
1475 	for (i = 0; i < ticks_to_run; i++) {
1476 		/*
1477 		 * Calculate our delay, if there are no extra ticks there
1478 		 * was not any (i.e. if ticks_to_run == 1, no delay).
1479 		 */
1480 		hpts->p_delayed_by = (ticks_to_run - (i + 1)) * HPTS_TICKS_PER_USEC;
1481 		HPTS_MTX_ASSERT(hpts);
1482 		while ((inp = TAILQ_FIRST(&hpts->p_hptss[hpts->p_runningtick])) != NULL) {
1483 			/* For debugging */
1484 			hpts->p_inp = inp;
1485 			paced_cnt++;
1486 #ifdef INVARIANTS
1487 			if (hpts->p_runningtick != inp->inp_hptsslot) {
1488 				panic("Hpts:%p inp:%p slot mis-aligned %u vs %u",
1489 				      hpts, inp, hpts->p_runningtick, inp->inp_hptsslot);
1490 			}
1491 #endif
1492 			/* Now pull it */
1493 			if (inp->inp_hpts_cpu_set == 0) {
1494 				set_cpu = 1;
1495 			} else {
1496 				set_cpu = 0;
1497 			}
1498 			hpts_sane_pace_remove(hpts, inp, &hpts->p_hptss[hpts->p_runningtick], 0);
1499 			if ((ninp = TAILQ_FIRST(&hpts->p_hptss[hpts->p_runningtick])) != NULL) {
1500 				/* We prefetch the next inp if possible */
1501 				kern_prefetch(ninp, &prefetch_ninp);
1502 				prefetch_ninp = 1;
1503 			}
1504 			if (inp->inp_hpts_request) {
1505 				/*
1506 				 * This guy is deferred out further in time
1507 				 * then our wheel had available on it.
1508 				 * Push him back on the wheel or run it
1509 				 * depending.
1510 				 */
1511 				uint32_t maxticks, last_tick, remaining_slots;
1512 
1513 				remaining_slots = ticks_to_run - (i + 1);
1514 				if (inp->inp_hpts_request > remaining_slots) {
1515 					/*
1516 					 * How far out can we go?
1517 					 */
1518 					maxticks = max_ticks_available(hpts, hpts->p_cur_slot, &last_tick);
1519 					if (maxticks >= inp->inp_hpts_request) {
1520 						/* we can place it finally to be processed  */
1521 						inp->inp_hptsslot = hpts_tick(hpts->p_runningtick, inp->inp_hpts_request);
1522 						inp->inp_hpts_request = 0;
1523 					} else {
1524 						/* Work off some more time */
1525 						inp->inp_hptsslot = last_tick;
1526 						inp->inp_hpts_request-= maxticks;
1527 					}
1528 					hpts_sane_pace_insert(hpts, inp, &hpts->p_hptss[inp->inp_hptsslot], __LINE__, 1);
1529 					hpts->p_inp = NULL;
1530 					continue;
1531 				}
1532 				inp->inp_hpts_request = 0;
1533 				/* Fall through we will so do it now */
1534 			}
1535 			/*
1536 			 * We clear the hpts flag here after dealing with
1537 			 * remaining slots. This way anyone looking with the
1538 			 * TCB lock will see its on the hpts until just
1539 			 * before we unlock.
1540 			 */
1541 			inp->inp_in_hpts = 0;
1542 			mtx_unlock(&hpts->p_mtx);
1543 			INP_WLOCK(inp);
1544 			if (in_pcbrele_wlocked(inp)) {
1545 				mtx_lock(&hpts->p_mtx);
1546 				hpts->p_inp = NULL;
1547 				continue;
1548 			}
1549 			if ((inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) ||
1550 			    (inp->inp_flags2 & INP_FREED)) {
1551 			out_now:
1552 #ifdef INVARIANTS
1553 				if (mtx_owned(&hpts->p_mtx)) {
1554 					panic("Hpts:%p owns mtx prior-to lock line:%d",
1555 					      hpts, __LINE__);
1556 				}
1557 #endif
1558 				INP_WUNLOCK(inp);
1559 				mtx_lock(&hpts->p_mtx);
1560 				hpts->p_inp = NULL;
1561 				continue;
1562 			}
1563 			tp = intotcpcb(inp);
1564 			if ((tp == NULL) || (tp->t_inpcb == NULL)) {
1565 				goto out_now;
1566 			}
1567 			if (set_cpu) {
1568 				/*
1569 				 * Setup so the next time we will move to
1570 				 * the right CPU. This should be a rare
1571 				 * event. It will sometimes happens when we
1572 				 * are the client side (usually not the
1573 				 * server). Somehow tcp_output() gets called
1574 				 * before the tcp_do_segment() sets the
1575 				 * intial state. This means the r_cpu and
1576 				 * r_hpts_cpu is 0. We get on the hpts, and
1577 				 * then tcp_input() gets called setting up
1578 				 * the r_cpu to the correct value. The hpts
1579 				 * goes off and sees the mis-match. We
1580 				 * simply correct it here and the CPU will
1581 				 * switch to the new hpts nextime the tcb
1582 				 * gets added to the the hpts (not this one)
1583 				 * :-)
1584 				 */
1585 				tcp_set_hpts(inp);
1586 			}
1587 #ifdef VIMAGE
1588 			CURVNET_SET(inp->inp_vnet);
1589 			INP_INFO_RLOCK_ET(&V_tcbinfo, et);
1590 #endif
1591 			/* Lets do any logging that we might want to */
1592 			if (hpts_does_tp_logging && (tp->t_logstate != TCP_LOG_STATE_OFF)) {
1593 				tcp_hpts_log(hpts, tp, &tv, ticks_to_run, i);
1594 			}
1595 			/*
1596 			 * There is a hole here, we get the refcnt on the
1597 			 * inp so it will still be preserved but to make
1598 			 * sure we can get the INP we need to hold the p_mtx
1599 			 * above while we pull out the tp/inp,  as long as
1600 			 * fini gets the lock first we are assured of having
1601 			 * a sane INP we can lock and test.
1602 			 */
1603 #ifdef INVARIANTS
1604 			if (mtx_owned(&hpts->p_mtx)) {
1605 				panic("Hpts:%p owns mtx before tcp-output:%d",
1606 				      hpts, __LINE__);
1607 			}
1608 #endif
1609 			if (tp->t_fb_ptr != NULL) {
1610 				kern_prefetch(tp->t_fb_ptr, &did_prefetch);
1611 				did_prefetch = 1;
1612 			}
1613 			if ((inp->inp_flags2 & INP_SUPPORTS_MBUFQ) && tp->t_in_pkt) {
1614 				error = (*tp->t_fb->tfb_do_queued_segments)(inp->inp_socket, tp, 0);
1615 				if (error) {
1616 					/* The input killed the connection */
1617 					goto skip_pacing;
1618 				}
1619 			}
1620 			inp->inp_hpts_calls = 1;
1621 			error = tp->t_fb->tfb_tcp_output(tp);
1622 			inp->inp_hpts_calls = 0;
1623 			if (ninp && ninp->inp_ppcb) {
1624 				/*
1625 				 * If we have a nxt inp, see if we can
1626 				 * prefetch its ppcb. Note this may seem
1627 				 * "risky" since we have no locks (other
1628 				 * than the previous inp) and there no
1629 				 * assurance that ninp was not pulled while
1630 				 * we were processing inp and freed. If this
1631 				 * occured it could mean that either:
1632 				 *
1633 				 * a) Its NULL (which is fine we won't go
1634 				 * here) <or> b) Its valid (which is cool we
1635 				 * will prefetch it) <or> c) The inp got
1636 				 * freed back to the slab which was
1637 				 * reallocated. Then the piece of memory was
1638 				 * re-used and something else (not an
1639 				 * address) is in inp_ppcb. If that occurs
1640 				 * we don't crash, but take a TLB shootdown
1641 				 * performance hit (same as if it was NULL
1642 				 * and we tried to pre-fetch it).
1643 				 *
1644 				 * Considering that the likelyhood of <c> is
1645 				 * quite rare we will take a risk on doing
1646 				 * this. If performance drops after testing
1647 				 * we can always take this out. NB: the
1648 				 * kern_prefetch on amd64 actually has
1649 				 * protection against a bad address now via
1650 				 * the DMAP_() tests. This will prevent the
1651 				 * TLB hit, and instead if <c> occurs just
1652 				 * cause us to load cache with a useless
1653 				 * address (to us).
1654 				 */
1655 				kern_prefetch(ninp->inp_ppcb, &prefetch_tp);
1656 				prefetch_tp = 1;
1657 			}
1658 			INP_WUNLOCK(inp);
1659 		skip_pacing:
1660 #ifdef VIMAGE
1661 			INP_INFO_RUNLOCK_ET(&V_tcbinfo, et);
1662 			CURVNET_RESTORE();
1663 #endif
1664 			INP_UNLOCK_ASSERT(inp);
1665 #ifdef INVARIANTS
1666 			if (mtx_owned(&hpts->p_mtx)) {
1667 				panic("Hpts:%p owns mtx prior-to lock line:%d",
1668 				      hpts, __LINE__);
1669 			}
1670 #endif
1671 			mtx_lock(&hpts->p_mtx);
1672 			hpts->p_inp = NULL;
1673 		}
1674 		HPTS_MTX_ASSERT(hpts);
1675 		hpts->p_inp = NULL;
1676 		hpts->p_runningtick++;
1677 		if (hpts->p_runningtick >= NUM_OF_HPTSI_SLOTS) {
1678 			hpts->p_runningtick = 0;
1679 		}
1680 	}
1681 #ifndef VIMAGE
1682 	INP_INFO_RUNLOCK_ET(&V_tcbinfo, et);
1683 #endif
1684 no_one:
1685 	HPTS_MTX_ASSERT(hpts);
1686 	hpts->p_delayed_by = 0;
1687 	/*
1688 	 * Check to see if we took an excess amount of time and need to run
1689 	 * more ticks (if we did not hit eno-bufs).
1690 	 */
1691 #ifdef INVARIANTS
1692 	if (TAILQ_EMPTY(&hpts->p_input) &&
1693 	    (hpts->p_on_inqueue_cnt != 0)) {
1694 		panic("tp:%p in_hpts input empty but cnt:%d",
1695 		      hpts, hpts->p_on_inqueue_cnt);
1696 	}
1697 #endif
1698 	hpts->p_prev_slot = hpts->p_cur_slot;
1699 	hpts->p_lasttick = hpts->p_curtick;
1700 	if (loop_cnt > max_pacer_loops) {
1701 		/*
1702 		 * Something is serious slow we have
1703 		 * looped through processing the wheel
1704 		 * and by the time we cleared the
1705 		 * needs to run max_pacer_loops time
1706 		 * we still needed to run. That means
1707 		 * the system is hopelessly behind and
1708 		 * can never catch up :(
1709 		 *
1710 		 * We will just lie to this thread
1711 		 * and let it thing p_curtick is
1712 		 * correct. When it next awakens
1713 		 * it will find itself further behind.
1714 		 */
1715 		counter_u64_add(hpts_hopelessly_behind, 1);
1716 		goto no_run;
1717 	}
1718 	hpts->p_curtick = tcp_gethptstick(&tv);
1719 	hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick);
1720 	if ((wrap_loop_cnt < 2) &&
1721 	    (hpts->p_lasttick != hpts->p_curtick)) {
1722 		counter_u64_add(hpts_loops, 1);
1723 		loop_cnt++;
1724 		goto again;
1725 	}
1726 no_run:
1727 	/*
1728 	 * Set flag to tell that we are done for
1729 	 * any slot input that happens during
1730 	 * input.
1731 	 */
1732 	hpts->p_wheel_complete = 1;
1733 	/*
1734 	 * Run any input that may be there not covered
1735 	 * in running data.
1736 	 */
1737 	if (!TAILQ_EMPTY(&hpts->p_input)) {
1738 		tcp_input_data(hpts, &tv);
1739 		/*
1740 		 * Now did we spend too long running
1741 		 * input and need to run more ticks?
1742 		 */
1743 		KASSERT(hpts->p_prev_slot == hpts->p_cur_slot,
1744 			("H:%p p_prev_slot:%u not equal to p_cur_slot:%u", hpts,
1745 			 hpts->p_prev_slot, hpts->p_cur_slot));
1746 		KASSERT(hpts->p_lasttick == hpts->p_curtick,
1747 			("H:%p p_lasttick:%u not equal to p_curtick:%u", hpts,
1748 			 hpts->p_lasttick, hpts->p_curtick));
1749 		hpts->p_curtick = tcp_gethptstick(&tv);
1750 		if (hpts->p_lasttick != hpts->p_curtick) {
1751 			counter_u64_add(hpts_loops, 1);
1752 			hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick);
1753 			goto again;
1754 		}
1755 	}
1756 	{
1757 		uint32_t t = 0, i, fnd = 0;
1758 
1759 		if ((hpts->p_on_queue_cnt) && (wrap_loop_cnt < 2)) {
1760 			/*
1761 			 * Find next slot that is occupied and use that to
1762 			 * be the sleep time.
1763 			 */
1764 			for (i = 0, t = hpts_tick(hpts->p_cur_slot, 1); i < NUM_OF_HPTSI_SLOTS; i++) {
1765 				if (TAILQ_EMPTY(&hpts->p_hptss[t]) == 0) {
1766 					fnd = 1;
1767 					break;
1768 				}
1769 				t = (t + 1) % NUM_OF_HPTSI_SLOTS;
1770 			}
1771 			if (fnd) {
1772 				hpts->p_hpts_sleep_time = min((i + 1), hpts_sleep_max);
1773 			} else {
1774 #ifdef INVARIANTS
1775 				panic("Hpts:%p cnt:%d but none found", hpts, hpts->p_on_queue_cnt);
1776 #endif
1777 				counter_u64_add(back_tosleep, 1);
1778 				hpts->p_on_queue_cnt = 0;
1779 				goto non_found;
1780 			}
1781 		} else if (wrap_loop_cnt >= 2) {
1782 			/* Special case handling */
1783 			hpts->p_hpts_sleep_time = tcp_min_hptsi_time;
1784 		} else {
1785 			/* No one on the wheel sleep for all but 400 slots or sleep max  */
1786 		non_found:
1787 			hpts->p_hpts_sleep_time = hpts_sleep_max;
1788 		}
1789 	}
1790 }
1791 
1792 void
1793 __tcp_set_hpts(struct inpcb *inp, int32_t line)
1794 {
1795 	struct tcp_hpts_entry *hpts;
1796 
1797 	INP_WLOCK_ASSERT(inp);
1798 	hpts = tcp_hpts_lock(inp);
1799 	if ((inp->inp_in_hpts == 0) &&
1800 	    (inp->inp_hpts_cpu_set == 0)) {
1801 		inp->inp_hpts_cpu = hpts_cpuid(inp);
1802 		inp->inp_hpts_cpu_set = 1;
1803 	}
1804 	mtx_unlock(&hpts->p_mtx);
1805 	hpts = tcp_input_lock(inp);
1806 	if ((inp->inp_input_cpu_set == 0) &&
1807 	    (inp->inp_in_input == 0)) {
1808 		inp->inp_input_cpu = hpts_cpuid(inp);
1809 		inp->inp_input_cpu_set = 1;
1810 	}
1811 	mtx_unlock(&hpts->p_mtx);
1812 }
1813 
1814 uint16_t
1815 tcp_hpts_delayedby(struct inpcb *inp){
1816 	return (tcp_pace.rp_ent[inp->inp_hpts_cpu]->p_delayed_by);
1817 }
1818 
1819 static void
1820 tcp_hpts_thread(void *ctx)
1821 {
1822 	struct tcp_hpts_entry *hpts;
1823 	struct timeval tv;
1824 	sbintime_t sb;
1825 
1826 	hpts = (struct tcp_hpts_entry *)ctx;
1827 	mtx_lock(&hpts->p_mtx);
1828 	if (hpts->p_direct_wake) {
1829 		/* Signaled by input */
1830 		callout_stop(&hpts->co);
1831 	} else {
1832 		/* Timed out */
1833 		if (callout_pending(&hpts->co) ||
1834 		    !callout_active(&hpts->co)) {
1835 			mtx_unlock(&hpts->p_mtx);
1836 			return;
1837 		}
1838 		callout_deactivate(&hpts->co);
1839 	}
1840 	hpts->p_hpts_wake_scheduled = 0;
1841 	hpts->p_hpts_active = 1;
1842 	tcp_hptsi(hpts);
1843 	HPTS_MTX_ASSERT(hpts);
1844 	tv.tv_sec = 0;
1845 	tv.tv_usec = hpts->p_hpts_sleep_time * HPTS_TICKS_PER_USEC;
1846 	if (tcp_min_hptsi_time && (tv.tv_usec < tcp_min_hptsi_time)) {
1847 		hpts->overidden_sleep = tv.tv_usec;
1848 		tv.tv_usec = tcp_min_hptsi_time;
1849 		hpts->p_on_min_sleep = 1;
1850 	} else {
1851 		/* Clear the min sleep flag */
1852 		hpts->overidden_sleep = 0;
1853 		hpts->p_on_min_sleep = 0;
1854 	}
1855 	hpts->p_hpts_active = 0;
1856 	sb = tvtosbt(tv);
1857 	if (tcp_hpts_callout_skip_swi == 0) {
1858 		callout_reset_sbt_on(&hpts->co, sb, 0,
1859 		    hpts_timeout_swi, hpts, hpts->p_cpu,
1860 		    (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision)));
1861 	} else {
1862 		callout_reset_sbt_on(&hpts->co, sb, 0,
1863 		    hpts_timeout_dir, hpts,
1864 		    hpts->p_cpu,
1865 		    C_PREL(tcp_hpts_precision));
1866 	}
1867 	hpts->p_direct_wake = 0;
1868 	mtx_unlock(&hpts->p_mtx);
1869 }
1870 
1871 #undef	timersub
1872 
1873 static void
1874 tcp_init_hptsi(void *st)
1875 {
1876 	int32_t i, j, error, bound = 0, created = 0;
1877 	size_t sz, asz;
1878 	struct timeval tv;
1879 	sbintime_t sb;
1880 	struct tcp_hpts_entry *hpts;
1881 	struct pcpu *pc;
1882 	cpuset_t cs;
1883 	char unit[16];
1884 	uint32_t ncpus = mp_ncpus ? mp_ncpus : MAXCPU;
1885 	int count, domain;
1886 
1887 	tcp_pace.rp_proc = NULL;
1888 	tcp_pace.rp_num_hptss = ncpus;
1889 	hpts_hopelessly_behind = counter_u64_alloc(M_WAITOK);
1890 	hpts_loops = counter_u64_alloc(M_WAITOK);
1891 	back_tosleep = counter_u64_alloc(M_WAITOK);
1892 	combined_wheel_wrap = counter_u64_alloc(M_WAITOK);
1893 	wheel_wrap = counter_u64_alloc(M_WAITOK);
1894 	sz = (tcp_pace.rp_num_hptss * sizeof(struct tcp_hpts_entry *));
1895 	tcp_pace.rp_ent = malloc(sz, M_TCPHPTS, M_WAITOK | M_ZERO);
1896 	asz = sizeof(struct hptsh) * NUM_OF_HPTSI_SLOTS;
1897 	for (i = 0; i < tcp_pace.rp_num_hptss; i++) {
1898 		tcp_pace.rp_ent[i] = malloc(sizeof(struct tcp_hpts_entry),
1899 		    M_TCPHPTS, M_WAITOK | M_ZERO);
1900 		tcp_pace.rp_ent[i]->p_hptss = malloc(asz,
1901 		    M_TCPHPTS, M_WAITOK);
1902 		hpts = tcp_pace.rp_ent[i];
1903 		/*
1904 		 * Init all the hpts structures that are not specifically
1905 		 * zero'd by the allocations. Also lets attach them to the
1906 		 * appropriate sysctl block as well.
1907 		 */
1908 		mtx_init(&hpts->p_mtx, "tcp_hpts_lck",
1909 		    "hpts", MTX_DEF | MTX_DUPOK);
1910 		TAILQ_INIT(&hpts->p_input);
1911 		for (j = 0; j < NUM_OF_HPTSI_SLOTS; j++) {
1912 			TAILQ_INIT(&hpts->p_hptss[j]);
1913 		}
1914 		sysctl_ctx_init(&hpts->hpts_ctx);
1915 		sprintf(unit, "%d", i);
1916 		hpts->hpts_root = SYSCTL_ADD_NODE(&hpts->hpts_ctx,
1917 		    SYSCTL_STATIC_CHILDREN(_net_inet_tcp_hpts),
1918 		    OID_AUTO,
1919 		    unit,
1920 		    CTLFLAG_RW, 0,
1921 		    "");
1922 		SYSCTL_ADD_INT(&hpts->hpts_ctx,
1923 		    SYSCTL_CHILDREN(hpts->hpts_root),
1924 		    OID_AUTO, "in_qcnt", CTLFLAG_RD,
1925 		    &hpts->p_on_inqueue_cnt, 0,
1926 		    "Count TCB's awaiting input processing");
1927 		SYSCTL_ADD_INT(&hpts->hpts_ctx,
1928 		    SYSCTL_CHILDREN(hpts->hpts_root),
1929 		    OID_AUTO, "out_qcnt", CTLFLAG_RD,
1930 		    &hpts->p_on_queue_cnt, 0,
1931 		    "Count TCB's awaiting output processing");
1932 		SYSCTL_ADD_U16(&hpts->hpts_ctx,
1933 		    SYSCTL_CHILDREN(hpts->hpts_root),
1934 		    OID_AUTO, "active", CTLFLAG_RD,
1935 		    &hpts->p_hpts_active, 0,
1936 		    "Is the hpts active");
1937 		SYSCTL_ADD_UINT(&hpts->hpts_ctx,
1938 		    SYSCTL_CHILDREN(hpts->hpts_root),
1939 		    OID_AUTO, "curslot", CTLFLAG_RD,
1940 		    &hpts->p_cur_slot, 0,
1941 		    "What the current running pacers goal");
1942 		SYSCTL_ADD_UINT(&hpts->hpts_ctx,
1943 		    SYSCTL_CHILDREN(hpts->hpts_root),
1944 		    OID_AUTO, "runtick", CTLFLAG_RD,
1945 		    &hpts->p_runningtick, 0,
1946 		    "What the running pacers current slot is");
1947 		SYSCTL_ADD_UINT(&hpts->hpts_ctx,
1948 		    SYSCTL_CHILDREN(hpts->hpts_root),
1949 		    OID_AUTO, "curtick", CTLFLAG_RD,
1950 		    &hpts->p_curtick, 0,
1951 		    "What the running pacers last tick mapped to the wheel was");
1952 		hpts->p_hpts_sleep_time = hpts_sleep_max;
1953 		hpts->p_num = i;
1954 		hpts->p_curtick = tcp_gethptstick(&tv);
1955 		hpts->p_prev_slot = hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick);
1956 		hpts->p_cpu = 0xffff;
1957 		hpts->p_nxt_slot = hpts_tick(hpts->p_cur_slot, 1);
1958 		callout_init(&hpts->co, 1);
1959 	}
1960 
1961 	/* Don't try to bind to NUMA domains if we don't have any */
1962 	if (vm_ndomains == 1 && tcp_bind_threads == 2)
1963 		tcp_bind_threads = 0;
1964 
1965 	/*
1966 	 * Now lets start ithreads to handle the hptss.
1967 	 */
1968 	CPU_FOREACH(i) {
1969 		hpts = tcp_pace.rp_ent[i];
1970 		hpts->p_cpu = i;
1971 		error = swi_add(&hpts->ie, "hpts",
1972 		    tcp_hpts_thread, (void *)hpts,
1973 		    SWI_NET, INTR_MPSAFE, &hpts->ie_cookie);
1974 		if (error) {
1975 			panic("Can't add hpts:%p i:%d err:%d",
1976 			    hpts, i, error);
1977 		}
1978 		created++;
1979 		if (tcp_bind_threads == 1) {
1980 			if (intr_event_bind(hpts->ie, i) == 0)
1981 				bound++;
1982 		} else if (tcp_bind_threads == 2) {
1983 			pc = pcpu_find(i);
1984 			domain = pc->pc_domain;
1985 			CPU_COPY(&cpuset_domain[domain], &cs);
1986 			if (intr_event_bind_ithread_cpuset(hpts->ie, &cs)
1987 			    == 0) {
1988 				bound++;
1989 				count = hpts_domains[domain].count;
1990 				hpts_domains[domain].cpu[count] = i;
1991 				hpts_domains[domain].count++;
1992 			}
1993 		}
1994 		tv.tv_sec = 0;
1995 		tv.tv_usec = hpts->p_hpts_sleep_time * HPTS_TICKS_PER_USEC;
1996 		sb = tvtosbt(tv);
1997 		if (tcp_hpts_callout_skip_swi == 0) {
1998 			callout_reset_sbt_on(&hpts->co, sb, 0,
1999 			    hpts_timeout_swi, hpts, hpts->p_cpu,
2000 			    (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision)));
2001 		} else {
2002 			callout_reset_sbt_on(&hpts->co, sb, 0,
2003 			    hpts_timeout_dir, hpts,
2004 			    hpts->p_cpu,
2005 			    C_PREL(tcp_hpts_precision));
2006 		}
2007 	}
2008 	/*
2009 	 * If we somehow have an empty domain, fall back to choosing
2010 	 * among all htps threads.
2011 	 */
2012 	for (i = 0; i < vm_ndomains; i++) {
2013 		if (hpts_domains[i].count == 0) {
2014 			tcp_bind_threads = 0;
2015 			break;
2016 		}
2017 	}
2018 
2019 	printf("TCP Hpts created %d swi interrupt threads and bound %d to %s\n",
2020 	    created, bound,
2021 	    tcp_bind_threads == 2 ? "NUMA domains" : "cpus");
2022 }
2023 
2024 SYSINIT(tcphptsi, SI_SUB_KTHREAD_IDLE, SI_ORDER_ANY, tcp_init_hptsi, NULL);
2025 MODULE_VERSION(tcphpts, 1);
2026