1 /*- 2 * Copyright (c) 2016-2018 Netflix, Inc. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 1. Redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer. 9 * 2. Redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution. 12 * 13 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 14 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 16 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 17 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 18 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 19 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 20 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 21 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 22 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 23 * SUCH DAMAGE. 24 * 25 */ 26 #include <sys/cdefs.h> 27 #include "opt_inet.h" 28 #include "opt_inet6.h" 29 #include "opt_rss.h" 30 31 /** 32 * Some notes about usage. 33 * 34 * The tcp_hpts system is designed to provide a high precision timer 35 * system for tcp. Its main purpose is to provide a mechanism for 36 * pacing packets out onto the wire. It can be used in two ways 37 * by a given TCP stack (and those two methods can be used simultaneously). 38 * 39 * First, and probably the main thing its used by Rack and BBR, it can 40 * be used to call tcp_output() of a transport stack at some time in the future. 41 * The normal way this is done is that tcp_output() of the stack schedules 42 * itself to be called again by calling tcp_hpts_insert(tcpcb, slot). The 43 * slot is the time from now that the stack wants to be called but it 44 * must be converted to tcp_hpts's notion of slot. This is done with 45 * one of the macros HPTS_MS_TO_SLOTS or HPTS_USEC_TO_SLOTS. So a typical 46 * call from the tcp_output() routine might look like: 47 * 48 * tcp_hpts_insert(tp, HPTS_USEC_TO_SLOTS(550)); 49 * 50 * The above would schedule tcp_ouput() to be called in 550 useconds. 51 * Note that if using this mechanism the stack will want to add near 52 * its top a check to prevent unwanted calls (from user land or the 53 * arrival of incoming ack's). So it would add something like: 54 * 55 * if (tcp_in_hpts(inp)) 56 * return; 57 * 58 * to prevent output processing until the time alotted has gone by. 59 * Of course this is a bare bones example and the stack will probably 60 * have more consideration then just the above. 61 * 62 * In order to run input queued segments from the HPTS context the 63 * tcp stack must define an input function for 64 * tfb_do_queued_segments(). This function understands 65 * how to dequeue a array of packets that were input and 66 * knows how to call the correct processing routine. 67 * 68 * Locking in this is important as well so most likely the 69 * stack will need to define the tfb_do_segment_nounlock() 70 * splitting tfb_do_segment() into two parts. The main processing 71 * part that does not unlock the INP and returns a value of 1 or 0. 72 * It returns 0 if all is well and the lock was not released. It 73 * returns 1 if we had to destroy the TCB (a reset received etc). 74 * The remains of tfb_do_segment() then become just a simple call 75 * to the tfb_do_segment_nounlock() function and check the return 76 * code and possibly unlock. 77 * 78 * The stack must also set the flag on the INP that it supports this 79 * feature i.e. INP_SUPPORTS_MBUFQ. The LRO code recoginizes 80 * this flag as well and will queue packets when it is set. 81 * There are other flags as well INP_MBUF_QUEUE_READY and 82 * INP_DONT_SACK_QUEUE. The first flag tells the LRO code 83 * that we are in the pacer for output so there is no 84 * need to wake up the hpts system to get immediate 85 * input. The second tells the LRO code that its okay 86 * if a SACK arrives you can still defer input and let 87 * the current hpts timer run (this is usually set when 88 * a rack timer is up so we know SACK's are happening 89 * on the connection already and don't want to wakeup yet). 90 * 91 * There is a common functions within the rack_bbr_common code 92 * version i.e. ctf_do_queued_segments(). This function 93 * knows how to take the input queue of packets from tp->t_inqueue 94 * and process them digging out all the arguments, calling any bpf tap and 95 * calling into tfb_do_segment_nounlock(). The common 96 * function (ctf_do_queued_segments()) requires that 97 * you have defined the tfb_do_segment_nounlock() as 98 * described above. 99 */ 100 101 #include <sys/param.h> 102 #include <sys/bus.h> 103 #include <sys/interrupt.h> 104 #include <sys/module.h> 105 #include <sys/kernel.h> 106 #include <sys/hhook.h> 107 #include <sys/malloc.h> 108 #include <sys/mbuf.h> 109 #include <sys/proc.h> /* for proc0 declaration */ 110 #include <sys/socket.h> 111 #include <sys/socketvar.h> 112 #include <sys/sysctl.h> 113 #include <sys/systm.h> 114 #include <sys/refcount.h> 115 #include <sys/sched.h> 116 #include <sys/queue.h> 117 #include <sys/smp.h> 118 #include <sys/counter.h> 119 #include <sys/time.h> 120 #include <sys/kthread.h> 121 #include <sys/kern_prefetch.h> 122 123 #include <vm/uma.h> 124 #include <vm/vm.h> 125 126 #include <net/route.h> 127 #include <net/vnet.h> 128 129 #ifdef RSS 130 #include <net/netisr.h> 131 #include <net/rss_config.h> 132 #endif 133 134 #define TCPSTATES /* for logging */ 135 136 #include <netinet/in.h> 137 #include <netinet/in_kdtrace.h> 138 #include <netinet/in_pcb.h> 139 #include <netinet/ip.h> 140 #include <netinet/ip_icmp.h> /* required for icmp_var.h */ 141 #include <netinet/icmp_var.h> /* for ICMP_BANDLIM */ 142 #include <netinet/ip_var.h> 143 #include <netinet/ip6.h> 144 #include <netinet6/in6_pcb.h> 145 #include <netinet6/ip6_var.h> 146 #include <netinet/tcp.h> 147 #include <netinet/tcp_fsm.h> 148 #include <netinet/tcp_seq.h> 149 #include <netinet/tcp_timer.h> 150 #include <netinet/tcp_var.h> 151 #include <netinet/tcpip.h> 152 #include <netinet/cc/cc.h> 153 #include <netinet/tcp_hpts.h> 154 #include <netinet/tcp_log_buf.h> 155 156 #ifdef tcp_offload 157 #include <netinet/tcp_offload.h> 158 #endif 159 160 /* 161 * The hpts uses a 102400 wheel. The wheel 162 * defines the time in 10 usec increments (102400 x 10). 163 * This gives a range of 10usec - 1024ms to place 164 * an entry within. If the user requests more than 165 * 1.024 second, a remaineder is attached and the hpts 166 * when seeing the remainder will re-insert the 167 * inpcb forward in time from where it is until 168 * the remainder is zero. 169 */ 170 171 #define NUM_OF_HPTSI_SLOTS 102400 172 173 /* Each hpts has its own p_mtx which is used for locking */ 174 #define HPTS_MTX_ASSERT(hpts) mtx_assert(&(hpts)->p_mtx, MA_OWNED) 175 #define HPTS_LOCK(hpts) mtx_lock(&(hpts)->p_mtx) 176 #define HPTS_UNLOCK(hpts) mtx_unlock(&(hpts)->p_mtx) 177 struct tcp_hpts_entry { 178 /* Cache line 0x00 */ 179 struct mtx p_mtx; /* Mutex for hpts */ 180 struct timeval p_mysleep; /* Our min sleep time */ 181 uint64_t syscall_cnt; 182 uint64_t sleeping; /* What the actual sleep was (if sleeping) */ 183 uint16_t p_hpts_active; /* Flag that says hpts is awake */ 184 uint8_t p_wheel_complete; /* have we completed the wheel arc walk? */ 185 uint32_t p_curtick; /* Tick in 10 us the hpts is going to */ 186 uint32_t p_runningslot; /* Current tick we are at if we are running */ 187 uint32_t p_prev_slot; /* Previous slot we were on */ 188 uint32_t p_cur_slot; /* Current slot in wheel hpts is draining */ 189 uint32_t p_nxt_slot; /* The next slot outside the current range of 190 * slots that the hpts is running on. */ 191 int32_t p_on_queue_cnt; /* Count on queue in this hpts */ 192 uint32_t p_lasttick; /* Last tick before the current one */ 193 uint8_t p_direct_wake :1, /* boolean */ 194 p_on_min_sleep:1, /* boolean */ 195 p_hpts_wake_scheduled:1, /* boolean */ 196 p_avail:5; 197 uint8_t p_fill[3]; /* Fill to 32 bits */ 198 /* Cache line 0x40 */ 199 struct hptsh { 200 TAILQ_HEAD(, tcpcb) head; 201 uint32_t count; 202 uint32_t gencnt; 203 } *p_hptss; /* Hptsi wheel */ 204 uint32_t p_hpts_sleep_time; /* Current sleep interval having a max 205 * of 255ms */ 206 uint32_t overidden_sleep; /* what was overrided by min-sleep for logging */ 207 uint32_t saved_lasttick; /* for logging */ 208 uint32_t saved_curtick; /* for logging */ 209 uint32_t saved_curslot; /* for logging */ 210 uint32_t saved_prev_slot; /* for logging */ 211 uint32_t p_delayed_by; /* How much were we delayed by */ 212 /* Cache line 0x80 */ 213 struct sysctl_ctx_list hpts_ctx; 214 struct sysctl_oid *hpts_root; 215 struct intr_event *ie; 216 void *ie_cookie; 217 uint16_t p_num; /* The hpts number one per cpu */ 218 uint16_t p_cpu; /* The hpts CPU */ 219 /* There is extra space in here */ 220 /* Cache line 0x100 */ 221 struct callout co __aligned(CACHE_LINE_SIZE); 222 } __aligned(CACHE_LINE_SIZE); 223 224 static struct tcp_hptsi { 225 struct cpu_group **grps; 226 struct tcp_hpts_entry **rp_ent; /* Array of hptss */ 227 uint32_t *cts_last_ran; 228 uint32_t grp_cnt; 229 uint32_t rp_num_hptss; /* Number of hpts threads */ 230 } tcp_pace; 231 232 MALLOC_DEFINE(M_TCPHPTS, "tcp_hpts", "TCP hpts"); 233 #ifdef RSS 234 static int tcp_bind_threads = 1; 235 #else 236 static int tcp_bind_threads = 2; 237 #endif 238 static int tcp_use_irq_cpu = 0; 239 static uint32_t *cts_last_ran; 240 static int hpts_does_tp_logging = 0; 241 242 static int32_t tcp_hptsi(struct tcp_hpts_entry *hpts, int from_callout); 243 static void tcp_hpts_thread(void *ctx); 244 static void tcp_init_hptsi(void *st); 245 246 int32_t tcp_min_hptsi_time = DEFAULT_MIN_SLEEP; 247 static int conn_cnt_thresh = DEFAULT_CONNECTION_THESHOLD; 248 static int32_t dynamic_min_sleep = DYNAMIC_MIN_SLEEP; 249 static int32_t dynamic_max_sleep = DYNAMIC_MAX_SLEEP; 250 251 252 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, hpts, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 253 "TCP Hpts controls"); 254 SYSCTL_NODE(_net_inet_tcp_hpts, OID_AUTO, stats, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 255 "TCP Hpts statistics"); 256 257 #define timersub(tvp, uvp, vvp) \ 258 do { \ 259 (vvp)->tv_sec = (tvp)->tv_sec - (uvp)->tv_sec; \ 260 (vvp)->tv_usec = (tvp)->tv_usec - (uvp)->tv_usec; \ 261 if ((vvp)->tv_usec < 0) { \ 262 (vvp)->tv_sec--; \ 263 (vvp)->tv_usec += 1000000; \ 264 } \ 265 } while (0) 266 267 static int32_t tcp_hpts_precision = 120; 268 269 static struct hpts_domain_info { 270 int count; 271 int cpu[MAXCPU]; 272 } hpts_domains[MAXMEMDOM]; 273 274 counter_u64_t hpts_hopelessly_behind; 275 276 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, hopeless, CTLFLAG_RD, 277 &hpts_hopelessly_behind, 278 "Number of times hpts could not catch up and was behind hopelessly"); 279 280 counter_u64_t hpts_loops; 281 282 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, loops, CTLFLAG_RD, 283 &hpts_loops, "Number of times hpts had to loop to catch up"); 284 285 counter_u64_t back_tosleep; 286 287 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, no_tcbsfound, CTLFLAG_RD, 288 &back_tosleep, "Number of times hpts found no tcbs"); 289 290 counter_u64_t combined_wheel_wrap; 291 292 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, comb_wheel_wrap, CTLFLAG_RD, 293 &combined_wheel_wrap, "Number of times the wheel lagged enough to have an insert see wrap"); 294 295 counter_u64_t wheel_wrap; 296 297 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, wheel_wrap, CTLFLAG_RD, 298 &wheel_wrap, "Number of times the wheel lagged enough to have an insert see wrap"); 299 300 counter_u64_t hpts_direct_call; 301 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, direct_call, CTLFLAG_RD, 302 &hpts_direct_call, "Number of times hpts was called by syscall/trap or other entry"); 303 304 counter_u64_t hpts_wake_timeout; 305 306 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, timeout_wakeup, CTLFLAG_RD, 307 &hpts_wake_timeout, "Number of times hpts threads woke up via the callout expiring"); 308 309 counter_u64_t hpts_direct_awakening; 310 311 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, direct_awakening, CTLFLAG_RD, 312 &hpts_direct_awakening, "Number of times hpts threads woke up via the callout expiring"); 313 314 counter_u64_t hpts_back_tosleep; 315 316 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, back_tosleep, CTLFLAG_RD, 317 &hpts_back_tosleep, "Number of times hpts threads woke up via the callout expiring and went back to sleep no work"); 318 319 counter_u64_t cpu_uses_flowid; 320 counter_u64_t cpu_uses_random; 321 322 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, cpusel_flowid, CTLFLAG_RD, 323 &cpu_uses_flowid, "Number of times when setting cpuid we used the flowid field"); 324 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, cpusel_random, CTLFLAG_RD, 325 &cpu_uses_random, "Number of times when setting cpuid we used the a random value"); 326 327 TUNABLE_INT("net.inet.tcp.bind_hptss", &tcp_bind_threads); 328 TUNABLE_INT("net.inet.tcp.use_irq", &tcp_use_irq_cpu); 329 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, bind_hptss, CTLFLAG_RD, 330 &tcp_bind_threads, 2, 331 "Thread Binding tunable"); 332 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, use_irq, CTLFLAG_RD, 333 &tcp_use_irq_cpu, 0, 334 "Use of irq CPU tunable"); 335 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, precision, CTLFLAG_RW, 336 &tcp_hpts_precision, 120, 337 "Value for PRE() precision of callout"); 338 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, cnt_thresh, CTLFLAG_RW, 339 &conn_cnt_thresh, 0, 340 "How many connections (below) make us use the callout based mechanism"); 341 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, logging, CTLFLAG_RW, 342 &hpts_does_tp_logging, 0, 343 "Do we add to any tp that has logging on pacer logs"); 344 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, dyn_minsleep, CTLFLAG_RW, 345 &dynamic_min_sleep, 250, 346 "What is the dynamic minsleep value?"); 347 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, dyn_maxsleep, CTLFLAG_RW, 348 &dynamic_max_sleep, 5000, 349 "What is the dynamic maxsleep value?"); 350 351 static int32_t max_pacer_loops = 10; 352 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, loopmax, CTLFLAG_RW, 353 &max_pacer_loops, 10, 354 "What is the maximum number of times the pacer will loop trying to catch up"); 355 356 #define HPTS_MAX_SLEEP_ALLOWED (NUM_OF_HPTSI_SLOTS/2) 357 358 static uint32_t hpts_sleep_max = HPTS_MAX_SLEEP_ALLOWED; 359 360 static int 361 sysctl_net_inet_tcp_hpts_max_sleep(SYSCTL_HANDLER_ARGS) 362 { 363 int error; 364 uint32_t new; 365 366 new = hpts_sleep_max; 367 error = sysctl_handle_int(oidp, &new, 0, req); 368 if (error == 0 && req->newptr) { 369 if ((new < (dynamic_min_sleep/HPTS_TICKS_PER_SLOT)) || 370 (new > HPTS_MAX_SLEEP_ALLOWED)) 371 error = EINVAL; 372 else 373 hpts_sleep_max = new; 374 } 375 return (error); 376 } 377 378 static int 379 sysctl_net_inet_tcp_hpts_min_sleep(SYSCTL_HANDLER_ARGS) 380 { 381 int error; 382 uint32_t new; 383 384 new = tcp_min_hptsi_time; 385 error = sysctl_handle_int(oidp, &new, 0, req); 386 if (error == 0 && req->newptr) { 387 if (new < LOWEST_SLEEP_ALLOWED) 388 error = EINVAL; 389 else 390 tcp_min_hptsi_time = new; 391 } 392 return (error); 393 } 394 395 SYSCTL_PROC(_net_inet_tcp_hpts, OID_AUTO, maxsleep, 396 CTLTYPE_UINT | CTLFLAG_RW, 397 &hpts_sleep_max, 0, 398 &sysctl_net_inet_tcp_hpts_max_sleep, "IU", 399 "Maximum time hpts will sleep in slots"); 400 401 SYSCTL_PROC(_net_inet_tcp_hpts, OID_AUTO, minsleep, 402 CTLTYPE_UINT | CTLFLAG_RW, 403 &tcp_min_hptsi_time, 0, 404 &sysctl_net_inet_tcp_hpts_min_sleep, "IU", 405 "The minimum time the hpts must sleep before processing more slots"); 406 407 static int ticks_indicate_more_sleep = TICKS_INDICATE_MORE_SLEEP; 408 static int ticks_indicate_less_sleep = TICKS_INDICATE_LESS_SLEEP; 409 static int tcp_hpts_no_wake_over_thresh = 1; 410 411 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, more_sleep, CTLFLAG_RW, 412 &ticks_indicate_more_sleep, 0, 413 "If we only process this many or less on a timeout, we need longer sleep on the next callout"); 414 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, less_sleep, CTLFLAG_RW, 415 &ticks_indicate_less_sleep, 0, 416 "If we process this many or more on a timeout, we need less sleep on the next callout"); 417 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, nowake_over_thresh, CTLFLAG_RW, 418 &tcp_hpts_no_wake_over_thresh, 0, 419 "When we are over the threshold on the pacer do we prohibit wakeups?"); 420 421 static uint16_t 422 hpts_random_cpu(void) 423 { 424 uint16_t cpuid; 425 uint32_t ran; 426 427 ran = arc4random(); 428 cpuid = (((ran & 0xffff) % mp_ncpus) % tcp_pace.rp_num_hptss); 429 return (cpuid); 430 } 431 432 static void 433 tcp_hpts_log(struct tcp_hpts_entry *hpts, struct tcpcb *tp, struct timeval *tv, 434 int slots_to_run, int idx, int from_callout) 435 { 436 union tcp_log_stackspecific log; 437 /* 438 * Unused logs are 439 * 64 bit - delRate, rttProp, bw_inuse 440 * 16 bit - cwnd_gain 441 * 8 bit - bbr_state, bbr_substate, inhpts; 442 */ 443 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 444 log.u_bbr.flex1 = hpts->p_nxt_slot; 445 log.u_bbr.flex2 = hpts->p_cur_slot; 446 log.u_bbr.flex3 = hpts->p_prev_slot; 447 log.u_bbr.flex4 = idx; 448 log.u_bbr.flex5 = hpts->p_curtick; 449 log.u_bbr.flex6 = hpts->p_on_queue_cnt; 450 log.u_bbr.flex7 = hpts->p_cpu; 451 log.u_bbr.flex8 = (uint8_t)from_callout; 452 log.u_bbr.inflight = slots_to_run; 453 log.u_bbr.applimited = hpts->overidden_sleep; 454 log.u_bbr.delivered = hpts->saved_curtick; 455 log.u_bbr.timeStamp = tcp_tv_to_usectick(tv); 456 log.u_bbr.epoch = hpts->saved_curslot; 457 log.u_bbr.lt_epoch = hpts->saved_prev_slot; 458 log.u_bbr.pkts_out = hpts->p_delayed_by; 459 log.u_bbr.lost = hpts->p_hpts_sleep_time; 460 log.u_bbr.pacing_gain = hpts->p_cpu; 461 log.u_bbr.pkt_epoch = hpts->p_runningslot; 462 log.u_bbr.use_lt_bw = 1; 463 TCP_LOG_EVENTP(tp, NULL, 464 &tptosocket(tp)->so_rcv, 465 &tptosocket(tp)->so_snd, 466 BBR_LOG_HPTSDIAG, 0, 467 0, &log, false, tv); 468 } 469 470 static void 471 tcp_wakehpts(struct tcp_hpts_entry *hpts) 472 { 473 HPTS_MTX_ASSERT(hpts); 474 475 if (tcp_hpts_no_wake_over_thresh && (hpts->p_on_queue_cnt >= conn_cnt_thresh)) { 476 hpts->p_direct_wake = 0; 477 return; 478 } 479 if (hpts->p_hpts_wake_scheduled == 0) { 480 hpts->p_hpts_wake_scheduled = 1; 481 swi_sched(hpts->ie_cookie, 0); 482 } 483 } 484 485 static void 486 hpts_timeout_swi(void *arg) 487 { 488 struct tcp_hpts_entry *hpts; 489 490 hpts = (struct tcp_hpts_entry *)arg; 491 swi_sched(hpts->ie_cookie, 0); 492 } 493 494 static void 495 tcp_hpts_insert_internal(struct tcpcb *tp, struct tcp_hpts_entry *hpts) 496 { 497 struct inpcb *inp = tptoinpcb(tp); 498 struct hptsh *hptsh; 499 500 INP_WLOCK_ASSERT(inp); 501 HPTS_MTX_ASSERT(hpts); 502 MPASS(hpts->p_cpu == tp->t_hpts_cpu); 503 MPASS(!(inp->inp_flags & INP_DROPPED)); 504 505 hptsh = &hpts->p_hptss[tp->t_hpts_slot]; 506 507 if (tp->t_in_hpts == IHPTS_NONE) { 508 tp->t_in_hpts = IHPTS_ONQUEUE; 509 in_pcbref(inp); 510 } else if (tp->t_in_hpts == IHPTS_MOVING) { 511 tp->t_in_hpts = IHPTS_ONQUEUE; 512 } else 513 MPASS(tp->t_in_hpts == IHPTS_ONQUEUE); 514 tp->t_hpts_gencnt = hptsh->gencnt; 515 516 TAILQ_INSERT_TAIL(&hptsh->head, tp, t_hpts); 517 hptsh->count++; 518 hpts->p_on_queue_cnt++; 519 } 520 521 static struct tcp_hpts_entry * 522 tcp_hpts_lock(struct tcpcb *tp) 523 { 524 struct tcp_hpts_entry *hpts; 525 526 INP_LOCK_ASSERT(tptoinpcb(tp)); 527 528 hpts = tcp_pace.rp_ent[tp->t_hpts_cpu]; 529 HPTS_LOCK(hpts); 530 531 return (hpts); 532 } 533 534 static void 535 tcp_hpts_release(struct tcpcb *tp) 536 { 537 bool released __diagused; 538 539 tp->t_in_hpts = IHPTS_NONE; 540 released = in_pcbrele_wlocked(tptoinpcb(tp)); 541 MPASS(released == false); 542 } 543 544 /* 545 * Initialize newborn tcpcb to get ready for use with HPTS. 546 */ 547 void 548 tcp_hpts_init(struct tcpcb *tp) 549 { 550 551 tp->t_hpts_cpu = hpts_random_cpu(); 552 tp->t_lro_cpu = HPTS_CPU_NONE; 553 MPASS(!(tp->t_flags2 & TF2_HPTS_CPU_SET)); 554 } 555 556 /* 557 * Called normally with the INP_LOCKED but it 558 * does not matter, the hpts lock is the key 559 * but the lock order allows us to hold the 560 * INP lock and then get the hpts lock. 561 */ 562 void 563 tcp_hpts_remove(struct tcpcb *tp) 564 { 565 struct tcp_hpts_entry *hpts; 566 struct hptsh *hptsh; 567 568 INP_WLOCK_ASSERT(tptoinpcb(tp)); 569 570 hpts = tcp_hpts_lock(tp); 571 if (tp->t_in_hpts == IHPTS_ONQUEUE) { 572 hptsh = &hpts->p_hptss[tp->t_hpts_slot]; 573 tp->t_hpts_request = 0; 574 if (__predict_true(tp->t_hpts_gencnt == hptsh->gencnt)) { 575 TAILQ_REMOVE(&hptsh->head, tp, t_hpts); 576 MPASS(hptsh->count > 0); 577 hptsh->count--; 578 MPASS(hpts->p_on_queue_cnt > 0); 579 hpts->p_on_queue_cnt--; 580 tcp_hpts_release(tp); 581 } else { 582 /* 583 * tcp_hptsi() now owns the TAILQ head of this inp. 584 * Can't TAILQ_REMOVE, just mark it. 585 */ 586 #ifdef INVARIANTS 587 struct tcpcb *tmp; 588 589 TAILQ_FOREACH(tmp, &hptsh->head, t_hpts) 590 MPASS(tmp != tp); 591 #endif 592 tp->t_in_hpts = IHPTS_MOVING; 593 tp->t_hpts_slot = -1; 594 } 595 } else if (tp->t_in_hpts == IHPTS_MOVING) { 596 /* 597 * Handle a special race condition: 598 * tcp_hptsi() moves inpcb to detached tailq 599 * tcp_hpts_remove() marks as IHPTS_MOVING, slot = -1 600 * tcp_hpts_insert() sets slot to a meaningful value 601 * tcp_hpts_remove() again (we are here!), then in_pcbdrop() 602 * tcp_hptsi() finds pcb with meaningful slot and INP_DROPPED 603 */ 604 tp->t_hpts_slot = -1; 605 } 606 HPTS_UNLOCK(hpts); 607 } 608 609 static inline int 610 hpts_slot(uint32_t wheel_slot, uint32_t plus) 611 { 612 /* 613 * Given a slot on the wheel, what slot 614 * is that plus ticks out? 615 */ 616 KASSERT(wheel_slot < NUM_OF_HPTSI_SLOTS, ("Invalid tick %u not on wheel", wheel_slot)); 617 return ((wheel_slot + plus) % NUM_OF_HPTSI_SLOTS); 618 } 619 620 static inline int 621 tick_to_wheel(uint32_t cts_in_wticks) 622 { 623 /* 624 * Given a timestamp in ticks (so by 625 * default to get it to a real time one 626 * would multiply by 10.. i.e the number 627 * of ticks in a slot) map it to our limited 628 * space wheel. 629 */ 630 return (cts_in_wticks % NUM_OF_HPTSI_SLOTS); 631 } 632 633 static inline int 634 hpts_slots_diff(int prev_slot, int slot_now) 635 { 636 /* 637 * Given two slots that are someplace 638 * on our wheel. How far are they apart? 639 */ 640 if (slot_now > prev_slot) 641 return (slot_now - prev_slot); 642 else if (slot_now == prev_slot) 643 /* 644 * Special case, same means we can go all of our 645 * wheel less one slot. 646 */ 647 return (NUM_OF_HPTSI_SLOTS - 1); 648 else 649 return ((NUM_OF_HPTSI_SLOTS - prev_slot) + slot_now); 650 } 651 652 /* 653 * Given a slot on the wheel that is the current time 654 * mapped to the wheel (wheel_slot), what is the maximum 655 * distance forward that can be obtained without 656 * wrapping past either prev_slot or running_slot 657 * depending on the htps state? Also if passed 658 * a uint32_t *, fill it with the slot location. 659 * 660 * Note if you do not give this function the current 661 * time (that you think it is) mapped to the wheel slot 662 * then the results will not be what you expect and 663 * could lead to invalid inserts. 664 */ 665 static inline int32_t 666 max_slots_available(struct tcp_hpts_entry *hpts, uint32_t wheel_slot, uint32_t *target_slot) 667 { 668 uint32_t dis_to_travel, end_slot, pacer_to_now, avail_on_wheel; 669 670 if ((hpts->p_hpts_active == 1) && 671 (hpts->p_wheel_complete == 0)) { 672 end_slot = hpts->p_runningslot; 673 /* Back up one tick */ 674 if (end_slot == 0) 675 end_slot = NUM_OF_HPTSI_SLOTS - 1; 676 else 677 end_slot--; 678 if (target_slot) 679 *target_slot = end_slot; 680 } else { 681 /* 682 * For the case where we are 683 * not active, or we have 684 * completed the pass over 685 * the wheel, we can use the 686 * prev tick and subtract one from it. This puts us 687 * as far out as possible on the wheel. 688 */ 689 end_slot = hpts->p_prev_slot; 690 if (end_slot == 0) 691 end_slot = NUM_OF_HPTSI_SLOTS - 1; 692 else 693 end_slot--; 694 if (target_slot) 695 *target_slot = end_slot; 696 /* 697 * Now we have close to the full wheel left minus the 698 * time it has been since the pacer went to sleep. Note 699 * that wheel_tick, passed in, should be the current time 700 * from the perspective of the caller, mapped to the wheel. 701 */ 702 if (hpts->p_prev_slot != wheel_slot) 703 dis_to_travel = hpts_slots_diff(hpts->p_prev_slot, wheel_slot); 704 else 705 dis_to_travel = 1; 706 /* 707 * dis_to_travel in this case is the space from when the 708 * pacer stopped (p_prev_slot) and where our wheel_slot 709 * is now. To know how many slots we can put it in we 710 * subtract from the wheel size. We would not want 711 * to place something after p_prev_slot or it will 712 * get ran too soon. 713 */ 714 return (NUM_OF_HPTSI_SLOTS - dis_to_travel); 715 } 716 /* 717 * So how many slots are open between p_runningslot -> p_cur_slot 718 * that is what is currently un-available for insertion. Special 719 * case when we are at the last slot, this gets 1, so that 720 * the answer to how many slots are available is all but 1. 721 */ 722 if (hpts->p_runningslot == hpts->p_cur_slot) 723 dis_to_travel = 1; 724 else 725 dis_to_travel = hpts_slots_diff(hpts->p_runningslot, hpts->p_cur_slot); 726 /* 727 * How long has the pacer been running? 728 */ 729 if (hpts->p_cur_slot != wheel_slot) { 730 /* The pacer is a bit late */ 731 pacer_to_now = hpts_slots_diff(hpts->p_cur_slot, wheel_slot); 732 } else { 733 /* The pacer is right on time, now == pacers start time */ 734 pacer_to_now = 0; 735 } 736 /* 737 * To get the number left we can insert into we simply 738 * subtract the distance the pacer has to run from how 739 * many slots there are. 740 */ 741 avail_on_wheel = NUM_OF_HPTSI_SLOTS - dis_to_travel; 742 /* 743 * Now how many of those we will eat due to the pacer's 744 * time (p_cur_slot) of start being behind the 745 * real time (wheel_slot)? 746 */ 747 if (avail_on_wheel <= pacer_to_now) { 748 /* 749 * Wheel wrap, we can't fit on the wheel, that 750 * is unusual the system must be way overloaded! 751 * Insert into the assured slot, and return special 752 * "0". 753 */ 754 counter_u64_add(combined_wheel_wrap, 1); 755 *target_slot = hpts->p_nxt_slot; 756 return (0); 757 } else { 758 /* 759 * We know how many slots are open 760 * on the wheel (the reverse of what 761 * is left to run. Take away the time 762 * the pacer started to now (wheel_slot) 763 * and that tells you how many slots are 764 * open that can be inserted into that won't 765 * be touched by the pacer until later. 766 */ 767 return (avail_on_wheel - pacer_to_now); 768 } 769 } 770 771 772 #ifdef INVARIANTS 773 static void 774 check_if_slot_would_be_wrong(struct tcp_hpts_entry *hpts, struct tcpcb *tp, 775 uint32_t hptsslot, int line) 776 { 777 /* 778 * Sanity checks for the pacer with invariants 779 * on insert. 780 */ 781 KASSERT(hptsslot < NUM_OF_HPTSI_SLOTS, 782 ("hpts:%p tp:%p slot:%d > max", hpts, tp, hptsslot)); 783 if ((hpts->p_hpts_active) && 784 (hpts->p_wheel_complete == 0)) { 785 /* 786 * If the pacer is processing a arc 787 * of the wheel, we need to make 788 * sure we are not inserting within 789 * that arc. 790 */ 791 int distance, yet_to_run; 792 793 distance = hpts_slots_diff(hpts->p_runningslot, hptsslot); 794 if (hpts->p_runningslot != hpts->p_cur_slot) 795 yet_to_run = hpts_slots_diff(hpts->p_runningslot, hpts->p_cur_slot); 796 else 797 yet_to_run = 0; /* processing last slot */ 798 KASSERT(yet_to_run <= distance, ("hpts:%p tp:%p slot:%d " 799 "distance:%d yet_to_run:%d rs:%d cs:%d", hpts, tp, 800 hptsslot, distance, yet_to_run, hpts->p_runningslot, 801 hpts->p_cur_slot)); 802 } 803 } 804 #endif 805 806 uint32_t 807 tcp_hpts_insert_diag(struct tcpcb *tp, uint32_t slot, int32_t line, struct hpts_diag *diag) 808 { 809 struct tcp_hpts_entry *hpts; 810 struct timeval tv; 811 uint32_t slot_on, wheel_cts, last_slot, need_new_to = 0; 812 int32_t wheel_slot, maxslots; 813 bool need_wakeup = false; 814 815 INP_WLOCK_ASSERT(tptoinpcb(tp)); 816 MPASS(!(tptoinpcb(tp)->inp_flags & INP_DROPPED)); 817 MPASS(!tcp_in_hpts(tp)); 818 819 /* 820 * We now return the next-slot the hpts will be on, beyond its 821 * current run (if up) or where it was when it stopped if it is 822 * sleeping. 823 */ 824 hpts = tcp_hpts_lock(tp); 825 microuptime(&tv); 826 if (diag) { 827 memset(diag, 0, sizeof(struct hpts_diag)); 828 diag->p_hpts_active = hpts->p_hpts_active; 829 diag->p_prev_slot = hpts->p_prev_slot; 830 diag->p_runningslot = hpts->p_runningslot; 831 diag->p_nxt_slot = hpts->p_nxt_slot; 832 diag->p_cur_slot = hpts->p_cur_slot; 833 diag->p_curtick = hpts->p_curtick; 834 diag->p_lasttick = hpts->p_lasttick; 835 diag->slot_req = slot; 836 diag->p_on_min_sleep = hpts->p_on_min_sleep; 837 diag->hpts_sleep_time = hpts->p_hpts_sleep_time; 838 } 839 if (slot == 0) { 840 /* Ok we need to set it on the hpts in the current slot */ 841 tp->t_hpts_request = 0; 842 if ((hpts->p_hpts_active == 0) || (hpts->p_wheel_complete)) { 843 /* 844 * A sleeping hpts we want in next slot to run 845 * note that in this state p_prev_slot == p_cur_slot 846 */ 847 tp->t_hpts_slot = hpts_slot(hpts->p_prev_slot, 1); 848 if ((hpts->p_on_min_sleep == 0) && 849 (hpts->p_hpts_active == 0)) 850 need_wakeup = true; 851 } else 852 tp->t_hpts_slot = hpts->p_runningslot; 853 if (__predict_true(tp->t_in_hpts != IHPTS_MOVING)) 854 tcp_hpts_insert_internal(tp, hpts); 855 if (need_wakeup) { 856 /* 857 * Activate the hpts if it is sleeping and its 858 * timeout is not 1. 859 */ 860 hpts->p_direct_wake = 1; 861 tcp_wakehpts(hpts); 862 } 863 slot_on = hpts->p_nxt_slot; 864 HPTS_UNLOCK(hpts); 865 866 return (slot_on); 867 } 868 /* Get the current time relative to the wheel */ 869 wheel_cts = tcp_tv_to_hptstick(&tv); 870 /* Map it onto the wheel */ 871 wheel_slot = tick_to_wheel(wheel_cts); 872 /* Now what's the max we can place it at? */ 873 maxslots = max_slots_available(hpts, wheel_slot, &last_slot); 874 if (diag) { 875 diag->wheel_slot = wheel_slot; 876 diag->maxslots = maxslots; 877 diag->wheel_cts = wheel_cts; 878 } 879 if (maxslots == 0) { 880 /* The pacer is in a wheel wrap behind, yikes! */ 881 if (slot > 1) { 882 /* 883 * Reduce by 1 to prevent a forever loop in 884 * case something else is wrong. Note this 885 * probably does not hurt because the pacer 886 * if its true is so far behind we will be 887 * > 1second late calling anyway. 888 */ 889 slot--; 890 } 891 tp->t_hpts_slot = last_slot; 892 tp->t_hpts_request = slot; 893 } else if (maxslots >= slot) { 894 /* It all fits on the wheel */ 895 tp->t_hpts_request = 0; 896 tp->t_hpts_slot = hpts_slot(wheel_slot, slot); 897 } else { 898 /* It does not fit */ 899 tp->t_hpts_request = slot - maxslots; 900 tp->t_hpts_slot = last_slot; 901 } 902 if (diag) { 903 diag->slot_remaining = tp->t_hpts_request; 904 diag->inp_hptsslot = tp->t_hpts_slot; 905 } 906 #ifdef INVARIANTS 907 check_if_slot_would_be_wrong(hpts, tp, tp->t_hpts_slot, line); 908 #endif 909 if (__predict_true(tp->t_in_hpts != IHPTS_MOVING)) 910 tcp_hpts_insert_internal(tp, hpts); 911 if ((hpts->p_hpts_active == 0) && 912 (tp->t_hpts_request == 0) && 913 (hpts->p_on_min_sleep == 0)) { 914 /* 915 * The hpts is sleeping and NOT on a minimum 916 * sleep time, we need to figure out where 917 * it will wake up at and if we need to reschedule 918 * its time-out. 919 */ 920 uint32_t have_slept, yet_to_sleep; 921 922 /* Now do we need to restart the hpts's timer? */ 923 have_slept = hpts_slots_diff(hpts->p_prev_slot, wheel_slot); 924 if (have_slept < hpts->p_hpts_sleep_time) 925 yet_to_sleep = hpts->p_hpts_sleep_time - have_slept; 926 else { 927 /* We are over-due */ 928 yet_to_sleep = 0; 929 need_wakeup = 1; 930 } 931 if (diag) { 932 diag->have_slept = have_slept; 933 diag->yet_to_sleep = yet_to_sleep; 934 } 935 if (yet_to_sleep && 936 (yet_to_sleep > slot)) { 937 /* 938 * We need to reschedule the hpts's time-out. 939 */ 940 hpts->p_hpts_sleep_time = slot; 941 need_new_to = slot * HPTS_TICKS_PER_SLOT; 942 } 943 } 944 /* 945 * Now how far is the hpts sleeping to? if active is 1, its 946 * up and ticking we do nothing, otherwise we may need to 947 * reschedule its callout if need_new_to is set from above. 948 */ 949 if (need_wakeup) { 950 hpts->p_direct_wake = 1; 951 tcp_wakehpts(hpts); 952 if (diag) { 953 diag->need_new_to = 0; 954 diag->co_ret = 0xffff0000; 955 } 956 } else if (need_new_to) { 957 int32_t co_ret; 958 struct timeval tv; 959 sbintime_t sb; 960 961 tv.tv_sec = 0; 962 tv.tv_usec = 0; 963 while (need_new_to > HPTS_USEC_IN_SEC) { 964 tv.tv_sec++; 965 need_new_to -= HPTS_USEC_IN_SEC; 966 } 967 tv.tv_usec = need_new_to; 968 sb = tvtosbt(tv); 969 co_ret = callout_reset_sbt_on(&hpts->co, sb, 0, 970 hpts_timeout_swi, hpts, hpts->p_cpu, 971 (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision))); 972 if (diag) { 973 diag->need_new_to = need_new_to; 974 diag->co_ret = co_ret; 975 } 976 } 977 slot_on = hpts->p_nxt_slot; 978 HPTS_UNLOCK(hpts); 979 980 return (slot_on); 981 } 982 983 static uint16_t 984 hpts_cpuid(struct tcpcb *tp, int *failed) 985 { 986 struct inpcb *inp = tptoinpcb(tp); 987 u_int cpuid; 988 #ifdef NUMA 989 struct hpts_domain_info *di; 990 #endif 991 992 *failed = 0; 993 if (tp->t_flags2 & TF2_HPTS_CPU_SET) { 994 return (tp->t_hpts_cpu); 995 } 996 /* 997 * If we are using the irq cpu set by LRO or 998 * the driver then it overrides all other domains. 999 */ 1000 if (tcp_use_irq_cpu) { 1001 if (tp->t_lro_cpu == HPTS_CPU_NONE) { 1002 *failed = 1; 1003 return (0); 1004 } 1005 return (tp->t_lro_cpu); 1006 } 1007 /* If one is set the other must be the same */ 1008 #ifdef RSS 1009 cpuid = rss_hash2cpuid(inp->inp_flowid, inp->inp_flowtype); 1010 if (cpuid == NETISR_CPUID_NONE) 1011 return (hpts_random_cpu()); 1012 else 1013 return (cpuid); 1014 #endif 1015 /* 1016 * We don't have a flowid -> cpuid mapping, so cheat and just map 1017 * unknown cpuids to curcpu. Not the best, but apparently better 1018 * than defaulting to swi 0. 1019 */ 1020 if (inp->inp_flowtype == M_HASHTYPE_NONE) { 1021 counter_u64_add(cpu_uses_random, 1); 1022 return (hpts_random_cpu()); 1023 } 1024 /* 1025 * Hash to a thread based on the flowid. If we are using numa, 1026 * then restrict the hash to the numa domain where the inp lives. 1027 */ 1028 1029 #ifdef NUMA 1030 if ((vm_ndomains == 1) || 1031 (inp->inp_numa_domain == M_NODOM)) { 1032 #endif 1033 cpuid = inp->inp_flowid % mp_ncpus; 1034 #ifdef NUMA 1035 } else { 1036 /* Hash into the cpu's that use that domain */ 1037 di = &hpts_domains[inp->inp_numa_domain]; 1038 cpuid = di->cpu[inp->inp_flowid % di->count]; 1039 } 1040 #endif 1041 counter_u64_add(cpu_uses_flowid, 1); 1042 return (cpuid); 1043 } 1044 1045 static void 1046 tcp_hpts_set_max_sleep(struct tcp_hpts_entry *hpts, int wrap_loop_cnt) 1047 { 1048 uint32_t t = 0, i; 1049 1050 if ((hpts->p_on_queue_cnt) && (wrap_loop_cnt < 2)) { 1051 /* 1052 * Find next slot that is occupied and use that to 1053 * be the sleep time. 1054 */ 1055 for (i = 0, t = hpts_slot(hpts->p_cur_slot, 1); i < NUM_OF_HPTSI_SLOTS; i++) { 1056 if (TAILQ_EMPTY(&hpts->p_hptss[t].head) == 0) { 1057 break; 1058 } 1059 t = (t + 1) % NUM_OF_HPTSI_SLOTS; 1060 } 1061 KASSERT((i != NUM_OF_HPTSI_SLOTS), ("Hpts:%p cnt:%d but none found", hpts, hpts->p_on_queue_cnt)); 1062 hpts->p_hpts_sleep_time = min((i + 1), hpts_sleep_max); 1063 } else { 1064 /* No one on the wheel sleep for all but 400 slots or sleep max */ 1065 hpts->p_hpts_sleep_time = hpts_sleep_max; 1066 } 1067 } 1068 1069 static int32_t 1070 tcp_hptsi(struct tcp_hpts_entry *hpts, int from_callout) 1071 { 1072 struct tcpcb *tp; 1073 struct timeval tv; 1074 int32_t slots_to_run, i, error; 1075 int32_t loop_cnt = 0; 1076 int32_t did_prefetch = 0; 1077 int32_t prefetch_tp = 0; 1078 int32_t wrap_loop_cnt = 0; 1079 int32_t slot_pos_of_endpoint = 0; 1080 int32_t orig_exit_slot; 1081 int8_t completed_measure = 0, seen_endpoint = 0; 1082 1083 HPTS_MTX_ASSERT(hpts); 1084 NET_EPOCH_ASSERT(); 1085 /* record previous info for any logging */ 1086 hpts->saved_lasttick = hpts->p_lasttick; 1087 hpts->saved_curtick = hpts->p_curtick; 1088 hpts->saved_curslot = hpts->p_cur_slot; 1089 hpts->saved_prev_slot = hpts->p_prev_slot; 1090 1091 hpts->p_lasttick = hpts->p_curtick; 1092 hpts->p_curtick = tcp_gethptstick(&tv); 1093 cts_last_ran[hpts->p_num] = tcp_tv_to_usectick(&tv); 1094 orig_exit_slot = hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick); 1095 if ((hpts->p_on_queue_cnt == 0) || 1096 (hpts->p_lasttick == hpts->p_curtick)) { 1097 /* 1098 * No time has yet passed, 1099 * or nothing to do. 1100 */ 1101 hpts->p_prev_slot = hpts->p_cur_slot; 1102 hpts->p_lasttick = hpts->p_curtick; 1103 goto no_run; 1104 } 1105 again: 1106 hpts->p_wheel_complete = 0; 1107 HPTS_MTX_ASSERT(hpts); 1108 slots_to_run = hpts_slots_diff(hpts->p_prev_slot, hpts->p_cur_slot); 1109 if (((hpts->p_curtick - hpts->p_lasttick) > 1110 ((NUM_OF_HPTSI_SLOTS-1) * HPTS_TICKS_PER_SLOT)) && 1111 (hpts->p_on_queue_cnt != 0)) { 1112 /* 1113 * Wheel wrap is occuring, basically we 1114 * are behind and the distance between 1115 * run's has spread so much it has exceeded 1116 * the time on the wheel (1.024 seconds). This 1117 * is ugly and should NOT be happening. We 1118 * need to run the entire wheel. We last processed 1119 * p_prev_slot, so that needs to be the last slot 1120 * we run. The next slot after that should be our 1121 * reserved first slot for new, and then starts 1122 * the running position. Now the problem is the 1123 * reserved "not to yet" place does not exist 1124 * and there may be inp's in there that need 1125 * running. We can merge those into the 1126 * first slot at the head. 1127 */ 1128 wrap_loop_cnt++; 1129 hpts->p_nxt_slot = hpts_slot(hpts->p_prev_slot, 1); 1130 hpts->p_runningslot = hpts_slot(hpts->p_prev_slot, 2); 1131 /* 1132 * Adjust p_cur_slot to be where we are starting from 1133 * hopefully we will catch up (fat chance if something 1134 * is broken this bad :( ) 1135 */ 1136 hpts->p_cur_slot = hpts->p_prev_slot; 1137 /* 1138 * The next slot has guys to run too, and that would 1139 * be where we would normally start, lets move them into 1140 * the next slot (p_prev_slot + 2) so that we will 1141 * run them, the extra 10usecs of late (by being 1142 * put behind) does not really matter in this situation. 1143 */ 1144 TAILQ_FOREACH(tp, &hpts->p_hptss[hpts->p_nxt_slot].head, 1145 t_hpts) { 1146 MPASS(tp->t_hpts_slot == hpts->p_nxt_slot); 1147 MPASS(tp->t_hpts_gencnt == 1148 hpts->p_hptss[hpts->p_nxt_slot].gencnt); 1149 MPASS(tp->t_in_hpts == IHPTS_ONQUEUE); 1150 1151 /* 1152 * Update gencnt and nextslot accordingly to match 1153 * the new location. This is safe since it takes both 1154 * the INP lock and the pacer mutex to change the 1155 * t_hptsslot and t_hpts_gencnt. 1156 */ 1157 tp->t_hpts_gencnt = 1158 hpts->p_hptss[hpts->p_runningslot].gencnt; 1159 tp->t_hpts_slot = hpts->p_runningslot; 1160 } 1161 TAILQ_CONCAT(&hpts->p_hptss[hpts->p_runningslot].head, 1162 &hpts->p_hptss[hpts->p_nxt_slot].head, t_hpts); 1163 hpts->p_hptss[hpts->p_runningslot].count += 1164 hpts->p_hptss[hpts->p_nxt_slot].count; 1165 hpts->p_hptss[hpts->p_nxt_slot].count = 0; 1166 hpts->p_hptss[hpts->p_nxt_slot].gencnt++; 1167 slots_to_run = NUM_OF_HPTSI_SLOTS - 1; 1168 counter_u64_add(wheel_wrap, 1); 1169 } else { 1170 /* 1171 * Nxt slot is always one after p_runningslot though 1172 * its not used usually unless we are doing wheel wrap. 1173 */ 1174 hpts->p_nxt_slot = hpts->p_prev_slot; 1175 hpts->p_runningslot = hpts_slot(hpts->p_prev_slot, 1); 1176 } 1177 if (hpts->p_on_queue_cnt == 0) { 1178 goto no_one; 1179 } 1180 for (i = 0; i < slots_to_run; i++) { 1181 struct tcpcb *tp, *ntp; 1182 TAILQ_HEAD(, tcpcb) head = TAILQ_HEAD_INITIALIZER(head); 1183 struct hptsh *hptsh; 1184 uint32_t runningslot; 1185 1186 /* 1187 * Calculate our delay, if there are no extra ticks there 1188 * was not any (i.e. if slots_to_run == 1, no delay). 1189 */ 1190 hpts->p_delayed_by = (slots_to_run - (i + 1)) * 1191 HPTS_TICKS_PER_SLOT; 1192 1193 runningslot = hpts->p_runningslot; 1194 hptsh = &hpts->p_hptss[runningslot]; 1195 TAILQ_SWAP(&head, &hptsh->head, tcpcb, t_hpts); 1196 hpts->p_on_queue_cnt -= hptsh->count; 1197 hptsh->count = 0; 1198 hptsh->gencnt++; 1199 1200 HPTS_UNLOCK(hpts); 1201 1202 TAILQ_FOREACH_SAFE(tp, &head, t_hpts, ntp) { 1203 struct inpcb *inp = tptoinpcb(tp); 1204 bool set_cpu; 1205 1206 if (ntp != NULL) { 1207 /* 1208 * If we have a next tcpcb, see if we can 1209 * prefetch it. Note this may seem 1210 * "risky" since we have no locks (other 1211 * than the previous inp) and there no 1212 * assurance that ntp was not pulled while 1213 * we were processing tp and freed. If this 1214 * occurred it could mean that either: 1215 * 1216 * a) Its NULL (which is fine we won't go 1217 * here) <or> b) Its valid (which is cool we 1218 * will prefetch it) <or> c) The inp got 1219 * freed back to the slab which was 1220 * reallocated. Then the piece of memory was 1221 * re-used and something else (not an 1222 * address) is in inp_ppcb. If that occurs 1223 * we don't crash, but take a TLB shootdown 1224 * performance hit (same as if it was NULL 1225 * and we tried to pre-fetch it). 1226 * 1227 * Considering that the likelyhood of <c> is 1228 * quite rare we will take a risk on doing 1229 * this. If performance drops after testing 1230 * we can always take this out. NB: the 1231 * kern_prefetch on amd64 actually has 1232 * protection against a bad address now via 1233 * the DMAP_() tests. This will prevent the 1234 * TLB hit, and instead if <c> occurs just 1235 * cause us to load cache with a useless 1236 * address (to us). 1237 * 1238 * XXXGL: this comment and the prefetch action 1239 * could be outdated after tp == inp change. 1240 */ 1241 kern_prefetch(ntp, &prefetch_tp); 1242 prefetch_tp = 1; 1243 } 1244 1245 /* For debugging */ 1246 if (seen_endpoint == 0) { 1247 seen_endpoint = 1; 1248 orig_exit_slot = slot_pos_of_endpoint = 1249 runningslot; 1250 } else if (completed_measure == 0) { 1251 /* Record the new position */ 1252 orig_exit_slot = runningslot; 1253 } 1254 1255 INP_WLOCK(inp); 1256 if ((tp->t_flags2 & TF2_HPTS_CPU_SET) == 0) { 1257 set_cpu = true; 1258 } else { 1259 set_cpu = false; 1260 } 1261 1262 if (__predict_false(tp->t_in_hpts == IHPTS_MOVING)) { 1263 if (tp->t_hpts_slot == -1) { 1264 tp->t_in_hpts = IHPTS_NONE; 1265 if (in_pcbrele_wlocked(inp) == false) 1266 INP_WUNLOCK(inp); 1267 } else { 1268 HPTS_LOCK(hpts); 1269 tcp_hpts_insert_internal(tp, hpts); 1270 HPTS_UNLOCK(hpts); 1271 INP_WUNLOCK(inp); 1272 } 1273 continue; 1274 } 1275 1276 MPASS(tp->t_in_hpts == IHPTS_ONQUEUE); 1277 MPASS(!(inp->inp_flags & INP_DROPPED)); 1278 KASSERT(runningslot == tp->t_hpts_slot, 1279 ("Hpts:%p inp:%p slot mis-aligned %u vs %u", 1280 hpts, inp, runningslot, tp->t_hpts_slot)); 1281 1282 if (tp->t_hpts_request) { 1283 /* 1284 * This guy is deferred out further in time 1285 * then our wheel had available on it. 1286 * Push him back on the wheel or run it 1287 * depending. 1288 */ 1289 uint32_t maxslots, last_slot, remaining_slots; 1290 1291 remaining_slots = slots_to_run - (i + 1); 1292 if (tp->t_hpts_request > remaining_slots) { 1293 HPTS_LOCK(hpts); 1294 /* 1295 * How far out can we go? 1296 */ 1297 maxslots = max_slots_available(hpts, 1298 hpts->p_cur_slot, &last_slot); 1299 if (maxslots >= tp->t_hpts_request) { 1300 /* We can place it finally to 1301 * be processed. */ 1302 tp->t_hpts_slot = hpts_slot( 1303 hpts->p_runningslot, 1304 tp->t_hpts_request); 1305 tp->t_hpts_request = 0; 1306 } else { 1307 /* Work off some more time */ 1308 tp->t_hpts_slot = last_slot; 1309 tp->t_hpts_request -= 1310 maxslots; 1311 } 1312 tcp_hpts_insert_internal(tp, hpts); 1313 HPTS_UNLOCK(hpts); 1314 INP_WUNLOCK(inp); 1315 continue; 1316 } 1317 tp->t_hpts_request = 0; 1318 /* Fall through we will so do it now */ 1319 } 1320 1321 tcp_hpts_release(tp); 1322 if (set_cpu) { 1323 /* 1324 * Setup so the next time we will move to 1325 * the right CPU. This should be a rare 1326 * event. It will sometimes happens when we 1327 * are the client side (usually not the 1328 * server). Somehow tcp_output() gets called 1329 * before the tcp_do_segment() sets the 1330 * intial state. This means the r_cpu and 1331 * r_hpts_cpu is 0. We get on the hpts, and 1332 * then tcp_input() gets called setting up 1333 * the r_cpu to the correct value. The hpts 1334 * goes off and sees the mis-match. We 1335 * simply correct it here and the CPU will 1336 * switch to the new hpts nextime the tcb 1337 * gets added to the hpts (not this one) 1338 * :-) 1339 */ 1340 tcp_set_hpts(tp); 1341 } 1342 CURVNET_SET(inp->inp_vnet); 1343 /* Lets do any logging that we might want to */ 1344 if (hpts_does_tp_logging && tcp_bblogging_on(tp)) { 1345 tcp_hpts_log(hpts, tp, &tv, slots_to_run, i, from_callout); 1346 } 1347 1348 if (tp->t_fb_ptr != NULL) { 1349 kern_prefetch(tp->t_fb_ptr, &did_prefetch); 1350 did_prefetch = 1; 1351 } 1352 /* 1353 * We set TF2_HPTS_CALLS before any possible output. 1354 * The contract with the transport is that if it cares 1355 * about hpts calling it should clear the flag. That 1356 * way next time it is called it will know it is hpts. 1357 * 1358 * We also only call tfb_do_queued_segments() <or> 1359 * tcp_output(). It is expected that if segments are 1360 * queued and come in that the final input mbuf will 1361 * cause a call to output if it is needed. 1362 */ 1363 tp->t_flags2 |= TF2_HPTS_CALLS; 1364 if ((tp->t_flags2 & TF2_SUPPORTS_MBUFQ) && 1365 !STAILQ_EMPTY(&tp->t_inqueue)) { 1366 error = (*tp->t_fb->tfb_do_queued_segments)(tp, 0); 1367 if (error) { 1368 /* The input killed the connection */ 1369 goto skip_pacing; 1370 } 1371 } 1372 error = tcp_output(tp); 1373 if (error < 0) 1374 goto skip_pacing; 1375 INP_WUNLOCK(inp); 1376 skip_pacing: 1377 CURVNET_RESTORE(); 1378 } 1379 if (seen_endpoint) { 1380 /* 1381 * We now have a accurate distance between 1382 * slot_pos_of_endpoint <-> orig_exit_slot 1383 * to tell us how late we were, orig_exit_slot 1384 * is where we calculated the end of our cycle to 1385 * be when we first entered. 1386 */ 1387 completed_measure = 1; 1388 } 1389 HPTS_LOCK(hpts); 1390 hpts->p_runningslot++; 1391 if (hpts->p_runningslot >= NUM_OF_HPTSI_SLOTS) { 1392 hpts->p_runningslot = 0; 1393 } 1394 } 1395 no_one: 1396 HPTS_MTX_ASSERT(hpts); 1397 hpts->p_delayed_by = 0; 1398 /* 1399 * Check to see if we took an excess amount of time and need to run 1400 * more ticks (if we did not hit eno-bufs). 1401 */ 1402 hpts->p_prev_slot = hpts->p_cur_slot; 1403 hpts->p_lasttick = hpts->p_curtick; 1404 if ((from_callout == 0) || (loop_cnt > max_pacer_loops)) { 1405 /* 1406 * Something is serious slow we have 1407 * looped through processing the wheel 1408 * and by the time we cleared the 1409 * needs to run max_pacer_loops time 1410 * we still needed to run. That means 1411 * the system is hopelessly behind and 1412 * can never catch up :( 1413 * 1414 * We will just lie to this thread 1415 * and let it thing p_curtick is 1416 * correct. When it next awakens 1417 * it will find itself further behind. 1418 */ 1419 if (from_callout) 1420 counter_u64_add(hpts_hopelessly_behind, 1); 1421 goto no_run; 1422 } 1423 hpts->p_curtick = tcp_gethptstick(&tv); 1424 hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick); 1425 if (seen_endpoint == 0) { 1426 /* We saw no endpoint but we may be looping */ 1427 orig_exit_slot = hpts->p_cur_slot; 1428 } 1429 if ((wrap_loop_cnt < 2) && 1430 (hpts->p_lasttick != hpts->p_curtick)) { 1431 counter_u64_add(hpts_loops, 1); 1432 loop_cnt++; 1433 goto again; 1434 } 1435 no_run: 1436 cts_last_ran[hpts->p_num] = tcp_tv_to_usectick(&tv); 1437 /* 1438 * Set flag to tell that we are done for 1439 * any slot input that happens during 1440 * input. 1441 */ 1442 hpts->p_wheel_complete = 1; 1443 /* 1444 * Now did we spend too long running input and need to run more ticks? 1445 * Note that if wrap_loop_cnt < 2 then we should have the conditions 1446 * in the KASSERT's true. But if the wheel is behind i.e. wrap_loop_cnt 1447 * is greater than 2, then the condtion most likely are *not* true. 1448 * Also if we are called not from the callout, we don't run the wheel 1449 * multiple times so the slots may not align either. 1450 */ 1451 KASSERT(((hpts->p_prev_slot == hpts->p_cur_slot) || 1452 (wrap_loop_cnt >= 2) || (from_callout == 0)), 1453 ("H:%p p_prev_slot:%u not equal to p_cur_slot:%u", hpts, 1454 hpts->p_prev_slot, hpts->p_cur_slot)); 1455 KASSERT(((hpts->p_lasttick == hpts->p_curtick) 1456 || (wrap_loop_cnt >= 2) || (from_callout == 0)), 1457 ("H:%p p_lasttick:%u not equal to p_curtick:%u", hpts, 1458 hpts->p_lasttick, hpts->p_curtick)); 1459 if (from_callout && (hpts->p_lasttick != hpts->p_curtick)) { 1460 hpts->p_curtick = tcp_gethptstick(&tv); 1461 counter_u64_add(hpts_loops, 1); 1462 hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick); 1463 goto again; 1464 } 1465 1466 if (from_callout){ 1467 tcp_hpts_set_max_sleep(hpts, wrap_loop_cnt); 1468 } 1469 if (seen_endpoint) 1470 return(hpts_slots_diff(slot_pos_of_endpoint, orig_exit_slot)); 1471 else 1472 return (0); 1473 } 1474 1475 void 1476 __tcp_set_hpts(struct tcpcb *tp, int32_t line) 1477 { 1478 struct tcp_hpts_entry *hpts; 1479 int failed; 1480 1481 INP_WLOCK_ASSERT(tptoinpcb(tp)); 1482 1483 hpts = tcp_hpts_lock(tp); 1484 if (tp->t_in_hpts == IHPTS_NONE && !(tp->t_flags2 & TF2_HPTS_CPU_SET)) { 1485 tp->t_hpts_cpu = hpts_cpuid(tp, &failed); 1486 if (failed == 0) 1487 tp->t_flags2 |= TF2_HPTS_CPU_SET; 1488 } 1489 mtx_unlock(&hpts->p_mtx); 1490 } 1491 1492 static void 1493 __tcp_run_hpts(struct tcp_hpts_entry *hpts) 1494 { 1495 int ticks_ran; 1496 1497 if (hpts->p_hpts_active) { 1498 /* Already active */ 1499 return; 1500 } 1501 if (mtx_trylock(&hpts->p_mtx) == 0) { 1502 /* Someone else got the lock */ 1503 return; 1504 } 1505 if (hpts->p_hpts_active) 1506 goto out_with_mtx; 1507 hpts->syscall_cnt++; 1508 counter_u64_add(hpts_direct_call, 1); 1509 hpts->p_hpts_active = 1; 1510 ticks_ran = tcp_hptsi(hpts, 0); 1511 /* We may want to adjust the sleep values here */ 1512 if (hpts->p_on_queue_cnt >= conn_cnt_thresh) { 1513 if (ticks_ran > ticks_indicate_less_sleep) { 1514 struct timeval tv; 1515 sbintime_t sb; 1516 1517 hpts->p_mysleep.tv_usec /= 2; 1518 if (hpts->p_mysleep.tv_usec < dynamic_min_sleep) 1519 hpts->p_mysleep.tv_usec = dynamic_min_sleep; 1520 /* Reschedule with new to value */ 1521 tcp_hpts_set_max_sleep(hpts, 0); 1522 tv.tv_usec = hpts->p_hpts_sleep_time * HPTS_TICKS_PER_SLOT; 1523 /* Validate its in the right ranges */ 1524 if (tv.tv_usec < hpts->p_mysleep.tv_usec) { 1525 hpts->overidden_sleep = tv.tv_usec; 1526 tv.tv_usec = hpts->p_mysleep.tv_usec; 1527 } else if (tv.tv_usec > dynamic_max_sleep) { 1528 /* Lets not let sleep get above this value */ 1529 hpts->overidden_sleep = tv.tv_usec; 1530 tv.tv_usec = dynamic_max_sleep; 1531 } 1532 /* 1533 * In this mode the timer is a backstop to 1534 * all the userret/lro_flushes so we use 1535 * the dynamic value and set the on_min_sleep 1536 * flag so we will not be awoken. 1537 */ 1538 sb = tvtosbt(tv); 1539 /* Store off to make visible the actual sleep time */ 1540 hpts->sleeping = tv.tv_usec; 1541 callout_reset_sbt_on(&hpts->co, sb, 0, 1542 hpts_timeout_swi, hpts, hpts->p_cpu, 1543 (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision))); 1544 } else if (ticks_ran < ticks_indicate_more_sleep) { 1545 /* For the further sleep, don't reschedule hpts */ 1546 hpts->p_mysleep.tv_usec *= 2; 1547 if (hpts->p_mysleep.tv_usec > dynamic_max_sleep) 1548 hpts->p_mysleep.tv_usec = dynamic_max_sleep; 1549 } 1550 hpts->p_on_min_sleep = 1; 1551 } 1552 hpts->p_hpts_active = 0; 1553 out_with_mtx: 1554 HPTS_MTX_ASSERT(hpts); 1555 mtx_unlock(&hpts->p_mtx); 1556 } 1557 1558 static struct tcp_hpts_entry * 1559 tcp_choose_hpts_to_run(void) 1560 { 1561 int i, oldest_idx, start, end; 1562 uint32_t cts, time_since_ran, calc; 1563 1564 cts = tcp_get_usecs(NULL); 1565 time_since_ran = 0; 1566 /* Default is all one group */ 1567 start = 0; 1568 end = tcp_pace.rp_num_hptss; 1569 /* 1570 * If we have more than one L3 group figure out which one 1571 * this CPU is in. 1572 */ 1573 if (tcp_pace.grp_cnt > 1) { 1574 for (i = 0; i < tcp_pace.grp_cnt; i++) { 1575 if (CPU_ISSET(curcpu, &tcp_pace.grps[i]->cg_mask)) { 1576 start = tcp_pace.grps[i]->cg_first; 1577 end = (tcp_pace.grps[i]->cg_last + 1); 1578 break; 1579 } 1580 } 1581 } 1582 oldest_idx = -1; 1583 for (i = start; i < end; i++) { 1584 if (TSTMP_GT(cts, cts_last_ran[i])) 1585 calc = cts - cts_last_ran[i]; 1586 else 1587 calc = 0; 1588 if (calc > time_since_ran) { 1589 oldest_idx = i; 1590 time_since_ran = calc; 1591 } 1592 } 1593 if (oldest_idx >= 0) 1594 return(tcp_pace.rp_ent[oldest_idx]); 1595 else 1596 return(tcp_pace.rp_ent[(curcpu % tcp_pace.rp_num_hptss)]); 1597 } 1598 1599 1600 void 1601 tcp_run_hpts(void) 1602 { 1603 static struct tcp_hpts_entry *hpts; 1604 struct epoch_tracker et; 1605 1606 NET_EPOCH_ENTER(et); 1607 hpts = tcp_choose_hpts_to_run(); 1608 __tcp_run_hpts(hpts); 1609 NET_EPOCH_EXIT(et); 1610 } 1611 1612 1613 static void 1614 tcp_hpts_thread(void *ctx) 1615 { 1616 struct tcp_hpts_entry *hpts; 1617 struct epoch_tracker et; 1618 struct timeval tv; 1619 sbintime_t sb; 1620 int ticks_ran; 1621 1622 hpts = (struct tcp_hpts_entry *)ctx; 1623 mtx_lock(&hpts->p_mtx); 1624 if (hpts->p_direct_wake) { 1625 /* Signaled by input or output with low occupancy count. */ 1626 callout_stop(&hpts->co); 1627 counter_u64_add(hpts_direct_awakening, 1); 1628 } else { 1629 /* Timed out, the normal case. */ 1630 counter_u64_add(hpts_wake_timeout, 1); 1631 if (callout_pending(&hpts->co) || 1632 !callout_active(&hpts->co)) { 1633 mtx_unlock(&hpts->p_mtx); 1634 return; 1635 } 1636 } 1637 callout_deactivate(&hpts->co); 1638 hpts->p_hpts_wake_scheduled = 0; 1639 NET_EPOCH_ENTER(et); 1640 if (hpts->p_hpts_active) { 1641 /* 1642 * We are active already. This means that a syscall 1643 * trap or LRO is running in behalf of hpts. In that case 1644 * we need to double our timeout since there seems to be 1645 * enough activity in the system that we don't need to 1646 * run as often (if we were not directly woken). 1647 */ 1648 if (hpts->p_direct_wake == 0) { 1649 counter_u64_add(hpts_back_tosleep, 1); 1650 if (hpts->p_on_queue_cnt >= conn_cnt_thresh) { 1651 hpts->p_mysleep.tv_usec *= 2; 1652 if (hpts->p_mysleep.tv_usec > dynamic_max_sleep) 1653 hpts->p_mysleep.tv_usec = dynamic_max_sleep; 1654 tv.tv_usec = hpts->p_mysleep.tv_usec; 1655 hpts->p_on_min_sleep = 1; 1656 } else { 1657 /* 1658 * Here we have low count on the wheel, but 1659 * somehow we still collided with one of the 1660 * connections. Lets go back to sleep for a 1661 * min sleep time, but clear the flag so we 1662 * can be awoken by insert. 1663 */ 1664 hpts->p_on_min_sleep = 0; 1665 tv.tv_usec = tcp_min_hptsi_time; 1666 } 1667 } else { 1668 /* 1669 * Directly woken most likely to reset the 1670 * callout time. 1671 */ 1672 tv.tv_sec = 0; 1673 tv.tv_usec = hpts->p_mysleep.tv_usec; 1674 } 1675 goto back_to_sleep; 1676 } 1677 hpts->sleeping = 0; 1678 hpts->p_hpts_active = 1; 1679 ticks_ran = tcp_hptsi(hpts, 1); 1680 tv.tv_sec = 0; 1681 tv.tv_usec = hpts->p_hpts_sleep_time * HPTS_TICKS_PER_SLOT; 1682 if (hpts->p_on_queue_cnt >= conn_cnt_thresh) { 1683 if(hpts->p_direct_wake == 0) { 1684 /* 1685 * Only adjust sleep time if we were 1686 * called from the callout i.e. direct_wake == 0. 1687 */ 1688 if (ticks_ran < ticks_indicate_more_sleep) { 1689 hpts->p_mysleep.tv_usec *= 2; 1690 if (hpts->p_mysleep.tv_usec > dynamic_max_sleep) 1691 hpts->p_mysleep.tv_usec = dynamic_max_sleep; 1692 } else if (ticks_ran > ticks_indicate_less_sleep) { 1693 hpts->p_mysleep.tv_usec /= 2; 1694 if (hpts->p_mysleep.tv_usec < dynamic_min_sleep) 1695 hpts->p_mysleep.tv_usec = dynamic_min_sleep; 1696 } 1697 } 1698 if (tv.tv_usec < hpts->p_mysleep.tv_usec) { 1699 hpts->overidden_sleep = tv.tv_usec; 1700 tv.tv_usec = hpts->p_mysleep.tv_usec; 1701 } else if (tv.tv_usec > dynamic_max_sleep) { 1702 /* Lets not let sleep get above this value */ 1703 hpts->overidden_sleep = tv.tv_usec; 1704 tv.tv_usec = dynamic_max_sleep; 1705 } 1706 /* 1707 * In this mode the timer is a backstop to 1708 * all the userret/lro_flushes so we use 1709 * the dynamic value and set the on_min_sleep 1710 * flag so we will not be awoken. 1711 */ 1712 hpts->p_on_min_sleep = 1; 1713 } else if (hpts->p_on_queue_cnt == 0) { 1714 /* 1715 * No one on the wheel, please wake us up 1716 * if you insert on the wheel. 1717 */ 1718 hpts->p_on_min_sleep = 0; 1719 hpts->overidden_sleep = 0; 1720 } else { 1721 /* 1722 * We hit here when we have a low number of 1723 * clients on the wheel (our else clause). 1724 * We may need to go on min sleep, if we set 1725 * the flag we will not be awoken if someone 1726 * is inserted ahead of us. Clearing the flag 1727 * means we can be awoken. This is "old mode" 1728 * where the timer is what runs hpts mainly. 1729 */ 1730 if (tv.tv_usec < tcp_min_hptsi_time) { 1731 /* 1732 * Yes on min sleep, which means 1733 * we cannot be awoken. 1734 */ 1735 hpts->overidden_sleep = tv.tv_usec; 1736 tv.tv_usec = tcp_min_hptsi_time; 1737 hpts->p_on_min_sleep = 1; 1738 } else { 1739 /* Clear the min sleep flag */ 1740 hpts->overidden_sleep = 0; 1741 hpts->p_on_min_sleep = 0; 1742 } 1743 } 1744 HPTS_MTX_ASSERT(hpts); 1745 hpts->p_hpts_active = 0; 1746 back_to_sleep: 1747 hpts->p_direct_wake = 0; 1748 sb = tvtosbt(tv); 1749 /* Store off to make visible the actual sleep time */ 1750 hpts->sleeping = tv.tv_usec; 1751 callout_reset_sbt_on(&hpts->co, sb, 0, 1752 hpts_timeout_swi, hpts, hpts->p_cpu, 1753 (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision))); 1754 NET_EPOCH_EXIT(et); 1755 mtx_unlock(&hpts->p_mtx); 1756 } 1757 1758 #undef timersub 1759 1760 static int32_t 1761 hpts_count_level(struct cpu_group *cg) 1762 { 1763 int32_t count_l3, i; 1764 1765 count_l3 = 0; 1766 if (cg->cg_level == CG_SHARE_L3) 1767 count_l3++; 1768 /* Walk all the children looking for L3 */ 1769 for (i = 0; i < cg->cg_children; i++) { 1770 count_l3 += hpts_count_level(&cg->cg_child[i]); 1771 } 1772 return (count_l3); 1773 } 1774 1775 static void 1776 hpts_gather_grps(struct cpu_group **grps, int32_t *at, int32_t max, struct cpu_group *cg) 1777 { 1778 int32_t idx, i; 1779 1780 idx = *at; 1781 if (cg->cg_level == CG_SHARE_L3) { 1782 grps[idx] = cg; 1783 idx++; 1784 if (idx == max) { 1785 *at = idx; 1786 return; 1787 } 1788 } 1789 *at = idx; 1790 /* Walk all the children looking for L3 */ 1791 for (i = 0; i < cg->cg_children; i++) { 1792 hpts_gather_grps(grps, at, max, &cg->cg_child[i]); 1793 } 1794 } 1795 1796 static void 1797 tcp_init_hptsi(void *st) 1798 { 1799 struct cpu_group *cpu_top; 1800 int32_t error __diagused; 1801 int32_t i, j, bound = 0, created = 0; 1802 size_t sz, asz; 1803 struct timeval tv; 1804 sbintime_t sb; 1805 struct tcp_hpts_entry *hpts; 1806 struct pcpu *pc; 1807 char unit[16]; 1808 uint32_t ncpus = mp_ncpus ? mp_ncpus : MAXCPU; 1809 int count, domain; 1810 1811 #ifdef SMP 1812 cpu_top = smp_topo(); 1813 #else 1814 cpu_top = NULL; 1815 #endif 1816 tcp_pace.rp_num_hptss = ncpus; 1817 hpts_hopelessly_behind = counter_u64_alloc(M_WAITOK); 1818 hpts_loops = counter_u64_alloc(M_WAITOK); 1819 back_tosleep = counter_u64_alloc(M_WAITOK); 1820 combined_wheel_wrap = counter_u64_alloc(M_WAITOK); 1821 wheel_wrap = counter_u64_alloc(M_WAITOK); 1822 hpts_wake_timeout = counter_u64_alloc(M_WAITOK); 1823 hpts_direct_awakening = counter_u64_alloc(M_WAITOK); 1824 hpts_back_tosleep = counter_u64_alloc(M_WAITOK); 1825 hpts_direct_call = counter_u64_alloc(M_WAITOK); 1826 cpu_uses_flowid = counter_u64_alloc(M_WAITOK); 1827 cpu_uses_random = counter_u64_alloc(M_WAITOK); 1828 1829 sz = (tcp_pace.rp_num_hptss * sizeof(struct tcp_hpts_entry *)); 1830 tcp_pace.rp_ent = malloc(sz, M_TCPHPTS, M_WAITOK | M_ZERO); 1831 sz = (sizeof(uint32_t) * tcp_pace.rp_num_hptss); 1832 cts_last_ran = malloc(sz, M_TCPHPTS, M_WAITOK); 1833 tcp_pace.grp_cnt = 0; 1834 if (cpu_top == NULL) { 1835 tcp_pace.grp_cnt = 1; 1836 } else { 1837 /* Find out how many cache level 3 domains we have */ 1838 count = 0; 1839 tcp_pace.grp_cnt = hpts_count_level(cpu_top); 1840 if (tcp_pace.grp_cnt == 0) { 1841 tcp_pace.grp_cnt = 1; 1842 } 1843 sz = (tcp_pace.grp_cnt * sizeof(struct cpu_group *)); 1844 tcp_pace.grps = malloc(sz, M_TCPHPTS, M_WAITOK); 1845 /* Now populate the groups */ 1846 if (tcp_pace.grp_cnt == 1) { 1847 /* 1848 * All we need is the top level all cpu's are in 1849 * the same cache so when we use grp[0]->cg_mask 1850 * with the cg_first <-> cg_last it will include 1851 * all cpu's in it. The level here is probably 1852 * zero which is ok. 1853 */ 1854 tcp_pace.grps[0] = cpu_top; 1855 } else { 1856 /* 1857 * Here we must find all the level three cache domains 1858 * and setup our pointers to them. 1859 */ 1860 count = 0; 1861 hpts_gather_grps(tcp_pace.grps, &count, tcp_pace.grp_cnt, cpu_top); 1862 } 1863 } 1864 asz = sizeof(struct hptsh) * NUM_OF_HPTSI_SLOTS; 1865 for (i = 0; i < tcp_pace.rp_num_hptss; i++) { 1866 tcp_pace.rp_ent[i] = malloc(sizeof(struct tcp_hpts_entry), 1867 M_TCPHPTS, M_WAITOK | M_ZERO); 1868 tcp_pace.rp_ent[i]->p_hptss = malloc(asz, M_TCPHPTS, M_WAITOK); 1869 hpts = tcp_pace.rp_ent[i]; 1870 /* 1871 * Init all the hpts structures that are not specifically 1872 * zero'd by the allocations. Also lets attach them to the 1873 * appropriate sysctl block as well. 1874 */ 1875 mtx_init(&hpts->p_mtx, "tcp_hpts_lck", 1876 "hpts", MTX_DEF | MTX_DUPOK); 1877 for (j = 0; j < NUM_OF_HPTSI_SLOTS; j++) { 1878 TAILQ_INIT(&hpts->p_hptss[j].head); 1879 hpts->p_hptss[j].count = 0; 1880 hpts->p_hptss[j].gencnt = 0; 1881 } 1882 sysctl_ctx_init(&hpts->hpts_ctx); 1883 sprintf(unit, "%d", i); 1884 hpts->hpts_root = SYSCTL_ADD_NODE(&hpts->hpts_ctx, 1885 SYSCTL_STATIC_CHILDREN(_net_inet_tcp_hpts), 1886 OID_AUTO, 1887 unit, 1888 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 1889 ""); 1890 SYSCTL_ADD_INT(&hpts->hpts_ctx, 1891 SYSCTL_CHILDREN(hpts->hpts_root), 1892 OID_AUTO, "out_qcnt", CTLFLAG_RD, 1893 &hpts->p_on_queue_cnt, 0, 1894 "Count TCB's awaiting output processing"); 1895 SYSCTL_ADD_U16(&hpts->hpts_ctx, 1896 SYSCTL_CHILDREN(hpts->hpts_root), 1897 OID_AUTO, "active", CTLFLAG_RD, 1898 &hpts->p_hpts_active, 0, 1899 "Is the hpts active"); 1900 SYSCTL_ADD_UINT(&hpts->hpts_ctx, 1901 SYSCTL_CHILDREN(hpts->hpts_root), 1902 OID_AUTO, "curslot", CTLFLAG_RD, 1903 &hpts->p_cur_slot, 0, 1904 "What the current running pacers goal"); 1905 SYSCTL_ADD_UINT(&hpts->hpts_ctx, 1906 SYSCTL_CHILDREN(hpts->hpts_root), 1907 OID_AUTO, "runtick", CTLFLAG_RD, 1908 &hpts->p_runningslot, 0, 1909 "What the running pacers current slot is"); 1910 SYSCTL_ADD_UINT(&hpts->hpts_ctx, 1911 SYSCTL_CHILDREN(hpts->hpts_root), 1912 OID_AUTO, "curtick", CTLFLAG_RD, 1913 &hpts->p_curtick, 0, 1914 "What the running pacers last tick mapped to the wheel was"); 1915 SYSCTL_ADD_UINT(&hpts->hpts_ctx, 1916 SYSCTL_CHILDREN(hpts->hpts_root), 1917 OID_AUTO, "lastran", CTLFLAG_RD, 1918 &cts_last_ran[i], 0, 1919 "The last usec tick that this hpts ran"); 1920 SYSCTL_ADD_LONG(&hpts->hpts_ctx, 1921 SYSCTL_CHILDREN(hpts->hpts_root), 1922 OID_AUTO, "cur_min_sleep", CTLFLAG_RD, 1923 &hpts->p_mysleep.tv_usec, 1924 "What the running pacers is using for p_mysleep.tv_usec"); 1925 SYSCTL_ADD_U64(&hpts->hpts_ctx, 1926 SYSCTL_CHILDREN(hpts->hpts_root), 1927 OID_AUTO, "now_sleeping", CTLFLAG_RD, 1928 &hpts->sleeping, 0, 1929 "What the running pacers is actually sleeping for"); 1930 SYSCTL_ADD_U64(&hpts->hpts_ctx, 1931 SYSCTL_CHILDREN(hpts->hpts_root), 1932 OID_AUTO, "syscall_cnt", CTLFLAG_RD, 1933 &hpts->syscall_cnt, 0, 1934 "How many times we had syscalls on this hpts"); 1935 1936 hpts->p_hpts_sleep_time = hpts_sleep_max; 1937 hpts->p_num = i; 1938 hpts->p_curtick = tcp_gethptstick(&tv); 1939 cts_last_ran[i] = tcp_tv_to_usectick(&tv); 1940 hpts->p_prev_slot = hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick); 1941 hpts->p_cpu = 0xffff; 1942 hpts->p_nxt_slot = hpts_slot(hpts->p_cur_slot, 1); 1943 callout_init(&hpts->co, 1); 1944 } 1945 /* Don't try to bind to NUMA domains if we don't have any */ 1946 if (vm_ndomains == 1 && tcp_bind_threads == 2) 1947 tcp_bind_threads = 0; 1948 1949 /* 1950 * Now lets start ithreads to handle the hptss. 1951 */ 1952 for (i = 0; i < tcp_pace.rp_num_hptss; i++) { 1953 hpts = tcp_pace.rp_ent[i]; 1954 hpts->p_cpu = i; 1955 1956 error = swi_add(&hpts->ie, "hpts", 1957 tcp_hpts_thread, (void *)hpts, 1958 SWI_NET, INTR_MPSAFE, &hpts->ie_cookie); 1959 KASSERT(error == 0, 1960 ("Can't add hpts:%p i:%d err:%d", 1961 hpts, i, error)); 1962 created++; 1963 hpts->p_mysleep.tv_sec = 0; 1964 hpts->p_mysleep.tv_usec = tcp_min_hptsi_time; 1965 if (tcp_bind_threads == 1) { 1966 if (intr_event_bind(hpts->ie, i) == 0) 1967 bound++; 1968 } else if (tcp_bind_threads == 2) { 1969 /* Find the group for this CPU (i) and bind into it */ 1970 for (j = 0; j < tcp_pace.grp_cnt; j++) { 1971 if (CPU_ISSET(i, &tcp_pace.grps[j]->cg_mask)) { 1972 if (intr_event_bind_ithread_cpuset(hpts->ie, 1973 &tcp_pace.grps[j]->cg_mask) == 0) { 1974 bound++; 1975 pc = pcpu_find(i); 1976 domain = pc->pc_domain; 1977 count = hpts_domains[domain].count; 1978 hpts_domains[domain].cpu[count] = i; 1979 hpts_domains[domain].count++; 1980 break; 1981 } 1982 } 1983 } 1984 } 1985 tv.tv_sec = 0; 1986 tv.tv_usec = hpts->p_hpts_sleep_time * HPTS_TICKS_PER_SLOT; 1987 hpts->sleeping = tv.tv_usec; 1988 sb = tvtosbt(tv); 1989 callout_reset_sbt_on(&hpts->co, sb, 0, 1990 hpts_timeout_swi, hpts, hpts->p_cpu, 1991 (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision))); 1992 } 1993 /* 1994 * If we somehow have an empty domain, fall back to choosing 1995 * among all htps threads. 1996 */ 1997 for (i = 0; i < vm_ndomains; i++) { 1998 if (hpts_domains[i].count == 0) { 1999 tcp_bind_threads = 0; 2000 break; 2001 } 2002 } 2003 printf("TCP Hpts created %d swi interrupt threads and bound %d to %s\n", 2004 created, bound, 2005 tcp_bind_threads == 2 ? "NUMA domains" : "cpus"); 2006 #ifdef INVARIANTS 2007 printf("HPTS is in INVARIANT mode!!\n"); 2008 #endif 2009 } 2010 2011 SYSINIT(tcphptsi, SI_SUB_SOFTINTR, SI_ORDER_ANY, tcp_init_hptsi, NULL); 2012 MODULE_VERSION(tcphpts, 1); 2013