1 /*- 2 * Copyright (c) 2016-2018 Netflix, Inc. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 1. Redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer. 9 * 2. Redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution. 12 * 13 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 14 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 16 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 17 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 18 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 19 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 20 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 21 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 22 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 23 * SUCH DAMAGE. 24 * 25 */ 26 #include <sys/cdefs.h> 27 __FBSDID("$FreeBSD$"); 28 29 #include "opt_inet.h" 30 #include "opt_inet6.h" 31 #include "opt_rss.h" 32 #include "opt_tcpdebug.h" 33 34 /** 35 * Some notes about usage. 36 * 37 * The tcp_hpts system is designed to provide a high precision timer 38 * system for tcp. Its main purpose is to provide a mechanism for 39 * pacing packets out onto the wire. It can be used in two ways 40 * by a given TCP stack (and those two methods can be used simultaneously). 41 * 42 * First, and probably the main thing its used by Rack and BBR, it can 43 * be used to call tcp_output() of a transport stack at some time in the future. 44 * The normal way this is done is that tcp_output() of the stack schedules 45 * itself to be called again by calling tcp_hpts_insert(tcpcb, slot). The 46 * slot is the time from now that the stack wants to be called but it 47 * must be converted to tcp_hpts's notion of slot. This is done with 48 * one of the macros HPTS_MS_TO_SLOTS or HPTS_USEC_TO_SLOTS. So a typical 49 * call from the tcp_output() routine might look like: 50 * 51 * tcp_hpts_insert(tp, HPTS_USEC_TO_SLOTS(550)); 52 * 53 * The above would schedule tcp_ouput() to be called in 550 useconds. 54 * Note that if using this mechanism the stack will want to add near 55 * its top a check to prevent unwanted calls (from user land or the 56 * arrival of incoming ack's). So it would add something like: 57 * 58 * if (tcp_in_hpts(inp)) 59 * return; 60 * 61 * to prevent output processing until the time alotted has gone by. 62 * Of course this is a bare bones example and the stack will probably 63 * have more consideration then just the above. 64 * 65 * In order to run input queued segments from the HPTS context the 66 * tcp stack must define an input function for 67 * tfb_do_queued_segments(). This function understands 68 * how to dequeue a array of packets that were input and 69 * knows how to call the correct processing routine. 70 * 71 * Locking in this is important as well so most likely the 72 * stack will need to define the tfb_do_segment_nounlock() 73 * splitting tfb_do_segment() into two parts. The main processing 74 * part that does not unlock the INP and returns a value of 1 or 0. 75 * It returns 0 if all is well and the lock was not released. It 76 * returns 1 if we had to destroy the TCB (a reset received etc). 77 * The remains of tfb_do_segment() then become just a simple call 78 * to the tfb_do_segment_nounlock() function and check the return 79 * code and possibly unlock. 80 * 81 * The stack must also set the flag on the INP that it supports this 82 * feature i.e. INP_SUPPORTS_MBUFQ. The LRO code recoginizes 83 * this flag as well and will queue packets when it is set. 84 * There are other flags as well INP_MBUF_QUEUE_READY and 85 * INP_DONT_SACK_QUEUE. The first flag tells the LRO code 86 * that we are in the pacer for output so there is no 87 * need to wake up the hpts system to get immediate 88 * input. The second tells the LRO code that its okay 89 * if a SACK arrives you can still defer input and let 90 * the current hpts timer run (this is usually set when 91 * a rack timer is up so we know SACK's are happening 92 * on the connection already and don't want to wakeup yet). 93 * 94 * There is a common functions within the rack_bbr_common code 95 * version i.e. ctf_do_queued_segments(). This function 96 * knows how to take the input queue of packets from 97 * tp->t_in_pkts and process them digging out 98 * all the arguments, calling any bpf tap and 99 * calling into tfb_do_segment_nounlock(). The common 100 * function (ctf_do_queued_segments()) requires that 101 * you have defined the tfb_do_segment_nounlock() as 102 * described above. 103 */ 104 105 #include <sys/param.h> 106 #include <sys/bus.h> 107 #include <sys/interrupt.h> 108 #include <sys/module.h> 109 #include <sys/kernel.h> 110 #include <sys/hhook.h> 111 #include <sys/malloc.h> 112 #include <sys/mbuf.h> 113 #include <sys/proc.h> /* for proc0 declaration */ 114 #include <sys/socket.h> 115 #include <sys/socketvar.h> 116 #include <sys/sysctl.h> 117 #include <sys/systm.h> 118 #include <sys/refcount.h> 119 #include <sys/sched.h> 120 #include <sys/queue.h> 121 #include <sys/smp.h> 122 #include <sys/counter.h> 123 #include <sys/time.h> 124 #include <sys/kthread.h> 125 #include <sys/kern_prefetch.h> 126 127 #include <vm/uma.h> 128 #include <vm/vm.h> 129 130 #include <net/route.h> 131 #include <net/vnet.h> 132 133 #ifdef RSS 134 #include <net/netisr.h> 135 #include <net/rss_config.h> 136 #endif 137 138 #define TCPSTATES /* for logging */ 139 140 #include <netinet/in.h> 141 #include <netinet/in_kdtrace.h> 142 #include <netinet/in_pcb.h> 143 #include <netinet/ip.h> 144 #include <netinet/ip_icmp.h> /* required for icmp_var.h */ 145 #include <netinet/icmp_var.h> /* for ICMP_BANDLIM */ 146 #include <netinet/ip_var.h> 147 #include <netinet/ip6.h> 148 #include <netinet6/in6_pcb.h> 149 #include <netinet6/ip6_var.h> 150 #include <netinet/tcp.h> 151 #include <netinet/tcp_fsm.h> 152 #include <netinet/tcp_seq.h> 153 #include <netinet/tcp_timer.h> 154 #include <netinet/tcp_var.h> 155 #include <netinet/tcpip.h> 156 #include <netinet/cc/cc.h> 157 #include <netinet/tcp_hpts.h> 158 #include <netinet/tcp_log_buf.h> 159 160 #ifdef tcpdebug 161 #include <netinet/tcp_debug.h> 162 #endif /* tcpdebug */ 163 #ifdef tcp_offload 164 #include <netinet/tcp_offload.h> 165 #endif 166 167 /* 168 * The hpts uses a 102400 wheel. The wheel 169 * defines the time in 10 usec increments (102400 x 10). 170 * This gives a range of 10usec - 1024ms to place 171 * an entry within. If the user requests more than 172 * 1.024 second, a remaineder is attached and the hpts 173 * when seeing the remainder will re-insert the 174 * inpcb forward in time from where it is until 175 * the remainder is zero. 176 */ 177 178 #define NUM_OF_HPTSI_SLOTS 102400 179 180 /* Each hpts has its own p_mtx which is used for locking */ 181 #define HPTS_MTX_ASSERT(hpts) mtx_assert(&(hpts)->p_mtx, MA_OWNED) 182 #define HPTS_LOCK(hpts) mtx_lock(&(hpts)->p_mtx) 183 #define HPTS_UNLOCK(hpts) mtx_unlock(&(hpts)->p_mtx) 184 struct tcp_hpts_entry { 185 /* Cache line 0x00 */ 186 struct mtx p_mtx; /* Mutex for hpts */ 187 struct timeval p_mysleep; /* Our min sleep time */ 188 uint64_t syscall_cnt; 189 uint64_t sleeping; /* What the actual sleep was (if sleeping) */ 190 uint16_t p_hpts_active; /* Flag that says hpts is awake */ 191 uint8_t p_wheel_complete; /* have we completed the wheel arc walk? */ 192 uint32_t p_curtick; /* Tick in 10 us the hpts is going to */ 193 uint32_t p_runningslot; /* Current tick we are at if we are running */ 194 uint32_t p_prev_slot; /* Previous slot we were on */ 195 uint32_t p_cur_slot; /* Current slot in wheel hpts is draining */ 196 uint32_t p_nxt_slot; /* The next slot outside the current range of 197 * slots that the hpts is running on. */ 198 int32_t p_on_queue_cnt; /* Count on queue in this hpts */ 199 uint32_t p_lasttick; /* Last tick before the current one */ 200 uint8_t p_direct_wake :1, /* boolean */ 201 p_on_min_sleep:1, /* boolean */ 202 p_hpts_wake_scheduled:1, /* boolean */ 203 p_avail:5; 204 uint8_t p_fill[3]; /* Fill to 32 bits */ 205 /* Cache line 0x40 */ 206 struct hptsh { 207 TAILQ_HEAD(, inpcb) head; 208 uint32_t count; 209 uint32_t gencnt; 210 } *p_hptss; /* Hptsi wheel */ 211 uint32_t p_hpts_sleep_time; /* Current sleep interval having a max 212 * of 255ms */ 213 uint32_t overidden_sleep; /* what was overrided by min-sleep for logging */ 214 uint32_t saved_lasttick; /* for logging */ 215 uint32_t saved_curtick; /* for logging */ 216 uint32_t saved_curslot; /* for logging */ 217 uint32_t saved_prev_slot; /* for logging */ 218 uint32_t p_delayed_by; /* How much were we delayed by */ 219 /* Cache line 0x80 */ 220 struct sysctl_ctx_list hpts_ctx; 221 struct sysctl_oid *hpts_root; 222 struct intr_event *ie; 223 void *ie_cookie; 224 uint16_t p_num; /* The hpts number one per cpu */ 225 uint16_t p_cpu; /* The hpts CPU */ 226 /* There is extra space in here */ 227 /* Cache line 0x100 */ 228 struct callout co __aligned(CACHE_LINE_SIZE); 229 } __aligned(CACHE_LINE_SIZE); 230 231 static struct tcp_hptsi { 232 struct tcp_hpts_entry **rp_ent; /* Array of hptss */ 233 uint32_t *cts_last_ran; 234 uint32_t rp_num_hptss; /* Number of hpts threads */ 235 } tcp_pace; 236 237 MALLOC_DEFINE(M_TCPHPTS, "tcp_hpts", "TCP hpts"); 238 #ifdef RSS 239 static int tcp_bind_threads = 1; 240 #else 241 static int tcp_bind_threads = 2; 242 #endif 243 static int tcp_use_irq_cpu = 0; 244 static uint32_t *cts_last_ran; 245 static int hpts_does_tp_logging = 0; 246 static int hpts_use_assigned_cpu = 1; 247 static int32_t hpts_uses_oldest = OLDEST_THRESHOLD; 248 249 static int32_t tcp_hptsi(struct tcp_hpts_entry *hpts, int from_callout); 250 static void tcp_hpts_thread(void *ctx); 251 static void tcp_init_hptsi(void *st); 252 253 int32_t tcp_min_hptsi_time = DEFAULT_MIN_SLEEP; 254 static int conn_cnt_thresh = DEFAULT_CONNECTION_THESHOLD; 255 static int32_t dynamic_min_sleep = DYNAMIC_MIN_SLEEP; 256 static int32_t dynamic_max_sleep = DYNAMIC_MAX_SLEEP; 257 258 259 260 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, hpts, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 261 "TCP Hpts controls"); 262 SYSCTL_NODE(_net_inet_tcp_hpts, OID_AUTO, stats, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 263 "TCP Hpts statistics"); 264 265 #define timersub(tvp, uvp, vvp) \ 266 do { \ 267 (vvp)->tv_sec = (tvp)->tv_sec - (uvp)->tv_sec; \ 268 (vvp)->tv_usec = (tvp)->tv_usec - (uvp)->tv_usec; \ 269 if ((vvp)->tv_usec < 0) { \ 270 (vvp)->tv_sec--; \ 271 (vvp)->tv_usec += 1000000; \ 272 } \ 273 } while (0) 274 275 static int32_t tcp_hpts_precision = 120; 276 277 static struct hpts_domain_info { 278 int count; 279 int cpu[MAXCPU]; 280 } hpts_domains[MAXMEMDOM]; 281 282 enum { 283 IHPTS_NONE = 0, 284 IHPTS_ONQUEUE, 285 IHPTS_MOVING, 286 }; 287 288 counter_u64_t hpts_hopelessly_behind; 289 290 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, hopeless, CTLFLAG_RD, 291 &hpts_hopelessly_behind, 292 "Number of times hpts could not catch up and was behind hopelessly"); 293 294 counter_u64_t hpts_loops; 295 296 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, loops, CTLFLAG_RD, 297 &hpts_loops, "Number of times hpts had to loop to catch up"); 298 299 counter_u64_t back_tosleep; 300 301 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, no_tcbsfound, CTLFLAG_RD, 302 &back_tosleep, "Number of times hpts found no tcbs"); 303 304 counter_u64_t combined_wheel_wrap; 305 306 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, comb_wheel_wrap, CTLFLAG_RD, 307 &combined_wheel_wrap, "Number of times the wheel lagged enough to have an insert see wrap"); 308 309 counter_u64_t wheel_wrap; 310 311 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, wheel_wrap, CTLFLAG_RD, 312 &wheel_wrap, "Number of times the wheel lagged enough to have an insert see wrap"); 313 314 counter_u64_t hpts_direct_call; 315 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, direct_call, CTLFLAG_RD, 316 &hpts_direct_call, "Number of times hpts was called by syscall/trap or other entry"); 317 318 counter_u64_t hpts_wake_timeout; 319 320 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, timeout_wakeup, CTLFLAG_RD, 321 &hpts_wake_timeout, "Number of times hpts threads woke up via the callout expiring"); 322 323 counter_u64_t hpts_direct_awakening; 324 325 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, direct_awakening, CTLFLAG_RD, 326 &hpts_direct_awakening, "Number of times hpts threads woke up via the callout expiring"); 327 328 counter_u64_t hpts_back_tosleep; 329 330 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, back_tosleep, CTLFLAG_RD, 331 &hpts_back_tosleep, "Number of times hpts threads woke up via the callout expiring and went back to sleep no work"); 332 333 counter_u64_t cpu_uses_flowid; 334 counter_u64_t cpu_uses_random; 335 336 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, cpusel_flowid, CTLFLAG_RD, 337 &cpu_uses_flowid, "Number of times when setting cpuid we used the flowid field"); 338 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, cpusel_random, CTLFLAG_RD, 339 &cpu_uses_random, "Number of times when setting cpuid we used the a random value"); 340 341 TUNABLE_INT("net.inet.tcp.bind_hptss", &tcp_bind_threads); 342 TUNABLE_INT("net.inet.tcp.use_irq", &tcp_use_irq_cpu); 343 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, bind_hptss, CTLFLAG_RD, 344 &tcp_bind_threads, 2, 345 "Thread Binding tunable"); 346 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, use_irq, CTLFLAG_RD, 347 &tcp_use_irq_cpu, 0, 348 "Use of irq CPU tunable"); 349 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, precision, CTLFLAG_RW, 350 &tcp_hpts_precision, 120, 351 "Value for PRE() precision of callout"); 352 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, cnt_thresh, CTLFLAG_RW, 353 &conn_cnt_thresh, 0, 354 "How many connections (below) make us use the callout based mechanism"); 355 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, logging, CTLFLAG_RW, 356 &hpts_does_tp_logging, 0, 357 "Do we add to any tp that has logging on pacer logs"); 358 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, use_assigned_cpu, CTLFLAG_RW, 359 &hpts_use_assigned_cpu, 0, 360 "Do we start any hpts timer on the assigned cpu?"); 361 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, use_oldest, CTLFLAG_RW, 362 &hpts_uses_oldest, OLDEST_THRESHOLD, 363 "Do syscalls look for the hpts that has been the longest since running (or just use cpu no if 0)?"); 364 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, dyn_minsleep, CTLFLAG_RW, 365 &dynamic_min_sleep, 250, 366 "What is the dynamic minsleep value?"); 367 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, dyn_maxsleep, CTLFLAG_RW, 368 &dynamic_max_sleep, 5000, 369 "What is the dynamic maxsleep value?"); 370 371 372 373 374 375 static int32_t max_pacer_loops = 10; 376 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, loopmax, CTLFLAG_RW, 377 &max_pacer_loops, 10, 378 "What is the maximum number of times the pacer will loop trying to catch up"); 379 380 #define HPTS_MAX_SLEEP_ALLOWED (NUM_OF_HPTSI_SLOTS/2) 381 382 static uint32_t hpts_sleep_max = HPTS_MAX_SLEEP_ALLOWED; 383 384 static int 385 sysctl_net_inet_tcp_hpts_max_sleep(SYSCTL_HANDLER_ARGS) 386 { 387 int error; 388 uint32_t new; 389 390 new = hpts_sleep_max; 391 error = sysctl_handle_int(oidp, &new, 0, req); 392 if (error == 0 && req->newptr) { 393 if ((new < dynamic_min_sleep) || 394 (new > HPTS_MAX_SLEEP_ALLOWED)) 395 error = EINVAL; 396 else 397 hpts_sleep_max = new; 398 } 399 return (error); 400 } 401 402 static int 403 sysctl_net_inet_tcp_hpts_min_sleep(SYSCTL_HANDLER_ARGS) 404 { 405 int error; 406 uint32_t new; 407 408 new = tcp_min_hptsi_time; 409 error = sysctl_handle_int(oidp, &new, 0, req); 410 if (error == 0 && req->newptr) { 411 if (new < LOWEST_SLEEP_ALLOWED) 412 error = EINVAL; 413 else 414 tcp_min_hptsi_time = new; 415 } 416 return (error); 417 } 418 419 SYSCTL_PROC(_net_inet_tcp_hpts, OID_AUTO, maxsleep, 420 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 421 &hpts_sleep_max, 0, 422 &sysctl_net_inet_tcp_hpts_max_sleep, "IU", 423 "Maximum time hpts will sleep"); 424 425 SYSCTL_PROC(_net_inet_tcp_hpts, OID_AUTO, minsleep, 426 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 427 &tcp_min_hptsi_time, 0, 428 &sysctl_net_inet_tcp_hpts_min_sleep, "IU", 429 "The minimum time the hpts must sleep before processing more slots"); 430 431 static int ticks_indicate_more_sleep = TICKS_INDICATE_MORE_SLEEP; 432 static int ticks_indicate_less_sleep = TICKS_INDICATE_LESS_SLEEP; 433 static int tcp_hpts_no_wake_over_thresh = 1; 434 435 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, more_sleep, CTLFLAG_RW, 436 &ticks_indicate_more_sleep, 0, 437 "If we only process this many or less on a timeout, we need longer sleep on the next callout"); 438 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, less_sleep, CTLFLAG_RW, 439 &ticks_indicate_less_sleep, 0, 440 "If we process this many or more on a timeout, we need less sleep on the next callout"); 441 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, nowake_over_thresh, CTLFLAG_RW, 442 &tcp_hpts_no_wake_over_thresh, 0, 443 "When we are over the threshold on the pacer do we prohibit wakeups?"); 444 445 static void 446 tcp_hpts_log(struct tcp_hpts_entry *hpts, struct tcpcb *tp, struct timeval *tv, 447 int slots_to_run, int idx, int from_callout) 448 { 449 union tcp_log_stackspecific log; 450 /* 451 * Unused logs are 452 * 64 bit - delRate, rttProp, bw_inuse 453 * 16 bit - cwnd_gain 454 * 8 bit - bbr_state, bbr_substate, inhpts; 455 */ 456 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 457 log.u_bbr.flex1 = hpts->p_nxt_slot; 458 log.u_bbr.flex2 = hpts->p_cur_slot; 459 log.u_bbr.flex3 = hpts->p_prev_slot; 460 log.u_bbr.flex4 = idx; 461 log.u_bbr.flex5 = hpts->p_curtick; 462 log.u_bbr.flex6 = hpts->p_on_queue_cnt; 463 log.u_bbr.flex7 = hpts->p_cpu; 464 log.u_bbr.flex8 = (uint8_t)from_callout; 465 log.u_bbr.inflight = slots_to_run; 466 log.u_bbr.applimited = hpts->overidden_sleep; 467 log.u_bbr.delivered = hpts->saved_curtick; 468 log.u_bbr.timeStamp = tcp_tv_to_usectick(tv); 469 log.u_bbr.epoch = hpts->saved_curslot; 470 log.u_bbr.lt_epoch = hpts->saved_prev_slot; 471 log.u_bbr.pkts_out = hpts->p_delayed_by; 472 log.u_bbr.lost = hpts->p_hpts_sleep_time; 473 log.u_bbr.pacing_gain = hpts->p_cpu; 474 log.u_bbr.pkt_epoch = hpts->p_runningslot; 475 log.u_bbr.use_lt_bw = 1; 476 TCP_LOG_EVENTP(tp, NULL, 477 &tp->t_inpcb->inp_socket->so_rcv, 478 &tp->t_inpcb->inp_socket->so_snd, 479 BBR_LOG_HPTSDIAG, 0, 480 0, &log, false, tv); 481 } 482 483 static void 484 tcp_wakehpts(struct tcp_hpts_entry *hpts) 485 { 486 HPTS_MTX_ASSERT(hpts); 487 488 if (tcp_hpts_no_wake_over_thresh && (hpts->p_on_queue_cnt >= conn_cnt_thresh)) { 489 hpts->p_direct_wake = 0; 490 return; 491 } 492 if (hpts->p_hpts_wake_scheduled == 0) { 493 hpts->p_hpts_wake_scheduled = 1; 494 swi_sched(hpts->ie_cookie, 0); 495 } 496 } 497 498 static void 499 hpts_timeout_swi(void *arg) 500 { 501 struct tcp_hpts_entry *hpts; 502 503 hpts = (struct tcp_hpts_entry *)arg; 504 swi_sched(hpts->ie_cookie, 0); 505 } 506 507 static void 508 inp_hpts_insert(struct inpcb *inp, struct tcp_hpts_entry *hpts) 509 { 510 struct hptsh *hptsh; 511 512 INP_WLOCK_ASSERT(inp); 513 HPTS_MTX_ASSERT(hpts); 514 MPASS(hpts->p_cpu == inp->inp_hpts_cpu); 515 MPASS(!(inp->inp_flags & (INP_DROPPED|INP_TIMEWAIT))); 516 517 hptsh = &hpts->p_hptss[inp->inp_hptsslot]; 518 519 if (inp->inp_in_hpts == IHPTS_NONE) { 520 inp->inp_in_hpts = IHPTS_ONQUEUE; 521 in_pcbref(inp); 522 } else if (inp->inp_in_hpts == IHPTS_MOVING) { 523 inp->inp_in_hpts = IHPTS_ONQUEUE; 524 } else 525 MPASS(inp->inp_in_hpts == IHPTS_ONQUEUE); 526 inp->inp_hpts_gencnt = hptsh->gencnt; 527 528 TAILQ_INSERT_TAIL(&hptsh->head, inp, inp_hpts); 529 hptsh->count++; 530 hpts->p_on_queue_cnt++; 531 } 532 533 static struct tcp_hpts_entry * 534 tcp_hpts_lock(struct inpcb *inp) 535 { 536 struct tcp_hpts_entry *hpts; 537 538 INP_LOCK_ASSERT(inp); 539 540 hpts = tcp_pace.rp_ent[inp->inp_hpts_cpu]; 541 HPTS_LOCK(hpts); 542 543 return (hpts); 544 } 545 546 static void 547 inp_hpts_release(struct inpcb *inp) 548 { 549 bool released __diagused; 550 551 inp->inp_in_hpts = IHPTS_NONE; 552 released = in_pcbrele_wlocked(inp); 553 MPASS(released == false); 554 } 555 556 /* 557 * Called normally with the INP_LOCKED but it 558 * does not matter, the hpts lock is the key 559 * but the lock order allows us to hold the 560 * INP lock and then get the hpts lock. 561 */ 562 void 563 tcp_hpts_remove(struct inpcb *inp) 564 { 565 struct tcp_hpts_entry *hpts; 566 struct hptsh *hptsh; 567 568 INP_WLOCK_ASSERT(inp); 569 570 hpts = tcp_hpts_lock(inp); 571 if (inp->inp_in_hpts == IHPTS_ONQUEUE) { 572 hptsh = &hpts->p_hptss[inp->inp_hptsslot]; 573 inp->inp_hpts_request = 0; 574 if (__predict_true(inp->inp_hpts_gencnt == hptsh->gencnt)) { 575 TAILQ_REMOVE(&hptsh->head, inp, inp_hpts); 576 MPASS(hptsh->count > 0); 577 hptsh->count--; 578 MPASS(hpts->p_on_queue_cnt > 0); 579 hpts->p_on_queue_cnt--; 580 inp_hpts_release(inp); 581 } else { 582 /* 583 * tcp_hptsi() now owns the TAILQ head of this inp. 584 * Can't TAILQ_REMOVE, just mark it. 585 */ 586 #ifdef INVARIANTS 587 struct inpcb *tmp; 588 589 TAILQ_FOREACH(tmp, &hptsh->head, inp_hpts) 590 MPASS(tmp != inp); 591 #endif 592 inp->inp_in_hpts = IHPTS_MOVING; 593 inp->inp_hptsslot = -1; 594 } 595 } else if (inp->inp_in_hpts == IHPTS_MOVING) { 596 /* 597 * Handle a special race condition: 598 * tcp_hptsi() moves inpcb to detached tailq 599 * tcp_hpts_remove() marks as IHPTS_MOVING, slot = -1 600 * tcp_hpts_insert() sets slot to a meaningful value 601 * tcp_hpts_remove() again (we are here!), then in_pcbdrop() 602 * tcp_hptsi() finds pcb with meaningful slot and INP_DROPPED 603 */ 604 inp->inp_hptsslot = -1; 605 } 606 HPTS_UNLOCK(hpts); 607 } 608 609 bool 610 tcp_in_hpts(struct inpcb *inp) 611 { 612 613 return (inp->inp_in_hpts == IHPTS_ONQUEUE); 614 } 615 616 static inline int 617 hpts_slot(uint32_t wheel_slot, uint32_t plus) 618 { 619 /* 620 * Given a slot on the wheel, what slot 621 * is that plus ticks out? 622 */ 623 KASSERT(wheel_slot < NUM_OF_HPTSI_SLOTS, ("Invalid tick %u not on wheel", wheel_slot)); 624 return ((wheel_slot + plus) % NUM_OF_HPTSI_SLOTS); 625 } 626 627 static inline int 628 tick_to_wheel(uint32_t cts_in_wticks) 629 { 630 /* 631 * Given a timestamp in ticks (so by 632 * default to get it to a real time one 633 * would multiply by 10.. i.e the number 634 * of ticks in a slot) map it to our limited 635 * space wheel. 636 */ 637 return (cts_in_wticks % NUM_OF_HPTSI_SLOTS); 638 } 639 640 static inline int 641 hpts_slots_diff(int prev_slot, int slot_now) 642 { 643 /* 644 * Given two slots that are someplace 645 * on our wheel. How far are they apart? 646 */ 647 if (slot_now > prev_slot) 648 return (slot_now - prev_slot); 649 else if (slot_now == prev_slot) 650 /* 651 * Special case, same means we can go all of our 652 * wheel less one slot. 653 */ 654 return (NUM_OF_HPTSI_SLOTS - 1); 655 else 656 return ((NUM_OF_HPTSI_SLOTS - prev_slot) + slot_now); 657 } 658 659 /* 660 * Given a slot on the wheel that is the current time 661 * mapped to the wheel (wheel_slot), what is the maximum 662 * distance forward that can be obtained without 663 * wrapping past either prev_slot or running_slot 664 * depending on the htps state? Also if passed 665 * a uint32_t *, fill it with the slot location. 666 * 667 * Note if you do not give this function the current 668 * time (that you think it is) mapped to the wheel slot 669 * then the results will not be what you expect and 670 * could lead to invalid inserts. 671 */ 672 static inline int32_t 673 max_slots_available(struct tcp_hpts_entry *hpts, uint32_t wheel_slot, uint32_t *target_slot) 674 { 675 uint32_t dis_to_travel, end_slot, pacer_to_now, avail_on_wheel; 676 677 if ((hpts->p_hpts_active == 1) && 678 (hpts->p_wheel_complete == 0)) { 679 end_slot = hpts->p_runningslot; 680 /* Back up one tick */ 681 if (end_slot == 0) 682 end_slot = NUM_OF_HPTSI_SLOTS - 1; 683 else 684 end_slot--; 685 if (target_slot) 686 *target_slot = end_slot; 687 } else { 688 /* 689 * For the case where we are 690 * not active, or we have 691 * completed the pass over 692 * the wheel, we can use the 693 * prev tick and subtract one from it. This puts us 694 * as far out as possible on the wheel. 695 */ 696 end_slot = hpts->p_prev_slot; 697 if (end_slot == 0) 698 end_slot = NUM_OF_HPTSI_SLOTS - 1; 699 else 700 end_slot--; 701 if (target_slot) 702 *target_slot = end_slot; 703 /* 704 * Now we have close to the full wheel left minus the 705 * time it has been since the pacer went to sleep. Note 706 * that wheel_tick, passed in, should be the current time 707 * from the perspective of the caller, mapped to the wheel. 708 */ 709 if (hpts->p_prev_slot != wheel_slot) 710 dis_to_travel = hpts_slots_diff(hpts->p_prev_slot, wheel_slot); 711 else 712 dis_to_travel = 1; 713 /* 714 * dis_to_travel in this case is the space from when the 715 * pacer stopped (p_prev_slot) and where our wheel_slot 716 * is now. To know how many slots we can put it in we 717 * subtract from the wheel size. We would not want 718 * to place something after p_prev_slot or it will 719 * get ran too soon. 720 */ 721 return (NUM_OF_HPTSI_SLOTS - dis_to_travel); 722 } 723 /* 724 * So how many slots are open between p_runningslot -> p_cur_slot 725 * that is what is currently un-available for insertion. Special 726 * case when we are at the last slot, this gets 1, so that 727 * the answer to how many slots are available is all but 1. 728 */ 729 if (hpts->p_runningslot == hpts->p_cur_slot) 730 dis_to_travel = 1; 731 else 732 dis_to_travel = hpts_slots_diff(hpts->p_runningslot, hpts->p_cur_slot); 733 /* 734 * How long has the pacer been running? 735 */ 736 if (hpts->p_cur_slot != wheel_slot) { 737 /* The pacer is a bit late */ 738 pacer_to_now = hpts_slots_diff(hpts->p_cur_slot, wheel_slot); 739 } else { 740 /* The pacer is right on time, now == pacers start time */ 741 pacer_to_now = 0; 742 } 743 /* 744 * To get the number left we can insert into we simply 745 * subract the distance the pacer has to run from how 746 * many slots there are. 747 */ 748 avail_on_wheel = NUM_OF_HPTSI_SLOTS - dis_to_travel; 749 /* 750 * Now how many of those we will eat due to the pacer's 751 * time (p_cur_slot) of start being behind the 752 * real time (wheel_slot)? 753 */ 754 if (avail_on_wheel <= pacer_to_now) { 755 /* 756 * Wheel wrap, we can't fit on the wheel, that 757 * is unusual the system must be way overloaded! 758 * Insert into the assured slot, and return special 759 * "0". 760 */ 761 counter_u64_add(combined_wheel_wrap, 1); 762 *target_slot = hpts->p_nxt_slot; 763 return (0); 764 } else { 765 /* 766 * We know how many slots are open 767 * on the wheel (the reverse of what 768 * is left to run. Take away the time 769 * the pacer started to now (wheel_slot) 770 * and that tells you how many slots are 771 * open that can be inserted into that won't 772 * be touched by the pacer until later. 773 */ 774 return (avail_on_wheel - pacer_to_now); 775 } 776 } 777 778 779 #ifdef INVARIANTS 780 static void 781 check_if_slot_would_be_wrong(struct tcp_hpts_entry *hpts, struct inpcb *inp, uint32_t inp_hptsslot, int line) 782 { 783 /* 784 * Sanity checks for the pacer with invariants 785 * on insert. 786 */ 787 KASSERT(inp_hptsslot < NUM_OF_HPTSI_SLOTS, 788 ("hpts:%p inp:%p slot:%d > max", 789 hpts, inp, inp_hptsslot)); 790 if ((hpts->p_hpts_active) && 791 (hpts->p_wheel_complete == 0)) { 792 /* 793 * If the pacer is processing a arc 794 * of the wheel, we need to make 795 * sure we are not inserting within 796 * that arc. 797 */ 798 int distance, yet_to_run; 799 800 distance = hpts_slots_diff(hpts->p_runningslot, inp_hptsslot); 801 if (hpts->p_runningslot != hpts->p_cur_slot) 802 yet_to_run = hpts_slots_diff(hpts->p_runningslot, hpts->p_cur_slot); 803 else 804 yet_to_run = 0; /* processing last slot */ 805 KASSERT(yet_to_run <= distance, 806 ("hpts:%p inp:%p slot:%d distance:%d yet_to_run:%d rs:%d cs:%d", 807 hpts, inp, inp_hptsslot, 808 distance, yet_to_run, 809 hpts->p_runningslot, hpts->p_cur_slot)); 810 } 811 } 812 #endif 813 814 uint32_t 815 tcp_hpts_insert_diag(struct inpcb *inp, uint32_t slot, int32_t line, struct hpts_diag *diag) 816 { 817 struct tcp_hpts_entry *hpts; 818 struct timeval tv; 819 uint32_t slot_on, wheel_cts, last_slot, need_new_to = 0; 820 int32_t wheel_slot, maxslots; 821 int cpu; 822 bool need_wakeup = false; 823 824 INP_WLOCK_ASSERT(inp); 825 MPASS(!tcp_in_hpts(inp)); 826 MPASS(!(inp->inp_flags & (INP_DROPPED|INP_TIMEWAIT))); 827 828 /* 829 * We now return the next-slot the hpts will be on, beyond its 830 * current run (if up) or where it was when it stopped if it is 831 * sleeping. 832 */ 833 hpts = tcp_hpts_lock(inp); 834 microuptime(&tv); 835 if (diag) { 836 memset(diag, 0, sizeof(struct hpts_diag)); 837 diag->p_hpts_active = hpts->p_hpts_active; 838 diag->p_prev_slot = hpts->p_prev_slot; 839 diag->p_runningslot = hpts->p_runningslot; 840 diag->p_nxt_slot = hpts->p_nxt_slot; 841 diag->p_cur_slot = hpts->p_cur_slot; 842 diag->p_curtick = hpts->p_curtick; 843 diag->p_lasttick = hpts->p_lasttick; 844 diag->slot_req = slot; 845 diag->p_on_min_sleep = hpts->p_on_min_sleep; 846 diag->hpts_sleep_time = hpts->p_hpts_sleep_time; 847 } 848 if (slot == 0) { 849 /* Ok we need to set it on the hpts in the current slot */ 850 inp->inp_hpts_request = 0; 851 if ((hpts->p_hpts_active == 0) || (hpts->p_wheel_complete)) { 852 /* 853 * A sleeping hpts we want in next slot to run 854 * note that in this state p_prev_slot == p_cur_slot 855 */ 856 inp->inp_hptsslot = hpts_slot(hpts->p_prev_slot, 1); 857 if ((hpts->p_on_min_sleep == 0) && 858 (hpts->p_hpts_active == 0)) 859 need_wakeup = true; 860 } else 861 inp->inp_hptsslot = hpts->p_runningslot; 862 if (__predict_true(inp->inp_in_hpts != IHPTS_MOVING)) 863 inp_hpts_insert(inp, hpts); 864 if (need_wakeup) { 865 /* 866 * Activate the hpts if it is sleeping and its 867 * timeout is not 1. 868 */ 869 hpts->p_direct_wake = 1; 870 tcp_wakehpts(hpts); 871 } 872 slot_on = hpts->p_nxt_slot; 873 HPTS_UNLOCK(hpts); 874 875 return (slot_on); 876 } 877 /* Get the current time relative to the wheel */ 878 wheel_cts = tcp_tv_to_hptstick(&tv); 879 /* Map it onto the wheel */ 880 wheel_slot = tick_to_wheel(wheel_cts); 881 /* Now what's the max we can place it at? */ 882 maxslots = max_slots_available(hpts, wheel_slot, &last_slot); 883 if (diag) { 884 diag->wheel_slot = wheel_slot; 885 diag->maxslots = maxslots; 886 diag->wheel_cts = wheel_cts; 887 } 888 if (maxslots == 0) { 889 /* The pacer is in a wheel wrap behind, yikes! */ 890 if (slot > 1) { 891 /* 892 * Reduce by 1 to prevent a forever loop in 893 * case something else is wrong. Note this 894 * probably does not hurt because the pacer 895 * if its true is so far behind we will be 896 * > 1second late calling anyway. 897 */ 898 slot--; 899 } 900 inp->inp_hptsslot = last_slot; 901 inp->inp_hpts_request = slot; 902 } else if (maxslots >= slot) { 903 /* It all fits on the wheel */ 904 inp->inp_hpts_request = 0; 905 inp->inp_hptsslot = hpts_slot(wheel_slot, slot); 906 } else { 907 /* It does not fit */ 908 inp->inp_hpts_request = slot - maxslots; 909 inp->inp_hptsslot = last_slot; 910 } 911 if (diag) { 912 diag->slot_remaining = inp->inp_hpts_request; 913 diag->inp_hptsslot = inp->inp_hptsslot; 914 } 915 #ifdef INVARIANTS 916 check_if_slot_would_be_wrong(hpts, inp, inp->inp_hptsslot, line); 917 #endif 918 if (__predict_true(inp->inp_in_hpts != IHPTS_MOVING)) 919 inp_hpts_insert(inp, hpts); 920 if ((hpts->p_hpts_active == 0) && 921 (inp->inp_hpts_request == 0) && 922 (hpts->p_on_min_sleep == 0)) { 923 /* 924 * The hpts is sleeping and NOT on a minimum 925 * sleep time, we need to figure out where 926 * it will wake up at and if we need to reschedule 927 * its time-out. 928 */ 929 uint32_t have_slept, yet_to_sleep; 930 931 /* Now do we need to restart the hpts's timer? */ 932 have_slept = hpts_slots_diff(hpts->p_prev_slot, wheel_slot); 933 if (have_slept < hpts->p_hpts_sleep_time) 934 yet_to_sleep = hpts->p_hpts_sleep_time - have_slept; 935 else { 936 /* We are over-due */ 937 yet_to_sleep = 0; 938 need_wakeup = 1; 939 } 940 if (diag) { 941 diag->have_slept = have_slept; 942 diag->yet_to_sleep = yet_to_sleep; 943 } 944 if (yet_to_sleep && 945 (yet_to_sleep > slot)) { 946 /* 947 * We need to reschedule the hpts's time-out. 948 */ 949 hpts->p_hpts_sleep_time = slot; 950 need_new_to = slot * HPTS_TICKS_PER_SLOT; 951 } 952 } 953 /* 954 * Now how far is the hpts sleeping to? if active is 1, its 955 * up and ticking we do nothing, otherwise we may need to 956 * reschedule its callout if need_new_to is set from above. 957 */ 958 if (need_wakeup) { 959 hpts->p_direct_wake = 1; 960 tcp_wakehpts(hpts); 961 if (diag) { 962 diag->need_new_to = 0; 963 diag->co_ret = 0xffff0000; 964 } 965 } else if (need_new_to) { 966 int32_t co_ret; 967 struct timeval tv; 968 sbintime_t sb; 969 970 tv.tv_sec = 0; 971 tv.tv_usec = 0; 972 while (need_new_to > HPTS_USEC_IN_SEC) { 973 tv.tv_sec++; 974 need_new_to -= HPTS_USEC_IN_SEC; 975 } 976 tv.tv_usec = need_new_to; 977 sb = tvtosbt(tv); 978 cpu = (tcp_bind_threads || hpts_use_assigned_cpu) ? hpts->p_cpu : curcpu; 979 co_ret = callout_reset_sbt_on(&hpts->co, sb, 0, 980 hpts_timeout_swi, hpts, cpu, 981 (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision))); 982 if (diag) { 983 diag->need_new_to = need_new_to; 984 diag->co_ret = co_ret; 985 } 986 } 987 slot_on = hpts->p_nxt_slot; 988 HPTS_UNLOCK(hpts); 989 990 return (slot_on); 991 } 992 993 uint16_t 994 hpts_random_cpu(struct inpcb *inp){ 995 /* 996 * No flow type set distribute the load randomly. 997 */ 998 uint16_t cpuid; 999 uint32_t ran; 1000 1001 /* 1002 * Shortcut if it is already set. XXXGL: does it happen? 1003 */ 1004 if (inp->inp_hpts_cpu_set) { 1005 return (inp->inp_hpts_cpu); 1006 } 1007 /* Nothing set use a random number */ 1008 ran = arc4random(); 1009 cpuid = (((ran & 0xffff) % mp_ncpus) % tcp_pace.rp_num_hptss); 1010 return (cpuid); 1011 } 1012 1013 static uint16_t 1014 hpts_cpuid(struct inpcb *inp, int *failed) 1015 { 1016 u_int cpuid; 1017 #if !defined(RSS) && defined(NUMA) 1018 struct hpts_domain_info *di; 1019 #endif 1020 1021 *failed = 0; 1022 if (inp->inp_hpts_cpu_set) { 1023 return (inp->inp_hpts_cpu); 1024 } 1025 /* 1026 * If we are using the irq cpu set by LRO or 1027 * the driver then it overrides all other domains. 1028 */ 1029 if (tcp_use_irq_cpu) { 1030 if (inp->inp_irq_cpu_set == 0) { 1031 *failed = 1; 1032 return(0); 1033 } 1034 return(inp->inp_irq_cpu); 1035 } 1036 /* If one is set the other must be the same */ 1037 #ifdef RSS 1038 cpuid = rss_hash2cpuid(inp->inp_flowid, inp->inp_flowtype); 1039 if (cpuid == NETISR_CPUID_NONE) 1040 return (hpts_random_cpu(inp)); 1041 else 1042 return (cpuid); 1043 #else 1044 /* 1045 * We don't have a flowid -> cpuid mapping, so cheat and just map 1046 * unknown cpuids to curcpu. Not the best, but apparently better 1047 * than defaulting to swi 0. 1048 */ 1049 if (inp->inp_flowtype == M_HASHTYPE_NONE) { 1050 counter_u64_add(cpu_uses_random, 1); 1051 return (hpts_random_cpu(inp)); 1052 } 1053 /* 1054 * Hash to a thread based on the flowid. If we are using numa, 1055 * then restrict the hash to the numa domain where the inp lives. 1056 */ 1057 #ifdef NUMA 1058 if (tcp_bind_threads == 2 && inp->inp_numa_domain != M_NODOM) { 1059 di = &hpts_domains[inp->inp_numa_domain]; 1060 cpuid = di->cpu[inp->inp_flowid % di->count]; 1061 } else 1062 #endif 1063 cpuid = inp->inp_flowid % mp_ncpus; 1064 counter_u64_add(cpu_uses_flowid, 1); 1065 return (cpuid); 1066 #endif 1067 } 1068 1069 static void 1070 tcp_drop_in_pkts(struct tcpcb *tp) 1071 { 1072 struct mbuf *m, *n; 1073 1074 m = tp->t_in_pkt; 1075 if (m) 1076 n = m->m_nextpkt; 1077 else 1078 n = NULL; 1079 tp->t_in_pkt = NULL; 1080 while (m) { 1081 m_freem(m); 1082 m = n; 1083 if (m) 1084 n = m->m_nextpkt; 1085 } 1086 } 1087 1088 static void 1089 tcp_hpts_set_max_sleep(struct tcp_hpts_entry *hpts, int wrap_loop_cnt) 1090 { 1091 uint32_t t = 0, i, fnd = 0; 1092 1093 if ((hpts->p_on_queue_cnt) && (wrap_loop_cnt < 2)) { 1094 /* 1095 * Find next slot that is occupied and use that to 1096 * be the sleep time. 1097 */ 1098 for (i = 0, t = hpts_slot(hpts->p_cur_slot, 1); i < NUM_OF_HPTSI_SLOTS; i++) { 1099 if (TAILQ_EMPTY(&hpts->p_hptss[t].head) == 0) { 1100 fnd = 1; 1101 break; 1102 } 1103 t = (t + 1) % NUM_OF_HPTSI_SLOTS; 1104 } 1105 KASSERT(fnd != 0, ("Hpts:%p cnt:%d but none found", hpts, hpts->p_on_queue_cnt)); 1106 hpts->p_hpts_sleep_time = min((i + 1), hpts_sleep_max); 1107 } else { 1108 /* No one on the wheel sleep for all but 400 slots or sleep max */ 1109 hpts->p_hpts_sleep_time = hpts_sleep_max; 1110 } 1111 } 1112 1113 static int32_t 1114 tcp_hptsi(struct tcp_hpts_entry *hpts, int from_callout) 1115 { 1116 struct tcpcb *tp; 1117 struct inpcb *inp; 1118 struct timeval tv; 1119 uint64_t total_slots_processed = 0; 1120 int32_t slots_to_run, i, error; 1121 int32_t paced_cnt = 0; 1122 int32_t loop_cnt = 0; 1123 int32_t did_prefetch = 0; 1124 int32_t prefetch_ninp = 0; 1125 int32_t prefetch_tp = 0; 1126 int32_t wrap_loop_cnt = 0; 1127 int32_t slot_pos_of_endpoint = 0; 1128 int32_t orig_exit_slot; 1129 int8_t completed_measure = 0, seen_endpoint = 0; 1130 1131 HPTS_MTX_ASSERT(hpts); 1132 NET_EPOCH_ASSERT(); 1133 /* record previous info for any logging */ 1134 hpts->saved_lasttick = hpts->p_lasttick; 1135 hpts->saved_curtick = hpts->p_curtick; 1136 hpts->saved_curslot = hpts->p_cur_slot; 1137 hpts->saved_prev_slot = hpts->p_prev_slot; 1138 1139 hpts->p_lasttick = hpts->p_curtick; 1140 hpts->p_curtick = tcp_gethptstick(&tv); 1141 cts_last_ran[hpts->p_num] = tcp_tv_to_usectick(&tv); 1142 orig_exit_slot = hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick); 1143 if ((hpts->p_on_queue_cnt == 0) || 1144 (hpts->p_lasttick == hpts->p_curtick)) { 1145 /* 1146 * No time has yet passed, 1147 * or nothing to do. 1148 */ 1149 hpts->p_prev_slot = hpts->p_cur_slot; 1150 hpts->p_lasttick = hpts->p_curtick; 1151 goto no_run; 1152 } 1153 again: 1154 hpts->p_wheel_complete = 0; 1155 HPTS_MTX_ASSERT(hpts); 1156 slots_to_run = hpts_slots_diff(hpts->p_prev_slot, hpts->p_cur_slot); 1157 if (((hpts->p_curtick - hpts->p_lasttick) > 1158 ((NUM_OF_HPTSI_SLOTS-1) * HPTS_TICKS_PER_SLOT)) && 1159 (hpts->p_on_queue_cnt != 0)) { 1160 /* 1161 * Wheel wrap is occuring, basically we 1162 * are behind and the distance between 1163 * run's has spread so much it has exceeded 1164 * the time on the wheel (1.024 seconds). This 1165 * is ugly and should NOT be happening. We 1166 * need to run the entire wheel. We last processed 1167 * p_prev_slot, so that needs to be the last slot 1168 * we run. The next slot after that should be our 1169 * reserved first slot for new, and then starts 1170 * the running postion. Now the problem is the 1171 * reserved "not to yet" place does not exist 1172 * and there may be inp's in there that need 1173 * running. We can merge those into the 1174 * first slot at the head. 1175 */ 1176 wrap_loop_cnt++; 1177 hpts->p_nxt_slot = hpts_slot(hpts->p_prev_slot, 1); 1178 hpts->p_runningslot = hpts_slot(hpts->p_prev_slot, 2); 1179 /* 1180 * Adjust p_cur_slot to be where we are starting from 1181 * hopefully we will catch up (fat chance if something 1182 * is broken this bad :( ) 1183 */ 1184 hpts->p_cur_slot = hpts->p_prev_slot; 1185 /* 1186 * The next slot has guys to run too, and that would 1187 * be where we would normally start, lets move them into 1188 * the next slot (p_prev_slot + 2) so that we will 1189 * run them, the extra 10usecs of late (by being 1190 * put behind) does not really matter in this situation. 1191 */ 1192 TAILQ_FOREACH(inp, &hpts->p_hptss[hpts->p_nxt_slot].head, 1193 inp_hpts) { 1194 MPASS(inp->inp_hptsslot == hpts->p_nxt_slot); 1195 MPASS(inp->inp_hpts_gencnt == 1196 hpts->p_hptss[hpts->p_nxt_slot].gencnt); 1197 MPASS(inp->inp_in_hpts == IHPTS_ONQUEUE); 1198 1199 /* 1200 * Update gencnt and nextslot accordingly to match 1201 * the new location. This is safe since it takes both 1202 * the INP lock and the pacer mutex to change the 1203 * inp_hptsslot and inp_hpts_gencnt. 1204 */ 1205 inp->inp_hpts_gencnt = 1206 hpts->p_hptss[hpts->p_runningslot].gencnt; 1207 inp->inp_hptsslot = hpts->p_runningslot; 1208 } 1209 TAILQ_CONCAT(&hpts->p_hptss[hpts->p_runningslot].head, 1210 &hpts->p_hptss[hpts->p_nxt_slot].head, inp_hpts); 1211 hpts->p_hptss[hpts->p_runningslot].count += 1212 hpts->p_hptss[hpts->p_nxt_slot].count; 1213 hpts->p_hptss[hpts->p_nxt_slot].count = 0; 1214 hpts->p_hptss[hpts->p_nxt_slot].gencnt++; 1215 slots_to_run = NUM_OF_HPTSI_SLOTS - 1; 1216 counter_u64_add(wheel_wrap, 1); 1217 } else { 1218 /* 1219 * Nxt slot is always one after p_runningslot though 1220 * its not used usually unless we are doing wheel wrap. 1221 */ 1222 hpts->p_nxt_slot = hpts->p_prev_slot; 1223 hpts->p_runningslot = hpts_slot(hpts->p_prev_slot, 1); 1224 } 1225 if (hpts->p_on_queue_cnt == 0) { 1226 goto no_one; 1227 } 1228 for (i = 0; i < slots_to_run; i++) { 1229 struct inpcb *inp, *ninp; 1230 TAILQ_HEAD(, inpcb) head = TAILQ_HEAD_INITIALIZER(head); 1231 struct hptsh *hptsh; 1232 uint32_t runningslot, gencnt; 1233 1234 /* 1235 * Calculate our delay, if there are no extra ticks there 1236 * was not any (i.e. if slots_to_run == 1, no delay). 1237 */ 1238 hpts->p_delayed_by = (slots_to_run - (i + 1)) * 1239 HPTS_TICKS_PER_SLOT; 1240 1241 runningslot = hpts->p_runningslot; 1242 hptsh = &hpts->p_hptss[runningslot]; 1243 TAILQ_SWAP(&head, &hptsh->head, inpcb, inp_hpts); 1244 hpts->p_on_queue_cnt -= hptsh->count; 1245 hptsh->count = 0; 1246 gencnt = hptsh->gencnt++; 1247 1248 HPTS_UNLOCK(hpts); 1249 1250 TAILQ_FOREACH_SAFE(inp, &head, inp_hpts, ninp) { 1251 bool set_cpu; 1252 1253 if (ninp != NULL) { 1254 /* We prefetch the next inp if possible */ 1255 kern_prefetch(ninp, &prefetch_ninp); 1256 prefetch_ninp = 1; 1257 } 1258 1259 /* For debugging */ 1260 if (seen_endpoint == 0) { 1261 seen_endpoint = 1; 1262 orig_exit_slot = slot_pos_of_endpoint = 1263 runningslot; 1264 } else if (completed_measure == 0) { 1265 /* Record the new position */ 1266 orig_exit_slot = runningslot; 1267 } 1268 total_slots_processed++; 1269 paced_cnt++; 1270 1271 INP_WLOCK(inp); 1272 if (inp->inp_hpts_cpu_set == 0) { 1273 set_cpu = true; 1274 } else { 1275 set_cpu = false; 1276 } 1277 1278 if (__predict_false(inp->inp_in_hpts == IHPTS_MOVING)) { 1279 if (inp->inp_hptsslot == -1) { 1280 inp->inp_in_hpts = IHPTS_NONE; 1281 if (in_pcbrele_wlocked(inp) == false) 1282 INP_WUNLOCK(inp); 1283 } else { 1284 HPTS_LOCK(hpts); 1285 inp_hpts_insert(inp, hpts); 1286 HPTS_UNLOCK(hpts); 1287 INP_WUNLOCK(inp); 1288 } 1289 continue; 1290 } 1291 1292 MPASS(inp->inp_in_hpts == IHPTS_ONQUEUE); 1293 MPASS(!(inp->inp_flags & (INP_DROPPED|INP_TIMEWAIT))); 1294 KASSERT(runningslot == inp->inp_hptsslot, 1295 ("Hpts:%p inp:%p slot mis-aligned %u vs %u", 1296 hpts, inp, runningslot, inp->inp_hptsslot)); 1297 1298 if (inp->inp_hpts_request) { 1299 /* 1300 * This guy is deferred out further in time 1301 * then our wheel had available on it. 1302 * Push him back on the wheel or run it 1303 * depending. 1304 */ 1305 uint32_t maxslots, last_slot, remaining_slots; 1306 1307 remaining_slots = slots_to_run - (i + 1); 1308 if (inp->inp_hpts_request > remaining_slots) { 1309 HPTS_LOCK(hpts); 1310 /* 1311 * How far out can we go? 1312 */ 1313 maxslots = max_slots_available(hpts, 1314 hpts->p_cur_slot, &last_slot); 1315 if (maxslots >= inp->inp_hpts_request) { 1316 /* We can place it finally to 1317 * be processed. */ 1318 inp->inp_hptsslot = hpts_slot( 1319 hpts->p_runningslot, 1320 inp->inp_hpts_request); 1321 inp->inp_hpts_request = 0; 1322 } else { 1323 /* Work off some more time */ 1324 inp->inp_hptsslot = last_slot; 1325 inp->inp_hpts_request -= 1326 maxslots; 1327 } 1328 inp_hpts_insert(inp, hpts); 1329 HPTS_UNLOCK(hpts); 1330 INP_WUNLOCK(inp); 1331 continue; 1332 } 1333 inp->inp_hpts_request = 0; 1334 /* Fall through we will so do it now */ 1335 } 1336 1337 inp_hpts_release(inp); 1338 tp = intotcpcb(inp); 1339 MPASS(tp); 1340 if (set_cpu) { 1341 /* 1342 * Setup so the next time we will move to 1343 * the right CPU. This should be a rare 1344 * event. It will sometimes happens when we 1345 * are the client side (usually not the 1346 * server). Somehow tcp_output() gets called 1347 * before the tcp_do_segment() sets the 1348 * intial state. This means the r_cpu and 1349 * r_hpts_cpu is 0. We get on the hpts, and 1350 * then tcp_input() gets called setting up 1351 * the r_cpu to the correct value. The hpts 1352 * goes off and sees the mis-match. We 1353 * simply correct it here and the CPU will 1354 * switch to the new hpts nextime the tcb 1355 * gets added to the the hpts (not this one) 1356 * :-) 1357 */ 1358 tcp_set_hpts(inp); 1359 } 1360 CURVNET_SET(inp->inp_vnet); 1361 /* Lets do any logging that we might want to */ 1362 if (hpts_does_tp_logging && (tp->t_logstate != TCP_LOG_STATE_OFF)) { 1363 tcp_hpts_log(hpts, tp, &tv, slots_to_run, i, from_callout); 1364 } 1365 1366 if (tp->t_fb_ptr != NULL) { 1367 kern_prefetch(tp->t_fb_ptr, &did_prefetch); 1368 did_prefetch = 1; 1369 } 1370 if ((inp->inp_flags2 & INP_SUPPORTS_MBUFQ) && tp->t_in_pkt) { 1371 error = (*tp->t_fb->tfb_do_queued_segments)(inp->inp_socket, tp, 0); 1372 if (error) { 1373 /* The input killed the connection */ 1374 goto skip_pacing; 1375 } 1376 } 1377 inp->inp_hpts_calls = 1; 1378 error = tcp_output(tp); 1379 if (error < 0) 1380 goto skip_pacing; 1381 inp->inp_hpts_calls = 0; 1382 if (ninp && ninp->inp_ppcb) { 1383 /* 1384 * If we have a nxt inp, see if we can 1385 * prefetch its ppcb. Note this may seem 1386 * "risky" since we have no locks (other 1387 * than the previous inp) and there no 1388 * assurance that ninp was not pulled while 1389 * we were processing inp and freed. If this 1390 * occured it could mean that either: 1391 * 1392 * a) Its NULL (which is fine we won't go 1393 * here) <or> b) Its valid (which is cool we 1394 * will prefetch it) <or> c) The inp got 1395 * freed back to the slab which was 1396 * reallocated. Then the piece of memory was 1397 * re-used and something else (not an 1398 * address) is in inp_ppcb. If that occurs 1399 * we don't crash, but take a TLB shootdown 1400 * performance hit (same as if it was NULL 1401 * and we tried to pre-fetch it). 1402 * 1403 * Considering that the likelyhood of <c> is 1404 * quite rare we will take a risk on doing 1405 * this. If performance drops after testing 1406 * we can always take this out. NB: the 1407 * kern_prefetch on amd64 actually has 1408 * protection against a bad address now via 1409 * the DMAP_() tests. This will prevent the 1410 * TLB hit, and instead if <c> occurs just 1411 * cause us to load cache with a useless 1412 * address (to us). 1413 */ 1414 kern_prefetch(ninp->inp_ppcb, &prefetch_tp); 1415 prefetch_tp = 1; 1416 } 1417 INP_WUNLOCK(inp); 1418 skip_pacing: 1419 CURVNET_RESTORE(); 1420 } 1421 if (seen_endpoint) { 1422 /* 1423 * We now have a accurate distance between 1424 * slot_pos_of_endpoint <-> orig_exit_slot 1425 * to tell us how late we were, orig_exit_slot 1426 * is where we calculated the end of our cycle to 1427 * be when we first entered. 1428 */ 1429 completed_measure = 1; 1430 } 1431 HPTS_LOCK(hpts); 1432 hpts->p_runningslot++; 1433 if (hpts->p_runningslot >= NUM_OF_HPTSI_SLOTS) { 1434 hpts->p_runningslot = 0; 1435 } 1436 } 1437 no_one: 1438 HPTS_MTX_ASSERT(hpts); 1439 hpts->p_delayed_by = 0; 1440 /* 1441 * Check to see if we took an excess amount of time and need to run 1442 * more ticks (if we did not hit eno-bufs). 1443 */ 1444 hpts->p_prev_slot = hpts->p_cur_slot; 1445 hpts->p_lasttick = hpts->p_curtick; 1446 if ((from_callout == 0) || (loop_cnt > max_pacer_loops)) { 1447 /* 1448 * Something is serious slow we have 1449 * looped through processing the wheel 1450 * and by the time we cleared the 1451 * needs to run max_pacer_loops time 1452 * we still needed to run. That means 1453 * the system is hopelessly behind and 1454 * can never catch up :( 1455 * 1456 * We will just lie to this thread 1457 * and let it thing p_curtick is 1458 * correct. When it next awakens 1459 * it will find itself further behind. 1460 */ 1461 if (from_callout) 1462 counter_u64_add(hpts_hopelessly_behind, 1); 1463 goto no_run; 1464 } 1465 hpts->p_curtick = tcp_gethptstick(&tv); 1466 hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick); 1467 if (seen_endpoint == 0) { 1468 /* We saw no endpoint but we may be looping */ 1469 orig_exit_slot = hpts->p_cur_slot; 1470 } 1471 if ((wrap_loop_cnt < 2) && 1472 (hpts->p_lasttick != hpts->p_curtick)) { 1473 counter_u64_add(hpts_loops, 1); 1474 loop_cnt++; 1475 goto again; 1476 } 1477 no_run: 1478 cts_last_ran[hpts->p_num] = tcp_tv_to_usectick(&tv); 1479 /* 1480 * Set flag to tell that we are done for 1481 * any slot input that happens during 1482 * input. 1483 */ 1484 hpts->p_wheel_complete = 1; 1485 /* 1486 * Now did we spend too long running input and need to run more ticks? 1487 * Note that if wrap_loop_cnt < 2 then we should have the conditions 1488 * in the KASSERT's true. But if the wheel is behind i.e. wrap_loop_cnt 1489 * is greater than 2, then the condtion most likely are *not* true. 1490 * Also if we are called not from the callout, we don't run the wheel 1491 * multiple times so the slots may not align either. 1492 */ 1493 KASSERT(((hpts->p_prev_slot == hpts->p_cur_slot) || 1494 (wrap_loop_cnt >= 2) || (from_callout == 0)), 1495 ("H:%p p_prev_slot:%u not equal to p_cur_slot:%u", hpts, 1496 hpts->p_prev_slot, hpts->p_cur_slot)); 1497 KASSERT(((hpts->p_lasttick == hpts->p_curtick) 1498 || (wrap_loop_cnt >= 2) || (from_callout == 0)), 1499 ("H:%p p_lasttick:%u not equal to p_curtick:%u", hpts, 1500 hpts->p_lasttick, hpts->p_curtick)); 1501 if (from_callout && (hpts->p_lasttick != hpts->p_curtick)) { 1502 hpts->p_curtick = tcp_gethptstick(&tv); 1503 counter_u64_add(hpts_loops, 1); 1504 hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick); 1505 goto again; 1506 } 1507 1508 if (from_callout){ 1509 tcp_hpts_set_max_sleep(hpts, wrap_loop_cnt); 1510 } 1511 if (seen_endpoint) 1512 return(hpts_slots_diff(slot_pos_of_endpoint, orig_exit_slot)); 1513 else 1514 return (0); 1515 } 1516 1517 void 1518 __tcp_set_hpts(struct inpcb *inp, int32_t line) 1519 { 1520 struct tcp_hpts_entry *hpts; 1521 int failed; 1522 1523 INP_WLOCK_ASSERT(inp); 1524 hpts = tcp_hpts_lock(inp); 1525 if ((inp->inp_in_hpts == 0) && 1526 (inp->inp_hpts_cpu_set == 0)) { 1527 inp->inp_hpts_cpu = hpts_cpuid(inp, &failed); 1528 if (failed == 0) 1529 inp->inp_hpts_cpu_set = 1; 1530 } 1531 mtx_unlock(&hpts->p_mtx); 1532 } 1533 1534 static void 1535 __tcp_run_hpts(struct tcp_hpts_entry *hpts) 1536 { 1537 int ticks_ran; 1538 1539 if (hpts->p_hpts_active) { 1540 /* Already active */ 1541 return; 1542 } 1543 if (mtx_trylock(&hpts->p_mtx) == 0) { 1544 /* Someone else got the lock */ 1545 return; 1546 } 1547 if (hpts->p_hpts_active) 1548 goto out_with_mtx; 1549 hpts->syscall_cnt++; 1550 counter_u64_add(hpts_direct_call, 1); 1551 hpts->p_hpts_active = 1; 1552 ticks_ran = tcp_hptsi(hpts, 0); 1553 /* We may want to adjust the sleep values here */ 1554 if (hpts->p_on_queue_cnt >= conn_cnt_thresh) { 1555 if (ticks_ran > ticks_indicate_less_sleep) { 1556 struct timeval tv; 1557 sbintime_t sb; 1558 int cpu; 1559 1560 hpts->p_mysleep.tv_usec /= 2; 1561 if (hpts->p_mysleep.tv_usec < dynamic_min_sleep) 1562 hpts->p_mysleep.tv_usec = dynamic_min_sleep; 1563 /* Reschedule with new to value */ 1564 tcp_hpts_set_max_sleep(hpts, 0); 1565 tv.tv_usec = hpts->p_hpts_sleep_time * HPTS_TICKS_PER_SLOT; 1566 /* Validate its in the right ranges */ 1567 if (tv.tv_usec < hpts->p_mysleep.tv_usec) { 1568 hpts->overidden_sleep = tv.tv_usec; 1569 tv.tv_usec = hpts->p_mysleep.tv_usec; 1570 } else if (tv.tv_usec > dynamic_max_sleep) { 1571 /* Lets not let sleep get above this value */ 1572 hpts->overidden_sleep = tv.tv_usec; 1573 tv.tv_usec = dynamic_max_sleep; 1574 } 1575 /* 1576 * In this mode the timer is a backstop to 1577 * all the userret/lro_flushes so we use 1578 * the dynamic value and set the on_min_sleep 1579 * flag so we will not be awoken. 1580 */ 1581 sb = tvtosbt(tv); 1582 cpu = (tcp_bind_threads || hpts_use_assigned_cpu) ? hpts->p_cpu : curcpu; 1583 /* Store off to make visible the actual sleep time */ 1584 hpts->sleeping = tv.tv_usec; 1585 callout_reset_sbt_on(&hpts->co, sb, 0, 1586 hpts_timeout_swi, hpts, cpu, 1587 (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision))); 1588 } else if (ticks_ran < ticks_indicate_more_sleep) { 1589 /* For the further sleep, don't reschedule hpts */ 1590 hpts->p_mysleep.tv_usec *= 2; 1591 if (hpts->p_mysleep.tv_usec > dynamic_max_sleep) 1592 hpts->p_mysleep.tv_usec = dynamic_max_sleep; 1593 } 1594 hpts->p_on_min_sleep = 1; 1595 } 1596 hpts->p_hpts_active = 0; 1597 out_with_mtx: 1598 HPTS_MTX_ASSERT(hpts); 1599 mtx_unlock(&hpts->p_mtx); 1600 } 1601 1602 static struct tcp_hpts_entry * 1603 tcp_choose_hpts_to_run() 1604 { 1605 int i, oldest_idx; 1606 uint32_t cts, time_since_ran, calc; 1607 1608 if ((hpts_uses_oldest == 0) || 1609 ((hpts_uses_oldest > 1) && 1610 (tcp_pace.rp_ent[(tcp_pace.rp_num_hptss-1)]->p_on_queue_cnt >= hpts_uses_oldest))) { 1611 /* 1612 * We have either disabled the feature (0), or 1613 * we have crossed over the oldest threshold on the 1614 * last hpts. We use the last one for simplification 1615 * since we don't want to use the first one (it may 1616 * have starting connections that have not settled 1617 * on the cpu yet). 1618 */ 1619 return(tcp_pace.rp_ent[(curcpu % tcp_pace.rp_num_hptss)]); 1620 } 1621 /* Lets find the oldest hpts to attempt to run */ 1622 cts = tcp_get_usecs(NULL); 1623 time_since_ran = 0; 1624 oldest_idx = -1; 1625 for (i = 0; i < tcp_pace.rp_num_hptss; i++) { 1626 if (TSTMP_GT(cts, cts_last_ran[i])) 1627 calc = cts - cts_last_ran[i]; 1628 else 1629 calc = 0; 1630 if (calc > time_since_ran) { 1631 oldest_idx = i; 1632 time_since_ran = calc; 1633 } 1634 } 1635 if (oldest_idx >= 0) 1636 return(tcp_pace.rp_ent[oldest_idx]); 1637 else 1638 return(tcp_pace.rp_ent[(curcpu % tcp_pace.rp_num_hptss)]); 1639 } 1640 1641 1642 void 1643 tcp_run_hpts(void) 1644 { 1645 static struct tcp_hpts_entry *hpts; 1646 struct epoch_tracker et; 1647 1648 NET_EPOCH_ENTER(et); 1649 hpts = tcp_choose_hpts_to_run(); 1650 __tcp_run_hpts(hpts); 1651 NET_EPOCH_EXIT(et); 1652 } 1653 1654 1655 static void 1656 tcp_hpts_thread(void *ctx) 1657 { 1658 struct tcp_hpts_entry *hpts; 1659 struct epoch_tracker et; 1660 struct timeval tv; 1661 sbintime_t sb; 1662 int cpu, ticks_ran; 1663 1664 hpts = (struct tcp_hpts_entry *)ctx; 1665 mtx_lock(&hpts->p_mtx); 1666 if (hpts->p_direct_wake) { 1667 /* Signaled by input or output with low occupancy count. */ 1668 callout_stop(&hpts->co); 1669 counter_u64_add(hpts_direct_awakening, 1); 1670 } else { 1671 /* Timed out, the normal case. */ 1672 counter_u64_add(hpts_wake_timeout, 1); 1673 if (callout_pending(&hpts->co) || 1674 !callout_active(&hpts->co)) { 1675 mtx_unlock(&hpts->p_mtx); 1676 return; 1677 } 1678 } 1679 callout_deactivate(&hpts->co); 1680 hpts->p_hpts_wake_scheduled = 0; 1681 NET_EPOCH_ENTER(et); 1682 if (hpts->p_hpts_active) { 1683 /* 1684 * We are active already. This means that a syscall 1685 * trap or LRO is running in behalf of hpts. In that case 1686 * we need to double our timeout since there seems to be 1687 * enough activity in the system that we don't need to 1688 * run as often (if we were not directly woken). 1689 */ 1690 if (hpts->p_direct_wake == 0) { 1691 counter_u64_add(hpts_back_tosleep, 1); 1692 if (hpts->p_on_queue_cnt >= conn_cnt_thresh) { 1693 hpts->p_mysleep.tv_usec *= 2; 1694 if (hpts->p_mysleep.tv_usec > dynamic_max_sleep) 1695 hpts->p_mysleep.tv_usec = dynamic_max_sleep; 1696 tv.tv_usec = hpts->p_mysleep.tv_usec; 1697 hpts->p_on_min_sleep = 1; 1698 } else { 1699 /* 1700 * Here we have low count on the wheel, but 1701 * somehow we still collided with one of the 1702 * connections. Lets go back to sleep for a 1703 * min sleep time, but clear the flag so we 1704 * can be awoken by insert. 1705 */ 1706 hpts->p_on_min_sleep = 0; 1707 tv.tv_usec = tcp_min_hptsi_time; 1708 } 1709 } else { 1710 /* 1711 * Directly woken most likely to reset the 1712 * callout time. 1713 */ 1714 tv.tv_sec = 0; 1715 tv.tv_usec = hpts->p_mysleep.tv_usec; 1716 } 1717 goto back_to_sleep; 1718 } 1719 hpts->sleeping = 0; 1720 hpts->p_hpts_active = 1; 1721 ticks_ran = tcp_hptsi(hpts, 1); 1722 tv.tv_sec = 0; 1723 tv.tv_usec = hpts->p_hpts_sleep_time * HPTS_TICKS_PER_SLOT; 1724 if (hpts->p_on_queue_cnt >= conn_cnt_thresh) { 1725 if(hpts->p_direct_wake == 0) { 1726 /* 1727 * Only adjust sleep time if we were 1728 * called from the callout i.e. direct_wake == 0. 1729 */ 1730 if (ticks_ran < ticks_indicate_more_sleep) { 1731 hpts->p_mysleep.tv_usec *= 2; 1732 if (hpts->p_mysleep.tv_usec > dynamic_max_sleep) 1733 hpts->p_mysleep.tv_usec = dynamic_max_sleep; 1734 } else if (ticks_ran > ticks_indicate_less_sleep) { 1735 hpts->p_mysleep.tv_usec /= 2; 1736 if (hpts->p_mysleep.tv_usec < dynamic_min_sleep) 1737 hpts->p_mysleep.tv_usec = dynamic_min_sleep; 1738 } 1739 } 1740 if (tv.tv_usec < hpts->p_mysleep.tv_usec) { 1741 hpts->overidden_sleep = tv.tv_usec; 1742 tv.tv_usec = hpts->p_mysleep.tv_usec; 1743 } else if (tv.tv_usec > dynamic_max_sleep) { 1744 /* Lets not let sleep get above this value */ 1745 hpts->overidden_sleep = tv.tv_usec; 1746 tv.tv_usec = dynamic_max_sleep; 1747 } 1748 /* 1749 * In this mode the timer is a backstop to 1750 * all the userret/lro_flushes so we use 1751 * the dynamic value and set the on_min_sleep 1752 * flag so we will not be awoken. 1753 */ 1754 hpts->p_on_min_sleep = 1; 1755 } else if (hpts->p_on_queue_cnt == 0) { 1756 /* 1757 * No one on the wheel, please wake us up 1758 * if you insert on the wheel. 1759 */ 1760 hpts->p_on_min_sleep = 0; 1761 hpts->overidden_sleep = 0; 1762 } else { 1763 /* 1764 * We hit here when we have a low number of 1765 * clients on the wheel (our else clause). 1766 * We may need to go on min sleep, if we set 1767 * the flag we will not be awoken if someone 1768 * is inserted ahead of us. Clearing the flag 1769 * means we can be awoken. This is "old mode" 1770 * where the timer is what runs hpts mainly. 1771 */ 1772 if (tv.tv_usec < tcp_min_hptsi_time) { 1773 /* 1774 * Yes on min sleep, which means 1775 * we cannot be awoken. 1776 */ 1777 hpts->overidden_sleep = tv.tv_usec; 1778 tv.tv_usec = tcp_min_hptsi_time; 1779 hpts->p_on_min_sleep = 1; 1780 } else { 1781 /* Clear the min sleep flag */ 1782 hpts->overidden_sleep = 0; 1783 hpts->p_on_min_sleep = 0; 1784 } 1785 } 1786 HPTS_MTX_ASSERT(hpts); 1787 hpts->p_hpts_active = 0; 1788 back_to_sleep: 1789 hpts->p_direct_wake = 0; 1790 sb = tvtosbt(tv); 1791 cpu = (tcp_bind_threads || hpts_use_assigned_cpu) ? hpts->p_cpu : curcpu; 1792 /* Store off to make visible the actual sleep time */ 1793 hpts->sleeping = tv.tv_usec; 1794 callout_reset_sbt_on(&hpts->co, sb, 0, 1795 hpts_timeout_swi, hpts, cpu, 1796 (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision))); 1797 NET_EPOCH_EXIT(et); 1798 mtx_unlock(&hpts->p_mtx); 1799 } 1800 1801 #undef timersub 1802 1803 static void 1804 tcp_init_hptsi(void *st) 1805 { 1806 int32_t i, j, error, bound = 0, created = 0; 1807 size_t sz, asz; 1808 struct timeval tv; 1809 sbintime_t sb; 1810 struct tcp_hpts_entry *hpts; 1811 struct pcpu *pc; 1812 cpuset_t cs; 1813 char unit[16]; 1814 uint32_t ncpus = mp_ncpus ? mp_ncpus : MAXCPU; 1815 int count, domain, cpu; 1816 1817 tcp_pace.rp_num_hptss = ncpus; 1818 hpts_hopelessly_behind = counter_u64_alloc(M_WAITOK); 1819 hpts_loops = counter_u64_alloc(M_WAITOK); 1820 back_tosleep = counter_u64_alloc(M_WAITOK); 1821 combined_wheel_wrap = counter_u64_alloc(M_WAITOK); 1822 wheel_wrap = counter_u64_alloc(M_WAITOK); 1823 hpts_wake_timeout = counter_u64_alloc(M_WAITOK); 1824 hpts_direct_awakening = counter_u64_alloc(M_WAITOK); 1825 hpts_back_tosleep = counter_u64_alloc(M_WAITOK); 1826 hpts_direct_call = counter_u64_alloc(M_WAITOK); 1827 cpu_uses_flowid = counter_u64_alloc(M_WAITOK); 1828 cpu_uses_random = counter_u64_alloc(M_WAITOK); 1829 1830 1831 sz = (tcp_pace.rp_num_hptss * sizeof(struct tcp_hpts_entry *)); 1832 tcp_pace.rp_ent = malloc(sz, M_TCPHPTS, M_WAITOK | M_ZERO); 1833 sz = (sizeof(uint32_t) * tcp_pace.rp_num_hptss); 1834 cts_last_ran = malloc(sz, M_TCPHPTS, M_WAITOK); 1835 asz = sizeof(struct hptsh) * NUM_OF_HPTSI_SLOTS; 1836 for (i = 0; i < tcp_pace.rp_num_hptss; i++) { 1837 tcp_pace.rp_ent[i] = malloc(sizeof(struct tcp_hpts_entry), 1838 M_TCPHPTS, M_WAITOK | M_ZERO); 1839 tcp_pace.rp_ent[i]->p_hptss = malloc(asz, 1840 M_TCPHPTS, M_WAITOK); 1841 hpts = tcp_pace.rp_ent[i]; 1842 /* 1843 * Init all the hpts structures that are not specifically 1844 * zero'd by the allocations. Also lets attach them to the 1845 * appropriate sysctl block as well. 1846 */ 1847 mtx_init(&hpts->p_mtx, "tcp_hpts_lck", 1848 "hpts", MTX_DEF | MTX_DUPOK); 1849 for (j = 0; j < NUM_OF_HPTSI_SLOTS; j++) { 1850 TAILQ_INIT(&hpts->p_hptss[j].head); 1851 hpts->p_hptss[j].count = 0; 1852 hpts->p_hptss[j].gencnt = 0; 1853 } 1854 sysctl_ctx_init(&hpts->hpts_ctx); 1855 sprintf(unit, "%d", i); 1856 hpts->hpts_root = SYSCTL_ADD_NODE(&hpts->hpts_ctx, 1857 SYSCTL_STATIC_CHILDREN(_net_inet_tcp_hpts), 1858 OID_AUTO, 1859 unit, 1860 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 1861 ""); 1862 SYSCTL_ADD_INT(&hpts->hpts_ctx, 1863 SYSCTL_CHILDREN(hpts->hpts_root), 1864 OID_AUTO, "out_qcnt", CTLFLAG_RD, 1865 &hpts->p_on_queue_cnt, 0, 1866 "Count TCB's awaiting output processing"); 1867 SYSCTL_ADD_U16(&hpts->hpts_ctx, 1868 SYSCTL_CHILDREN(hpts->hpts_root), 1869 OID_AUTO, "active", CTLFLAG_RD, 1870 &hpts->p_hpts_active, 0, 1871 "Is the hpts active"); 1872 SYSCTL_ADD_UINT(&hpts->hpts_ctx, 1873 SYSCTL_CHILDREN(hpts->hpts_root), 1874 OID_AUTO, "curslot", CTLFLAG_RD, 1875 &hpts->p_cur_slot, 0, 1876 "What the current running pacers goal"); 1877 SYSCTL_ADD_UINT(&hpts->hpts_ctx, 1878 SYSCTL_CHILDREN(hpts->hpts_root), 1879 OID_AUTO, "runtick", CTLFLAG_RD, 1880 &hpts->p_runningslot, 0, 1881 "What the running pacers current slot is"); 1882 SYSCTL_ADD_UINT(&hpts->hpts_ctx, 1883 SYSCTL_CHILDREN(hpts->hpts_root), 1884 OID_AUTO, "curtick", CTLFLAG_RD, 1885 &hpts->p_curtick, 0, 1886 "What the running pacers last tick mapped to the wheel was"); 1887 SYSCTL_ADD_UINT(&hpts->hpts_ctx, 1888 SYSCTL_CHILDREN(hpts->hpts_root), 1889 OID_AUTO, "lastran", CTLFLAG_RD, 1890 &cts_last_ran[i], 0, 1891 "The last usec tick that this hpts ran"); 1892 SYSCTL_ADD_LONG(&hpts->hpts_ctx, 1893 SYSCTL_CHILDREN(hpts->hpts_root), 1894 OID_AUTO, "cur_min_sleep", CTLFLAG_RD, 1895 &hpts->p_mysleep.tv_usec, 1896 "What the running pacers is using for p_mysleep.tv_usec"); 1897 SYSCTL_ADD_U64(&hpts->hpts_ctx, 1898 SYSCTL_CHILDREN(hpts->hpts_root), 1899 OID_AUTO, "now_sleeping", CTLFLAG_RD, 1900 &hpts->sleeping, 0, 1901 "What the running pacers is actually sleeping for"); 1902 SYSCTL_ADD_U64(&hpts->hpts_ctx, 1903 SYSCTL_CHILDREN(hpts->hpts_root), 1904 OID_AUTO, "syscall_cnt", CTLFLAG_RD, 1905 &hpts->syscall_cnt, 0, 1906 "How many times we had syscalls on this hpts"); 1907 1908 hpts->p_hpts_sleep_time = hpts_sleep_max; 1909 hpts->p_num = i; 1910 hpts->p_curtick = tcp_gethptstick(&tv); 1911 cts_last_ran[i] = tcp_tv_to_usectick(&tv); 1912 hpts->p_prev_slot = hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick); 1913 hpts->p_cpu = 0xffff; 1914 hpts->p_nxt_slot = hpts_slot(hpts->p_cur_slot, 1); 1915 callout_init(&hpts->co, 1); 1916 } 1917 1918 /* Don't try to bind to NUMA domains if we don't have any */ 1919 if (vm_ndomains == 1 && tcp_bind_threads == 2) 1920 tcp_bind_threads = 0; 1921 1922 /* 1923 * Now lets start ithreads to handle the hptss. 1924 */ 1925 for (i = 0; i < tcp_pace.rp_num_hptss; i++) { 1926 hpts = tcp_pace.rp_ent[i]; 1927 hpts->p_cpu = i; 1928 error = swi_add(&hpts->ie, "hpts", 1929 tcp_hpts_thread, (void *)hpts, 1930 SWI_NET, INTR_MPSAFE, &hpts->ie_cookie); 1931 KASSERT(error == 0, 1932 ("Can't add hpts:%p i:%d err:%d", 1933 hpts, i, error)); 1934 created++; 1935 hpts->p_mysleep.tv_sec = 0; 1936 hpts->p_mysleep.tv_usec = tcp_min_hptsi_time; 1937 if (tcp_bind_threads == 1) { 1938 if (intr_event_bind(hpts->ie, i) == 0) 1939 bound++; 1940 } else if (tcp_bind_threads == 2) { 1941 pc = pcpu_find(i); 1942 domain = pc->pc_domain; 1943 CPU_COPY(&cpuset_domain[domain], &cs); 1944 if (intr_event_bind_ithread_cpuset(hpts->ie, &cs) 1945 == 0) { 1946 bound++; 1947 count = hpts_domains[domain].count; 1948 hpts_domains[domain].cpu[count] = i; 1949 hpts_domains[domain].count++; 1950 } 1951 } 1952 tv.tv_sec = 0; 1953 tv.tv_usec = hpts->p_hpts_sleep_time * HPTS_TICKS_PER_SLOT; 1954 hpts->sleeping = tv.tv_usec; 1955 sb = tvtosbt(tv); 1956 cpu = (tcp_bind_threads || hpts_use_assigned_cpu) ? hpts->p_cpu : curcpu; 1957 callout_reset_sbt_on(&hpts->co, sb, 0, 1958 hpts_timeout_swi, hpts, cpu, 1959 (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision))); 1960 } 1961 /* 1962 * If we somehow have an empty domain, fall back to choosing 1963 * among all htps threads. 1964 */ 1965 for (i = 0; i < vm_ndomains; i++) { 1966 if (hpts_domains[i].count == 0) { 1967 tcp_bind_threads = 0; 1968 break; 1969 } 1970 } 1971 printf("TCP Hpts created %d swi interrupt threads and bound %d to %s\n", 1972 created, bound, 1973 tcp_bind_threads == 2 ? "NUMA domains" : "cpus"); 1974 #ifdef INVARIANTS 1975 printf("HPTS is in INVARIANT mode!!\n"); 1976 #endif 1977 } 1978 1979 SYSINIT(tcphptsi, SI_SUB_SOFTINTR, SI_ORDER_ANY, tcp_init_hptsi, NULL); 1980 MODULE_VERSION(tcphpts, 1); 1981