xref: /freebsd/sys/netinet/tcp_hpts.c (revision c66ec88fed842fbaad62c30d510644ceb7bd2d71)
1 /*-
2  * Copyright (c) 2016-2018 Netflix, Inc.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  * 1. Redistributions of source code must retain the above copyright
8  *    notice, this list of conditions and the following disclaimer.
9  * 2. Redistributions in binary form must reproduce the above copyright
10  *    notice, this list of conditions and the following disclaimer in the
11  *    documentation and/or other materials provided with the distribution.
12  *
13  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
14  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
17  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23  * SUCH DAMAGE.
24  *
25  */
26 #include <sys/cdefs.h>
27 __FBSDID("$FreeBSD$");
28 
29 #include "opt_inet.h"
30 #include "opt_inet6.h"
31 #include "opt_rss.h"
32 #include "opt_tcpdebug.h"
33 
34 /**
35  * Some notes about usage.
36  *
37  * The tcp_hpts system is designed to provide a high precision timer
38  * system for tcp. Its main purpose is to provide a mechanism for
39  * pacing packets out onto the wire. It can be used in two ways
40  * by a given TCP stack (and those two methods can be used simultaneously).
41  *
42  * First, and probably the main thing its used by Rack and BBR, it can
43  * be used to call tcp_output() of a transport stack at some time in the future.
44  * The normal way this is done is that tcp_output() of the stack schedules
45  * itself to be called again by calling tcp_hpts_insert(tcpcb, slot). The
46  * slot is the time from now that the stack wants to be called but it
47  * must be converted to tcp_hpts's notion of slot. This is done with
48  * one of the macros HPTS_MS_TO_SLOTS or HPTS_USEC_TO_SLOTS. So a typical
49  * call from the tcp_output() routine might look like:
50  *
51  * tcp_hpts_insert(tp, HPTS_USEC_TO_SLOTS(550));
52  *
53  * The above would schedule tcp_ouput() to be called in 550 useconds.
54  * Note that if using this mechanism the stack will want to add near
55  * its top a check to prevent unwanted calls (from user land or the
56  * arrival of incoming ack's). So it would add something like:
57  *
58  * if (inp->inp_in_hpts)
59  *    return;
60  *
61  * to prevent output processing until the time alotted has gone by.
62  * Of course this is a bare bones example and the stack will probably
63  * have more consideration then just the above.
64  *
65  * Now the second function (actually two functions I guess :D)
66  * the tcp_hpts system provides is the  ability to either abort
67  * a connection (later) or process input on a connection.
68  * Why would you want to do this? To keep processor locality
69  * and or not have to worry about untangling any recursive
70  * locks. The input function now is hooked to the new LRO
71  * system as well.
72  *
73  * In order to use the input redirection function the
74  * tcp stack must define an input function for
75  * tfb_do_queued_segments(). This function understands
76  * how to dequeue a array of packets that were input and
77  * knows how to call the correct processing routine.
78  *
79  * Locking in this is important as well so most likely the
80  * stack will need to define the tfb_do_segment_nounlock()
81  * splitting tfb_do_segment() into two parts. The main processing
82  * part that does not unlock the INP and returns a value of 1 or 0.
83  * It returns 0 if all is well and the lock was not released. It
84  * returns 1 if we had to destroy the TCB (a reset received etc).
85  * The remains of tfb_do_segment() then become just a simple call
86  * to the tfb_do_segment_nounlock() function and check the return
87  * code and possibly unlock.
88  *
89  * The stack must also set the flag on the INP that it supports this
90  * feature i.e. INP_SUPPORTS_MBUFQ. The LRO code recoginizes
91  * this flag as well and will queue packets when it is set.
92  * There are other flags as well INP_MBUF_QUEUE_READY and
93  * INP_DONT_SACK_QUEUE. The first flag tells the LRO code
94  * that we are in the pacer for output so there is no
95  * need to wake up the hpts system to get immediate
96  * input. The second tells the LRO code that its okay
97  * if a SACK arrives you can still defer input and let
98  * the current hpts timer run (this is usually set when
99  * a rack timer is up so we know SACK's are happening
100  * on the connection already and don't want to wakeup yet).
101  *
102  * There is a common functions within the rack_bbr_common code
103  * version i.e. ctf_do_queued_segments(). This function
104  * knows how to take the input queue of packets from
105  * tp->t_in_pkts and process them digging out
106  * all the arguments, calling any bpf tap and
107  * calling into tfb_do_segment_nounlock(). The common
108  * function (ctf_do_queued_segments())  requires that
109  * you have defined the tfb_do_segment_nounlock() as
110  * described above.
111  *
112  * The second feature of the input side of hpts is the
113  * dropping of a connection. This is due to the way that
114  * locking may have occured on the INP_WLOCK. So if
115  * a stack wants to drop a connection it calls:
116  *
117  *     tcp_set_inp_to_drop(tp, ETIMEDOUT)
118  *
119  * To schedule the tcp_hpts system to call
120  *
121  *    tcp_drop(tp, drop_reason)
122  *
123  * at a future point. This is quite handy to prevent locking
124  * issues when dropping connections.
125  *
126  */
127 
128 #include <sys/param.h>
129 #include <sys/bus.h>
130 #include <sys/interrupt.h>
131 #include <sys/module.h>
132 #include <sys/kernel.h>
133 #include <sys/hhook.h>
134 #include <sys/malloc.h>
135 #include <sys/mbuf.h>
136 #include <sys/proc.h>		/* for proc0 declaration */
137 #include <sys/socket.h>
138 #include <sys/socketvar.h>
139 #include <sys/sysctl.h>
140 #include <sys/systm.h>
141 #include <sys/refcount.h>
142 #include <sys/sched.h>
143 #include <sys/queue.h>
144 #include <sys/smp.h>
145 #include <sys/counter.h>
146 #include <sys/time.h>
147 #include <sys/kthread.h>
148 #include <sys/kern_prefetch.h>
149 
150 #include <vm/uma.h>
151 #include <vm/vm.h>
152 
153 #include <net/route.h>
154 #include <net/vnet.h>
155 
156 #ifdef RSS
157 #include <net/netisr.h>
158 #include <net/rss_config.h>
159 #endif
160 
161 #define TCPSTATES		/* for logging */
162 
163 #include <netinet/in.h>
164 #include <netinet/in_kdtrace.h>
165 #include <netinet/in_pcb.h>
166 #include <netinet/ip.h>
167 #include <netinet/ip_icmp.h>	/* required for icmp_var.h */
168 #include <netinet/icmp_var.h>	/* for ICMP_BANDLIM */
169 #include <netinet/ip_var.h>
170 #include <netinet/ip6.h>
171 #include <netinet6/in6_pcb.h>
172 #include <netinet6/ip6_var.h>
173 #include <netinet/tcp.h>
174 #include <netinet/tcp_fsm.h>
175 #include <netinet/tcp_seq.h>
176 #include <netinet/tcp_timer.h>
177 #include <netinet/tcp_var.h>
178 #include <netinet/tcpip.h>
179 #include <netinet/cc/cc.h>
180 #include <netinet/tcp_hpts.h>
181 #include <netinet/tcp_log_buf.h>
182 
183 #ifdef tcpdebug
184 #include <netinet/tcp_debug.h>
185 #endif				/* tcpdebug */
186 #ifdef tcp_offload
187 #include <netinet/tcp_offload.h>
188 #endif
189 
190 MALLOC_DEFINE(M_TCPHPTS, "tcp_hpts", "TCP hpts");
191 #ifdef RSS
192 static int tcp_bind_threads = 1;
193 #else
194 static int tcp_bind_threads = 2;
195 #endif
196 TUNABLE_INT("net.inet.tcp.bind_hptss", &tcp_bind_threads);
197 
198 static struct tcp_hptsi tcp_pace;
199 static int hpts_does_tp_logging = 0;
200 
201 static void tcp_wakehpts(struct tcp_hpts_entry *p);
202 static void tcp_wakeinput(struct tcp_hpts_entry *p);
203 static void tcp_input_data(struct tcp_hpts_entry *hpts, struct timeval *tv);
204 static void tcp_hptsi(struct tcp_hpts_entry *hpts);
205 static void tcp_hpts_thread(void *ctx);
206 static void tcp_init_hptsi(void *st);
207 
208 int32_t tcp_min_hptsi_time = DEFAULT_MIN_SLEEP;
209 static int32_t tcp_hpts_callout_skip_swi = 0;
210 
211 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, hpts, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
212     "TCP Hpts controls");
213 
214 #define	timersub(tvp, uvp, vvp)						\
215 	do {								\
216 		(vvp)->tv_sec = (tvp)->tv_sec - (uvp)->tv_sec;		\
217 		(vvp)->tv_usec = (tvp)->tv_usec - (uvp)->tv_usec;	\
218 		if ((vvp)->tv_usec < 0) {				\
219 			(vvp)->tv_sec--;				\
220 			(vvp)->tv_usec += 1000000;			\
221 		}							\
222 	} while (0)
223 
224 static int32_t tcp_hpts_precision = 120;
225 
226 struct hpts_domain_info {
227 	int count;
228 	int cpu[MAXCPU];
229 };
230 
231 struct hpts_domain_info hpts_domains[MAXMEMDOM];
232 
233 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, precision, CTLFLAG_RW,
234     &tcp_hpts_precision, 120,
235     "Value for PRE() precision of callout");
236 
237 counter_u64_t hpts_hopelessly_behind;
238 
239 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts, OID_AUTO, hopeless, CTLFLAG_RD,
240     &hpts_hopelessly_behind,
241     "Number of times hpts could not catch up and was behind hopelessly");
242 
243 counter_u64_t hpts_loops;
244 
245 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts, OID_AUTO, loops, CTLFLAG_RD,
246     &hpts_loops, "Number of times hpts had to loop to catch up");
247 
248 counter_u64_t back_tosleep;
249 
250 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts, OID_AUTO, no_tcbsfound, CTLFLAG_RD,
251     &back_tosleep, "Number of times hpts found no tcbs");
252 
253 counter_u64_t combined_wheel_wrap;
254 
255 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts, OID_AUTO, comb_wheel_wrap, CTLFLAG_RD,
256     &combined_wheel_wrap, "Number of times the wheel lagged enough to have an insert see wrap");
257 
258 counter_u64_t wheel_wrap;
259 
260 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts, OID_AUTO, wheel_wrap, CTLFLAG_RD,
261     &wheel_wrap, "Number of times the wheel lagged enough to have an insert see wrap");
262 
263 static int32_t out_ts_percision = 0;
264 
265 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, out_tspercision, CTLFLAG_RW,
266     &out_ts_percision, 0,
267     "Do we use a percise timestamp for every output cts");
268 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, logging, CTLFLAG_RW,
269     &hpts_does_tp_logging, 0,
270     "Do we add to any tp that has logging on pacer logs");
271 
272 static int32_t max_pacer_loops = 10;
273 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, loopmax, CTLFLAG_RW,
274     &max_pacer_loops, 10,
275     "What is the maximum number of times the pacer will loop trying to catch up");
276 
277 #define HPTS_MAX_SLEEP_ALLOWED (NUM_OF_HPTSI_SLOTS/2)
278 
279 static uint32_t hpts_sleep_max = HPTS_MAX_SLEEP_ALLOWED;
280 
281 static int
282 sysctl_net_inet_tcp_hpts_max_sleep(SYSCTL_HANDLER_ARGS)
283 {
284 	int error;
285 	uint32_t new;
286 
287 	new = hpts_sleep_max;
288 	error = sysctl_handle_int(oidp, &new, 0, req);
289 	if (error == 0 && req->newptr) {
290 		if ((new < (NUM_OF_HPTSI_SLOTS / 4)) ||
291 		    (new > HPTS_MAX_SLEEP_ALLOWED))
292 			error = EINVAL;
293 		else
294 			hpts_sleep_max = new;
295 	}
296 	return (error);
297 }
298 
299 SYSCTL_PROC(_net_inet_tcp_hpts, OID_AUTO, maxsleep,
300     CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
301     &hpts_sleep_max, 0,
302     &sysctl_net_inet_tcp_hpts_max_sleep, "IU",
303     "Maximum time hpts will sleep");
304 
305 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, minsleep, CTLFLAG_RW,
306     &tcp_min_hptsi_time, 0,
307     "The minimum time the hpts must sleep before processing more slots");
308 
309 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, skip_swi, CTLFLAG_RW,
310     &tcp_hpts_callout_skip_swi, 0,
311     "Do we have the callout call directly to the hpts?");
312 
313 static void
314 tcp_hpts_log(struct tcp_hpts_entry *hpts, struct tcpcb *tp, struct timeval *tv,
315 	     int ticks_to_run, int idx)
316 {
317 	union tcp_log_stackspecific log;
318 
319 	memset(&log.u_bbr, 0, sizeof(log.u_bbr));
320 	log.u_bbr.flex1 = hpts->p_nxt_slot;
321 	log.u_bbr.flex2 = hpts->p_cur_slot;
322 	log.u_bbr.flex3 = hpts->p_prev_slot;
323 	log.u_bbr.flex4 = idx;
324 	log.u_bbr.flex5 = hpts->p_curtick;
325 	log.u_bbr.flex6 = hpts->p_on_queue_cnt;
326 	log.u_bbr.use_lt_bw = 1;
327 	log.u_bbr.inflight = ticks_to_run;
328 	log.u_bbr.applimited = hpts->overidden_sleep;
329 	log.u_bbr.delivered = hpts->saved_curtick;
330 	log.u_bbr.timeStamp = tcp_tv_to_usectick(tv);
331 	log.u_bbr.epoch = hpts->saved_curslot;
332 	log.u_bbr.lt_epoch = hpts->saved_prev_slot;
333 	log.u_bbr.pkts_out = hpts->p_delayed_by;
334 	log.u_bbr.lost = hpts->p_hpts_sleep_time;
335 	log.u_bbr.cur_del_rate = hpts->p_runningtick;
336 	TCP_LOG_EVENTP(tp, NULL,
337 		       &tp->t_inpcb->inp_socket->so_rcv,
338 		       &tp->t_inpcb->inp_socket->so_snd,
339 		       BBR_LOG_HPTSDIAG, 0,
340 		       0, &log, false, tv);
341 }
342 
343 static void
344 hpts_timeout_swi(void *arg)
345 {
346 	struct tcp_hpts_entry *hpts;
347 
348 	hpts = (struct tcp_hpts_entry *)arg;
349 	swi_sched(hpts->ie_cookie, 0);
350 }
351 
352 static void
353 hpts_timeout_dir(void *arg)
354 {
355 	tcp_hpts_thread(arg);
356 }
357 
358 static inline void
359 hpts_sane_pace_remove(struct tcp_hpts_entry *hpts, struct inpcb *inp, struct hptsh *head, int clear)
360 {
361 #ifdef INVARIANTS
362 	if (mtx_owned(&hpts->p_mtx) == 0) {
363 		/* We don't own the mutex? */
364 		panic("%s: hpts:%p inp:%p no hpts mutex", __FUNCTION__, hpts, inp);
365 	}
366 	if (hpts->p_cpu != inp->inp_hpts_cpu) {
367 		/* It is not the right cpu/mutex? */
368 		panic("%s: hpts:%p inp:%p incorrect CPU", __FUNCTION__, hpts, inp);
369 	}
370 	if (inp->inp_in_hpts == 0) {
371 		/* We are not on the hpts? */
372 		panic("%s: hpts:%p inp:%p not on the hpts?", __FUNCTION__, hpts, inp);
373 	}
374 #endif
375 	TAILQ_REMOVE(head, inp, inp_hpts);
376 	hpts->p_on_queue_cnt--;
377 	if (hpts->p_on_queue_cnt < 0) {
378 		/* Count should not go negative .. */
379 #ifdef INVARIANTS
380 		panic("Hpts goes negative inp:%p hpts:%p",
381 		    inp, hpts);
382 #endif
383 		hpts->p_on_queue_cnt = 0;
384 	}
385 	if (clear) {
386 		inp->inp_hpts_request = 0;
387 		inp->inp_in_hpts = 0;
388 	}
389 }
390 
391 static inline void
392 hpts_sane_pace_insert(struct tcp_hpts_entry *hpts, struct inpcb *inp, struct hptsh *head, int line, int noref)
393 {
394 #ifdef INVARIANTS
395 	if (mtx_owned(&hpts->p_mtx) == 0) {
396 		/* We don't own the mutex? */
397 		panic("%s: hpts:%p inp:%p no hpts mutex", __FUNCTION__, hpts, inp);
398 	}
399 	if (hpts->p_cpu != inp->inp_hpts_cpu) {
400 		/* It is not the right cpu/mutex? */
401 		panic("%s: hpts:%p inp:%p incorrect CPU", __FUNCTION__, hpts, inp);
402 	}
403 	if ((noref == 0) && (inp->inp_in_hpts == 1)) {
404 		/* We are already on the hpts? */
405 		panic("%s: hpts:%p inp:%p already on the hpts?", __FUNCTION__, hpts, inp);
406 	}
407 #endif
408 	TAILQ_INSERT_TAIL(head, inp, inp_hpts);
409 	inp->inp_in_hpts = 1;
410 	hpts->p_on_queue_cnt++;
411 	if (noref == 0) {
412 		in_pcbref(inp);
413 	}
414 }
415 
416 static inline void
417 hpts_sane_input_remove(struct tcp_hpts_entry *hpts, struct inpcb *inp, int clear)
418 {
419 #ifdef INVARIANTS
420 	if (mtx_owned(&hpts->p_mtx) == 0) {
421 		/* We don't own the mutex? */
422 		panic("%s: hpts:%p inp:%p no hpts mutex", __FUNCTION__, hpts, inp);
423 	}
424 	if (hpts->p_cpu != inp->inp_input_cpu) {
425 		/* It is not the right cpu/mutex? */
426 		panic("%s: hpts:%p inp:%p incorrect CPU", __FUNCTION__, hpts, inp);
427 	}
428 	if (inp->inp_in_input == 0) {
429 		/* We are not on the input hpts? */
430 		panic("%s: hpts:%p inp:%p not on the input hpts?", __FUNCTION__, hpts, inp);
431 	}
432 #endif
433 	TAILQ_REMOVE(&hpts->p_input, inp, inp_input);
434 	hpts->p_on_inqueue_cnt--;
435 	if (hpts->p_on_inqueue_cnt < 0) {
436 #ifdef INVARIANTS
437 		panic("Hpts in goes negative inp:%p hpts:%p",
438 		    inp, hpts);
439 #endif
440 		hpts->p_on_inqueue_cnt = 0;
441 	}
442 #ifdef INVARIANTS
443 	if (TAILQ_EMPTY(&hpts->p_input) &&
444 	    (hpts->p_on_inqueue_cnt != 0)) {
445 		/* We should not be empty with a queue count */
446 		panic("%s hpts:%p in_hpts input empty but cnt:%d",
447 		    __FUNCTION__, hpts, hpts->p_on_inqueue_cnt);
448 	}
449 #endif
450 	if (clear)
451 		inp->inp_in_input = 0;
452 }
453 
454 static inline void
455 hpts_sane_input_insert(struct tcp_hpts_entry *hpts, struct inpcb *inp, int line)
456 {
457 #ifdef INVARIANTS
458 	if (mtx_owned(&hpts->p_mtx) == 0) {
459 		/* We don't own the mutex? */
460 		panic("%s: hpts:%p inp:%p no hpts mutex", __FUNCTION__, hpts, inp);
461 	}
462 	if (hpts->p_cpu != inp->inp_input_cpu) {
463 		/* It is not the right cpu/mutex? */
464 		panic("%s: hpts:%p inp:%p incorrect CPU", __FUNCTION__, hpts, inp);
465 	}
466 	if (inp->inp_in_input == 1) {
467 		/* We are already on the input hpts? */
468 		panic("%s: hpts:%p inp:%p already on the input hpts?", __FUNCTION__, hpts, inp);
469 	}
470 #endif
471 	TAILQ_INSERT_TAIL(&hpts->p_input, inp, inp_input);
472 	inp->inp_in_input = 1;
473 	hpts->p_on_inqueue_cnt++;
474 	in_pcbref(inp);
475 }
476 
477 static void
478 tcp_wakehpts(struct tcp_hpts_entry *hpts)
479 {
480 	HPTS_MTX_ASSERT(hpts);
481 	if (hpts->p_hpts_wake_scheduled == 0) {
482 		hpts->p_hpts_wake_scheduled = 1;
483 		swi_sched(hpts->ie_cookie, 0);
484 	}
485 }
486 
487 static void
488 tcp_wakeinput(struct tcp_hpts_entry *hpts)
489 {
490 	HPTS_MTX_ASSERT(hpts);
491 	if (hpts->p_hpts_wake_scheduled == 0) {
492 		hpts->p_hpts_wake_scheduled = 1;
493 		swi_sched(hpts->ie_cookie, 0);
494 	}
495 }
496 
497 struct tcp_hpts_entry *
498 tcp_cur_hpts(struct inpcb *inp)
499 {
500 	int32_t hpts_num;
501 	struct tcp_hpts_entry *hpts;
502 
503 	hpts_num = inp->inp_hpts_cpu;
504 	hpts = tcp_pace.rp_ent[hpts_num];
505 	return (hpts);
506 }
507 
508 struct tcp_hpts_entry *
509 tcp_hpts_lock(struct inpcb *inp)
510 {
511 	struct tcp_hpts_entry *hpts;
512 	int32_t hpts_num;
513 
514 again:
515 	hpts_num = inp->inp_hpts_cpu;
516 	hpts = tcp_pace.rp_ent[hpts_num];
517 #ifdef INVARIANTS
518 	if (mtx_owned(&hpts->p_mtx)) {
519 		panic("Hpts:%p owns mtx prior-to lock line:%d",
520 		    hpts, __LINE__);
521 	}
522 #endif
523 	mtx_lock(&hpts->p_mtx);
524 	if (hpts_num != inp->inp_hpts_cpu) {
525 		mtx_unlock(&hpts->p_mtx);
526 		goto again;
527 	}
528 	return (hpts);
529 }
530 
531 struct tcp_hpts_entry *
532 tcp_input_lock(struct inpcb *inp)
533 {
534 	struct tcp_hpts_entry *hpts;
535 	int32_t hpts_num;
536 
537 again:
538 	hpts_num = inp->inp_input_cpu;
539 	hpts = tcp_pace.rp_ent[hpts_num];
540 #ifdef INVARIANTS
541 	if (mtx_owned(&hpts->p_mtx)) {
542 		panic("Hpts:%p owns mtx prior-to lock line:%d",
543 		    hpts, __LINE__);
544 	}
545 #endif
546 	mtx_lock(&hpts->p_mtx);
547 	if (hpts_num != inp->inp_input_cpu) {
548 		mtx_unlock(&hpts->p_mtx);
549 		goto again;
550 	}
551 	return (hpts);
552 }
553 
554 static void
555 tcp_remove_hpts_ref(struct inpcb *inp, struct tcp_hpts_entry *hpts, int line)
556 {
557 	int32_t add_freed;
558 
559 	if (inp->inp_flags2 & INP_FREED) {
560 		/*
561 		 * Need to play a special trick so that in_pcbrele_wlocked
562 		 * does not return 1 when it really should have returned 0.
563 		 */
564 		add_freed = 1;
565 		inp->inp_flags2 &= ~INP_FREED;
566 	} else {
567 		add_freed = 0;
568 	}
569 #ifndef INP_REF_DEBUG
570 	if (in_pcbrele_wlocked(inp)) {
571 		/*
572 		 * This should not happen. We have the inpcb referred to by
573 		 * the main socket (why we are called) and the hpts. It
574 		 * should always return 0.
575 		 */
576 		panic("inpcb:%p release ret 1",
577 		    inp);
578 	}
579 #else
580 	if (__in_pcbrele_wlocked(inp, line)) {
581 		/*
582 		 * This should not happen. We have the inpcb referred to by
583 		 * the main socket (why we are called) and the hpts. It
584 		 * should always return 0.
585 		 */
586 		panic("inpcb:%p release ret 1",
587 		    inp);
588 	}
589 #endif
590 	if (add_freed) {
591 		inp->inp_flags2 |= INP_FREED;
592 	}
593 }
594 
595 static void
596 tcp_hpts_remove_locked_output(struct tcp_hpts_entry *hpts, struct inpcb *inp, int32_t flags, int32_t line)
597 {
598 	if (inp->inp_in_hpts) {
599 		hpts_sane_pace_remove(hpts, inp, &hpts->p_hptss[inp->inp_hptsslot], 1);
600 		tcp_remove_hpts_ref(inp, hpts, line);
601 	}
602 }
603 
604 static void
605 tcp_hpts_remove_locked_input(struct tcp_hpts_entry *hpts, struct inpcb *inp, int32_t flags, int32_t line)
606 {
607 	HPTS_MTX_ASSERT(hpts);
608 	if (inp->inp_in_input) {
609 		hpts_sane_input_remove(hpts, inp, 1);
610 		tcp_remove_hpts_ref(inp, hpts, line);
611 	}
612 }
613 
614 /*
615  * Called normally with the INP_LOCKED but it
616  * does not matter, the hpts lock is the key
617  * but the lock order allows us to hold the
618  * INP lock and then get the hpts lock.
619  *
620  * Valid values in the flags are
621  * HPTS_REMOVE_OUTPUT - remove from the output of the hpts.
622  * HPTS_REMOVE_INPUT - remove from the input of the hpts.
623  * Note that you can use one or both values together
624  * and get two actions.
625  */
626 void
627 __tcp_hpts_remove(struct inpcb *inp, int32_t flags, int32_t line)
628 {
629 	struct tcp_hpts_entry *hpts;
630 
631 	INP_WLOCK_ASSERT(inp);
632 	if (flags & HPTS_REMOVE_OUTPUT) {
633 		hpts = tcp_hpts_lock(inp);
634 		tcp_hpts_remove_locked_output(hpts, inp, flags, line);
635 		mtx_unlock(&hpts->p_mtx);
636 	}
637 	if (flags & HPTS_REMOVE_INPUT) {
638 		hpts = tcp_input_lock(inp);
639 		tcp_hpts_remove_locked_input(hpts, inp, flags, line);
640 		mtx_unlock(&hpts->p_mtx);
641 	}
642 }
643 
644 static inline int
645 hpts_tick(uint32_t wheel_tick, uint32_t plus)
646 {
647 	/*
648 	 * Given a slot on the wheel, what slot
649 	 * is that plus ticks out?
650 	 */
651 	KASSERT(wheel_tick < NUM_OF_HPTSI_SLOTS, ("Invalid tick %u not on wheel", wheel_tick));
652 	return ((wheel_tick + plus) % NUM_OF_HPTSI_SLOTS);
653 }
654 
655 static inline int
656 tick_to_wheel(uint32_t cts_in_wticks)
657 {
658 	/*
659 	 * Given a timestamp in wheel ticks (10usec inc's)
660 	 * map it to our limited space wheel.
661 	 */
662 	return (cts_in_wticks % NUM_OF_HPTSI_SLOTS);
663 }
664 
665 static inline int
666 hpts_ticks_diff(int prev_tick, int tick_now)
667 {
668 	/*
669 	 * Given two ticks that are someplace
670 	 * on our wheel. How far are they apart?
671 	 */
672 	if (tick_now > prev_tick)
673 		return (tick_now - prev_tick);
674 	else if (tick_now == prev_tick)
675 		/*
676 		 * Special case, same means we can go all of our
677 		 * wheel less one slot.
678 		 */
679 		return (NUM_OF_HPTSI_SLOTS - 1);
680 	else
681 		return ((NUM_OF_HPTSI_SLOTS - prev_tick) + tick_now);
682 }
683 
684 /*
685  * Given a tick on the wheel that is the current time
686  * mapped to the wheel (wheel_tick), what is the maximum
687  * distance forward that can be obtained without
688  * wrapping past either prev_tick or running_tick
689  * depending on the htps state? Also if passed
690  * a uint32_t *, fill it with the tick location.
691  *
692  * Note if you do not give this function the current
693  * time (that you think it is) mapped to the wheel
694  * then the results will not be what you expect and
695  * could lead to invalid inserts.
696  */
697 static inline int32_t
698 max_ticks_available(struct tcp_hpts_entry *hpts, uint32_t wheel_tick, uint32_t *target_tick)
699 {
700 	uint32_t dis_to_travel, end_tick, pacer_to_now, avail_on_wheel;
701 
702 	if ((hpts->p_hpts_active == 1) &&
703 	    (hpts->p_wheel_complete == 0)) {
704 		end_tick = hpts->p_runningtick;
705 		/* Back up one tick */
706 		if (end_tick == 0)
707 			end_tick = NUM_OF_HPTSI_SLOTS - 1;
708 		else
709 			end_tick--;
710 		if (target_tick)
711 			*target_tick = end_tick;
712 	} else {
713 		/*
714 		 * For the case where we are
715 		 * not active, or we have
716 		 * completed the pass over
717 		 * the wheel, we can use the
718 		 * prev tick and subtract one from it. This puts us
719 		 * as far out as possible on the wheel.
720 		 */
721 		end_tick = hpts->p_prev_slot;
722 		if (end_tick == 0)
723 			end_tick = NUM_OF_HPTSI_SLOTS - 1;
724 		else
725 			end_tick--;
726 		if (target_tick)
727 			*target_tick = end_tick;
728 		/*
729 		 * Now we have close to the full wheel left minus the
730 		 * time it has been since the pacer went to sleep. Note
731 		 * that wheel_tick, passed in, should be the current time
732 		 * from the perspective of the caller, mapped to the wheel.
733 		 */
734 		if (hpts->p_prev_slot != wheel_tick)
735 			dis_to_travel = hpts_ticks_diff(hpts->p_prev_slot, wheel_tick);
736 		else
737 			dis_to_travel = 1;
738 		/*
739 		 * dis_to_travel in this case is the space from when the
740 		 * pacer stopped (p_prev_slot) and where our wheel_tick
741 		 * is now. To know how many slots we can put it in we
742 		 * subtract from the wheel size. We would not want
743 		 * to place something after p_prev_slot or it will
744 		 * get ran too soon.
745 		 */
746 		return (NUM_OF_HPTSI_SLOTS - dis_to_travel);
747 	}
748 	/*
749 	 * So how many slots are open between p_runningtick -> p_cur_slot
750 	 * that is what is currently un-available for insertion. Special
751 	 * case when we are at the last slot, this gets 1, so that
752 	 * the answer to how many slots are available is all but 1.
753 	 */
754 	if (hpts->p_runningtick == hpts->p_cur_slot)
755 		dis_to_travel = 1;
756 	else
757 		dis_to_travel = hpts_ticks_diff(hpts->p_runningtick, hpts->p_cur_slot);
758 	/*
759 	 * How long has the pacer been running?
760 	 */
761 	if (hpts->p_cur_slot != wheel_tick) {
762 		/* The pacer is a bit late */
763 		pacer_to_now = hpts_ticks_diff(hpts->p_cur_slot, wheel_tick);
764 	} else {
765 		/* The pacer is right on time, now == pacers start time */
766 		pacer_to_now = 0;
767 	}
768 	/*
769 	 * To get the number left we can insert into we simply
770 	 * subract the distance the pacer has to run from how
771 	 * many slots there are.
772 	 */
773 	avail_on_wheel = NUM_OF_HPTSI_SLOTS - dis_to_travel;
774 	/*
775 	 * Now how many of those we will eat due to the pacer's
776 	 * time (p_cur_slot) of start being behind the
777 	 * real time (wheel_tick)?
778 	 */
779 	if (avail_on_wheel <= pacer_to_now) {
780 		/*
781 		 * Wheel wrap, we can't fit on the wheel, that
782 		 * is unusual the system must be way overloaded!
783 		 * Insert into the assured tick, and return special
784 		 * "0".
785 		 */
786 		counter_u64_add(combined_wheel_wrap, 1);
787 		*target_tick = hpts->p_nxt_slot;
788 		return (0);
789 	} else {
790 		/*
791 		 * We know how many slots are open
792 		 * on the wheel (the reverse of what
793 		 * is left to run. Take away the time
794 		 * the pacer started to now (wheel_tick)
795 		 * and that tells you how many slots are
796 		 * open that can be inserted into that won't
797 		 * be touched by the pacer until later.
798 		 */
799 		return (avail_on_wheel - pacer_to_now);
800 	}
801 }
802 
803 static int
804 tcp_queue_to_hpts_immediate_locked(struct inpcb *inp, struct tcp_hpts_entry *hpts, int32_t line, int32_t noref)
805 {
806 	uint32_t need_wake = 0;
807 
808 	HPTS_MTX_ASSERT(hpts);
809 	if (inp->inp_in_hpts == 0) {
810 		/* Ok we need to set it on the hpts in the current slot */
811 		inp->inp_hpts_request = 0;
812 		if ((hpts->p_hpts_active == 0) ||
813 		    (hpts->p_wheel_complete)) {
814 			/*
815 			 * A sleeping hpts we want in next slot to run
816 			 * note that in this state p_prev_slot == p_cur_slot
817 			 */
818 			inp->inp_hptsslot = hpts_tick(hpts->p_prev_slot, 1);
819 			if ((hpts->p_on_min_sleep == 0) && (hpts->p_hpts_active == 0))
820 				need_wake = 1;
821 		} else if ((void *)inp == hpts->p_inp) {
822 			/*
823 			 * The hpts system is running and the caller
824 			 * was awoken by the hpts system.
825 			 * We can't allow you to go into the same slot we
826 			 * are in (we don't want a loop :-D).
827 			 */
828 			inp->inp_hptsslot = hpts->p_nxt_slot;
829 		} else
830 			inp->inp_hptsslot = hpts->p_runningtick;
831 		hpts_sane_pace_insert(hpts, inp, &hpts->p_hptss[inp->inp_hptsslot], line, noref);
832 		if (need_wake) {
833 			/*
834 			 * Activate the hpts if it is sleeping and its
835 			 * timeout is not 1.
836 			 */
837 			hpts->p_direct_wake = 1;
838 			tcp_wakehpts(hpts);
839 		}
840 	}
841 	return (need_wake);
842 }
843 
844 int
845 __tcp_queue_to_hpts_immediate(struct inpcb *inp, int32_t line)
846 {
847 	int32_t ret;
848 	struct tcp_hpts_entry *hpts;
849 
850 	INP_WLOCK_ASSERT(inp);
851 	hpts = tcp_hpts_lock(inp);
852 	ret = tcp_queue_to_hpts_immediate_locked(inp, hpts, line, 0);
853 	mtx_unlock(&hpts->p_mtx);
854 	return (ret);
855 }
856 
857 #ifdef INVARIANTS
858 static void
859 check_if_slot_would_be_wrong(struct tcp_hpts_entry *hpts, struct inpcb *inp, uint32_t inp_hptsslot, int line)
860 {
861 	/*
862 	 * Sanity checks for the pacer with invariants
863 	 * on insert.
864 	 */
865 	if (inp_hptsslot >= NUM_OF_HPTSI_SLOTS)
866 		panic("hpts:%p inp:%p slot:%d > max",
867 		      hpts, inp, inp_hptsslot);
868 	if ((hpts->p_hpts_active) &&
869 	    (hpts->p_wheel_complete == 0)) {
870 		/*
871 		 * If the pacer is processing a arc
872 		 * of the wheel, we need to make
873 		 * sure we are not inserting within
874 		 * that arc.
875 		 */
876 		int distance, yet_to_run;
877 
878 		distance = hpts_ticks_diff(hpts->p_runningtick, inp_hptsslot);
879 		if (hpts->p_runningtick != hpts->p_cur_slot)
880 			yet_to_run = hpts_ticks_diff(hpts->p_runningtick, hpts->p_cur_slot);
881 		else
882 			yet_to_run = 0;	/* processing last slot */
883 		if (yet_to_run > distance) {
884 			panic("hpts:%p inp:%p slot:%d distance:%d yet_to_run:%d rs:%d cs:%d",
885 			      hpts, inp, inp_hptsslot,
886 			      distance, yet_to_run,
887 			      hpts->p_runningtick, hpts->p_cur_slot);
888 		}
889 	}
890 }
891 #endif
892 
893 static void
894 tcp_hpts_insert_locked(struct tcp_hpts_entry *hpts, struct inpcb *inp, uint32_t slot, int32_t line,
895 		       struct hpts_diag *diag, struct timeval *tv)
896 {
897 	uint32_t need_new_to = 0;
898 	uint32_t wheel_cts, last_tick;
899 	int32_t wheel_tick, maxticks;
900 	int8_t need_wakeup = 0;
901 
902 	HPTS_MTX_ASSERT(hpts);
903 	if (diag) {
904 		memset(diag, 0, sizeof(struct hpts_diag));
905 		diag->p_hpts_active = hpts->p_hpts_active;
906 		diag->p_prev_slot = hpts->p_prev_slot;
907 		diag->p_runningtick = hpts->p_runningtick;
908 		diag->p_nxt_slot = hpts->p_nxt_slot;
909 		diag->p_cur_slot = hpts->p_cur_slot;
910 		diag->p_curtick = hpts->p_curtick;
911 		diag->p_lasttick = hpts->p_lasttick;
912 		diag->slot_req = slot;
913 		diag->p_on_min_sleep = hpts->p_on_min_sleep;
914 		diag->hpts_sleep_time = hpts->p_hpts_sleep_time;
915 	}
916 	if (inp->inp_in_hpts == 0) {
917 		if (slot == 0) {
918 			/* Immediate */
919 			tcp_queue_to_hpts_immediate_locked(inp, hpts, line, 0);
920 			return;
921 		}
922 		/* Get the current time relative to the wheel */
923 		wheel_cts = tcp_tv_to_hptstick(tv);
924 		/* Map it onto the wheel */
925 		wheel_tick = tick_to_wheel(wheel_cts);
926 		/* Now what's the max we can place it at? */
927 		maxticks = max_ticks_available(hpts, wheel_tick, &last_tick);
928 		if (diag) {
929 			diag->wheel_tick = wheel_tick;
930 			diag->maxticks = maxticks;
931 			diag->wheel_cts = wheel_cts;
932 		}
933 		if (maxticks == 0) {
934 			/* The pacer is in a wheel wrap behind, yikes! */
935 			if (slot > 1) {
936 				/*
937 				 * Reduce by 1 to prevent a forever loop in
938 				 * case something else is wrong. Note this
939 				 * probably does not hurt because the pacer
940 				 * if its true is so far behind we will be
941 				 * > 1second late calling anyway.
942 				 */
943 				slot--;
944 			}
945 			inp->inp_hptsslot = last_tick;
946 			inp->inp_hpts_request = slot;
947 		} else 	if (maxticks >= slot) {
948 			/* It all fits on the wheel */
949 			inp->inp_hpts_request = 0;
950 			inp->inp_hptsslot = hpts_tick(wheel_tick, slot);
951 		} else {
952 			/* It does not fit */
953 			inp->inp_hpts_request = slot - maxticks;
954 			inp->inp_hptsslot = last_tick;
955 		}
956 		if (diag) {
957 			diag->slot_remaining = inp->inp_hpts_request;
958 			diag->inp_hptsslot = inp->inp_hptsslot;
959 		}
960 #ifdef INVARIANTS
961 		check_if_slot_would_be_wrong(hpts, inp, inp->inp_hptsslot, line);
962 #endif
963 		hpts_sane_pace_insert(hpts, inp, &hpts->p_hptss[inp->inp_hptsslot], line, 0);
964 		if ((hpts->p_hpts_active == 0) &&
965 		    (inp->inp_hpts_request == 0) &&
966 		    (hpts->p_on_min_sleep == 0)) {
967 			/*
968 			 * The hpts is sleeping and not on a minimum
969 			 * sleep time, we need to figure out where
970 			 * it will wake up at and if we need to reschedule
971 			 * its time-out.
972 			 */
973 			uint32_t have_slept, yet_to_sleep;
974 
975 			/* Now do we need to restart the hpts's timer? */
976 			have_slept = hpts_ticks_diff(hpts->p_prev_slot, wheel_tick);
977 			if (have_slept < hpts->p_hpts_sleep_time)
978 				yet_to_sleep = hpts->p_hpts_sleep_time - have_slept;
979 			else {
980 				/* We are over-due */
981 				yet_to_sleep = 0;
982 				need_wakeup = 1;
983 			}
984 			if (diag) {
985 				diag->have_slept = have_slept;
986 				diag->yet_to_sleep = yet_to_sleep;
987 			}
988 			if (yet_to_sleep &&
989 			    (yet_to_sleep > slot)) {
990 				/*
991 				 * We need to reschedule the hpts's time-out.
992 				 */
993 				hpts->p_hpts_sleep_time = slot;
994 				need_new_to = slot * HPTS_TICKS_PER_USEC;
995 			}
996 		}
997 		/*
998 		 * Now how far is the hpts sleeping to? if active is 1, its
999 		 * up and ticking we do nothing, otherwise we may need to
1000 		 * reschedule its callout if need_new_to is set from above.
1001 		 */
1002 		if (need_wakeup) {
1003 			hpts->p_direct_wake = 1;
1004 			tcp_wakehpts(hpts);
1005 			if (diag) {
1006 				diag->need_new_to = 0;
1007 				diag->co_ret = 0xffff0000;
1008 			}
1009 		} else if (need_new_to) {
1010 			int32_t co_ret;
1011 			struct timeval tv;
1012 			sbintime_t sb;
1013 
1014 			tv.tv_sec = 0;
1015 			tv.tv_usec = 0;
1016 			while (need_new_to > HPTS_USEC_IN_SEC) {
1017 				tv.tv_sec++;
1018 				need_new_to -= HPTS_USEC_IN_SEC;
1019 			}
1020 			tv.tv_usec = need_new_to;
1021 			sb = tvtosbt(tv);
1022 			if (tcp_hpts_callout_skip_swi == 0) {
1023 				co_ret = callout_reset_sbt_on(&hpts->co, sb, 0,
1024 				    hpts_timeout_swi, hpts, hpts->p_cpu,
1025 				    (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision)));
1026 			} else {
1027 				co_ret = callout_reset_sbt_on(&hpts->co, sb, 0,
1028 				    hpts_timeout_dir, hpts,
1029 				    hpts->p_cpu,
1030 				    C_PREL(tcp_hpts_precision));
1031 			}
1032 			if (diag) {
1033 				diag->need_new_to = need_new_to;
1034 				diag->co_ret = co_ret;
1035 			}
1036 		}
1037 	} else {
1038 #ifdef INVARIANTS
1039 		panic("Hpts:%p tp:%p already on hpts and add?", hpts, inp);
1040 #endif
1041 	}
1042 }
1043 
1044 uint32_t
1045 tcp_hpts_insert_diag(struct inpcb *inp, uint32_t slot, int32_t line, struct hpts_diag *diag)
1046 {
1047 	struct tcp_hpts_entry *hpts;
1048 	uint32_t slot_on;
1049 	struct timeval tv;
1050 
1051 	/*
1052 	 * We now return the next-slot the hpts will be on, beyond its
1053 	 * current run (if up) or where it was when it stopped if it is
1054 	 * sleeping.
1055 	 */
1056 	INP_WLOCK_ASSERT(inp);
1057 	hpts = tcp_hpts_lock(inp);
1058 	microuptime(&tv);
1059 	tcp_hpts_insert_locked(hpts, inp, slot, line, diag, &tv);
1060 	slot_on = hpts->p_nxt_slot;
1061 	mtx_unlock(&hpts->p_mtx);
1062 	return (slot_on);
1063 }
1064 
1065 uint32_t
1066 __tcp_hpts_insert(struct inpcb *inp, uint32_t slot, int32_t line){
1067 	return (tcp_hpts_insert_diag(inp, slot, line, NULL));
1068 }
1069 int
1070 __tcp_queue_to_input_locked(struct inpcb *inp, struct tcp_hpts_entry *hpts, int32_t line)
1071 {
1072 	int32_t retval = 0;
1073 
1074 	HPTS_MTX_ASSERT(hpts);
1075 	if (inp->inp_in_input == 0) {
1076 		/* Ok we need to set it on the hpts in the current slot */
1077 		hpts_sane_input_insert(hpts, inp, line);
1078 		retval = 1;
1079 		if (hpts->p_hpts_active == 0) {
1080 			/*
1081 			 * Activate the hpts if it is sleeping.
1082 			 */
1083 			retval = 2;
1084 			hpts->p_direct_wake = 1;
1085 			tcp_wakeinput(hpts);
1086 		}
1087 	} else if (hpts->p_hpts_active == 0) {
1088 		retval = 4;
1089 		hpts->p_direct_wake = 1;
1090 		tcp_wakeinput(hpts);
1091 	}
1092 	return (retval);
1093 }
1094 
1095 int32_t
1096 __tcp_queue_to_input(struct inpcb *inp, int line)
1097 {
1098 	struct tcp_hpts_entry *hpts;
1099 	int32_t ret;
1100 
1101 	hpts = tcp_input_lock(inp);
1102 	ret = __tcp_queue_to_input_locked(inp, hpts, line);
1103 	mtx_unlock(&hpts->p_mtx);
1104 	return (ret);
1105 }
1106 
1107 void
1108 __tcp_set_inp_to_drop(struct inpcb *inp, uint16_t reason, int32_t line)
1109 {
1110 	struct tcp_hpts_entry *hpts;
1111 	struct tcpcb *tp;
1112 
1113 	tp = intotcpcb(inp);
1114 	hpts = tcp_input_lock(tp->t_inpcb);
1115 	if (inp->inp_in_input == 0) {
1116 		/* Ok we need to set it on the hpts in the current slot */
1117 		hpts_sane_input_insert(hpts, inp, line);
1118 		if (hpts->p_hpts_active == 0) {
1119 			/*
1120 			 * Activate the hpts if it is sleeping.
1121 			 */
1122 			hpts->p_direct_wake = 1;
1123 			tcp_wakeinput(hpts);
1124 		}
1125 	} else if (hpts->p_hpts_active == 0) {
1126 		hpts->p_direct_wake = 1;
1127 		tcp_wakeinput(hpts);
1128 	}
1129 	inp->inp_hpts_drop_reas = reason;
1130 	mtx_unlock(&hpts->p_mtx);
1131 }
1132 
1133 static uint16_t
1134 hpts_random_cpu(struct inpcb *inp){
1135 	/*
1136 	 * No flow type set distribute the load randomly.
1137 	 */
1138 	uint16_t cpuid;
1139 	uint32_t ran;
1140 
1141 	/*
1142 	 * If one has been set use it i.e. we want both in and out on the
1143 	 * same hpts.
1144 	 */
1145 	if (inp->inp_input_cpu_set) {
1146 		return (inp->inp_input_cpu);
1147 	} else if (inp->inp_hpts_cpu_set) {
1148 		return (inp->inp_hpts_cpu);
1149 	}
1150 	/* Nothing set use a random number */
1151 	ran = arc4random();
1152 	cpuid = (ran & 0xffff) % mp_ncpus;
1153 	return (cpuid);
1154 }
1155 
1156 static uint16_t
1157 hpts_cpuid(struct inpcb *inp)
1158 {
1159 	u_int cpuid;
1160 #if !defined(RSS) && defined(NUMA)
1161 	struct hpts_domain_info *di;
1162 #endif
1163 
1164 	/*
1165 	 * If one has been set use it i.e. we want both in and out on the
1166 	 * same hpts.
1167 	 */
1168 	if (inp->inp_input_cpu_set) {
1169 		return (inp->inp_input_cpu);
1170 	} else if (inp->inp_hpts_cpu_set) {
1171 		return (inp->inp_hpts_cpu);
1172 	}
1173 	/* If one is set the other must be the same */
1174 #ifdef RSS
1175 	cpuid = rss_hash2cpuid(inp->inp_flowid, inp->inp_flowtype);
1176 	if (cpuid == NETISR_CPUID_NONE)
1177 		return (hpts_random_cpu(inp));
1178 	else
1179 		return (cpuid);
1180 #else
1181 	/*
1182 	 * We don't have a flowid -> cpuid mapping, so cheat and just map
1183 	 * unknown cpuids to curcpu.  Not the best, but apparently better
1184 	 * than defaulting to swi 0.
1185 	 */
1186 
1187 	if (inp->inp_flowtype == M_HASHTYPE_NONE)
1188 		return (hpts_random_cpu(inp));
1189 	/*
1190 	 * Hash to a thread based on the flowid.  If we are using numa,
1191 	 * then restrict the hash to the numa domain where the inp lives.
1192 	 */
1193 #ifdef NUMA
1194 	if (tcp_bind_threads == 2 && inp->inp_numa_domain != M_NODOM) {
1195 		di = &hpts_domains[inp->inp_numa_domain];
1196 		cpuid = di->cpu[inp->inp_flowid % di->count];
1197 	} else
1198 #endif
1199 		cpuid = inp->inp_flowid % mp_ncpus;
1200 
1201 	return (cpuid);
1202 #endif
1203 }
1204 
1205 static void
1206 tcp_drop_in_pkts(struct tcpcb *tp)
1207 {
1208 	struct mbuf *m, *n;
1209 
1210 	m = tp->t_in_pkt;
1211 	if (m)
1212 		n = m->m_nextpkt;
1213 	else
1214 		n = NULL;
1215 	tp->t_in_pkt = NULL;
1216 	while (m) {
1217 		m_freem(m);
1218 		m = n;
1219 		if (m)
1220 			n = m->m_nextpkt;
1221 	}
1222 }
1223 
1224 /*
1225  * Do NOT try to optimize the processing of inp's
1226  * by first pulling off all the inp's into a temporary
1227  * list (e.g. TAILQ_CONCAT). If you do that the subtle
1228  * interactions of switching CPU's will kill because of
1229  * problems in the linked list manipulation. Basically
1230  * you would switch cpu's with the hpts mutex locked
1231  * but then while you were processing one of the inp's
1232  * some other one that you switch will get a new
1233  * packet on the different CPU. It will insert it
1234  * on the new hpts's input list. Creating a temporary
1235  * link in the inp will not fix it either, since
1236  * the other hpts will be doing the same thing and
1237  * you will both end up using the temporary link.
1238  *
1239  * You will die in an ASSERT for tailq corruption if you
1240  * run INVARIANTS or you will die horribly without
1241  * INVARIANTS in some unknown way with a corrupt linked
1242  * list.
1243  */
1244 static void
1245 tcp_input_data(struct tcp_hpts_entry *hpts, struct timeval *tv)
1246 {
1247 	struct tcpcb *tp;
1248 	struct inpcb *inp;
1249 	uint16_t drop_reason;
1250 	int16_t set_cpu;
1251 	uint32_t did_prefetch = 0;
1252 	int dropped;
1253 
1254 	HPTS_MTX_ASSERT(hpts);
1255 	NET_EPOCH_ASSERT();
1256 
1257 	while ((inp = TAILQ_FIRST(&hpts->p_input)) != NULL) {
1258 		HPTS_MTX_ASSERT(hpts);
1259 		hpts_sane_input_remove(hpts, inp, 0);
1260 		if (inp->inp_input_cpu_set == 0) {
1261 			set_cpu = 1;
1262 		} else {
1263 			set_cpu = 0;
1264 		}
1265 		hpts->p_inp = inp;
1266 		drop_reason = inp->inp_hpts_drop_reas;
1267 		inp->inp_in_input = 0;
1268 		mtx_unlock(&hpts->p_mtx);
1269 		INP_WLOCK(inp);
1270 #ifdef VIMAGE
1271 		CURVNET_SET(inp->inp_vnet);
1272 #endif
1273 		if ((inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) ||
1274 		    (inp->inp_flags2 & INP_FREED)) {
1275 out:
1276 			hpts->p_inp = NULL;
1277 			if (in_pcbrele_wlocked(inp) == 0) {
1278 				INP_WUNLOCK(inp);
1279 			}
1280 #ifdef VIMAGE
1281 			CURVNET_RESTORE();
1282 #endif
1283 			mtx_lock(&hpts->p_mtx);
1284 			continue;
1285 		}
1286 		tp = intotcpcb(inp);
1287 		if ((tp == NULL) || (tp->t_inpcb == NULL)) {
1288 			goto out;
1289 		}
1290 		if (drop_reason) {
1291 			/* This tcb is being destroyed for drop_reason */
1292 			tcp_drop_in_pkts(tp);
1293 			tp = tcp_drop(tp, drop_reason);
1294 			if (tp == NULL) {
1295 				INP_WLOCK(inp);
1296 			}
1297 			if (in_pcbrele_wlocked(inp) == 0)
1298 				INP_WUNLOCK(inp);
1299 #ifdef VIMAGE
1300 			CURVNET_RESTORE();
1301 #endif
1302 			mtx_lock(&hpts->p_mtx);
1303 			continue;
1304 		}
1305 		if (set_cpu) {
1306 			/*
1307 			 * Setup so the next time we will move to the right
1308 			 * CPU. This should be a rare event. It will
1309 			 * sometimes happens when we are the client side
1310 			 * (usually not the server). Somehow tcp_output()
1311 			 * gets called before the tcp_do_segment() sets the
1312 			 * intial state. This means the r_cpu and r_hpts_cpu
1313 			 * is 0. We get on the hpts, and then tcp_input()
1314 			 * gets called setting up the r_cpu to the correct
1315 			 * value. The hpts goes off and sees the mis-match.
1316 			 * We simply correct it here and the CPU will switch
1317 			 * to the new hpts nextime the tcb gets added to the
1318 			 * the hpts (not this time) :-)
1319 			 */
1320 			tcp_set_hpts(inp);
1321 		}
1322 		if (tp->t_fb_ptr != NULL) {
1323 			kern_prefetch(tp->t_fb_ptr, &did_prefetch);
1324 			did_prefetch = 1;
1325 		}
1326 		if ((inp->inp_flags2 & INP_SUPPORTS_MBUFQ) && tp->t_in_pkt) {
1327 			if (inp->inp_in_input)
1328 				tcp_hpts_remove(inp, HPTS_REMOVE_INPUT);
1329 			dropped = (*tp->t_fb->tfb_do_queued_segments)(inp->inp_socket, tp, 0);
1330 			if (dropped) {
1331 				/* Re-acquire the wlock so we can release the reference */
1332 				INP_WLOCK(inp);
1333 			}
1334 		} else if (tp->t_in_pkt) {
1335 			/*
1336 			 * We reach here only if we had a
1337 			 * stack that supported INP_SUPPORTS_MBUFQ
1338 			 * and then somehow switched to a stack that
1339 			 * does not. The packets are basically stranded
1340 			 * and would hang with the connection until
1341 			 * cleanup without this code. Its not the
1342 			 * best way but I know of no other way to
1343 			 * handle it since the stack needs functions
1344 			 * it does not have to handle queued packets.
1345 			 */
1346 			tcp_drop_in_pkts(tp);
1347 		}
1348 		if (in_pcbrele_wlocked(inp) == 0)
1349 			INP_WUNLOCK(inp);
1350 		INP_UNLOCK_ASSERT(inp);
1351 #ifdef VIMAGE
1352 		CURVNET_RESTORE();
1353 #endif
1354 		mtx_lock(&hpts->p_mtx);
1355 		hpts->p_inp = NULL;
1356 	}
1357 }
1358 
1359 static void
1360 tcp_hptsi(struct tcp_hpts_entry *hpts)
1361 {
1362 	struct tcpcb *tp;
1363 	struct inpcb *inp = NULL, *ninp;
1364 	struct timeval tv;
1365 	int32_t ticks_to_run, i, error;
1366 	int32_t paced_cnt = 0;
1367 	int32_t loop_cnt = 0;
1368 	int32_t did_prefetch = 0;
1369 	int32_t prefetch_ninp = 0;
1370 	int32_t prefetch_tp = 0;
1371 	int32_t wrap_loop_cnt = 0;
1372 	int16_t set_cpu;
1373 
1374 	HPTS_MTX_ASSERT(hpts);
1375 	NET_EPOCH_ASSERT();
1376 
1377 	/* record previous info for any logging */
1378 	hpts->saved_lasttick = hpts->p_lasttick;
1379 	hpts->saved_curtick = hpts->p_curtick;
1380 	hpts->saved_curslot = hpts->p_cur_slot;
1381 	hpts->saved_prev_slot = hpts->p_prev_slot;
1382 
1383 	hpts->p_lasttick = hpts->p_curtick;
1384 	hpts->p_curtick = tcp_gethptstick(&tv);
1385 	hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick);
1386 	if ((hpts->p_on_queue_cnt == 0) ||
1387 	    (hpts->p_lasttick == hpts->p_curtick)) {
1388 		/*
1389 		 * No time has yet passed,
1390 		 * or nothing to do.
1391 		 */
1392 		hpts->p_prev_slot = hpts->p_cur_slot;
1393 		hpts->p_lasttick = hpts->p_curtick;
1394 		goto no_run;
1395 	}
1396 again:
1397 	hpts->p_wheel_complete = 0;
1398 	HPTS_MTX_ASSERT(hpts);
1399 	ticks_to_run = hpts_ticks_diff(hpts->p_prev_slot, hpts->p_cur_slot);
1400 	if (((hpts->p_curtick - hpts->p_lasttick) > ticks_to_run) &&
1401 	    (hpts->p_on_queue_cnt != 0)) {
1402 		/*
1403 		 * Wheel wrap is occuring, basically we
1404 		 * are behind and the distance between
1405 		 * run's has spread so much it has exceeded
1406 		 * the time on the wheel (1.024 seconds). This
1407 		 * is ugly and should NOT be happening. We
1408 		 * need to run the entire wheel. We last processed
1409 		 * p_prev_slot, so that needs to be the last slot
1410 		 * we run. The next slot after that should be our
1411 		 * reserved first slot for new, and then starts
1412 		 * the running postion. Now the problem is the
1413 		 * reserved "not to yet" place does not exist
1414 		 * and there may be inp's in there that need
1415 		 * running. We can merge those into the
1416 		 * first slot at the head.
1417 		 */
1418 		wrap_loop_cnt++;
1419 		hpts->p_nxt_slot = hpts_tick(hpts->p_prev_slot, 1);
1420 		hpts->p_runningtick = hpts_tick(hpts->p_prev_slot, 2);
1421 		/*
1422 		 * Adjust p_cur_slot to be where we are starting from
1423 		 * hopefully we will catch up (fat chance if something
1424 		 * is broken this bad :( )
1425 		 */
1426 		hpts->p_cur_slot = hpts->p_prev_slot;
1427 		/*
1428 		 * The next slot has guys to run too, and that would
1429 		 * be where we would normally start, lets move them into
1430 		 * the next slot (p_prev_slot + 2) so that we will
1431 		 * run them, the extra 10usecs of late (by being
1432 		 * put behind) does not really matter in this situation.
1433 		 */
1434 #ifdef INVARIANTS
1435 		/*
1436 		 * To prevent a panic we need to update the inpslot to the
1437 		 * new location. This is safe since it takes both the
1438 		 * INP lock and the pacer mutex to change the inp_hptsslot.
1439 		 */
1440 		TAILQ_FOREACH(inp, &hpts->p_hptss[hpts->p_nxt_slot], inp_hpts) {
1441 			inp->inp_hptsslot = hpts->p_runningtick;
1442 		}
1443 #endif
1444 		TAILQ_CONCAT(&hpts->p_hptss[hpts->p_runningtick],
1445 			     &hpts->p_hptss[hpts->p_nxt_slot], inp_hpts);
1446 		ticks_to_run = NUM_OF_HPTSI_SLOTS - 1;
1447 		counter_u64_add(wheel_wrap, 1);
1448 	} else {
1449 		/*
1450 		 * Nxt slot is always one after p_runningtick though
1451 		 * its not used usually unless we are doing wheel wrap.
1452 		 */
1453 		hpts->p_nxt_slot = hpts->p_prev_slot;
1454 		hpts->p_runningtick = hpts_tick(hpts->p_prev_slot, 1);
1455 	}
1456 #ifdef INVARIANTS
1457 	if (TAILQ_EMPTY(&hpts->p_input) &&
1458 	    (hpts->p_on_inqueue_cnt != 0)) {
1459 		panic("tp:%p in_hpts input empty but cnt:%d",
1460 		      hpts, hpts->p_on_inqueue_cnt);
1461 	}
1462 #endif
1463 	HPTS_MTX_ASSERT(hpts);
1464 	if (hpts->p_on_queue_cnt == 0) {
1465 		goto no_one;
1466 	}
1467 	HPTS_MTX_ASSERT(hpts);
1468 	for (i = 0; i < ticks_to_run; i++) {
1469 		/*
1470 		 * Calculate our delay, if there are no extra ticks there
1471 		 * was not any (i.e. if ticks_to_run == 1, no delay).
1472 		 */
1473 		hpts->p_delayed_by = (ticks_to_run - (i + 1)) * HPTS_TICKS_PER_USEC;
1474 		HPTS_MTX_ASSERT(hpts);
1475 		while ((inp = TAILQ_FIRST(&hpts->p_hptss[hpts->p_runningtick])) != NULL) {
1476 			/* For debugging */
1477 			hpts->p_inp = inp;
1478 			paced_cnt++;
1479 #ifdef INVARIANTS
1480 			if (hpts->p_runningtick != inp->inp_hptsslot) {
1481 				panic("Hpts:%p inp:%p slot mis-aligned %u vs %u",
1482 				      hpts, inp, hpts->p_runningtick, inp->inp_hptsslot);
1483 			}
1484 #endif
1485 			/* Now pull it */
1486 			if (inp->inp_hpts_cpu_set == 0) {
1487 				set_cpu = 1;
1488 			} else {
1489 				set_cpu = 0;
1490 			}
1491 			hpts_sane_pace_remove(hpts, inp, &hpts->p_hptss[hpts->p_runningtick], 0);
1492 			if ((ninp = TAILQ_FIRST(&hpts->p_hptss[hpts->p_runningtick])) != NULL) {
1493 				/* We prefetch the next inp if possible */
1494 				kern_prefetch(ninp, &prefetch_ninp);
1495 				prefetch_ninp = 1;
1496 			}
1497 			if (inp->inp_hpts_request) {
1498 				/*
1499 				 * This guy is deferred out further in time
1500 				 * then our wheel had available on it.
1501 				 * Push him back on the wheel or run it
1502 				 * depending.
1503 				 */
1504 				uint32_t maxticks, last_tick, remaining_slots;
1505 
1506 				remaining_slots = ticks_to_run - (i + 1);
1507 				if (inp->inp_hpts_request > remaining_slots) {
1508 					/*
1509 					 * How far out can we go?
1510 					 */
1511 					maxticks = max_ticks_available(hpts, hpts->p_cur_slot, &last_tick);
1512 					if (maxticks >= inp->inp_hpts_request) {
1513 						/* we can place it finally to be processed  */
1514 						inp->inp_hptsslot = hpts_tick(hpts->p_runningtick, inp->inp_hpts_request);
1515 						inp->inp_hpts_request = 0;
1516 					} else {
1517 						/* Work off some more time */
1518 						inp->inp_hptsslot = last_tick;
1519 						inp->inp_hpts_request-= maxticks;
1520 					}
1521 					hpts_sane_pace_insert(hpts, inp, &hpts->p_hptss[inp->inp_hptsslot], __LINE__, 1);
1522 					hpts->p_inp = NULL;
1523 					continue;
1524 				}
1525 				inp->inp_hpts_request = 0;
1526 				/* Fall through we will so do it now */
1527 			}
1528 			/*
1529 			 * We clear the hpts flag here after dealing with
1530 			 * remaining slots. This way anyone looking with the
1531 			 * TCB lock will see its on the hpts until just
1532 			 * before we unlock.
1533 			 */
1534 			inp->inp_in_hpts = 0;
1535 			mtx_unlock(&hpts->p_mtx);
1536 			INP_WLOCK(inp);
1537 			if (in_pcbrele_wlocked(inp)) {
1538 				mtx_lock(&hpts->p_mtx);
1539 				hpts->p_inp = NULL;
1540 				continue;
1541 			}
1542 			if ((inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) ||
1543 			    (inp->inp_flags2 & INP_FREED)) {
1544 			out_now:
1545 #ifdef INVARIANTS
1546 				if (mtx_owned(&hpts->p_mtx)) {
1547 					panic("Hpts:%p owns mtx prior-to lock line:%d",
1548 					      hpts, __LINE__);
1549 				}
1550 #endif
1551 				INP_WUNLOCK(inp);
1552 				mtx_lock(&hpts->p_mtx);
1553 				hpts->p_inp = NULL;
1554 				continue;
1555 			}
1556 			tp = intotcpcb(inp);
1557 			if ((tp == NULL) || (tp->t_inpcb == NULL)) {
1558 				goto out_now;
1559 			}
1560 			if (set_cpu) {
1561 				/*
1562 				 * Setup so the next time we will move to
1563 				 * the right CPU. This should be a rare
1564 				 * event. It will sometimes happens when we
1565 				 * are the client side (usually not the
1566 				 * server). Somehow tcp_output() gets called
1567 				 * before the tcp_do_segment() sets the
1568 				 * intial state. This means the r_cpu and
1569 				 * r_hpts_cpu is 0. We get on the hpts, and
1570 				 * then tcp_input() gets called setting up
1571 				 * the r_cpu to the correct value. The hpts
1572 				 * goes off and sees the mis-match. We
1573 				 * simply correct it here and the CPU will
1574 				 * switch to the new hpts nextime the tcb
1575 				 * gets added to the the hpts (not this one)
1576 				 * :-)
1577 				 */
1578 				tcp_set_hpts(inp);
1579 			}
1580 #ifdef VIMAGE
1581 			CURVNET_SET(inp->inp_vnet);
1582 #endif
1583 			/* Lets do any logging that we might want to */
1584 			if (hpts_does_tp_logging && (tp->t_logstate != TCP_LOG_STATE_OFF)) {
1585 				tcp_hpts_log(hpts, tp, &tv, ticks_to_run, i);
1586 			}
1587 			/*
1588 			 * There is a hole here, we get the refcnt on the
1589 			 * inp so it will still be preserved but to make
1590 			 * sure we can get the INP we need to hold the p_mtx
1591 			 * above while we pull out the tp/inp,  as long as
1592 			 * fini gets the lock first we are assured of having
1593 			 * a sane INP we can lock and test.
1594 			 */
1595 #ifdef INVARIANTS
1596 			if (mtx_owned(&hpts->p_mtx)) {
1597 				panic("Hpts:%p owns mtx before tcp-output:%d",
1598 				      hpts, __LINE__);
1599 			}
1600 #endif
1601 			if (tp->t_fb_ptr != NULL) {
1602 				kern_prefetch(tp->t_fb_ptr, &did_prefetch);
1603 				did_prefetch = 1;
1604 			}
1605 			if ((inp->inp_flags2 & INP_SUPPORTS_MBUFQ) && tp->t_in_pkt) {
1606 				error = (*tp->t_fb->tfb_do_queued_segments)(inp->inp_socket, tp, 0);
1607 				if (error) {
1608 					/* The input killed the connection */
1609 					goto skip_pacing;
1610 				}
1611 			}
1612 			inp->inp_hpts_calls = 1;
1613 			error = tp->t_fb->tfb_tcp_output(tp);
1614 			inp->inp_hpts_calls = 0;
1615 			if (ninp && ninp->inp_ppcb) {
1616 				/*
1617 				 * If we have a nxt inp, see if we can
1618 				 * prefetch its ppcb. Note this may seem
1619 				 * "risky" since we have no locks (other
1620 				 * than the previous inp) and there no
1621 				 * assurance that ninp was not pulled while
1622 				 * we were processing inp and freed. If this
1623 				 * occured it could mean that either:
1624 				 *
1625 				 * a) Its NULL (which is fine we won't go
1626 				 * here) <or> b) Its valid (which is cool we
1627 				 * will prefetch it) <or> c) The inp got
1628 				 * freed back to the slab which was
1629 				 * reallocated. Then the piece of memory was
1630 				 * re-used and something else (not an
1631 				 * address) is in inp_ppcb. If that occurs
1632 				 * we don't crash, but take a TLB shootdown
1633 				 * performance hit (same as if it was NULL
1634 				 * and we tried to pre-fetch it).
1635 				 *
1636 				 * Considering that the likelyhood of <c> is
1637 				 * quite rare we will take a risk on doing
1638 				 * this. If performance drops after testing
1639 				 * we can always take this out. NB: the
1640 				 * kern_prefetch on amd64 actually has
1641 				 * protection against a bad address now via
1642 				 * the DMAP_() tests. This will prevent the
1643 				 * TLB hit, and instead if <c> occurs just
1644 				 * cause us to load cache with a useless
1645 				 * address (to us).
1646 				 */
1647 				kern_prefetch(ninp->inp_ppcb, &prefetch_tp);
1648 				prefetch_tp = 1;
1649 			}
1650 			INP_WUNLOCK(inp);
1651 		skip_pacing:
1652 #ifdef VIMAGE
1653 			CURVNET_RESTORE();
1654 #endif
1655 			INP_UNLOCK_ASSERT(inp);
1656 #ifdef INVARIANTS
1657 			if (mtx_owned(&hpts->p_mtx)) {
1658 				panic("Hpts:%p owns mtx prior-to lock line:%d",
1659 				      hpts, __LINE__);
1660 			}
1661 #endif
1662 			mtx_lock(&hpts->p_mtx);
1663 			hpts->p_inp = NULL;
1664 		}
1665 		HPTS_MTX_ASSERT(hpts);
1666 		hpts->p_inp = NULL;
1667 		hpts->p_runningtick++;
1668 		if (hpts->p_runningtick >= NUM_OF_HPTSI_SLOTS) {
1669 			hpts->p_runningtick = 0;
1670 		}
1671 	}
1672 no_one:
1673 	HPTS_MTX_ASSERT(hpts);
1674 	hpts->p_delayed_by = 0;
1675 	/*
1676 	 * Check to see if we took an excess amount of time and need to run
1677 	 * more ticks (if we did not hit eno-bufs).
1678 	 */
1679 #ifdef INVARIANTS
1680 	if (TAILQ_EMPTY(&hpts->p_input) &&
1681 	    (hpts->p_on_inqueue_cnt != 0)) {
1682 		panic("tp:%p in_hpts input empty but cnt:%d",
1683 		      hpts, hpts->p_on_inqueue_cnt);
1684 	}
1685 #endif
1686 	hpts->p_prev_slot = hpts->p_cur_slot;
1687 	hpts->p_lasttick = hpts->p_curtick;
1688 	if (loop_cnt > max_pacer_loops) {
1689 		/*
1690 		 * Something is serious slow we have
1691 		 * looped through processing the wheel
1692 		 * and by the time we cleared the
1693 		 * needs to run max_pacer_loops time
1694 		 * we still needed to run. That means
1695 		 * the system is hopelessly behind and
1696 		 * can never catch up :(
1697 		 *
1698 		 * We will just lie to this thread
1699 		 * and let it thing p_curtick is
1700 		 * correct. When it next awakens
1701 		 * it will find itself further behind.
1702 		 */
1703 		counter_u64_add(hpts_hopelessly_behind, 1);
1704 		goto no_run;
1705 	}
1706 	hpts->p_curtick = tcp_gethptstick(&tv);
1707 	hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick);
1708 	if ((wrap_loop_cnt < 2) &&
1709 	    (hpts->p_lasttick != hpts->p_curtick)) {
1710 		counter_u64_add(hpts_loops, 1);
1711 		loop_cnt++;
1712 		goto again;
1713 	}
1714 no_run:
1715 	/*
1716 	 * Set flag to tell that we are done for
1717 	 * any slot input that happens during
1718 	 * input.
1719 	 */
1720 	hpts->p_wheel_complete = 1;
1721 	/*
1722 	 * Run any input that may be there not covered
1723 	 * in running data.
1724 	 */
1725 	if (!TAILQ_EMPTY(&hpts->p_input)) {
1726 		tcp_input_data(hpts, &tv);
1727 		/*
1728 		 * Now did we spend too long running
1729 		 * input and need to run more ticks?
1730 		 */
1731 		KASSERT(hpts->p_prev_slot == hpts->p_cur_slot,
1732 			("H:%p p_prev_slot:%u not equal to p_cur_slot:%u", hpts,
1733 			 hpts->p_prev_slot, hpts->p_cur_slot));
1734 		KASSERT(hpts->p_lasttick == hpts->p_curtick,
1735 			("H:%p p_lasttick:%u not equal to p_curtick:%u", hpts,
1736 			 hpts->p_lasttick, hpts->p_curtick));
1737 		hpts->p_curtick = tcp_gethptstick(&tv);
1738 		if (hpts->p_lasttick != hpts->p_curtick) {
1739 			counter_u64_add(hpts_loops, 1);
1740 			hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick);
1741 			goto again;
1742 		}
1743 	}
1744 	{
1745 		uint32_t t = 0, i, fnd = 0;
1746 
1747 		if ((hpts->p_on_queue_cnt) && (wrap_loop_cnt < 2)) {
1748 			/*
1749 			 * Find next slot that is occupied and use that to
1750 			 * be the sleep time.
1751 			 */
1752 			for (i = 0, t = hpts_tick(hpts->p_cur_slot, 1); i < NUM_OF_HPTSI_SLOTS; i++) {
1753 				if (TAILQ_EMPTY(&hpts->p_hptss[t]) == 0) {
1754 					fnd = 1;
1755 					break;
1756 				}
1757 				t = (t + 1) % NUM_OF_HPTSI_SLOTS;
1758 			}
1759 			if (fnd) {
1760 				hpts->p_hpts_sleep_time = min((i + 1), hpts_sleep_max);
1761 			} else {
1762 #ifdef INVARIANTS
1763 				panic("Hpts:%p cnt:%d but none found", hpts, hpts->p_on_queue_cnt);
1764 #endif
1765 				counter_u64_add(back_tosleep, 1);
1766 				hpts->p_on_queue_cnt = 0;
1767 				goto non_found;
1768 			}
1769 		} else if (wrap_loop_cnt >= 2) {
1770 			/* Special case handling */
1771 			hpts->p_hpts_sleep_time = tcp_min_hptsi_time;
1772 		} else {
1773 			/* No one on the wheel sleep for all but 400 slots or sleep max  */
1774 		non_found:
1775 			hpts->p_hpts_sleep_time = hpts_sleep_max;
1776 		}
1777 	}
1778 }
1779 
1780 void
1781 __tcp_set_hpts(struct inpcb *inp, int32_t line)
1782 {
1783 	struct tcp_hpts_entry *hpts;
1784 
1785 	INP_WLOCK_ASSERT(inp);
1786 	hpts = tcp_hpts_lock(inp);
1787 	if ((inp->inp_in_hpts == 0) &&
1788 	    (inp->inp_hpts_cpu_set == 0)) {
1789 		inp->inp_hpts_cpu = hpts_cpuid(inp);
1790 		inp->inp_hpts_cpu_set = 1;
1791 	}
1792 	mtx_unlock(&hpts->p_mtx);
1793 	hpts = tcp_input_lock(inp);
1794 	if ((inp->inp_input_cpu_set == 0) &&
1795 	    (inp->inp_in_input == 0)) {
1796 		inp->inp_input_cpu = hpts_cpuid(inp);
1797 		inp->inp_input_cpu_set = 1;
1798 	}
1799 	mtx_unlock(&hpts->p_mtx);
1800 }
1801 
1802 uint16_t
1803 tcp_hpts_delayedby(struct inpcb *inp){
1804 	return (tcp_pace.rp_ent[inp->inp_hpts_cpu]->p_delayed_by);
1805 }
1806 
1807 static void
1808 tcp_hpts_thread(void *ctx)
1809 {
1810 	struct tcp_hpts_entry *hpts;
1811 	struct epoch_tracker et;
1812 	struct timeval tv;
1813 	sbintime_t sb;
1814 
1815 	hpts = (struct tcp_hpts_entry *)ctx;
1816 	mtx_lock(&hpts->p_mtx);
1817 	if (hpts->p_direct_wake) {
1818 		/* Signaled by input */
1819 		callout_stop(&hpts->co);
1820 	} else {
1821 		/* Timed out */
1822 		if (callout_pending(&hpts->co) ||
1823 		    !callout_active(&hpts->co)) {
1824 			mtx_unlock(&hpts->p_mtx);
1825 			return;
1826 		}
1827 		callout_deactivate(&hpts->co);
1828 	}
1829 	hpts->p_hpts_wake_scheduled = 0;
1830 	hpts->p_hpts_active = 1;
1831 	NET_EPOCH_ENTER(et);
1832 	tcp_hptsi(hpts);
1833 	NET_EPOCH_EXIT(et);
1834 	HPTS_MTX_ASSERT(hpts);
1835 	tv.tv_sec = 0;
1836 	tv.tv_usec = hpts->p_hpts_sleep_time * HPTS_TICKS_PER_USEC;
1837 	if (tcp_min_hptsi_time && (tv.tv_usec < tcp_min_hptsi_time)) {
1838 		hpts->overidden_sleep = tv.tv_usec;
1839 		tv.tv_usec = tcp_min_hptsi_time;
1840 		hpts->p_on_min_sleep = 1;
1841 	} else {
1842 		/* Clear the min sleep flag */
1843 		hpts->overidden_sleep = 0;
1844 		hpts->p_on_min_sleep = 0;
1845 	}
1846 	hpts->p_hpts_active = 0;
1847 	sb = tvtosbt(tv);
1848 	if (tcp_hpts_callout_skip_swi == 0) {
1849 		callout_reset_sbt_on(&hpts->co, sb, 0,
1850 		    hpts_timeout_swi, hpts, hpts->p_cpu,
1851 		    (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision)));
1852 	} else {
1853 		callout_reset_sbt_on(&hpts->co, sb, 0,
1854 		    hpts_timeout_dir, hpts,
1855 		    hpts->p_cpu,
1856 		    C_PREL(tcp_hpts_precision));
1857 	}
1858 	hpts->p_direct_wake = 0;
1859 	mtx_unlock(&hpts->p_mtx);
1860 }
1861 
1862 #undef	timersub
1863 
1864 static void
1865 tcp_init_hptsi(void *st)
1866 {
1867 	int32_t i, j, error, bound = 0, created = 0;
1868 	size_t sz, asz;
1869 	struct timeval tv;
1870 	sbintime_t sb;
1871 	struct tcp_hpts_entry *hpts;
1872 	struct pcpu *pc;
1873 	cpuset_t cs;
1874 	char unit[16];
1875 	uint32_t ncpus = mp_ncpus ? mp_ncpus : MAXCPU;
1876 	int count, domain;
1877 
1878 	tcp_pace.rp_proc = NULL;
1879 	tcp_pace.rp_num_hptss = ncpus;
1880 	hpts_hopelessly_behind = counter_u64_alloc(M_WAITOK);
1881 	hpts_loops = counter_u64_alloc(M_WAITOK);
1882 	back_tosleep = counter_u64_alloc(M_WAITOK);
1883 	combined_wheel_wrap = counter_u64_alloc(M_WAITOK);
1884 	wheel_wrap = counter_u64_alloc(M_WAITOK);
1885 	sz = (tcp_pace.rp_num_hptss * sizeof(struct tcp_hpts_entry *));
1886 	tcp_pace.rp_ent = malloc(sz, M_TCPHPTS, M_WAITOK | M_ZERO);
1887 	asz = sizeof(struct hptsh) * NUM_OF_HPTSI_SLOTS;
1888 	for (i = 0; i < tcp_pace.rp_num_hptss; i++) {
1889 		tcp_pace.rp_ent[i] = malloc(sizeof(struct tcp_hpts_entry),
1890 		    M_TCPHPTS, M_WAITOK | M_ZERO);
1891 		tcp_pace.rp_ent[i]->p_hptss = malloc(asz,
1892 		    M_TCPHPTS, M_WAITOK);
1893 		hpts = tcp_pace.rp_ent[i];
1894 		/*
1895 		 * Init all the hpts structures that are not specifically
1896 		 * zero'd by the allocations. Also lets attach them to the
1897 		 * appropriate sysctl block as well.
1898 		 */
1899 		mtx_init(&hpts->p_mtx, "tcp_hpts_lck",
1900 		    "hpts", MTX_DEF | MTX_DUPOK);
1901 		TAILQ_INIT(&hpts->p_input);
1902 		for (j = 0; j < NUM_OF_HPTSI_SLOTS; j++) {
1903 			TAILQ_INIT(&hpts->p_hptss[j]);
1904 		}
1905 		sysctl_ctx_init(&hpts->hpts_ctx);
1906 		sprintf(unit, "%d", i);
1907 		hpts->hpts_root = SYSCTL_ADD_NODE(&hpts->hpts_ctx,
1908 		    SYSCTL_STATIC_CHILDREN(_net_inet_tcp_hpts),
1909 		    OID_AUTO,
1910 		    unit,
1911 		    CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
1912 		    "");
1913 		SYSCTL_ADD_INT(&hpts->hpts_ctx,
1914 		    SYSCTL_CHILDREN(hpts->hpts_root),
1915 		    OID_AUTO, "in_qcnt", CTLFLAG_RD,
1916 		    &hpts->p_on_inqueue_cnt, 0,
1917 		    "Count TCB's awaiting input processing");
1918 		SYSCTL_ADD_INT(&hpts->hpts_ctx,
1919 		    SYSCTL_CHILDREN(hpts->hpts_root),
1920 		    OID_AUTO, "out_qcnt", CTLFLAG_RD,
1921 		    &hpts->p_on_queue_cnt, 0,
1922 		    "Count TCB's awaiting output processing");
1923 		SYSCTL_ADD_U16(&hpts->hpts_ctx,
1924 		    SYSCTL_CHILDREN(hpts->hpts_root),
1925 		    OID_AUTO, "active", CTLFLAG_RD,
1926 		    &hpts->p_hpts_active, 0,
1927 		    "Is the hpts active");
1928 		SYSCTL_ADD_UINT(&hpts->hpts_ctx,
1929 		    SYSCTL_CHILDREN(hpts->hpts_root),
1930 		    OID_AUTO, "curslot", CTLFLAG_RD,
1931 		    &hpts->p_cur_slot, 0,
1932 		    "What the current running pacers goal");
1933 		SYSCTL_ADD_UINT(&hpts->hpts_ctx,
1934 		    SYSCTL_CHILDREN(hpts->hpts_root),
1935 		    OID_AUTO, "runtick", CTLFLAG_RD,
1936 		    &hpts->p_runningtick, 0,
1937 		    "What the running pacers current slot is");
1938 		SYSCTL_ADD_UINT(&hpts->hpts_ctx,
1939 		    SYSCTL_CHILDREN(hpts->hpts_root),
1940 		    OID_AUTO, "curtick", CTLFLAG_RD,
1941 		    &hpts->p_curtick, 0,
1942 		    "What the running pacers last tick mapped to the wheel was");
1943 		hpts->p_hpts_sleep_time = hpts_sleep_max;
1944 		hpts->p_num = i;
1945 		hpts->p_curtick = tcp_gethptstick(&tv);
1946 		hpts->p_prev_slot = hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick);
1947 		hpts->p_cpu = 0xffff;
1948 		hpts->p_nxt_slot = hpts_tick(hpts->p_cur_slot, 1);
1949 		callout_init(&hpts->co, 1);
1950 	}
1951 
1952 	/* Don't try to bind to NUMA domains if we don't have any */
1953 	if (vm_ndomains == 1 && tcp_bind_threads == 2)
1954 		tcp_bind_threads = 0;
1955 
1956 	/*
1957 	 * Now lets start ithreads to handle the hptss.
1958 	 */
1959 	CPU_FOREACH(i) {
1960 		hpts = tcp_pace.rp_ent[i];
1961 		hpts->p_cpu = i;
1962 		error = swi_add(&hpts->ie, "hpts",
1963 		    tcp_hpts_thread, (void *)hpts,
1964 		    SWI_NET, INTR_MPSAFE, &hpts->ie_cookie);
1965 		if (error) {
1966 			panic("Can't add hpts:%p i:%d err:%d",
1967 			    hpts, i, error);
1968 		}
1969 		created++;
1970 		if (tcp_bind_threads == 1) {
1971 			if (intr_event_bind(hpts->ie, i) == 0)
1972 				bound++;
1973 		} else if (tcp_bind_threads == 2) {
1974 			pc = pcpu_find(i);
1975 			domain = pc->pc_domain;
1976 			CPU_COPY(&cpuset_domain[domain], &cs);
1977 			if (intr_event_bind_ithread_cpuset(hpts->ie, &cs)
1978 			    == 0) {
1979 				bound++;
1980 				count = hpts_domains[domain].count;
1981 				hpts_domains[domain].cpu[count] = i;
1982 				hpts_domains[domain].count++;
1983 			}
1984 		}
1985 		tv.tv_sec = 0;
1986 		tv.tv_usec = hpts->p_hpts_sleep_time * HPTS_TICKS_PER_USEC;
1987 		sb = tvtosbt(tv);
1988 		if (tcp_hpts_callout_skip_swi == 0) {
1989 			callout_reset_sbt_on(&hpts->co, sb, 0,
1990 			    hpts_timeout_swi, hpts, hpts->p_cpu,
1991 			    (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision)));
1992 		} else {
1993 			callout_reset_sbt_on(&hpts->co, sb, 0,
1994 			    hpts_timeout_dir, hpts,
1995 			    hpts->p_cpu,
1996 			    C_PREL(tcp_hpts_precision));
1997 		}
1998 	}
1999 	/*
2000 	 * If we somehow have an empty domain, fall back to choosing
2001 	 * among all htps threads.
2002 	 */
2003 	for (i = 0; i < vm_ndomains; i++) {
2004 		if (hpts_domains[i].count == 0) {
2005 			tcp_bind_threads = 0;
2006 			break;
2007 		}
2008 	}
2009 
2010 	printf("TCP Hpts created %d swi interrupt threads and bound %d to %s\n",
2011 	    created, bound,
2012 	    tcp_bind_threads == 2 ? "NUMA domains" : "cpus");
2013 }
2014 
2015 SYSINIT(tcphptsi, SI_SUB_KTHREAD_IDLE, SI_ORDER_ANY, tcp_init_hptsi, NULL);
2016 MODULE_VERSION(tcphpts, 1);
2017