1 /*- 2 * Copyright (c) 2016-2018 Netflix, Inc. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 1. Redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer. 9 * 2. Redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution. 12 * 13 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 14 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 16 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 17 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 18 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 19 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 20 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 21 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 22 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 23 * SUCH DAMAGE. 24 * 25 */ 26 #include <sys/cdefs.h> 27 __FBSDID("$FreeBSD$"); 28 29 #include "opt_inet.h" 30 #include "opt_inet6.h" 31 #include "opt_rss.h" 32 33 /** 34 * Some notes about usage. 35 * 36 * The tcp_hpts system is designed to provide a high precision timer 37 * system for tcp. Its main purpose is to provide a mechanism for 38 * pacing packets out onto the wire. It can be used in two ways 39 * by a given TCP stack (and those two methods can be used simultaneously). 40 * 41 * First, and probably the main thing its used by Rack and BBR, it can 42 * be used to call tcp_output() of a transport stack at some time in the future. 43 * The normal way this is done is that tcp_output() of the stack schedules 44 * itself to be called again by calling tcp_hpts_insert(tcpcb, slot). The 45 * slot is the time from now that the stack wants to be called but it 46 * must be converted to tcp_hpts's notion of slot. This is done with 47 * one of the macros HPTS_MS_TO_SLOTS or HPTS_USEC_TO_SLOTS. So a typical 48 * call from the tcp_output() routine might look like: 49 * 50 * tcp_hpts_insert(tp, HPTS_USEC_TO_SLOTS(550)); 51 * 52 * The above would schedule tcp_ouput() to be called in 550 useconds. 53 * Note that if using this mechanism the stack will want to add near 54 * its top a check to prevent unwanted calls (from user land or the 55 * arrival of incoming ack's). So it would add something like: 56 * 57 * if (tcp_in_hpts(inp)) 58 * return; 59 * 60 * to prevent output processing until the time alotted has gone by. 61 * Of course this is a bare bones example and the stack will probably 62 * have more consideration then just the above. 63 * 64 * In order to run input queued segments from the HPTS context the 65 * tcp stack must define an input function for 66 * tfb_do_queued_segments(). This function understands 67 * how to dequeue a array of packets that were input and 68 * knows how to call the correct processing routine. 69 * 70 * Locking in this is important as well so most likely the 71 * stack will need to define the tfb_do_segment_nounlock() 72 * splitting tfb_do_segment() into two parts. The main processing 73 * part that does not unlock the INP and returns a value of 1 or 0. 74 * It returns 0 if all is well and the lock was not released. It 75 * returns 1 if we had to destroy the TCB (a reset received etc). 76 * The remains of tfb_do_segment() then become just a simple call 77 * to the tfb_do_segment_nounlock() function and check the return 78 * code and possibly unlock. 79 * 80 * The stack must also set the flag on the INP that it supports this 81 * feature i.e. INP_SUPPORTS_MBUFQ. The LRO code recoginizes 82 * this flag as well and will queue packets when it is set. 83 * There are other flags as well INP_MBUF_QUEUE_READY and 84 * INP_DONT_SACK_QUEUE. The first flag tells the LRO code 85 * that we are in the pacer for output so there is no 86 * need to wake up the hpts system to get immediate 87 * input. The second tells the LRO code that its okay 88 * if a SACK arrives you can still defer input and let 89 * the current hpts timer run (this is usually set when 90 * a rack timer is up so we know SACK's are happening 91 * on the connection already and don't want to wakeup yet). 92 * 93 * There is a common functions within the rack_bbr_common code 94 * version i.e. ctf_do_queued_segments(). This function 95 * knows how to take the input queue of packets from 96 * tp->t_in_pkts and process them digging out 97 * all the arguments, calling any bpf tap and 98 * calling into tfb_do_segment_nounlock(). The common 99 * function (ctf_do_queued_segments()) requires that 100 * you have defined the tfb_do_segment_nounlock() as 101 * described above. 102 */ 103 104 #include <sys/param.h> 105 #include <sys/bus.h> 106 #include <sys/interrupt.h> 107 #include <sys/module.h> 108 #include <sys/kernel.h> 109 #include <sys/hhook.h> 110 #include <sys/malloc.h> 111 #include <sys/mbuf.h> 112 #include <sys/proc.h> /* for proc0 declaration */ 113 #include <sys/socket.h> 114 #include <sys/socketvar.h> 115 #include <sys/sysctl.h> 116 #include <sys/systm.h> 117 #include <sys/refcount.h> 118 #include <sys/sched.h> 119 #include <sys/queue.h> 120 #include <sys/smp.h> 121 #include <sys/counter.h> 122 #include <sys/time.h> 123 #include <sys/kthread.h> 124 #include <sys/kern_prefetch.h> 125 126 #include <vm/uma.h> 127 #include <vm/vm.h> 128 129 #include <net/route.h> 130 #include <net/vnet.h> 131 132 #ifdef RSS 133 #include <net/netisr.h> 134 #include <net/rss_config.h> 135 #endif 136 137 #define TCPSTATES /* for logging */ 138 139 #include <netinet/in.h> 140 #include <netinet/in_kdtrace.h> 141 #include <netinet/in_pcb.h> 142 #include <netinet/ip.h> 143 #include <netinet/ip_icmp.h> /* required for icmp_var.h */ 144 #include <netinet/icmp_var.h> /* for ICMP_BANDLIM */ 145 #include <netinet/ip_var.h> 146 #include <netinet/ip6.h> 147 #include <netinet6/in6_pcb.h> 148 #include <netinet6/ip6_var.h> 149 #include <netinet/tcp.h> 150 #include <netinet/tcp_fsm.h> 151 #include <netinet/tcp_seq.h> 152 #include <netinet/tcp_timer.h> 153 #include <netinet/tcp_var.h> 154 #include <netinet/tcpip.h> 155 #include <netinet/cc/cc.h> 156 #include <netinet/tcp_hpts.h> 157 #include <netinet/tcp_log_buf.h> 158 159 #ifdef tcp_offload 160 #include <netinet/tcp_offload.h> 161 #endif 162 163 /* 164 * The hpts uses a 102400 wheel. The wheel 165 * defines the time in 10 usec increments (102400 x 10). 166 * This gives a range of 10usec - 1024ms to place 167 * an entry within. If the user requests more than 168 * 1.024 second, a remaineder is attached and the hpts 169 * when seeing the remainder will re-insert the 170 * inpcb forward in time from where it is until 171 * the remainder is zero. 172 */ 173 174 #define NUM_OF_HPTSI_SLOTS 102400 175 176 /* Each hpts has its own p_mtx which is used for locking */ 177 #define HPTS_MTX_ASSERT(hpts) mtx_assert(&(hpts)->p_mtx, MA_OWNED) 178 #define HPTS_LOCK(hpts) mtx_lock(&(hpts)->p_mtx) 179 #define HPTS_UNLOCK(hpts) mtx_unlock(&(hpts)->p_mtx) 180 struct tcp_hpts_entry { 181 /* Cache line 0x00 */ 182 struct mtx p_mtx; /* Mutex for hpts */ 183 struct timeval p_mysleep; /* Our min sleep time */ 184 uint64_t syscall_cnt; 185 uint64_t sleeping; /* What the actual sleep was (if sleeping) */ 186 uint16_t p_hpts_active; /* Flag that says hpts is awake */ 187 uint8_t p_wheel_complete; /* have we completed the wheel arc walk? */ 188 uint32_t p_curtick; /* Tick in 10 us the hpts is going to */ 189 uint32_t p_runningslot; /* Current tick we are at if we are running */ 190 uint32_t p_prev_slot; /* Previous slot we were on */ 191 uint32_t p_cur_slot; /* Current slot in wheel hpts is draining */ 192 uint32_t p_nxt_slot; /* The next slot outside the current range of 193 * slots that the hpts is running on. */ 194 int32_t p_on_queue_cnt; /* Count on queue in this hpts */ 195 uint32_t p_lasttick; /* Last tick before the current one */ 196 uint8_t p_direct_wake :1, /* boolean */ 197 p_on_min_sleep:1, /* boolean */ 198 p_hpts_wake_scheduled:1, /* boolean */ 199 p_avail:5; 200 uint8_t p_fill[3]; /* Fill to 32 bits */ 201 /* Cache line 0x40 */ 202 struct hptsh { 203 TAILQ_HEAD(, inpcb) head; 204 uint32_t count; 205 uint32_t gencnt; 206 } *p_hptss; /* Hptsi wheel */ 207 uint32_t p_hpts_sleep_time; /* Current sleep interval having a max 208 * of 255ms */ 209 uint32_t overidden_sleep; /* what was overrided by min-sleep for logging */ 210 uint32_t saved_lasttick; /* for logging */ 211 uint32_t saved_curtick; /* for logging */ 212 uint32_t saved_curslot; /* for logging */ 213 uint32_t saved_prev_slot; /* for logging */ 214 uint32_t p_delayed_by; /* How much were we delayed by */ 215 /* Cache line 0x80 */ 216 struct sysctl_ctx_list hpts_ctx; 217 struct sysctl_oid *hpts_root; 218 struct intr_event *ie; 219 void *ie_cookie; 220 uint16_t p_num; /* The hpts number one per cpu */ 221 uint16_t p_cpu; /* The hpts CPU */ 222 /* There is extra space in here */ 223 /* Cache line 0x100 */ 224 struct callout co __aligned(CACHE_LINE_SIZE); 225 } __aligned(CACHE_LINE_SIZE); 226 227 static struct tcp_hptsi { 228 struct cpu_group **grps; 229 struct tcp_hpts_entry **rp_ent; /* Array of hptss */ 230 uint32_t *cts_last_ran; 231 uint32_t grp_cnt; 232 uint32_t rp_num_hptss; /* Number of hpts threads */ 233 } tcp_pace; 234 235 MALLOC_DEFINE(M_TCPHPTS, "tcp_hpts", "TCP hpts"); 236 #ifdef RSS 237 static int tcp_bind_threads = 1; 238 #else 239 static int tcp_bind_threads = 2; 240 #endif 241 static int tcp_use_irq_cpu = 0; 242 static uint32_t *cts_last_ran; 243 static int hpts_does_tp_logging = 0; 244 245 static int32_t tcp_hptsi(struct tcp_hpts_entry *hpts, int from_callout); 246 static void tcp_hpts_thread(void *ctx); 247 static void tcp_init_hptsi(void *st); 248 249 int32_t tcp_min_hptsi_time = DEFAULT_MIN_SLEEP; 250 static int conn_cnt_thresh = DEFAULT_CONNECTION_THESHOLD; 251 static int32_t dynamic_min_sleep = DYNAMIC_MIN_SLEEP; 252 static int32_t dynamic_max_sleep = DYNAMIC_MAX_SLEEP; 253 254 255 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, hpts, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 256 "TCP Hpts controls"); 257 SYSCTL_NODE(_net_inet_tcp_hpts, OID_AUTO, stats, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 258 "TCP Hpts statistics"); 259 260 #define timersub(tvp, uvp, vvp) \ 261 do { \ 262 (vvp)->tv_sec = (tvp)->tv_sec - (uvp)->tv_sec; \ 263 (vvp)->tv_usec = (tvp)->tv_usec - (uvp)->tv_usec; \ 264 if ((vvp)->tv_usec < 0) { \ 265 (vvp)->tv_sec--; \ 266 (vvp)->tv_usec += 1000000; \ 267 } \ 268 } while (0) 269 270 static int32_t tcp_hpts_precision = 120; 271 272 static struct hpts_domain_info { 273 int count; 274 int cpu[MAXCPU]; 275 } hpts_domains[MAXMEMDOM]; 276 277 enum { 278 IHPTS_NONE = 0, 279 IHPTS_ONQUEUE, 280 IHPTS_MOVING, 281 }; 282 283 counter_u64_t hpts_hopelessly_behind; 284 285 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, hopeless, CTLFLAG_RD, 286 &hpts_hopelessly_behind, 287 "Number of times hpts could not catch up and was behind hopelessly"); 288 289 counter_u64_t hpts_loops; 290 291 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, loops, CTLFLAG_RD, 292 &hpts_loops, "Number of times hpts had to loop to catch up"); 293 294 counter_u64_t back_tosleep; 295 296 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, no_tcbsfound, CTLFLAG_RD, 297 &back_tosleep, "Number of times hpts found no tcbs"); 298 299 counter_u64_t combined_wheel_wrap; 300 301 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, comb_wheel_wrap, CTLFLAG_RD, 302 &combined_wheel_wrap, "Number of times the wheel lagged enough to have an insert see wrap"); 303 304 counter_u64_t wheel_wrap; 305 306 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, wheel_wrap, CTLFLAG_RD, 307 &wheel_wrap, "Number of times the wheel lagged enough to have an insert see wrap"); 308 309 counter_u64_t hpts_direct_call; 310 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, direct_call, CTLFLAG_RD, 311 &hpts_direct_call, "Number of times hpts was called by syscall/trap or other entry"); 312 313 counter_u64_t hpts_wake_timeout; 314 315 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, timeout_wakeup, CTLFLAG_RD, 316 &hpts_wake_timeout, "Number of times hpts threads woke up via the callout expiring"); 317 318 counter_u64_t hpts_direct_awakening; 319 320 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, direct_awakening, CTLFLAG_RD, 321 &hpts_direct_awakening, "Number of times hpts threads woke up via the callout expiring"); 322 323 counter_u64_t hpts_back_tosleep; 324 325 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, back_tosleep, CTLFLAG_RD, 326 &hpts_back_tosleep, "Number of times hpts threads woke up via the callout expiring and went back to sleep no work"); 327 328 counter_u64_t cpu_uses_flowid; 329 counter_u64_t cpu_uses_random; 330 331 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, cpusel_flowid, CTLFLAG_RD, 332 &cpu_uses_flowid, "Number of times when setting cpuid we used the flowid field"); 333 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, cpusel_random, CTLFLAG_RD, 334 &cpu_uses_random, "Number of times when setting cpuid we used the a random value"); 335 336 TUNABLE_INT("net.inet.tcp.bind_hptss", &tcp_bind_threads); 337 TUNABLE_INT("net.inet.tcp.use_irq", &tcp_use_irq_cpu); 338 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, bind_hptss, CTLFLAG_RD, 339 &tcp_bind_threads, 2, 340 "Thread Binding tunable"); 341 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, use_irq, CTLFLAG_RD, 342 &tcp_use_irq_cpu, 0, 343 "Use of irq CPU tunable"); 344 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, precision, CTLFLAG_RW, 345 &tcp_hpts_precision, 120, 346 "Value for PRE() precision of callout"); 347 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, cnt_thresh, CTLFLAG_RW, 348 &conn_cnt_thresh, 0, 349 "How many connections (below) make us use the callout based mechanism"); 350 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, logging, CTLFLAG_RW, 351 &hpts_does_tp_logging, 0, 352 "Do we add to any tp that has logging on pacer logs"); 353 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, dyn_minsleep, CTLFLAG_RW, 354 &dynamic_min_sleep, 250, 355 "What is the dynamic minsleep value?"); 356 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, dyn_maxsleep, CTLFLAG_RW, 357 &dynamic_max_sleep, 5000, 358 "What is the dynamic maxsleep value?"); 359 360 static int32_t max_pacer_loops = 10; 361 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, loopmax, CTLFLAG_RW, 362 &max_pacer_loops, 10, 363 "What is the maximum number of times the pacer will loop trying to catch up"); 364 365 #define HPTS_MAX_SLEEP_ALLOWED (NUM_OF_HPTSI_SLOTS/2) 366 367 static uint32_t hpts_sleep_max = HPTS_MAX_SLEEP_ALLOWED; 368 369 static int 370 sysctl_net_inet_tcp_hpts_max_sleep(SYSCTL_HANDLER_ARGS) 371 { 372 int error; 373 uint32_t new; 374 375 new = hpts_sleep_max; 376 error = sysctl_handle_int(oidp, &new, 0, req); 377 if (error == 0 && req->newptr) { 378 if ((new < (dynamic_min_sleep/HPTS_TICKS_PER_SLOT)) || 379 (new > HPTS_MAX_SLEEP_ALLOWED)) 380 error = EINVAL; 381 else 382 hpts_sleep_max = new; 383 } 384 return (error); 385 } 386 387 static int 388 sysctl_net_inet_tcp_hpts_min_sleep(SYSCTL_HANDLER_ARGS) 389 { 390 int error; 391 uint32_t new; 392 393 new = tcp_min_hptsi_time; 394 error = sysctl_handle_int(oidp, &new, 0, req); 395 if (error == 0 && req->newptr) { 396 if (new < LOWEST_SLEEP_ALLOWED) 397 error = EINVAL; 398 else 399 tcp_min_hptsi_time = new; 400 } 401 return (error); 402 } 403 404 SYSCTL_PROC(_net_inet_tcp_hpts, OID_AUTO, maxsleep, 405 CTLTYPE_UINT | CTLFLAG_RW, 406 &hpts_sleep_max, 0, 407 &sysctl_net_inet_tcp_hpts_max_sleep, "IU", 408 "Maximum time hpts will sleep in slots"); 409 410 SYSCTL_PROC(_net_inet_tcp_hpts, OID_AUTO, minsleep, 411 CTLTYPE_UINT | CTLFLAG_RW, 412 &tcp_min_hptsi_time, 0, 413 &sysctl_net_inet_tcp_hpts_min_sleep, "IU", 414 "The minimum time the hpts must sleep before processing more slots"); 415 416 static int ticks_indicate_more_sleep = TICKS_INDICATE_MORE_SLEEP; 417 static int ticks_indicate_less_sleep = TICKS_INDICATE_LESS_SLEEP; 418 static int tcp_hpts_no_wake_over_thresh = 1; 419 420 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, more_sleep, CTLFLAG_RW, 421 &ticks_indicate_more_sleep, 0, 422 "If we only process this many or less on a timeout, we need longer sleep on the next callout"); 423 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, less_sleep, CTLFLAG_RW, 424 &ticks_indicate_less_sleep, 0, 425 "If we process this many or more on a timeout, we need less sleep on the next callout"); 426 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, nowake_over_thresh, CTLFLAG_RW, 427 &tcp_hpts_no_wake_over_thresh, 0, 428 "When we are over the threshold on the pacer do we prohibit wakeups?"); 429 430 static void 431 tcp_hpts_log(struct tcp_hpts_entry *hpts, struct tcpcb *tp, struct timeval *tv, 432 int slots_to_run, int idx, int from_callout) 433 { 434 union tcp_log_stackspecific log; 435 /* 436 * Unused logs are 437 * 64 bit - delRate, rttProp, bw_inuse 438 * 16 bit - cwnd_gain 439 * 8 bit - bbr_state, bbr_substate, inhpts; 440 */ 441 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 442 log.u_bbr.flex1 = hpts->p_nxt_slot; 443 log.u_bbr.flex2 = hpts->p_cur_slot; 444 log.u_bbr.flex3 = hpts->p_prev_slot; 445 log.u_bbr.flex4 = idx; 446 log.u_bbr.flex5 = hpts->p_curtick; 447 log.u_bbr.flex6 = hpts->p_on_queue_cnt; 448 log.u_bbr.flex7 = hpts->p_cpu; 449 log.u_bbr.flex8 = (uint8_t)from_callout; 450 log.u_bbr.inflight = slots_to_run; 451 log.u_bbr.applimited = hpts->overidden_sleep; 452 log.u_bbr.delivered = hpts->saved_curtick; 453 log.u_bbr.timeStamp = tcp_tv_to_usectick(tv); 454 log.u_bbr.epoch = hpts->saved_curslot; 455 log.u_bbr.lt_epoch = hpts->saved_prev_slot; 456 log.u_bbr.pkts_out = hpts->p_delayed_by; 457 log.u_bbr.lost = hpts->p_hpts_sleep_time; 458 log.u_bbr.pacing_gain = hpts->p_cpu; 459 log.u_bbr.pkt_epoch = hpts->p_runningslot; 460 log.u_bbr.use_lt_bw = 1; 461 TCP_LOG_EVENTP(tp, NULL, 462 &tptosocket(tp)->so_rcv, 463 &tptosocket(tp)->so_snd, 464 BBR_LOG_HPTSDIAG, 0, 465 0, &log, false, tv); 466 } 467 468 static void 469 tcp_wakehpts(struct tcp_hpts_entry *hpts) 470 { 471 HPTS_MTX_ASSERT(hpts); 472 473 if (tcp_hpts_no_wake_over_thresh && (hpts->p_on_queue_cnt >= conn_cnt_thresh)) { 474 hpts->p_direct_wake = 0; 475 return; 476 } 477 if (hpts->p_hpts_wake_scheduled == 0) { 478 hpts->p_hpts_wake_scheduled = 1; 479 swi_sched(hpts->ie_cookie, 0); 480 } 481 } 482 483 static void 484 hpts_timeout_swi(void *arg) 485 { 486 struct tcp_hpts_entry *hpts; 487 488 hpts = (struct tcp_hpts_entry *)arg; 489 swi_sched(hpts->ie_cookie, 0); 490 } 491 492 static void 493 inp_hpts_insert(struct inpcb *inp, struct tcp_hpts_entry *hpts) 494 { 495 struct hptsh *hptsh; 496 497 INP_WLOCK_ASSERT(inp); 498 HPTS_MTX_ASSERT(hpts); 499 MPASS(hpts->p_cpu == inp->inp_hpts_cpu); 500 MPASS(!(inp->inp_flags & INP_DROPPED)); 501 502 hptsh = &hpts->p_hptss[inp->inp_hptsslot]; 503 504 if (inp->inp_in_hpts == IHPTS_NONE) { 505 inp->inp_in_hpts = IHPTS_ONQUEUE; 506 in_pcbref(inp); 507 } else if (inp->inp_in_hpts == IHPTS_MOVING) { 508 inp->inp_in_hpts = IHPTS_ONQUEUE; 509 } else 510 MPASS(inp->inp_in_hpts == IHPTS_ONQUEUE); 511 inp->inp_hpts_gencnt = hptsh->gencnt; 512 513 TAILQ_INSERT_TAIL(&hptsh->head, inp, inp_hpts); 514 hptsh->count++; 515 hpts->p_on_queue_cnt++; 516 } 517 518 static struct tcp_hpts_entry * 519 tcp_hpts_lock(struct inpcb *inp) 520 { 521 struct tcp_hpts_entry *hpts; 522 523 INP_LOCK_ASSERT(inp); 524 525 hpts = tcp_pace.rp_ent[inp->inp_hpts_cpu]; 526 HPTS_LOCK(hpts); 527 528 return (hpts); 529 } 530 531 static void 532 inp_hpts_release(struct inpcb *inp) 533 { 534 bool released __diagused; 535 536 inp->inp_in_hpts = IHPTS_NONE; 537 released = in_pcbrele_wlocked(inp); 538 MPASS(released == false); 539 } 540 541 /* 542 * Called normally with the INP_LOCKED but it 543 * does not matter, the hpts lock is the key 544 * but the lock order allows us to hold the 545 * INP lock and then get the hpts lock. 546 */ 547 void 548 tcp_hpts_remove(struct inpcb *inp) 549 { 550 struct tcp_hpts_entry *hpts; 551 struct hptsh *hptsh; 552 553 INP_WLOCK_ASSERT(inp); 554 555 hpts = tcp_hpts_lock(inp); 556 if (inp->inp_in_hpts == IHPTS_ONQUEUE) { 557 hptsh = &hpts->p_hptss[inp->inp_hptsslot]; 558 inp->inp_hpts_request = 0; 559 if (__predict_true(inp->inp_hpts_gencnt == hptsh->gencnt)) { 560 TAILQ_REMOVE(&hptsh->head, inp, inp_hpts); 561 MPASS(hptsh->count > 0); 562 hptsh->count--; 563 MPASS(hpts->p_on_queue_cnt > 0); 564 hpts->p_on_queue_cnt--; 565 inp_hpts_release(inp); 566 } else { 567 /* 568 * tcp_hptsi() now owns the TAILQ head of this inp. 569 * Can't TAILQ_REMOVE, just mark it. 570 */ 571 #ifdef INVARIANTS 572 struct inpcb *tmp; 573 574 TAILQ_FOREACH(tmp, &hptsh->head, inp_hpts) 575 MPASS(tmp != inp); 576 #endif 577 inp->inp_in_hpts = IHPTS_MOVING; 578 inp->inp_hptsslot = -1; 579 } 580 } else if (inp->inp_in_hpts == IHPTS_MOVING) { 581 /* 582 * Handle a special race condition: 583 * tcp_hptsi() moves inpcb to detached tailq 584 * tcp_hpts_remove() marks as IHPTS_MOVING, slot = -1 585 * tcp_hpts_insert() sets slot to a meaningful value 586 * tcp_hpts_remove() again (we are here!), then in_pcbdrop() 587 * tcp_hptsi() finds pcb with meaningful slot and INP_DROPPED 588 */ 589 inp->inp_hptsslot = -1; 590 } 591 HPTS_UNLOCK(hpts); 592 } 593 594 bool 595 tcp_in_hpts(struct inpcb *inp) 596 { 597 598 return (inp->inp_in_hpts == IHPTS_ONQUEUE); 599 } 600 601 static inline int 602 hpts_slot(uint32_t wheel_slot, uint32_t plus) 603 { 604 /* 605 * Given a slot on the wheel, what slot 606 * is that plus ticks out? 607 */ 608 KASSERT(wheel_slot < NUM_OF_HPTSI_SLOTS, ("Invalid tick %u not on wheel", wheel_slot)); 609 return ((wheel_slot + plus) % NUM_OF_HPTSI_SLOTS); 610 } 611 612 static inline int 613 tick_to_wheel(uint32_t cts_in_wticks) 614 { 615 /* 616 * Given a timestamp in ticks (so by 617 * default to get it to a real time one 618 * would multiply by 10.. i.e the number 619 * of ticks in a slot) map it to our limited 620 * space wheel. 621 */ 622 return (cts_in_wticks % NUM_OF_HPTSI_SLOTS); 623 } 624 625 static inline int 626 hpts_slots_diff(int prev_slot, int slot_now) 627 { 628 /* 629 * Given two slots that are someplace 630 * on our wheel. How far are they apart? 631 */ 632 if (slot_now > prev_slot) 633 return (slot_now - prev_slot); 634 else if (slot_now == prev_slot) 635 /* 636 * Special case, same means we can go all of our 637 * wheel less one slot. 638 */ 639 return (NUM_OF_HPTSI_SLOTS - 1); 640 else 641 return ((NUM_OF_HPTSI_SLOTS - prev_slot) + slot_now); 642 } 643 644 /* 645 * Given a slot on the wheel that is the current time 646 * mapped to the wheel (wheel_slot), what is the maximum 647 * distance forward that can be obtained without 648 * wrapping past either prev_slot or running_slot 649 * depending on the htps state? Also if passed 650 * a uint32_t *, fill it with the slot location. 651 * 652 * Note if you do not give this function the current 653 * time (that you think it is) mapped to the wheel slot 654 * then the results will not be what you expect and 655 * could lead to invalid inserts. 656 */ 657 static inline int32_t 658 max_slots_available(struct tcp_hpts_entry *hpts, uint32_t wheel_slot, uint32_t *target_slot) 659 { 660 uint32_t dis_to_travel, end_slot, pacer_to_now, avail_on_wheel; 661 662 if ((hpts->p_hpts_active == 1) && 663 (hpts->p_wheel_complete == 0)) { 664 end_slot = hpts->p_runningslot; 665 /* Back up one tick */ 666 if (end_slot == 0) 667 end_slot = NUM_OF_HPTSI_SLOTS - 1; 668 else 669 end_slot--; 670 if (target_slot) 671 *target_slot = end_slot; 672 } else { 673 /* 674 * For the case where we are 675 * not active, or we have 676 * completed the pass over 677 * the wheel, we can use the 678 * prev tick and subtract one from it. This puts us 679 * as far out as possible on the wheel. 680 */ 681 end_slot = hpts->p_prev_slot; 682 if (end_slot == 0) 683 end_slot = NUM_OF_HPTSI_SLOTS - 1; 684 else 685 end_slot--; 686 if (target_slot) 687 *target_slot = end_slot; 688 /* 689 * Now we have close to the full wheel left minus the 690 * time it has been since the pacer went to sleep. Note 691 * that wheel_tick, passed in, should be the current time 692 * from the perspective of the caller, mapped to the wheel. 693 */ 694 if (hpts->p_prev_slot != wheel_slot) 695 dis_to_travel = hpts_slots_diff(hpts->p_prev_slot, wheel_slot); 696 else 697 dis_to_travel = 1; 698 /* 699 * dis_to_travel in this case is the space from when the 700 * pacer stopped (p_prev_slot) and where our wheel_slot 701 * is now. To know how many slots we can put it in we 702 * subtract from the wheel size. We would not want 703 * to place something after p_prev_slot or it will 704 * get ran too soon. 705 */ 706 return (NUM_OF_HPTSI_SLOTS - dis_to_travel); 707 } 708 /* 709 * So how many slots are open between p_runningslot -> p_cur_slot 710 * that is what is currently un-available for insertion. Special 711 * case when we are at the last slot, this gets 1, so that 712 * the answer to how many slots are available is all but 1. 713 */ 714 if (hpts->p_runningslot == hpts->p_cur_slot) 715 dis_to_travel = 1; 716 else 717 dis_to_travel = hpts_slots_diff(hpts->p_runningslot, hpts->p_cur_slot); 718 /* 719 * How long has the pacer been running? 720 */ 721 if (hpts->p_cur_slot != wheel_slot) { 722 /* The pacer is a bit late */ 723 pacer_to_now = hpts_slots_diff(hpts->p_cur_slot, wheel_slot); 724 } else { 725 /* The pacer is right on time, now == pacers start time */ 726 pacer_to_now = 0; 727 } 728 /* 729 * To get the number left we can insert into we simply 730 * subtract the distance the pacer has to run from how 731 * many slots there are. 732 */ 733 avail_on_wheel = NUM_OF_HPTSI_SLOTS - dis_to_travel; 734 /* 735 * Now how many of those we will eat due to the pacer's 736 * time (p_cur_slot) of start being behind the 737 * real time (wheel_slot)? 738 */ 739 if (avail_on_wheel <= pacer_to_now) { 740 /* 741 * Wheel wrap, we can't fit on the wheel, that 742 * is unusual the system must be way overloaded! 743 * Insert into the assured slot, and return special 744 * "0". 745 */ 746 counter_u64_add(combined_wheel_wrap, 1); 747 *target_slot = hpts->p_nxt_slot; 748 return (0); 749 } else { 750 /* 751 * We know how many slots are open 752 * on the wheel (the reverse of what 753 * is left to run. Take away the time 754 * the pacer started to now (wheel_slot) 755 * and that tells you how many slots are 756 * open that can be inserted into that won't 757 * be touched by the pacer until later. 758 */ 759 return (avail_on_wheel - pacer_to_now); 760 } 761 } 762 763 764 #ifdef INVARIANTS 765 static void 766 check_if_slot_would_be_wrong(struct tcp_hpts_entry *hpts, struct inpcb *inp, uint32_t inp_hptsslot, int line) 767 { 768 /* 769 * Sanity checks for the pacer with invariants 770 * on insert. 771 */ 772 KASSERT(inp_hptsslot < NUM_OF_HPTSI_SLOTS, 773 ("hpts:%p inp:%p slot:%d > max", 774 hpts, inp, inp_hptsslot)); 775 if ((hpts->p_hpts_active) && 776 (hpts->p_wheel_complete == 0)) { 777 /* 778 * If the pacer is processing a arc 779 * of the wheel, we need to make 780 * sure we are not inserting within 781 * that arc. 782 */ 783 int distance, yet_to_run; 784 785 distance = hpts_slots_diff(hpts->p_runningslot, inp_hptsslot); 786 if (hpts->p_runningslot != hpts->p_cur_slot) 787 yet_to_run = hpts_slots_diff(hpts->p_runningslot, hpts->p_cur_slot); 788 else 789 yet_to_run = 0; /* processing last slot */ 790 KASSERT(yet_to_run <= distance, 791 ("hpts:%p inp:%p slot:%d distance:%d yet_to_run:%d rs:%d cs:%d", 792 hpts, inp, inp_hptsslot, 793 distance, yet_to_run, 794 hpts->p_runningslot, hpts->p_cur_slot)); 795 } 796 } 797 #endif 798 799 uint32_t 800 tcp_hpts_insert_diag(struct inpcb *inp, uint32_t slot, int32_t line, struct hpts_diag *diag) 801 { 802 struct tcp_hpts_entry *hpts; 803 struct timeval tv; 804 uint32_t slot_on, wheel_cts, last_slot, need_new_to = 0; 805 int32_t wheel_slot, maxslots; 806 bool need_wakeup = false; 807 808 INP_WLOCK_ASSERT(inp); 809 MPASS(!tcp_in_hpts(inp)); 810 MPASS(!(inp->inp_flags & INP_DROPPED)); 811 812 /* 813 * We now return the next-slot the hpts will be on, beyond its 814 * current run (if up) or where it was when it stopped if it is 815 * sleeping. 816 */ 817 hpts = tcp_hpts_lock(inp); 818 microuptime(&tv); 819 if (diag) { 820 memset(diag, 0, sizeof(struct hpts_diag)); 821 diag->p_hpts_active = hpts->p_hpts_active; 822 diag->p_prev_slot = hpts->p_prev_slot; 823 diag->p_runningslot = hpts->p_runningslot; 824 diag->p_nxt_slot = hpts->p_nxt_slot; 825 diag->p_cur_slot = hpts->p_cur_slot; 826 diag->p_curtick = hpts->p_curtick; 827 diag->p_lasttick = hpts->p_lasttick; 828 diag->slot_req = slot; 829 diag->p_on_min_sleep = hpts->p_on_min_sleep; 830 diag->hpts_sleep_time = hpts->p_hpts_sleep_time; 831 } 832 if (slot == 0) { 833 /* Ok we need to set it on the hpts in the current slot */ 834 inp->inp_hpts_request = 0; 835 if ((hpts->p_hpts_active == 0) || (hpts->p_wheel_complete)) { 836 /* 837 * A sleeping hpts we want in next slot to run 838 * note that in this state p_prev_slot == p_cur_slot 839 */ 840 inp->inp_hptsslot = hpts_slot(hpts->p_prev_slot, 1); 841 if ((hpts->p_on_min_sleep == 0) && 842 (hpts->p_hpts_active == 0)) 843 need_wakeup = true; 844 } else 845 inp->inp_hptsslot = hpts->p_runningslot; 846 if (__predict_true(inp->inp_in_hpts != IHPTS_MOVING)) 847 inp_hpts_insert(inp, hpts); 848 if (need_wakeup) { 849 /* 850 * Activate the hpts if it is sleeping and its 851 * timeout is not 1. 852 */ 853 hpts->p_direct_wake = 1; 854 tcp_wakehpts(hpts); 855 } 856 slot_on = hpts->p_nxt_slot; 857 HPTS_UNLOCK(hpts); 858 859 return (slot_on); 860 } 861 /* Get the current time relative to the wheel */ 862 wheel_cts = tcp_tv_to_hptstick(&tv); 863 /* Map it onto the wheel */ 864 wheel_slot = tick_to_wheel(wheel_cts); 865 /* Now what's the max we can place it at? */ 866 maxslots = max_slots_available(hpts, wheel_slot, &last_slot); 867 if (diag) { 868 diag->wheel_slot = wheel_slot; 869 diag->maxslots = maxslots; 870 diag->wheel_cts = wheel_cts; 871 } 872 if (maxslots == 0) { 873 /* The pacer is in a wheel wrap behind, yikes! */ 874 if (slot > 1) { 875 /* 876 * Reduce by 1 to prevent a forever loop in 877 * case something else is wrong. Note this 878 * probably does not hurt because the pacer 879 * if its true is so far behind we will be 880 * > 1second late calling anyway. 881 */ 882 slot--; 883 } 884 inp->inp_hptsslot = last_slot; 885 inp->inp_hpts_request = slot; 886 } else if (maxslots >= slot) { 887 /* It all fits on the wheel */ 888 inp->inp_hpts_request = 0; 889 inp->inp_hptsslot = hpts_slot(wheel_slot, slot); 890 } else { 891 /* It does not fit */ 892 inp->inp_hpts_request = slot - maxslots; 893 inp->inp_hptsslot = last_slot; 894 } 895 if (diag) { 896 diag->slot_remaining = inp->inp_hpts_request; 897 diag->inp_hptsslot = inp->inp_hptsslot; 898 } 899 #ifdef INVARIANTS 900 check_if_slot_would_be_wrong(hpts, inp, inp->inp_hptsslot, line); 901 #endif 902 if (__predict_true(inp->inp_in_hpts != IHPTS_MOVING)) 903 inp_hpts_insert(inp, hpts); 904 if ((hpts->p_hpts_active == 0) && 905 (inp->inp_hpts_request == 0) && 906 (hpts->p_on_min_sleep == 0)) { 907 /* 908 * The hpts is sleeping and NOT on a minimum 909 * sleep time, we need to figure out where 910 * it will wake up at and if we need to reschedule 911 * its time-out. 912 */ 913 uint32_t have_slept, yet_to_sleep; 914 915 /* Now do we need to restart the hpts's timer? */ 916 have_slept = hpts_slots_diff(hpts->p_prev_slot, wheel_slot); 917 if (have_slept < hpts->p_hpts_sleep_time) 918 yet_to_sleep = hpts->p_hpts_sleep_time - have_slept; 919 else { 920 /* We are over-due */ 921 yet_to_sleep = 0; 922 need_wakeup = 1; 923 } 924 if (diag) { 925 diag->have_slept = have_slept; 926 diag->yet_to_sleep = yet_to_sleep; 927 } 928 if (yet_to_sleep && 929 (yet_to_sleep > slot)) { 930 /* 931 * We need to reschedule the hpts's time-out. 932 */ 933 hpts->p_hpts_sleep_time = slot; 934 need_new_to = slot * HPTS_TICKS_PER_SLOT; 935 } 936 } 937 /* 938 * Now how far is the hpts sleeping to? if active is 1, its 939 * up and ticking we do nothing, otherwise we may need to 940 * reschedule its callout if need_new_to is set from above. 941 */ 942 if (need_wakeup) { 943 hpts->p_direct_wake = 1; 944 tcp_wakehpts(hpts); 945 if (diag) { 946 diag->need_new_to = 0; 947 diag->co_ret = 0xffff0000; 948 } 949 } else if (need_new_to) { 950 int32_t co_ret; 951 struct timeval tv; 952 sbintime_t sb; 953 954 tv.tv_sec = 0; 955 tv.tv_usec = 0; 956 while (need_new_to > HPTS_USEC_IN_SEC) { 957 tv.tv_sec++; 958 need_new_to -= HPTS_USEC_IN_SEC; 959 } 960 tv.tv_usec = need_new_to; 961 sb = tvtosbt(tv); 962 co_ret = callout_reset_sbt_on(&hpts->co, sb, 0, 963 hpts_timeout_swi, hpts, hpts->p_cpu, 964 (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision))); 965 if (diag) { 966 diag->need_new_to = need_new_to; 967 diag->co_ret = co_ret; 968 } 969 } 970 slot_on = hpts->p_nxt_slot; 971 HPTS_UNLOCK(hpts); 972 973 return (slot_on); 974 } 975 976 uint16_t 977 hpts_random_cpu(struct inpcb *inp){ 978 /* 979 * No flow type set distribute the load randomly. 980 */ 981 uint16_t cpuid; 982 uint32_t ran; 983 984 /* 985 * Shortcut if it is already set. XXXGL: does it happen? 986 */ 987 if (inp->inp_hpts_cpu_set) { 988 return (inp->inp_hpts_cpu); 989 } 990 /* Nothing set use a random number */ 991 ran = arc4random(); 992 cpuid = (((ran & 0xffff) % mp_ncpus) % tcp_pace.rp_num_hptss); 993 return (cpuid); 994 } 995 996 static uint16_t 997 hpts_cpuid(struct inpcb *inp, int *failed) 998 { 999 u_int cpuid; 1000 #ifdef NUMA 1001 struct hpts_domain_info *di; 1002 #endif 1003 1004 *failed = 0; 1005 if (inp->inp_hpts_cpu_set) { 1006 return (inp->inp_hpts_cpu); 1007 } 1008 /* 1009 * If we are using the irq cpu set by LRO or 1010 * the driver then it overrides all other domains. 1011 */ 1012 if (tcp_use_irq_cpu) { 1013 if (inp->inp_irq_cpu_set == 0) { 1014 *failed = 1; 1015 return(0); 1016 } 1017 return(inp->inp_irq_cpu); 1018 } 1019 /* If one is set the other must be the same */ 1020 #ifdef RSS 1021 cpuid = rss_hash2cpuid(inp->inp_flowid, inp->inp_flowtype); 1022 if (cpuid == NETISR_CPUID_NONE) 1023 return (hpts_random_cpu(inp)); 1024 else 1025 return (cpuid); 1026 #endif 1027 /* 1028 * We don't have a flowid -> cpuid mapping, so cheat and just map 1029 * unknown cpuids to curcpu. Not the best, but apparently better 1030 * than defaulting to swi 0. 1031 */ 1032 if (inp->inp_flowtype == M_HASHTYPE_NONE) { 1033 counter_u64_add(cpu_uses_random, 1); 1034 return (hpts_random_cpu(inp)); 1035 } 1036 /* 1037 * Hash to a thread based on the flowid. If we are using numa, 1038 * then restrict the hash to the numa domain where the inp lives. 1039 */ 1040 1041 #ifdef NUMA 1042 if ((vm_ndomains == 1) || 1043 (inp->inp_numa_domain == M_NODOM)) { 1044 #endif 1045 cpuid = inp->inp_flowid % mp_ncpus; 1046 #ifdef NUMA 1047 } else { 1048 /* Hash into the cpu's that use that domain */ 1049 di = &hpts_domains[inp->inp_numa_domain]; 1050 cpuid = di->cpu[inp->inp_flowid % di->count]; 1051 } 1052 #endif 1053 counter_u64_add(cpu_uses_flowid, 1); 1054 return (cpuid); 1055 } 1056 1057 #ifdef not_longer_used_gleb 1058 static void 1059 tcp_drop_in_pkts(struct tcpcb *tp) 1060 { 1061 struct mbuf *m, *n; 1062 1063 m = tp->t_in_pkt; 1064 if (m) 1065 n = m->m_nextpkt; 1066 else 1067 n = NULL; 1068 tp->t_in_pkt = NULL; 1069 while (m) { 1070 m_freem(m); 1071 m = n; 1072 if (m) 1073 n = m->m_nextpkt; 1074 } 1075 } 1076 #endif 1077 1078 static void 1079 tcp_hpts_set_max_sleep(struct tcp_hpts_entry *hpts, int wrap_loop_cnt) 1080 { 1081 uint32_t t = 0, i; 1082 1083 if ((hpts->p_on_queue_cnt) && (wrap_loop_cnt < 2)) { 1084 /* 1085 * Find next slot that is occupied and use that to 1086 * be the sleep time. 1087 */ 1088 for (i = 0, t = hpts_slot(hpts->p_cur_slot, 1); i < NUM_OF_HPTSI_SLOTS; i++) { 1089 if (TAILQ_EMPTY(&hpts->p_hptss[t].head) == 0) { 1090 break; 1091 } 1092 t = (t + 1) % NUM_OF_HPTSI_SLOTS; 1093 } 1094 KASSERT((i != NUM_OF_HPTSI_SLOTS), ("Hpts:%p cnt:%d but none found", hpts, hpts->p_on_queue_cnt)); 1095 hpts->p_hpts_sleep_time = min((i + 1), hpts_sleep_max); 1096 } else { 1097 /* No one on the wheel sleep for all but 400 slots or sleep max */ 1098 hpts->p_hpts_sleep_time = hpts_sleep_max; 1099 } 1100 } 1101 1102 static int32_t 1103 tcp_hptsi(struct tcp_hpts_entry *hpts, int from_callout) 1104 { 1105 struct tcpcb *tp; 1106 struct inpcb *inp; 1107 struct timeval tv; 1108 int32_t slots_to_run, i, error; 1109 int32_t loop_cnt = 0; 1110 int32_t did_prefetch = 0; 1111 int32_t prefetch_ninp = 0; 1112 int32_t prefetch_tp = 0; 1113 int32_t wrap_loop_cnt = 0; 1114 int32_t slot_pos_of_endpoint = 0; 1115 int32_t orig_exit_slot; 1116 int8_t completed_measure = 0, seen_endpoint = 0; 1117 1118 HPTS_MTX_ASSERT(hpts); 1119 NET_EPOCH_ASSERT(); 1120 /* record previous info for any logging */ 1121 hpts->saved_lasttick = hpts->p_lasttick; 1122 hpts->saved_curtick = hpts->p_curtick; 1123 hpts->saved_curslot = hpts->p_cur_slot; 1124 hpts->saved_prev_slot = hpts->p_prev_slot; 1125 1126 hpts->p_lasttick = hpts->p_curtick; 1127 hpts->p_curtick = tcp_gethptstick(&tv); 1128 cts_last_ran[hpts->p_num] = tcp_tv_to_usectick(&tv); 1129 orig_exit_slot = hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick); 1130 if ((hpts->p_on_queue_cnt == 0) || 1131 (hpts->p_lasttick == hpts->p_curtick)) { 1132 /* 1133 * No time has yet passed, 1134 * or nothing to do. 1135 */ 1136 hpts->p_prev_slot = hpts->p_cur_slot; 1137 hpts->p_lasttick = hpts->p_curtick; 1138 goto no_run; 1139 } 1140 again: 1141 hpts->p_wheel_complete = 0; 1142 HPTS_MTX_ASSERT(hpts); 1143 slots_to_run = hpts_slots_diff(hpts->p_prev_slot, hpts->p_cur_slot); 1144 if (((hpts->p_curtick - hpts->p_lasttick) > 1145 ((NUM_OF_HPTSI_SLOTS-1) * HPTS_TICKS_PER_SLOT)) && 1146 (hpts->p_on_queue_cnt != 0)) { 1147 /* 1148 * Wheel wrap is occuring, basically we 1149 * are behind and the distance between 1150 * run's has spread so much it has exceeded 1151 * the time on the wheel (1.024 seconds). This 1152 * is ugly and should NOT be happening. We 1153 * need to run the entire wheel. We last processed 1154 * p_prev_slot, so that needs to be the last slot 1155 * we run. The next slot after that should be our 1156 * reserved first slot for new, and then starts 1157 * the running position. Now the problem is the 1158 * reserved "not to yet" place does not exist 1159 * and there may be inp's in there that need 1160 * running. We can merge those into the 1161 * first slot at the head. 1162 */ 1163 wrap_loop_cnt++; 1164 hpts->p_nxt_slot = hpts_slot(hpts->p_prev_slot, 1); 1165 hpts->p_runningslot = hpts_slot(hpts->p_prev_slot, 2); 1166 /* 1167 * Adjust p_cur_slot to be where we are starting from 1168 * hopefully we will catch up (fat chance if something 1169 * is broken this bad :( ) 1170 */ 1171 hpts->p_cur_slot = hpts->p_prev_slot; 1172 /* 1173 * The next slot has guys to run too, and that would 1174 * be where we would normally start, lets move them into 1175 * the next slot (p_prev_slot + 2) so that we will 1176 * run them, the extra 10usecs of late (by being 1177 * put behind) does not really matter in this situation. 1178 */ 1179 TAILQ_FOREACH(inp, &hpts->p_hptss[hpts->p_nxt_slot].head, 1180 inp_hpts) { 1181 MPASS(inp->inp_hptsslot == hpts->p_nxt_slot); 1182 MPASS(inp->inp_hpts_gencnt == 1183 hpts->p_hptss[hpts->p_nxt_slot].gencnt); 1184 MPASS(inp->inp_in_hpts == IHPTS_ONQUEUE); 1185 1186 /* 1187 * Update gencnt and nextslot accordingly to match 1188 * the new location. This is safe since it takes both 1189 * the INP lock and the pacer mutex to change the 1190 * inp_hptsslot and inp_hpts_gencnt. 1191 */ 1192 inp->inp_hpts_gencnt = 1193 hpts->p_hptss[hpts->p_runningslot].gencnt; 1194 inp->inp_hptsslot = hpts->p_runningslot; 1195 } 1196 TAILQ_CONCAT(&hpts->p_hptss[hpts->p_runningslot].head, 1197 &hpts->p_hptss[hpts->p_nxt_slot].head, inp_hpts); 1198 hpts->p_hptss[hpts->p_runningslot].count += 1199 hpts->p_hptss[hpts->p_nxt_slot].count; 1200 hpts->p_hptss[hpts->p_nxt_slot].count = 0; 1201 hpts->p_hptss[hpts->p_nxt_slot].gencnt++; 1202 slots_to_run = NUM_OF_HPTSI_SLOTS - 1; 1203 counter_u64_add(wheel_wrap, 1); 1204 } else { 1205 /* 1206 * Nxt slot is always one after p_runningslot though 1207 * its not used usually unless we are doing wheel wrap. 1208 */ 1209 hpts->p_nxt_slot = hpts->p_prev_slot; 1210 hpts->p_runningslot = hpts_slot(hpts->p_prev_slot, 1); 1211 } 1212 if (hpts->p_on_queue_cnt == 0) { 1213 goto no_one; 1214 } 1215 for (i = 0; i < slots_to_run; i++) { 1216 struct inpcb *inp, *ninp; 1217 TAILQ_HEAD(, inpcb) head = TAILQ_HEAD_INITIALIZER(head); 1218 struct hptsh *hptsh; 1219 uint32_t runningslot; 1220 1221 /* 1222 * Calculate our delay, if there are no extra ticks there 1223 * was not any (i.e. if slots_to_run == 1, no delay). 1224 */ 1225 hpts->p_delayed_by = (slots_to_run - (i + 1)) * 1226 HPTS_TICKS_PER_SLOT; 1227 1228 runningslot = hpts->p_runningslot; 1229 hptsh = &hpts->p_hptss[runningslot]; 1230 TAILQ_SWAP(&head, &hptsh->head, inpcb, inp_hpts); 1231 hpts->p_on_queue_cnt -= hptsh->count; 1232 hptsh->count = 0; 1233 hptsh->gencnt++; 1234 1235 HPTS_UNLOCK(hpts); 1236 1237 TAILQ_FOREACH_SAFE(inp, &head, inp_hpts, ninp) { 1238 bool set_cpu; 1239 1240 if (ninp != NULL) { 1241 /* We prefetch the next inp if possible */ 1242 kern_prefetch(ninp, &prefetch_ninp); 1243 prefetch_ninp = 1; 1244 } 1245 1246 /* For debugging */ 1247 if (seen_endpoint == 0) { 1248 seen_endpoint = 1; 1249 orig_exit_slot = slot_pos_of_endpoint = 1250 runningslot; 1251 } else if (completed_measure == 0) { 1252 /* Record the new position */ 1253 orig_exit_slot = runningslot; 1254 } 1255 1256 INP_WLOCK(inp); 1257 if (inp->inp_hpts_cpu_set == 0) { 1258 set_cpu = true; 1259 } else { 1260 set_cpu = false; 1261 } 1262 1263 if (__predict_false(inp->inp_in_hpts == IHPTS_MOVING)) { 1264 if (inp->inp_hptsslot == -1) { 1265 inp->inp_in_hpts = IHPTS_NONE; 1266 if (in_pcbrele_wlocked(inp) == false) 1267 INP_WUNLOCK(inp); 1268 } else { 1269 HPTS_LOCK(hpts); 1270 inp_hpts_insert(inp, hpts); 1271 HPTS_UNLOCK(hpts); 1272 INP_WUNLOCK(inp); 1273 } 1274 continue; 1275 } 1276 1277 MPASS(inp->inp_in_hpts == IHPTS_ONQUEUE); 1278 MPASS(!(inp->inp_flags & INP_DROPPED)); 1279 KASSERT(runningslot == inp->inp_hptsslot, 1280 ("Hpts:%p inp:%p slot mis-aligned %u vs %u", 1281 hpts, inp, runningslot, inp->inp_hptsslot)); 1282 1283 if (inp->inp_hpts_request) { 1284 /* 1285 * This guy is deferred out further in time 1286 * then our wheel had available on it. 1287 * Push him back on the wheel or run it 1288 * depending. 1289 */ 1290 uint32_t maxslots, last_slot, remaining_slots; 1291 1292 remaining_slots = slots_to_run - (i + 1); 1293 if (inp->inp_hpts_request > remaining_slots) { 1294 HPTS_LOCK(hpts); 1295 /* 1296 * How far out can we go? 1297 */ 1298 maxslots = max_slots_available(hpts, 1299 hpts->p_cur_slot, &last_slot); 1300 if (maxslots >= inp->inp_hpts_request) { 1301 /* We can place it finally to 1302 * be processed. */ 1303 inp->inp_hptsslot = hpts_slot( 1304 hpts->p_runningslot, 1305 inp->inp_hpts_request); 1306 inp->inp_hpts_request = 0; 1307 } else { 1308 /* Work off some more time */ 1309 inp->inp_hptsslot = last_slot; 1310 inp->inp_hpts_request -= 1311 maxslots; 1312 } 1313 inp_hpts_insert(inp, hpts); 1314 HPTS_UNLOCK(hpts); 1315 INP_WUNLOCK(inp); 1316 continue; 1317 } 1318 inp->inp_hpts_request = 0; 1319 /* Fall through we will so do it now */ 1320 } 1321 1322 inp_hpts_release(inp); 1323 tp = intotcpcb(inp); 1324 MPASS(tp); 1325 if (set_cpu) { 1326 /* 1327 * Setup so the next time we will move to 1328 * the right CPU. This should be a rare 1329 * event. It will sometimes happens when we 1330 * are the client side (usually not the 1331 * server). Somehow tcp_output() gets called 1332 * before the tcp_do_segment() sets the 1333 * intial state. This means the r_cpu and 1334 * r_hpts_cpu is 0. We get on the hpts, and 1335 * then tcp_input() gets called setting up 1336 * the r_cpu to the correct value. The hpts 1337 * goes off and sees the mis-match. We 1338 * simply correct it here and the CPU will 1339 * switch to the new hpts nextime the tcb 1340 * gets added to the hpts (not this one) 1341 * :-) 1342 */ 1343 tcp_set_hpts(inp); 1344 } 1345 CURVNET_SET(inp->inp_vnet); 1346 /* Lets do any logging that we might want to */ 1347 if (hpts_does_tp_logging && (tp->t_logstate != TCP_LOG_STATE_OFF)) { 1348 tcp_hpts_log(hpts, tp, &tv, slots_to_run, i, from_callout); 1349 } 1350 1351 if (tp->t_fb_ptr != NULL) { 1352 kern_prefetch(tp->t_fb_ptr, &did_prefetch); 1353 did_prefetch = 1; 1354 } 1355 if ((inp->inp_flags2 & INP_SUPPORTS_MBUFQ) && tp->t_in_pkt) { 1356 error = (*tp->t_fb->tfb_do_queued_segments)(inp->inp_socket, tp, 0); 1357 if (error) { 1358 /* The input killed the connection */ 1359 goto skip_pacing; 1360 } 1361 } 1362 inp->inp_hpts_calls = 1; 1363 error = tcp_output(tp); 1364 if (error < 0) 1365 goto skip_pacing; 1366 inp->inp_hpts_calls = 0; 1367 if (ninp) { 1368 /* 1369 * If we have a nxt inp, see if we can 1370 * prefetch it. Note this may seem 1371 * "risky" since we have no locks (other 1372 * than the previous inp) and there no 1373 * assurance that ninp was not pulled while 1374 * we were processing inp and freed. If this 1375 * occurred it could mean that either: 1376 * 1377 * a) Its NULL (which is fine we won't go 1378 * here) <or> b) Its valid (which is cool we 1379 * will prefetch it) <or> c) The inp got 1380 * freed back to the slab which was 1381 * reallocated. Then the piece of memory was 1382 * re-used and something else (not an 1383 * address) is in inp_ppcb. If that occurs 1384 * we don't crash, but take a TLB shootdown 1385 * performance hit (same as if it was NULL 1386 * and we tried to pre-fetch it). 1387 * 1388 * Considering that the likelyhood of <c> is 1389 * quite rare we will take a risk on doing 1390 * this. If performance drops after testing 1391 * we can always take this out. NB: the 1392 * kern_prefetch on amd64 actually has 1393 * protection against a bad address now via 1394 * the DMAP_() tests. This will prevent the 1395 * TLB hit, and instead if <c> occurs just 1396 * cause us to load cache with a useless 1397 * address (to us). 1398 * 1399 * XXXGL: with tcpcb == inpcb, I'm unsure this 1400 * prefetch is still correct and useful. 1401 */ 1402 kern_prefetch(ninp, &prefetch_tp); 1403 prefetch_tp = 1; 1404 } 1405 INP_WUNLOCK(inp); 1406 skip_pacing: 1407 CURVNET_RESTORE(); 1408 } 1409 if (seen_endpoint) { 1410 /* 1411 * We now have a accurate distance between 1412 * slot_pos_of_endpoint <-> orig_exit_slot 1413 * to tell us how late we were, orig_exit_slot 1414 * is where we calculated the end of our cycle to 1415 * be when we first entered. 1416 */ 1417 completed_measure = 1; 1418 } 1419 HPTS_LOCK(hpts); 1420 hpts->p_runningslot++; 1421 if (hpts->p_runningslot >= NUM_OF_HPTSI_SLOTS) { 1422 hpts->p_runningslot = 0; 1423 } 1424 } 1425 no_one: 1426 HPTS_MTX_ASSERT(hpts); 1427 hpts->p_delayed_by = 0; 1428 /* 1429 * Check to see if we took an excess amount of time and need to run 1430 * more ticks (if we did not hit eno-bufs). 1431 */ 1432 hpts->p_prev_slot = hpts->p_cur_slot; 1433 hpts->p_lasttick = hpts->p_curtick; 1434 if ((from_callout == 0) || (loop_cnt > max_pacer_loops)) { 1435 /* 1436 * Something is serious slow we have 1437 * looped through processing the wheel 1438 * and by the time we cleared the 1439 * needs to run max_pacer_loops time 1440 * we still needed to run. That means 1441 * the system is hopelessly behind and 1442 * can never catch up :( 1443 * 1444 * We will just lie to this thread 1445 * and let it thing p_curtick is 1446 * correct. When it next awakens 1447 * it will find itself further behind. 1448 */ 1449 if (from_callout) 1450 counter_u64_add(hpts_hopelessly_behind, 1); 1451 goto no_run; 1452 } 1453 hpts->p_curtick = tcp_gethptstick(&tv); 1454 hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick); 1455 if (seen_endpoint == 0) { 1456 /* We saw no endpoint but we may be looping */ 1457 orig_exit_slot = hpts->p_cur_slot; 1458 } 1459 if ((wrap_loop_cnt < 2) && 1460 (hpts->p_lasttick != hpts->p_curtick)) { 1461 counter_u64_add(hpts_loops, 1); 1462 loop_cnt++; 1463 goto again; 1464 } 1465 no_run: 1466 cts_last_ran[hpts->p_num] = tcp_tv_to_usectick(&tv); 1467 /* 1468 * Set flag to tell that we are done for 1469 * any slot input that happens during 1470 * input. 1471 */ 1472 hpts->p_wheel_complete = 1; 1473 /* 1474 * Now did we spend too long running input and need to run more ticks? 1475 * Note that if wrap_loop_cnt < 2 then we should have the conditions 1476 * in the KASSERT's true. But if the wheel is behind i.e. wrap_loop_cnt 1477 * is greater than 2, then the condtion most likely are *not* true. 1478 * Also if we are called not from the callout, we don't run the wheel 1479 * multiple times so the slots may not align either. 1480 */ 1481 KASSERT(((hpts->p_prev_slot == hpts->p_cur_slot) || 1482 (wrap_loop_cnt >= 2) || (from_callout == 0)), 1483 ("H:%p p_prev_slot:%u not equal to p_cur_slot:%u", hpts, 1484 hpts->p_prev_slot, hpts->p_cur_slot)); 1485 KASSERT(((hpts->p_lasttick == hpts->p_curtick) 1486 || (wrap_loop_cnt >= 2) || (from_callout == 0)), 1487 ("H:%p p_lasttick:%u not equal to p_curtick:%u", hpts, 1488 hpts->p_lasttick, hpts->p_curtick)); 1489 if (from_callout && (hpts->p_lasttick != hpts->p_curtick)) { 1490 hpts->p_curtick = tcp_gethptstick(&tv); 1491 counter_u64_add(hpts_loops, 1); 1492 hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick); 1493 goto again; 1494 } 1495 1496 if (from_callout){ 1497 tcp_hpts_set_max_sleep(hpts, wrap_loop_cnt); 1498 } 1499 if (seen_endpoint) 1500 return(hpts_slots_diff(slot_pos_of_endpoint, orig_exit_slot)); 1501 else 1502 return (0); 1503 } 1504 1505 void 1506 __tcp_set_hpts(struct inpcb *inp, int32_t line) 1507 { 1508 struct tcp_hpts_entry *hpts; 1509 int failed; 1510 1511 INP_WLOCK_ASSERT(inp); 1512 hpts = tcp_hpts_lock(inp); 1513 if ((inp->inp_in_hpts == 0) && 1514 (inp->inp_hpts_cpu_set == 0)) { 1515 inp->inp_hpts_cpu = hpts_cpuid(inp, &failed); 1516 if (failed == 0) 1517 inp->inp_hpts_cpu_set = 1; 1518 } 1519 mtx_unlock(&hpts->p_mtx); 1520 } 1521 1522 static void 1523 __tcp_run_hpts(struct tcp_hpts_entry *hpts) 1524 { 1525 int ticks_ran; 1526 1527 if (hpts->p_hpts_active) { 1528 /* Already active */ 1529 return; 1530 } 1531 if (mtx_trylock(&hpts->p_mtx) == 0) { 1532 /* Someone else got the lock */ 1533 return; 1534 } 1535 if (hpts->p_hpts_active) 1536 goto out_with_mtx; 1537 hpts->syscall_cnt++; 1538 counter_u64_add(hpts_direct_call, 1); 1539 hpts->p_hpts_active = 1; 1540 ticks_ran = tcp_hptsi(hpts, 0); 1541 /* We may want to adjust the sleep values here */ 1542 if (hpts->p_on_queue_cnt >= conn_cnt_thresh) { 1543 if (ticks_ran > ticks_indicate_less_sleep) { 1544 struct timeval tv; 1545 sbintime_t sb; 1546 1547 hpts->p_mysleep.tv_usec /= 2; 1548 if (hpts->p_mysleep.tv_usec < dynamic_min_sleep) 1549 hpts->p_mysleep.tv_usec = dynamic_min_sleep; 1550 /* Reschedule with new to value */ 1551 tcp_hpts_set_max_sleep(hpts, 0); 1552 tv.tv_usec = hpts->p_hpts_sleep_time * HPTS_TICKS_PER_SLOT; 1553 /* Validate its in the right ranges */ 1554 if (tv.tv_usec < hpts->p_mysleep.tv_usec) { 1555 hpts->overidden_sleep = tv.tv_usec; 1556 tv.tv_usec = hpts->p_mysleep.tv_usec; 1557 } else if (tv.tv_usec > dynamic_max_sleep) { 1558 /* Lets not let sleep get above this value */ 1559 hpts->overidden_sleep = tv.tv_usec; 1560 tv.tv_usec = dynamic_max_sleep; 1561 } 1562 /* 1563 * In this mode the timer is a backstop to 1564 * all the userret/lro_flushes so we use 1565 * the dynamic value and set the on_min_sleep 1566 * flag so we will not be awoken. 1567 */ 1568 sb = tvtosbt(tv); 1569 /* Store off to make visible the actual sleep time */ 1570 hpts->sleeping = tv.tv_usec; 1571 callout_reset_sbt_on(&hpts->co, sb, 0, 1572 hpts_timeout_swi, hpts, hpts->p_cpu, 1573 (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision))); 1574 } else if (ticks_ran < ticks_indicate_more_sleep) { 1575 /* For the further sleep, don't reschedule hpts */ 1576 hpts->p_mysleep.tv_usec *= 2; 1577 if (hpts->p_mysleep.tv_usec > dynamic_max_sleep) 1578 hpts->p_mysleep.tv_usec = dynamic_max_sleep; 1579 } 1580 hpts->p_on_min_sleep = 1; 1581 } 1582 hpts->p_hpts_active = 0; 1583 out_with_mtx: 1584 HPTS_MTX_ASSERT(hpts); 1585 mtx_unlock(&hpts->p_mtx); 1586 } 1587 1588 static struct tcp_hpts_entry * 1589 tcp_choose_hpts_to_run(void) 1590 { 1591 int i, oldest_idx, start, end; 1592 uint32_t cts, time_since_ran, calc; 1593 1594 cts = tcp_get_usecs(NULL); 1595 time_since_ran = 0; 1596 /* Default is all one group */ 1597 start = 0; 1598 end = tcp_pace.rp_num_hptss; 1599 /* 1600 * If we have more than one L3 group figure out which one 1601 * this CPU is in. 1602 */ 1603 if (tcp_pace.grp_cnt > 1) { 1604 for (i = 0; i < tcp_pace.grp_cnt; i++) { 1605 if (CPU_ISSET(curcpu, &tcp_pace.grps[i]->cg_mask)) { 1606 start = tcp_pace.grps[i]->cg_first; 1607 end = (tcp_pace.grps[i]->cg_last + 1); 1608 break; 1609 } 1610 } 1611 } 1612 oldest_idx = -1; 1613 for (i = start; i < end; i++) { 1614 if (TSTMP_GT(cts, cts_last_ran[i])) 1615 calc = cts - cts_last_ran[i]; 1616 else 1617 calc = 0; 1618 if (calc > time_since_ran) { 1619 oldest_idx = i; 1620 time_since_ran = calc; 1621 } 1622 } 1623 if (oldest_idx >= 0) 1624 return(tcp_pace.rp_ent[oldest_idx]); 1625 else 1626 return(tcp_pace.rp_ent[(curcpu % tcp_pace.rp_num_hptss)]); 1627 } 1628 1629 1630 void 1631 tcp_run_hpts(void) 1632 { 1633 static struct tcp_hpts_entry *hpts; 1634 struct epoch_tracker et; 1635 1636 NET_EPOCH_ENTER(et); 1637 hpts = tcp_choose_hpts_to_run(); 1638 __tcp_run_hpts(hpts); 1639 NET_EPOCH_EXIT(et); 1640 } 1641 1642 1643 static void 1644 tcp_hpts_thread(void *ctx) 1645 { 1646 struct tcp_hpts_entry *hpts; 1647 struct epoch_tracker et; 1648 struct timeval tv; 1649 sbintime_t sb; 1650 int ticks_ran; 1651 1652 hpts = (struct tcp_hpts_entry *)ctx; 1653 mtx_lock(&hpts->p_mtx); 1654 if (hpts->p_direct_wake) { 1655 /* Signaled by input or output with low occupancy count. */ 1656 callout_stop(&hpts->co); 1657 counter_u64_add(hpts_direct_awakening, 1); 1658 } else { 1659 /* Timed out, the normal case. */ 1660 counter_u64_add(hpts_wake_timeout, 1); 1661 if (callout_pending(&hpts->co) || 1662 !callout_active(&hpts->co)) { 1663 mtx_unlock(&hpts->p_mtx); 1664 return; 1665 } 1666 } 1667 callout_deactivate(&hpts->co); 1668 hpts->p_hpts_wake_scheduled = 0; 1669 NET_EPOCH_ENTER(et); 1670 if (hpts->p_hpts_active) { 1671 /* 1672 * We are active already. This means that a syscall 1673 * trap or LRO is running in behalf of hpts. In that case 1674 * we need to double our timeout since there seems to be 1675 * enough activity in the system that we don't need to 1676 * run as often (if we were not directly woken). 1677 */ 1678 if (hpts->p_direct_wake == 0) { 1679 counter_u64_add(hpts_back_tosleep, 1); 1680 if (hpts->p_on_queue_cnt >= conn_cnt_thresh) { 1681 hpts->p_mysleep.tv_usec *= 2; 1682 if (hpts->p_mysleep.tv_usec > dynamic_max_sleep) 1683 hpts->p_mysleep.tv_usec = dynamic_max_sleep; 1684 tv.tv_usec = hpts->p_mysleep.tv_usec; 1685 hpts->p_on_min_sleep = 1; 1686 } else { 1687 /* 1688 * Here we have low count on the wheel, but 1689 * somehow we still collided with one of the 1690 * connections. Lets go back to sleep for a 1691 * min sleep time, but clear the flag so we 1692 * can be awoken by insert. 1693 */ 1694 hpts->p_on_min_sleep = 0; 1695 tv.tv_usec = tcp_min_hptsi_time; 1696 } 1697 } else { 1698 /* 1699 * Directly woken most likely to reset the 1700 * callout time. 1701 */ 1702 tv.tv_sec = 0; 1703 tv.tv_usec = hpts->p_mysleep.tv_usec; 1704 } 1705 goto back_to_sleep; 1706 } 1707 hpts->sleeping = 0; 1708 hpts->p_hpts_active = 1; 1709 ticks_ran = tcp_hptsi(hpts, 1); 1710 tv.tv_sec = 0; 1711 tv.tv_usec = hpts->p_hpts_sleep_time * HPTS_TICKS_PER_SLOT; 1712 if (hpts->p_on_queue_cnt >= conn_cnt_thresh) { 1713 if(hpts->p_direct_wake == 0) { 1714 /* 1715 * Only adjust sleep time if we were 1716 * called from the callout i.e. direct_wake == 0. 1717 */ 1718 if (ticks_ran < ticks_indicate_more_sleep) { 1719 hpts->p_mysleep.tv_usec *= 2; 1720 if (hpts->p_mysleep.tv_usec > dynamic_max_sleep) 1721 hpts->p_mysleep.tv_usec = dynamic_max_sleep; 1722 } else if (ticks_ran > ticks_indicate_less_sleep) { 1723 hpts->p_mysleep.tv_usec /= 2; 1724 if (hpts->p_mysleep.tv_usec < dynamic_min_sleep) 1725 hpts->p_mysleep.tv_usec = dynamic_min_sleep; 1726 } 1727 } 1728 if (tv.tv_usec < hpts->p_mysleep.tv_usec) { 1729 hpts->overidden_sleep = tv.tv_usec; 1730 tv.tv_usec = hpts->p_mysleep.tv_usec; 1731 } else if (tv.tv_usec > dynamic_max_sleep) { 1732 /* Lets not let sleep get above this value */ 1733 hpts->overidden_sleep = tv.tv_usec; 1734 tv.tv_usec = dynamic_max_sleep; 1735 } 1736 /* 1737 * In this mode the timer is a backstop to 1738 * all the userret/lro_flushes so we use 1739 * the dynamic value and set the on_min_sleep 1740 * flag so we will not be awoken. 1741 */ 1742 hpts->p_on_min_sleep = 1; 1743 } else if (hpts->p_on_queue_cnt == 0) { 1744 /* 1745 * No one on the wheel, please wake us up 1746 * if you insert on the wheel. 1747 */ 1748 hpts->p_on_min_sleep = 0; 1749 hpts->overidden_sleep = 0; 1750 } else { 1751 /* 1752 * We hit here when we have a low number of 1753 * clients on the wheel (our else clause). 1754 * We may need to go on min sleep, if we set 1755 * the flag we will not be awoken if someone 1756 * is inserted ahead of us. Clearing the flag 1757 * means we can be awoken. This is "old mode" 1758 * where the timer is what runs hpts mainly. 1759 */ 1760 if (tv.tv_usec < tcp_min_hptsi_time) { 1761 /* 1762 * Yes on min sleep, which means 1763 * we cannot be awoken. 1764 */ 1765 hpts->overidden_sleep = tv.tv_usec; 1766 tv.tv_usec = tcp_min_hptsi_time; 1767 hpts->p_on_min_sleep = 1; 1768 } else { 1769 /* Clear the min sleep flag */ 1770 hpts->overidden_sleep = 0; 1771 hpts->p_on_min_sleep = 0; 1772 } 1773 } 1774 HPTS_MTX_ASSERT(hpts); 1775 hpts->p_hpts_active = 0; 1776 back_to_sleep: 1777 hpts->p_direct_wake = 0; 1778 sb = tvtosbt(tv); 1779 /* Store off to make visible the actual sleep time */ 1780 hpts->sleeping = tv.tv_usec; 1781 callout_reset_sbt_on(&hpts->co, sb, 0, 1782 hpts_timeout_swi, hpts, hpts->p_cpu, 1783 (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision))); 1784 NET_EPOCH_EXIT(et); 1785 mtx_unlock(&hpts->p_mtx); 1786 } 1787 1788 #undef timersub 1789 1790 static int32_t 1791 hpts_count_level(struct cpu_group *cg) 1792 { 1793 int32_t count_l3, i; 1794 1795 count_l3 = 0; 1796 if (cg->cg_level == CG_SHARE_L3) 1797 count_l3++; 1798 /* Walk all the children looking for L3 */ 1799 for (i = 0; i < cg->cg_children; i++) { 1800 count_l3 += hpts_count_level(&cg->cg_child[i]); 1801 } 1802 return (count_l3); 1803 } 1804 1805 static void 1806 hpts_gather_grps(struct cpu_group **grps, int32_t *at, int32_t max, struct cpu_group *cg) 1807 { 1808 int32_t idx, i; 1809 1810 idx = *at; 1811 if (cg->cg_level == CG_SHARE_L3) { 1812 grps[idx] = cg; 1813 idx++; 1814 if (idx == max) { 1815 *at = idx; 1816 return; 1817 } 1818 } 1819 *at = idx; 1820 /* Walk all the children looking for L3 */ 1821 for (i = 0; i < cg->cg_children; i++) { 1822 hpts_gather_grps(grps, at, max, &cg->cg_child[i]); 1823 } 1824 } 1825 1826 static void 1827 tcp_init_hptsi(void *st) 1828 { 1829 struct cpu_group *cpu_top; 1830 int32_t error __diagused; 1831 int32_t i, j, bound = 0, created = 0; 1832 size_t sz, asz; 1833 struct timeval tv; 1834 sbintime_t sb; 1835 struct tcp_hpts_entry *hpts; 1836 struct pcpu *pc; 1837 char unit[16]; 1838 uint32_t ncpus = mp_ncpus ? mp_ncpus : MAXCPU; 1839 int count, domain; 1840 1841 #ifdef SMP 1842 cpu_top = smp_topo(); 1843 #else 1844 cpu_top = NULL; 1845 #endif 1846 tcp_pace.rp_num_hptss = ncpus; 1847 hpts_hopelessly_behind = counter_u64_alloc(M_WAITOK); 1848 hpts_loops = counter_u64_alloc(M_WAITOK); 1849 back_tosleep = counter_u64_alloc(M_WAITOK); 1850 combined_wheel_wrap = counter_u64_alloc(M_WAITOK); 1851 wheel_wrap = counter_u64_alloc(M_WAITOK); 1852 hpts_wake_timeout = counter_u64_alloc(M_WAITOK); 1853 hpts_direct_awakening = counter_u64_alloc(M_WAITOK); 1854 hpts_back_tosleep = counter_u64_alloc(M_WAITOK); 1855 hpts_direct_call = counter_u64_alloc(M_WAITOK); 1856 cpu_uses_flowid = counter_u64_alloc(M_WAITOK); 1857 cpu_uses_random = counter_u64_alloc(M_WAITOK); 1858 1859 sz = (tcp_pace.rp_num_hptss * sizeof(struct tcp_hpts_entry *)); 1860 tcp_pace.rp_ent = malloc(sz, M_TCPHPTS, M_WAITOK | M_ZERO); 1861 sz = (sizeof(uint32_t) * tcp_pace.rp_num_hptss); 1862 cts_last_ran = malloc(sz, M_TCPHPTS, M_WAITOK); 1863 tcp_pace.grp_cnt = 0; 1864 if (cpu_top == NULL) { 1865 tcp_pace.grp_cnt = 1; 1866 } else { 1867 /* Find out how many cache level 3 domains we have */ 1868 count = 0; 1869 tcp_pace.grp_cnt = hpts_count_level(cpu_top); 1870 if (tcp_pace.grp_cnt == 0) { 1871 tcp_pace.grp_cnt = 1; 1872 } 1873 sz = (tcp_pace.grp_cnt * sizeof(struct cpu_group *)); 1874 tcp_pace.grps = malloc(sz, M_TCPHPTS, M_WAITOK); 1875 /* Now populate the groups */ 1876 if (tcp_pace.grp_cnt == 1) { 1877 /* 1878 * All we need is the top level all cpu's are in 1879 * the same cache so when we use grp[0]->cg_mask 1880 * with the cg_first <-> cg_last it will include 1881 * all cpu's in it. The level here is probably 1882 * zero which is ok. 1883 */ 1884 tcp_pace.grps[0] = cpu_top; 1885 } else { 1886 /* 1887 * Here we must find all the level three cache domains 1888 * and setup our pointers to them. 1889 */ 1890 count = 0; 1891 hpts_gather_grps(tcp_pace.grps, &count, tcp_pace.grp_cnt, cpu_top); 1892 } 1893 } 1894 asz = sizeof(struct hptsh) * NUM_OF_HPTSI_SLOTS; 1895 for (i = 0; i < tcp_pace.rp_num_hptss; i++) { 1896 tcp_pace.rp_ent[i] = malloc(sizeof(struct tcp_hpts_entry), 1897 M_TCPHPTS, M_WAITOK | M_ZERO); 1898 tcp_pace.rp_ent[i]->p_hptss = malloc(asz, M_TCPHPTS, M_WAITOK); 1899 hpts = tcp_pace.rp_ent[i]; 1900 /* 1901 * Init all the hpts structures that are not specifically 1902 * zero'd by the allocations. Also lets attach them to the 1903 * appropriate sysctl block as well. 1904 */ 1905 mtx_init(&hpts->p_mtx, "tcp_hpts_lck", 1906 "hpts", MTX_DEF | MTX_DUPOK); 1907 for (j = 0; j < NUM_OF_HPTSI_SLOTS; j++) { 1908 TAILQ_INIT(&hpts->p_hptss[j].head); 1909 hpts->p_hptss[j].count = 0; 1910 hpts->p_hptss[j].gencnt = 0; 1911 } 1912 sysctl_ctx_init(&hpts->hpts_ctx); 1913 sprintf(unit, "%d", i); 1914 hpts->hpts_root = SYSCTL_ADD_NODE(&hpts->hpts_ctx, 1915 SYSCTL_STATIC_CHILDREN(_net_inet_tcp_hpts), 1916 OID_AUTO, 1917 unit, 1918 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 1919 ""); 1920 SYSCTL_ADD_INT(&hpts->hpts_ctx, 1921 SYSCTL_CHILDREN(hpts->hpts_root), 1922 OID_AUTO, "out_qcnt", CTLFLAG_RD, 1923 &hpts->p_on_queue_cnt, 0, 1924 "Count TCB's awaiting output processing"); 1925 SYSCTL_ADD_U16(&hpts->hpts_ctx, 1926 SYSCTL_CHILDREN(hpts->hpts_root), 1927 OID_AUTO, "active", CTLFLAG_RD, 1928 &hpts->p_hpts_active, 0, 1929 "Is the hpts active"); 1930 SYSCTL_ADD_UINT(&hpts->hpts_ctx, 1931 SYSCTL_CHILDREN(hpts->hpts_root), 1932 OID_AUTO, "curslot", CTLFLAG_RD, 1933 &hpts->p_cur_slot, 0, 1934 "What the current running pacers goal"); 1935 SYSCTL_ADD_UINT(&hpts->hpts_ctx, 1936 SYSCTL_CHILDREN(hpts->hpts_root), 1937 OID_AUTO, "runtick", CTLFLAG_RD, 1938 &hpts->p_runningslot, 0, 1939 "What the running pacers current slot is"); 1940 SYSCTL_ADD_UINT(&hpts->hpts_ctx, 1941 SYSCTL_CHILDREN(hpts->hpts_root), 1942 OID_AUTO, "curtick", CTLFLAG_RD, 1943 &hpts->p_curtick, 0, 1944 "What the running pacers last tick mapped to the wheel was"); 1945 SYSCTL_ADD_UINT(&hpts->hpts_ctx, 1946 SYSCTL_CHILDREN(hpts->hpts_root), 1947 OID_AUTO, "lastran", CTLFLAG_RD, 1948 &cts_last_ran[i], 0, 1949 "The last usec tick that this hpts ran"); 1950 SYSCTL_ADD_LONG(&hpts->hpts_ctx, 1951 SYSCTL_CHILDREN(hpts->hpts_root), 1952 OID_AUTO, "cur_min_sleep", CTLFLAG_RD, 1953 &hpts->p_mysleep.tv_usec, 1954 "What the running pacers is using for p_mysleep.tv_usec"); 1955 SYSCTL_ADD_U64(&hpts->hpts_ctx, 1956 SYSCTL_CHILDREN(hpts->hpts_root), 1957 OID_AUTO, "now_sleeping", CTLFLAG_RD, 1958 &hpts->sleeping, 0, 1959 "What the running pacers is actually sleeping for"); 1960 SYSCTL_ADD_U64(&hpts->hpts_ctx, 1961 SYSCTL_CHILDREN(hpts->hpts_root), 1962 OID_AUTO, "syscall_cnt", CTLFLAG_RD, 1963 &hpts->syscall_cnt, 0, 1964 "How many times we had syscalls on this hpts"); 1965 1966 hpts->p_hpts_sleep_time = hpts_sleep_max; 1967 hpts->p_num = i; 1968 hpts->p_curtick = tcp_gethptstick(&tv); 1969 cts_last_ran[i] = tcp_tv_to_usectick(&tv); 1970 hpts->p_prev_slot = hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick); 1971 hpts->p_cpu = 0xffff; 1972 hpts->p_nxt_slot = hpts_slot(hpts->p_cur_slot, 1); 1973 callout_init(&hpts->co, 1); 1974 } 1975 /* Don't try to bind to NUMA domains if we don't have any */ 1976 if (vm_ndomains == 1 && tcp_bind_threads == 2) 1977 tcp_bind_threads = 0; 1978 1979 /* 1980 * Now lets start ithreads to handle the hptss. 1981 */ 1982 for (i = 0; i < tcp_pace.rp_num_hptss; i++) { 1983 hpts = tcp_pace.rp_ent[i]; 1984 hpts->p_cpu = i; 1985 1986 error = swi_add(&hpts->ie, "hpts", 1987 tcp_hpts_thread, (void *)hpts, 1988 SWI_NET, INTR_MPSAFE, &hpts->ie_cookie); 1989 KASSERT(error == 0, 1990 ("Can't add hpts:%p i:%d err:%d", 1991 hpts, i, error)); 1992 created++; 1993 hpts->p_mysleep.tv_sec = 0; 1994 hpts->p_mysleep.tv_usec = tcp_min_hptsi_time; 1995 if (tcp_bind_threads == 1) { 1996 if (intr_event_bind(hpts->ie, i) == 0) 1997 bound++; 1998 } else if (tcp_bind_threads == 2) { 1999 /* Find the group for this CPU (i) and bind into it */ 2000 for (j = 0; j < tcp_pace.grp_cnt; j++) { 2001 if (CPU_ISSET(i, &tcp_pace.grps[j]->cg_mask)) { 2002 if (intr_event_bind_ithread_cpuset(hpts->ie, 2003 &tcp_pace.grps[j]->cg_mask) == 0) { 2004 bound++; 2005 pc = pcpu_find(i); 2006 domain = pc->pc_domain; 2007 count = hpts_domains[domain].count; 2008 hpts_domains[domain].cpu[count] = i; 2009 hpts_domains[domain].count++; 2010 break; 2011 } 2012 } 2013 } 2014 } 2015 tv.tv_sec = 0; 2016 tv.tv_usec = hpts->p_hpts_sleep_time * HPTS_TICKS_PER_SLOT; 2017 hpts->sleeping = tv.tv_usec; 2018 sb = tvtosbt(tv); 2019 callout_reset_sbt_on(&hpts->co, sb, 0, 2020 hpts_timeout_swi, hpts, hpts->p_cpu, 2021 (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision))); 2022 } 2023 /* 2024 * If we somehow have an empty domain, fall back to choosing 2025 * among all htps threads. 2026 */ 2027 for (i = 0; i < vm_ndomains; i++) { 2028 if (hpts_domains[i].count == 0) { 2029 tcp_bind_threads = 0; 2030 break; 2031 } 2032 } 2033 printf("TCP Hpts created %d swi interrupt threads and bound %d to %s\n", 2034 created, bound, 2035 tcp_bind_threads == 2 ? "NUMA domains" : "cpus"); 2036 #ifdef INVARIANTS 2037 printf("HPTS is in INVARIANT mode!!\n"); 2038 #endif 2039 } 2040 2041 SYSINIT(tcphptsi, SI_SUB_SOFTINTR, SI_ORDER_ANY, tcp_init_hptsi, NULL); 2042 MODULE_VERSION(tcphpts, 1); 2043