1 /*- 2 * Copyright (c) 2016-2018 Netflix, Inc. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 1. Redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer. 9 * 2. Redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution. 12 * 13 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 14 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 16 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 17 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 18 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 19 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 20 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 21 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 22 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 23 * SUCH DAMAGE. 24 * 25 */ 26 #include <sys/cdefs.h> 27 __FBSDID("$FreeBSD$"); 28 29 #include "opt_inet.h" 30 #include "opt_inet6.h" 31 #include "opt_rss.h" 32 #include "opt_tcpdebug.h" 33 34 /** 35 * Some notes about usage. 36 * 37 * The tcp_hpts system is designed to provide a high precision timer 38 * system for tcp. Its main purpose is to provide a mechanism for 39 * pacing packets out onto the wire. It can be used in two ways 40 * by a given TCP stack (and those two methods can be used simultaneously). 41 * 42 * First, and probably the main thing its used by Rack and BBR, it can 43 * be used to call tcp_output() of a transport stack at some time in the future. 44 * The normal way this is done is that tcp_output() of the stack schedules 45 * itself to be called again by calling tcp_hpts_insert(tcpcb, slot). The 46 * slot is the time from now that the stack wants to be called but it 47 * must be converted to tcp_hpts's notion of slot. This is done with 48 * one of the macros HPTS_MS_TO_SLOTS or HPTS_USEC_TO_SLOTS. So a typical 49 * call from the tcp_output() routine might look like: 50 * 51 * tcp_hpts_insert(tp, HPTS_USEC_TO_SLOTS(550)); 52 * 53 * The above would schedule tcp_ouput() to be called in 550 useconds. 54 * Note that if using this mechanism the stack will want to add near 55 * its top a check to prevent unwanted calls (from user land or the 56 * arrival of incoming ack's). So it would add something like: 57 * 58 * if (tcp_in_hpts(inp)) 59 * return; 60 * 61 * to prevent output processing until the time alotted has gone by. 62 * Of course this is a bare bones example and the stack will probably 63 * have more consideration then just the above. 64 * 65 * In order to run input queued segments from the HPTS context the 66 * tcp stack must define an input function for 67 * tfb_do_queued_segments(). This function understands 68 * how to dequeue a array of packets that were input and 69 * knows how to call the correct processing routine. 70 * 71 * Locking in this is important as well so most likely the 72 * stack will need to define the tfb_do_segment_nounlock() 73 * splitting tfb_do_segment() into two parts. The main processing 74 * part that does not unlock the INP and returns a value of 1 or 0. 75 * It returns 0 if all is well and the lock was not released. It 76 * returns 1 if we had to destroy the TCB (a reset received etc). 77 * The remains of tfb_do_segment() then become just a simple call 78 * to the tfb_do_segment_nounlock() function and check the return 79 * code and possibly unlock. 80 * 81 * The stack must also set the flag on the INP that it supports this 82 * feature i.e. INP_SUPPORTS_MBUFQ. The LRO code recoginizes 83 * this flag as well and will queue packets when it is set. 84 * There are other flags as well INP_MBUF_QUEUE_READY and 85 * INP_DONT_SACK_QUEUE. The first flag tells the LRO code 86 * that we are in the pacer for output so there is no 87 * need to wake up the hpts system to get immediate 88 * input. The second tells the LRO code that its okay 89 * if a SACK arrives you can still defer input and let 90 * the current hpts timer run (this is usually set when 91 * a rack timer is up so we know SACK's are happening 92 * on the connection already and don't want to wakeup yet). 93 * 94 * There is a common functions within the rack_bbr_common code 95 * version i.e. ctf_do_queued_segments(). This function 96 * knows how to take the input queue of packets from 97 * tp->t_in_pkts and process them digging out 98 * all the arguments, calling any bpf tap and 99 * calling into tfb_do_segment_nounlock(). The common 100 * function (ctf_do_queued_segments()) requires that 101 * you have defined the tfb_do_segment_nounlock() as 102 * described above. 103 * 104 * Now the second function the tcp_hpts system provides is the ability 105 * to abort a connection later. Why would you want to do this? 106 * To not have to worry about untangling any recursive locks. 107 * 108 * The second feature of the input side of hpts is the 109 * dropping of a connection. This is due to the way that 110 * locking may have occured on the INP_WLOCK. So if 111 * a stack wants to drop a connection it calls: 112 * 113 * tcp_set_inp_to_drop(tp, ETIMEDOUT) 114 * 115 * To schedule the tcp_hpts system to call 116 * 117 * tcp_drop(tp, drop_reason) 118 * 119 * at a future point. This is quite handy to prevent locking 120 * issues when dropping connections. 121 * 122 */ 123 124 #include <sys/param.h> 125 #include <sys/bus.h> 126 #include <sys/interrupt.h> 127 #include <sys/module.h> 128 #include <sys/kernel.h> 129 #include <sys/hhook.h> 130 #include <sys/malloc.h> 131 #include <sys/mbuf.h> 132 #include <sys/proc.h> /* for proc0 declaration */ 133 #include <sys/socket.h> 134 #include <sys/socketvar.h> 135 #include <sys/sysctl.h> 136 #include <sys/systm.h> 137 #include <sys/refcount.h> 138 #include <sys/sched.h> 139 #include <sys/queue.h> 140 #include <sys/smp.h> 141 #include <sys/counter.h> 142 #include <sys/time.h> 143 #include <sys/kthread.h> 144 #include <sys/kern_prefetch.h> 145 146 #include <vm/uma.h> 147 #include <vm/vm.h> 148 149 #include <net/route.h> 150 #include <net/vnet.h> 151 152 #ifdef RSS 153 #include <net/netisr.h> 154 #include <net/rss_config.h> 155 #endif 156 157 #define TCPSTATES /* for logging */ 158 159 #include <netinet/in.h> 160 #include <netinet/in_kdtrace.h> 161 #include <netinet/in_pcb.h> 162 #include <netinet/ip.h> 163 #include <netinet/ip_icmp.h> /* required for icmp_var.h */ 164 #include <netinet/icmp_var.h> /* for ICMP_BANDLIM */ 165 #include <netinet/ip_var.h> 166 #include <netinet/ip6.h> 167 #include <netinet6/in6_pcb.h> 168 #include <netinet6/ip6_var.h> 169 #include <netinet/tcp.h> 170 #include <netinet/tcp_fsm.h> 171 #include <netinet/tcp_seq.h> 172 #include <netinet/tcp_timer.h> 173 #include <netinet/tcp_var.h> 174 #include <netinet/tcpip.h> 175 #include <netinet/cc/cc.h> 176 #include <netinet/tcp_hpts.h> 177 #include <netinet/tcp_log_buf.h> 178 179 #ifdef tcpdebug 180 #include <netinet/tcp_debug.h> 181 #endif /* tcpdebug */ 182 #ifdef tcp_offload 183 #include <netinet/tcp_offload.h> 184 #endif 185 186 /* 187 * The hpts uses a 102400 wheel. The wheel 188 * defines the time in 10 usec increments (102400 x 10). 189 * This gives a range of 10usec - 1024ms to place 190 * an entry within. If the user requests more than 191 * 1.024 second, a remaineder is attached and the hpts 192 * when seeing the remainder will re-insert the 193 * inpcb forward in time from where it is until 194 * the remainder is zero. 195 */ 196 197 #define NUM_OF_HPTSI_SLOTS 102400 198 199 /* Each hpts has its own p_mtx which is used for locking */ 200 #define HPTS_MTX_ASSERT(hpts) mtx_assert(&(hpts)->p_mtx, MA_OWNED) 201 #define HPTS_LOCK(hpts) mtx_lock(&(hpts)->p_mtx) 202 #define HPTS_UNLOCK(hpts) mtx_unlock(&(hpts)->p_mtx) 203 struct tcp_hpts_entry { 204 /* Cache line 0x00 */ 205 struct mtx p_mtx; /* Mutex for hpts */ 206 struct timeval p_mysleep; /* Our min sleep time */ 207 uint64_t syscall_cnt; 208 uint64_t sleeping; /* What the actual sleep was (if sleeping) */ 209 uint16_t p_hpts_active; /* Flag that says hpts is awake */ 210 uint8_t p_wheel_complete; /* have we completed the wheel arc walk? */ 211 uint32_t p_curtick; /* Tick in 10 us the hpts is going to */ 212 uint32_t p_runningslot; /* Current tick we are at if we are running */ 213 uint32_t p_prev_slot; /* Previous slot we were on */ 214 uint32_t p_cur_slot; /* Current slot in wheel hpts is draining */ 215 uint32_t p_nxt_slot; /* The next slot outside the current range of 216 * slots that the hpts is running on. */ 217 int32_t p_on_queue_cnt; /* Count on queue in this hpts */ 218 uint32_t p_lasttick; /* Last tick before the current one */ 219 uint8_t p_direct_wake :1, /* boolean */ 220 p_on_min_sleep:1, /* boolean */ 221 p_hpts_wake_scheduled:1, /* boolean */ 222 p_avail:5; 223 uint8_t p_fill[3]; /* Fill to 32 bits */ 224 /* Cache line 0x40 */ 225 TAILQ_HEAD(, inpcb) p_dropq; /* Delayed drop queue */ 226 struct hptsh { 227 TAILQ_HEAD(, inpcb) head; 228 uint32_t count; 229 uint32_t gencnt; 230 } *p_hptss; /* Hptsi wheel */ 231 uint32_t p_dropq_cnt; /* Count on drop queue */ 232 uint32_t p_dropq_gencnt; 233 uint32_t p_hpts_sleep_time; /* Current sleep interval having a max 234 * of 255ms */ 235 uint32_t overidden_sleep; /* what was overrided by min-sleep for logging */ 236 uint32_t saved_lasttick; /* for logging */ 237 uint32_t saved_curtick; /* for logging */ 238 uint32_t saved_curslot; /* for logging */ 239 uint32_t saved_prev_slot; /* for logging */ 240 uint32_t p_delayed_by; /* How much were we delayed by */ 241 /* Cache line 0x80 */ 242 struct sysctl_ctx_list hpts_ctx; 243 struct sysctl_oid *hpts_root; 244 struct intr_event *ie; 245 void *ie_cookie; 246 uint16_t p_num; /* The hpts number one per cpu */ 247 uint16_t p_cpu; /* The hpts CPU */ 248 /* There is extra space in here */ 249 /* Cache line 0x100 */ 250 struct callout co __aligned(CACHE_LINE_SIZE); 251 } __aligned(CACHE_LINE_SIZE); 252 253 static struct tcp_hptsi { 254 struct tcp_hpts_entry **rp_ent; /* Array of hptss */ 255 uint32_t *cts_last_ran; 256 uint32_t rp_num_hptss; /* Number of hpts threads */ 257 } tcp_pace; 258 259 MALLOC_DEFINE(M_TCPHPTS, "tcp_hpts", "TCP hpts"); 260 #ifdef RSS 261 static int tcp_bind_threads = 1; 262 #else 263 static int tcp_bind_threads = 2; 264 #endif 265 static int tcp_use_irq_cpu = 0; 266 static uint32_t *cts_last_ran; 267 static int hpts_does_tp_logging = 0; 268 static int hpts_use_assigned_cpu = 1; 269 static int32_t hpts_uses_oldest = OLDEST_THRESHOLD; 270 271 static int32_t tcp_hptsi(struct tcp_hpts_entry *hpts, int from_callout); 272 static void tcp_hpts_thread(void *ctx); 273 static void tcp_init_hptsi(void *st); 274 275 int32_t tcp_min_hptsi_time = DEFAULT_MIN_SLEEP; 276 static int conn_cnt_thresh = DEFAULT_CONNECTION_THESHOLD; 277 static int32_t dynamic_min_sleep = DYNAMIC_MIN_SLEEP; 278 static int32_t dynamic_max_sleep = DYNAMIC_MAX_SLEEP; 279 280 281 282 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, hpts, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 283 "TCP Hpts controls"); 284 SYSCTL_NODE(_net_inet_tcp_hpts, OID_AUTO, stats, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 285 "TCP Hpts statistics"); 286 287 #define timersub(tvp, uvp, vvp) \ 288 do { \ 289 (vvp)->tv_sec = (tvp)->tv_sec - (uvp)->tv_sec; \ 290 (vvp)->tv_usec = (tvp)->tv_usec - (uvp)->tv_usec; \ 291 if ((vvp)->tv_usec < 0) { \ 292 (vvp)->tv_sec--; \ 293 (vvp)->tv_usec += 1000000; \ 294 } \ 295 } while (0) 296 297 static int32_t tcp_hpts_precision = 120; 298 299 static struct hpts_domain_info { 300 int count; 301 int cpu[MAXCPU]; 302 } hpts_domains[MAXMEMDOM]; 303 304 enum { 305 IHPTS_NONE = 0, 306 IHPTS_ONQUEUE, 307 IHPTS_MOVING, 308 }; 309 310 counter_u64_t hpts_hopelessly_behind; 311 312 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, hopeless, CTLFLAG_RD, 313 &hpts_hopelessly_behind, 314 "Number of times hpts could not catch up and was behind hopelessly"); 315 316 counter_u64_t hpts_loops; 317 318 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, loops, CTLFLAG_RD, 319 &hpts_loops, "Number of times hpts had to loop to catch up"); 320 321 counter_u64_t back_tosleep; 322 323 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, no_tcbsfound, CTLFLAG_RD, 324 &back_tosleep, "Number of times hpts found no tcbs"); 325 326 counter_u64_t combined_wheel_wrap; 327 328 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, comb_wheel_wrap, CTLFLAG_RD, 329 &combined_wheel_wrap, "Number of times the wheel lagged enough to have an insert see wrap"); 330 331 counter_u64_t wheel_wrap; 332 333 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, wheel_wrap, CTLFLAG_RD, 334 &wheel_wrap, "Number of times the wheel lagged enough to have an insert see wrap"); 335 336 counter_u64_t hpts_direct_call; 337 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, direct_call, CTLFLAG_RD, 338 &hpts_direct_call, "Number of times hpts was called by syscall/trap or other entry"); 339 340 counter_u64_t hpts_wake_timeout; 341 342 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, timeout_wakeup, CTLFLAG_RD, 343 &hpts_wake_timeout, "Number of times hpts threads woke up via the callout expiring"); 344 345 counter_u64_t hpts_direct_awakening; 346 347 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, direct_awakening, CTLFLAG_RD, 348 &hpts_direct_awakening, "Number of times hpts threads woke up via the callout expiring"); 349 350 counter_u64_t hpts_back_tosleep; 351 352 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, back_tosleep, CTLFLAG_RD, 353 &hpts_back_tosleep, "Number of times hpts threads woke up via the callout expiring and went back to sleep no work"); 354 355 counter_u64_t cpu_uses_flowid; 356 counter_u64_t cpu_uses_random; 357 358 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, cpusel_flowid, CTLFLAG_RD, 359 &cpu_uses_flowid, "Number of times when setting cpuid we used the flowid field"); 360 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, cpusel_random, CTLFLAG_RD, 361 &cpu_uses_random, "Number of times when setting cpuid we used the a random value"); 362 363 TUNABLE_INT("net.inet.tcp.bind_hptss", &tcp_bind_threads); 364 TUNABLE_INT("net.inet.tcp.use_irq", &tcp_use_irq_cpu); 365 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, bind_hptss, CTLFLAG_RD, 366 &tcp_bind_threads, 2, 367 "Thread Binding tunable"); 368 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, use_irq, CTLFLAG_RD, 369 &tcp_use_irq_cpu, 0, 370 "Use of irq CPU tunable"); 371 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, precision, CTLFLAG_RW, 372 &tcp_hpts_precision, 120, 373 "Value for PRE() precision of callout"); 374 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, cnt_thresh, CTLFLAG_RW, 375 &conn_cnt_thresh, 0, 376 "How many connections (below) make us use the callout based mechanism"); 377 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, logging, CTLFLAG_RW, 378 &hpts_does_tp_logging, 0, 379 "Do we add to any tp that has logging on pacer logs"); 380 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, use_assigned_cpu, CTLFLAG_RW, 381 &hpts_use_assigned_cpu, 0, 382 "Do we start any hpts timer on the assigned cpu?"); 383 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, use_oldest, CTLFLAG_RW, 384 &hpts_uses_oldest, OLDEST_THRESHOLD, 385 "Do syscalls look for the hpts that has been the longest since running (or just use cpu no if 0)?"); 386 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, dyn_minsleep, CTLFLAG_RW, 387 &dynamic_min_sleep, 250, 388 "What is the dynamic minsleep value?"); 389 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, dyn_maxsleep, CTLFLAG_RW, 390 &dynamic_max_sleep, 5000, 391 "What is the dynamic maxsleep value?"); 392 393 394 395 396 397 static int32_t max_pacer_loops = 10; 398 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, loopmax, CTLFLAG_RW, 399 &max_pacer_loops, 10, 400 "What is the maximum number of times the pacer will loop trying to catch up"); 401 402 #define HPTS_MAX_SLEEP_ALLOWED (NUM_OF_HPTSI_SLOTS/2) 403 404 static uint32_t hpts_sleep_max = HPTS_MAX_SLEEP_ALLOWED; 405 406 static int 407 sysctl_net_inet_tcp_hpts_max_sleep(SYSCTL_HANDLER_ARGS) 408 { 409 int error; 410 uint32_t new; 411 412 new = hpts_sleep_max; 413 error = sysctl_handle_int(oidp, &new, 0, req); 414 if (error == 0 && req->newptr) { 415 if ((new < dynamic_min_sleep) || 416 (new > HPTS_MAX_SLEEP_ALLOWED)) 417 error = EINVAL; 418 else 419 hpts_sleep_max = new; 420 } 421 return (error); 422 } 423 424 static int 425 sysctl_net_inet_tcp_hpts_min_sleep(SYSCTL_HANDLER_ARGS) 426 { 427 int error; 428 uint32_t new; 429 430 new = tcp_min_hptsi_time; 431 error = sysctl_handle_int(oidp, &new, 0, req); 432 if (error == 0 && req->newptr) { 433 if (new < LOWEST_SLEEP_ALLOWED) 434 error = EINVAL; 435 else 436 tcp_min_hptsi_time = new; 437 } 438 return (error); 439 } 440 441 SYSCTL_PROC(_net_inet_tcp_hpts, OID_AUTO, maxsleep, 442 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 443 &hpts_sleep_max, 0, 444 &sysctl_net_inet_tcp_hpts_max_sleep, "IU", 445 "Maximum time hpts will sleep"); 446 447 SYSCTL_PROC(_net_inet_tcp_hpts, OID_AUTO, minsleep, 448 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 449 &tcp_min_hptsi_time, 0, 450 &sysctl_net_inet_tcp_hpts_min_sleep, "IU", 451 "The minimum time the hpts must sleep before processing more slots"); 452 453 static int ticks_indicate_more_sleep = TICKS_INDICATE_MORE_SLEEP; 454 static int ticks_indicate_less_sleep = TICKS_INDICATE_LESS_SLEEP; 455 static int tcp_hpts_no_wake_over_thresh = 1; 456 457 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, more_sleep, CTLFLAG_RW, 458 &ticks_indicate_more_sleep, 0, 459 "If we only process this many or less on a timeout, we need longer sleep on the next callout"); 460 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, less_sleep, CTLFLAG_RW, 461 &ticks_indicate_less_sleep, 0, 462 "If we process this many or more on a timeout, we need less sleep on the next callout"); 463 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, nowake_over_thresh, CTLFLAG_RW, 464 &tcp_hpts_no_wake_over_thresh, 0, 465 "When we are over the threshold on the pacer do we prohibit wakeups?"); 466 467 static void 468 tcp_hpts_log(struct tcp_hpts_entry *hpts, struct tcpcb *tp, struct timeval *tv, 469 int slots_to_run, int idx, int from_callout) 470 { 471 union tcp_log_stackspecific log; 472 /* 473 * Unused logs are 474 * 64 bit - delRate, rttProp, bw_inuse 475 * 16 bit - cwnd_gain 476 * 8 bit - bbr_state, bbr_substate, inhpts, ininput; 477 */ 478 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 479 log.u_bbr.flex1 = hpts->p_nxt_slot; 480 log.u_bbr.flex2 = hpts->p_cur_slot; 481 log.u_bbr.flex3 = hpts->p_prev_slot; 482 log.u_bbr.flex4 = idx; 483 log.u_bbr.flex5 = hpts->p_curtick; 484 log.u_bbr.flex6 = hpts->p_on_queue_cnt; 485 log.u_bbr.flex7 = hpts->p_cpu; 486 log.u_bbr.flex8 = (uint8_t)from_callout; 487 log.u_bbr.inflight = slots_to_run; 488 log.u_bbr.applimited = hpts->overidden_sleep; 489 log.u_bbr.delivered = hpts->saved_curtick; 490 log.u_bbr.timeStamp = tcp_tv_to_usectick(tv); 491 log.u_bbr.epoch = hpts->saved_curslot; 492 log.u_bbr.lt_epoch = hpts->saved_prev_slot; 493 log.u_bbr.pkts_out = hpts->p_delayed_by; 494 log.u_bbr.lost = hpts->p_hpts_sleep_time; 495 log.u_bbr.pacing_gain = hpts->p_cpu; 496 log.u_bbr.pkt_epoch = hpts->p_runningslot; 497 log.u_bbr.use_lt_bw = 1; 498 TCP_LOG_EVENTP(tp, NULL, 499 &tp->t_inpcb->inp_socket->so_rcv, 500 &tp->t_inpcb->inp_socket->so_snd, 501 BBR_LOG_HPTSDIAG, 0, 502 0, &log, false, tv); 503 } 504 505 static void 506 tcp_wakehpts(struct tcp_hpts_entry *hpts) 507 { 508 HPTS_MTX_ASSERT(hpts); 509 510 if (tcp_hpts_no_wake_over_thresh && (hpts->p_on_queue_cnt >= conn_cnt_thresh)) { 511 hpts->p_direct_wake = 0; 512 return; 513 } 514 if (hpts->p_hpts_wake_scheduled == 0) { 515 hpts->p_hpts_wake_scheduled = 1; 516 swi_sched(hpts->ie_cookie, 0); 517 } 518 } 519 520 static void 521 hpts_timeout_swi(void *arg) 522 { 523 struct tcp_hpts_entry *hpts; 524 525 hpts = (struct tcp_hpts_entry *)arg; 526 swi_sched(hpts->ie_cookie, 0); 527 } 528 529 static void 530 inp_hpts_insert(struct inpcb *inp, struct tcp_hpts_entry *hpts) 531 { 532 struct hptsh *hptsh; 533 534 INP_WLOCK_ASSERT(inp); 535 HPTS_MTX_ASSERT(hpts); 536 MPASS(hpts->p_cpu == inp->inp_hpts_cpu); 537 MPASS(!(inp->inp_flags & (INP_DROPPED|INP_TIMEWAIT))); 538 539 hptsh = &hpts->p_hptss[inp->inp_hptsslot]; 540 541 if (inp->inp_in_hpts == IHPTS_NONE) { 542 inp->inp_in_hpts = IHPTS_ONQUEUE; 543 in_pcbref(inp); 544 } else if (inp->inp_in_hpts == IHPTS_MOVING) { 545 inp->inp_in_hpts = IHPTS_ONQUEUE; 546 } else 547 MPASS(inp->inp_in_hpts == IHPTS_ONQUEUE); 548 inp->inp_hpts_gencnt = hptsh->gencnt; 549 550 TAILQ_INSERT_TAIL(&hptsh->head, inp, inp_hpts); 551 hptsh->count++; 552 hpts->p_on_queue_cnt++; 553 } 554 555 static struct tcp_hpts_entry * 556 tcp_hpts_lock(struct inpcb *inp) 557 { 558 struct tcp_hpts_entry *hpts; 559 560 INP_LOCK_ASSERT(inp); 561 562 hpts = tcp_pace.rp_ent[inp->inp_hpts_cpu]; 563 HPTS_LOCK(hpts); 564 565 return (hpts); 566 } 567 568 static struct tcp_hpts_entry * 569 tcp_dropq_lock(struct inpcb *inp) 570 { 571 struct tcp_hpts_entry *hpts; 572 573 INP_LOCK_ASSERT(inp); 574 575 hpts = tcp_pace.rp_ent[inp->inp_dropq_cpu]; 576 HPTS_LOCK(hpts); 577 578 return (hpts); 579 } 580 581 static void 582 inp_hpts_release(struct inpcb *inp) 583 { 584 bool released __diagused; 585 586 inp->inp_in_hpts = IHPTS_NONE; 587 released = in_pcbrele_wlocked(inp); 588 MPASS(released == false); 589 } 590 591 static void 592 tcp_dropq_remove(struct tcp_hpts_entry *hpts, struct inpcb *inp) 593 { 594 bool released __diagused; 595 596 HPTS_MTX_ASSERT(hpts); 597 INP_WLOCK_ASSERT(inp); 598 599 if (inp->inp_in_dropq != IHPTS_ONQUEUE) 600 return; 601 602 MPASS(hpts->p_cpu == inp->inp_dropq_cpu); 603 if (__predict_true(inp->inp_dropq_gencnt == hpts->p_dropq_gencnt)) { 604 TAILQ_REMOVE(&hpts->p_dropq, inp, inp_dropq); 605 MPASS(hpts->p_dropq_cnt > 0); 606 hpts->p_dropq_cnt--; 607 inp->inp_in_dropq = IHPTS_NONE; 608 released = in_pcbrele_wlocked(inp); 609 MPASS(released == false); 610 } else { 611 /* 612 * tcp_delayed_drop() now owns the TAILQ head of this inp. 613 * Can't TAILQ_REMOVE, just mark it. 614 */ 615 #ifdef INVARIANTS 616 struct inpcb *tmp; 617 618 TAILQ_FOREACH(tmp, &hpts->p_dropq, inp_dropq) 619 MPASS(tmp != inp); 620 #endif 621 inp->inp_in_dropq = IHPTS_MOVING; 622 } 623 624 } 625 626 /* 627 * Called normally with the INP_LOCKED but it 628 * does not matter, the hpts lock is the key 629 * but the lock order allows us to hold the 630 * INP lock and then get the hpts lock. 631 * 632 * Valid values in the flags are 633 * HPTS_REMOVE_OUTPUT - remove from the output of the hpts. 634 * HPTS_REMOVE_DROPQ - remove from the drop queue of the hpts. 635 * Note that you can use one or both values together 636 * and get two actions. 637 */ 638 void 639 __tcp_hpts_remove(struct inpcb *inp, int32_t flags, int32_t line) 640 { 641 struct tcp_hpts_entry *hpts; 642 struct hptsh *hptsh; 643 644 INP_WLOCK_ASSERT(inp); 645 646 if (flags & HPTS_REMOVE_DROPQ) { 647 hpts = tcp_dropq_lock(inp); 648 tcp_dropq_remove(hpts, inp); 649 mtx_unlock(&hpts->p_mtx); 650 } 651 652 MPASS(flags & HPTS_REMOVE_OUTPUT); 653 654 hpts = tcp_hpts_lock(inp); 655 if (inp->inp_in_hpts == IHPTS_ONQUEUE) { 656 hptsh = &hpts->p_hptss[inp->inp_hptsslot]; 657 inp->inp_hpts_request = 0; 658 if (__predict_true(inp->inp_hpts_gencnt == hptsh->gencnt)) { 659 TAILQ_REMOVE(&hptsh->head, inp, inp_hpts); 660 MPASS(hptsh->count > 0); 661 hptsh->count--; 662 MPASS(hpts->p_on_queue_cnt > 0); 663 hpts->p_on_queue_cnt--; 664 inp_hpts_release(inp); 665 } else { 666 /* 667 * tcp_hptsi() now owns the TAILQ head of this inp. 668 * Can't TAILQ_REMOVE, just mark it. 669 */ 670 #ifdef INVARIANTS 671 struct inpcb *tmp; 672 673 TAILQ_FOREACH(tmp, &hptsh->head, inp_hpts) 674 MPASS(tmp != inp); 675 #endif 676 inp->inp_in_hpts = IHPTS_MOVING; 677 inp->inp_hptsslot = -1; 678 } 679 } else if (inp->inp_in_hpts == IHPTS_MOVING) { 680 /* 681 * Handle a special race condition: 682 * tcp_hptsi() moves inpcb to detached tailq 683 * tcp_hpts_remove() marks as IHPTS_MOVING, slot = -1 684 * tcp_hpts_insert() sets slot to a meaningful value 685 * tcp_hpts_remove() again (we are here!), then in_pcbdrop() 686 * tcp_hptsi() finds pcb with meaningful slot and INP_DROPPED 687 */ 688 inp->inp_hptsslot = -1; 689 } 690 HPTS_UNLOCK(hpts); 691 } 692 693 bool 694 tcp_in_hpts(struct inpcb *inp) 695 { 696 697 return (inp->inp_in_hpts == IHPTS_ONQUEUE); 698 } 699 700 static inline int 701 hpts_slot(uint32_t wheel_slot, uint32_t plus) 702 { 703 /* 704 * Given a slot on the wheel, what slot 705 * is that plus ticks out? 706 */ 707 KASSERT(wheel_slot < NUM_OF_HPTSI_SLOTS, ("Invalid tick %u not on wheel", wheel_slot)); 708 return ((wheel_slot + plus) % NUM_OF_HPTSI_SLOTS); 709 } 710 711 static inline int 712 tick_to_wheel(uint32_t cts_in_wticks) 713 { 714 /* 715 * Given a timestamp in ticks (so by 716 * default to get it to a real time one 717 * would multiply by 10.. i.e the number 718 * of ticks in a slot) map it to our limited 719 * space wheel. 720 */ 721 return (cts_in_wticks % NUM_OF_HPTSI_SLOTS); 722 } 723 724 static inline int 725 hpts_slots_diff(int prev_slot, int slot_now) 726 { 727 /* 728 * Given two slots that are someplace 729 * on our wheel. How far are they apart? 730 */ 731 if (slot_now > prev_slot) 732 return (slot_now - prev_slot); 733 else if (slot_now == prev_slot) 734 /* 735 * Special case, same means we can go all of our 736 * wheel less one slot. 737 */ 738 return (NUM_OF_HPTSI_SLOTS - 1); 739 else 740 return ((NUM_OF_HPTSI_SLOTS - prev_slot) + slot_now); 741 } 742 743 /* 744 * Given a slot on the wheel that is the current time 745 * mapped to the wheel (wheel_slot), what is the maximum 746 * distance forward that can be obtained without 747 * wrapping past either prev_slot or running_slot 748 * depending on the htps state? Also if passed 749 * a uint32_t *, fill it with the slot location. 750 * 751 * Note if you do not give this function the current 752 * time (that you think it is) mapped to the wheel slot 753 * then the results will not be what you expect and 754 * could lead to invalid inserts. 755 */ 756 static inline int32_t 757 max_slots_available(struct tcp_hpts_entry *hpts, uint32_t wheel_slot, uint32_t *target_slot) 758 { 759 uint32_t dis_to_travel, end_slot, pacer_to_now, avail_on_wheel; 760 761 if ((hpts->p_hpts_active == 1) && 762 (hpts->p_wheel_complete == 0)) { 763 end_slot = hpts->p_runningslot; 764 /* Back up one tick */ 765 if (end_slot == 0) 766 end_slot = NUM_OF_HPTSI_SLOTS - 1; 767 else 768 end_slot--; 769 if (target_slot) 770 *target_slot = end_slot; 771 } else { 772 /* 773 * For the case where we are 774 * not active, or we have 775 * completed the pass over 776 * the wheel, we can use the 777 * prev tick and subtract one from it. This puts us 778 * as far out as possible on the wheel. 779 */ 780 end_slot = hpts->p_prev_slot; 781 if (end_slot == 0) 782 end_slot = NUM_OF_HPTSI_SLOTS - 1; 783 else 784 end_slot--; 785 if (target_slot) 786 *target_slot = end_slot; 787 /* 788 * Now we have close to the full wheel left minus the 789 * time it has been since the pacer went to sleep. Note 790 * that wheel_tick, passed in, should be the current time 791 * from the perspective of the caller, mapped to the wheel. 792 */ 793 if (hpts->p_prev_slot != wheel_slot) 794 dis_to_travel = hpts_slots_diff(hpts->p_prev_slot, wheel_slot); 795 else 796 dis_to_travel = 1; 797 /* 798 * dis_to_travel in this case is the space from when the 799 * pacer stopped (p_prev_slot) and where our wheel_slot 800 * is now. To know how many slots we can put it in we 801 * subtract from the wheel size. We would not want 802 * to place something after p_prev_slot or it will 803 * get ran too soon. 804 */ 805 return (NUM_OF_HPTSI_SLOTS - dis_to_travel); 806 } 807 /* 808 * So how many slots are open between p_runningslot -> p_cur_slot 809 * that is what is currently un-available for insertion. Special 810 * case when we are at the last slot, this gets 1, so that 811 * the answer to how many slots are available is all but 1. 812 */ 813 if (hpts->p_runningslot == hpts->p_cur_slot) 814 dis_to_travel = 1; 815 else 816 dis_to_travel = hpts_slots_diff(hpts->p_runningslot, hpts->p_cur_slot); 817 /* 818 * How long has the pacer been running? 819 */ 820 if (hpts->p_cur_slot != wheel_slot) { 821 /* The pacer is a bit late */ 822 pacer_to_now = hpts_slots_diff(hpts->p_cur_slot, wheel_slot); 823 } else { 824 /* The pacer is right on time, now == pacers start time */ 825 pacer_to_now = 0; 826 } 827 /* 828 * To get the number left we can insert into we simply 829 * subract the distance the pacer has to run from how 830 * many slots there are. 831 */ 832 avail_on_wheel = NUM_OF_HPTSI_SLOTS - dis_to_travel; 833 /* 834 * Now how many of those we will eat due to the pacer's 835 * time (p_cur_slot) of start being behind the 836 * real time (wheel_slot)? 837 */ 838 if (avail_on_wheel <= pacer_to_now) { 839 /* 840 * Wheel wrap, we can't fit on the wheel, that 841 * is unusual the system must be way overloaded! 842 * Insert into the assured slot, and return special 843 * "0". 844 */ 845 counter_u64_add(combined_wheel_wrap, 1); 846 *target_slot = hpts->p_nxt_slot; 847 return (0); 848 } else { 849 /* 850 * We know how many slots are open 851 * on the wheel (the reverse of what 852 * is left to run. Take away the time 853 * the pacer started to now (wheel_slot) 854 * and that tells you how many slots are 855 * open that can be inserted into that won't 856 * be touched by the pacer until later. 857 */ 858 return (avail_on_wheel - pacer_to_now); 859 } 860 } 861 862 863 #ifdef INVARIANTS 864 static void 865 check_if_slot_would_be_wrong(struct tcp_hpts_entry *hpts, struct inpcb *inp, uint32_t inp_hptsslot, int line) 866 { 867 /* 868 * Sanity checks for the pacer with invariants 869 * on insert. 870 */ 871 KASSERT(inp_hptsslot < NUM_OF_HPTSI_SLOTS, 872 ("hpts:%p inp:%p slot:%d > max", 873 hpts, inp, inp_hptsslot)); 874 if ((hpts->p_hpts_active) && 875 (hpts->p_wheel_complete == 0)) { 876 /* 877 * If the pacer is processing a arc 878 * of the wheel, we need to make 879 * sure we are not inserting within 880 * that arc. 881 */ 882 int distance, yet_to_run; 883 884 distance = hpts_slots_diff(hpts->p_runningslot, inp_hptsslot); 885 if (hpts->p_runningslot != hpts->p_cur_slot) 886 yet_to_run = hpts_slots_diff(hpts->p_runningslot, hpts->p_cur_slot); 887 else 888 yet_to_run = 0; /* processing last slot */ 889 KASSERT(yet_to_run <= distance, 890 ("hpts:%p inp:%p slot:%d distance:%d yet_to_run:%d rs:%d cs:%d", 891 hpts, inp, inp_hptsslot, 892 distance, yet_to_run, 893 hpts->p_runningslot, hpts->p_cur_slot)); 894 } 895 } 896 #endif 897 898 uint32_t 899 tcp_hpts_insert_diag(struct inpcb *inp, uint32_t slot, int32_t line, struct hpts_diag *diag) 900 { 901 struct tcp_hpts_entry *hpts; 902 struct timeval tv; 903 uint32_t slot_on, wheel_cts, last_slot, need_new_to = 0; 904 int32_t wheel_slot, maxslots; 905 int cpu; 906 bool need_wakeup = false; 907 908 INP_WLOCK_ASSERT(inp); 909 MPASS(!tcp_in_hpts(inp)); 910 MPASS(!(inp->inp_flags & (INP_DROPPED|INP_TIMEWAIT))); 911 912 /* 913 * We now return the next-slot the hpts will be on, beyond its 914 * current run (if up) or where it was when it stopped if it is 915 * sleeping. 916 */ 917 hpts = tcp_hpts_lock(inp); 918 microuptime(&tv); 919 if (diag) { 920 memset(diag, 0, sizeof(struct hpts_diag)); 921 diag->p_hpts_active = hpts->p_hpts_active; 922 diag->p_prev_slot = hpts->p_prev_slot; 923 diag->p_runningslot = hpts->p_runningslot; 924 diag->p_nxt_slot = hpts->p_nxt_slot; 925 diag->p_cur_slot = hpts->p_cur_slot; 926 diag->p_curtick = hpts->p_curtick; 927 diag->p_lasttick = hpts->p_lasttick; 928 diag->slot_req = slot; 929 diag->p_on_min_sleep = hpts->p_on_min_sleep; 930 diag->hpts_sleep_time = hpts->p_hpts_sleep_time; 931 } 932 if (slot == 0) { 933 /* Ok we need to set it on the hpts in the current slot */ 934 inp->inp_hpts_request = 0; 935 if ((hpts->p_hpts_active == 0) || (hpts->p_wheel_complete)) { 936 /* 937 * A sleeping hpts we want in next slot to run 938 * note that in this state p_prev_slot == p_cur_slot 939 */ 940 inp->inp_hptsslot = hpts_slot(hpts->p_prev_slot, 1); 941 if ((hpts->p_on_min_sleep == 0) && 942 (hpts->p_hpts_active == 0)) 943 need_wakeup = true; 944 } else 945 inp->inp_hptsslot = hpts->p_runningslot; 946 if (__predict_true(inp->inp_in_hpts != IHPTS_MOVING)) 947 inp_hpts_insert(inp, hpts); 948 if (need_wakeup) { 949 /* 950 * Activate the hpts if it is sleeping and its 951 * timeout is not 1. 952 */ 953 hpts->p_direct_wake = 1; 954 tcp_wakehpts(hpts); 955 } 956 slot_on = hpts->p_nxt_slot; 957 HPTS_UNLOCK(hpts); 958 959 return (slot_on); 960 } 961 /* Get the current time relative to the wheel */ 962 wheel_cts = tcp_tv_to_hptstick(&tv); 963 /* Map it onto the wheel */ 964 wheel_slot = tick_to_wheel(wheel_cts); 965 /* Now what's the max we can place it at? */ 966 maxslots = max_slots_available(hpts, wheel_slot, &last_slot); 967 if (diag) { 968 diag->wheel_slot = wheel_slot; 969 diag->maxslots = maxslots; 970 diag->wheel_cts = wheel_cts; 971 } 972 if (maxslots == 0) { 973 /* The pacer is in a wheel wrap behind, yikes! */ 974 if (slot > 1) { 975 /* 976 * Reduce by 1 to prevent a forever loop in 977 * case something else is wrong. Note this 978 * probably does not hurt because the pacer 979 * if its true is so far behind we will be 980 * > 1second late calling anyway. 981 */ 982 slot--; 983 } 984 inp->inp_hptsslot = last_slot; 985 inp->inp_hpts_request = slot; 986 } else if (maxslots >= slot) { 987 /* It all fits on the wheel */ 988 inp->inp_hpts_request = 0; 989 inp->inp_hptsslot = hpts_slot(wheel_slot, slot); 990 } else { 991 /* It does not fit */ 992 inp->inp_hpts_request = slot - maxslots; 993 inp->inp_hptsslot = last_slot; 994 } 995 if (diag) { 996 diag->slot_remaining = inp->inp_hpts_request; 997 diag->inp_hptsslot = inp->inp_hptsslot; 998 } 999 #ifdef INVARIANTS 1000 check_if_slot_would_be_wrong(hpts, inp, inp->inp_hptsslot, line); 1001 #endif 1002 if (__predict_true(inp->inp_in_hpts != IHPTS_MOVING)) 1003 inp_hpts_insert(inp, hpts); 1004 if ((hpts->p_hpts_active == 0) && 1005 (inp->inp_hpts_request == 0) && 1006 (hpts->p_on_min_sleep == 0)) { 1007 /* 1008 * The hpts is sleeping and NOT on a minimum 1009 * sleep time, we need to figure out where 1010 * it will wake up at and if we need to reschedule 1011 * its time-out. 1012 */ 1013 uint32_t have_slept, yet_to_sleep; 1014 1015 /* Now do we need to restart the hpts's timer? */ 1016 have_slept = hpts_slots_diff(hpts->p_prev_slot, wheel_slot); 1017 if (have_slept < hpts->p_hpts_sleep_time) 1018 yet_to_sleep = hpts->p_hpts_sleep_time - have_slept; 1019 else { 1020 /* We are over-due */ 1021 yet_to_sleep = 0; 1022 need_wakeup = 1; 1023 } 1024 if (diag) { 1025 diag->have_slept = have_slept; 1026 diag->yet_to_sleep = yet_to_sleep; 1027 } 1028 if (yet_to_sleep && 1029 (yet_to_sleep > slot)) { 1030 /* 1031 * We need to reschedule the hpts's time-out. 1032 */ 1033 hpts->p_hpts_sleep_time = slot; 1034 need_new_to = slot * HPTS_TICKS_PER_SLOT; 1035 } 1036 } 1037 /* 1038 * Now how far is the hpts sleeping to? if active is 1, its 1039 * up and ticking we do nothing, otherwise we may need to 1040 * reschedule its callout if need_new_to is set from above. 1041 */ 1042 if (need_wakeup) { 1043 hpts->p_direct_wake = 1; 1044 tcp_wakehpts(hpts); 1045 if (diag) { 1046 diag->need_new_to = 0; 1047 diag->co_ret = 0xffff0000; 1048 } 1049 } else if (need_new_to) { 1050 int32_t co_ret; 1051 struct timeval tv; 1052 sbintime_t sb; 1053 1054 tv.tv_sec = 0; 1055 tv.tv_usec = 0; 1056 while (need_new_to > HPTS_USEC_IN_SEC) { 1057 tv.tv_sec++; 1058 need_new_to -= HPTS_USEC_IN_SEC; 1059 } 1060 tv.tv_usec = need_new_to; 1061 sb = tvtosbt(tv); 1062 cpu = (tcp_bind_threads || hpts_use_assigned_cpu) ? hpts->p_cpu : curcpu; 1063 co_ret = callout_reset_sbt_on(&hpts->co, sb, 0, 1064 hpts_timeout_swi, hpts, cpu, 1065 (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision))); 1066 if (diag) { 1067 diag->need_new_to = need_new_to; 1068 diag->co_ret = co_ret; 1069 } 1070 } 1071 slot_on = hpts->p_nxt_slot; 1072 HPTS_UNLOCK(hpts); 1073 1074 return (slot_on); 1075 } 1076 1077 void 1078 tcp_set_inp_to_drop(struct inpcb *inp, uint16_t reason) 1079 { 1080 struct tcp_hpts_entry *hpts; 1081 struct tcpcb *tp = intotcpcb(inp); 1082 1083 INP_WLOCK_ASSERT(inp); 1084 inp->inp_hpts_drop_reas = reason; 1085 if (inp->inp_in_dropq != IHPTS_NONE) 1086 return; 1087 hpts = tcp_dropq_lock(tp->t_inpcb); 1088 MPASS(hpts->p_cpu == inp->inp_dropq_cpu); 1089 1090 TAILQ_INSERT_TAIL(&hpts->p_dropq, inp, inp_dropq); 1091 inp->inp_in_dropq = IHPTS_ONQUEUE; 1092 inp->inp_dropq_gencnt = hpts->p_dropq_gencnt; 1093 hpts->p_dropq_cnt++; 1094 in_pcbref(inp); 1095 1096 if ((hpts->p_hpts_active == 0) && (hpts->p_on_min_sleep == 0)){ 1097 hpts->p_direct_wake = 1; 1098 tcp_wakehpts(hpts); 1099 } 1100 HPTS_UNLOCK(hpts); 1101 } 1102 1103 uint16_t 1104 hpts_random_cpu(struct inpcb *inp){ 1105 /* 1106 * No flow type set distribute the load randomly. 1107 */ 1108 uint16_t cpuid; 1109 uint32_t ran; 1110 1111 /* 1112 * If one has been set use it i.e. we want both in and out on the 1113 * same hpts. 1114 */ 1115 if (inp->inp_dropq_cpu_set) { 1116 return (inp->inp_dropq_cpu); 1117 } else if (inp->inp_hpts_cpu_set) { 1118 return (inp->inp_hpts_cpu); 1119 } 1120 /* Nothing set use a random number */ 1121 ran = arc4random(); 1122 cpuid = (((ran & 0xffff) % mp_ncpus) % tcp_pace.rp_num_hptss); 1123 return (cpuid); 1124 } 1125 1126 static uint16_t 1127 hpts_cpuid(struct inpcb *inp, int *failed) 1128 { 1129 u_int cpuid; 1130 #if !defined(RSS) && defined(NUMA) 1131 struct hpts_domain_info *di; 1132 #endif 1133 1134 *failed = 0; 1135 /* 1136 * If one has been set use it i.e. we want both in and out on the 1137 * same hpts. 1138 */ 1139 if (inp->inp_dropq_cpu_set) { 1140 return (inp->inp_dropq_cpu); 1141 } else if (inp->inp_hpts_cpu_set) { 1142 return (inp->inp_hpts_cpu); 1143 } 1144 /* 1145 * If we are using the irq cpu set by LRO or 1146 * the driver then it overrides all other domains. 1147 */ 1148 if (tcp_use_irq_cpu) { 1149 if (inp->inp_irq_cpu_set == 0) { 1150 *failed = 1; 1151 return(0); 1152 } 1153 return(inp->inp_irq_cpu); 1154 } 1155 /* If one is set the other must be the same */ 1156 #ifdef RSS 1157 cpuid = rss_hash2cpuid(inp->inp_flowid, inp->inp_flowtype); 1158 if (cpuid == NETISR_CPUID_NONE) 1159 return (hpts_random_cpu(inp)); 1160 else 1161 return (cpuid); 1162 #else 1163 /* 1164 * We don't have a flowid -> cpuid mapping, so cheat and just map 1165 * unknown cpuids to curcpu. Not the best, but apparently better 1166 * than defaulting to swi 0. 1167 */ 1168 if (inp->inp_flowtype == M_HASHTYPE_NONE) { 1169 counter_u64_add(cpu_uses_random, 1); 1170 return (hpts_random_cpu(inp)); 1171 } 1172 /* 1173 * Hash to a thread based on the flowid. If we are using numa, 1174 * then restrict the hash to the numa domain where the inp lives. 1175 */ 1176 #ifdef NUMA 1177 if (tcp_bind_threads == 2 && inp->inp_numa_domain != M_NODOM) { 1178 di = &hpts_domains[inp->inp_numa_domain]; 1179 cpuid = di->cpu[inp->inp_flowid % di->count]; 1180 } else 1181 #endif 1182 cpuid = inp->inp_flowid % mp_ncpus; 1183 counter_u64_add(cpu_uses_flowid, 1); 1184 return (cpuid); 1185 #endif 1186 } 1187 1188 static void 1189 tcp_drop_in_pkts(struct tcpcb *tp) 1190 { 1191 struct mbuf *m, *n; 1192 1193 m = tp->t_in_pkt; 1194 if (m) 1195 n = m->m_nextpkt; 1196 else 1197 n = NULL; 1198 tp->t_in_pkt = NULL; 1199 while (m) { 1200 m_freem(m); 1201 m = n; 1202 if (m) 1203 n = m->m_nextpkt; 1204 } 1205 } 1206 1207 /* 1208 * Delayed drop functionality is factored out into separate function, 1209 * but logic is similar to the logic of tcp_hptsi(). 1210 */ 1211 static void 1212 tcp_delayed_drop(struct tcp_hpts_entry *hpts) 1213 { 1214 TAILQ_HEAD(, inpcb) head = TAILQ_HEAD_INITIALIZER(head); 1215 struct inpcb *inp, *tmp; 1216 struct tcpcb *tp; 1217 1218 HPTS_MTX_ASSERT(hpts); 1219 NET_EPOCH_ASSERT(); 1220 1221 TAILQ_SWAP(&head, &hpts->p_dropq, inpcb, inp_dropq); 1222 hpts->p_dropq_cnt = 0; 1223 hpts->p_dropq_gencnt++; 1224 HPTS_UNLOCK(hpts); 1225 1226 TAILQ_FOREACH_SAFE(inp, &head, inp_dropq, tmp) { 1227 INP_WLOCK(inp); 1228 MPASS(inp->inp_hpts_drop_reas != 0); 1229 if (__predict_false(inp->inp_in_dropq == IHPTS_MOVING)) { 1230 inp->inp_in_dropq = IHPTS_NONE; 1231 if (in_pcbrele_wlocked(inp) == false) 1232 INP_WUNLOCK(inp); 1233 continue; 1234 } 1235 MPASS(inp->inp_in_dropq == IHPTS_ONQUEUE); 1236 inp->inp_in_dropq = IHPTS_NONE; 1237 if ((inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED))) { 1238 if (in_pcbrele_wlocked(inp) == false) 1239 INP_WUNLOCK(inp); 1240 continue; 1241 } 1242 CURVNET_SET(inp->inp_vnet); 1243 if (__predict_true((tp = intotcpcb(inp)) != NULL)) { 1244 MPASS(tp->t_inpcb == inp); 1245 tcp_drop_in_pkts(tp); 1246 tp = tcp_drop(tp, inp->inp_hpts_drop_reas); 1247 if (tp == NULL) 1248 INP_WLOCK(inp); 1249 } 1250 if (in_pcbrele_wlocked(inp) == false) 1251 INP_WUNLOCK(inp); 1252 CURVNET_RESTORE(); 1253 } 1254 1255 mtx_lock(&hpts->p_mtx); /* XXXGL */ 1256 } 1257 1258 static void 1259 tcp_hpts_set_max_sleep(struct tcp_hpts_entry *hpts, int wrap_loop_cnt) 1260 { 1261 uint32_t t = 0, i, fnd = 0; 1262 1263 if ((hpts->p_on_queue_cnt) && (wrap_loop_cnt < 2)) { 1264 /* 1265 * Find next slot that is occupied and use that to 1266 * be the sleep time. 1267 */ 1268 for (i = 0, t = hpts_slot(hpts->p_cur_slot, 1); i < NUM_OF_HPTSI_SLOTS; i++) { 1269 if (TAILQ_EMPTY(&hpts->p_hptss[t].head) == 0) { 1270 fnd = 1; 1271 break; 1272 } 1273 t = (t + 1) % NUM_OF_HPTSI_SLOTS; 1274 } 1275 KASSERT(fnd != 0, ("Hpts:%p cnt:%d but none found", hpts, hpts->p_on_queue_cnt)); 1276 hpts->p_hpts_sleep_time = min((i + 1), hpts_sleep_max); 1277 } else { 1278 /* No one on the wheel sleep for all but 400 slots or sleep max */ 1279 hpts->p_hpts_sleep_time = hpts_sleep_max; 1280 } 1281 } 1282 1283 static int32_t 1284 tcp_hptsi(struct tcp_hpts_entry *hpts, int from_callout) 1285 { 1286 struct tcpcb *tp; 1287 struct inpcb *inp; 1288 struct timeval tv; 1289 uint64_t total_slots_processed = 0; 1290 int32_t slots_to_run, i, error; 1291 int32_t paced_cnt = 0; 1292 int32_t loop_cnt = 0; 1293 int32_t did_prefetch = 0; 1294 int32_t prefetch_ninp = 0; 1295 int32_t prefetch_tp = 0; 1296 int32_t wrap_loop_cnt = 0; 1297 int32_t slot_pos_of_endpoint = 0; 1298 int32_t orig_exit_slot; 1299 int8_t completed_measure = 0, seen_endpoint = 0; 1300 1301 HPTS_MTX_ASSERT(hpts); 1302 NET_EPOCH_ASSERT(); 1303 /* record previous info for any logging */ 1304 hpts->saved_lasttick = hpts->p_lasttick; 1305 hpts->saved_curtick = hpts->p_curtick; 1306 hpts->saved_curslot = hpts->p_cur_slot; 1307 hpts->saved_prev_slot = hpts->p_prev_slot; 1308 1309 hpts->p_lasttick = hpts->p_curtick; 1310 hpts->p_curtick = tcp_gethptstick(&tv); 1311 cts_last_ran[hpts->p_num] = tcp_tv_to_usectick(&tv); 1312 orig_exit_slot = hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick); 1313 if ((hpts->p_on_queue_cnt == 0) || 1314 (hpts->p_lasttick == hpts->p_curtick)) { 1315 /* 1316 * No time has yet passed, 1317 * or nothing to do. 1318 */ 1319 hpts->p_prev_slot = hpts->p_cur_slot; 1320 hpts->p_lasttick = hpts->p_curtick; 1321 goto no_run; 1322 } 1323 again: 1324 hpts->p_wheel_complete = 0; 1325 HPTS_MTX_ASSERT(hpts); 1326 slots_to_run = hpts_slots_diff(hpts->p_prev_slot, hpts->p_cur_slot); 1327 if (((hpts->p_curtick - hpts->p_lasttick) > 1328 ((NUM_OF_HPTSI_SLOTS-1) * HPTS_TICKS_PER_SLOT)) && 1329 (hpts->p_on_queue_cnt != 0)) { 1330 /* 1331 * Wheel wrap is occuring, basically we 1332 * are behind and the distance between 1333 * run's has spread so much it has exceeded 1334 * the time on the wheel (1.024 seconds). This 1335 * is ugly and should NOT be happening. We 1336 * need to run the entire wheel. We last processed 1337 * p_prev_slot, so that needs to be the last slot 1338 * we run. The next slot after that should be our 1339 * reserved first slot for new, and then starts 1340 * the running postion. Now the problem is the 1341 * reserved "not to yet" place does not exist 1342 * and there may be inp's in there that need 1343 * running. We can merge those into the 1344 * first slot at the head. 1345 */ 1346 wrap_loop_cnt++; 1347 hpts->p_nxt_slot = hpts_slot(hpts->p_prev_slot, 1); 1348 hpts->p_runningslot = hpts_slot(hpts->p_prev_slot, 2); 1349 /* 1350 * Adjust p_cur_slot to be where we are starting from 1351 * hopefully we will catch up (fat chance if something 1352 * is broken this bad :( ) 1353 */ 1354 hpts->p_cur_slot = hpts->p_prev_slot; 1355 /* 1356 * The next slot has guys to run too, and that would 1357 * be where we would normally start, lets move them into 1358 * the next slot (p_prev_slot + 2) so that we will 1359 * run them, the extra 10usecs of late (by being 1360 * put behind) does not really matter in this situation. 1361 */ 1362 TAILQ_FOREACH(inp, &hpts->p_hptss[hpts->p_nxt_slot].head, 1363 inp_hpts) { 1364 MPASS(inp->inp_hptsslot == hpts->p_nxt_slot); 1365 MPASS(inp->inp_hpts_gencnt == 1366 hpts->p_hptss[hpts->p_nxt_slot].gencnt); 1367 MPASS(inp->inp_in_hpts == IHPTS_ONQUEUE); 1368 1369 /* 1370 * Update gencnt and nextslot accordingly to match 1371 * the new location. This is safe since it takes both 1372 * the INP lock and the pacer mutex to change the 1373 * inp_hptsslot and inp_hpts_gencnt. 1374 */ 1375 inp->inp_hpts_gencnt = 1376 hpts->p_hptss[hpts->p_runningslot].gencnt; 1377 inp->inp_hptsslot = hpts->p_runningslot; 1378 } 1379 TAILQ_CONCAT(&hpts->p_hptss[hpts->p_runningslot].head, 1380 &hpts->p_hptss[hpts->p_nxt_slot].head, inp_hpts); 1381 hpts->p_hptss[hpts->p_runningslot].count += 1382 hpts->p_hptss[hpts->p_nxt_slot].count; 1383 hpts->p_hptss[hpts->p_nxt_slot].count = 0; 1384 hpts->p_hptss[hpts->p_nxt_slot].gencnt++; 1385 slots_to_run = NUM_OF_HPTSI_SLOTS - 1; 1386 counter_u64_add(wheel_wrap, 1); 1387 } else { 1388 /* 1389 * Nxt slot is always one after p_runningslot though 1390 * its not used usually unless we are doing wheel wrap. 1391 */ 1392 hpts->p_nxt_slot = hpts->p_prev_slot; 1393 hpts->p_runningslot = hpts_slot(hpts->p_prev_slot, 1); 1394 } 1395 KASSERT((((TAILQ_EMPTY(&hpts->p_dropq) != 0) && (hpts->p_dropq_cnt == 0)) || 1396 ((TAILQ_EMPTY(&hpts->p_dropq) == 0) && (hpts->p_dropq_cnt > 0))), 1397 ("%s hpts:%p in_hpts cnt:%d and queue state mismatch", 1398 __FUNCTION__, hpts, hpts->p_dropq_cnt)); 1399 if (hpts->p_on_queue_cnt == 0) { 1400 goto no_one; 1401 } 1402 for (i = 0; i < slots_to_run; i++) { 1403 struct inpcb *inp, *ninp; 1404 TAILQ_HEAD(, inpcb) head = TAILQ_HEAD_INITIALIZER(head); 1405 struct hptsh *hptsh; 1406 uint32_t runningslot, gencnt; 1407 1408 /* 1409 * Calculate our delay, if there are no extra ticks there 1410 * was not any (i.e. if slots_to_run == 1, no delay). 1411 */ 1412 hpts->p_delayed_by = (slots_to_run - (i + 1)) * 1413 HPTS_TICKS_PER_SLOT; 1414 1415 runningslot = hpts->p_runningslot; 1416 hptsh = &hpts->p_hptss[runningslot]; 1417 TAILQ_SWAP(&head, &hptsh->head, inpcb, inp_hpts); 1418 hpts->p_on_queue_cnt -= hptsh->count; 1419 hptsh->count = 0; 1420 gencnt = hptsh->gencnt++; 1421 1422 HPTS_UNLOCK(hpts); 1423 1424 TAILQ_FOREACH_SAFE(inp, &head, inp_hpts, ninp) { 1425 bool set_cpu; 1426 1427 if (ninp != NULL) { 1428 /* We prefetch the next inp if possible */ 1429 kern_prefetch(ninp, &prefetch_ninp); 1430 prefetch_ninp = 1; 1431 } 1432 1433 /* For debugging */ 1434 if (seen_endpoint == 0) { 1435 seen_endpoint = 1; 1436 orig_exit_slot = slot_pos_of_endpoint = 1437 runningslot; 1438 } else if (completed_measure == 0) { 1439 /* Record the new position */ 1440 orig_exit_slot = runningslot; 1441 } 1442 total_slots_processed++; 1443 paced_cnt++; 1444 1445 INP_WLOCK(inp); 1446 if (inp->inp_hpts_cpu_set == 0) { 1447 set_cpu = true; 1448 } else { 1449 set_cpu = false; 1450 } 1451 1452 if (__predict_false(inp->inp_in_hpts == IHPTS_MOVING)) { 1453 if (inp->inp_hptsslot == -1) { 1454 inp->inp_in_hpts = IHPTS_NONE; 1455 if (in_pcbrele_wlocked(inp) == false) 1456 INP_WUNLOCK(inp); 1457 } else { 1458 HPTS_LOCK(hpts); 1459 inp_hpts_insert(inp, hpts); 1460 HPTS_UNLOCK(hpts); 1461 INP_WUNLOCK(inp); 1462 } 1463 continue; 1464 } 1465 1466 MPASS(inp->inp_in_hpts == IHPTS_ONQUEUE); 1467 MPASS(!(inp->inp_flags & (INP_DROPPED|INP_TIMEWAIT))); 1468 KASSERT(runningslot == inp->inp_hptsslot, 1469 ("Hpts:%p inp:%p slot mis-aligned %u vs %u", 1470 hpts, inp, runningslot, inp->inp_hptsslot)); 1471 1472 if (inp->inp_hpts_request) { 1473 /* 1474 * This guy is deferred out further in time 1475 * then our wheel had available on it. 1476 * Push him back on the wheel or run it 1477 * depending. 1478 */ 1479 uint32_t maxslots, last_slot, remaining_slots; 1480 1481 remaining_slots = slots_to_run - (i + 1); 1482 if (inp->inp_hpts_request > remaining_slots) { 1483 HPTS_LOCK(hpts); 1484 /* 1485 * How far out can we go? 1486 */ 1487 maxslots = max_slots_available(hpts, 1488 hpts->p_cur_slot, &last_slot); 1489 if (maxslots >= inp->inp_hpts_request) { 1490 /* We can place it finally to 1491 * be processed. */ 1492 inp->inp_hptsslot = hpts_slot( 1493 hpts->p_runningslot, 1494 inp->inp_hpts_request); 1495 inp->inp_hpts_request = 0; 1496 } else { 1497 /* Work off some more time */ 1498 inp->inp_hptsslot = last_slot; 1499 inp->inp_hpts_request -= 1500 maxslots; 1501 } 1502 inp_hpts_insert(inp, hpts); 1503 HPTS_UNLOCK(hpts); 1504 INP_WUNLOCK(inp); 1505 continue; 1506 } 1507 inp->inp_hpts_request = 0; 1508 /* Fall through we will so do it now */ 1509 } 1510 1511 inp_hpts_release(inp); 1512 tp = intotcpcb(inp); 1513 MPASS(tp); 1514 if (set_cpu) { 1515 /* 1516 * Setup so the next time we will move to 1517 * the right CPU. This should be a rare 1518 * event. It will sometimes happens when we 1519 * are the client side (usually not the 1520 * server). Somehow tcp_output() gets called 1521 * before the tcp_do_segment() sets the 1522 * intial state. This means the r_cpu and 1523 * r_hpts_cpu is 0. We get on the hpts, and 1524 * then tcp_input() gets called setting up 1525 * the r_cpu to the correct value. The hpts 1526 * goes off and sees the mis-match. We 1527 * simply correct it here and the CPU will 1528 * switch to the new hpts nextime the tcb 1529 * gets added to the the hpts (not this one) 1530 * :-) 1531 */ 1532 tcp_set_hpts(inp); 1533 } 1534 CURVNET_SET(inp->inp_vnet); 1535 /* Lets do any logging that we might want to */ 1536 if (hpts_does_tp_logging && (tp->t_logstate != TCP_LOG_STATE_OFF)) { 1537 tcp_hpts_log(hpts, tp, &tv, slots_to_run, i, from_callout); 1538 } 1539 1540 if (tp->t_fb_ptr != NULL) { 1541 kern_prefetch(tp->t_fb_ptr, &did_prefetch); 1542 did_prefetch = 1; 1543 } 1544 if ((inp->inp_flags2 & INP_SUPPORTS_MBUFQ) && tp->t_in_pkt) { 1545 error = (*tp->t_fb->tfb_do_queued_segments)(inp->inp_socket, tp, 0); 1546 if (error) { 1547 /* The input killed the connection */ 1548 goto skip_pacing; 1549 } 1550 } 1551 inp->inp_hpts_calls = 1; 1552 error = tp->t_fb->tfb_tcp_output(tp); 1553 inp->inp_hpts_calls = 0; 1554 if (ninp && ninp->inp_ppcb) { 1555 /* 1556 * If we have a nxt inp, see if we can 1557 * prefetch its ppcb. Note this may seem 1558 * "risky" since we have no locks (other 1559 * than the previous inp) and there no 1560 * assurance that ninp was not pulled while 1561 * we were processing inp and freed. If this 1562 * occured it could mean that either: 1563 * 1564 * a) Its NULL (which is fine we won't go 1565 * here) <or> b) Its valid (which is cool we 1566 * will prefetch it) <or> c) The inp got 1567 * freed back to the slab which was 1568 * reallocated. Then the piece of memory was 1569 * re-used and something else (not an 1570 * address) is in inp_ppcb. If that occurs 1571 * we don't crash, but take a TLB shootdown 1572 * performance hit (same as if it was NULL 1573 * and we tried to pre-fetch it). 1574 * 1575 * Considering that the likelyhood of <c> is 1576 * quite rare we will take a risk on doing 1577 * this. If performance drops after testing 1578 * we can always take this out. NB: the 1579 * kern_prefetch on amd64 actually has 1580 * protection against a bad address now via 1581 * the DMAP_() tests. This will prevent the 1582 * TLB hit, and instead if <c> occurs just 1583 * cause us to load cache with a useless 1584 * address (to us). 1585 */ 1586 kern_prefetch(ninp->inp_ppcb, &prefetch_tp); 1587 prefetch_tp = 1; 1588 } 1589 INP_WUNLOCK(inp); 1590 skip_pacing: 1591 CURVNET_RESTORE(); 1592 } 1593 if (seen_endpoint) { 1594 /* 1595 * We now have a accurate distance between 1596 * slot_pos_of_endpoint <-> orig_exit_slot 1597 * to tell us how late we were, orig_exit_slot 1598 * is where we calculated the end of our cycle to 1599 * be when we first entered. 1600 */ 1601 completed_measure = 1; 1602 } 1603 HPTS_LOCK(hpts); 1604 hpts->p_runningslot++; 1605 if (hpts->p_runningslot >= NUM_OF_HPTSI_SLOTS) { 1606 hpts->p_runningslot = 0; 1607 } 1608 } 1609 no_one: 1610 HPTS_MTX_ASSERT(hpts); 1611 hpts->p_delayed_by = 0; 1612 /* 1613 * Check to see if we took an excess amount of time and need to run 1614 * more ticks (if we did not hit eno-bufs). 1615 */ 1616 KASSERT((((TAILQ_EMPTY(&hpts->p_dropq) != 0) && (hpts->p_dropq_cnt == 0)) || 1617 ((TAILQ_EMPTY(&hpts->p_dropq) == 0) && (hpts->p_dropq_cnt > 0))), 1618 ("%s hpts:%p in_hpts cnt:%d queue state mismatch", 1619 __FUNCTION__, hpts, hpts->p_dropq_cnt)); 1620 hpts->p_prev_slot = hpts->p_cur_slot; 1621 hpts->p_lasttick = hpts->p_curtick; 1622 if ((from_callout == 0) || (loop_cnt > max_pacer_loops)) { 1623 /* 1624 * Something is serious slow we have 1625 * looped through processing the wheel 1626 * and by the time we cleared the 1627 * needs to run max_pacer_loops time 1628 * we still needed to run. That means 1629 * the system is hopelessly behind and 1630 * can never catch up :( 1631 * 1632 * We will just lie to this thread 1633 * and let it thing p_curtick is 1634 * correct. When it next awakens 1635 * it will find itself further behind. 1636 */ 1637 if (from_callout) 1638 counter_u64_add(hpts_hopelessly_behind, 1); 1639 goto no_run; 1640 } 1641 hpts->p_curtick = tcp_gethptstick(&tv); 1642 hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick); 1643 if (seen_endpoint == 0) { 1644 /* We saw no endpoint but we may be looping */ 1645 orig_exit_slot = hpts->p_cur_slot; 1646 } 1647 if ((wrap_loop_cnt < 2) && 1648 (hpts->p_lasttick != hpts->p_curtick)) { 1649 counter_u64_add(hpts_loops, 1); 1650 loop_cnt++; 1651 goto again; 1652 } 1653 no_run: 1654 cts_last_ran[hpts->p_num] = tcp_tv_to_usectick(&tv); 1655 /* 1656 * Set flag to tell that we are done for 1657 * any slot input that happens during 1658 * input. 1659 */ 1660 hpts->p_wheel_complete = 1; 1661 /* 1662 * Run any input that may be there not covered 1663 * in running data. 1664 */ 1665 tcp_delayed_drop(hpts); 1666 /* 1667 * Now did we spend too long running input and need to run more ticks? 1668 * Note that if wrap_loop_cnt < 2 then we should have the conditions 1669 * in the KASSERT's true. But if the wheel is behind i.e. wrap_loop_cnt 1670 * is greater than 2, then the condtion most likely are *not* true. 1671 * Also if we are called not from the callout, we don't run the wheel 1672 * multiple times so the slots may not align either. 1673 */ 1674 KASSERT(((hpts->p_prev_slot == hpts->p_cur_slot) || 1675 (wrap_loop_cnt >= 2) || (from_callout == 0)), 1676 ("H:%p p_prev_slot:%u not equal to p_cur_slot:%u", hpts, 1677 hpts->p_prev_slot, hpts->p_cur_slot)); 1678 KASSERT(((hpts->p_lasttick == hpts->p_curtick) 1679 || (wrap_loop_cnt >= 2) || (from_callout == 0)), 1680 ("H:%p p_lasttick:%u not equal to p_curtick:%u", hpts, 1681 hpts->p_lasttick, hpts->p_curtick)); 1682 if (from_callout && (hpts->p_lasttick != hpts->p_curtick)) { 1683 hpts->p_curtick = tcp_gethptstick(&tv); 1684 counter_u64_add(hpts_loops, 1); 1685 hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick); 1686 goto again; 1687 } 1688 1689 if (from_callout){ 1690 tcp_hpts_set_max_sleep(hpts, wrap_loop_cnt); 1691 } 1692 if (seen_endpoint) 1693 return(hpts_slots_diff(slot_pos_of_endpoint, orig_exit_slot)); 1694 else 1695 return (0); 1696 } 1697 1698 void 1699 __tcp_set_hpts(struct inpcb *inp, int32_t line) 1700 { 1701 struct tcp_hpts_entry *hpts; 1702 int failed; 1703 1704 INP_WLOCK_ASSERT(inp); 1705 hpts = tcp_hpts_lock(inp); 1706 if ((inp->inp_in_hpts == 0) && 1707 (inp->inp_hpts_cpu_set == 0)) { 1708 inp->inp_hpts_cpu = hpts_cpuid(inp, &failed); 1709 if (failed == 0) 1710 inp->inp_hpts_cpu_set = 1; 1711 } 1712 mtx_unlock(&hpts->p_mtx); 1713 hpts = tcp_dropq_lock(inp); 1714 if ((inp->inp_dropq_cpu_set == 0) && 1715 (inp->inp_in_dropq == 0)) { 1716 inp->inp_dropq_cpu = hpts_cpuid(inp, &failed); 1717 if (failed == 0) 1718 inp->inp_dropq_cpu_set = 1; 1719 } 1720 mtx_unlock(&hpts->p_mtx); 1721 } 1722 1723 static void 1724 __tcp_run_hpts(struct tcp_hpts_entry *hpts) 1725 { 1726 int ticks_ran; 1727 1728 if (hpts->p_hpts_active) { 1729 /* Already active */ 1730 return; 1731 } 1732 if (mtx_trylock(&hpts->p_mtx) == 0) { 1733 /* Someone else got the lock */ 1734 return; 1735 } 1736 if (hpts->p_hpts_active) 1737 goto out_with_mtx; 1738 hpts->syscall_cnt++; 1739 counter_u64_add(hpts_direct_call, 1); 1740 hpts->p_hpts_active = 1; 1741 ticks_ran = tcp_hptsi(hpts, 0); 1742 /* We may want to adjust the sleep values here */ 1743 if (hpts->p_on_queue_cnt >= conn_cnt_thresh) { 1744 if (ticks_ran > ticks_indicate_less_sleep) { 1745 struct timeval tv; 1746 sbintime_t sb; 1747 int cpu; 1748 1749 hpts->p_mysleep.tv_usec /= 2; 1750 if (hpts->p_mysleep.tv_usec < dynamic_min_sleep) 1751 hpts->p_mysleep.tv_usec = dynamic_min_sleep; 1752 /* Reschedule with new to value */ 1753 tcp_hpts_set_max_sleep(hpts, 0); 1754 tv.tv_usec = hpts->p_hpts_sleep_time * HPTS_TICKS_PER_SLOT; 1755 /* Validate its in the right ranges */ 1756 if (tv.tv_usec < hpts->p_mysleep.tv_usec) { 1757 hpts->overidden_sleep = tv.tv_usec; 1758 tv.tv_usec = hpts->p_mysleep.tv_usec; 1759 } else if (tv.tv_usec > dynamic_max_sleep) { 1760 /* Lets not let sleep get above this value */ 1761 hpts->overidden_sleep = tv.tv_usec; 1762 tv.tv_usec = dynamic_max_sleep; 1763 } 1764 /* 1765 * In this mode the timer is a backstop to 1766 * all the userret/lro_flushes so we use 1767 * the dynamic value and set the on_min_sleep 1768 * flag so we will not be awoken. 1769 */ 1770 sb = tvtosbt(tv); 1771 cpu = (tcp_bind_threads || hpts_use_assigned_cpu) ? hpts->p_cpu : curcpu; 1772 /* Store off to make visible the actual sleep time */ 1773 hpts->sleeping = tv.tv_usec; 1774 callout_reset_sbt_on(&hpts->co, sb, 0, 1775 hpts_timeout_swi, hpts, cpu, 1776 (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision))); 1777 } else if (ticks_ran < ticks_indicate_more_sleep) { 1778 /* For the further sleep, don't reschedule hpts */ 1779 hpts->p_mysleep.tv_usec *= 2; 1780 if (hpts->p_mysleep.tv_usec > dynamic_max_sleep) 1781 hpts->p_mysleep.tv_usec = dynamic_max_sleep; 1782 } 1783 hpts->p_on_min_sleep = 1; 1784 } 1785 hpts->p_hpts_active = 0; 1786 out_with_mtx: 1787 HPTS_MTX_ASSERT(hpts); 1788 mtx_unlock(&hpts->p_mtx); 1789 } 1790 1791 static struct tcp_hpts_entry * 1792 tcp_choose_hpts_to_run() 1793 { 1794 int i, oldest_idx; 1795 uint32_t cts, time_since_ran, calc; 1796 1797 if ((hpts_uses_oldest == 0) || 1798 ((hpts_uses_oldest > 1) && 1799 (tcp_pace.rp_ent[(tcp_pace.rp_num_hptss-1)]->p_on_queue_cnt >= hpts_uses_oldest))) { 1800 /* 1801 * We have either disabled the feature (0), or 1802 * we have crossed over the oldest threshold on the 1803 * last hpts. We use the last one for simplification 1804 * since we don't want to use the first one (it may 1805 * have starting connections that have not settled 1806 * on the cpu yet). 1807 */ 1808 return(tcp_pace.rp_ent[(curcpu % tcp_pace.rp_num_hptss)]); 1809 } 1810 /* Lets find the oldest hpts to attempt to run */ 1811 cts = tcp_get_usecs(NULL); 1812 time_since_ran = 0; 1813 oldest_idx = -1; 1814 for (i = 0; i < tcp_pace.rp_num_hptss; i++) { 1815 if (TSTMP_GT(cts, cts_last_ran[i])) 1816 calc = cts - cts_last_ran[i]; 1817 else 1818 calc = 0; 1819 if (calc > time_since_ran) { 1820 oldest_idx = i; 1821 time_since_ran = calc; 1822 } 1823 } 1824 if (oldest_idx >= 0) 1825 return(tcp_pace.rp_ent[oldest_idx]); 1826 else 1827 return(tcp_pace.rp_ent[(curcpu % tcp_pace.rp_num_hptss)]); 1828 } 1829 1830 1831 void 1832 tcp_run_hpts(void) 1833 { 1834 static struct tcp_hpts_entry *hpts; 1835 struct epoch_tracker et; 1836 1837 NET_EPOCH_ENTER(et); 1838 hpts = tcp_choose_hpts_to_run(); 1839 __tcp_run_hpts(hpts); 1840 NET_EPOCH_EXIT(et); 1841 } 1842 1843 1844 static void 1845 tcp_hpts_thread(void *ctx) 1846 { 1847 struct tcp_hpts_entry *hpts; 1848 struct epoch_tracker et; 1849 struct timeval tv; 1850 sbintime_t sb; 1851 int cpu, ticks_ran; 1852 1853 hpts = (struct tcp_hpts_entry *)ctx; 1854 mtx_lock(&hpts->p_mtx); 1855 if (hpts->p_direct_wake) { 1856 /* Signaled by input or output with low occupancy count. */ 1857 callout_stop(&hpts->co); 1858 counter_u64_add(hpts_direct_awakening, 1); 1859 } else { 1860 /* Timed out, the normal case. */ 1861 counter_u64_add(hpts_wake_timeout, 1); 1862 if (callout_pending(&hpts->co) || 1863 !callout_active(&hpts->co)) { 1864 mtx_unlock(&hpts->p_mtx); 1865 return; 1866 } 1867 } 1868 callout_deactivate(&hpts->co); 1869 hpts->p_hpts_wake_scheduled = 0; 1870 NET_EPOCH_ENTER(et); 1871 if (hpts->p_hpts_active) { 1872 /* 1873 * We are active already. This means that a syscall 1874 * trap or LRO is running in behalf of hpts. In that case 1875 * we need to double our timeout since there seems to be 1876 * enough activity in the system that we don't need to 1877 * run as often (if we were not directly woken). 1878 */ 1879 if (hpts->p_direct_wake == 0) { 1880 counter_u64_add(hpts_back_tosleep, 1); 1881 if (hpts->p_on_queue_cnt >= conn_cnt_thresh) { 1882 hpts->p_mysleep.tv_usec *= 2; 1883 if (hpts->p_mysleep.tv_usec > dynamic_max_sleep) 1884 hpts->p_mysleep.tv_usec = dynamic_max_sleep; 1885 tv.tv_usec = hpts->p_mysleep.tv_usec; 1886 hpts->p_on_min_sleep = 1; 1887 } else { 1888 /* 1889 * Here we have low count on the wheel, but 1890 * somehow we still collided with one of the 1891 * connections. Lets go back to sleep for a 1892 * min sleep time, but clear the flag so we 1893 * can be awoken by insert. 1894 */ 1895 hpts->p_on_min_sleep = 0; 1896 tv.tv_usec = tcp_min_hptsi_time; 1897 } 1898 } else { 1899 /* 1900 * Directly woken most likely to reset the 1901 * callout time. 1902 */ 1903 tv.tv_sec = 0; 1904 tv.tv_usec = hpts->p_mysleep.tv_usec; 1905 } 1906 goto back_to_sleep; 1907 } 1908 hpts->sleeping = 0; 1909 hpts->p_hpts_active = 1; 1910 ticks_ran = tcp_hptsi(hpts, 1); 1911 tv.tv_sec = 0; 1912 tv.tv_usec = hpts->p_hpts_sleep_time * HPTS_TICKS_PER_SLOT; 1913 if (hpts->p_on_queue_cnt >= conn_cnt_thresh) { 1914 if(hpts->p_direct_wake == 0) { 1915 /* 1916 * Only adjust sleep time if we were 1917 * called from the callout i.e. direct_wake == 0. 1918 */ 1919 if (ticks_ran < ticks_indicate_more_sleep) { 1920 hpts->p_mysleep.tv_usec *= 2; 1921 if (hpts->p_mysleep.tv_usec > dynamic_max_sleep) 1922 hpts->p_mysleep.tv_usec = dynamic_max_sleep; 1923 } else if (ticks_ran > ticks_indicate_less_sleep) { 1924 hpts->p_mysleep.tv_usec /= 2; 1925 if (hpts->p_mysleep.tv_usec < dynamic_min_sleep) 1926 hpts->p_mysleep.tv_usec = dynamic_min_sleep; 1927 } 1928 } 1929 if (tv.tv_usec < hpts->p_mysleep.tv_usec) { 1930 hpts->overidden_sleep = tv.tv_usec; 1931 tv.tv_usec = hpts->p_mysleep.tv_usec; 1932 } else if (tv.tv_usec > dynamic_max_sleep) { 1933 /* Lets not let sleep get above this value */ 1934 hpts->overidden_sleep = tv.tv_usec; 1935 tv.tv_usec = dynamic_max_sleep; 1936 } 1937 /* 1938 * In this mode the timer is a backstop to 1939 * all the userret/lro_flushes so we use 1940 * the dynamic value and set the on_min_sleep 1941 * flag so we will not be awoken. 1942 */ 1943 hpts->p_on_min_sleep = 1; 1944 } else if (hpts->p_on_queue_cnt == 0) { 1945 /* 1946 * No one on the wheel, please wake us up 1947 * if you insert on the wheel. 1948 */ 1949 hpts->p_on_min_sleep = 0; 1950 hpts->overidden_sleep = 0; 1951 } else { 1952 /* 1953 * We hit here when we have a low number of 1954 * clients on the wheel (our else clause). 1955 * We may need to go on min sleep, if we set 1956 * the flag we will not be awoken if someone 1957 * is inserted ahead of us. Clearing the flag 1958 * means we can be awoken. This is "old mode" 1959 * where the timer is what runs hpts mainly. 1960 */ 1961 if (tv.tv_usec < tcp_min_hptsi_time) { 1962 /* 1963 * Yes on min sleep, which means 1964 * we cannot be awoken. 1965 */ 1966 hpts->overidden_sleep = tv.tv_usec; 1967 tv.tv_usec = tcp_min_hptsi_time; 1968 hpts->p_on_min_sleep = 1; 1969 } else { 1970 /* Clear the min sleep flag */ 1971 hpts->overidden_sleep = 0; 1972 hpts->p_on_min_sleep = 0; 1973 } 1974 } 1975 HPTS_MTX_ASSERT(hpts); 1976 hpts->p_hpts_active = 0; 1977 back_to_sleep: 1978 hpts->p_direct_wake = 0; 1979 sb = tvtosbt(tv); 1980 cpu = (tcp_bind_threads || hpts_use_assigned_cpu) ? hpts->p_cpu : curcpu; 1981 /* Store off to make visible the actual sleep time */ 1982 hpts->sleeping = tv.tv_usec; 1983 callout_reset_sbt_on(&hpts->co, sb, 0, 1984 hpts_timeout_swi, hpts, cpu, 1985 (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision))); 1986 NET_EPOCH_EXIT(et); 1987 mtx_unlock(&hpts->p_mtx); 1988 } 1989 1990 #undef timersub 1991 1992 static void 1993 tcp_init_hptsi(void *st) 1994 { 1995 int32_t i, j, error, bound = 0, created = 0; 1996 size_t sz, asz; 1997 struct timeval tv; 1998 sbintime_t sb; 1999 struct tcp_hpts_entry *hpts; 2000 struct pcpu *pc; 2001 cpuset_t cs; 2002 char unit[16]; 2003 uint32_t ncpus = mp_ncpus ? mp_ncpus : MAXCPU; 2004 int count, domain, cpu; 2005 2006 tcp_pace.rp_num_hptss = ncpus; 2007 hpts_hopelessly_behind = counter_u64_alloc(M_WAITOK); 2008 hpts_loops = counter_u64_alloc(M_WAITOK); 2009 back_tosleep = counter_u64_alloc(M_WAITOK); 2010 combined_wheel_wrap = counter_u64_alloc(M_WAITOK); 2011 wheel_wrap = counter_u64_alloc(M_WAITOK); 2012 hpts_wake_timeout = counter_u64_alloc(M_WAITOK); 2013 hpts_direct_awakening = counter_u64_alloc(M_WAITOK); 2014 hpts_back_tosleep = counter_u64_alloc(M_WAITOK); 2015 hpts_direct_call = counter_u64_alloc(M_WAITOK); 2016 cpu_uses_flowid = counter_u64_alloc(M_WAITOK); 2017 cpu_uses_random = counter_u64_alloc(M_WAITOK); 2018 2019 2020 sz = (tcp_pace.rp_num_hptss * sizeof(struct tcp_hpts_entry *)); 2021 tcp_pace.rp_ent = malloc(sz, M_TCPHPTS, M_WAITOK | M_ZERO); 2022 sz = (sizeof(uint32_t) * tcp_pace.rp_num_hptss); 2023 cts_last_ran = malloc(sz, M_TCPHPTS, M_WAITOK); 2024 asz = sizeof(struct hptsh) * NUM_OF_HPTSI_SLOTS; 2025 for (i = 0; i < tcp_pace.rp_num_hptss; i++) { 2026 tcp_pace.rp_ent[i] = malloc(sizeof(struct tcp_hpts_entry), 2027 M_TCPHPTS, M_WAITOK | M_ZERO); 2028 tcp_pace.rp_ent[i]->p_hptss = malloc(asz, 2029 M_TCPHPTS, M_WAITOK); 2030 hpts = tcp_pace.rp_ent[i]; 2031 /* 2032 * Init all the hpts structures that are not specifically 2033 * zero'd by the allocations. Also lets attach them to the 2034 * appropriate sysctl block as well. 2035 */ 2036 mtx_init(&hpts->p_mtx, "tcp_hpts_lck", 2037 "hpts", MTX_DEF | MTX_DUPOK); 2038 TAILQ_INIT(&hpts->p_dropq); 2039 for (j = 0; j < NUM_OF_HPTSI_SLOTS; j++) { 2040 TAILQ_INIT(&hpts->p_hptss[j].head); 2041 hpts->p_hptss[j].count = 0; 2042 hpts->p_hptss[j].gencnt = 0; 2043 } 2044 sysctl_ctx_init(&hpts->hpts_ctx); 2045 sprintf(unit, "%d", i); 2046 hpts->hpts_root = SYSCTL_ADD_NODE(&hpts->hpts_ctx, 2047 SYSCTL_STATIC_CHILDREN(_net_inet_tcp_hpts), 2048 OID_AUTO, 2049 unit, 2050 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 2051 ""); 2052 SYSCTL_ADD_INT(&hpts->hpts_ctx, 2053 SYSCTL_CHILDREN(hpts->hpts_root), 2054 OID_AUTO, "in_qcnt", CTLFLAG_RD, 2055 &hpts->p_dropq_cnt, 0, 2056 "Count TCB's awaiting delayed drop"); 2057 SYSCTL_ADD_INT(&hpts->hpts_ctx, 2058 SYSCTL_CHILDREN(hpts->hpts_root), 2059 OID_AUTO, "out_qcnt", CTLFLAG_RD, 2060 &hpts->p_on_queue_cnt, 0, 2061 "Count TCB's awaiting output processing"); 2062 SYSCTL_ADD_U16(&hpts->hpts_ctx, 2063 SYSCTL_CHILDREN(hpts->hpts_root), 2064 OID_AUTO, "active", CTLFLAG_RD, 2065 &hpts->p_hpts_active, 0, 2066 "Is the hpts active"); 2067 SYSCTL_ADD_UINT(&hpts->hpts_ctx, 2068 SYSCTL_CHILDREN(hpts->hpts_root), 2069 OID_AUTO, "curslot", CTLFLAG_RD, 2070 &hpts->p_cur_slot, 0, 2071 "What the current running pacers goal"); 2072 SYSCTL_ADD_UINT(&hpts->hpts_ctx, 2073 SYSCTL_CHILDREN(hpts->hpts_root), 2074 OID_AUTO, "runtick", CTLFLAG_RD, 2075 &hpts->p_runningslot, 0, 2076 "What the running pacers current slot is"); 2077 SYSCTL_ADD_UINT(&hpts->hpts_ctx, 2078 SYSCTL_CHILDREN(hpts->hpts_root), 2079 OID_AUTO, "curtick", CTLFLAG_RD, 2080 &hpts->p_curtick, 0, 2081 "What the running pacers last tick mapped to the wheel was"); 2082 SYSCTL_ADD_UINT(&hpts->hpts_ctx, 2083 SYSCTL_CHILDREN(hpts->hpts_root), 2084 OID_AUTO, "lastran", CTLFLAG_RD, 2085 &cts_last_ran[i], 0, 2086 "The last usec tick that this hpts ran"); 2087 SYSCTL_ADD_LONG(&hpts->hpts_ctx, 2088 SYSCTL_CHILDREN(hpts->hpts_root), 2089 OID_AUTO, "cur_min_sleep", CTLFLAG_RD, 2090 &hpts->p_mysleep.tv_usec, 2091 "What the running pacers is using for p_mysleep.tv_usec"); 2092 SYSCTL_ADD_U64(&hpts->hpts_ctx, 2093 SYSCTL_CHILDREN(hpts->hpts_root), 2094 OID_AUTO, "now_sleeping", CTLFLAG_RD, 2095 &hpts->sleeping, 0, 2096 "What the running pacers is actually sleeping for"); 2097 SYSCTL_ADD_U64(&hpts->hpts_ctx, 2098 SYSCTL_CHILDREN(hpts->hpts_root), 2099 OID_AUTO, "syscall_cnt", CTLFLAG_RD, 2100 &hpts->syscall_cnt, 0, 2101 "How many times we had syscalls on this hpts"); 2102 2103 hpts->p_hpts_sleep_time = hpts_sleep_max; 2104 hpts->p_num = i; 2105 hpts->p_curtick = tcp_gethptstick(&tv); 2106 cts_last_ran[i] = tcp_tv_to_usectick(&tv); 2107 hpts->p_prev_slot = hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick); 2108 hpts->p_cpu = 0xffff; 2109 hpts->p_nxt_slot = hpts_slot(hpts->p_cur_slot, 1); 2110 callout_init(&hpts->co, 1); 2111 } 2112 2113 /* Don't try to bind to NUMA domains if we don't have any */ 2114 if (vm_ndomains == 1 && tcp_bind_threads == 2) 2115 tcp_bind_threads = 0; 2116 2117 /* 2118 * Now lets start ithreads to handle the hptss. 2119 */ 2120 for (i = 0; i < tcp_pace.rp_num_hptss; i++) { 2121 hpts = tcp_pace.rp_ent[i]; 2122 hpts->p_cpu = i; 2123 error = swi_add(&hpts->ie, "hpts", 2124 tcp_hpts_thread, (void *)hpts, 2125 SWI_NET, INTR_MPSAFE, &hpts->ie_cookie); 2126 KASSERT(error == 0, 2127 ("Can't add hpts:%p i:%d err:%d", 2128 hpts, i, error)); 2129 created++; 2130 hpts->p_mysleep.tv_sec = 0; 2131 hpts->p_mysleep.tv_usec = tcp_min_hptsi_time; 2132 if (tcp_bind_threads == 1) { 2133 if (intr_event_bind(hpts->ie, i) == 0) 2134 bound++; 2135 } else if (tcp_bind_threads == 2) { 2136 pc = pcpu_find(i); 2137 domain = pc->pc_domain; 2138 CPU_COPY(&cpuset_domain[domain], &cs); 2139 if (intr_event_bind_ithread_cpuset(hpts->ie, &cs) 2140 == 0) { 2141 bound++; 2142 count = hpts_domains[domain].count; 2143 hpts_domains[domain].cpu[count] = i; 2144 hpts_domains[domain].count++; 2145 } 2146 } 2147 tv.tv_sec = 0; 2148 tv.tv_usec = hpts->p_hpts_sleep_time * HPTS_TICKS_PER_SLOT; 2149 hpts->sleeping = tv.tv_usec; 2150 sb = tvtosbt(tv); 2151 cpu = (tcp_bind_threads || hpts_use_assigned_cpu) ? hpts->p_cpu : curcpu; 2152 callout_reset_sbt_on(&hpts->co, sb, 0, 2153 hpts_timeout_swi, hpts, cpu, 2154 (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision))); 2155 } 2156 /* 2157 * If we somehow have an empty domain, fall back to choosing 2158 * among all htps threads. 2159 */ 2160 for (i = 0; i < vm_ndomains; i++) { 2161 if (hpts_domains[i].count == 0) { 2162 tcp_bind_threads = 0; 2163 break; 2164 } 2165 } 2166 printf("TCP Hpts created %d swi interrupt threads and bound %d to %s\n", 2167 created, bound, 2168 tcp_bind_threads == 2 ? "NUMA domains" : "cpus"); 2169 #ifdef INVARIANTS 2170 printf("HPTS is in INVARIANT mode!!\n"); 2171 #endif 2172 } 2173 2174 SYSINIT(tcphptsi, SI_SUB_SOFTINTR, SI_ORDER_ANY, tcp_init_hptsi, NULL); 2175 MODULE_VERSION(tcphpts, 1); 2176