xref: /freebsd/sys/netinet/tcp_hpts.c (revision 9f23cbd6cae82fd77edfad7173432fa8dccd0a95)
1 /*-
2  * Copyright (c) 2016-2018 Netflix, Inc.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  * 1. Redistributions of source code must retain the above copyright
8  *    notice, this list of conditions and the following disclaimer.
9  * 2. Redistributions in binary form must reproduce the above copyright
10  *    notice, this list of conditions and the following disclaimer in the
11  *    documentation and/or other materials provided with the distribution.
12  *
13  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
14  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
17  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23  * SUCH DAMAGE.
24  *
25  */
26 #include <sys/cdefs.h>
27 __FBSDID("$FreeBSD$");
28 
29 #include "opt_inet.h"
30 #include "opt_inet6.h"
31 #include "opt_rss.h"
32 
33 /**
34  * Some notes about usage.
35  *
36  * The tcp_hpts system is designed to provide a high precision timer
37  * system for tcp. Its main purpose is to provide a mechanism for
38  * pacing packets out onto the wire. It can be used in two ways
39  * by a given TCP stack (and those two methods can be used simultaneously).
40  *
41  * First, and probably the main thing its used by Rack and BBR, it can
42  * be used to call tcp_output() of a transport stack at some time in the future.
43  * The normal way this is done is that tcp_output() of the stack schedules
44  * itself to be called again by calling tcp_hpts_insert(tcpcb, slot). The
45  * slot is the time from now that the stack wants to be called but it
46  * must be converted to tcp_hpts's notion of slot. This is done with
47  * one of the macros HPTS_MS_TO_SLOTS or HPTS_USEC_TO_SLOTS. So a typical
48  * call from the tcp_output() routine might look like:
49  *
50  * tcp_hpts_insert(tp, HPTS_USEC_TO_SLOTS(550));
51  *
52  * The above would schedule tcp_ouput() to be called in 550 useconds.
53  * Note that if using this mechanism the stack will want to add near
54  * its top a check to prevent unwanted calls (from user land or the
55  * arrival of incoming ack's). So it would add something like:
56  *
57  * if (tcp_in_hpts(inp))
58  *    return;
59  *
60  * to prevent output processing until the time alotted has gone by.
61  * Of course this is a bare bones example and the stack will probably
62  * have more consideration then just the above.
63  *
64  * In order to run input queued segments from the HPTS context the
65  * tcp stack must define an input function for
66  * tfb_do_queued_segments(). This function understands
67  * how to dequeue a array of packets that were input and
68  * knows how to call the correct processing routine.
69  *
70  * Locking in this is important as well so most likely the
71  * stack will need to define the tfb_do_segment_nounlock()
72  * splitting tfb_do_segment() into two parts. The main processing
73  * part that does not unlock the INP and returns a value of 1 or 0.
74  * It returns 0 if all is well and the lock was not released. It
75  * returns 1 if we had to destroy the TCB (a reset received etc).
76  * The remains of tfb_do_segment() then become just a simple call
77  * to the tfb_do_segment_nounlock() function and check the return
78  * code and possibly unlock.
79  *
80  * The stack must also set the flag on the INP that it supports this
81  * feature i.e. INP_SUPPORTS_MBUFQ. The LRO code recoginizes
82  * this flag as well and will queue packets when it is set.
83  * There are other flags as well INP_MBUF_QUEUE_READY and
84  * INP_DONT_SACK_QUEUE. The first flag tells the LRO code
85  * that we are in the pacer for output so there is no
86  * need to wake up the hpts system to get immediate
87  * input. The second tells the LRO code that its okay
88  * if a SACK arrives you can still defer input and let
89  * the current hpts timer run (this is usually set when
90  * a rack timer is up so we know SACK's are happening
91  * on the connection already and don't want to wakeup yet).
92  *
93  * There is a common functions within the rack_bbr_common code
94  * version i.e. ctf_do_queued_segments(). This function
95  * knows how to take the input queue of packets from tp->t_inqueue
96  * and process them digging out all the arguments, calling any bpf tap and
97  * calling into tfb_do_segment_nounlock(). The common
98  * function (ctf_do_queued_segments())  requires that
99  * you have defined the tfb_do_segment_nounlock() as
100  * described above.
101  */
102 
103 #include <sys/param.h>
104 #include <sys/bus.h>
105 #include <sys/interrupt.h>
106 #include <sys/module.h>
107 #include <sys/kernel.h>
108 #include <sys/hhook.h>
109 #include <sys/malloc.h>
110 #include <sys/mbuf.h>
111 #include <sys/proc.h>		/* for proc0 declaration */
112 #include <sys/socket.h>
113 #include <sys/socketvar.h>
114 #include <sys/sysctl.h>
115 #include <sys/systm.h>
116 #include <sys/refcount.h>
117 #include <sys/sched.h>
118 #include <sys/queue.h>
119 #include <sys/smp.h>
120 #include <sys/counter.h>
121 #include <sys/time.h>
122 #include <sys/kthread.h>
123 #include <sys/kern_prefetch.h>
124 
125 #include <vm/uma.h>
126 #include <vm/vm.h>
127 
128 #include <net/route.h>
129 #include <net/vnet.h>
130 
131 #ifdef RSS
132 #include <net/netisr.h>
133 #include <net/rss_config.h>
134 #endif
135 
136 #define TCPSTATES		/* for logging */
137 
138 #include <netinet/in.h>
139 #include <netinet/in_kdtrace.h>
140 #include <netinet/in_pcb.h>
141 #include <netinet/ip.h>
142 #include <netinet/ip_icmp.h>	/* required for icmp_var.h */
143 #include <netinet/icmp_var.h>	/* for ICMP_BANDLIM */
144 #include <netinet/ip_var.h>
145 #include <netinet/ip6.h>
146 #include <netinet6/in6_pcb.h>
147 #include <netinet6/ip6_var.h>
148 #include <netinet/tcp.h>
149 #include <netinet/tcp_fsm.h>
150 #include <netinet/tcp_seq.h>
151 #include <netinet/tcp_timer.h>
152 #include <netinet/tcp_var.h>
153 #include <netinet/tcpip.h>
154 #include <netinet/cc/cc.h>
155 #include <netinet/tcp_hpts.h>
156 #include <netinet/tcp_log_buf.h>
157 
158 #ifdef tcp_offload
159 #include <netinet/tcp_offload.h>
160 #endif
161 
162 /*
163  * The hpts uses a 102400 wheel. The wheel
164  * defines the time in 10 usec increments (102400 x 10).
165  * This gives a range of 10usec - 1024ms to place
166  * an entry within. If the user requests more than
167  * 1.024 second, a remaineder is attached and the hpts
168  * when seeing the remainder will re-insert the
169  * inpcb forward in time from where it is until
170  * the remainder is zero.
171  */
172 
173 #define NUM_OF_HPTSI_SLOTS 102400
174 
175 /* Each hpts has its own p_mtx which is used for locking */
176 #define	HPTS_MTX_ASSERT(hpts)	mtx_assert(&(hpts)->p_mtx, MA_OWNED)
177 #define	HPTS_LOCK(hpts)		mtx_lock(&(hpts)->p_mtx)
178 #define	HPTS_UNLOCK(hpts)	mtx_unlock(&(hpts)->p_mtx)
179 struct tcp_hpts_entry {
180 	/* Cache line 0x00 */
181 	struct mtx p_mtx;	/* Mutex for hpts */
182 	struct timeval p_mysleep;	/* Our min sleep time */
183 	uint64_t syscall_cnt;
184 	uint64_t sleeping;	/* What the actual sleep was (if sleeping) */
185 	uint16_t p_hpts_active; /* Flag that says hpts is awake  */
186 	uint8_t p_wheel_complete; /* have we completed the wheel arc walk? */
187 	uint32_t p_curtick;	/* Tick in 10 us the hpts is going to */
188 	uint32_t p_runningslot; /* Current tick we are at if we are running */
189 	uint32_t p_prev_slot;	/* Previous slot we were on */
190 	uint32_t p_cur_slot;	/* Current slot in wheel hpts is draining */
191 	uint32_t p_nxt_slot;	/* The next slot outside the current range of
192 				 * slots that the hpts is running on. */
193 	int32_t p_on_queue_cnt;	/* Count on queue in this hpts */
194 	uint32_t p_lasttick;	/* Last tick before the current one */
195 	uint8_t p_direct_wake :1, /* boolean */
196 		p_on_min_sleep:1, /* boolean */
197 		p_hpts_wake_scheduled:1, /* boolean */
198 		p_avail:5;
199 	uint8_t p_fill[3];	  /* Fill to 32 bits */
200 	/* Cache line 0x40 */
201 	struct hptsh {
202 		TAILQ_HEAD(, tcpcb)	head;
203 		uint32_t		count;
204 		uint32_t		gencnt;
205 	} *p_hptss;			/* Hptsi wheel */
206 	uint32_t p_hpts_sleep_time;	/* Current sleep interval having a max
207 					 * of 255ms */
208 	uint32_t overidden_sleep;	/* what was overrided by min-sleep for logging */
209 	uint32_t saved_lasttick;	/* for logging */
210 	uint32_t saved_curtick;		/* for logging */
211 	uint32_t saved_curslot;		/* for logging */
212 	uint32_t saved_prev_slot;       /* for logging */
213 	uint32_t p_delayed_by;	/* How much were we delayed by */
214 	/* Cache line 0x80 */
215 	struct sysctl_ctx_list hpts_ctx;
216 	struct sysctl_oid *hpts_root;
217 	struct intr_event *ie;
218 	void *ie_cookie;
219 	uint16_t p_num;		/* The hpts number one per cpu */
220 	uint16_t p_cpu;		/* The hpts CPU */
221 	/* There is extra space in here */
222 	/* Cache line 0x100 */
223 	struct callout co __aligned(CACHE_LINE_SIZE);
224 }               __aligned(CACHE_LINE_SIZE);
225 
226 static struct tcp_hptsi {
227 	struct cpu_group **grps;
228 	struct tcp_hpts_entry **rp_ent;	/* Array of hptss */
229 	uint32_t *cts_last_ran;
230 	uint32_t grp_cnt;
231 	uint32_t rp_num_hptss;	/* Number of hpts threads */
232 } tcp_pace;
233 
234 MALLOC_DEFINE(M_TCPHPTS, "tcp_hpts", "TCP hpts");
235 #ifdef RSS
236 static int tcp_bind_threads = 1;
237 #else
238 static int tcp_bind_threads = 2;
239 #endif
240 static int tcp_use_irq_cpu = 0;
241 static uint32_t *cts_last_ran;
242 static int hpts_does_tp_logging = 0;
243 
244 static int32_t tcp_hptsi(struct tcp_hpts_entry *hpts, int from_callout);
245 static void tcp_hpts_thread(void *ctx);
246 static void tcp_init_hptsi(void *st);
247 
248 int32_t tcp_min_hptsi_time = DEFAULT_MIN_SLEEP;
249 static int conn_cnt_thresh = DEFAULT_CONNECTION_THESHOLD;
250 static int32_t dynamic_min_sleep = DYNAMIC_MIN_SLEEP;
251 static int32_t dynamic_max_sleep = DYNAMIC_MAX_SLEEP;
252 
253 
254 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, hpts, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
255     "TCP Hpts controls");
256 SYSCTL_NODE(_net_inet_tcp_hpts, OID_AUTO, stats, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
257     "TCP Hpts statistics");
258 
259 #define	timersub(tvp, uvp, vvp)						\
260 	do {								\
261 		(vvp)->tv_sec = (tvp)->tv_sec - (uvp)->tv_sec;		\
262 		(vvp)->tv_usec = (tvp)->tv_usec - (uvp)->tv_usec;	\
263 		if ((vvp)->tv_usec < 0) {				\
264 			(vvp)->tv_sec--;				\
265 			(vvp)->tv_usec += 1000000;			\
266 		}							\
267 	} while (0)
268 
269 static int32_t tcp_hpts_precision = 120;
270 
271 static struct hpts_domain_info {
272 	int count;
273 	int cpu[MAXCPU];
274 } hpts_domains[MAXMEMDOM];
275 
276 counter_u64_t hpts_hopelessly_behind;
277 
278 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, hopeless, CTLFLAG_RD,
279     &hpts_hopelessly_behind,
280     "Number of times hpts could not catch up and was behind hopelessly");
281 
282 counter_u64_t hpts_loops;
283 
284 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, loops, CTLFLAG_RD,
285     &hpts_loops, "Number of times hpts had to loop to catch up");
286 
287 counter_u64_t back_tosleep;
288 
289 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, no_tcbsfound, CTLFLAG_RD,
290     &back_tosleep, "Number of times hpts found no tcbs");
291 
292 counter_u64_t combined_wheel_wrap;
293 
294 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, comb_wheel_wrap, CTLFLAG_RD,
295     &combined_wheel_wrap, "Number of times the wheel lagged enough to have an insert see wrap");
296 
297 counter_u64_t wheel_wrap;
298 
299 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, wheel_wrap, CTLFLAG_RD,
300     &wheel_wrap, "Number of times the wheel lagged enough to have an insert see wrap");
301 
302 counter_u64_t hpts_direct_call;
303 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, direct_call, CTLFLAG_RD,
304     &hpts_direct_call, "Number of times hpts was called by syscall/trap or other entry");
305 
306 counter_u64_t hpts_wake_timeout;
307 
308 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, timeout_wakeup, CTLFLAG_RD,
309     &hpts_wake_timeout, "Number of times hpts threads woke up via the callout expiring");
310 
311 counter_u64_t hpts_direct_awakening;
312 
313 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, direct_awakening, CTLFLAG_RD,
314     &hpts_direct_awakening, "Number of times hpts threads woke up via the callout expiring");
315 
316 counter_u64_t hpts_back_tosleep;
317 
318 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, back_tosleep, CTLFLAG_RD,
319     &hpts_back_tosleep, "Number of times hpts threads woke up via the callout expiring and went back to sleep no work");
320 
321 counter_u64_t cpu_uses_flowid;
322 counter_u64_t cpu_uses_random;
323 
324 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, cpusel_flowid, CTLFLAG_RD,
325     &cpu_uses_flowid, "Number of times when setting cpuid we used the flowid field");
326 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, cpusel_random, CTLFLAG_RD,
327     &cpu_uses_random, "Number of times when setting cpuid we used the a random value");
328 
329 TUNABLE_INT("net.inet.tcp.bind_hptss", &tcp_bind_threads);
330 TUNABLE_INT("net.inet.tcp.use_irq", &tcp_use_irq_cpu);
331 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, bind_hptss, CTLFLAG_RD,
332     &tcp_bind_threads, 2,
333     "Thread Binding tunable");
334 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, use_irq, CTLFLAG_RD,
335     &tcp_use_irq_cpu, 0,
336     "Use of irq CPU  tunable");
337 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, precision, CTLFLAG_RW,
338     &tcp_hpts_precision, 120,
339     "Value for PRE() precision of callout");
340 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, cnt_thresh, CTLFLAG_RW,
341     &conn_cnt_thresh, 0,
342     "How many connections (below) make us use the callout based mechanism");
343 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, logging, CTLFLAG_RW,
344     &hpts_does_tp_logging, 0,
345     "Do we add to any tp that has logging on pacer logs");
346 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, dyn_minsleep, CTLFLAG_RW,
347     &dynamic_min_sleep, 250,
348     "What is the dynamic minsleep value?");
349 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, dyn_maxsleep, CTLFLAG_RW,
350     &dynamic_max_sleep, 5000,
351     "What is the dynamic maxsleep value?");
352 
353 static int32_t max_pacer_loops = 10;
354 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, loopmax, CTLFLAG_RW,
355     &max_pacer_loops, 10,
356     "What is the maximum number of times the pacer will loop trying to catch up");
357 
358 #define HPTS_MAX_SLEEP_ALLOWED (NUM_OF_HPTSI_SLOTS/2)
359 
360 static uint32_t hpts_sleep_max = HPTS_MAX_SLEEP_ALLOWED;
361 
362 static int
363 sysctl_net_inet_tcp_hpts_max_sleep(SYSCTL_HANDLER_ARGS)
364 {
365 	int error;
366 	uint32_t new;
367 
368 	new = hpts_sleep_max;
369 	error = sysctl_handle_int(oidp, &new, 0, req);
370 	if (error == 0 && req->newptr) {
371 		if ((new < (dynamic_min_sleep/HPTS_TICKS_PER_SLOT)) ||
372 		     (new > HPTS_MAX_SLEEP_ALLOWED))
373 			error = EINVAL;
374 		else
375 			hpts_sleep_max = new;
376 	}
377 	return (error);
378 }
379 
380 static int
381 sysctl_net_inet_tcp_hpts_min_sleep(SYSCTL_HANDLER_ARGS)
382 {
383 	int error;
384 	uint32_t new;
385 
386 	new = tcp_min_hptsi_time;
387 	error = sysctl_handle_int(oidp, &new, 0, req);
388 	if (error == 0 && req->newptr) {
389 		if (new < LOWEST_SLEEP_ALLOWED)
390 			error = EINVAL;
391 		else
392 			tcp_min_hptsi_time = new;
393 	}
394 	return (error);
395 }
396 
397 SYSCTL_PROC(_net_inet_tcp_hpts, OID_AUTO, maxsleep,
398     CTLTYPE_UINT | CTLFLAG_RW,
399     &hpts_sleep_max, 0,
400     &sysctl_net_inet_tcp_hpts_max_sleep, "IU",
401     "Maximum time hpts will sleep in slots");
402 
403 SYSCTL_PROC(_net_inet_tcp_hpts, OID_AUTO, minsleep,
404     CTLTYPE_UINT | CTLFLAG_RW,
405     &tcp_min_hptsi_time, 0,
406     &sysctl_net_inet_tcp_hpts_min_sleep, "IU",
407     "The minimum time the hpts must sleep before processing more slots");
408 
409 static int ticks_indicate_more_sleep = TICKS_INDICATE_MORE_SLEEP;
410 static int ticks_indicate_less_sleep = TICKS_INDICATE_LESS_SLEEP;
411 static int tcp_hpts_no_wake_over_thresh = 1;
412 
413 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, more_sleep, CTLFLAG_RW,
414     &ticks_indicate_more_sleep, 0,
415     "If we only process this many or less on a timeout, we need longer sleep on the next callout");
416 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, less_sleep, CTLFLAG_RW,
417     &ticks_indicate_less_sleep, 0,
418     "If we process this many or more on a timeout, we need less sleep on the next callout");
419 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, nowake_over_thresh, CTLFLAG_RW,
420     &tcp_hpts_no_wake_over_thresh, 0,
421     "When we are over the threshold on the pacer do we prohibit wakeups?");
422 
423 static uint16_t
424 hpts_random_cpu(void)
425 {
426 	uint16_t cpuid;
427 	uint32_t ran;
428 
429 	ran = arc4random();
430 	cpuid = (((ran & 0xffff) % mp_ncpus) % tcp_pace.rp_num_hptss);
431 	return (cpuid);
432 }
433 
434 static void
435 tcp_hpts_log(struct tcp_hpts_entry *hpts, struct tcpcb *tp, struct timeval *tv,
436 	     int slots_to_run, int idx, int from_callout)
437 {
438 	union tcp_log_stackspecific log;
439 	/*
440 	 * Unused logs are
441 	 * 64 bit - delRate, rttProp, bw_inuse
442 	 * 16 bit - cwnd_gain
443 	 *  8 bit - bbr_state, bbr_substate, inhpts;
444 	 */
445 	memset(&log.u_bbr, 0, sizeof(log.u_bbr));
446 	log.u_bbr.flex1 = hpts->p_nxt_slot;
447 	log.u_bbr.flex2 = hpts->p_cur_slot;
448 	log.u_bbr.flex3 = hpts->p_prev_slot;
449 	log.u_bbr.flex4 = idx;
450 	log.u_bbr.flex5 = hpts->p_curtick;
451 	log.u_bbr.flex6 = hpts->p_on_queue_cnt;
452 	log.u_bbr.flex7 = hpts->p_cpu;
453 	log.u_bbr.flex8 = (uint8_t)from_callout;
454 	log.u_bbr.inflight = slots_to_run;
455 	log.u_bbr.applimited = hpts->overidden_sleep;
456 	log.u_bbr.delivered = hpts->saved_curtick;
457 	log.u_bbr.timeStamp = tcp_tv_to_usectick(tv);
458 	log.u_bbr.epoch = hpts->saved_curslot;
459 	log.u_bbr.lt_epoch = hpts->saved_prev_slot;
460 	log.u_bbr.pkts_out = hpts->p_delayed_by;
461 	log.u_bbr.lost = hpts->p_hpts_sleep_time;
462 	log.u_bbr.pacing_gain = hpts->p_cpu;
463 	log.u_bbr.pkt_epoch = hpts->p_runningslot;
464 	log.u_bbr.use_lt_bw = 1;
465 	TCP_LOG_EVENTP(tp, NULL,
466 		       &tptosocket(tp)->so_rcv,
467 		       &tptosocket(tp)->so_snd,
468 		       BBR_LOG_HPTSDIAG, 0,
469 		       0, &log, false, tv);
470 }
471 
472 static void
473 tcp_wakehpts(struct tcp_hpts_entry *hpts)
474 {
475 	HPTS_MTX_ASSERT(hpts);
476 
477 	if (tcp_hpts_no_wake_over_thresh && (hpts->p_on_queue_cnt >= conn_cnt_thresh)) {
478 		hpts->p_direct_wake = 0;
479 		return;
480 	}
481 	if (hpts->p_hpts_wake_scheduled == 0) {
482 		hpts->p_hpts_wake_scheduled = 1;
483 		swi_sched(hpts->ie_cookie, 0);
484 	}
485 }
486 
487 static void
488 hpts_timeout_swi(void *arg)
489 {
490 	struct tcp_hpts_entry *hpts;
491 
492 	hpts = (struct tcp_hpts_entry *)arg;
493 	swi_sched(hpts->ie_cookie, 0);
494 }
495 
496 static void
497 tcp_hpts_insert_internal(struct tcpcb *tp, struct tcp_hpts_entry *hpts)
498 {
499 	struct inpcb *inp = tptoinpcb(tp);
500 	struct hptsh *hptsh;
501 
502 	INP_WLOCK_ASSERT(inp);
503 	HPTS_MTX_ASSERT(hpts);
504 	MPASS(hpts->p_cpu == tp->t_hpts_cpu);
505 	MPASS(!(inp->inp_flags & INP_DROPPED));
506 
507 	hptsh = &hpts->p_hptss[tp->t_hpts_slot];
508 
509 	if (tp->t_in_hpts == IHPTS_NONE) {
510 		tp->t_in_hpts = IHPTS_ONQUEUE;
511 		in_pcbref(inp);
512 	} else if (tp->t_in_hpts == IHPTS_MOVING) {
513 		tp->t_in_hpts = IHPTS_ONQUEUE;
514 	} else
515 		MPASS(tp->t_in_hpts == IHPTS_ONQUEUE);
516 	tp->t_hpts_gencnt = hptsh->gencnt;
517 
518 	TAILQ_INSERT_TAIL(&hptsh->head, tp, t_hpts);
519 	hptsh->count++;
520 	hpts->p_on_queue_cnt++;
521 }
522 
523 static struct tcp_hpts_entry *
524 tcp_hpts_lock(struct tcpcb *tp)
525 {
526 	struct tcp_hpts_entry *hpts;
527 
528 	INP_LOCK_ASSERT(tptoinpcb(tp));
529 
530 	hpts = tcp_pace.rp_ent[tp->t_hpts_cpu];
531 	HPTS_LOCK(hpts);
532 
533 	return (hpts);
534 }
535 
536 static void
537 tcp_hpts_release(struct tcpcb *tp)
538 {
539 	bool released __diagused;
540 
541 	tp->t_in_hpts = IHPTS_NONE;
542 	released = in_pcbrele_wlocked(tptoinpcb(tp));
543 	MPASS(released == false);
544 }
545 
546 /*
547  * Initialize newborn tcpcb to get ready for use with HPTS.
548  */
549 void
550 tcp_hpts_init(struct tcpcb *tp)
551 {
552 
553 	tp->t_hpts_cpu = hpts_random_cpu();
554 	tp->t_lro_cpu = HPTS_CPU_NONE;
555 	MPASS(!(tp->t_flags2 & TF2_HPTS_CPU_SET));
556 }
557 
558 /*
559  * Called normally with the INP_LOCKED but it
560  * does not matter, the hpts lock is the key
561  * but the lock order allows us to hold the
562  * INP lock and then get the hpts lock.
563  */
564 void
565 tcp_hpts_remove(struct tcpcb *tp)
566 {
567 	struct tcp_hpts_entry *hpts;
568 	struct hptsh *hptsh;
569 
570 	INP_WLOCK_ASSERT(tptoinpcb(tp));
571 
572 	hpts = tcp_hpts_lock(tp);
573 	if (tp->t_in_hpts == IHPTS_ONQUEUE) {
574 		hptsh = &hpts->p_hptss[tp->t_hpts_slot];
575 		tp->t_hpts_request = 0;
576 		if (__predict_true(tp->t_hpts_gencnt == hptsh->gencnt)) {
577 			TAILQ_REMOVE(&hptsh->head, tp, t_hpts);
578 			MPASS(hptsh->count > 0);
579 			hptsh->count--;
580 			MPASS(hpts->p_on_queue_cnt > 0);
581 			hpts->p_on_queue_cnt--;
582 			tcp_hpts_release(tp);
583 		} else {
584 			/*
585 			 * tcp_hptsi() now owns the TAILQ head of this inp.
586 			 * Can't TAILQ_REMOVE, just mark it.
587 			 */
588 #ifdef INVARIANTS
589 			struct tcpcb *tmp;
590 
591 			TAILQ_FOREACH(tmp, &hptsh->head, t_hpts)
592 				MPASS(tmp != tp);
593 #endif
594 			tp->t_in_hpts = IHPTS_MOVING;
595 			tp->t_hpts_slot = -1;
596 		}
597 	} else if (tp->t_in_hpts == IHPTS_MOVING) {
598 		/*
599 		 * Handle a special race condition:
600 		 * tcp_hptsi() moves inpcb to detached tailq
601 		 * tcp_hpts_remove() marks as IHPTS_MOVING, slot = -1
602 		 * tcp_hpts_insert() sets slot to a meaningful value
603 		 * tcp_hpts_remove() again (we are here!), then in_pcbdrop()
604 		 * tcp_hptsi() finds pcb with meaningful slot and INP_DROPPED
605 		 */
606 		tp->t_hpts_slot = -1;
607 	}
608 	HPTS_UNLOCK(hpts);
609 }
610 
611 static inline int
612 hpts_slot(uint32_t wheel_slot, uint32_t plus)
613 {
614 	/*
615 	 * Given a slot on the wheel, what slot
616 	 * is that plus ticks out?
617 	 */
618 	KASSERT(wheel_slot < NUM_OF_HPTSI_SLOTS, ("Invalid tick %u not on wheel", wheel_slot));
619 	return ((wheel_slot + plus) % NUM_OF_HPTSI_SLOTS);
620 }
621 
622 static inline int
623 tick_to_wheel(uint32_t cts_in_wticks)
624 {
625 	/*
626 	 * Given a timestamp in ticks (so by
627 	 * default to get it to a real time one
628 	 * would multiply by 10.. i.e the number
629 	 * of ticks in a slot) map it to our limited
630 	 * space wheel.
631 	 */
632 	return (cts_in_wticks % NUM_OF_HPTSI_SLOTS);
633 }
634 
635 static inline int
636 hpts_slots_diff(int prev_slot, int slot_now)
637 {
638 	/*
639 	 * Given two slots that are someplace
640 	 * on our wheel. How far are they apart?
641 	 */
642 	if (slot_now > prev_slot)
643 		return (slot_now - prev_slot);
644 	else if (slot_now == prev_slot)
645 		/*
646 		 * Special case, same means we can go all of our
647 		 * wheel less one slot.
648 		 */
649 		return (NUM_OF_HPTSI_SLOTS - 1);
650 	else
651 		return ((NUM_OF_HPTSI_SLOTS - prev_slot) + slot_now);
652 }
653 
654 /*
655  * Given a slot on the wheel that is the current time
656  * mapped to the wheel (wheel_slot), what is the maximum
657  * distance forward that can be obtained without
658  * wrapping past either prev_slot or running_slot
659  * depending on the htps state? Also if passed
660  * a uint32_t *, fill it with the slot location.
661  *
662  * Note if you do not give this function the current
663  * time (that you think it is) mapped to the wheel slot
664  * then the results will not be what you expect and
665  * could lead to invalid inserts.
666  */
667 static inline int32_t
668 max_slots_available(struct tcp_hpts_entry *hpts, uint32_t wheel_slot, uint32_t *target_slot)
669 {
670 	uint32_t dis_to_travel, end_slot, pacer_to_now, avail_on_wheel;
671 
672 	if ((hpts->p_hpts_active == 1) &&
673 	    (hpts->p_wheel_complete == 0)) {
674 		end_slot = hpts->p_runningslot;
675 		/* Back up one tick */
676 		if (end_slot == 0)
677 			end_slot = NUM_OF_HPTSI_SLOTS - 1;
678 		else
679 			end_slot--;
680 		if (target_slot)
681 			*target_slot = end_slot;
682 	} else {
683 		/*
684 		 * For the case where we are
685 		 * not active, or we have
686 		 * completed the pass over
687 		 * the wheel, we can use the
688 		 * prev tick and subtract one from it. This puts us
689 		 * as far out as possible on the wheel.
690 		 */
691 		end_slot = hpts->p_prev_slot;
692 		if (end_slot == 0)
693 			end_slot = NUM_OF_HPTSI_SLOTS - 1;
694 		else
695 			end_slot--;
696 		if (target_slot)
697 			*target_slot = end_slot;
698 		/*
699 		 * Now we have close to the full wheel left minus the
700 		 * time it has been since the pacer went to sleep. Note
701 		 * that wheel_tick, passed in, should be the current time
702 		 * from the perspective of the caller, mapped to the wheel.
703 		 */
704 		if (hpts->p_prev_slot != wheel_slot)
705 			dis_to_travel = hpts_slots_diff(hpts->p_prev_slot, wheel_slot);
706 		else
707 			dis_to_travel = 1;
708 		/*
709 		 * dis_to_travel in this case is the space from when the
710 		 * pacer stopped (p_prev_slot) and where our wheel_slot
711 		 * is now. To know how many slots we can put it in we
712 		 * subtract from the wheel size. We would not want
713 		 * to place something after p_prev_slot or it will
714 		 * get ran too soon.
715 		 */
716 		return (NUM_OF_HPTSI_SLOTS - dis_to_travel);
717 	}
718 	/*
719 	 * So how many slots are open between p_runningslot -> p_cur_slot
720 	 * that is what is currently un-available for insertion. Special
721 	 * case when we are at the last slot, this gets 1, so that
722 	 * the answer to how many slots are available is all but 1.
723 	 */
724 	if (hpts->p_runningslot == hpts->p_cur_slot)
725 		dis_to_travel = 1;
726 	else
727 		dis_to_travel = hpts_slots_diff(hpts->p_runningslot, hpts->p_cur_slot);
728 	/*
729 	 * How long has the pacer been running?
730 	 */
731 	if (hpts->p_cur_slot != wheel_slot) {
732 		/* The pacer is a bit late */
733 		pacer_to_now = hpts_slots_diff(hpts->p_cur_slot, wheel_slot);
734 	} else {
735 		/* The pacer is right on time, now == pacers start time */
736 		pacer_to_now = 0;
737 	}
738 	/*
739 	 * To get the number left we can insert into we simply
740 	 * subtract the distance the pacer has to run from how
741 	 * many slots there are.
742 	 */
743 	avail_on_wheel = NUM_OF_HPTSI_SLOTS - dis_to_travel;
744 	/*
745 	 * Now how many of those we will eat due to the pacer's
746 	 * time (p_cur_slot) of start being behind the
747 	 * real time (wheel_slot)?
748 	 */
749 	if (avail_on_wheel <= pacer_to_now) {
750 		/*
751 		 * Wheel wrap, we can't fit on the wheel, that
752 		 * is unusual the system must be way overloaded!
753 		 * Insert into the assured slot, and return special
754 		 * "0".
755 		 */
756 		counter_u64_add(combined_wheel_wrap, 1);
757 		*target_slot = hpts->p_nxt_slot;
758 		return (0);
759 	} else {
760 		/*
761 		 * We know how many slots are open
762 		 * on the wheel (the reverse of what
763 		 * is left to run. Take away the time
764 		 * the pacer started to now (wheel_slot)
765 		 * and that tells you how many slots are
766 		 * open that can be inserted into that won't
767 		 * be touched by the pacer until later.
768 		 */
769 		return (avail_on_wheel - pacer_to_now);
770 	}
771 }
772 
773 
774 #ifdef INVARIANTS
775 static void
776 check_if_slot_would_be_wrong(struct tcp_hpts_entry *hpts, struct tcpcb *tp,
777     uint32_t hptsslot, int line)
778 {
779 	/*
780 	 * Sanity checks for the pacer with invariants
781 	 * on insert.
782 	 */
783 	KASSERT(hptsslot < NUM_OF_HPTSI_SLOTS,
784 		("hpts:%p tp:%p slot:%d > max", hpts, tp, hptsslot));
785 	if ((hpts->p_hpts_active) &&
786 	    (hpts->p_wheel_complete == 0)) {
787 		/*
788 		 * If the pacer is processing a arc
789 		 * of the wheel, we need to make
790 		 * sure we are not inserting within
791 		 * that arc.
792 		 */
793 		int distance, yet_to_run;
794 
795 		distance = hpts_slots_diff(hpts->p_runningslot, hptsslot);
796 		if (hpts->p_runningslot != hpts->p_cur_slot)
797 			yet_to_run = hpts_slots_diff(hpts->p_runningslot, hpts->p_cur_slot);
798 		else
799 			yet_to_run = 0;	/* processing last slot */
800 		KASSERT(yet_to_run <= distance, ("hpts:%p tp:%p slot:%d "
801 		    "distance:%d yet_to_run:%d rs:%d cs:%d", hpts, tp,
802 		    hptsslot, distance, yet_to_run, hpts->p_runningslot,
803 		    hpts->p_cur_slot));
804 	}
805 }
806 #endif
807 
808 uint32_t
809 tcp_hpts_insert_diag(struct tcpcb *tp, uint32_t slot, int32_t line, struct hpts_diag *diag)
810 {
811 	struct tcp_hpts_entry *hpts;
812 	struct timeval tv;
813 	uint32_t slot_on, wheel_cts, last_slot, need_new_to = 0;
814 	int32_t wheel_slot, maxslots;
815 	bool need_wakeup = false;
816 
817 	INP_WLOCK_ASSERT(tptoinpcb(tp));
818 	MPASS(!(tptoinpcb(tp)->inp_flags & INP_DROPPED));
819 	MPASS(!tcp_in_hpts(tp));
820 
821 	/*
822 	 * We now return the next-slot the hpts will be on, beyond its
823 	 * current run (if up) or where it was when it stopped if it is
824 	 * sleeping.
825 	 */
826 	hpts = tcp_hpts_lock(tp);
827 	microuptime(&tv);
828 	if (diag) {
829 		memset(diag, 0, sizeof(struct hpts_diag));
830 		diag->p_hpts_active = hpts->p_hpts_active;
831 		diag->p_prev_slot = hpts->p_prev_slot;
832 		diag->p_runningslot = hpts->p_runningslot;
833 		diag->p_nxt_slot = hpts->p_nxt_slot;
834 		diag->p_cur_slot = hpts->p_cur_slot;
835 		diag->p_curtick = hpts->p_curtick;
836 		diag->p_lasttick = hpts->p_lasttick;
837 		diag->slot_req = slot;
838 		diag->p_on_min_sleep = hpts->p_on_min_sleep;
839 		diag->hpts_sleep_time = hpts->p_hpts_sleep_time;
840 	}
841 	if (slot == 0) {
842 		/* Ok we need to set it on the hpts in the current slot */
843 		tp->t_hpts_request = 0;
844 		if ((hpts->p_hpts_active == 0) || (hpts->p_wheel_complete)) {
845 			/*
846 			 * A sleeping hpts we want in next slot to run
847 			 * note that in this state p_prev_slot == p_cur_slot
848 			 */
849 			tp->t_hpts_slot = hpts_slot(hpts->p_prev_slot, 1);
850 			if ((hpts->p_on_min_sleep == 0) &&
851 			    (hpts->p_hpts_active == 0))
852 				need_wakeup = true;
853 		} else
854 			tp->t_hpts_slot = hpts->p_runningslot;
855 		if (__predict_true(tp->t_in_hpts != IHPTS_MOVING))
856 			tcp_hpts_insert_internal(tp, hpts);
857 		if (need_wakeup) {
858 			/*
859 			 * Activate the hpts if it is sleeping and its
860 			 * timeout is not 1.
861 			 */
862 			hpts->p_direct_wake = 1;
863 			tcp_wakehpts(hpts);
864 		}
865 		slot_on = hpts->p_nxt_slot;
866 		HPTS_UNLOCK(hpts);
867 
868 		return (slot_on);
869 	}
870 	/* Get the current time relative to the wheel */
871 	wheel_cts = tcp_tv_to_hptstick(&tv);
872 	/* Map it onto the wheel */
873 	wheel_slot = tick_to_wheel(wheel_cts);
874 	/* Now what's the max we can place it at? */
875 	maxslots = max_slots_available(hpts, wheel_slot, &last_slot);
876 	if (diag) {
877 		diag->wheel_slot = wheel_slot;
878 		diag->maxslots = maxslots;
879 		diag->wheel_cts = wheel_cts;
880 	}
881 	if (maxslots == 0) {
882 		/* The pacer is in a wheel wrap behind, yikes! */
883 		if (slot > 1) {
884 			/*
885 			 * Reduce by 1 to prevent a forever loop in
886 			 * case something else is wrong. Note this
887 			 * probably does not hurt because the pacer
888 			 * if its true is so far behind we will be
889 			 * > 1second late calling anyway.
890 			 */
891 			slot--;
892 		}
893 		tp->t_hpts_slot = last_slot;
894 		tp->t_hpts_request = slot;
895 	} else 	if (maxslots >= slot) {
896 		/* It all fits on the wheel */
897 		tp->t_hpts_request = 0;
898 		tp->t_hpts_slot = hpts_slot(wheel_slot, slot);
899 	} else {
900 		/* It does not fit */
901 		tp->t_hpts_request = slot - maxslots;
902 		tp->t_hpts_slot = last_slot;
903 	}
904 	if (diag) {
905 		diag->slot_remaining = tp->t_hpts_request;
906 		diag->inp_hptsslot = tp->t_hpts_slot;
907 	}
908 #ifdef INVARIANTS
909 	check_if_slot_would_be_wrong(hpts, tp, tp->t_hpts_slot, line);
910 #endif
911 	if (__predict_true(tp->t_in_hpts != IHPTS_MOVING))
912 		tcp_hpts_insert_internal(tp, hpts);
913 	if ((hpts->p_hpts_active == 0) &&
914 	    (tp->t_hpts_request == 0) &&
915 	    (hpts->p_on_min_sleep == 0)) {
916 		/*
917 		 * The hpts is sleeping and NOT on a minimum
918 		 * sleep time, we need to figure out where
919 		 * it will wake up at and if we need to reschedule
920 		 * its time-out.
921 		 */
922 		uint32_t have_slept, yet_to_sleep;
923 
924 		/* Now do we need to restart the hpts's timer? */
925 		have_slept = hpts_slots_diff(hpts->p_prev_slot, wheel_slot);
926 		if (have_slept < hpts->p_hpts_sleep_time)
927 			yet_to_sleep = hpts->p_hpts_sleep_time - have_slept;
928 		else {
929 			/* We are over-due */
930 			yet_to_sleep = 0;
931 			need_wakeup = 1;
932 		}
933 		if (diag) {
934 			diag->have_slept = have_slept;
935 			diag->yet_to_sleep = yet_to_sleep;
936 		}
937 		if (yet_to_sleep &&
938 		    (yet_to_sleep > slot)) {
939 			/*
940 			 * We need to reschedule the hpts's time-out.
941 			 */
942 			hpts->p_hpts_sleep_time = slot;
943 			need_new_to = slot * HPTS_TICKS_PER_SLOT;
944 		}
945 	}
946 	/*
947 	 * Now how far is the hpts sleeping to? if active is 1, its
948 	 * up and ticking we do nothing, otherwise we may need to
949 	 * reschedule its callout if need_new_to is set from above.
950 	 */
951 	if (need_wakeup) {
952 		hpts->p_direct_wake = 1;
953 		tcp_wakehpts(hpts);
954 		if (diag) {
955 			diag->need_new_to = 0;
956 			diag->co_ret = 0xffff0000;
957 		}
958 	} else if (need_new_to) {
959 		int32_t co_ret;
960 		struct timeval tv;
961 		sbintime_t sb;
962 
963 		tv.tv_sec = 0;
964 		tv.tv_usec = 0;
965 		while (need_new_to > HPTS_USEC_IN_SEC) {
966 			tv.tv_sec++;
967 			need_new_to -= HPTS_USEC_IN_SEC;
968 		}
969 		tv.tv_usec = need_new_to;
970 		sb = tvtosbt(tv);
971 		co_ret = callout_reset_sbt_on(&hpts->co, sb, 0,
972 					      hpts_timeout_swi, hpts, hpts->p_cpu,
973 					      (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision)));
974 		if (diag) {
975 			diag->need_new_to = need_new_to;
976 			diag->co_ret = co_ret;
977 		}
978 	}
979 	slot_on = hpts->p_nxt_slot;
980 	HPTS_UNLOCK(hpts);
981 
982 	return (slot_on);
983 }
984 
985 static uint16_t
986 hpts_cpuid(struct tcpcb *tp, int *failed)
987 {
988 	struct inpcb *inp = tptoinpcb(tp);
989 	u_int cpuid;
990 #ifdef NUMA
991 	struct hpts_domain_info *di;
992 #endif
993 
994 	*failed = 0;
995 	if (tp->t_flags2 & TF2_HPTS_CPU_SET) {
996 		return (tp->t_hpts_cpu);
997 	}
998 	/*
999 	 * If we are using the irq cpu set by LRO or
1000 	 * the driver then it overrides all other domains.
1001 	 */
1002 	if (tcp_use_irq_cpu) {
1003 		if (tp->t_lro_cpu == HPTS_CPU_NONE) {
1004 			*failed = 1;
1005 			return (0);
1006 		}
1007 		return (tp->t_lro_cpu);
1008 	}
1009 	/* If one is set the other must be the same */
1010 #ifdef RSS
1011 	cpuid = rss_hash2cpuid(inp->inp_flowid, inp->inp_flowtype);
1012 	if (cpuid == NETISR_CPUID_NONE)
1013 		return (hpts_random_cpu());
1014 	else
1015 		return (cpuid);
1016 #endif
1017 	/*
1018 	 * We don't have a flowid -> cpuid mapping, so cheat and just map
1019 	 * unknown cpuids to curcpu.  Not the best, but apparently better
1020 	 * than defaulting to swi 0.
1021 	 */
1022 	if (inp->inp_flowtype == M_HASHTYPE_NONE) {
1023 		counter_u64_add(cpu_uses_random, 1);
1024 		return (hpts_random_cpu());
1025 	}
1026 	/*
1027 	 * Hash to a thread based on the flowid.  If we are using numa,
1028 	 * then restrict the hash to the numa domain where the inp lives.
1029 	 */
1030 
1031 #ifdef NUMA
1032 	if ((vm_ndomains == 1) ||
1033 	    (inp->inp_numa_domain == M_NODOM)) {
1034 #endif
1035 		cpuid = inp->inp_flowid % mp_ncpus;
1036 #ifdef NUMA
1037 	} else {
1038 		/* Hash into the cpu's that use that domain */
1039 		di = &hpts_domains[inp->inp_numa_domain];
1040 		cpuid = di->cpu[inp->inp_flowid % di->count];
1041 	}
1042 #endif
1043 	counter_u64_add(cpu_uses_flowid, 1);
1044 	return (cpuid);
1045 }
1046 
1047 static void
1048 tcp_hpts_set_max_sleep(struct tcp_hpts_entry *hpts, int wrap_loop_cnt)
1049 {
1050 	uint32_t t = 0, i;
1051 
1052 	if ((hpts->p_on_queue_cnt) && (wrap_loop_cnt < 2)) {
1053 		/*
1054 		 * Find next slot that is occupied and use that to
1055 		 * be the sleep time.
1056 		 */
1057 		for (i = 0, t = hpts_slot(hpts->p_cur_slot, 1); i < NUM_OF_HPTSI_SLOTS; i++) {
1058 			if (TAILQ_EMPTY(&hpts->p_hptss[t].head) == 0) {
1059 				break;
1060 			}
1061 			t = (t + 1) % NUM_OF_HPTSI_SLOTS;
1062 		}
1063 		KASSERT((i != NUM_OF_HPTSI_SLOTS), ("Hpts:%p cnt:%d but none found", hpts, hpts->p_on_queue_cnt));
1064 		hpts->p_hpts_sleep_time = min((i + 1), hpts_sleep_max);
1065 	} else {
1066 		/* No one on the wheel sleep for all but 400 slots or sleep max  */
1067 		hpts->p_hpts_sleep_time = hpts_sleep_max;
1068 	}
1069 }
1070 
1071 static int32_t
1072 tcp_hptsi(struct tcp_hpts_entry *hpts, int from_callout)
1073 {
1074 	struct tcpcb *tp;
1075 	struct timeval tv;
1076 	int32_t slots_to_run, i, error;
1077 	int32_t loop_cnt = 0;
1078 	int32_t did_prefetch = 0;
1079 	int32_t prefetch_tp = 0;
1080 	int32_t wrap_loop_cnt = 0;
1081 	int32_t slot_pos_of_endpoint = 0;
1082 	int32_t orig_exit_slot;
1083 	int8_t completed_measure = 0, seen_endpoint = 0;
1084 
1085 	HPTS_MTX_ASSERT(hpts);
1086 	NET_EPOCH_ASSERT();
1087 	/* record previous info for any logging */
1088 	hpts->saved_lasttick = hpts->p_lasttick;
1089 	hpts->saved_curtick = hpts->p_curtick;
1090 	hpts->saved_curslot = hpts->p_cur_slot;
1091 	hpts->saved_prev_slot = hpts->p_prev_slot;
1092 
1093 	hpts->p_lasttick = hpts->p_curtick;
1094 	hpts->p_curtick = tcp_gethptstick(&tv);
1095 	cts_last_ran[hpts->p_num] = tcp_tv_to_usectick(&tv);
1096 	orig_exit_slot = hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick);
1097 	if ((hpts->p_on_queue_cnt == 0) ||
1098 	    (hpts->p_lasttick == hpts->p_curtick)) {
1099 		/*
1100 		 * No time has yet passed,
1101 		 * or nothing to do.
1102 		 */
1103 		hpts->p_prev_slot = hpts->p_cur_slot;
1104 		hpts->p_lasttick = hpts->p_curtick;
1105 		goto no_run;
1106 	}
1107 again:
1108 	hpts->p_wheel_complete = 0;
1109 	HPTS_MTX_ASSERT(hpts);
1110 	slots_to_run = hpts_slots_diff(hpts->p_prev_slot, hpts->p_cur_slot);
1111 	if (((hpts->p_curtick - hpts->p_lasttick) >
1112 	     ((NUM_OF_HPTSI_SLOTS-1) * HPTS_TICKS_PER_SLOT)) &&
1113 	    (hpts->p_on_queue_cnt != 0)) {
1114 		/*
1115 		 * Wheel wrap is occuring, basically we
1116 		 * are behind and the distance between
1117 		 * run's has spread so much it has exceeded
1118 		 * the time on the wheel (1.024 seconds). This
1119 		 * is ugly and should NOT be happening. We
1120 		 * need to run the entire wheel. We last processed
1121 		 * p_prev_slot, so that needs to be the last slot
1122 		 * we run. The next slot after that should be our
1123 		 * reserved first slot for new, and then starts
1124 		 * the running position. Now the problem is the
1125 		 * reserved "not to yet" place does not exist
1126 		 * and there may be inp's in there that need
1127 		 * running. We can merge those into the
1128 		 * first slot at the head.
1129 		 */
1130 		wrap_loop_cnt++;
1131 		hpts->p_nxt_slot = hpts_slot(hpts->p_prev_slot, 1);
1132 		hpts->p_runningslot = hpts_slot(hpts->p_prev_slot, 2);
1133 		/*
1134 		 * Adjust p_cur_slot to be where we are starting from
1135 		 * hopefully we will catch up (fat chance if something
1136 		 * is broken this bad :( )
1137 		 */
1138 		hpts->p_cur_slot = hpts->p_prev_slot;
1139 		/*
1140 		 * The next slot has guys to run too, and that would
1141 		 * be where we would normally start, lets move them into
1142 		 * the next slot (p_prev_slot + 2) so that we will
1143 		 * run them, the extra 10usecs of late (by being
1144 		 * put behind) does not really matter in this situation.
1145 		 */
1146 		TAILQ_FOREACH(tp, &hpts->p_hptss[hpts->p_nxt_slot].head,
1147 		    t_hpts) {
1148 			MPASS(tp->t_hpts_slot == hpts->p_nxt_slot);
1149 			MPASS(tp->t_hpts_gencnt ==
1150 			    hpts->p_hptss[hpts->p_nxt_slot].gencnt);
1151 			MPASS(tp->t_in_hpts == IHPTS_ONQUEUE);
1152 
1153 			/*
1154 			 * Update gencnt and nextslot accordingly to match
1155 			 * the new location. This is safe since it takes both
1156 			 * the INP lock and the pacer mutex to change the
1157 			 * t_hptsslot and t_hpts_gencnt.
1158 			 */
1159 			tp->t_hpts_gencnt =
1160 			    hpts->p_hptss[hpts->p_runningslot].gencnt;
1161 			tp->t_hpts_slot = hpts->p_runningslot;
1162 		}
1163 		TAILQ_CONCAT(&hpts->p_hptss[hpts->p_runningslot].head,
1164 		    &hpts->p_hptss[hpts->p_nxt_slot].head, t_hpts);
1165 		hpts->p_hptss[hpts->p_runningslot].count +=
1166 		    hpts->p_hptss[hpts->p_nxt_slot].count;
1167 		hpts->p_hptss[hpts->p_nxt_slot].count = 0;
1168 		hpts->p_hptss[hpts->p_nxt_slot].gencnt++;
1169 		slots_to_run = NUM_OF_HPTSI_SLOTS - 1;
1170 		counter_u64_add(wheel_wrap, 1);
1171 	} else {
1172 		/*
1173 		 * Nxt slot is always one after p_runningslot though
1174 		 * its not used usually unless we are doing wheel wrap.
1175 		 */
1176 		hpts->p_nxt_slot = hpts->p_prev_slot;
1177 		hpts->p_runningslot = hpts_slot(hpts->p_prev_slot, 1);
1178 	}
1179 	if (hpts->p_on_queue_cnt == 0) {
1180 		goto no_one;
1181 	}
1182 	for (i = 0; i < slots_to_run; i++) {
1183 		struct tcpcb *tp, *ntp;
1184 		TAILQ_HEAD(, tcpcb) head = TAILQ_HEAD_INITIALIZER(head);
1185 		struct hptsh *hptsh;
1186 		uint32_t runningslot;
1187 
1188 		/*
1189 		 * Calculate our delay, if there are no extra ticks there
1190 		 * was not any (i.e. if slots_to_run == 1, no delay).
1191 		 */
1192 		hpts->p_delayed_by = (slots_to_run - (i + 1)) *
1193 		    HPTS_TICKS_PER_SLOT;
1194 
1195 		runningslot = hpts->p_runningslot;
1196 		hptsh = &hpts->p_hptss[runningslot];
1197 		TAILQ_SWAP(&head, &hptsh->head, tcpcb, t_hpts);
1198 		hpts->p_on_queue_cnt -= hptsh->count;
1199 		hptsh->count = 0;
1200 		hptsh->gencnt++;
1201 
1202 		HPTS_UNLOCK(hpts);
1203 
1204 		TAILQ_FOREACH_SAFE(tp, &head, t_hpts, ntp) {
1205 			struct inpcb *inp = tptoinpcb(tp);
1206 			bool set_cpu;
1207 
1208 			if (ntp != NULL) {
1209 				/*
1210 				 * If we have a next tcpcb, see if we can
1211 				 * prefetch it. Note this may seem
1212 				 * "risky" since we have no locks (other
1213 				 * than the previous inp) and there no
1214 				 * assurance that ntp was not pulled while
1215 				 * we were processing tp and freed. If this
1216 				 * occurred it could mean that either:
1217 				 *
1218 				 * a) Its NULL (which is fine we won't go
1219 				 * here) <or> b) Its valid (which is cool we
1220 				 * will prefetch it) <or> c) The inp got
1221 				 * freed back to the slab which was
1222 				 * reallocated. Then the piece of memory was
1223 				 * re-used and something else (not an
1224 				 * address) is in inp_ppcb. If that occurs
1225 				 * we don't crash, but take a TLB shootdown
1226 				 * performance hit (same as if it was NULL
1227 				 * and we tried to pre-fetch it).
1228 				 *
1229 				 * Considering that the likelyhood of <c> is
1230 				 * quite rare we will take a risk on doing
1231 				 * this. If performance drops after testing
1232 				 * we can always take this out. NB: the
1233 				 * kern_prefetch on amd64 actually has
1234 				 * protection against a bad address now via
1235 				 * the DMAP_() tests. This will prevent the
1236 				 * TLB hit, and instead if <c> occurs just
1237 				 * cause us to load cache with a useless
1238 				 * address (to us).
1239 				 *
1240 				 * XXXGL: this comment and the prefetch action
1241 				 * could be outdated after tp == inp change.
1242 				 */
1243 				kern_prefetch(ntp, &prefetch_tp);
1244 				prefetch_tp = 1;
1245 			}
1246 
1247 			/* For debugging */
1248 			if (seen_endpoint == 0) {
1249 				seen_endpoint = 1;
1250 				orig_exit_slot = slot_pos_of_endpoint =
1251 				    runningslot;
1252 			} else if (completed_measure == 0) {
1253 				/* Record the new position */
1254 				orig_exit_slot = runningslot;
1255 			}
1256 
1257 			INP_WLOCK(inp);
1258 			if ((tp->t_flags2 & TF2_HPTS_CPU_SET) == 0) {
1259 				set_cpu = true;
1260 			} else {
1261 				set_cpu = false;
1262 			}
1263 
1264 			if (__predict_false(tp->t_in_hpts == IHPTS_MOVING)) {
1265 				if (tp->t_hpts_slot == -1) {
1266 					tp->t_in_hpts = IHPTS_NONE;
1267 					if (in_pcbrele_wlocked(inp) == false)
1268 						INP_WUNLOCK(inp);
1269 				} else {
1270 					HPTS_LOCK(hpts);
1271 					tcp_hpts_insert_internal(tp, hpts);
1272 					HPTS_UNLOCK(hpts);
1273 					INP_WUNLOCK(inp);
1274 				}
1275 				continue;
1276 			}
1277 
1278 			MPASS(tp->t_in_hpts == IHPTS_ONQUEUE);
1279 			MPASS(!(inp->inp_flags & INP_DROPPED));
1280 			KASSERT(runningslot == tp->t_hpts_slot,
1281 				("Hpts:%p inp:%p slot mis-aligned %u vs %u",
1282 				 hpts, inp, runningslot, tp->t_hpts_slot));
1283 
1284 			if (tp->t_hpts_request) {
1285 				/*
1286 				 * This guy is deferred out further in time
1287 				 * then our wheel had available on it.
1288 				 * Push him back on the wheel or run it
1289 				 * depending.
1290 				 */
1291 				uint32_t maxslots, last_slot, remaining_slots;
1292 
1293 				remaining_slots = slots_to_run - (i + 1);
1294 				if (tp->t_hpts_request > remaining_slots) {
1295 					HPTS_LOCK(hpts);
1296 					/*
1297 					 * How far out can we go?
1298 					 */
1299 					maxslots = max_slots_available(hpts,
1300 					    hpts->p_cur_slot, &last_slot);
1301 					if (maxslots >= tp->t_hpts_request) {
1302 						/* We can place it finally to
1303 						 * be processed.  */
1304 						tp->t_hpts_slot = hpts_slot(
1305 						    hpts->p_runningslot,
1306 						    tp->t_hpts_request);
1307 						tp->t_hpts_request = 0;
1308 					} else {
1309 						/* Work off some more time */
1310 						tp->t_hpts_slot = last_slot;
1311 						tp->t_hpts_request -=
1312 						    maxslots;
1313 					}
1314 					tcp_hpts_insert_internal(tp, hpts);
1315 					HPTS_UNLOCK(hpts);
1316 					INP_WUNLOCK(inp);
1317 					continue;
1318 				}
1319 				tp->t_hpts_request = 0;
1320 				/* Fall through we will so do it now */
1321 			}
1322 
1323 			tcp_hpts_release(tp);
1324 			if (set_cpu) {
1325 				/*
1326 				 * Setup so the next time we will move to
1327 				 * the right CPU. This should be a rare
1328 				 * event. It will sometimes happens when we
1329 				 * are the client side (usually not the
1330 				 * server). Somehow tcp_output() gets called
1331 				 * before the tcp_do_segment() sets the
1332 				 * intial state. This means the r_cpu and
1333 				 * r_hpts_cpu is 0. We get on the hpts, and
1334 				 * then tcp_input() gets called setting up
1335 				 * the r_cpu to the correct value. The hpts
1336 				 * goes off and sees the mis-match. We
1337 				 * simply correct it here and the CPU will
1338 				 * switch to the new hpts nextime the tcb
1339 				 * gets added to the hpts (not this one)
1340 				 * :-)
1341 				 */
1342 				tcp_set_hpts(tp);
1343 			}
1344 			CURVNET_SET(inp->inp_vnet);
1345 			/* Lets do any logging that we might want to */
1346 			if (hpts_does_tp_logging && tcp_bblogging_on(tp)) {
1347 				tcp_hpts_log(hpts, tp, &tv, slots_to_run, i, from_callout);
1348 			}
1349 
1350 			if (tp->t_fb_ptr != NULL) {
1351 				kern_prefetch(tp->t_fb_ptr, &did_prefetch);
1352 				did_prefetch = 1;
1353 			}
1354 			/*
1355 			 * We set TF2_HPTS_CALLS before any possible output.
1356 			 * The contract with the transport is that if it cares
1357 			 * about hpts calling it should clear the flag. That
1358 			 * way next time it is called it will know it is hpts.
1359 			 *
1360 			 * We also only call tfb_do_queued_segments() <or>
1361 			 * tcp_output().  It is expected that if segments are
1362 			 * queued and come in that the final input mbuf will
1363 			 * cause a call to output if it is needed.
1364 			 */
1365 			tp->t_flags2 |= TF2_HPTS_CALLS;
1366 			if ((tp->t_flags2 & TF2_SUPPORTS_MBUFQ) &&
1367 			    !STAILQ_EMPTY(&tp->t_inqueue)) {
1368 				error = (*tp->t_fb->tfb_do_queued_segments)(tp, 0);
1369 				if (error) {
1370 					/* The input killed the connection */
1371 					goto skip_pacing;
1372 				}
1373 			}
1374 			error = tcp_output(tp);
1375 			if (error < 0)
1376 				goto skip_pacing;
1377 			INP_WUNLOCK(inp);
1378 		skip_pacing:
1379 			CURVNET_RESTORE();
1380 		}
1381 		if (seen_endpoint) {
1382 			/*
1383 			 * We now have a accurate distance between
1384 			 * slot_pos_of_endpoint <-> orig_exit_slot
1385 			 * to tell us how late we were, orig_exit_slot
1386 			 * is where we calculated the end of our cycle to
1387 			 * be when we first entered.
1388 			 */
1389 			completed_measure = 1;
1390 		}
1391 		HPTS_LOCK(hpts);
1392 		hpts->p_runningslot++;
1393 		if (hpts->p_runningslot >= NUM_OF_HPTSI_SLOTS) {
1394 			hpts->p_runningslot = 0;
1395 		}
1396 	}
1397 no_one:
1398 	HPTS_MTX_ASSERT(hpts);
1399 	hpts->p_delayed_by = 0;
1400 	/*
1401 	 * Check to see if we took an excess amount of time and need to run
1402 	 * more ticks (if we did not hit eno-bufs).
1403 	 */
1404 	hpts->p_prev_slot = hpts->p_cur_slot;
1405 	hpts->p_lasttick = hpts->p_curtick;
1406 	if ((from_callout == 0) || (loop_cnt > max_pacer_loops)) {
1407 		/*
1408 		 * Something is serious slow we have
1409 		 * looped through processing the wheel
1410 		 * and by the time we cleared the
1411 		 * needs to run max_pacer_loops time
1412 		 * we still needed to run. That means
1413 		 * the system is hopelessly behind and
1414 		 * can never catch up :(
1415 		 *
1416 		 * We will just lie to this thread
1417 		 * and let it thing p_curtick is
1418 		 * correct. When it next awakens
1419 		 * it will find itself further behind.
1420 		 */
1421 		if (from_callout)
1422 			counter_u64_add(hpts_hopelessly_behind, 1);
1423 		goto no_run;
1424 	}
1425 	hpts->p_curtick = tcp_gethptstick(&tv);
1426 	hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick);
1427 	if (seen_endpoint == 0) {
1428 		/* We saw no endpoint but we may be looping */
1429 		orig_exit_slot = hpts->p_cur_slot;
1430 	}
1431 	if ((wrap_loop_cnt < 2) &&
1432 	    (hpts->p_lasttick != hpts->p_curtick)) {
1433 		counter_u64_add(hpts_loops, 1);
1434 		loop_cnt++;
1435 		goto again;
1436 	}
1437 no_run:
1438 	cts_last_ran[hpts->p_num] = tcp_tv_to_usectick(&tv);
1439 	/*
1440 	 * Set flag to tell that we are done for
1441 	 * any slot input that happens during
1442 	 * input.
1443 	 */
1444 	hpts->p_wheel_complete = 1;
1445 	/*
1446 	 * Now did we spend too long running input and need to run more ticks?
1447 	 * Note that if wrap_loop_cnt < 2 then we should have the conditions
1448 	 * in the KASSERT's true. But if the wheel is behind i.e. wrap_loop_cnt
1449 	 * is greater than 2, then the condtion most likely are *not* true.
1450 	 * Also if we are called not from the callout, we don't run the wheel
1451 	 * multiple times so the slots may not align either.
1452 	 */
1453 	KASSERT(((hpts->p_prev_slot == hpts->p_cur_slot) ||
1454 		 (wrap_loop_cnt >= 2) || (from_callout == 0)),
1455 		("H:%p p_prev_slot:%u not equal to p_cur_slot:%u", hpts,
1456 		 hpts->p_prev_slot, hpts->p_cur_slot));
1457 	KASSERT(((hpts->p_lasttick == hpts->p_curtick)
1458 		 || (wrap_loop_cnt >= 2) || (from_callout == 0)),
1459 		("H:%p p_lasttick:%u not equal to p_curtick:%u", hpts,
1460 		 hpts->p_lasttick, hpts->p_curtick));
1461 	if (from_callout && (hpts->p_lasttick != hpts->p_curtick)) {
1462 		hpts->p_curtick = tcp_gethptstick(&tv);
1463 		counter_u64_add(hpts_loops, 1);
1464 		hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick);
1465 		goto again;
1466 	}
1467 
1468 	if (from_callout){
1469 		tcp_hpts_set_max_sleep(hpts, wrap_loop_cnt);
1470 	}
1471 	if (seen_endpoint)
1472 		return(hpts_slots_diff(slot_pos_of_endpoint, orig_exit_slot));
1473 	else
1474 		return (0);
1475 }
1476 
1477 void
1478 __tcp_set_hpts(struct tcpcb *tp, int32_t line)
1479 {
1480 	struct tcp_hpts_entry *hpts;
1481 	int failed;
1482 
1483 	INP_WLOCK_ASSERT(tptoinpcb(tp));
1484 
1485 	hpts = tcp_hpts_lock(tp);
1486 	if (tp->t_in_hpts == IHPTS_NONE && !(tp->t_flags2 & TF2_HPTS_CPU_SET)) {
1487 		tp->t_hpts_cpu = hpts_cpuid(tp, &failed);
1488 		if (failed == 0)
1489 			tp->t_flags2 |= TF2_HPTS_CPU_SET;
1490 	}
1491 	mtx_unlock(&hpts->p_mtx);
1492 }
1493 
1494 static void
1495 __tcp_run_hpts(struct tcp_hpts_entry *hpts)
1496 {
1497 	int ticks_ran;
1498 
1499 	if (hpts->p_hpts_active) {
1500 		/* Already active */
1501 		return;
1502 	}
1503 	if (mtx_trylock(&hpts->p_mtx) == 0) {
1504 		/* Someone else got the lock */
1505 		return;
1506 	}
1507 	if (hpts->p_hpts_active)
1508 		goto out_with_mtx;
1509 	hpts->syscall_cnt++;
1510 	counter_u64_add(hpts_direct_call, 1);
1511 	hpts->p_hpts_active = 1;
1512 	ticks_ran = tcp_hptsi(hpts, 0);
1513 	/* We may want to adjust the sleep values here */
1514 	if (hpts->p_on_queue_cnt >= conn_cnt_thresh) {
1515 		if (ticks_ran > ticks_indicate_less_sleep) {
1516 			struct timeval tv;
1517 			sbintime_t sb;
1518 
1519 			hpts->p_mysleep.tv_usec /= 2;
1520 			if (hpts->p_mysleep.tv_usec < dynamic_min_sleep)
1521 				hpts->p_mysleep.tv_usec = dynamic_min_sleep;
1522 			/* Reschedule with new to value */
1523 			tcp_hpts_set_max_sleep(hpts, 0);
1524 			tv.tv_usec = hpts->p_hpts_sleep_time * HPTS_TICKS_PER_SLOT;
1525 			/* Validate its in the right ranges */
1526 			if (tv.tv_usec < hpts->p_mysleep.tv_usec) {
1527 				hpts->overidden_sleep = tv.tv_usec;
1528 				tv.tv_usec = hpts->p_mysleep.tv_usec;
1529 			} else if (tv.tv_usec > dynamic_max_sleep) {
1530 				/* Lets not let sleep get above this value */
1531 				hpts->overidden_sleep = tv.tv_usec;
1532 				tv.tv_usec = dynamic_max_sleep;
1533 			}
1534 			/*
1535 			 * In this mode the timer is a backstop to
1536 			 * all the userret/lro_flushes so we use
1537 			 * the dynamic value and set the on_min_sleep
1538 			 * flag so we will not be awoken.
1539 			 */
1540 			sb = tvtosbt(tv);
1541 			/* Store off to make visible the actual sleep time */
1542 			hpts->sleeping = tv.tv_usec;
1543 			callout_reset_sbt_on(&hpts->co, sb, 0,
1544 					     hpts_timeout_swi, hpts, hpts->p_cpu,
1545 					     (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision)));
1546 		} else if (ticks_ran < ticks_indicate_more_sleep) {
1547 			/* For the further sleep, don't reschedule  hpts */
1548 			hpts->p_mysleep.tv_usec *= 2;
1549 			if (hpts->p_mysleep.tv_usec > dynamic_max_sleep)
1550 				hpts->p_mysleep.tv_usec = dynamic_max_sleep;
1551 		}
1552 		hpts->p_on_min_sleep = 1;
1553 	}
1554 	hpts->p_hpts_active = 0;
1555 out_with_mtx:
1556 	HPTS_MTX_ASSERT(hpts);
1557 	mtx_unlock(&hpts->p_mtx);
1558 }
1559 
1560 static struct tcp_hpts_entry *
1561 tcp_choose_hpts_to_run(void)
1562 {
1563 	int i, oldest_idx, start, end;
1564 	uint32_t cts, time_since_ran, calc;
1565 
1566 	cts = tcp_get_usecs(NULL);
1567 	time_since_ran = 0;
1568 	/* Default is all one group */
1569 	start = 0;
1570 	end = tcp_pace.rp_num_hptss;
1571 	/*
1572 	 * If we have more than one L3 group figure out which one
1573 	 * this CPU is in.
1574 	 */
1575 	if (tcp_pace.grp_cnt > 1) {
1576 		for (i = 0; i < tcp_pace.grp_cnt; i++) {
1577 			if (CPU_ISSET(curcpu, &tcp_pace.grps[i]->cg_mask)) {
1578 				start = tcp_pace.grps[i]->cg_first;
1579 				end = (tcp_pace.grps[i]->cg_last + 1);
1580 				break;
1581 			}
1582 		}
1583 	}
1584 	oldest_idx = -1;
1585 	for (i = start; i < end; i++) {
1586 		if (TSTMP_GT(cts, cts_last_ran[i]))
1587 			calc = cts - cts_last_ran[i];
1588 		else
1589 			calc = 0;
1590 		if (calc > time_since_ran) {
1591 			oldest_idx = i;
1592 			time_since_ran = calc;
1593 		}
1594 	}
1595 	if (oldest_idx >= 0)
1596 		return(tcp_pace.rp_ent[oldest_idx]);
1597 	else
1598 		return(tcp_pace.rp_ent[(curcpu % tcp_pace.rp_num_hptss)]);
1599 }
1600 
1601 
1602 void
1603 tcp_run_hpts(void)
1604 {
1605 	static struct tcp_hpts_entry *hpts;
1606 	struct epoch_tracker et;
1607 
1608 	NET_EPOCH_ENTER(et);
1609 	hpts = tcp_choose_hpts_to_run();
1610 	__tcp_run_hpts(hpts);
1611 	NET_EPOCH_EXIT(et);
1612 }
1613 
1614 
1615 static void
1616 tcp_hpts_thread(void *ctx)
1617 {
1618 	struct tcp_hpts_entry *hpts;
1619 	struct epoch_tracker et;
1620 	struct timeval tv;
1621 	sbintime_t sb;
1622 	int ticks_ran;
1623 
1624 	hpts = (struct tcp_hpts_entry *)ctx;
1625 	mtx_lock(&hpts->p_mtx);
1626 	if (hpts->p_direct_wake) {
1627 		/* Signaled by input or output with low occupancy count. */
1628 		callout_stop(&hpts->co);
1629 		counter_u64_add(hpts_direct_awakening, 1);
1630 	} else {
1631 		/* Timed out, the normal case. */
1632 		counter_u64_add(hpts_wake_timeout, 1);
1633 		if (callout_pending(&hpts->co) ||
1634 		    !callout_active(&hpts->co)) {
1635 			mtx_unlock(&hpts->p_mtx);
1636 			return;
1637 		}
1638 	}
1639 	callout_deactivate(&hpts->co);
1640 	hpts->p_hpts_wake_scheduled = 0;
1641 	NET_EPOCH_ENTER(et);
1642 	if (hpts->p_hpts_active) {
1643 		/*
1644 		 * We are active already. This means that a syscall
1645 		 * trap or LRO is running in behalf of hpts. In that case
1646 		 * we need to double our timeout since there seems to be
1647 		 * enough activity in the system that we don't need to
1648 		 * run as often (if we were not directly woken).
1649 		 */
1650 		if (hpts->p_direct_wake == 0) {
1651 			counter_u64_add(hpts_back_tosleep, 1);
1652 			if (hpts->p_on_queue_cnt >= conn_cnt_thresh) {
1653 				hpts->p_mysleep.tv_usec *= 2;
1654 				if (hpts->p_mysleep.tv_usec > dynamic_max_sleep)
1655 					hpts->p_mysleep.tv_usec = dynamic_max_sleep;
1656 				tv.tv_usec = hpts->p_mysleep.tv_usec;
1657 				hpts->p_on_min_sleep = 1;
1658 			} else {
1659 				/*
1660 				 * Here we have low count on the wheel, but
1661 				 * somehow we still collided with one of the
1662 				 * connections. Lets go back to sleep for a
1663 				 * min sleep time, but clear the flag so we
1664 				 * can be awoken by insert.
1665 				 */
1666 				hpts->p_on_min_sleep = 0;
1667 				tv.tv_usec = tcp_min_hptsi_time;
1668 			}
1669 		} else {
1670 			/*
1671 			 * Directly woken most likely to reset the
1672 			 * callout time.
1673 			 */
1674 			tv.tv_sec = 0;
1675 			tv.tv_usec = hpts->p_mysleep.tv_usec;
1676 		}
1677 		goto back_to_sleep;
1678 	}
1679 	hpts->sleeping = 0;
1680 	hpts->p_hpts_active = 1;
1681 	ticks_ran = tcp_hptsi(hpts, 1);
1682 	tv.tv_sec = 0;
1683 	tv.tv_usec = hpts->p_hpts_sleep_time * HPTS_TICKS_PER_SLOT;
1684 	if (hpts->p_on_queue_cnt >= conn_cnt_thresh) {
1685 		if(hpts->p_direct_wake == 0) {
1686 			/*
1687 			 * Only adjust sleep time if we were
1688 			 * called from the callout i.e. direct_wake == 0.
1689 			 */
1690 			if (ticks_ran < ticks_indicate_more_sleep) {
1691 				hpts->p_mysleep.tv_usec *= 2;
1692 				if (hpts->p_mysleep.tv_usec > dynamic_max_sleep)
1693 					hpts->p_mysleep.tv_usec = dynamic_max_sleep;
1694 			} else if (ticks_ran > ticks_indicate_less_sleep) {
1695 				hpts->p_mysleep.tv_usec /= 2;
1696 				if (hpts->p_mysleep.tv_usec < dynamic_min_sleep)
1697 					hpts->p_mysleep.tv_usec = dynamic_min_sleep;
1698 			}
1699 		}
1700 		if (tv.tv_usec < hpts->p_mysleep.tv_usec) {
1701 			hpts->overidden_sleep = tv.tv_usec;
1702 			tv.tv_usec = hpts->p_mysleep.tv_usec;
1703 		} else if (tv.tv_usec > dynamic_max_sleep) {
1704 			/* Lets not let sleep get above this value */
1705 			hpts->overidden_sleep = tv.tv_usec;
1706 			tv.tv_usec = dynamic_max_sleep;
1707 		}
1708 		/*
1709 		 * In this mode the timer is a backstop to
1710 		 * all the userret/lro_flushes so we use
1711 		 * the dynamic value and set the on_min_sleep
1712 		 * flag so we will not be awoken.
1713 		 */
1714 		hpts->p_on_min_sleep = 1;
1715 	} else if (hpts->p_on_queue_cnt == 0)  {
1716 		/*
1717 		 * No one on the wheel, please wake us up
1718 		 * if you insert on the wheel.
1719 		 */
1720 		hpts->p_on_min_sleep = 0;
1721 		hpts->overidden_sleep = 0;
1722 	} else {
1723 		/*
1724 		 * We hit here when we have a low number of
1725 		 * clients on the wheel (our else clause).
1726 		 * We may need to go on min sleep, if we set
1727 		 * the flag we will not be awoken if someone
1728 		 * is inserted ahead of us. Clearing the flag
1729 		 * means we can be awoken. This is "old mode"
1730 		 * where the timer is what runs hpts mainly.
1731 		 */
1732 		if (tv.tv_usec < tcp_min_hptsi_time) {
1733 			/*
1734 			 * Yes on min sleep, which means
1735 			 * we cannot be awoken.
1736 			 */
1737 			hpts->overidden_sleep = tv.tv_usec;
1738 			tv.tv_usec = tcp_min_hptsi_time;
1739 			hpts->p_on_min_sleep = 1;
1740 		} else {
1741 			/* Clear the min sleep flag */
1742 			hpts->overidden_sleep = 0;
1743 			hpts->p_on_min_sleep = 0;
1744 		}
1745 	}
1746 	HPTS_MTX_ASSERT(hpts);
1747 	hpts->p_hpts_active = 0;
1748 back_to_sleep:
1749 	hpts->p_direct_wake = 0;
1750 	sb = tvtosbt(tv);
1751 	/* Store off to make visible the actual sleep time */
1752 	hpts->sleeping = tv.tv_usec;
1753 	callout_reset_sbt_on(&hpts->co, sb, 0,
1754 			     hpts_timeout_swi, hpts, hpts->p_cpu,
1755 			     (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision)));
1756 	NET_EPOCH_EXIT(et);
1757 	mtx_unlock(&hpts->p_mtx);
1758 }
1759 
1760 #undef	timersub
1761 
1762 static int32_t
1763 hpts_count_level(struct cpu_group *cg)
1764 {
1765 	int32_t count_l3, i;
1766 
1767 	count_l3 = 0;
1768 	if (cg->cg_level == CG_SHARE_L3)
1769 		count_l3++;
1770 	/* Walk all the children looking for L3 */
1771 	for (i = 0; i < cg->cg_children; i++) {
1772 		count_l3 += hpts_count_level(&cg->cg_child[i]);
1773 	}
1774 	return (count_l3);
1775 }
1776 
1777 static void
1778 hpts_gather_grps(struct cpu_group **grps, int32_t *at, int32_t max, struct cpu_group *cg)
1779 {
1780 	int32_t idx, i;
1781 
1782 	idx = *at;
1783 	if (cg->cg_level == CG_SHARE_L3) {
1784 		grps[idx] = cg;
1785 		idx++;
1786 		if (idx == max) {
1787 			*at = idx;
1788 			return;
1789 		}
1790 	}
1791 	*at = idx;
1792 	/* Walk all the children looking for L3 */
1793 	for (i = 0; i < cg->cg_children; i++) {
1794 		hpts_gather_grps(grps, at, max, &cg->cg_child[i]);
1795 	}
1796 }
1797 
1798 static void
1799 tcp_init_hptsi(void *st)
1800 {
1801 	struct cpu_group *cpu_top;
1802 	int32_t error __diagused;
1803 	int32_t i, j, bound = 0, created = 0;
1804 	size_t sz, asz;
1805 	struct timeval tv;
1806 	sbintime_t sb;
1807 	struct tcp_hpts_entry *hpts;
1808 	struct pcpu *pc;
1809 	char unit[16];
1810 	uint32_t ncpus = mp_ncpus ? mp_ncpus : MAXCPU;
1811 	int count, domain;
1812 
1813 #ifdef SMP
1814 	cpu_top = smp_topo();
1815 #else
1816 	cpu_top = NULL;
1817 #endif
1818 	tcp_pace.rp_num_hptss = ncpus;
1819 	hpts_hopelessly_behind = counter_u64_alloc(M_WAITOK);
1820 	hpts_loops = counter_u64_alloc(M_WAITOK);
1821 	back_tosleep = counter_u64_alloc(M_WAITOK);
1822 	combined_wheel_wrap = counter_u64_alloc(M_WAITOK);
1823 	wheel_wrap = counter_u64_alloc(M_WAITOK);
1824 	hpts_wake_timeout = counter_u64_alloc(M_WAITOK);
1825 	hpts_direct_awakening = counter_u64_alloc(M_WAITOK);
1826 	hpts_back_tosleep = counter_u64_alloc(M_WAITOK);
1827 	hpts_direct_call = counter_u64_alloc(M_WAITOK);
1828 	cpu_uses_flowid = counter_u64_alloc(M_WAITOK);
1829 	cpu_uses_random = counter_u64_alloc(M_WAITOK);
1830 
1831 	sz = (tcp_pace.rp_num_hptss * sizeof(struct tcp_hpts_entry *));
1832 	tcp_pace.rp_ent = malloc(sz, M_TCPHPTS, M_WAITOK | M_ZERO);
1833 	sz = (sizeof(uint32_t) * tcp_pace.rp_num_hptss);
1834 	cts_last_ran = malloc(sz, M_TCPHPTS, M_WAITOK);
1835 	tcp_pace.grp_cnt = 0;
1836 	if (cpu_top == NULL) {
1837 		tcp_pace.grp_cnt = 1;
1838 	} else {
1839 		/* Find out how many cache level 3 domains we have */
1840 		count = 0;
1841 		tcp_pace.grp_cnt = hpts_count_level(cpu_top);
1842 		if (tcp_pace.grp_cnt == 0) {
1843 			tcp_pace.grp_cnt = 1;
1844 		}
1845 		sz = (tcp_pace.grp_cnt * sizeof(struct cpu_group *));
1846 		tcp_pace.grps = malloc(sz, M_TCPHPTS, M_WAITOK);
1847 		/* Now populate the groups */
1848 		if (tcp_pace.grp_cnt == 1) {
1849 			/*
1850 			 * All we need is the top level all cpu's are in
1851 			 * the same cache so when we use grp[0]->cg_mask
1852 			 * with the cg_first <-> cg_last it will include
1853 			 * all cpu's in it. The level here is probably
1854 			 * zero which is ok.
1855 			 */
1856 			tcp_pace.grps[0] = cpu_top;
1857 		} else {
1858 			/*
1859 			 * Here we must find all the level three cache domains
1860 			 * and setup our pointers to them.
1861 			 */
1862 			count = 0;
1863 			hpts_gather_grps(tcp_pace.grps, &count, tcp_pace.grp_cnt, cpu_top);
1864 		}
1865 	}
1866 	asz = sizeof(struct hptsh) * NUM_OF_HPTSI_SLOTS;
1867 	for (i = 0; i < tcp_pace.rp_num_hptss; i++) {
1868 		tcp_pace.rp_ent[i] = malloc(sizeof(struct tcp_hpts_entry),
1869 		    M_TCPHPTS, M_WAITOK | M_ZERO);
1870 		tcp_pace.rp_ent[i]->p_hptss = malloc(asz, M_TCPHPTS, M_WAITOK);
1871 		hpts = tcp_pace.rp_ent[i];
1872 		/*
1873 		 * Init all the hpts structures that are not specifically
1874 		 * zero'd by the allocations. Also lets attach them to the
1875 		 * appropriate sysctl block as well.
1876 		 */
1877 		mtx_init(&hpts->p_mtx, "tcp_hpts_lck",
1878 		    "hpts", MTX_DEF | MTX_DUPOK);
1879 		for (j = 0; j < NUM_OF_HPTSI_SLOTS; j++) {
1880 			TAILQ_INIT(&hpts->p_hptss[j].head);
1881 			hpts->p_hptss[j].count = 0;
1882 			hpts->p_hptss[j].gencnt = 0;
1883 		}
1884 		sysctl_ctx_init(&hpts->hpts_ctx);
1885 		sprintf(unit, "%d", i);
1886 		hpts->hpts_root = SYSCTL_ADD_NODE(&hpts->hpts_ctx,
1887 		    SYSCTL_STATIC_CHILDREN(_net_inet_tcp_hpts),
1888 		    OID_AUTO,
1889 		    unit,
1890 		    CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
1891 		    "");
1892 		SYSCTL_ADD_INT(&hpts->hpts_ctx,
1893 		    SYSCTL_CHILDREN(hpts->hpts_root),
1894 		    OID_AUTO, "out_qcnt", CTLFLAG_RD,
1895 		    &hpts->p_on_queue_cnt, 0,
1896 		    "Count TCB's awaiting output processing");
1897 		SYSCTL_ADD_U16(&hpts->hpts_ctx,
1898 		    SYSCTL_CHILDREN(hpts->hpts_root),
1899 		    OID_AUTO, "active", CTLFLAG_RD,
1900 		    &hpts->p_hpts_active, 0,
1901 		    "Is the hpts active");
1902 		SYSCTL_ADD_UINT(&hpts->hpts_ctx,
1903 		    SYSCTL_CHILDREN(hpts->hpts_root),
1904 		    OID_AUTO, "curslot", CTLFLAG_RD,
1905 		    &hpts->p_cur_slot, 0,
1906 		    "What the current running pacers goal");
1907 		SYSCTL_ADD_UINT(&hpts->hpts_ctx,
1908 		    SYSCTL_CHILDREN(hpts->hpts_root),
1909 		    OID_AUTO, "runtick", CTLFLAG_RD,
1910 		    &hpts->p_runningslot, 0,
1911 		    "What the running pacers current slot is");
1912 		SYSCTL_ADD_UINT(&hpts->hpts_ctx,
1913 		    SYSCTL_CHILDREN(hpts->hpts_root),
1914 		    OID_AUTO, "curtick", CTLFLAG_RD,
1915 		    &hpts->p_curtick, 0,
1916 		    "What the running pacers last tick mapped to the wheel was");
1917 		SYSCTL_ADD_UINT(&hpts->hpts_ctx,
1918 		    SYSCTL_CHILDREN(hpts->hpts_root),
1919 		    OID_AUTO, "lastran", CTLFLAG_RD,
1920 		    &cts_last_ran[i], 0,
1921 		    "The last usec tick that this hpts ran");
1922 		SYSCTL_ADD_LONG(&hpts->hpts_ctx,
1923 		    SYSCTL_CHILDREN(hpts->hpts_root),
1924 		    OID_AUTO, "cur_min_sleep", CTLFLAG_RD,
1925 		    &hpts->p_mysleep.tv_usec,
1926 		    "What the running pacers is using for p_mysleep.tv_usec");
1927 		SYSCTL_ADD_U64(&hpts->hpts_ctx,
1928 		    SYSCTL_CHILDREN(hpts->hpts_root),
1929 		    OID_AUTO, "now_sleeping", CTLFLAG_RD,
1930 		    &hpts->sleeping, 0,
1931 		    "What the running pacers is actually sleeping for");
1932 		SYSCTL_ADD_U64(&hpts->hpts_ctx,
1933 		    SYSCTL_CHILDREN(hpts->hpts_root),
1934 		    OID_AUTO, "syscall_cnt", CTLFLAG_RD,
1935 		    &hpts->syscall_cnt, 0,
1936 		    "How many times we had syscalls on this hpts");
1937 
1938 		hpts->p_hpts_sleep_time = hpts_sleep_max;
1939 		hpts->p_num = i;
1940 		hpts->p_curtick = tcp_gethptstick(&tv);
1941 		cts_last_ran[i] = tcp_tv_to_usectick(&tv);
1942 		hpts->p_prev_slot = hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick);
1943 		hpts->p_cpu = 0xffff;
1944 		hpts->p_nxt_slot = hpts_slot(hpts->p_cur_slot, 1);
1945 		callout_init(&hpts->co, 1);
1946 	}
1947 	/* Don't try to bind to NUMA domains if we don't have any */
1948 	if (vm_ndomains == 1 && tcp_bind_threads == 2)
1949 		tcp_bind_threads = 0;
1950 
1951 	/*
1952 	 * Now lets start ithreads to handle the hptss.
1953 	 */
1954 	for (i = 0; i < tcp_pace.rp_num_hptss; i++) {
1955 		hpts = tcp_pace.rp_ent[i];
1956 		hpts->p_cpu = i;
1957 
1958 		error = swi_add(&hpts->ie, "hpts",
1959 		    tcp_hpts_thread, (void *)hpts,
1960 		    SWI_NET, INTR_MPSAFE, &hpts->ie_cookie);
1961 		KASSERT(error == 0,
1962 			("Can't add hpts:%p i:%d err:%d",
1963 			 hpts, i, error));
1964 		created++;
1965 		hpts->p_mysleep.tv_sec = 0;
1966 		hpts->p_mysleep.tv_usec = tcp_min_hptsi_time;
1967 		if (tcp_bind_threads == 1) {
1968 			if (intr_event_bind(hpts->ie, i) == 0)
1969 				bound++;
1970 		} else if (tcp_bind_threads == 2) {
1971 			/* Find the group for this CPU (i) and bind into it */
1972 			for (j = 0; j < tcp_pace.grp_cnt; j++) {
1973 				if (CPU_ISSET(i, &tcp_pace.grps[j]->cg_mask)) {
1974 					if (intr_event_bind_ithread_cpuset(hpts->ie,
1975 						&tcp_pace.grps[j]->cg_mask) == 0) {
1976 						bound++;
1977 						pc = pcpu_find(i);
1978 						domain = pc->pc_domain;
1979 						count = hpts_domains[domain].count;
1980 						hpts_domains[domain].cpu[count] = i;
1981 						hpts_domains[domain].count++;
1982 						break;
1983 					}
1984 				}
1985 			}
1986 		}
1987 		tv.tv_sec = 0;
1988 		tv.tv_usec = hpts->p_hpts_sleep_time * HPTS_TICKS_PER_SLOT;
1989 		hpts->sleeping = tv.tv_usec;
1990 		sb = tvtosbt(tv);
1991 		callout_reset_sbt_on(&hpts->co, sb, 0,
1992 				     hpts_timeout_swi, hpts, hpts->p_cpu,
1993 				     (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision)));
1994 	}
1995 	/*
1996 	 * If we somehow have an empty domain, fall back to choosing
1997 	 * among all htps threads.
1998 	 */
1999 	for (i = 0; i < vm_ndomains; i++) {
2000 		if (hpts_domains[i].count == 0) {
2001 			tcp_bind_threads = 0;
2002 			break;
2003 		}
2004 	}
2005 	printf("TCP Hpts created %d swi interrupt threads and bound %d to %s\n",
2006 	    created, bound,
2007 	    tcp_bind_threads == 2 ? "NUMA domains" : "cpus");
2008 #ifdef INVARIANTS
2009 	printf("HPTS is in INVARIANT mode!!\n");
2010 #endif
2011 }
2012 
2013 SYSINIT(tcphptsi, SI_SUB_SOFTINTR, SI_ORDER_ANY, tcp_init_hptsi, NULL);
2014 MODULE_VERSION(tcphpts, 1);
2015