xref: /freebsd/sys/netinet/tcp_hpts.c (revision 8f7ed58a15556bf567ff876e1999e4fe4d684e1d)
1 /*-
2  * Copyright (c) 2016-2018 Netflix, Inc.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  * 1. Redistributions of source code must retain the above copyright
8  *    notice, this list of conditions and the following disclaimer.
9  * 2. Redistributions in binary form must reproduce the above copyright
10  *    notice, this list of conditions and the following disclaimer in the
11  *    documentation and/or other materials provided with the distribution.
12  *
13  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
14  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
17  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23  * SUCH DAMAGE.
24  *
25  */
26 #include <sys/cdefs.h>
27 #include "opt_inet.h"
28 #include "opt_inet6.h"
29 #include "opt_rss.h"
30 
31 /**
32  * Some notes about usage.
33  *
34  * The tcp_hpts system is designed to provide a high precision timer
35  * system for tcp. Its main purpose is to provide a mechanism for
36  * pacing packets out onto the wire. It can be used in two ways
37  * by a given TCP stack (and those two methods can be used simultaneously).
38  *
39  * First, and probably the main thing its used by Rack and BBR, it can
40  * be used to call tcp_output() of a transport stack at some time in the future.
41  * The normal way this is done is that tcp_output() of the stack schedules
42  * itself to be called again by calling tcp_hpts_insert(tcpcb, slot). The
43  * slot is the time from now that the stack wants to be called but it
44  * must be converted to tcp_hpts's notion of slot. This is done with
45  * one of the macros HPTS_MS_TO_SLOTS or HPTS_USEC_TO_SLOTS. So a typical
46  * call from the tcp_output() routine might look like:
47  *
48  * tcp_hpts_insert(tp, HPTS_USEC_TO_SLOTS(550));
49  *
50  * The above would schedule tcp_ouput() to be called in 550 useconds.
51  * Note that if using this mechanism the stack will want to add near
52  * its top a check to prevent unwanted calls (from user land or the
53  * arrival of incoming ack's). So it would add something like:
54  *
55  * if (tcp_in_hpts(inp))
56  *    return;
57  *
58  * to prevent output processing until the time alotted has gone by.
59  * Of course this is a bare bones example and the stack will probably
60  * have more consideration then just the above.
61  *
62  * In order to run input queued segments from the HPTS context the
63  * tcp stack must define an input function for
64  * tfb_do_queued_segments(). This function understands
65  * how to dequeue a array of packets that were input and
66  * knows how to call the correct processing routine.
67  *
68  * Locking in this is important as well so most likely the
69  * stack will need to define the tfb_do_segment_nounlock()
70  * splitting tfb_do_segment() into two parts. The main processing
71  * part that does not unlock the INP and returns a value of 1 or 0.
72  * It returns 0 if all is well and the lock was not released. It
73  * returns 1 if we had to destroy the TCB (a reset received etc).
74  * The remains of tfb_do_segment() then become just a simple call
75  * to the tfb_do_segment_nounlock() function and check the return
76  * code and possibly unlock.
77  *
78  * The stack must also set the flag on the INP that it supports this
79  * feature i.e. INP_SUPPORTS_MBUFQ. The LRO code recoginizes
80  * this flag as well and will queue packets when it is set.
81  * There are other flags as well INP_MBUF_QUEUE_READY and
82  * INP_DONT_SACK_QUEUE. The first flag tells the LRO code
83  * that we are in the pacer for output so there is no
84  * need to wake up the hpts system to get immediate
85  * input. The second tells the LRO code that its okay
86  * if a SACK arrives you can still defer input and let
87  * the current hpts timer run (this is usually set when
88  * a rack timer is up so we know SACK's are happening
89  * on the connection already and don't want to wakeup yet).
90  *
91  * There is a common functions within the rack_bbr_common code
92  * version i.e. ctf_do_queued_segments(). This function
93  * knows how to take the input queue of packets from tp->t_inqueue
94  * and process them digging out all the arguments, calling any bpf tap and
95  * calling into tfb_do_segment_nounlock(). The common
96  * function (ctf_do_queued_segments())  requires that
97  * you have defined the tfb_do_segment_nounlock() as
98  * described above.
99  */
100 
101 #include <sys/param.h>
102 #include <sys/bus.h>
103 #include <sys/interrupt.h>
104 #include <sys/module.h>
105 #include <sys/kernel.h>
106 #include <sys/hhook.h>
107 #include <sys/malloc.h>
108 #include <sys/mbuf.h>
109 #include <sys/proc.h>		/* for proc0 declaration */
110 #include <sys/socket.h>
111 #include <sys/socketvar.h>
112 #include <sys/sysctl.h>
113 #include <sys/systm.h>
114 #include <sys/refcount.h>
115 #include <sys/sched.h>
116 #include <sys/queue.h>
117 #include <sys/smp.h>
118 #include <sys/counter.h>
119 #include <sys/time.h>
120 #include <sys/kthread.h>
121 #include <sys/kern_prefetch.h>
122 
123 #include <vm/uma.h>
124 #include <vm/vm.h>
125 
126 #include <net/route.h>
127 #include <net/vnet.h>
128 
129 #ifdef RSS
130 #include <net/netisr.h>
131 #include <net/rss_config.h>
132 #endif
133 
134 #define TCPSTATES		/* for logging */
135 
136 #include <netinet/in.h>
137 #include <netinet/in_kdtrace.h>
138 #include <netinet/in_pcb.h>
139 #include <netinet/ip.h>
140 #include <netinet/ip_icmp.h>	/* required for icmp_var.h */
141 #include <netinet/icmp_var.h>	/* for ICMP_BANDLIM */
142 #include <netinet/ip_var.h>
143 #include <netinet/ip6.h>
144 #include <netinet6/in6_pcb.h>
145 #include <netinet6/ip6_var.h>
146 #include <netinet/tcp.h>
147 #include <netinet/tcp_fsm.h>
148 #include <netinet/tcp_seq.h>
149 #include <netinet/tcp_timer.h>
150 #include <netinet/tcp_var.h>
151 #include <netinet/tcpip.h>
152 #include <netinet/cc/cc.h>
153 #include <netinet/tcp_hpts.h>
154 #include <netinet/tcp_log_buf.h>
155 
156 #ifdef tcp_offload
157 #include <netinet/tcp_offload.h>
158 #endif
159 
160 /*
161  * The hpts uses a 102400 wheel. The wheel
162  * defines the time in 10 usec increments (102400 x 10).
163  * This gives a range of 10usec - 1024ms to place
164  * an entry within. If the user requests more than
165  * 1.024 second, a remaineder is attached and the hpts
166  * when seeing the remainder will re-insert the
167  * inpcb forward in time from where it is until
168  * the remainder is zero.
169  */
170 
171 #define NUM_OF_HPTSI_SLOTS 102400
172 
173 /* Each hpts has its own p_mtx which is used for locking */
174 #define	HPTS_MTX_ASSERT(hpts)	mtx_assert(&(hpts)->p_mtx, MA_OWNED)
175 #define	HPTS_LOCK(hpts)		mtx_lock(&(hpts)->p_mtx)
176 #define	HPTS_UNLOCK(hpts)	mtx_unlock(&(hpts)->p_mtx)
177 struct tcp_hpts_entry {
178 	/* Cache line 0x00 */
179 	struct mtx p_mtx;	/* Mutex for hpts */
180 	struct timeval p_mysleep;	/* Our min sleep time */
181 	uint64_t syscall_cnt;
182 	uint64_t sleeping;	/* What the actual sleep was (if sleeping) */
183 	uint16_t p_hpts_active; /* Flag that says hpts is awake  */
184 	uint8_t p_wheel_complete; /* have we completed the wheel arc walk? */
185 	uint32_t p_curtick;	/* Tick in 10 us the hpts is going to */
186 	uint32_t p_runningslot; /* Current tick we are at if we are running */
187 	uint32_t p_prev_slot;	/* Previous slot we were on */
188 	uint32_t p_cur_slot;	/* Current slot in wheel hpts is draining */
189 	uint32_t p_nxt_slot;	/* The next slot outside the current range of
190 				 * slots that the hpts is running on. */
191 	int32_t p_on_queue_cnt;	/* Count on queue in this hpts */
192 	uint32_t p_lasttick;	/* Last tick before the current one */
193 	uint8_t p_direct_wake :1, /* boolean */
194 		p_on_min_sleep:1, /* boolean */
195 		p_hpts_wake_scheduled:1, /* boolean */
196 		p_avail:5;
197 	uint8_t p_fill[3];	  /* Fill to 32 bits */
198 	/* Cache line 0x40 */
199 	struct hptsh {
200 		TAILQ_HEAD(, tcpcb)	head;
201 		uint32_t		count;
202 		uint32_t		gencnt;
203 	} *p_hptss;			/* Hptsi wheel */
204 	uint32_t p_hpts_sleep_time;	/* Current sleep interval having a max
205 					 * of 255ms */
206 	uint32_t overidden_sleep;	/* what was overrided by min-sleep for logging */
207 	uint32_t saved_lasttick;	/* for logging */
208 	uint32_t saved_curtick;		/* for logging */
209 	uint32_t saved_curslot;		/* for logging */
210 	uint32_t saved_prev_slot;       /* for logging */
211 	uint32_t p_delayed_by;	/* How much were we delayed by */
212 	/* Cache line 0x80 */
213 	struct sysctl_ctx_list hpts_ctx;
214 	struct sysctl_oid *hpts_root;
215 	struct intr_event *ie;
216 	void *ie_cookie;
217 	uint16_t p_num;		/* The hpts number one per cpu */
218 	uint16_t p_cpu;		/* The hpts CPU */
219 	/* There is extra space in here */
220 	/* Cache line 0x100 */
221 	struct callout co __aligned(CACHE_LINE_SIZE);
222 }               __aligned(CACHE_LINE_SIZE);
223 
224 static struct tcp_hptsi {
225 	struct cpu_group **grps;
226 	struct tcp_hpts_entry **rp_ent;	/* Array of hptss */
227 	uint32_t *cts_last_ran;
228 	uint32_t grp_cnt;
229 	uint32_t rp_num_hptss;	/* Number of hpts threads */
230 } tcp_pace;
231 
232 static MALLOC_DEFINE(M_TCPHPTS, "tcp_hpts", "TCP hpts");
233 #ifdef RSS
234 static int tcp_bind_threads = 1;
235 #else
236 static int tcp_bind_threads = 2;
237 #endif
238 static int tcp_use_irq_cpu = 0;
239 static int hpts_does_tp_logging = 0;
240 
241 static int32_t tcp_hptsi(struct tcp_hpts_entry *hpts, int from_callout);
242 static void tcp_hpts_thread(void *ctx);
243 
244 int32_t tcp_min_hptsi_time = DEFAULT_MIN_SLEEP;
245 static int conn_cnt_thresh = DEFAULT_CONNECTION_THESHOLD;
246 static int32_t dynamic_min_sleep = DYNAMIC_MIN_SLEEP;
247 static int32_t dynamic_max_sleep = DYNAMIC_MAX_SLEEP;
248 
249 
250 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, hpts, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
251     "TCP Hpts controls");
252 SYSCTL_NODE(_net_inet_tcp_hpts, OID_AUTO, stats, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
253     "TCP Hpts statistics");
254 
255 #define	timersub(tvp, uvp, vvp)						\
256 	do {								\
257 		(vvp)->tv_sec = (tvp)->tv_sec - (uvp)->tv_sec;		\
258 		(vvp)->tv_usec = (tvp)->tv_usec - (uvp)->tv_usec;	\
259 		if ((vvp)->tv_usec < 0) {				\
260 			(vvp)->tv_sec--;				\
261 			(vvp)->tv_usec += 1000000;			\
262 		}							\
263 	} while (0)
264 
265 static int32_t tcp_hpts_precision = 120;
266 
267 static struct hpts_domain_info {
268 	int count;
269 	int cpu[MAXCPU];
270 } hpts_domains[MAXMEMDOM];
271 
272 counter_u64_t hpts_hopelessly_behind;
273 
274 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, hopeless, CTLFLAG_RD,
275     &hpts_hopelessly_behind,
276     "Number of times hpts could not catch up and was behind hopelessly");
277 
278 counter_u64_t hpts_loops;
279 
280 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, loops, CTLFLAG_RD,
281     &hpts_loops, "Number of times hpts had to loop to catch up");
282 
283 counter_u64_t back_tosleep;
284 
285 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, no_tcbsfound, CTLFLAG_RD,
286     &back_tosleep, "Number of times hpts found no tcbs");
287 
288 counter_u64_t combined_wheel_wrap;
289 
290 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, comb_wheel_wrap, CTLFLAG_RD,
291     &combined_wheel_wrap, "Number of times the wheel lagged enough to have an insert see wrap");
292 
293 counter_u64_t wheel_wrap;
294 
295 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, wheel_wrap, CTLFLAG_RD,
296     &wheel_wrap, "Number of times the wheel lagged enough to have an insert see wrap");
297 
298 counter_u64_t hpts_direct_call;
299 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, direct_call, CTLFLAG_RD,
300     &hpts_direct_call, "Number of times hpts was called by syscall/trap or other entry");
301 
302 counter_u64_t hpts_wake_timeout;
303 
304 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, timeout_wakeup, CTLFLAG_RD,
305     &hpts_wake_timeout, "Number of times hpts threads woke up via the callout expiring");
306 
307 counter_u64_t hpts_direct_awakening;
308 
309 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, direct_awakening, CTLFLAG_RD,
310     &hpts_direct_awakening, "Number of times hpts threads woke up via the callout expiring");
311 
312 counter_u64_t hpts_back_tosleep;
313 
314 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, back_tosleep, CTLFLAG_RD,
315     &hpts_back_tosleep, "Number of times hpts threads woke up via the callout expiring and went back to sleep no work");
316 
317 counter_u64_t cpu_uses_flowid;
318 counter_u64_t cpu_uses_random;
319 
320 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, cpusel_flowid, CTLFLAG_RD,
321     &cpu_uses_flowid, "Number of times when setting cpuid we used the flowid field");
322 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, cpusel_random, CTLFLAG_RD,
323     &cpu_uses_random, "Number of times when setting cpuid we used the a random value");
324 
325 TUNABLE_INT("net.inet.tcp.bind_hptss", &tcp_bind_threads);
326 TUNABLE_INT("net.inet.tcp.use_irq", &tcp_use_irq_cpu);
327 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, bind_hptss, CTLFLAG_RD,
328     &tcp_bind_threads, 2,
329     "Thread Binding tunable");
330 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, use_irq, CTLFLAG_RD,
331     &tcp_use_irq_cpu, 0,
332     "Use of irq CPU  tunable");
333 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, precision, CTLFLAG_RW,
334     &tcp_hpts_precision, 120,
335     "Value for PRE() precision of callout");
336 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, cnt_thresh, CTLFLAG_RW,
337     &conn_cnt_thresh, 0,
338     "How many connections (below) make us use the callout based mechanism");
339 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, logging, CTLFLAG_RW,
340     &hpts_does_tp_logging, 0,
341     "Do we add to any tp that has logging on pacer logs");
342 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, dyn_minsleep, CTLFLAG_RW,
343     &dynamic_min_sleep, 250,
344     "What is the dynamic minsleep value?");
345 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, dyn_maxsleep, CTLFLAG_RW,
346     &dynamic_max_sleep, 5000,
347     "What is the dynamic maxsleep value?");
348 
349 static int32_t max_pacer_loops = 10;
350 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, loopmax, CTLFLAG_RW,
351     &max_pacer_loops, 10,
352     "What is the maximum number of times the pacer will loop trying to catch up");
353 
354 #define HPTS_MAX_SLEEP_ALLOWED (NUM_OF_HPTSI_SLOTS/2)
355 
356 static uint32_t hpts_sleep_max = HPTS_MAX_SLEEP_ALLOWED;
357 
358 static int
359 sysctl_net_inet_tcp_hpts_max_sleep(SYSCTL_HANDLER_ARGS)
360 {
361 	int error;
362 	uint32_t new;
363 
364 	new = hpts_sleep_max;
365 	error = sysctl_handle_int(oidp, &new, 0, req);
366 	if (error == 0 && req->newptr) {
367 		if ((new < (dynamic_min_sleep/HPTS_TICKS_PER_SLOT)) ||
368 		     (new > HPTS_MAX_SLEEP_ALLOWED))
369 			error = EINVAL;
370 		else
371 			hpts_sleep_max = new;
372 	}
373 	return (error);
374 }
375 
376 static int
377 sysctl_net_inet_tcp_hpts_min_sleep(SYSCTL_HANDLER_ARGS)
378 {
379 	int error;
380 	uint32_t new;
381 
382 	new = tcp_min_hptsi_time;
383 	error = sysctl_handle_int(oidp, &new, 0, req);
384 	if (error == 0 && req->newptr) {
385 		if (new < LOWEST_SLEEP_ALLOWED)
386 			error = EINVAL;
387 		else
388 			tcp_min_hptsi_time = new;
389 	}
390 	return (error);
391 }
392 
393 SYSCTL_PROC(_net_inet_tcp_hpts, OID_AUTO, maxsleep,
394     CTLTYPE_UINT | CTLFLAG_RW,
395     &hpts_sleep_max, 0,
396     &sysctl_net_inet_tcp_hpts_max_sleep, "IU",
397     "Maximum time hpts will sleep in slots");
398 
399 SYSCTL_PROC(_net_inet_tcp_hpts, OID_AUTO, minsleep,
400     CTLTYPE_UINT | CTLFLAG_RW,
401     &tcp_min_hptsi_time, 0,
402     &sysctl_net_inet_tcp_hpts_min_sleep, "IU",
403     "The minimum time the hpts must sleep before processing more slots");
404 
405 static int ticks_indicate_more_sleep = TICKS_INDICATE_MORE_SLEEP;
406 static int ticks_indicate_less_sleep = TICKS_INDICATE_LESS_SLEEP;
407 static int tcp_hpts_no_wake_over_thresh = 1;
408 
409 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, more_sleep, CTLFLAG_RW,
410     &ticks_indicate_more_sleep, 0,
411     "If we only process this many or less on a timeout, we need longer sleep on the next callout");
412 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, less_sleep, CTLFLAG_RW,
413     &ticks_indicate_less_sleep, 0,
414     "If we process this many or more on a timeout, we need less sleep on the next callout");
415 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, nowake_over_thresh, CTLFLAG_RW,
416     &tcp_hpts_no_wake_over_thresh, 0,
417     "When we are over the threshold on the pacer do we prohibit wakeups?");
418 
419 static uint16_t
420 hpts_random_cpu(void)
421 {
422 	uint16_t cpuid;
423 	uint32_t ran;
424 
425 	ran = arc4random();
426 	cpuid = (((ran & 0xffff) % mp_ncpus) % tcp_pace.rp_num_hptss);
427 	return (cpuid);
428 }
429 
430 static void
431 tcp_hpts_log(struct tcp_hpts_entry *hpts, struct tcpcb *tp, struct timeval *tv,
432 	     int slots_to_run, int idx, int from_callout)
433 {
434 	union tcp_log_stackspecific log;
435 	/*
436 	 * Unused logs are
437 	 * 64 bit - delRate, rttProp, bw_inuse
438 	 * 16 bit - cwnd_gain
439 	 *  8 bit - bbr_state, bbr_substate, inhpts;
440 	 */
441 	memset(&log.u_bbr, 0, sizeof(log.u_bbr));
442 	log.u_bbr.flex1 = hpts->p_nxt_slot;
443 	log.u_bbr.flex2 = hpts->p_cur_slot;
444 	log.u_bbr.flex3 = hpts->p_prev_slot;
445 	log.u_bbr.flex4 = idx;
446 	log.u_bbr.flex5 = hpts->p_curtick;
447 	log.u_bbr.flex6 = hpts->p_on_queue_cnt;
448 	log.u_bbr.flex7 = hpts->p_cpu;
449 	log.u_bbr.flex8 = (uint8_t)from_callout;
450 	log.u_bbr.inflight = slots_to_run;
451 	log.u_bbr.applimited = hpts->overidden_sleep;
452 	log.u_bbr.delivered = hpts->saved_curtick;
453 	log.u_bbr.timeStamp = tcp_tv_to_usectick(tv);
454 	log.u_bbr.epoch = hpts->saved_curslot;
455 	log.u_bbr.lt_epoch = hpts->saved_prev_slot;
456 	log.u_bbr.pkts_out = hpts->p_delayed_by;
457 	log.u_bbr.lost = hpts->p_hpts_sleep_time;
458 	log.u_bbr.pacing_gain = hpts->p_cpu;
459 	log.u_bbr.pkt_epoch = hpts->p_runningslot;
460 	log.u_bbr.use_lt_bw = 1;
461 	TCP_LOG_EVENTP(tp, NULL,
462 		       &tptosocket(tp)->so_rcv,
463 		       &tptosocket(tp)->so_snd,
464 		       BBR_LOG_HPTSDIAG, 0,
465 		       0, &log, false, tv);
466 }
467 
468 static void
469 tcp_wakehpts(struct tcp_hpts_entry *hpts)
470 {
471 	HPTS_MTX_ASSERT(hpts);
472 
473 	if (tcp_hpts_no_wake_over_thresh && (hpts->p_on_queue_cnt >= conn_cnt_thresh)) {
474 		hpts->p_direct_wake = 0;
475 		return;
476 	}
477 	if (hpts->p_hpts_wake_scheduled == 0) {
478 		hpts->p_hpts_wake_scheduled = 1;
479 		swi_sched(hpts->ie_cookie, 0);
480 	}
481 }
482 
483 static void
484 hpts_timeout_swi(void *arg)
485 {
486 	struct tcp_hpts_entry *hpts;
487 
488 	hpts = (struct tcp_hpts_entry *)arg;
489 	swi_sched(hpts->ie_cookie, 0);
490 }
491 
492 static void
493 tcp_hpts_insert_internal(struct tcpcb *tp, struct tcp_hpts_entry *hpts)
494 {
495 	struct inpcb *inp = tptoinpcb(tp);
496 	struct hptsh *hptsh;
497 
498 	INP_WLOCK_ASSERT(inp);
499 	HPTS_MTX_ASSERT(hpts);
500 	MPASS(hpts->p_cpu == tp->t_hpts_cpu);
501 	MPASS(!(inp->inp_flags & INP_DROPPED));
502 
503 	hptsh = &hpts->p_hptss[tp->t_hpts_slot];
504 
505 	if (tp->t_in_hpts == IHPTS_NONE) {
506 		tp->t_in_hpts = IHPTS_ONQUEUE;
507 		in_pcbref(inp);
508 	} else if (tp->t_in_hpts == IHPTS_MOVING) {
509 		tp->t_in_hpts = IHPTS_ONQUEUE;
510 	} else
511 		MPASS(tp->t_in_hpts == IHPTS_ONQUEUE);
512 	tp->t_hpts_gencnt = hptsh->gencnt;
513 
514 	TAILQ_INSERT_TAIL(&hptsh->head, tp, t_hpts);
515 	hptsh->count++;
516 	hpts->p_on_queue_cnt++;
517 }
518 
519 static struct tcp_hpts_entry *
520 tcp_hpts_lock(struct tcpcb *tp)
521 {
522 	struct tcp_hpts_entry *hpts;
523 
524 	INP_LOCK_ASSERT(tptoinpcb(tp));
525 
526 	hpts = tcp_pace.rp_ent[tp->t_hpts_cpu];
527 	HPTS_LOCK(hpts);
528 
529 	return (hpts);
530 }
531 
532 static void
533 tcp_hpts_release(struct tcpcb *tp)
534 {
535 	bool released __diagused;
536 
537 	tp->t_in_hpts = IHPTS_NONE;
538 	released = in_pcbrele_wlocked(tptoinpcb(tp));
539 	MPASS(released == false);
540 }
541 
542 /*
543  * Initialize tcpcb to get ready for use with HPTS.  We will know which CPU
544  * is preferred on the first incoming packet.  Before that avoid crowding
545  * a single CPU with newborn connections and use a random one.
546  * This initialization is normally called on a newborn tcpcb, but potentially
547  * can be called once again if stack is switched.  In that case we inherit CPU
548  * that the previous stack has set, be it random or not.  In extreme cases,
549  * e.g. syzkaller fuzzing, a tcpcb can already be in HPTS in IHPTS_MOVING state
550  * and has never received a first packet.
551  */
552 void
553 tcp_hpts_init(struct tcpcb *tp)
554 {
555 
556 	if (__predict_true(tp->t_hpts_cpu == HPTS_CPU_NONE)) {
557 		tp->t_hpts_cpu = hpts_random_cpu();
558 		MPASS(!(tp->t_flags2 & TF2_HPTS_CPU_SET));
559 	}
560 }
561 
562 /*
563  * Called normally with the INP_LOCKED but it
564  * does not matter, the hpts lock is the key
565  * but the lock order allows us to hold the
566  * INP lock and then get the hpts lock.
567  */
568 void
569 tcp_hpts_remove(struct tcpcb *tp)
570 {
571 	struct tcp_hpts_entry *hpts;
572 	struct hptsh *hptsh;
573 
574 	INP_WLOCK_ASSERT(tptoinpcb(tp));
575 
576 	hpts = tcp_hpts_lock(tp);
577 	if (tp->t_in_hpts == IHPTS_ONQUEUE) {
578 		hptsh = &hpts->p_hptss[tp->t_hpts_slot];
579 		tp->t_hpts_request = 0;
580 		if (__predict_true(tp->t_hpts_gencnt == hptsh->gencnt)) {
581 			TAILQ_REMOVE(&hptsh->head, tp, t_hpts);
582 			MPASS(hptsh->count > 0);
583 			hptsh->count--;
584 			MPASS(hpts->p_on_queue_cnt > 0);
585 			hpts->p_on_queue_cnt--;
586 			tcp_hpts_release(tp);
587 		} else {
588 			/*
589 			 * tcp_hptsi() now owns the TAILQ head of this inp.
590 			 * Can't TAILQ_REMOVE, just mark it.
591 			 */
592 #ifdef INVARIANTS
593 			struct tcpcb *tmp;
594 
595 			TAILQ_FOREACH(tmp, &hptsh->head, t_hpts)
596 				MPASS(tmp != tp);
597 #endif
598 			tp->t_in_hpts = IHPTS_MOVING;
599 			tp->t_hpts_slot = -1;
600 		}
601 	} else if (tp->t_in_hpts == IHPTS_MOVING) {
602 		/*
603 		 * Handle a special race condition:
604 		 * tcp_hptsi() moves inpcb to detached tailq
605 		 * tcp_hpts_remove() marks as IHPTS_MOVING, slot = -1
606 		 * tcp_hpts_insert() sets slot to a meaningful value
607 		 * tcp_hpts_remove() again (we are here!), then in_pcbdrop()
608 		 * tcp_hptsi() finds pcb with meaningful slot and INP_DROPPED
609 		 */
610 		tp->t_hpts_slot = -1;
611 	}
612 	HPTS_UNLOCK(hpts);
613 }
614 
615 static inline int
616 hpts_slot(uint32_t wheel_slot, uint32_t plus)
617 {
618 	/*
619 	 * Given a slot on the wheel, what slot
620 	 * is that plus ticks out?
621 	 */
622 	KASSERT(wheel_slot < NUM_OF_HPTSI_SLOTS, ("Invalid tick %u not on wheel", wheel_slot));
623 	return ((wheel_slot + plus) % NUM_OF_HPTSI_SLOTS);
624 }
625 
626 static inline int
627 tick_to_wheel(uint32_t cts_in_wticks)
628 {
629 	/*
630 	 * Given a timestamp in ticks (so by
631 	 * default to get it to a real time one
632 	 * would multiply by 10.. i.e the number
633 	 * of ticks in a slot) map it to our limited
634 	 * space wheel.
635 	 */
636 	return (cts_in_wticks % NUM_OF_HPTSI_SLOTS);
637 }
638 
639 static inline int
640 hpts_slots_diff(int prev_slot, int slot_now)
641 {
642 	/*
643 	 * Given two slots that are someplace
644 	 * on our wheel. How far are they apart?
645 	 */
646 	if (slot_now > prev_slot)
647 		return (slot_now - prev_slot);
648 	else if (slot_now == prev_slot)
649 		/*
650 		 * Special case, same means we can go all of our
651 		 * wheel less one slot.
652 		 */
653 		return (NUM_OF_HPTSI_SLOTS - 1);
654 	else
655 		return ((NUM_OF_HPTSI_SLOTS - prev_slot) + slot_now);
656 }
657 
658 /*
659  * Given a slot on the wheel that is the current time
660  * mapped to the wheel (wheel_slot), what is the maximum
661  * distance forward that can be obtained without
662  * wrapping past either prev_slot or running_slot
663  * depending on the htps state? Also if passed
664  * a uint32_t *, fill it with the slot location.
665  *
666  * Note if you do not give this function the current
667  * time (that you think it is) mapped to the wheel slot
668  * then the results will not be what you expect and
669  * could lead to invalid inserts.
670  */
671 static inline int32_t
672 max_slots_available(struct tcp_hpts_entry *hpts, uint32_t wheel_slot, uint32_t *target_slot)
673 {
674 	uint32_t dis_to_travel, end_slot, pacer_to_now, avail_on_wheel;
675 
676 	if ((hpts->p_hpts_active == 1) &&
677 	    (hpts->p_wheel_complete == 0)) {
678 		end_slot = hpts->p_runningslot;
679 		/* Back up one tick */
680 		if (end_slot == 0)
681 			end_slot = NUM_OF_HPTSI_SLOTS - 1;
682 		else
683 			end_slot--;
684 		if (target_slot)
685 			*target_slot = end_slot;
686 	} else {
687 		/*
688 		 * For the case where we are
689 		 * not active, or we have
690 		 * completed the pass over
691 		 * the wheel, we can use the
692 		 * prev tick and subtract one from it. This puts us
693 		 * as far out as possible on the wheel.
694 		 */
695 		end_slot = hpts->p_prev_slot;
696 		if (end_slot == 0)
697 			end_slot = NUM_OF_HPTSI_SLOTS - 1;
698 		else
699 			end_slot--;
700 		if (target_slot)
701 			*target_slot = end_slot;
702 		/*
703 		 * Now we have close to the full wheel left minus the
704 		 * time it has been since the pacer went to sleep. Note
705 		 * that wheel_tick, passed in, should be the current time
706 		 * from the perspective of the caller, mapped to the wheel.
707 		 */
708 		if (hpts->p_prev_slot != wheel_slot)
709 			dis_to_travel = hpts_slots_diff(hpts->p_prev_slot, wheel_slot);
710 		else
711 			dis_to_travel = 1;
712 		/*
713 		 * dis_to_travel in this case is the space from when the
714 		 * pacer stopped (p_prev_slot) and where our wheel_slot
715 		 * is now. To know how many slots we can put it in we
716 		 * subtract from the wheel size. We would not want
717 		 * to place something after p_prev_slot or it will
718 		 * get ran too soon.
719 		 */
720 		return (NUM_OF_HPTSI_SLOTS - dis_to_travel);
721 	}
722 	/*
723 	 * So how many slots are open between p_runningslot -> p_cur_slot
724 	 * that is what is currently un-available for insertion. Special
725 	 * case when we are at the last slot, this gets 1, so that
726 	 * the answer to how many slots are available is all but 1.
727 	 */
728 	if (hpts->p_runningslot == hpts->p_cur_slot)
729 		dis_to_travel = 1;
730 	else
731 		dis_to_travel = hpts_slots_diff(hpts->p_runningslot, hpts->p_cur_slot);
732 	/*
733 	 * How long has the pacer been running?
734 	 */
735 	if (hpts->p_cur_slot != wheel_slot) {
736 		/* The pacer is a bit late */
737 		pacer_to_now = hpts_slots_diff(hpts->p_cur_slot, wheel_slot);
738 	} else {
739 		/* The pacer is right on time, now == pacers start time */
740 		pacer_to_now = 0;
741 	}
742 	/*
743 	 * To get the number left we can insert into we simply
744 	 * subtract the distance the pacer has to run from how
745 	 * many slots there are.
746 	 */
747 	avail_on_wheel = NUM_OF_HPTSI_SLOTS - dis_to_travel;
748 	/*
749 	 * Now how many of those we will eat due to the pacer's
750 	 * time (p_cur_slot) of start being behind the
751 	 * real time (wheel_slot)?
752 	 */
753 	if (avail_on_wheel <= pacer_to_now) {
754 		/*
755 		 * Wheel wrap, we can't fit on the wheel, that
756 		 * is unusual the system must be way overloaded!
757 		 * Insert into the assured slot, and return special
758 		 * "0".
759 		 */
760 		counter_u64_add(combined_wheel_wrap, 1);
761 		*target_slot = hpts->p_nxt_slot;
762 		return (0);
763 	} else {
764 		/*
765 		 * We know how many slots are open
766 		 * on the wheel (the reverse of what
767 		 * is left to run. Take away the time
768 		 * the pacer started to now (wheel_slot)
769 		 * and that tells you how many slots are
770 		 * open that can be inserted into that won't
771 		 * be touched by the pacer until later.
772 		 */
773 		return (avail_on_wheel - pacer_to_now);
774 	}
775 }
776 
777 
778 #ifdef INVARIANTS
779 static void
780 check_if_slot_would_be_wrong(struct tcp_hpts_entry *hpts, struct tcpcb *tp,
781     uint32_t hptsslot, int line)
782 {
783 	/*
784 	 * Sanity checks for the pacer with invariants
785 	 * on insert.
786 	 */
787 	KASSERT(hptsslot < NUM_OF_HPTSI_SLOTS,
788 		("hpts:%p tp:%p slot:%d > max", hpts, tp, hptsslot));
789 	if ((hpts->p_hpts_active) &&
790 	    (hpts->p_wheel_complete == 0)) {
791 		/*
792 		 * If the pacer is processing a arc
793 		 * of the wheel, we need to make
794 		 * sure we are not inserting within
795 		 * that arc.
796 		 */
797 		int distance, yet_to_run;
798 
799 		distance = hpts_slots_diff(hpts->p_runningslot, hptsslot);
800 		if (hpts->p_runningslot != hpts->p_cur_slot)
801 			yet_to_run = hpts_slots_diff(hpts->p_runningslot, hpts->p_cur_slot);
802 		else
803 			yet_to_run = 0;	/* processing last slot */
804 		KASSERT(yet_to_run <= distance, ("hpts:%p tp:%p slot:%d "
805 		    "distance:%d yet_to_run:%d rs:%d cs:%d", hpts, tp,
806 		    hptsslot, distance, yet_to_run, hpts->p_runningslot,
807 		    hpts->p_cur_slot));
808 	}
809 }
810 #endif
811 
812 uint32_t
813 tcp_hpts_insert_diag(struct tcpcb *tp, uint32_t slot, int32_t line, struct hpts_diag *diag)
814 {
815 	struct tcp_hpts_entry *hpts;
816 	struct timeval tv;
817 	uint32_t slot_on, wheel_cts, last_slot, need_new_to = 0;
818 	int32_t wheel_slot, maxslots;
819 	bool need_wakeup = false;
820 
821 	INP_WLOCK_ASSERT(tptoinpcb(tp));
822 	MPASS(!(tptoinpcb(tp)->inp_flags & INP_DROPPED));
823 	MPASS(!tcp_in_hpts(tp));
824 
825 	/*
826 	 * We now return the next-slot the hpts will be on, beyond its
827 	 * current run (if up) or where it was when it stopped if it is
828 	 * sleeping.
829 	 */
830 	hpts = tcp_hpts_lock(tp);
831 	microuptime(&tv);
832 	if (diag) {
833 		memset(diag, 0, sizeof(struct hpts_diag));
834 		diag->p_hpts_active = hpts->p_hpts_active;
835 		diag->p_prev_slot = hpts->p_prev_slot;
836 		diag->p_runningslot = hpts->p_runningslot;
837 		diag->p_nxt_slot = hpts->p_nxt_slot;
838 		diag->p_cur_slot = hpts->p_cur_slot;
839 		diag->p_curtick = hpts->p_curtick;
840 		diag->p_lasttick = hpts->p_lasttick;
841 		diag->slot_req = slot;
842 		diag->p_on_min_sleep = hpts->p_on_min_sleep;
843 		diag->hpts_sleep_time = hpts->p_hpts_sleep_time;
844 	}
845 	if (slot == 0) {
846 		/* Ok we need to set it on the hpts in the current slot */
847 		tp->t_hpts_request = 0;
848 		if ((hpts->p_hpts_active == 0) || (hpts->p_wheel_complete)) {
849 			/*
850 			 * A sleeping hpts we want in next slot to run
851 			 * note that in this state p_prev_slot == p_cur_slot
852 			 */
853 			tp->t_hpts_slot = hpts_slot(hpts->p_prev_slot, 1);
854 			if ((hpts->p_on_min_sleep == 0) &&
855 			    (hpts->p_hpts_active == 0))
856 				need_wakeup = true;
857 		} else
858 			tp->t_hpts_slot = hpts->p_runningslot;
859 		if (__predict_true(tp->t_in_hpts != IHPTS_MOVING))
860 			tcp_hpts_insert_internal(tp, hpts);
861 		if (need_wakeup) {
862 			/*
863 			 * Activate the hpts if it is sleeping and its
864 			 * timeout is not 1.
865 			 */
866 			hpts->p_direct_wake = 1;
867 			tcp_wakehpts(hpts);
868 		}
869 		slot_on = hpts->p_nxt_slot;
870 		HPTS_UNLOCK(hpts);
871 
872 		return (slot_on);
873 	}
874 	/* Get the current time relative to the wheel */
875 	wheel_cts = tcp_tv_to_hptstick(&tv);
876 	/* Map it onto the wheel */
877 	wheel_slot = tick_to_wheel(wheel_cts);
878 	/* Now what's the max we can place it at? */
879 	maxslots = max_slots_available(hpts, wheel_slot, &last_slot);
880 	if (diag) {
881 		diag->wheel_slot = wheel_slot;
882 		diag->maxslots = maxslots;
883 		diag->wheel_cts = wheel_cts;
884 	}
885 	if (maxslots == 0) {
886 		/* The pacer is in a wheel wrap behind, yikes! */
887 		if (slot > 1) {
888 			/*
889 			 * Reduce by 1 to prevent a forever loop in
890 			 * case something else is wrong. Note this
891 			 * probably does not hurt because the pacer
892 			 * if its true is so far behind we will be
893 			 * > 1second late calling anyway.
894 			 */
895 			slot--;
896 		}
897 		tp->t_hpts_slot = last_slot;
898 		tp->t_hpts_request = slot;
899 	} else 	if (maxslots >= slot) {
900 		/* It all fits on the wheel */
901 		tp->t_hpts_request = 0;
902 		tp->t_hpts_slot = hpts_slot(wheel_slot, slot);
903 	} else {
904 		/* It does not fit */
905 		tp->t_hpts_request = slot - maxslots;
906 		tp->t_hpts_slot = last_slot;
907 	}
908 	if (diag) {
909 		diag->slot_remaining = tp->t_hpts_request;
910 		diag->inp_hptsslot = tp->t_hpts_slot;
911 	}
912 #ifdef INVARIANTS
913 	check_if_slot_would_be_wrong(hpts, tp, tp->t_hpts_slot, line);
914 #endif
915 	if (__predict_true(tp->t_in_hpts != IHPTS_MOVING))
916 		tcp_hpts_insert_internal(tp, hpts);
917 	if ((hpts->p_hpts_active == 0) &&
918 	    (tp->t_hpts_request == 0) &&
919 	    (hpts->p_on_min_sleep == 0)) {
920 		/*
921 		 * The hpts is sleeping and NOT on a minimum
922 		 * sleep time, we need to figure out where
923 		 * it will wake up at and if we need to reschedule
924 		 * its time-out.
925 		 */
926 		uint32_t have_slept, yet_to_sleep;
927 
928 		/* Now do we need to restart the hpts's timer? */
929 		have_slept = hpts_slots_diff(hpts->p_prev_slot, wheel_slot);
930 		if (have_slept < hpts->p_hpts_sleep_time)
931 			yet_to_sleep = hpts->p_hpts_sleep_time - have_slept;
932 		else {
933 			/* We are over-due */
934 			yet_to_sleep = 0;
935 			need_wakeup = 1;
936 		}
937 		if (diag) {
938 			diag->have_slept = have_slept;
939 			diag->yet_to_sleep = yet_to_sleep;
940 		}
941 		if (yet_to_sleep &&
942 		    (yet_to_sleep > slot)) {
943 			/*
944 			 * We need to reschedule the hpts's time-out.
945 			 */
946 			hpts->p_hpts_sleep_time = slot;
947 			need_new_to = slot * HPTS_TICKS_PER_SLOT;
948 		}
949 	}
950 	/*
951 	 * Now how far is the hpts sleeping to? if active is 1, its
952 	 * up and ticking we do nothing, otherwise we may need to
953 	 * reschedule its callout if need_new_to is set from above.
954 	 */
955 	if (need_wakeup) {
956 		hpts->p_direct_wake = 1;
957 		tcp_wakehpts(hpts);
958 		if (diag) {
959 			diag->need_new_to = 0;
960 			diag->co_ret = 0xffff0000;
961 		}
962 	} else if (need_new_to) {
963 		int32_t co_ret;
964 		struct timeval tv;
965 		sbintime_t sb;
966 
967 		tv.tv_sec = 0;
968 		tv.tv_usec = 0;
969 		while (need_new_to > HPTS_USEC_IN_SEC) {
970 			tv.tv_sec++;
971 			need_new_to -= HPTS_USEC_IN_SEC;
972 		}
973 		tv.tv_usec = need_new_to;
974 		sb = tvtosbt(tv);
975 		co_ret = callout_reset_sbt_on(&hpts->co, sb, 0,
976 					      hpts_timeout_swi, hpts, hpts->p_cpu,
977 					      (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision)));
978 		if (diag) {
979 			diag->need_new_to = need_new_to;
980 			diag->co_ret = co_ret;
981 		}
982 	}
983 	slot_on = hpts->p_nxt_slot;
984 	HPTS_UNLOCK(hpts);
985 
986 	return (slot_on);
987 }
988 
989 static uint16_t
990 hpts_cpuid(struct tcpcb *tp, int *failed)
991 {
992 	struct inpcb *inp = tptoinpcb(tp);
993 	u_int cpuid;
994 #ifdef NUMA
995 	struct hpts_domain_info *di;
996 #endif
997 
998 	*failed = 0;
999 	if (tp->t_flags2 & TF2_HPTS_CPU_SET) {
1000 		return (tp->t_hpts_cpu);
1001 	}
1002 	/*
1003 	 * If we are using the irq cpu set by LRO or
1004 	 * the driver then it overrides all other domains.
1005 	 */
1006 	if (tcp_use_irq_cpu) {
1007 		if (tp->t_lro_cpu == HPTS_CPU_NONE) {
1008 			*failed = 1;
1009 			return (0);
1010 		}
1011 		return (tp->t_lro_cpu);
1012 	}
1013 	/* If one is set the other must be the same */
1014 #ifdef RSS
1015 	cpuid = rss_hash2cpuid(inp->inp_flowid, inp->inp_flowtype);
1016 	if (cpuid == NETISR_CPUID_NONE)
1017 		return (hpts_random_cpu());
1018 	else
1019 		return (cpuid);
1020 #endif
1021 	/*
1022 	 * We don't have a flowid -> cpuid mapping, so cheat and just map
1023 	 * unknown cpuids to curcpu.  Not the best, but apparently better
1024 	 * than defaulting to swi 0.
1025 	 */
1026 	if (inp->inp_flowtype == M_HASHTYPE_NONE) {
1027 		counter_u64_add(cpu_uses_random, 1);
1028 		return (hpts_random_cpu());
1029 	}
1030 	/*
1031 	 * Hash to a thread based on the flowid.  If we are using numa,
1032 	 * then restrict the hash to the numa domain where the inp lives.
1033 	 */
1034 
1035 #ifdef NUMA
1036 	if ((vm_ndomains == 1) ||
1037 	    (inp->inp_numa_domain == M_NODOM)) {
1038 #endif
1039 		cpuid = inp->inp_flowid % mp_ncpus;
1040 #ifdef NUMA
1041 	} else {
1042 		/* Hash into the cpu's that use that domain */
1043 		di = &hpts_domains[inp->inp_numa_domain];
1044 		cpuid = di->cpu[inp->inp_flowid % di->count];
1045 	}
1046 #endif
1047 	counter_u64_add(cpu_uses_flowid, 1);
1048 	return (cpuid);
1049 }
1050 
1051 static void
1052 tcp_hpts_set_max_sleep(struct tcp_hpts_entry *hpts, int wrap_loop_cnt)
1053 {
1054 	uint32_t t = 0, i;
1055 
1056 	if ((hpts->p_on_queue_cnt) && (wrap_loop_cnt < 2)) {
1057 		/*
1058 		 * Find next slot that is occupied and use that to
1059 		 * be the sleep time.
1060 		 */
1061 		for (i = 0, t = hpts_slot(hpts->p_cur_slot, 1); i < NUM_OF_HPTSI_SLOTS; i++) {
1062 			if (TAILQ_EMPTY(&hpts->p_hptss[t].head) == 0) {
1063 				break;
1064 			}
1065 			t = (t + 1) % NUM_OF_HPTSI_SLOTS;
1066 		}
1067 		KASSERT((i != NUM_OF_HPTSI_SLOTS), ("Hpts:%p cnt:%d but none found", hpts, hpts->p_on_queue_cnt));
1068 		hpts->p_hpts_sleep_time = min((i + 1), hpts_sleep_max);
1069 	} else {
1070 		/* No one on the wheel sleep for all but 400 slots or sleep max  */
1071 		hpts->p_hpts_sleep_time = hpts_sleep_max;
1072 	}
1073 }
1074 
1075 static int32_t
1076 tcp_hptsi(struct tcp_hpts_entry *hpts, int from_callout)
1077 {
1078 	struct tcpcb *tp;
1079 	struct timeval tv;
1080 	int32_t slots_to_run, i, error;
1081 	int32_t loop_cnt = 0;
1082 	int32_t did_prefetch = 0;
1083 	int32_t prefetch_tp = 0;
1084 	int32_t wrap_loop_cnt = 0;
1085 	int32_t slot_pos_of_endpoint = 0;
1086 	int32_t orig_exit_slot;
1087 	int8_t completed_measure = 0, seen_endpoint = 0;
1088 
1089 	HPTS_MTX_ASSERT(hpts);
1090 	NET_EPOCH_ASSERT();
1091 	/* record previous info for any logging */
1092 	hpts->saved_lasttick = hpts->p_lasttick;
1093 	hpts->saved_curtick = hpts->p_curtick;
1094 	hpts->saved_curslot = hpts->p_cur_slot;
1095 	hpts->saved_prev_slot = hpts->p_prev_slot;
1096 
1097 	hpts->p_lasttick = hpts->p_curtick;
1098 	hpts->p_curtick = tcp_gethptstick(&tv);
1099 	tcp_pace.cts_last_ran[hpts->p_num] = tcp_tv_to_usectick(&tv);
1100 	orig_exit_slot = hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick);
1101 	if ((hpts->p_on_queue_cnt == 0) ||
1102 	    (hpts->p_lasttick == hpts->p_curtick)) {
1103 		/*
1104 		 * No time has yet passed,
1105 		 * or nothing to do.
1106 		 */
1107 		hpts->p_prev_slot = hpts->p_cur_slot;
1108 		hpts->p_lasttick = hpts->p_curtick;
1109 		goto no_run;
1110 	}
1111 again:
1112 	hpts->p_wheel_complete = 0;
1113 	HPTS_MTX_ASSERT(hpts);
1114 	slots_to_run = hpts_slots_diff(hpts->p_prev_slot, hpts->p_cur_slot);
1115 	if (((hpts->p_curtick - hpts->p_lasttick) >
1116 	     ((NUM_OF_HPTSI_SLOTS-1) * HPTS_TICKS_PER_SLOT)) &&
1117 	    (hpts->p_on_queue_cnt != 0)) {
1118 		/*
1119 		 * Wheel wrap is occuring, basically we
1120 		 * are behind and the distance between
1121 		 * run's has spread so much it has exceeded
1122 		 * the time on the wheel (1.024 seconds). This
1123 		 * is ugly and should NOT be happening. We
1124 		 * need to run the entire wheel. We last processed
1125 		 * p_prev_slot, so that needs to be the last slot
1126 		 * we run. The next slot after that should be our
1127 		 * reserved first slot for new, and then starts
1128 		 * the running position. Now the problem is the
1129 		 * reserved "not to yet" place does not exist
1130 		 * and there may be inp's in there that need
1131 		 * running. We can merge those into the
1132 		 * first slot at the head.
1133 		 */
1134 		wrap_loop_cnt++;
1135 		hpts->p_nxt_slot = hpts_slot(hpts->p_prev_slot, 1);
1136 		hpts->p_runningslot = hpts_slot(hpts->p_prev_slot, 2);
1137 		/*
1138 		 * Adjust p_cur_slot to be where we are starting from
1139 		 * hopefully we will catch up (fat chance if something
1140 		 * is broken this bad :( )
1141 		 */
1142 		hpts->p_cur_slot = hpts->p_prev_slot;
1143 		/*
1144 		 * The next slot has guys to run too, and that would
1145 		 * be where we would normally start, lets move them into
1146 		 * the next slot (p_prev_slot + 2) so that we will
1147 		 * run them, the extra 10usecs of late (by being
1148 		 * put behind) does not really matter in this situation.
1149 		 */
1150 		TAILQ_FOREACH(tp, &hpts->p_hptss[hpts->p_nxt_slot].head,
1151 		    t_hpts) {
1152 			MPASS(tp->t_hpts_slot == hpts->p_nxt_slot);
1153 			MPASS(tp->t_hpts_gencnt ==
1154 			    hpts->p_hptss[hpts->p_nxt_slot].gencnt);
1155 			MPASS(tp->t_in_hpts == IHPTS_ONQUEUE);
1156 
1157 			/*
1158 			 * Update gencnt and nextslot accordingly to match
1159 			 * the new location. This is safe since it takes both
1160 			 * the INP lock and the pacer mutex to change the
1161 			 * t_hptsslot and t_hpts_gencnt.
1162 			 */
1163 			tp->t_hpts_gencnt =
1164 			    hpts->p_hptss[hpts->p_runningslot].gencnt;
1165 			tp->t_hpts_slot = hpts->p_runningslot;
1166 		}
1167 		TAILQ_CONCAT(&hpts->p_hptss[hpts->p_runningslot].head,
1168 		    &hpts->p_hptss[hpts->p_nxt_slot].head, t_hpts);
1169 		hpts->p_hptss[hpts->p_runningslot].count +=
1170 		    hpts->p_hptss[hpts->p_nxt_slot].count;
1171 		hpts->p_hptss[hpts->p_nxt_slot].count = 0;
1172 		hpts->p_hptss[hpts->p_nxt_slot].gencnt++;
1173 		slots_to_run = NUM_OF_HPTSI_SLOTS - 1;
1174 		counter_u64_add(wheel_wrap, 1);
1175 	} else {
1176 		/*
1177 		 * Nxt slot is always one after p_runningslot though
1178 		 * its not used usually unless we are doing wheel wrap.
1179 		 */
1180 		hpts->p_nxt_slot = hpts->p_prev_slot;
1181 		hpts->p_runningslot = hpts_slot(hpts->p_prev_slot, 1);
1182 	}
1183 	if (hpts->p_on_queue_cnt == 0) {
1184 		goto no_one;
1185 	}
1186 	for (i = 0; i < slots_to_run; i++) {
1187 		struct tcpcb *tp, *ntp;
1188 		TAILQ_HEAD(, tcpcb) head = TAILQ_HEAD_INITIALIZER(head);
1189 		struct hptsh *hptsh;
1190 		uint32_t runningslot;
1191 
1192 		/*
1193 		 * Calculate our delay, if there are no extra ticks there
1194 		 * was not any (i.e. if slots_to_run == 1, no delay).
1195 		 */
1196 		hpts->p_delayed_by = (slots_to_run - (i + 1)) *
1197 		    HPTS_TICKS_PER_SLOT;
1198 
1199 		runningslot = hpts->p_runningslot;
1200 		hptsh = &hpts->p_hptss[runningslot];
1201 		TAILQ_SWAP(&head, &hptsh->head, tcpcb, t_hpts);
1202 		hpts->p_on_queue_cnt -= hptsh->count;
1203 		hptsh->count = 0;
1204 		hptsh->gencnt++;
1205 
1206 		HPTS_UNLOCK(hpts);
1207 
1208 		TAILQ_FOREACH_SAFE(tp, &head, t_hpts, ntp) {
1209 			struct inpcb *inp = tptoinpcb(tp);
1210 			bool set_cpu;
1211 
1212 			if (ntp != NULL) {
1213 				/*
1214 				 * If we have a next tcpcb, see if we can
1215 				 * prefetch it. Note this may seem
1216 				 * "risky" since we have no locks (other
1217 				 * than the previous inp) and there no
1218 				 * assurance that ntp was not pulled while
1219 				 * we were processing tp and freed. If this
1220 				 * occurred it could mean that either:
1221 				 *
1222 				 * a) Its NULL (which is fine we won't go
1223 				 * here) <or> b) Its valid (which is cool we
1224 				 * will prefetch it) <or> c) The inp got
1225 				 * freed back to the slab which was
1226 				 * reallocated. Then the piece of memory was
1227 				 * re-used and something else (not an
1228 				 * address) is in inp_ppcb. If that occurs
1229 				 * we don't crash, but take a TLB shootdown
1230 				 * performance hit (same as if it was NULL
1231 				 * and we tried to pre-fetch it).
1232 				 *
1233 				 * Considering that the likelyhood of <c> is
1234 				 * quite rare we will take a risk on doing
1235 				 * this. If performance drops after testing
1236 				 * we can always take this out. NB: the
1237 				 * kern_prefetch on amd64 actually has
1238 				 * protection against a bad address now via
1239 				 * the DMAP_() tests. This will prevent the
1240 				 * TLB hit, and instead if <c> occurs just
1241 				 * cause us to load cache with a useless
1242 				 * address (to us).
1243 				 *
1244 				 * XXXGL: this comment and the prefetch action
1245 				 * could be outdated after tp == inp change.
1246 				 */
1247 				kern_prefetch(ntp, &prefetch_tp);
1248 				prefetch_tp = 1;
1249 			}
1250 
1251 			/* For debugging */
1252 			if (seen_endpoint == 0) {
1253 				seen_endpoint = 1;
1254 				orig_exit_slot = slot_pos_of_endpoint =
1255 				    runningslot;
1256 			} else if (completed_measure == 0) {
1257 				/* Record the new position */
1258 				orig_exit_slot = runningslot;
1259 			}
1260 
1261 			INP_WLOCK(inp);
1262 			if ((tp->t_flags2 & TF2_HPTS_CPU_SET) == 0) {
1263 				set_cpu = true;
1264 			} else {
1265 				set_cpu = false;
1266 			}
1267 
1268 			if (__predict_false(tp->t_in_hpts == IHPTS_MOVING)) {
1269 				if (tp->t_hpts_slot == -1) {
1270 					tp->t_in_hpts = IHPTS_NONE;
1271 					if (in_pcbrele_wlocked(inp) == false)
1272 						INP_WUNLOCK(inp);
1273 				} else {
1274 					HPTS_LOCK(hpts);
1275 					tcp_hpts_insert_internal(tp, hpts);
1276 					HPTS_UNLOCK(hpts);
1277 					INP_WUNLOCK(inp);
1278 				}
1279 				continue;
1280 			}
1281 
1282 			MPASS(tp->t_in_hpts == IHPTS_ONQUEUE);
1283 			MPASS(!(inp->inp_flags & INP_DROPPED));
1284 			KASSERT(runningslot == tp->t_hpts_slot,
1285 				("Hpts:%p inp:%p slot mis-aligned %u vs %u",
1286 				 hpts, inp, runningslot, tp->t_hpts_slot));
1287 
1288 			if (tp->t_hpts_request) {
1289 				/*
1290 				 * This guy is deferred out further in time
1291 				 * then our wheel had available on it.
1292 				 * Push him back on the wheel or run it
1293 				 * depending.
1294 				 */
1295 				uint32_t maxslots, last_slot, remaining_slots;
1296 
1297 				remaining_slots = slots_to_run - (i + 1);
1298 				if (tp->t_hpts_request > remaining_slots) {
1299 					HPTS_LOCK(hpts);
1300 					/*
1301 					 * How far out can we go?
1302 					 */
1303 					maxslots = max_slots_available(hpts,
1304 					    hpts->p_cur_slot, &last_slot);
1305 					if (maxslots >= tp->t_hpts_request) {
1306 						/* We can place it finally to
1307 						 * be processed.  */
1308 						tp->t_hpts_slot = hpts_slot(
1309 						    hpts->p_runningslot,
1310 						    tp->t_hpts_request);
1311 						tp->t_hpts_request = 0;
1312 					} else {
1313 						/* Work off some more time */
1314 						tp->t_hpts_slot = last_slot;
1315 						tp->t_hpts_request -=
1316 						    maxslots;
1317 					}
1318 					tcp_hpts_insert_internal(tp, hpts);
1319 					HPTS_UNLOCK(hpts);
1320 					INP_WUNLOCK(inp);
1321 					continue;
1322 				}
1323 				tp->t_hpts_request = 0;
1324 				/* Fall through we will so do it now */
1325 			}
1326 
1327 			tcp_hpts_release(tp);
1328 			if (set_cpu) {
1329 				/*
1330 				 * Setup so the next time we will move to
1331 				 * the right CPU. This should be a rare
1332 				 * event. It will sometimes happens when we
1333 				 * are the client side (usually not the
1334 				 * server). Somehow tcp_output() gets called
1335 				 * before the tcp_do_segment() sets the
1336 				 * intial state. This means the r_cpu and
1337 				 * r_hpts_cpu is 0. We get on the hpts, and
1338 				 * then tcp_input() gets called setting up
1339 				 * the r_cpu to the correct value. The hpts
1340 				 * goes off and sees the mis-match. We
1341 				 * simply correct it here and the CPU will
1342 				 * switch to the new hpts nextime the tcb
1343 				 * gets added to the hpts (not this one)
1344 				 * :-)
1345 				 */
1346 				tcp_set_hpts(tp);
1347 			}
1348 			CURVNET_SET(inp->inp_vnet);
1349 			/* Lets do any logging that we might want to */
1350 			if (hpts_does_tp_logging && tcp_bblogging_on(tp)) {
1351 				tcp_hpts_log(hpts, tp, &tv, slots_to_run, i, from_callout);
1352 			}
1353 
1354 			if (tp->t_fb_ptr != NULL) {
1355 				kern_prefetch(tp->t_fb_ptr, &did_prefetch);
1356 				did_prefetch = 1;
1357 			}
1358 			/*
1359 			 * We set TF2_HPTS_CALLS before any possible output.
1360 			 * The contract with the transport is that if it cares
1361 			 * about hpts calling it should clear the flag. That
1362 			 * way next time it is called it will know it is hpts.
1363 			 *
1364 			 * We also only call tfb_do_queued_segments() <or>
1365 			 * tcp_output().  It is expected that if segments are
1366 			 * queued and come in that the final input mbuf will
1367 			 * cause a call to output if it is needed.
1368 			 */
1369 			tp->t_flags2 |= TF2_HPTS_CALLS;
1370 			if ((tp->t_flags2 & TF2_SUPPORTS_MBUFQ) &&
1371 			    !STAILQ_EMPTY(&tp->t_inqueue)) {
1372 				error = (*tp->t_fb->tfb_do_queued_segments)(tp, 0);
1373 				if (error) {
1374 					/* The input killed the connection */
1375 					goto skip_pacing;
1376 				}
1377 			}
1378 			error = tcp_output(tp);
1379 			if (error < 0)
1380 				goto skip_pacing;
1381 			INP_WUNLOCK(inp);
1382 		skip_pacing:
1383 			CURVNET_RESTORE();
1384 		}
1385 		if (seen_endpoint) {
1386 			/*
1387 			 * We now have a accurate distance between
1388 			 * slot_pos_of_endpoint <-> orig_exit_slot
1389 			 * to tell us how late we were, orig_exit_slot
1390 			 * is where we calculated the end of our cycle to
1391 			 * be when we first entered.
1392 			 */
1393 			completed_measure = 1;
1394 		}
1395 		HPTS_LOCK(hpts);
1396 		hpts->p_runningslot++;
1397 		if (hpts->p_runningslot >= NUM_OF_HPTSI_SLOTS) {
1398 			hpts->p_runningslot = 0;
1399 		}
1400 	}
1401 no_one:
1402 	HPTS_MTX_ASSERT(hpts);
1403 	hpts->p_delayed_by = 0;
1404 	/*
1405 	 * Check to see if we took an excess amount of time and need to run
1406 	 * more ticks (if we did not hit eno-bufs).
1407 	 */
1408 	hpts->p_prev_slot = hpts->p_cur_slot;
1409 	hpts->p_lasttick = hpts->p_curtick;
1410 	if ((from_callout == 0) || (loop_cnt > max_pacer_loops)) {
1411 		/*
1412 		 * Something is serious slow we have
1413 		 * looped through processing the wheel
1414 		 * and by the time we cleared the
1415 		 * needs to run max_pacer_loops time
1416 		 * we still needed to run. That means
1417 		 * the system is hopelessly behind and
1418 		 * can never catch up :(
1419 		 *
1420 		 * We will just lie to this thread
1421 		 * and let it thing p_curtick is
1422 		 * correct. When it next awakens
1423 		 * it will find itself further behind.
1424 		 */
1425 		if (from_callout)
1426 			counter_u64_add(hpts_hopelessly_behind, 1);
1427 		goto no_run;
1428 	}
1429 	hpts->p_curtick = tcp_gethptstick(&tv);
1430 	hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick);
1431 	if (seen_endpoint == 0) {
1432 		/* We saw no endpoint but we may be looping */
1433 		orig_exit_slot = hpts->p_cur_slot;
1434 	}
1435 	if ((wrap_loop_cnt < 2) &&
1436 	    (hpts->p_lasttick != hpts->p_curtick)) {
1437 		counter_u64_add(hpts_loops, 1);
1438 		loop_cnt++;
1439 		goto again;
1440 	}
1441 no_run:
1442 	tcp_pace.cts_last_ran[hpts->p_num] = tcp_tv_to_usectick(&tv);
1443 	/*
1444 	 * Set flag to tell that we are done for
1445 	 * any slot input that happens during
1446 	 * input.
1447 	 */
1448 	hpts->p_wheel_complete = 1;
1449 	/*
1450 	 * Now did we spend too long running input and need to run more ticks?
1451 	 * Note that if wrap_loop_cnt < 2 then we should have the conditions
1452 	 * in the KASSERT's true. But if the wheel is behind i.e. wrap_loop_cnt
1453 	 * is greater than 2, then the condtion most likely are *not* true.
1454 	 * Also if we are called not from the callout, we don't run the wheel
1455 	 * multiple times so the slots may not align either.
1456 	 */
1457 	KASSERT(((hpts->p_prev_slot == hpts->p_cur_slot) ||
1458 		 (wrap_loop_cnt >= 2) || (from_callout == 0)),
1459 		("H:%p p_prev_slot:%u not equal to p_cur_slot:%u", hpts,
1460 		 hpts->p_prev_slot, hpts->p_cur_slot));
1461 	KASSERT(((hpts->p_lasttick == hpts->p_curtick)
1462 		 || (wrap_loop_cnt >= 2) || (from_callout == 0)),
1463 		("H:%p p_lasttick:%u not equal to p_curtick:%u", hpts,
1464 		 hpts->p_lasttick, hpts->p_curtick));
1465 	if (from_callout && (hpts->p_lasttick != hpts->p_curtick)) {
1466 		hpts->p_curtick = tcp_gethptstick(&tv);
1467 		counter_u64_add(hpts_loops, 1);
1468 		hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick);
1469 		goto again;
1470 	}
1471 
1472 	if (from_callout){
1473 		tcp_hpts_set_max_sleep(hpts, wrap_loop_cnt);
1474 	}
1475 	if (seen_endpoint)
1476 		return(hpts_slots_diff(slot_pos_of_endpoint, orig_exit_slot));
1477 	else
1478 		return (0);
1479 }
1480 
1481 void
1482 __tcp_set_hpts(struct tcpcb *tp, int32_t line)
1483 {
1484 	struct tcp_hpts_entry *hpts;
1485 	int failed;
1486 
1487 	INP_WLOCK_ASSERT(tptoinpcb(tp));
1488 
1489 	hpts = tcp_hpts_lock(tp);
1490 	if (tp->t_in_hpts == IHPTS_NONE && !(tp->t_flags2 & TF2_HPTS_CPU_SET)) {
1491 		tp->t_hpts_cpu = hpts_cpuid(tp, &failed);
1492 		if (failed == 0)
1493 			tp->t_flags2 |= TF2_HPTS_CPU_SET;
1494 	}
1495 	mtx_unlock(&hpts->p_mtx);
1496 }
1497 
1498 static struct tcp_hpts_entry *
1499 tcp_choose_hpts_to_run(void)
1500 {
1501 	int i, oldest_idx, start, end;
1502 	uint32_t cts, time_since_ran, calc;
1503 
1504 	cts = tcp_get_usecs(NULL);
1505 	time_since_ran = 0;
1506 	/* Default is all one group */
1507 	start = 0;
1508 	end = tcp_pace.rp_num_hptss;
1509 	/*
1510 	 * If we have more than one L3 group figure out which one
1511 	 * this CPU is in.
1512 	 */
1513 	if (tcp_pace.grp_cnt > 1) {
1514 		for (i = 0; i < tcp_pace.grp_cnt; i++) {
1515 			if (CPU_ISSET(curcpu, &tcp_pace.grps[i]->cg_mask)) {
1516 				start = tcp_pace.grps[i]->cg_first;
1517 				end = (tcp_pace.grps[i]->cg_last + 1);
1518 				break;
1519 			}
1520 		}
1521 	}
1522 	oldest_idx = -1;
1523 	for (i = start; i < end; i++) {
1524 		if (TSTMP_GT(cts, tcp_pace.cts_last_ran[i]))
1525 			calc = cts - tcp_pace.cts_last_ran[i];
1526 		else
1527 			calc = 0;
1528 		if (calc > time_since_ran) {
1529 			oldest_idx = i;
1530 			time_since_ran = calc;
1531 		}
1532 	}
1533 	if (oldest_idx >= 0)
1534 		return(tcp_pace.rp_ent[oldest_idx]);
1535 	else
1536 		return(tcp_pace.rp_ent[(curcpu % tcp_pace.rp_num_hptss)]);
1537 }
1538 
1539 static void
1540 __tcp_run_hpts(void)
1541 {
1542 	struct epoch_tracker et;
1543 	struct tcp_hpts_entry *hpts;
1544 	int ticks_ran;
1545 
1546 	hpts = tcp_choose_hpts_to_run();
1547 
1548 	if (hpts->p_hpts_active) {
1549 		/* Already active */
1550 		return;
1551 	}
1552 	if (mtx_trylock(&hpts->p_mtx) == 0) {
1553 		/* Someone else got the lock */
1554 		return;
1555 	}
1556 	NET_EPOCH_ENTER(et);
1557 	if (hpts->p_hpts_active)
1558 		goto out_with_mtx;
1559 	hpts->syscall_cnt++;
1560 	counter_u64_add(hpts_direct_call, 1);
1561 	hpts->p_hpts_active = 1;
1562 	ticks_ran = tcp_hptsi(hpts, 0);
1563 	/* We may want to adjust the sleep values here */
1564 	if (hpts->p_on_queue_cnt >= conn_cnt_thresh) {
1565 		if (ticks_ran > ticks_indicate_less_sleep) {
1566 			struct timeval tv;
1567 			sbintime_t sb;
1568 
1569 			hpts->p_mysleep.tv_usec /= 2;
1570 			if (hpts->p_mysleep.tv_usec < dynamic_min_sleep)
1571 				hpts->p_mysleep.tv_usec = dynamic_min_sleep;
1572 			/* Reschedule with new to value */
1573 			tcp_hpts_set_max_sleep(hpts, 0);
1574 			tv.tv_sec = 0;
1575 			tv.tv_usec = hpts->p_hpts_sleep_time * HPTS_TICKS_PER_SLOT;
1576 			/* Validate its in the right ranges */
1577 			if (tv.tv_usec < hpts->p_mysleep.tv_usec) {
1578 				hpts->overidden_sleep = tv.tv_usec;
1579 				tv.tv_usec = hpts->p_mysleep.tv_usec;
1580 			} else if (tv.tv_usec > dynamic_max_sleep) {
1581 				/* Lets not let sleep get above this value */
1582 				hpts->overidden_sleep = tv.tv_usec;
1583 				tv.tv_usec = dynamic_max_sleep;
1584 			}
1585 			/*
1586 			 * In this mode the timer is a backstop to
1587 			 * all the userret/lro_flushes so we use
1588 			 * the dynamic value and set the on_min_sleep
1589 			 * flag so we will not be awoken.
1590 			 */
1591 			sb = tvtosbt(tv);
1592 			/* Store off to make visible the actual sleep time */
1593 			hpts->sleeping = tv.tv_usec;
1594 			callout_reset_sbt_on(&hpts->co, sb, 0,
1595 					     hpts_timeout_swi, hpts, hpts->p_cpu,
1596 					     (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision)));
1597 		} else if (ticks_ran < ticks_indicate_more_sleep) {
1598 			/* For the further sleep, don't reschedule  hpts */
1599 			hpts->p_mysleep.tv_usec *= 2;
1600 			if (hpts->p_mysleep.tv_usec > dynamic_max_sleep)
1601 				hpts->p_mysleep.tv_usec = dynamic_max_sleep;
1602 		}
1603 		hpts->p_on_min_sleep = 1;
1604 	}
1605 	hpts->p_hpts_active = 0;
1606 out_with_mtx:
1607 	HPTS_MTX_ASSERT(hpts);
1608 	mtx_unlock(&hpts->p_mtx);
1609 	NET_EPOCH_EXIT(et);
1610 }
1611 
1612 static void
1613 tcp_hpts_thread(void *ctx)
1614 {
1615 	struct tcp_hpts_entry *hpts;
1616 	struct epoch_tracker et;
1617 	struct timeval tv;
1618 	sbintime_t sb;
1619 	int ticks_ran;
1620 
1621 	hpts = (struct tcp_hpts_entry *)ctx;
1622 	mtx_lock(&hpts->p_mtx);
1623 	if (hpts->p_direct_wake) {
1624 		/* Signaled by input or output with low occupancy count. */
1625 		callout_stop(&hpts->co);
1626 		counter_u64_add(hpts_direct_awakening, 1);
1627 	} else {
1628 		/* Timed out, the normal case. */
1629 		counter_u64_add(hpts_wake_timeout, 1);
1630 		if (callout_pending(&hpts->co) ||
1631 		    !callout_active(&hpts->co)) {
1632 			mtx_unlock(&hpts->p_mtx);
1633 			return;
1634 		}
1635 	}
1636 	callout_deactivate(&hpts->co);
1637 	hpts->p_hpts_wake_scheduled = 0;
1638 	NET_EPOCH_ENTER(et);
1639 	if (hpts->p_hpts_active) {
1640 		/*
1641 		 * We are active already. This means that a syscall
1642 		 * trap or LRO is running in behalf of hpts. In that case
1643 		 * we need to double our timeout since there seems to be
1644 		 * enough activity in the system that we don't need to
1645 		 * run as often (if we were not directly woken).
1646 		 */
1647 		if (hpts->p_direct_wake == 0) {
1648 			counter_u64_add(hpts_back_tosleep, 1);
1649 			if (hpts->p_on_queue_cnt >= conn_cnt_thresh) {
1650 				hpts->p_mysleep.tv_usec *= 2;
1651 				if (hpts->p_mysleep.tv_usec > dynamic_max_sleep)
1652 					hpts->p_mysleep.tv_usec = dynamic_max_sleep;
1653 				tv.tv_usec = hpts->p_mysleep.tv_usec;
1654 				hpts->p_on_min_sleep = 1;
1655 			} else {
1656 				/*
1657 				 * Here we have low count on the wheel, but
1658 				 * somehow we still collided with one of the
1659 				 * connections. Lets go back to sleep for a
1660 				 * min sleep time, but clear the flag so we
1661 				 * can be awoken by insert.
1662 				 */
1663 				hpts->p_on_min_sleep = 0;
1664 				tv.tv_usec = tcp_min_hptsi_time;
1665 			}
1666 		} else {
1667 			/*
1668 			 * Directly woken most likely to reset the
1669 			 * callout time.
1670 			 */
1671 			tv.tv_sec = 0;
1672 			tv.tv_usec = hpts->p_mysleep.tv_usec;
1673 		}
1674 		goto back_to_sleep;
1675 	}
1676 	hpts->sleeping = 0;
1677 	hpts->p_hpts_active = 1;
1678 	ticks_ran = tcp_hptsi(hpts, 1);
1679 	tv.tv_sec = 0;
1680 	tv.tv_usec = hpts->p_hpts_sleep_time * HPTS_TICKS_PER_SLOT;
1681 	if (hpts->p_on_queue_cnt >= conn_cnt_thresh) {
1682 		if(hpts->p_direct_wake == 0) {
1683 			/*
1684 			 * Only adjust sleep time if we were
1685 			 * called from the callout i.e. direct_wake == 0.
1686 			 */
1687 			if (ticks_ran < ticks_indicate_more_sleep) {
1688 				hpts->p_mysleep.tv_usec *= 2;
1689 				if (hpts->p_mysleep.tv_usec > dynamic_max_sleep)
1690 					hpts->p_mysleep.tv_usec = dynamic_max_sleep;
1691 			} else if (ticks_ran > ticks_indicate_less_sleep) {
1692 				hpts->p_mysleep.tv_usec /= 2;
1693 				if (hpts->p_mysleep.tv_usec < dynamic_min_sleep)
1694 					hpts->p_mysleep.tv_usec = dynamic_min_sleep;
1695 			}
1696 		}
1697 		if (tv.tv_usec < hpts->p_mysleep.tv_usec) {
1698 			hpts->overidden_sleep = tv.tv_usec;
1699 			tv.tv_usec = hpts->p_mysleep.tv_usec;
1700 		} else if (tv.tv_usec > dynamic_max_sleep) {
1701 			/* Lets not let sleep get above this value */
1702 			hpts->overidden_sleep = tv.tv_usec;
1703 			tv.tv_usec = dynamic_max_sleep;
1704 		}
1705 		/*
1706 		 * In this mode the timer is a backstop to
1707 		 * all the userret/lro_flushes so we use
1708 		 * the dynamic value and set the on_min_sleep
1709 		 * flag so we will not be awoken.
1710 		 */
1711 		hpts->p_on_min_sleep = 1;
1712 	} else if (hpts->p_on_queue_cnt == 0)  {
1713 		/*
1714 		 * No one on the wheel, please wake us up
1715 		 * if you insert on the wheel.
1716 		 */
1717 		hpts->p_on_min_sleep = 0;
1718 		hpts->overidden_sleep = 0;
1719 	} else {
1720 		/*
1721 		 * We hit here when we have a low number of
1722 		 * clients on the wheel (our else clause).
1723 		 * We may need to go on min sleep, if we set
1724 		 * the flag we will not be awoken if someone
1725 		 * is inserted ahead of us. Clearing the flag
1726 		 * means we can be awoken. This is "old mode"
1727 		 * where the timer is what runs hpts mainly.
1728 		 */
1729 		if (tv.tv_usec < tcp_min_hptsi_time) {
1730 			/*
1731 			 * Yes on min sleep, which means
1732 			 * we cannot be awoken.
1733 			 */
1734 			hpts->overidden_sleep = tv.tv_usec;
1735 			tv.tv_usec = tcp_min_hptsi_time;
1736 			hpts->p_on_min_sleep = 1;
1737 		} else {
1738 			/* Clear the min sleep flag */
1739 			hpts->overidden_sleep = 0;
1740 			hpts->p_on_min_sleep = 0;
1741 		}
1742 	}
1743 	HPTS_MTX_ASSERT(hpts);
1744 	hpts->p_hpts_active = 0;
1745 back_to_sleep:
1746 	hpts->p_direct_wake = 0;
1747 	sb = tvtosbt(tv);
1748 	/* Store off to make visible the actual sleep time */
1749 	hpts->sleeping = tv.tv_usec;
1750 	callout_reset_sbt_on(&hpts->co, sb, 0,
1751 			     hpts_timeout_swi, hpts, hpts->p_cpu,
1752 			     (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision)));
1753 	NET_EPOCH_EXIT(et);
1754 	mtx_unlock(&hpts->p_mtx);
1755 }
1756 
1757 #undef	timersub
1758 
1759 static int32_t
1760 hpts_count_level(struct cpu_group *cg)
1761 {
1762 	int32_t count_l3, i;
1763 
1764 	count_l3 = 0;
1765 	if (cg->cg_level == CG_SHARE_L3)
1766 		count_l3++;
1767 	/* Walk all the children looking for L3 */
1768 	for (i = 0; i < cg->cg_children; i++) {
1769 		count_l3 += hpts_count_level(&cg->cg_child[i]);
1770 	}
1771 	return (count_l3);
1772 }
1773 
1774 static void
1775 hpts_gather_grps(struct cpu_group **grps, int32_t *at, int32_t max, struct cpu_group *cg)
1776 {
1777 	int32_t idx, i;
1778 
1779 	idx = *at;
1780 	if (cg->cg_level == CG_SHARE_L3) {
1781 		grps[idx] = cg;
1782 		idx++;
1783 		if (idx == max) {
1784 			*at = idx;
1785 			return;
1786 		}
1787 	}
1788 	*at = idx;
1789 	/* Walk all the children looking for L3 */
1790 	for (i = 0; i < cg->cg_children; i++) {
1791 		hpts_gather_grps(grps, at, max, &cg->cg_child[i]);
1792 	}
1793 }
1794 
1795 static void
1796 tcp_hpts_mod_load(void)
1797 {
1798 	struct cpu_group *cpu_top;
1799 	int32_t error __diagused;
1800 	int32_t i, j, bound = 0, created = 0;
1801 	size_t sz, asz;
1802 	struct timeval tv;
1803 	sbintime_t sb;
1804 	struct tcp_hpts_entry *hpts;
1805 	struct pcpu *pc;
1806 	char unit[16];
1807 	uint32_t ncpus = mp_ncpus ? mp_ncpus : MAXCPU;
1808 	int count, domain;
1809 
1810 #ifdef SMP
1811 	cpu_top = smp_topo();
1812 #else
1813 	cpu_top = NULL;
1814 #endif
1815 	tcp_pace.rp_num_hptss = ncpus;
1816 	hpts_hopelessly_behind = counter_u64_alloc(M_WAITOK);
1817 	hpts_loops = counter_u64_alloc(M_WAITOK);
1818 	back_tosleep = counter_u64_alloc(M_WAITOK);
1819 	combined_wheel_wrap = counter_u64_alloc(M_WAITOK);
1820 	wheel_wrap = counter_u64_alloc(M_WAITOK);
1821 	hpts_wake_timeout = counter_u64_alloc(M_WAITOK);
1822 	hpts_direct_awakening = counter_u64_alloc(M_WAITOK);
1823 	hpts_back_tosleep = counter_u64_alloc(M_WAITOK);
1824 	hpts_direct_call = counter_u64_alloc(M_WAITOK);
1825 	cpu_uses_flowid = counter_u64_alloc(M_WAITOK);
1826 	cpu_uses_random = counter_u64_alloc(M_WAITOK);
1827 
1828 	sz = (tcp_pace.rp_num_hptss * sizeof(struct tcp_hpts_entry *));
1829 	tcp_pace.rp_ent = malloc(sz, M_TCPHPTS, M_WAITOK | M_ZERO);
1830 	sz = (sizeof(uint32_t) * tcp_pace.rp_num_hptss);
1831 	tcp_pace.cts_last_ran = malloc(sz, M_TCPHPTS, M_WAITOK);
1832 	tcp_pace.grp_cnt = 0;
1833 	if (cpu_top == NULL) {
1834 		tcp_pace.grp_cnt = 1;
1835 	} else {
1836 		/* Find out how many cache level 3 domains we have */
1837 		count = 0;
1838 		tcp_pace.grp_cnt = hpts_count_level(cpu_top);
1839 		if (tcp_pace.grp_cnt == 0) {
1840 			tcp_pace.grp_cnt = 1;
1841 		}
1842 		sz = (tcp_pace.grp_cnt * sizeof(struct cpu_group *));
1843 		tcp_pace.grps = malloc(sz, M_TCPHPTS, M_WAITOK);
1844 		/* Now populate the groups */
1845 		if (tcp_pace.grp_cnt == 1) {
1846 			/*
1847 			 * All we need is the top level all cpu's are in
1848 			 * the same cache so when we use grp[0]->cg_mask
1849 			 * with the cg_first <-> cg_last it will include
1850 			 * all cpu's in it. The level here is probably
1851 			 * zero which is ok.
1852 			 */
1853 			tcp_pace.grps[0] = cpu_top;
1854 		} else {
1855 			/*
1856 			 * Here we must find all the level three cache domains
1857 			 * and setup our pointers to them.
1858 			 */
1859 			count = 0;
1860 			hpts_gather_grps(tcp_pace.grps, &count, tcp_pace.grp_cnt, cpu_top);
1861 		}
1862 	}
1863 	asz = sizeof(struct hptsh) * NUM_OF_HPTSI_SLOTS;
1864 	for (i = 0; i < tcp_pace.rp_num_hptss; i++) {
1865 		tcp_pace.rp_ent[i] = malloc(sizeof(struct tcp_hpts_entry),
1866 		    M_TCPHPTS, M_WAITOK | M_ZERO);
1867 		tcp_pace.rp_ent[i]->p_hptss = malloc(asz, M_TCPHPTS, M_WAITOK);
1868 		hpts = tcp_pace.rp_ent[i];
1869 		/*
1870 		 * Init all the hpts structures that are not specifically
1871 		 * zero'd by the allocations. Also lets attach them to the
1872 		 * appropriate sysctl block as well.
1873 		 */
1874 		mtx_init(&hpts->p_mtx, "tcp_hpts_lck",
1875 		    "hpts", MTX_DEF | MTX_DUPOK);
1876 		for (j = 0; j < NUM_OF_HPTSI_SLOTS; j++) {
1877 			TAILQ_INIT(&hpts->p_hptss[j].head);
1878 			hpts->p_hptss[j].count = 0;
1879 			hpts->p_hptss[j].gencnt = 0;
1880 		}
1881 		sysctl_ctx_init(&hpts->hpts_ctx);
1882 		sprintf(unit, "%d", i);
1883 		hpts->hpts_root = SYSCTL_ADD_NODE(&hpts->hpts_ctx,
1884 		    SYSCTL_STATIC_CHILDREN(_net_inet_tcp_hpts),
1885 		    OID_AUTO,
1886 		    unit,
1887 		    CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
1888 		    "");
1889 		SYSCTL_ADD_INT(&hpts->hpts_ctx,
1890 		    SYSCTL_CHILDREN(hpts->hpts_root),
1891 		    OID_AUTO, "out_qcnt", CTLFLAG_RD,
1892 		    &hpts->p_on_queue_cnt, 0,
1893 		    "Count TCB's awaiting output processing");
1894 		SYSCTL_ADD_U16(&hpts->hpts_ctx,
1895 		    SYSCTL_CHILDREN(hpts->hpts_root),
1896 		    OID_AUTO, "active", CTLFLAG_RD,
1897 		    &hpts->p_hpts_active, 0,
1898 		    "Is the hpts active");
1899 		SYSCTL_ADD_UINT(&hpts->hpts_ctx,
1900 		    SYSCTL_CHILDREN(hpts->hpts_root),
1901 		    OID_AUTO, "curslot", CTLFLAG_RD,
1902 		    &hpts->p_cur_slot, 0,
1903 		    "What the current running pacers goal");
1904 		SYSCTL_ADD_UINT(&hpts->hpts_ctx,
1905 		    SYSCTL_CHILDREN(hpts->hpts_root),
1906 		    OID_AUTO, "runtick", CTLFLAG_RD,
1907 		    &hpts->p_runningslot, 0,
1908 		    "What the running pacers current slot is");
1909 		SYSCTL_ADD_UINT(&hpts->hpts_ctx,
1910 		    SYSCTL_CHILDREN(hpts->hpts_root),
1911 		    OID_AUTO, "curtick", CTLFLAG_RD,
1912 		    &hpts->p_curtick, 0,
1913 		    "What the running pacers last tick mapped to the wheel was");
1914 		SYSCTL_ADD_UINT(&hpts->hpts_ctx,
1915 		    SYSCTL_CHILDREN(hpts->hpts_root),
1916 		    OID_AUTO, "lastran", CTLFLAG_RD,
1917 		    &tcp_pace.cts_last_ran[i], 0,
1918 		    "The last usec tick that this hpts ran");
1919 		SYSCTL_ADD_LONG(&hpts->hpts_ctx,
1920 		    SYSCTL_CHILDREN(hpts->hpts_root),
1921 		    OID_AUTO, "cur_min_sleep", CTLFLAG_RD,
1922 		    &hpts->p_mysleep.tv_usec,
1923 		    "What the running pacers is using for p_mysleep.tv_usec");
1924 		SYSCTL_ADD_U64(&hpts->hpts_ctx,
1925 		    SYSCTL_CHILDREN(hpts->hpts_root),
1926 		    OID_AUTO, "now_sleeping", CTLFLAG_RD,
1927 		    &hpts->sleeping, 0,
1928 		    "What the running pacers is actually sleeping for");
1929 		SYSCTL_ADD_U64(&hpts->hpts_ctx,
1930 		    SYSCTL_CHILDREN(hpts->hpts_root),
1931 		    OID_AUTO, "syscall_cnt", CTLFLAG_RD,
1932 		    &hpts->syscall_cnt, 0,
1933 		    "How many times we had syscalls on this hpts");
1934 
1935 		hpts->p_hpts_sleep_time = hpts_sleep_max;
1936 		hpts->p_num = i;
1937 		hpts->p_curtick = tcp_gethptstick(&tv);
1938 		tcp_pace.cts_last_ran[i] = tcp_tv_to_usectick(&tv);
1939 		hpts->p_prev_slot = hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick);
1940 		hpts->p_cpu = 0xffff;
1941 		hpts->p_nxt_slot = hpts_slot(hpts->p_cur_slot, 1);
1942 		callout_init(&hpts->co, 1);
1943 	}
1944 	/* Don't try to bind to NUMA domains if we don't have any */
1945 	if (vm_ndomains == 1 && tcp_bind_threads == 2)
1946 		tcp_bind_threads = 0;
1947 
1948 	/*
1949 	 * Now lets start ithreads to handle the hptss.
1950 	 */
1951 	for (i = 0; i < tcp_pace.rp_num_hptss; i++) {
1952 		hpts = tcp_pace.rp_ent[i];
1953 		hpts->p_cpu = i;
1954 
1955 		error = swi_add(&hpts->ie, "hpts",
1956 		    tcp_hpts_thread, (void *)hpts,
1957 		    SWI_NET, INTR_MPSAFE, &hpts->ie_cookie);
1958 		KASSERT(error == 0,
1959 			("Can't add hpts:%p i:%d err:%d",
1960 			 hpts, i, error));
1961 		created++;
1962 		hpts->p_mysleep.tv_sec = 0;
1963 		hpts->p_mysleep.tv_usec = tcp_min_hptsi_time;
1964 		if (tcp_bind_threads == 1) {
1965 			if (intr_event_bind(hpts->ie, i) == 0)
1966 				bound++;
1967 		} else if (tcp_bind_threads == 2) {
1968 			/* Find the group for this CPU (i) and bind into it */
1969 			for (j = 0; j < tcp_pace.grp_cnt; j++) {
1970 				if (CPU_ISSET(i, &tcp_pace.grps[j]->cg_mask)) {
1971 					if (intr_event_bind_ithread_cpuset(hpts->ie,
1972 						&tcp_pace.grps[j]->cg_mask) == 0) {
1973 						bound++;
1974 						pc = pcpu_find(i);
1975 						domain = pc->pc_domain;
1976 						count = hpts_domains[domain].count;
1977 						hpts_domains[domain].cpu[count] = i;
1978 						hpts_domains[domain].count++;
1979 						break;
1980 					}
1981 				}
1982 			}
1983 		}
1984 		tv.tv_sec = 0;
1985 		tv.tv_usec = hpts->p_hpts_sleep_time * HPTS_TICKS_PER_SLOT;
1986 		hpts->sleeping = tv.tv_usec;
1987 		sb = tvtosbt(tv);
1988 		callout_reset_sbt_on(&hpts->co, sb, 0,
1989 				     hpts_timeout_swi, hpts, hpts->p_cpu,
1990 				     (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision)));
1991 	}
1992 	/*
1993 	 * If we somehow have an empty domain, fall back to choosing
1994 	 * among all htps threads.
1995 	 */
1996 	for (i = 0; i < vm_ndomains; i++) {
1997 		if (hpts_domains[i].count == 0) {
1998 			tcp_bind_threads = 0;
1999 			break;
2000 		}
2001 	}
2002 	tcp_hpts_softclock = __tcp_run_hpts;
2003 	tcp_lro_hpts_init();
2004 	printf("TCP Hpts created %d swi interrupt threads and bound %d to %s\n",
2005 	    created, bound,
2006 	    tcp_bind_threads == 2 ? "NUMA domains" : "cpus");
2007 }
2008 
2009 static void
2010 tcp_hpts_mod_unload(void)
2011 {
2012 	int rv __diagused;
2013 
2014 	tcp_lro_hpts_uninit();
2015 	atomic_store_ptr(&tcp_hpts_softclock, NULL);
2016 
2017 	for (int i = 0; i < tcp_pace.rp_num_hptss; i++) {
2018 		struct tcp_hpts_entry *hpts = tcp_pace.rp_ent[i];
2019 
2020 		rv = callout_drain(&hpts->co);
2021 		MPASS(rv != 0);
2022 
2023 		rv = swi_remove(hpts->ie_cookie);
2024 		MPASS(rv == 0);
2025 
2026 		rv = sysctl_ctx_free(&hpts->hpts_ctx);
2027 		MPASS(rv == 0);
2028 
2029 		mtx_destroy(&hpts->p_mtx);
2030 		free(hpts->p_hptss, M_TCPHPTS);
2031 		free(hpts, M_TCPHPTS);
2032 	}
2033 
2034 	free(tcp_pace.rp_ent, M_TCPHPTS);
2035 	free(tcp_pace.cts_last_ran, M_TCPHPTS);
2036 #ifdef SMP
2037 	free(tcp_pace.grps, M_TCPHPTS);
2038 #endif
2039 
2040 	counter_u64_free(hpts_hopelessly_behind);
2041 	counter_u64_free(hpts_loops);
2042 	counter_u64_free(back_tosleep);
2043 	counter_u64_free(combined_wheel_wrap);
2044 	counter_u64_free(wheel_wrap);
2045 	counter_u64_free(hpts_wake_timeout);
2046 	counter_u64_free(hpts_direct_awakening);
2047 	counter_u64_free(hpts_back_tosleep);
2048 	counter_u64_free(hpts_direct_call);
2049 	counter_u64_free(cpu_uses_flowid);
2050 	counter_u64_free(cpu_uses_random);
2051 }
2052 
2053 static int
2054 tcp_hpts_modevent(module_t mod, int what, void *arg)
2055 {
2056 
2057 	switch (what) {
2058 	case MOD_LOAD:
2059 		tcp_hpts_mod_load();
2060 		return (0);
2061 	case MOD_QUIESCE:
2062 		/*
2063 		 * Since we are a dependency of TCP stack modules, they should
2064 		 * already be unloaded, and the HPTS ring is empty.  However,
2065 		 * function pointer manipulations aren't 100% safe.  Although,
2066 		 * tcp_hpts_mod_unload() use atomic(9) the userret() doesn't.
2067 		 * Thus, allow only forced unload of HPTS.
2068 		 */
2069 		return (EBUSY);
2070 	case MOD_UNLOAD:
2071 		tcp_hpts_mod_unload();
2072 		return (0);
2073 	default:
2074 		return (EINVAL);
2075 	};
2076 }
2077 
2078 static moduledata_t tcp_hpts_module = {
2079 	.name = "tcphpts",
2080 	.evhand = tcp_hpts_modevent,
2081 };
2082 
2083 DECLARE_MODULE(tcphpts, tcp_hpts_module, SI_SUB_SOFTINTR, SI_ORDER_ANY);
2084 MODULE_VERSION(tcphpts, 1);
2085