1 /*- 2 * Copyright (c) 2016-2018 Netflix, Inc. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 1. Redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer. 9 * 2. Redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution. 12 * 13 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 14 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 16 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 17 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 18 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 19 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 20 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 21 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 22 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 23 * SUCH DAMAGE. 24 * 25 */ 26 #include <sys/cdefs.h> 27 #include "opt_inet.h" 28 #include "opt_inet6.h" 29 #include "opt_rss.h" 30 31 /** 32 * Some notes about usage. 33 * 34 * The tcp_hpts system is designed to provide a high precision timer 35 * system for tcp. Its main purpose is to provide a mechanism for 36 * pacing packets out onto the wire. It can be used in two ways 37 * by a given TCP stack (and those two methods can be used simultaneously). 38 * 39 * First, and probably the main thing its used by Rack and BBR, it can 40 * be used to call tcp_output() of a transport stack at some time in the future. 41 * The normal way this is done is that tcp_output() of the stack schedules 42 * itself to be called again by calling tcp_hpts_insert(tcpcb, slot). The 43 * slot is the time from now that the stack wants to be called but it 44 * must be converted to tcp_hpts's notion of slot. This is done with 45 * one of the macros HPTS_MS_TO_SLOTS or HPTS_USEC_TO_SLOTS. So a typical 46 * call from the tcp_output() routine might look like: 47 * 48 * tcp_hpts_insert(tp, HPTS_USEC_TO_SLOTS(550)); 49 * 50 * The above would schedule tcp_output() to be called in 550 useconds. 51 * Note that if using this mechanism the stack will want to add near 52 * its top a check to prevent unwanted calls (from user land or the 53 * arrival of incoming ack's). So it would add something like: 54 * 55 * if (tcp_in_hpts(inp)) 56 * return; 57 * 58 * to prevent output processing until the time alotted has gone by. 59 * Of course this is a bare bones example and the stack will probably 60 * have more consideration then just the above. 61 * 62 * In order to run input queued segments from the HPTS context the 63 * tcp stack must define an input function for 64 * tfb_do_queued_segments(). This function understands 65 * how to dequeue a array of packets that were input and 66 * knows how to call the correct processing routine. 67 * 68 * Locking in this is important as well so most likely the 69 * stack will need to define the tfb_do_segment_nounlock() 70 * splitting tfb_do_segment() into two parts. The main processing 71 * part that does not unlock the INP and returns a value of 1 or 0. 72 * It returns 0 if all is well and the lock was not released. It 73 * returns 1 if we had to destroy the TCB (a reset received etc). 74 * The remains of tfb_do_segment() then become just a simple call 75 * to the tfb_do_segment_nounlock() function and check the return 76 * code and possibly unlock. 77 * 78 * The stack must also set the flag on the INP that it supports this 79 * feature i.e. INP_SUPPORTS_MBUFQ. The LRO code recoginizes 80 * this flag as well and will queue packets when it is set. 81 * There are other flags as well INP_MBUF_QUEUE_READY and 82 * INP_DONT_SACK_QUEUE. The first flag tells the LRO code 83 * that we are in the pacer for output so there is no 84 * need to wake up the hpts system to get immediate 85 * input. The second tells the LRO code that its okay 86 * if a SACK arrives you can still defer input and let 87 * the current hpts timer run (this is usually set when 88 * a rack timer is up so we know SACK's are happening 89 * on the connection already and don't want to wakeup yet). 90 * 91 * There is a common functions within the rack_bbr_common code 92 * version i.e. ctf_do_queued_segments(). This function 93 * knows how to take the input queue of packets from tp->t_inqueue 94 * and process them digging out all the arguments, calling any bpf tap and 95 * calling into tfb_do_segment_nounlock(). The common 96 * function (ctf_do_queued_segments()) requires that 97 * you have defined the tfb_do_segment_nounlock() as 98 * described above. 99 */ 100 101 #include <sys/param.h> 102 #include <sys/bus.h> 103 #include <sys/interrupt.h> 104 #include <sys/module.h> 105 #include <sys/kernel.h> 106 #include <sys/hhook.h> 107 #include <sys/malloc.h> 108 #include <sys/mbuf.h> 109 #include <sys/proc.h> /* for proc0 declaration */ 110 #include <sys/socket.h> 111 #include <sys/socketvar.h> 112 #include <sys/sysctl.h> 113 #include <sys/systm.h> 114 #include <sys/refcount.h> 115 #include <sys/sched.h> 116 #include <sys/queue.h> 117 #include <sys/smp.h> 118 #include <sys/counter.h> 119 #include <sys/time.h> 120 #include <sys/kthread.h> 121 #include <sys/kern_prefetch.h> 122 123 #include <vm/uma.h> 124 #include <vm/vm.h> 125 126 #include <net/route.h> 127 #include <net/vnet.h> 128 129 #ifdef RSS 130 #include <net/netisr.h> 131 #include <net/rss_config.h> 132 #endif 133 134 #define TCPSTATES /* for logging */ 135 136 #include <netinet/in.h> 137 #include <netinet/in_kdtrace.h> 138 #include <netinet/in_pcb.h> 139 #include <netinet/ip.h> 140 #include <netinet/ip_var.h> 141 #include <netinet/ip6.h> 142 #include <netinet6/in6_pcb.h> 143 #include <netinet6/ip6_var.h> 144 #include <netinet/tcp.h> 145 #include <netinet/tcp_fsm.h> 146 #include <netinet/tcp_seq.h> 147 #include <netinet/tcp_timer.h> 148 #include <netinet/tcp_var.h> 149 #include <netinet/tcpip.h> 150 #include <netinet/cc/cc.h> 151 #include <netinet/tcp_hpts.h> 152 #include <netinet/tcp_log_buf.h> 153 154 #ifdef tcp_offload 155 #include <netinet/tcp_offload.h> 156 #endif 157 158 /* 159 * The hpts uses a 102400 wheel. The wheel 160 * defines the time in 10 usec increments (102400 x 10). 161 * This gives a range of 10usec - 1024ms to place 162 * an entry within. If the user requests more than 163 * 1.024 second, a remaineder is attached and the hpts 164 * when seeing the remainder will re-insert the 165 * inpcb forward in time from where it is until 166 * the remainder is zero. 167 */ 168 169 #define NUM_OF_HPTSI_SLOTS 102400 170 171 /* The number of connections after which the dynamic sleep logic kicks in. */ 172 #define DEFAULT_CONNECTION_THRESHOLD 100 173 174 /* 175 * When using the hpts, a TCP stack must make sure 176 * that once a INP_DROPPED flag is applied to a INP 177 * that it does not expect tcp_output() to ever be 178 * called by the hpts. The hpts will *not* call 179 * any output (or input) functions on a TCB that 180 * is in the DROPPED state. 181 * 182 * This implies final ACK's and RST's that might 183 * be sent when a TCB is still around must be 184 * sent from a routine like tcp_respond(). 185 */ 186 #define LOWEST_SLEEP_ALLOWED 50 187 #define DEFAULT_MIN_SLEEP 250 /* How many usec's is default for hpts sleep 188 * this determines min granularity of the 189 * hpts. If 1, granularity is 10useconds at 190 * the cost of more CPU (context switching). 191 * Note do not set this to 0. 192 */ 193 #define DYNAMIC_MIN_SLEEP DEFAULT_MIN_SLEEP 194 #define DYNAMIC_MAX_SLEEP 5000 /* 5ms */ 195 196 /* Thresholds for raising/lowering sleep */ 197 #define SLOTS_INDICATE_MORE_SLEEP 100 /* This would be 1ms */ 198 #define SLOTS_INDICATE_LESS_SLEEP 1000 /* This would indicate 10ms */ 199 /** 200 * 201 * Dynamic adjustment of sleeping times is done in "new" mode 202 * where we are depending on syscall returns and lro returns 203 * to push hpts forward mainly and the timer is only a backstop. 204 * 205 * When we are in the "new" mode i.e. conn_cnt > conn_cnt_thresh 206 * then we do a dynamic adjustment on the time we sleep. 207 * Our threshold is if the lateness of the first client served (in ticks) is 208 * greater than or equal too slots_indicate_more_sleep (10ms 209 * or 10000 ticks). If we were that late, the actual sleep time 210 * is adjusted down by 50%. If the ticks_ran is less than 211 * slots_indicate_more_sleep (100 ticks or 1000usecs). 212 * 213 */ 214 215 /* Each hpts has its own p_mtx which is used for locking */ 216 #define HPTS_MTX_ASSERT(hpts) mtx_assert(&(hpts)->p_mtx, MA_OWNED) 217 #define HPTS_LOCK(hpts) mtx_lock(&(hpts)->p_mtx) 218 #define HPTS_TRYLOCK(hpts) mtx_trylock(&(hpts)->p_mtx) 219 #define HPTS_UNLOCK(hpts) mtx_unlock(&(hpts)->p_mtx) 220 struct tcp_hpts_entry { 221 /* Cache line 0x00 */ 222 struct mtx p_mtx; /* Mutex for hpts */ 223 struct timeval p_mysleep; /* Our min sleep time */ 224 uint64_t syscall_cnt; 225 uint64_t sleeping; /* What the actual sleep was (if sleeping) */ 226 uint16_t p_hpts_active; /* Flag that says hpts is awake */ 227 uint8_t p_wheel_complete; /* have we completed the wheel arc walk? */ 228 uint32_t p_curtick; /* Tick in 10 us the hpts is going to */ 229 uint32_t p_runningslot; /* Current tick we are at if we are running */ 230 uint32_t p_prev_slot; /* Previous slot we were on */ 231 uint32_t p_cur_slot; /* Current slot in wheel hpts is draining */ 232 uint32_t p_nxt_slot; /* The next slot outside the current range of 233 * slots that the hpts is running on. */ 234 int32_t p_on_queue_cnt; /* Count on queue in this hpts */ 235 uint32_t p_lasttick; /* Last tick before the current one */ 236 uint8_t p_direct_wake :1, /* boolean */ 237 p_on_min_sleep:1, /* boolean */ 238 p_hpts_wake_scheduled:1, /* boolean */ 239 hit_callout_thresh:1, 240 p_avail:4; 241 uint8_t p_fill[3]; /* Fill to 32 bits */ 242 /* Cache line 0x40 */ 243 struct hptsh { 244 TAILQ_HEAD(, tcpcb) head; 245 uint32_t count; 246 uint32_t gencnt; 247 } *p_hptss; /* Hptsi wheel */ 248 uint32_t p_hpts_sleep_time; /* Current sleep interval having a max 249 * of 255ms */ 250 uint32_t overidden_sleep; /* what was overrided by min-sleep for logging */ 251 uint32_t saved_lasttick; /* for logging */ 252 uint32_t saved_curtick; /* for logging */ 253 uint32_t saved_curslot; /* for logging */ 254 uint32_t saved_prev_slot; /* for logging */ 255 uint32_t p_delayed_by; /* How much were we delayed by */ 256 /* Cache line 0x80 */ 257 struct sysctl_ctx_list hpts_ctx; 258 struct sysctl_oid *hpts_root; 259 struct intr_event *ie; 260 void *ie_cookie; 261 uint16_t p_num; /* The hpts number one per cpu */ 262 uint16_t p_cpu; /* The hpts CPU */ 263 /* There is extra space in here */ 264 /* Cache line 0x100 */ 265 struct callout co __aligned(CACHE_LINE_SIZE); 266 } __aligned(CACHE_LINE_SIZE); 267 268 static struct tcp_hptsi { 269 struct cpu_group **grps; 270 struct tcp_hpts_entry **rp_ent; /* Array of hptss */ 271 uint32_t *cts_last_ran; 272 uint32_t grp_cnt; 273 uint32_t rp_num_hptss; /* Number of hpts threads */ 274 } tcp_pace; 275 276 static MALLOC_DEFINE(M_TCPHPTS, "tcp_hpts", "TCP hpts"); 277 #ifdef RSS 278 static int tcp_bind_threads = 1; 279 #else 280 static int tcp_bind_threads = 2; 281 #endif 282 static int tcp_use_irq_cpu = 0; 283 static int hpts_does_tp_logging = 0; 284 285 static int32_t tcp_hptsi(struct tcp_hpts_entry *hpts, bool from_callout); 286 static void tcp_hpts_thread(void *ctx); 287 288 int32_t tcp_min_hptsi_time = DEFAULT_MIN_SLEEP; 289 static int conn_cnt_thresh = DEFAULT_CONNECTION_THRESHOLD; 290 static int32_t dynamic_min_sleep = DYNAMIC_MIN_SLEEP; 291 static int32_t dynamic_max_sleep = DYNAMIC_MAX_SLEEP; 292 293 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, hpts, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 294 "TCP Hpts controls"); 295 SYSCTL_NODE(_net_inet_tcp_hpts, OID_AUTO, stats, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 296 "TCP Hpts statistics"); 297 298 #define timersub(tvp, uvp, vvp) \ 299 do { \ 300 (vvp)->tv_sec = (tvp)->tv_sec - (uvp)->tv_sec; \ 301 (vvp)->tv_usec = (tvp)->tv_usec - (uvp)->tv_usec; \ 302 if ((vvp)->tv_usec < 0) { \ 303 (vvp)->tv_sec--; \ 304 (vvp)->tv_usec += 1000000; \ 305 } \ 306 } while (0) 307 308 static int32_t tcp_hpts_precision = 120; 309 310 static struct hpts_domain_info { 311 int count; 312 int cpu[MAXCPU]; 313 } hpts_domains[MAXMEMDOM]; 314 315 counter_u64_t hpts_hopelessly_behind; 316 317 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, hopeless, CTLFLAG_RD, 318 &hpts_hopelessly_behind, 319 "Number of times hpts could not catch up and was behind hopelessly"); 320 321 counter_u64_t hpts_loops; 322 323 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, loops, CTLFLAG_RD, 324 &hpts_loops, "Number of times hpts had to loop to catch up"); 325 326 counter_u64_t back_tosleep; 327 328 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, no_tcbsfound, CTLFLAG_RD, 329 &back_tosleep, "Number of times hpts found no tcbs"); 330 331 counter_u64_t combined_wheel_wrap; 332 333 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, comb_wheel_wrap, CTLFLAG_RD, 334 &combined_wheel_wrap, "Number of times the wheel lagged enough to have an insert see wrap"); 335 336 counter_u64_t wheel_wrap; 337 338 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, wheel_wrap, CTLFLAG_RD, 339 &wheel_wrap, "Number of times the wheel lagged enough to have an insert see wrap"); 340 341 counter_u64_t hpts_direct_call; 342 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, direct_call, CTLFLAG_RD, 343 &hpts_direct_call, "Number of times hpts was called by syscall/trap or other entry"); 344 345 counter_u64_t hpts_wake_timeout; 346 347 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, timeout_wakeup, CTLFLAG_RD, 348 &hpts_wake_timeout, "Number of times hpts threads woke up via the callout expiring"); 349 350 counter_u64_t hpts_direct_awakening; 351 352 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, direct_awakening, CTLFLAG_RD, 353 &hpts_direct_awakening, "Number of times hpts threads woke up via the callout expiring"); 354 355 counter_u64_t hpts_back_tosleep; 356 357 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, back_tosleep, CTLFLAG_RD, 358 &hpts_back_tosleep, "Number of times hpts threads woke up via the callout expiring and went back to sleep no work"); 359 360 counter_u64_t cpu_uses_flowid; 361 counter_u64_t cpu_uses_random; 362 363 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, cpusel_flowid, CTLFLAG_RD, 364 &cpu_uses_flowid, "Number of times when setting cpuid we used the flowid field"); 365 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, cpusel_random, CTLFLAG_RD, 366 &cpu_uses_random, "Number of times when setting cpuid we used the a random value"); 367 368 TUNABLE_INT("net.inet.tcp.bind_hptss", &tcp_bind_threads); 369 TUNABLE_INT("net.inet.tcp.use_irq", &tcp_use_irq_cpu); 370 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, bind_hptss, CTLFLAG_RD, 371 &tcp_bind_threads, 2, 372 "Thread Binding tunable"); 373 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, use_irq, CTLFLAG_RD, 374 &tcp_use_irq_cpu, 0, 375 "Use of irq CPU tunable"); 376 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, precision, CTLFLAG_RW, 377 &tcp_hpts_precision, 120, 378 "Value for PRE() precision of callout"); 379 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, cnt_thresh, CTLFLAG_RW, 380 &conn_cnt_thresh, 0, 381 "How many connections (below) make us use the callout based mechanism"); 382 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, logging, CTLFLAG_RW, 383 &hpts_does_tp_logging, 0, 384 "Do we add to any tp that has logging on pacer logs"); 385 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, dyn_minsleep, CTLFLAG_RW, 386 &dynamic_min_sleep, 250, 387 "What is the dynamic minsleep value?"); 388 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, dyn_maxsleep, CTLFLAG_RW, 389 &dynamic_max_sleep, 5000, 390 "What is the dynamic maxsleep value?"); 391 392 static int32_t max_pacer_loops = 10; 393 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, loopmax, CTLFLAG_RW, 394 &max_pacer_loops, 10, 395 "What is the maximum number of times the pacer will loop trying to catch up"); 396 397 #define HPTS_MAX_SLEEP_ALLOWED (NUM_OF_HPTSI_SLOTS/2) 398 399 static uint32_t hpts_sleep_max = HPTS_MAX_SLEEP_ALLOWED; 400 401 static int 402 sysctl_net_inet_tcp_hpts_max_sleep(SYSCTL_HANDLER_ARGS) 403 { 404 int error; 405 uint32_t new; 406 407 new = hpts_sleep_max; 408 error = sysctl_handle_int(oidp, &new, 0, req); 409 if (error == 0 && req->newptr) { 410 if ((new < (dynamic_min_sleep/HPTS_USECS_PER_SLOT)) || 411 (new > HPTS_MAX_SLEEP_ALLOWED)) 412 error = EINVAL; 413 else 414 hpts_sleep_max = new; 415 } 416 return (error); 417 } 418 419 static int 420 sysctl_net_inet_tcp_hpts_min_sleep(SYSCTL_HANDLER_ARGS) 421 { 422 int error; 423 uint32_t new; 424 425 new = tcp_min_hptsi_time; 426 error = sysctl_handle_int(oidp, &new, 0, req); 427 if (error == 0 && req->newptr) { 428 if (new < LOWEST_SLEEP_ALLOWED) 429 error = EINVAL; 430 else 431 tcp_min_hptsi_time = new; 432 } 433 return (error); 434 } 435 436 SYSCTL_PROC(_net_inet_tcp_hpts, OID_AUTO, maxsleep, 437 CTLTYPE_UINT | CTLFLAG_RW, 438 &hpts_sleep_max, 0, 439 &sysctl_net_inet_tcp_hpts_max_sleep, "IU", 440 "Maximum time hpts will sleep in slots"); 441 442 SYSCTL_PROC(_net_inet_tcp_hpts, OID_AUTO, minsleep, 443 CTLTYPE_UINT | CTLFLAG_RW, 444 &tcp_min_hptsi_time, 0, 445 &sysctl_net_inet_tcp_hpts_min_sleep, "IU", 446 "The minimum time the hpts must sleep before processing more slots"); 447 448 static int slots_indicate_more_sleep = SLOTS_INDICATE_MORE_SLEEP; 449 static int slots_indicate_less_sleep = SLOTS_INDICATE_LESS_SLEEP; 450 static int tcp_hpts_no_wake_over_thresh = 1; 451 452 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, more_sleep, CTLFLAG_RW, 453 &slots_indicate_more_sleep, 0, 454 "If we only process this many or less on a timeout, we need longer sleep on the next callout"); 455 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, less_sleep, CTLFLAG_RW, 456 &slots_indicate_less_sleep, 0, 457 "If we process this many or more on a timeout, we need less sleep on the next callout"); 458 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, nowake_over_thresh, CTLFLAG_RW, 459 &tcp_hpts_no_wake_over_thresh, 0, 460 "When we are over the threshold on the pacer do we prohibit wakeups?"); 461 462 static uint16_t 463 hpts_random_cpu(void) 464 { 465 uint16_t cpuid; 466 uint32_t ran; 467 468 ran = arc4random(); 469 cpuid = (((ran & 0xffff) % mp_ncpus) % tcp_pace.rp_num_hptss); 470 return (cpuid); 471 } 472 473 static void 474 tcp_hpts_log(struct tcp_hpts_entry *hpts, struct tcpcb *tp, struct timeval *tv, 475 int slots_to_run, int idx, bool from_callout) 476 { 477 if (hpts_does_tp_logging && tcp_bblogging_on(tp)) { 478 union tcp_log_stackspecific log; 479 /* 480 * Unused logs are 481 * 64 bit - delRate, rttProp, bw_inuse 482 * 16 bit - cwnd_gain 483 * 8 bit - bbr_state, bbr_substate, inhpts; 484 */ 485 memset(&log, 0, sizeof(log)); 486 log.u_bbr.flex1 = hpts->p_nxt_slot; 487 log.u_bbr.flex2 = hpts->p_cur_slot; 488 log.u_bbr.flex3 = hpts->p_prev_slot; 489 log.u_bbr.flex4 = idx; 490 log.u_bbr.flex5 = hpts->p_curtick; 491 log.u_bbr.flex6 = hpts->p_on_queue_cnt; 492 log.u_bbr.flex7 = hpts->p_cpu; 493 log.u_bbr.flex8 = (uint8_t)from_callout; 494 log.u_bbr.inflight = slots_to_run; 495 log.u_bbr.applimited = hpts->overidden_sleep; 496 log.u_bbr.delivered = hpts->saved_curtick; 497 log.u_bbr.timeStamp = tcp_tv_to_usec(tv); 498 log.u_bbr.epoch = hpts->saved_curslot; 499 log.u_bbr.lt_epoch = hpts->saved_prev_slot; 500 log.u_bbr.pkts_out = hpts->p_delayed_by; 501 log.u_bbr.lost = hpts->p_hpts_sleep_time; 502 log.u_bbr.pacing_gain = hpts->p_cpu; 503 log.u_bbr.pkt_epoch = hpts->p_runningslot; 504 log.u_bbr.use_lt_bw = 1; 505 TCP_LOG_EVENTP(tp, NULL, 506 &tptosocket(tp)->so_rcv, 507 &tptosocket(tp)->so_snd, 508 BBR_LOG_HPTSDIAG, 0, 509 0, &log, false, tv); 510 } 511 } 512 513 static void 514 tcp_wakehpts(struct tcp_hpts_entry *hpts) 515 { 516 HPTS_MTX_ASSERT(hpts); 517 518 if (tcp_hpts_no_wake_over_thresh && (hpts->p_on_queue_cnt >= conn_cnt_thresh)) { 519 hpts->p_direct_wake = 0; 520 return; 521 } 522 if (hpts->p_hpts_wake_scheduled == 0) { 523 hpts->p_hpts_wake_scheduled = 1; 524 swi_sched(hpts->ie_cookie, 0); 525 } 526 } 527 528 static void 529 hpts_timeout_swi(void *arg) 530 { 531 struct tcp_hpts_entry *hpts; 532 533 hpts = (struct tcp_hpts_entry *)arg; 534 swi_sched(hpts->ie_cookie, 0); 535 } 536 537 static void 538 tcp_hpts_insert_internal(struct tcpcb *tp, struct tcp_hpts_entry *hpts) 539 { 540 struct inpcb *inp = tptoinpcb(tp); 541 struct hptsh *hptsh; 542 543 INP_WLOCK_ASSERT(inp); 544 HPTS_MTX_ASSERT(hpts); 545 MPASS(hpts->p_cpu == tp->t_hpts_cpu); 546 MPASS(!(inp->inp_flags & INP_DROPPED)); 547 548 hptsh = &hpts->p_hptss[tp->t_hpts_slot]; 549 550 if (tp->t_in_hpts == IHPTS_NONE) { 551 tp->t_in_hpts = IHPTS_ONQUEUE; 552 in_pcbref(inp); 553 } else if (tp->t_in_hpts == IHPTS_MOVING) { 554 tp->t_in_hpts = IHPTS_ONQUEUE; 555 } else 556 MPASS(tp->t_in_hpts == IHPTS_ONQUEUE); 557 tp->t_hpts_gencnt = hptsh->gencnt; 558 559 TAILQ_INSERT_TAIL(&hptsh->head, tp, t_hpts); 560 hptsh->count++; 561 hpts->p_on_queue_cnt++; 562 } 563 564 static struct tcp_hpts_entry * 565 tcp_hpts_lock(struct tcpcb *tp) 566 { 567 struct tcp_hpts_entry *hpts; 568 569 INP_LOCK_ASSERT(tptoinpcb(tp)); 570 571 hpts = tcp_pace.rp_ent[tp->t_hpts_cpu]; 572 HPTS_LOCK(hpts); 573 574 return (hpts); 575 } 576 577 static void 578 tcp_hpts_release(struct tcpcb *tp) 579 { 580 bool released __diagused; 581 582 tp->t_in_hpts = IHPTS_NONE; 583 released = in_pcbrele_wlocked(tptoinpcb(tp)); 584 MPASS(released == false); 585 } 586 587 /* 588 * Initialize tcpcb to get ready for use with HPTS. We will know which CPU 589 * is preferred on the first incoming packet. Before that avoid crowding 590 * a single CPU with newborn connections and use a random one. 591 * This initialization is normally called on a newborn tcpcb, but potentially 592 * can be called once again if stack is switched. In that case we inherit CPU 593 * that the previous stack has set, be it random or not. In extreme cases, 594 * e.g. syzkaller fuzzing, a tcpcb can already be in HPTS in IHPTS_MOVING state 595 * and has never received a first packet. 596 */ 597 void 598 tcp_hpts_init(struct tcpcb *tp) 599 { 600 601 if (__predict_true(tp->t_hpts_cpu == HPTS_CPU_NONE)) { 602 tp->t_hpts_cpu = hpts_random_cpu(); 603 MPASS(!(tp->t_flags2 & TF2_HPTS_CPU_SET)); 604 } 605 } 606 607 /* 608 * Called normally with the INP_LOCKED but it 609 * does not matter, the hpts lock is the key 610 * but the lock order allows us to hold the 611 * INP lock and then get the hpts lock. 612 */ 613 void 614 tcp_hpts_remove(struct tcpcb *tp) 615 { 616 struct tcp_hpts_entry *hpts; 617 struct hptsh *hptsh; 618 619 INP_WLOCK_ASSERT(tptoinpcb(tp)); 620 621 hpts = tcp_hpts_lock(tp); 622 if (tp->t_in_hpts == IHPTS_ONQUEUE) { 623 hptsh = &hpts->p_hptss[tp->t_hpts_slot]; 624 tp->t_hpts_request = 0; 625 if (__predict_true(tp->t_hpts_gencnt == hptsh->gencnt)) { 626 TAILQ_REMOVE(&hptsh->head, tp, t_hpts); 627 MPASS(hptsh->count > 0); 628 hptsh->count--; 629 MPASS(hpts->p_on_queue_cnt > 0); 630 hpts->p_on_queue_cnt--; 631 tcp_hpts_release(tp); 632 } else { 633 /* 634 * tcp_hptsi() now owns the TAILQ head of this inp. 635 * Can't TAILQ_REMOVE, just mark it. 636 */ 637 #ifdef INVARIANTS 638 struct tcpcb *tmp; 639 640 TAILQ_FOREACH(tmp, &hptsh->head, t_hpts) 641 MPASS(tmp != tp); 642 #endif 643 tp->t_in_hpts = IHPTS_MOVING; 644 tp->t_hpts_slot = -1; 645 } 646 } else if (tp->t_in_hpts == IHPTS_MOVING) { 647 /* 648 * Handle a special race condition: 649 * tcp_hptsi() moves inpcb to detached tailq 650 * tcp_hpts_remove() marks as IHPTS_MOVING, slot = -1 651 * tcp_hpts_insert() sets slot to a meaningful value 652 * tcp_hpts_remove() again (we are here!), then in_pcbdrop() 653 * tcp_hptsi() finds pcb with meaningful slot and INP_DROPPED 654 */ 655 tp->t_hpts_slot = -1; 656 } 657 HPTS_UNLOCK(hpts); 658 } 659 660 static inline int 661 hpts_slot(uint32_t wheel_slot, uint32_t plus) 662 { 663 /* 664 * Given a slot on the wheel, what slot 665 * is that plus ticks out? 666 */ 667 KASSERT(wheel_slot < NUM_OF_HPTSI_SLOTS, ("Invalid tick %u not on wheel", wheel_slot)); 668 return ((wheel_slot + plus) % NUM_OF_HPTSI_SLOTS); 669 } 670 671 static inline int 672 tick_to_wheel(uint32_t cts_in_wticks) 673 { 674 /* 675 * Given a timestamp in ticks (so by 676 * default to get it to a real time one 677 * would multiply by 10.. i.e the number 678 * of ticks in a slot) map it to our limited 679 * space wheel. 680 */ 681 return (cts_in_wticks % NUM_OF_HPTSI_SLOTS); 682 } 683 684 static inline int 685 hpts_slots_diff(int prev_slot, int slot_now) 686 { 687 /* 688 * Given two slots that are someplace 689 * on our wheel. How far are they apart? 690 */ 691 if (slot_now > prev_slot) 692 return (slot_now - prev_slot); 693 else if (slot_now == prev_slot) 694 /* 695 * Special case, same means we can go all of our 696 * wheel less one slot. 697 */ 698 return (NUM_OF_HPTSI_SLOTS - 1); 699 else 700 return ((NUM_OF_HPTSI_SLOTS - prev_slot) + slot_now); 701 } 702 703 /* 704 * Given a slot on the wheel that is the current time 705 * mapped to the wheel (wheel_slot), what is the maximum 706 * distance forward that can be obtained without 707 * wrapping past either prev_slot or running_slot 708 * depending on the htps state? Also if passed 709 * a uint32_t *, fill it with the slot location. 710 * 711 * Note if you do not give this function the current 712 * time (that you think it is) mapped to the wheel slot 713 * then the results will not be what you expect and 714 * could lead to invalid inserts. 715 */ 716 static inline int32_t 717 max_slots_available(struct tcp_hpts_entry *hpts, uint32_t wheel_slot, uint32_t *target_slot) 718 { 719 uint32_t dis_to_travel, end_slot, pacer_to_now, avail_on_wheel; 720 721 if ((hpts->p_hpts_active == 1) && 722 (hpts->p_wheel_complete == 0)) { 723 end_slot = hpts->p_runningslot; 724 /* Back up one tick */ 725 if (end_slot == 0) 726 end_slot = NUM_OF_HPTSI_SLOTS - 1; 727 else 728 end_slot--; 729 if (target_slot) 730 *target_slot = end_slot; 731 } else { 732 /* 733 * For the case where we are 734 * not active, or we have 735 * completed the pass over 736 * the wheel, we can use the 737 * prev tick and subtract one from it. This puts us 738 * as far out as possible on the wheel. 739 */ 740 end_slot = hpts->p_prev_slot; 741 if (end_slot == 0) 742 end_slot = NUM_OF_HPTSI_SLOTS - 1; 743 else 744 end_slot--; 745 if (target_slot) 746 *target_slot = end_slot; 747 /* 748 * Now we have close to the full wheel left minus the 749 * time it has been since the pacer went to sleep. Note 750 * that wheel_tick, passed in, should be the current time 751 * from the perspective of the caller, mapped to the wheel. 752 */ 753 if (hpts->p_prev_slot != wheel_slot) 754 dis_to_travel = hpts_slots_diff(hpts->p_prev_slot, wheel_slot); 755 else 756 dis_to_travel = 1; 757 /* 758 * dis_to_travel in this case is the space from when the 759 * pacer stopped (p_prev_slot) and where our wheel_slot 760 * is now. To know how many slots we can put it in we 761 * subtract from the wheel size. We would not want 762 * to place something after p_prev_slot or it will 763 * get ran too soon. 764 */ 765 return (NUM_OF_HPTSI_SLOTS - dis_to_travel); 766 } 767 /* 768 * So how many slots are open between p_runningslot -> p_cur_slot 769 * that is what is currently un-available for insertion. Special 770 * case when we are at the last slot, this gets 1, so that 771 * the answer to how many slots are available is all but 1. 772 */ 773 if (hpts->p_runningslot == hpts->p_cur_slot) 774 dis_to_travel = 1; 775 else 776 dis_to_travel = hpts_slots_diff(hpts->p_runningslot, hpts->p_cur_slot); 777 /* 778 * How long has the pacer been running? 779 */ 780 if (hpts->p_cur_slot != wheel_slot) { 781 /* The pacer is a bit late */ 782 pacer_to_now = hpts_slots_diff(hpts->p_cur_slot, wheel_slot); 783 } else { 784 /* The pacer is right on time, now == pacers start time */ 785 pacer_to_now = 0; 786 } 787 /* 788 * To get the number left we can insert into we simply 789 * subtract the distance the pacer has to run from how 790 * many slots there are. 791 */ 792 avail_on_wheel = NUM_OF_HPTSI_SLOTS - dis_to_travel; 793 /* 794 * Now how many of those we will eat due to the pacer's 795 * time (p_cur_slot) of start being behind the 796 * real time (wheel_slot)? 797 */ 798 if (avail_on_wheel <= pacer_to_now) { 799 /* 800 * Wheel wrap, we can't fit on the wheel, that 801 * is unusual the system must be way overloaded! 802 * Insert into the assured slot, and return special 803 * "0". 804 */ 805 counter_u64_add(combined_wheel_wrap, 1); 806 if (target_slot) 807 *target_slot = hpts->p_nxt_slot; 808 return (0); 809 } else { 810 /* 811 * We know how many slots are open 812 * on the wheel (the reverse of what 813 * is left to run. Take away the time 814 * the pacer started to now (wheel_slot) 815 * and that tells you how many slots are 816 * open that can be inserted into that won't 817 * be touched by the pacer until later. 818 */ 819 return (avail_on_wheel - pacer_to_now); 820 } 821 } 822 823 824 #ifdef INVARIANTS 825 static void 826 check_if_slot_would_be_wrong(struct tcp_hpts_entry *hpts, struct tcpcb *tp, 827 uint32_t hptsslot, int line) 828 { 829 /* 830 * Sanity checks for the pacer with invariants 831 * on insert. 832 */ 833 KASSERT(hptsslot < NUM_OF_HPTSI_SLOTS, 834 ("hpts:%p tp:%p slot:%d > max", hpts, tp, hptsslot)); 835 if ((hpts->p_hpts_active) && 836 (hpts->p_wheel_complete == 0)) { 837 /* 838 * If the pacer is processing a arc 839 * of the wheel, we need to make 840 * sure we are not inserting within 841 * that arc. 842 */ 843 int distance, yet_to_run; 844 845 distance = hpts_slots_diff(hpts->p_runningslot, hptsslot); 846 if (hpts->p_runningslot != hpts->p_cur_slot) 847 yet_to_run = hpts_slots_diff(hpts->p_runningslot, hpts->p_cur_slot); 848 else 849 yet_to_run = 0; /* processing last slot */ 850 KASSERT(yet_to_run <= distance, ("hpts:%p tp:%p slot:%d " 851 "distance:%d yet_to_run:%d rs:%d cs:%d", hpts, tp, 852 hptsslot, distance, yet_to_run, hpts->p_runningslot, 853 hpts->p_cur_slot)); 854 } 855 } 856 #endif 857 858 uint32_t 859 tcp_hpts_insert_diag(struct tcpcb *tp, uint32_t slot, int32_t line, struct hpts_diag *diag) 860 { 861 struct tcp_hpts_entry *hpts; 862 struct timeval tv; 863 uint32_t slot_on, wheel_cts, last_slot, need_new_to = 0; 864 int32_t wheel_slot, maxslots; 865 bool need_wakeup = false; 866 867 INP_WLOCK_ASSERT(tptoinpcb(tp)); 868 MPASS(!(tptoinpcb(tp)->inp_flags & INP_DROPPED)); 869 MPASS(!(tp->t_in_hpts == IHPTS_ONQUEUE)); 870 871 /* 872 * We now return the next-slot the hpts will be on, beyond its 873 * current run (if up) or where it was when it stopped if it is 874 * sleeping. 875 */ 876 hpts = tcp_hpts_lock(tp); 877 microuptime(&tv); 878 if (diag) { 879 memset(diag, 0, sizeof(struct hpts_diag)); 880 diag->p_hpts_active = hpts->p_hpts_active; 881 diag->p_prev_slot = hpts->p_prev_slot; 882 diag->p_runningslot = hpts->p_runningslot; 883 diag->p_nxt_slot = hpts->p_nxt_slot; 884 diag->p_cur_slot = hpts->p_cur_slot; 885 diag->p_curtick = hpts->p_curtick; 886 diag->p_lasttick = hpts->p_lasttick; 887 diag->slot_req = slot; 888 diag->p_on_min_sleep = hpts->p_on_min_sleep; 889 diag->hpts_sleep_time = hpts->p_hpts_sleep_time; 890 } 891 if (slot == 0) { 892 /* Ok we need to set it on the hpts in the current slot */ 893 tp->t_hpts_request = 0; 894 if ((hpts->p_hpts_active == 0) || (hpts->p_wheel_complete)) { 895 /* 896 * A sleeping hpts we want in next slot to run 897 * note that in this state p_prev_slot == p_cur_slot 898 */ 899 tp->t_hpts_slot = hpts_slot(hpts->p_prev_slot, 1); 900 if ((hpts->p_on_min_sleep == 0) && 901 (hpts->p_hpts_active == 0)) 902 need_wakeup = true; 903 } else 904 tp->t_hpts_slot = hpts->p_runningslot; 905 if (__predict_true(tp->t_in_hpts != IHPTS_MOVING)) 906 tcp_hpts_insert_internal(tp, hpts); 907 if (need_wakeup) { 908 /* 909 * Activate the hpts if it is sleeping and its 910 * timeout is not 1. 911 */ 912 hpts->p_direct_wake = 1; 913 tcp_wakehpts(hpts); 914 } 915 slot_on = hpts->p_nxt_slot; 916 HPTS_UNLOCK(hpts); 917 918 return (slot_on); 919 } 920 /* Get the current time relative to the wheel */ 921 wheel_cts = tcp_tv_to_hpts_slot(&tv); 922 /* Map it onto the wheel */ 923 wheel_slot = tick_to_wheel(wheel_cts); 924 /* Now what's the max we can place it at? */ 925 maxslots = max_slots_available(hpts, wheel_slot, &last_slot); 926 if (diag) { 927 diag->wheel_slot = wheel_slot; 928 diag->maxslots = maxslots; 929 diag->wheel_cts = wheel_cts; 930 } 931 if (maxslots == 0) { 932 /* The pacer is in a wheel wrap behind, yikes! */ 933 if (slot > 1) { 934 /* 935 * Reduce by 1 to prevent a forever loop in 936 * case something else is wrong. Note this 937 * probably does not hurt because the pacer 938 * if its true is so far behind we will be 939 * > 1second late calling anyway. 940 */ 941 slot--; 942 } 943 tp->t_hpts_slot = last_slot; 944 tp->t_hpts_request = slot; 945 } else if (maxslots >= slot) { 946 /* It all fits on the wheel */ 947 tp->t_hpts_request = 0; 948 tp->t_hpts_slot = hpts_slot(wheel_slot, slot); 949 } else { 950 /* It does not fit */ 951 tp->t_hpts_request = slot - maxslots; 952 tp->t_hpts_slot = last_slot; 953 } 954 if (diag) { 955 diag->slot_remaining = tp->t_hpts_request; 956 diag->inp_hptsslot = tp->t_hpts_slot; 957 } 958 #ifdef INVARIANTS 959 check_if_slot_would_be_wrong(hpts, tp, tp->t_hpts_slot, line); 960 #endif 961 if (__predict_true(tp->t_in_hpts != IHPTS_MOVING)) 962 tcp_hpts_insert_internal(tp, hpts); 963 if ((hpts->p_hpts_active == 0) && 964 (tp->t_hpts_request == 0) && 965 (hpts->p_on_min_sleep == 0)) { 966 /* 967 * The hpts is sleeping and NOT on a minimum 968 * sleep time, we need to figure out where 969 * it will wake up at and if we need to reschedule 970 * its time-out. 971 */ 972 uint32_t have_slept, yet_to_sleep; 973 974 /* Now do we need to restart the hpts's timer? */ 975 have_slept = hpts_slots_diff(hpts->p_prev_slot, wheel_slot); 976 if (have_slept < hpts->p_hpts_sleep_time) 977 yet_to_sleep = hpts->p_hpts_sleep_time - have_slept; 978 else { 979 /* We are over-due */ 980 yet_to_sleep = 0; 981 need_wakeup = 1; 982 } 983 if (diag) { 984 diag->have_slept = have_slept; 985 diag->yet_to_sleep = yet_to_sleep; 986 } 987 if (yet_to_sleep && 988 (yet_to_sleep > slot)) { 989 /* 990 * We need to reschedule the hpts's time-out. 991 */ 992 hpts->p_hpts_sleep_time = slot; 993 need_new_to = slot * HPTS_USECS_PER_SLOT; 994 } 995 } 996 /* 997 * Now how far is the hpts sleeping to? if active is 1, its 998 * up and ticking we do nothing, otherwise we may need to 999 * reschedule its callout if need_new_to is set from above. 1000 */ 1001 if (need_wakeup) { 1002 hpts->p_direct_wake = 1; 1003 tcp_wakehpts(hpts); 1004 if (diag) { 1005 diag->need_new_to = 0; 1006 diag->co_ret = 0xffff0000; 1007 } 1008 } else if (need_new_to) { 1009 int32_t co_ret; 1010 struct timeval tv; 1011 sbintime_t sb; 1012 1013 tv.tv_sec = 0; 1014 tv.tv_usec = 0; 1015 while (need_new_to > HPTS_USEC_IN_SEC) { 1016 tv.tv_sec++; 1017 need_new_to -= HPTS_USEC_IN_SEC; 1018 } 1019 tv.tv_usec = need_new_to; 1020 sb = tvtosbt(tv); 1021 co_ret = callout_reset_sbt_on(&hpts->co, sb, 0, 1022 hpts_timeout_swi, hpts, hpts->p_cpu, 1023 (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision))); 1024 if (diag) { 1025 diag->need_new_to = need_new_to; 1026 diag->co_ret = co_ret; 1027 } 1028 } 1029 slot_on = hpts->p_nxt_slot; 1030 HPTS_UNLOCK(hpts); 1031 1032 return (slot_on); 1033 } 1034 1035 static uint16_t 1036 hpts_cpuid(struct tcpcb *tp, int *failed) 1037 { 1038 struct inpcb *inp = tptoinpcb(tp); 1039 u_int cpuid; 1040 #ifdef NUMA 1041 struct hpts_domain_info *di; 1042 #endif 1043 1044 *failed = 0; 1045 if (tp->t_flags2 & TF2_HPTS_CPU_SET) { 1046 return (tp->t_hpts_cpu); 1047 } 1048 /* 1049 * If we are using the irq cpu set by LRO or 1050 * the driver then it overrides all other domains. 1051 */ 1052 if (tcp_use_irq_cpu) { 1053 if (tp->t_lro_cpu == HPTS_CPU_NONE) { 1054 *failed = 1; 1055 return (0); 1056 } 1057 return (tp->t_lro_cpu); 1058 } 1059 /* If one is set the other must be the same */ 1060 #ifdef RSS 1061 cpuid = rss_hash2cpuid(inp->inp_flowid, inp->inp_flowtype); 1062 if (cpuid == NETISR_CPUID_NONE) 1063 return (hpts_random_cpu()); 1064 else 1065 return (cpuid); 1066 #endif 1067 /* 1068 * We don't have a flowid -> cpuid mapping, so cheat and just map 1069 * unknown cpuids to curcpu. Not the best, but apparently better 1070 * than defaulting to swi 0. 1071 */ 1072 if (inp->inp_flowtype == M_HASHTYPE_NONE) { 1073 counter_u64_add(cpu_uses_random, 1); 1074 return (hpts_random_cpu()); 1075 } 1076 /* 1077 * Hash to a thread based on the flowid. If we are using numa, 1078 * then restrict the hash to the numa domain where the inp lives. 1079 */ 1080 1081 #ifdef NUMA 1082 if ((vm_ndomains == 1) || 1083 (inp->inp_numa_domain == M_NODOM)) { 1084 #endif 1085 cpuid = inp->inp_flowid % mp_ncpus; 1086 #ifdef NUMA 1087 } else { 1088 /* Hash into the cpu's that use that domain */ 1089 di = &hpts_domains[inp->inp_numa_domain]; 1090 cpuid = di->cpu[inp->inp_flowid % di->count]; 1091 } 1092 #endif 1093 counter_u64_add(cpu_uses_flowid, 1); 1094 return (cpuid); 1095 } 1096 1097 static void 1098 tcp_hpts_set_max_sleep(struct tcp_hpts_entry *hpts, int wrap_loop_cnt) 1099 { 1100 uint32_t t = 0, i; 1101 1102 if ((hpts->p_on_queue_cnt) && (wrap_loop_cnt < 2)) { 1103 /* 1104 * Find next slot that is occupied and use that to 1105 * be the sleep time. 1106 */ 1107 for (i = 0, t = hpts_slot(hpts->p_cur_slot, 1); i < NUM_OF_HPTSI_SLOTS; i++) { 1108 if (TAILQ_EMPTY(&hpts->p_hptss[t].head) == 0) { 1109 break; 1110 } 1111 t = (t + 1) % NUM_OF_HPTSI_SLOTS; 1112 } 1113 KASSERT((i != NUM_OF_HPTSI_SLOTS), ("Hpts:%p cnt:%d but none found", hpts, hpts->p_on_queue_cnt)); 1114 hpts->p_hpts_sleep_time = min((i + 1), hpts_sleep_max); 1115 } else { 1116 /* No one on the wheel sleep for all but 400 slots or sleep max */ 1117 hpts->p_hpts_sleep_time = hpts_sleep_max; 1118 } 1119 } 1120 1121 static int32_t 1122 tcp_hptsi(struct tcp_hpts_entry *hpts, bool from_callout) 1123 { 1124 struct tcpcb *tp; 1125 struct timeval tv; 1126 int32_t slots_to_run, i, error; 1127 int32_t loop_cnt = 0; 1128 int32_t did_prefetch = 0; 1129 int32_t prefetch_tp = 0; 1130 int32_t wrap_loop_cnt = 0; 1131 int32_t slot_pos_of_endpoint = 0; 1132 int32_t orig_exit_slot; 1133 bool completed_measure, seen_endpoint; 1134 1135 completed_measure = false; 1136 seen_endpoint = false; 1137 1138 HPTS_MTX_ASSERT(hpts); 1139 NET_EPOCH_ASSERT(); 1140 /* record previous info for any logging */ 1141 hpts->saved_lasttick = hpts->p_lasttick; 1142 hpts->saved_curtick = hpts->p_curtick; 1143 hpts->saved_curslot = hpts->p_cur_slot; 1144 hpts->saved_prev_slot = hpts->p_prev_slot; 1145 1146 hpts->p_lasttick = hpts->p_curtick; 1147 hpts->p_curtick = tcp_gethptstick(&tv); 1148 tcp_pace.cts_last_ran[hpts->p_num] = tcp_tv_to_usec(&tv); 1149 orig_exit_slot = hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick); 1150 if ((hpts->p_on_queue_cnt == 0) || 1151 (hpts->p_lasttick == hpts->p_curtick)) { 1152 /* 1153 * No time has yet passed, 1154 * or nothing to do. 1155 */ 1156 hpts->p_prev_slot = hpts->p_cur_slot; 1157 hpts->p_lasttick = hpts->p_curtick; 1158 goto no_run; 1159 } 1160 again: 1161 hpts->p_wheel_complete = 0; 1162 HPTS_MTX_ASSERT(hpts); 1163 slots_to_run = hpts_slots_diff(hpts->p_prev_slot, hpts->p_cur_slot); 1164 if (((hpts->p_curtick - hpts->p_lasttick) > (NUM_OF_HPTSI_SLOTS - 1)) && 1165 (hpts->p_on_queue_cnt != 0)) { 1166 /* 1167 * Wheel wrap is occuring, basically we 1168 * are behind and the distance between 1169 * run's has spread so much it has exceeded 1170 * the time on the wheel (1.024 seconds). This 1171 * is ugly and should NOT be happening. We 1172 * need to run the entire wheel. We last processed 1173 * p_prev_slot, so that needs to be the last slot 1174 * we run. The next slot after that should be our 1175 * reserved first slot for new, and then starts 1176 * the running position. Now the problem is the 1177 * reserved "not to yet" place does not exist 1178 * and there may be inp's in there that need 1179 * running. We can merge those into the 1180 * first slot at the head. 1181 */ 1182 wrap_loop_cnt++; 1183 hpts->p_nxt_slot = hpts_slot(hpts->p_prev_slot, 1); 1184 hpts->p_runningslot = hpts_slot(hpts->p_prev_slot, 2); 1185 /* 1186 * Adjust p_cur_slot to be where we are starting from 1187 * hopefully we will catch up (fat chance if something 1188 * is broken this bad :( ) 1189 */ 1190 hpts->p_cur_slot = hpts->p_prev_slot; 1191 /* 1192 * The next slot has guys to run too, and that would 1193 * be where we would normally start, lets move them into 1194 * the next slot (p_prev_slot + 2) so that we will 1195 * run them, the extra 10usecs of late (by being 1196 * put behind) does not really matter in this situation. 1197 */ 1198 TAILQ_FOREACH(tp, &hpts->p_hptss[hpts->p_nxt_slot].head, 1199 t_hpts) { 1200 MPASS(tp->t_hpts_slot == hpts->p_nxt_slot); 1201 MPASS(tp->t_hpts_gencnt == 1202 hpts->p_hptss[hpts->p_nxt_slot].gencnt); 1203 MPASS(tp->t_in_hpts == IHPTS_ONQUEUE); 1204 1205 /* 1206 * Update gencnt and nextslot accordingly to match 1207 * the new location. This is safe since it takes both 1208 * the INP lock and the pacer mutex to change the 1209 * t_hptsslot and t_hpts_gencnt. 1210 */ 1211 tp->t_hpts_gencnt = 1212 hpts->p_hptss[hpts->p_runningslot].gencnt; 1213 tp->t_hpts_slot = hpts->p_runningslot; 1214 } 1215 TAILQ_CONCAT(&hpts->p_hptss[hpts->p_runningslot].head, 1216 &hpts->p_hptss[hpts->p_nxt_slot].head, t_hpts); 1217 hpts->p_hptss[hpts->p_runningslot].count += 1218 hpts->p_hptss[hpts->p_nxt_slot].count; 1219 hpts->p_hptss[hpts->p_nxt_slot].count = 0; 1220 hpts->p_hptss[hpts->p_nxt_slot].gencnt++; 1221 slots_to_run = NUM_OF_HPTSI_SLOTS - 1; 1222 counter_u64_add(wheel_wrap, 1); 1223 } else { 1224 /* 1225 * Nxt slot is always one after p_runningslot though 1226 * its not used usually unless we are doing wheel wrap. 1227 */ 1228 hpts->p_nxt_slot = hpts->p_prev_slot; 1229 hpts->p_runningslot = hpts_slot(hpts->p_prev_slot, 1); 1230 } 1231 if (hpts->p_on_queue_cnt == 0) { 1232 goto no_one; 1233 } 1234 for (i = 0; i < slots_to_run; i++) { 1235 struct tcpcb *tp, *ntp; 1236 TAILQ_HEAD(, tcpcb) head = TAILQ_HEAD_INITIALIZER(head); 1237 struct hptsh *hptsh; 1238 uint32_t runningslot; 1239 1240 /* 1241 * Calculate our delay, if there are no extra ticks there 1242 * was not any (i.e. if slots_to_run == 1, no delay). 1243 */ 1244 hpts->p_delayed_by = (slots_to_run - (i + 1)) * 1245 HPTS_USECS_PER_SLOT; 1246 1247 runningslot = hpts->p_runningslot; 1248 hptsh = &hpts->p_hptss[runningslot]; 1249 TAILQ_SWAP(&head, &hptsh->head, tcpcb, t_hpts); 1250 hpts->p_on_queue_cnt -= hptsh->count; 1251 hptsh->count = 0; 1252 hptsh->gencnt++; 1253 1254 HPTS_UNLOCK(hpts); 1255 1256 TAILQ_FOREACH_SAFE(tp, &head, t_hpts, ntp) { 1257 struct inpcb *inp = tptoinpcb(tp); 1258 bool set_cpu; 1259 1260 if (ntp != NULL) { 1261 /* 1262 * If we have a next tcpcb, see if we can 1263 * prefetch it. Note this may seem 1264 * "risky" since we have no locks (other 1265 * than the previous inp) and there no 1266 * assurance that ntp was not pulled while 1267 * we were processing tp and freed. If this 1268 * occurred it could mean that either: 1269 * 1270 * a) Its NULL (which is fine we won't go 1271 * here) <or> b) Its valid (which is cool we 1272 * will prefetch it) <or> c) The inp got 1273 * freed back to the slab which was 1274 * reallocated. Then the piece of memory was 1275 * re-used and something else (not an 1276 * address) is in inp_ppcb. If that occurs 1277 * we don't crash, but take a TLB shootdown 1278 * performance hit (same as if it was NULL 1279 * and we tried to pre-fetch it). 1280 * 1281 * Considering that the likelyhood of <c> is 1282 * quite rare we will take a risk on doing 1283 * this. If performance drops after testing 1284 * we can always take this out. NB: the 1285 * kern_prefetch on amd64 actually has 1286 * protection against a bad address now via 1287 * the DMAP_() tests. This will prevent the 1288 * TLB hit, and instead if <c> occurs just 1289 * cause us to load cache with a useless 1290 * address (to us). 1291 * 1292 * XXXGL: this comment and the prefetch action 1293 * could be outdated after tp == inp change. 1294 */ 1295 kern_prefetch(ntp, &prefetch_tp); 1296 prefetch_tp = 1; 1297 } 1298 1299 /* For debugging */ 1300 if (!seen_endpoint) { 1301 seen_endpoint = true; 1302 orig_exit_slot = slot_pos_of_endpoint = 1303 runningslot; 1304 } else if (!completed_measure) { 1305 /* Record the new position */ 1306 orig_exit_slot = runningslot; 1307 } 1308 1309 INP_WLOCK(inp); 1310 if ((tp->t_flags2 & TF2_HPTS_CPU_SET) == 0) { 1311 set_cpu = true; 1312 } else { 1313 set_cpu = false; 1314 } 1315 1316 if (__predict_false(tp->t_in_hpts == IHPTS_MOVING)) { 1317 if (tp->t_hpts_slot == -1) { 1318 tp->t_in_hpts = IHPTS_NONE; 1319 if (in_pcbrele_wlocked(inp) == false) 1320 INP_WUNLOCK(inp); 1321 } else { 1322 HPTS_LOCK(hpts); 1323 tcp_hpts_insert_internal(tp, hpts); 1324 HPTS_UNLOCK(hpts); 1325 INP_WUNLOCK(inp); 1326 } 1327 continue; 1328 } 1329 1330 MPASS(tp->t_in_hpts == IHPTS_ONQUEUE); 1331 MPASS(!(inp->inp_flags & INP_DROPPED)); 1332 KASSERT(runningslot == tp->t_hpts_slot, 1333 ("Hpts:%p inp:%p slot mis-aligned %u vs %u", 1334 hpts, inp, runningslot, tp->t_hpts_slot)); 1335 1336 if (tp->t_hpts_request) { 1337 /* 1338 * This guy is deferred out further in time 1339 * then our wheel had available on it. 1340 * Push him back on the wheel or run it 1341 * depending. 1342 */ 1343 uint32_t maxslots, last_slot, remaining_slots; 1344 1345 remaining_slots = slots_to_run - (i + 1); 1346 if (tp->t_hpts_request > remaining_slots) { 1347 HPTS_LOCK(hpts); 1348 /* 1349 * How far out can we go? 1350 */ 1351 maxslots = max_slots_available(hpts, 1352 hpts->p_cur_slot, &last_slot); 1353 if (maxslots >= tp->t_hpts_request) { 1354 /* We can place it finally to 1355 * be processed. */ 1356 tp->t_hpts_slot = hpts_slot( 1357 hpts->p_runningslot, 1358 tp->t_hpts_request); 1359 tp->t_hpts_request = 0; 1360 } else { 1361 /* Work off some more time */ 1362 tp->t_hpts_slot = last_slot; 1363 tp->t_hpts_request -= 1364 maxslots; 1365 } 1366 tcp_hpts_insert_internal(tp, hpts); 1367 HPTS_UNLOCK(hpts); 1368 INP_WUNLOCK(inp); 1369 continue; 1370 } 1371 tp->t_hpts_request = 0; 1372 /* Fall through we will so do it now */ 1373 } 1374 1375 tcp_hpts_release(tp); 1376 if (set_cpu) { 1377 /* 1378 * Setup so the next time we will move to 1379 * the right CPU. This should be a rare 1380 * event. It will sometimes happens when we 1381 * are the client side (usually not the 1382 * server). Somehow tcp_output() gets called 1383 * before the tcp_do_segment() sets the 1384 * intial state. This means the r_cpu and 1385 * r_hpts_cpu is 0. We get on the hpts, and 1386 * then tcp_input() gets called setting up 1387 * the r_cpu to the correct value. The hpts 1388 * goes off and sees the mis-match. We 1389 * simply correct it here and the CPU will 1390 * switch to the new hpts nextime the tcb 1391 * gets added to the hpts (not this one) 1392 * :-) 1393 */ 1394 tcp_set_hpts(tp); 1395 } 1396 CURVNET_SET(inp->inp_vnet); 1397 /* Lets do any logging that we might want to */ 1398 tcp_hpts_log(hpts, tp, &tv, slots_to_run, i, from_callout); 1399 1400 if (tp->t_fb_ptr != NULL) { 1401 kern_prefetch(tp->t_fb_ptr, &did_prefetch); 1402 did_prefetch = 1; 1403 } 1404 /* 1405 * We set TF2_HPTS_CALLS before any possible output. 1406 * The contract with the transport is that if it cares 1407 * about hpts calling it should clear the flag. That 1408 * way next time it is called it will know it is hpts. 1409 * 1410 * We also only call tfb_do_queued_segments() <or> 1411 * tcp_output(). It is expected that if segments are 1412 * queued and come in that the final input mbuf will 1413 * cause a call to output if it is needed so we do 1414 * not need a second call to tcp_output(). So we do 1415 * one or the other but not both. 1416 * 1417 * XXXGL: some KPI abuse here. tfb_do_queued_segments 1418 * returns unlocked with positive error (always 1) and 1419 * tcp_output returns unlocked with negative error. 1420 */ 1421 tp->t_flags2 |= TF2_HPTS_CALLS; 1422 if ((tp->t_flags2 & TF2_SUPPORTS_MBUFQ) && 1423 !STAILQ_EMPTY(&tp->t_inqueue)) 1424 error = -(*tp->t_fb->tfb_do_queued_segments)(tp, 1425 0); 1426 else 1427 error = tcp_output(tp); 1428 if (__predict_true(error >= 0)) 1429 INP_WUNLOCK(inp); 1430 CURVNET_RESTORE(); 1431 } 1432 if (seen_endpoint) { 1433 /* 1434 * We now have a accurate distance between 1435 * slot_pos_of_endpoint <-> orig_exit_slot 1436 * to tell us how late we were, orig_exit_slot 1437 * is where we calculated the end of our cycle to 1438 * be when we first entered. 1439 */ 1440 completed_measure = true; 1441 } 1442 HPTS_LOCK(hpts); 1443 hpts->p_runningslot++; 1444 if (hpts->p_runningslot >= NUM_OF_HPTSI_SLOTS) { 1445 hpts->p_runningslot = 0; 1446 } 1447 } 1448 no_one: 1449 HPTS_MTX_ASSERT(hpts); 1450 hpts->p_delayed_by = 0; 1451 /* 1452 * Check to see if we took an excess amount of time and need to run 1453 * more ticks (if we did not hit eno-bufs). 1454 */ 1455 hpts->p_prev_slot = hpts->p_cur_slot; 1456 hpts->p_lasttick = hpts->p_curtick; 1457 if (!from_callout || (loop_cnt > max_pacer_loops)) { 1458 /* 1459 * Something is serious slow we have 1460 * looped through processing the wheel 1461 * and by the time we cleared the 1462 * needs to run max_pacer_loops time 1463 * we still needed to run. That means 1464 * the system is hopelessly behind and 1465 * can never catch up :( 1466 * 1467 * We will just lie to this thread 1468 * and let it thing p_curtick is 1469 * correct. When it next awakens 1470 * it will find itself further behind. 1471 */ 1472 if (from_callout) 1473 counter_u64_add(hpts_hopelessly_behind, 1); 1474 goto no_run; 1475 } 1476 hpts->p_curtick = tcp_gethptstick(&tv); 1477 hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick); 1478 if (!seen_endpoint) { 1479 /* We saw no endpoint but we may be looping */ 1480 orig_exit_slot = hpts->p_cur_slot; 1481 } 1482 if ((wrap_loop_cnt < 2) && 1483 (hpts->p_lasttick != hpts->p_curtick)) { 1484 counter_u64_add(hpts_loops, 1); 1485 loop_cnt++; 1486 goto again; 1487 } 1488 no_run: 1489 tcp_pace.cts_last_ran[hpts->p_num] = tcp_tv_to_usec(&tv); 1490 /* 1491 * Set flag to tell that we are done for 1492 * any slot input that happens during 1493 * input. 1494 */ 1495 hpts->p_wheel_complete = 1; 1496 /* 1497 * Now did we spend too long running input and need to run more ticks? 1498 * Note that if wrap_loop_cnt < 2 then we should have the conditions 1499 * in the KASSERT's true. But if the wheel is behind i.e. wrap_loop_cnt 1500 * is greater than 2, then the condtion most likely are *not* true. 1501 * Also if we are called not from the callout, we don't run the wheel 1502 * multiple times so the slots may not align either. 1503 */ 1504 KASSERT(((hpts->p_prev_slot == hpts->p_cur_slot) || 1505 (wrap_loop_cnt >= 2) || !from_callout), 1506 ("H:%p p_prev_slot:%u not equal to p_cur_slot:%u", hpts, 1507 hpts->p_prev_slot, hpts->p_cur_slot)); 1508 KASSERT(((hpts->p_lasttick == hpts->p_curtick) 1509 || (wrap_loop_cnt >= 2) || !from_callout), 1510 ("H:%p p_lasttick:%u not equal to p_curtick:%u", hpts, 1511 hpts->p_lasttick, hpts->p_curtick)); 1512 if (from_callout && (hpts->p_lasttick != hpts->p_curtick)) { 1513 hpts->p_curtick = tcp_gethptstick(&tv); 1514 counter_u64_add(hpts_loops, 1); 1515 hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick); 1516 goto again; 1517 } 1518 1519 if (from_callout) { 1520 tcp_hpts_set_max_sleep(hpts, wrap_loop_cnt); 1521 } 1522 if (seen_endpoint) 1523 return(hpts_slots_diff(slot_pos_of_endpoint, orig_exit_slot)); 1524 else 1525 return (0); 1526 } 1527 1528 void 1529 tcp_set_hpts(struct tcpcb *tp) 1530 { 1531 struct tcp_hpts_entry *hpts; 1532 int failed; 1533 1534 INP_WLOCK_ASSERT(tptoinpcb(tp)); 1535 1536 hpts = tcp_hpts_lock(tp); 1537 if (tp->t_in_hpts == IHPTS_NONE && !(tp->t_flags2 & TF2_HPTS_CPU_SET)) { 1538 tp->t_hpts_cpu = hpts_cpuid(tp, &failed); 1539 if (failed == 0) 1540 tp->t_flags2 |= TF2_HPTS_CPU_SET; 1541 } 1542 HPTS_UNLOCK(hpts); 1543 } 1544 1545 static struct tcp_hpts_entry * 1546 tcp_choose_hpts_to_run(void) 1547 { 1548 int i, oldest_idx, start, end; 1549 uint32_t cts, time_since_ran, calc; 1550 1551 cts = tcp_get_usecs(NULL); 1552 time_since_ran = 0; 1553 /* Default is all one group */ 1554 start = 0; 1555 end = tcp_pace.rp_num_hptss; 1556 /* 1557 * If we have more than one L3 group figure out which one 1558 * this CPU is in. 1559 */ 1560 if (tcp_pace.grp_cnt > 1) { 1561 for (i = 0; i < tcp_pace.grp_cnt; i++) { 1562 if (CPU_ISSET(curcpu, &tcp_pace.grps[i]->cg_mask)) { 1563 start = tcp_pace.grps[i]->cg_first; 1564 end = (tcp_pace.grps[i]->cg_last + 1); 1565 break; 1566 } 1567 } 1568 } 1569 oldest_idx = -1; 1570 for (i = start; i < end; i++) { 1571 if (TSTMP_GT(cts, tcp_pace.cts_last_ran[i])) 1572 calc = cts - tcp_pace.cts_last_ran[i]; 1573 else 1574 calc = 0; 1575 if (calc > time_since_ran) { 1576 oldest_idx = i; 1577 time_since_ran = calc; 1578 } 1579 } 1580 if (oldest_idx >= 0) 1581 return(tcp_pace.rp_ent[oldest_idx]); 1582 else 1583 return(tcp_pace.rp_ent[(curcpu % tcp_pace.rp_num_hptss)]); 1584 } 1585 1586 static void 1587 __tcp_run_hpts(void) 1588 { 1589 struct epoch_tracker et; 1590 struct tcp_hpts_entry *hpts; 1591 int ticks_ran; 1592 1593 hpts = tcp_choose_hpts_to_run(); 1594 1595 if (hpts->p_hpts_active) { 1596 /* Already active */ 1597 return; 1598 } 1599 if (!HPTS_TRYLOCK(hpts)) { 1600 /* Someone else got the lock */ 1601 return; 1602 } 1603 NET_EPOCH_ENTER(et); 1604 if (hpts->p_hpts_active) 1605 goto out_with_mtx; 1606 hpts->syscall_cnt++; 1607 counter_u64_add(hpts_direct_call, 1); 1608 hpts->p_hpts_active = 1; 1609 ticks_ran = tcp_hptsi(hpts, false); 1610 /* We may want to adjust the sleep values here */ 1611 if (hpts->p_on_queue_cnt >= conn_cnt_thresh) { 1612 if (ticks_ran > slots_indicate_less_sleep) { 1613 struct timeval tv; 1614 sbintime_t sb; 1615 1616 hpts->p_mysleep.tv_usec /= 2; 1617 if (hpts->p_mysleep.tv_usec < dynamic_min_sleep) 1618 hpts->p_mysleep.tv_usec = dynamic_min_sleep; 1619 /* Reschedule with new to value */ 1620 tcp_hpts_set_max_sleep(hpts, 0); 1621 tv.tv_sec = 0; 1622 tv.tv_usec = hpts->p_hpts_sleep_time * HPTS_USECS_PER_SLOT; 1623 /* Validate its in the right ranges */ 1624 if (tv.tv_usec < hpts->p_mysleep.tv_usec) { 1625 hpts->overidden_sleep = tv.tv_usec; 1626 tv.tv_usec = hpts->p_mysleep.tv_usec; 1627 } else if (tv.tv_usec > dynamic_max_sleep) { 1628 /* Lets not let sleep get above this value */ 1629 hpts->overidden_sleep = tv.tv_usec; 1630 tv.tv_usec = dynamic_max_sleep; 1631 } 1632 /* 1633 * In this mode the timer is a backstop to 1634 * all the userret/lro_flushes so we use 1635 * the dynamic value and set the on_min_sleep 1636 * flag so we will not be awoken. 1637 */ 1638 sb = tvtosbt(tv); 1639 /* Store off to make visible the actual sleep time */ 1640 hpts->sleeping = tv.tv_usec; 1641 callout_reset_sbt_on(&hpts->co, sb, 0, 1642 hpts_timeout_swi, hpts, hpts->p_cpu, 1643 (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision))); 1644 } else if (ticks_ran < slots_indicate_more_sleep) { 1645 /* For the further sleep, don't reschedule hpts */ 1646 hpts->p_mysleep.tv_usec *= 2; 1647 if (hpts->p_mysleep.tv_usec > dynamic_max_sleep) 1648 hpts->p_mysleep.tv_usec = dynamic_max_sleep; 1649 } 1650 hpts->p_on_min_sleep = 1; 1651 } 1652 hpts->p_hpts_active = 0; 1653 out_with_mtx: 1654 HPTS_UNLOCK(hpts); 1655 NET_EPOCH_EXIT(et); 1656 } 1657 1658 static void 1659 tcp_hpts_thread(void *ctx) 1660 { 1661 struct tcp_hpts_entry *hpts; 1662 struct epoch_tracker et; 1663 struct timeval tv; 1664 sbintime_t sb; 1665 int ticks_ran; 1666 1667 hpts = (struct tcp_hpts_entry *)ctx; 1668 HPTS_LOCK(hpts); 1669 if (hpts->p_direct_wake) { 1670 /* Signaled by input or output with low occupancy count. */ 1671 callout_stop(&hpts->co); 1672 counter_u64_add(hpts_direct_awakening, 1); 1673 } else { 1674 /* Timed out, the normal case. */ 1675 counter_u64_add(hpts_wake_timeout, 1); 1676 if (callout_pending(&hpts->co) || 1677 !callout_active(&hpts->co)) { 1678 HPTS_UNLOCK(hpts); 1679 return; 1680 } 1681 } 1682 callout_deactivate(&hpts->co); 1683 hpts->p_hpts_wake_scheduled = 0; 1684 NET_EPOCH_ENTER(et); 1685 if (hpts->p_hpts_active) { 1686 /* 1687 * We are active already. This means that a syscall 1688 * trap or LRO is running in behalf of hpts. In that case 1689 * we need to double our timeout since there seems to be 1690 * enough activity in the system that we don't need to 1691 * run as often (if we were not directly woken). 1692 */ 1693 tv.tv_sec = 0; 1694 if (hpts->p_direct_wake == 0) { 1695 counter_u64_add(hpts_back_tosleep, 1); 1696 if (hpts->p_on_queue_cnt >= conn_cnt_thresh) { 1697 hpts->p_mysleep.tv_usec *= 2; 1698 if (hpts->p_mysleep.tv_usec > dynamic_max_sleep) 1699 hpts->p_mysleep.tv_usec = dynamic_max_sleep; 1700 tv.tv_usec = hpts->p_mysleep.tv_usec; 1701 hpts->p_on_min_sleep = 1; 1702 } else { 1703 /* 1704 * Here we have low count on the wheel, but 1705 * somehow we still collided with one of the 1706 * connections. Lets go back to sleep for a 1707 * min sleep time, but clear the flag so we 1708 * can be awoken by insert. 1709 */ 1710 hpts->p_on_min_sleep = 0; 1711 tv.tv_usec = tcp_min_hptsi_time; 1712 } 1713 } else { 1714 /* 1715 * Directly woken most likely to reset the 1716 * callout time. 1717 */ 1718 tv.tv_usec = hpts->p_mysleep.tv_usec; 1719 } 1720 goto back_to_sleep; 1721 } 1722 hpts->sleeping = 0; 1723 hpts->p_hpts_active = 1; 1724 ticks_ran = tcp_hptsi(hpts, true); 1725 tv.tv_sec = 0; 1726 tv.tv_usec = hpts->p_hpts_sleep_time * HPTS_USECS_PER_SLOT; 1727 if ((hpts->p_on_queue_cnt > conn_cnt_thresh) && (hpts->hit_callout_thresh == 0)) { 1728 hpts->hit_callout_thresh = 1; 1729 atomic_add_int(&hpts_that_need_softclock, 1); 1730 } else if ((hpts->p_on_queue_cnt <= conn_cnt_thresh) && (hpts->hit_callout_thresh == 1)) { 1731 hpts->hit_callout_thresh = 0; 1732 atomic_subtract_int(&hpts_that_need_softclock, 1); 1733 } 1734 if (hpts->p_on_queue_cnt >= conn_cnt_thresh) { 1735 if(hpts->p_direct_wake == 0) { 1736 /* 1737 * Only adjust sleep time if we were 1738 * called from the callout i.e. direct_wake == 0. 1739 */ 1740 if (ticks_ran < slots_indicate_more_sleep) { 1741 hpts->p_mysleep.tv_usec *= 2; 1742 if (hpts->p_mysleep.tv_usec > dynamic_max_sleep) 1743 hpts->p_mysleep.tv_usec = dynamic_max_sleep; 1744 } else if (ticks_ran > slots_indicate_less_sleep) { 1745 hpts->p_mysleep.tv_usec /= 2; 1746 if (hpts->p_mysleep.tv_usec < dynamic_min_sleep) 1747 hpts->p_mysleep.tv_usec = dynamic_min_sleep; 1748 } 1749 } 1750 if (tv.tv_usec < hpts->p_mysleep.tv_usec) { 1751 hpts->overidden_sleep = tv.tv_usec; 1752 tv.tv_usec = hpts->p_mysleep.tv_usec; 1753 } else if (tv.tv_usec > dynamic_max_sleep) { 1754 /* Lets not let sleep get above this value */ 1755 hpts->overidden_sleep = tv.tv_usec; 1756 tv.tv_usec = dynamic_max_sleep; 1757 } 1758 /* 1759 * In this mode the timer is a backstop to 1760 * all the userret/lro_flushes so we use 1761 * the dynamic value and set the on_min_sleep 1762 * flag so we will not be awoken. 1763 */ 1764 hpts->p_on_min_sleep = 1; 1765 } else if (hpts->p_on_queue_cnt == 0) { 1766 /* 1767 * No one on the wheel, please wake us up 1768 * if you insert on the wheel. 1769 */ 1770 hpts->p_on_min_sleep = 0; 1771 hpts->overidden_sleep = 0; 1772 } else { 1773 /* 1774 * We hit here when we have a low number of 1775 * clients on the wheel (our else clause). 1776 * We may need to go on min sleep, if we set 1777 * the flag we will not be awoken if someone 1778 * is inserted ahead of us. Clearing the flag 1779 * means we can be awoken. This is "old mode" 1780 * where the timer is what runs hpts mainly. 1781 */ 1782 if (tv.tv_usec < tcp_min_hptsi_time) { 1783 /* 1784 * Yes on min sleep, which means 1785 * we cannot be awoken. 1786 */ 1787 hpts->overidden_sleep = tv.tv_usec; 1788 tv.tv_usec = tcp_min_hptsi_time; 1789 hpts->p_on_min_sleep = 1; 1790 } else { 1791 /* Clear the min sleep flag */ 1792 hpts->overidden_sleep = 0; 1793 hpts->p_on_min_sleep = 0; 1794 } 1795 } 1796 HPTS_MTX_ASSERT(hpts); 1797 hpts->p_hpts_active = 0; 1798 back_to_sleep: 1799 hpts->p_direct_wake = 0; 1800 sb = tvtosbt(tv); 1801 /* Store off to make visible the actual sleep time */ 1802 hpts->sleeping = tv.tv_usec; 1803 callout_reset_sbt_on(&hpts->co, sb, 0, 1804 hpts_timeout_swi, hpts, hpts->p_cpu, 1805 (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision))); 1806 NET_EPOCH_EXIT(et); 1807 HPTS_UNLOCK(hpts); 1808 } 1809 1810 #undef timersub 1811 1812 static int32_t 1813 hpts_count_level(struct cpu_group *cg) 1814 { 1815 int32_t count_l3, i; 1816 1817 count_l3 = 0; 1818 if (cg->cg_level == CG_SHARE_L3) 1819 count_l3++; 1820 /* Walk all the children looking for L3 */ 1821 for (i = 0; i < cg->cg_children; i++) { 1822 count_l3 += hpts_count_level(&cg->cg_child[i]); 1823 } 1824 return (count_l3); 1825 } 1826 1827 static void 1828 hpts_gather_grps(struct cpu_group **grps, int32_t *at, int32_t max, struct cpu_group *cg) 1829 { 1830 int32_t idx, i; 1831 1832 idx = *at; 1833 if (cg->cg_level == CG_SHARE_L3) { 1834 grps[idx] = cg; 1835 idx++; 1836 if (idx == max) { 1837 *at = idx; 1838 return; 1839 } 1840 } 1841 *at = idx; 1842 /* Walk all the children looking for L3 */ 1843 for (i = 0; i < cg->cg_children; i++) { 1844 hpts_gather_grps(grps, at, max, &cg->cg_child[i]); 1845 } 1846 } 1847 1848 static void 1849 tcp_hpts_mod_load(void) 1850 { 1851 struct cpu_group *cpu_top; 1852 int32_t error __diagused; 1853 int32_t i, j, bound = 0, created = 0; 1854 size_t sz, asz; 1855 struct timeval tv; 1856 sbintime_t sb; 1857 struct tcp_hpts_entry *hpts; 1858 struct pcpu *pc; 1859 char unit[16]; 1860 uint32_t ncpus = mp_ncpus ? mp_ncpus : MAXCPU; 1861 int count, domain; 1862 1863 #ifdef SMP 1864 cpu_top = smp_topo(); 1865 #else 1866 cpu_top = NULL; 1867 #endif 1868 tcp_pace.rp_num_hptss = ncpus; 1869 hpts_hopelessly_behind = counter_u64_alloc(M_WAITOK); 1870 hpts_loops = counter_u64_alloc(M_WAITOK); 1871 back_tosleep = counter_u64_alloc(M_WAITOK); 1872 combined_wheel_wrap = counter_u64_alloc(M_WAITOK); 1873 wheel_wrap = counter_u64_alloc(M_WAITOK); 1874 hpts_wake_timeout = counter_u64_alloc(M_WAITOK); 1875 hpts_direct_awakening = counter_u64_alloc(M_WAITOK); 1876 hpts_back_tosleep = counter_u64_alloc(M_WAITOK); 1877 hpts_direct_call = counter_u64_alloc(M_WAITOK); 1878 cpu_uses_flowid = counter_u64_alloc(M_WAITOK); 1879 cpu_uses_random = counter_u64_alloc(M_WAITOK); 1880 1881 sz = (tcp_pace.rp_num_hptss * sizeof(struct tcp_hpts_entry *)); 1882 tcp_pace.rp_ent = malloc(sz, M_TCPHPTS, M_WAITOK | M_ZERO); 1883 sz = (sizeof(uint32_t) * tcp_pace.rp_num_hptss); 1884 tcp_pace.cts_last_ran = malloc(sz, M_TCPHPTS, M_WAITOK); 1885 tcp_pace.grp_cnt = 0; 1886 if (cpu_top == NULL) { 1887 tcp_pace.grp_cnt = 1; 1888 } else { 1889 /* Find out how many cache level 3 domains we have */ 1890 count = 0; 1891 tcp_pace.grp_cnt = hpts_count_level(cpu_top); 1892 if (tcp_pace.grp_cnt == 0) { 1893 tcp_pace.grp_cnt = 1; 1894 } 1895 sz = (tcp_pace.grp_cnt * sizeof(struct cpu_group *)); 1896 tcp_pace.grps = malloc(sz, M_TCPHPTS, M_WAITOK); 1897 /* Now populate the groups */ 1898 if (tcp_pace.grp_cnt == 1) { 1899 /* 1900 * All we need is the top level all cpu's are in 1901 * the same cache so when we use grp[0]->cg_mask 1902 * with the cg_first <-> cg_last it will include 1903 * all cpu's in it. The level here is probably 1904 * zero which is ok. 1905 */ 1906 tcp_pace.grps[0] = cpu_top; 1907 } else { 1908 /* 1909 * Here we must find all the level three cache domains 1910 * and setup our pointers to them. 1911 */ 1912 count = 0; 1913 hpts_gather_grps(tcp_pace.grps, &count, tcp_pace.grp_cnt, cpu_top); 1914 } 1915 } 1916 asz = sizeof(struct hptsh) * NUM_OF_HPTSI_SLOTS; 1917 for (i = 0; i < tcp_pace.rp_num_hptss; i++) { 1918 tcp_pace.rp_ent[i] = malloc(sizeof(struct tcp_hpts_entry), 1919 M_TCPHPTS, M_WAITOK | M_ZERO); 1920 tcp_pace.rp_ent[i]->p_hptss = malloc(asz, M_TCPHPTS, M_WAITOK); 1921 hpts = tcp_pace.rp_ent[i]; 1922 /* 1923 * Init all the hpts structures that are not specifically 1924 * zero'd by the allocations. Also lets attach them to the 1925 * appropriate sysctl block as well. 1926 */ 1927 mtx_init(&hpts->p_mtx, "tcp_hpts_lck", 1928 "hpts", MTX_DEF | MTX_DUPOK); 1929 for (j = 0; j < NUM_OF_HPTSI_SLOTS; j++) { 1930 TAILQ_INIT(&hpts->p_hptss[j].head); 1931 hpts->p_hptss[j].count = 0; 1932 hpts->p_hptss[j].gencnt = 0; 1933 } 1934 sysctl_ctx_init(&hpts->hpts_ctx); 1935 sprintf(unit, "%d", i); 1936 hpts->hpts_root = SYSCTL_ADD_NODE(&hpts->hpts_ctx, 1937 SYSCTL_STATIC_CHILDREN(_net_inet_tcp_hpts), 1938 OID_AUTO, 1939 unit, 1940 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 1941 ""); 1942 SYSCTL_ADD_INT(&hpts->hpts_ctx, 1943 SYSCTL_CHILDREN(hpts->hpts_root), 1944 OID_AUTO, "out_qcnt", CTLFLAG_RD, 1945 &hpts->p_on_queue_cnt, 0, 1946 "Count TCB's awaiting output processing"); 1947 SYSCTL_ADD_U16(&hpts->hpts_ctx, 1948 SYSCTL_CHILDREN(hpts->hpts_root), 1949 OID_AUTO, "active", CTLFLAG_RD, 1950 &hpts->p_hpts_active, 0, 1951 "Is the hpts active"); 1952 SYSCTL_ADD_UINT(&hpts->hpts_ctx, 1953 SYSCTL_CHILDREN(hpts->hpts_root), 1954 OID_AUTO, "curslot", CTLFLAG_RD, 1955 &hpts->p_cur_slot, 0, 1956 "What the current running pacers goal"); 1957 SYSCTL_ADD_UINT(&hpts->hpts_ctx, 1958 SYSCTL_CHILDREN(hpts->hpts_root), 1959 OID_AUTO, "runtick", CTLFLAG_RD, 1960 &hpts->p_runningslot, 0, 1961 "What the running pacers current slot is"); 1962 SYSCTL_ADD_UINT(&hpts->hpts_ctx, 1963 SYSCTL_CHILDREN(hpts->hpts_root), 1964 OID_AUTO, "curtick", CTLFLAG_RD, 1965 &hpts->p_curtick, 0, 1966 "What the running pacers last tick mapped to the wheel was"); 1967 SYSCTL_ADD_UINT(&hpts->hpts_ctx, 1968 SYSCTL_CHILDREN(hpts->hpts_root), 1969 OID_AUTO, "lastran", CTLFLAG_RD, 1970 &tcp_pace.cts_last_ran[i], 0, 1971 "The last usec tick that this hpts ran"); 1972 SYSCTL_ADD_LONG(&hpts->hpts_ctx, 1973 SYSCTL_CHILDREN(hpts->hpts_root), 1974 OID_AUTO, "cur_min_sleep", CTLFLAG_RD, 1975 &hpts->p_mysleep.tv_usec, 1976 "What the running pacers is using for p_mysleep.tv_usec"); 1977 SYSCTL_ADD_U64(&hpts->hpts_ctx, 1978 SYSCTL_CHILDREN(hpts->hpts_root), 1979 OID_AUTO, "now_sleeping", CTLFLAG_RD, 1980 &hpts->sleeping, 0, 1981 "What the running pacers is actually sleeping for"); 1982 SYSCTL_ADD_U64(&hpts->hpts_ctx, 1983 SYSCTL_CHILDREN(hpts->hpts_root), 1984 OID_AUTO, "syscall_cnt", CTLFLAG_RD, 1985 &hpts->syscall_cnt, 0, 1986 "How many times we had syscalls on this hpts"); 1987 1988 hpts->p_hpts_sleep_time = hpts_sleep_max; 1989 hpts->p_num = i; 1990 hpts->p_curtick = tcp_gethptstick(&tv); 1991 tcp_pace.cts_last_ran[i] = tcp_tv_to_usec(&tv); 1992 hpts->p_prev_slot = hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick); 1993 hpts->p_cpu = 0xffff; 1994 hpts->p_nxt_slot = hpts_slot(hpts->p_cur_slot, 1); 1995 callout_init(&hpts->co, 1); 1996 } 1997 /* Don't try to bind to NUMA domains if we don't have any */ 1998 if (vm_ndomains == 1 && tcp_bind_threads == 2) 1999 tcp_bind_threads = 0; 2000 2001 /* 2002 * Now lets start ithreads to handle the hptss. 2003 */ 2004 for (i = 0; i < tcp_pace.rp_num_hptss; i++) { 2005 hpts = tcp_pace.rp_ent[i]; 2006 hpts->p_cpu = i; 2007 2008 error = swi_add(&hpts->ie, "hpts", 2009 tcp_hpts_thread, (void *)hpts, 2010 SWI_NET, INTR_MPSAFE, &hpts->ie_cookie); 2011 KASSERT(error == 0, 2012 ("Can't add hpts:%p i:%d err:%d", 2013 hpts, i, error)); 2014 created++; 2015 hpts->p_mysleep.tv_sec = 0; 2016 hpts->p_mysleep.tv_usec = tcp_min_hptsi_time; 2017 if (tcp_bind_threads == 1) { 2018 if (intr_event_bind(hpts->ie, i) == 0) 2019 bound++; 2020 } else if (tcp_bind_threads == 2) { 2021 /* Find the group for this CPU (i) and bind into it */ 2022 for (j = 0; j < tcp_pace.grp_cnt; j++) { 2023 if (CPU_ISSET(i, &tcp_pace.grps[j]->cg_mask)) { 2024 if (intr_event_bind_ithread_cpuset(hpts->ie, 2025 &tcp_pace.grps[j]->cg_mask) == 0) { 2026 bound++; 2027 pc = pcpu_find(i); 2028 domain = pc->pc_domain; 2029 count = hpts_domains[domain].count; 2030 hpts_domains[domain].cpu[count] = i; 2031 hpts_domains[domain].count++; 2032 break; 2033 } 2034 } 2035 } 2036 } 2037 tv.tv_sec = 0; 2038 tv.tv_usec = hpts->p_hpts_sleep_time * HPTS_USECS_PER_SLOT; 2039 hpts->sleeping = tv.tv_usec; 2040 sb = tvtosbt(tv); 2041 callout_reset_sbt_on(&hpts->co, sb, 0, 2042 hpts_timeout_swi, hpts, hpts->p_cpu, 2043 (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision))); 2044 } 2045 /* 2046 * If we somehow have an empty domain, fall back to choosing 2047 * among all htps threads. 2048 */ 2049 for (i = 0; i < vm_ndomains; i++) { 2050 if (hpts_domains[i].count == 0) { 2051 tcp_bind_threads = 0; 2052 break; 2053 } 2054 } 2055 tcp_hpts_softclock = __tcp_run_hpts; 2056 tcp_lro_hpts_init(); 2057 printf("TCP Hpts created %d swi interrupt threads and bound %d to %s\n", 2058 created, bound, 2059 tcp_bind_threads == 2 ? "NUMA domains" : "cpus"); 2060 } 2061 2062 static void 2063 tcp_hpts_mod_unload(void) 2064 { 2065 int rv __diagused; 2066 2067 tcp_lro_hpts_uninit(); 2068 atomic_store_ptr(&tcp_hpts_softclock, NULL); 2069 2070 for (int i = 0; i < tcp_pace.rp_num_hptss; i++) { 2071 struct tcp_hpts_entry *hpts = tcp_pace.rp_ent[i]; 2072 2073 rv = callout_drain(&hpts->co); 2074 MPASS(rv != 0); 2075 2076 rv = swi_remove(hpts->ie_cookie); 2077 MPASS(rv == 0); 2078 2079 rv = sysctl_ctx_free(&hpts->hpts_ctx); 2080 MPASS(rv == 0); 2081 2082 mtx_destroy(&hpts->p_mtx); 2083 free(hpts->p_hptss, M_TCPHPTS); 2084 free(hpts, M_TCPHPTS); 2085 } 2086 2087 free(tcp_pace.rp_ent, M_TCPHPTS); 2088 free(tcp_pace.cts_last_ran, M_TCPHPTS); 2089 #ifdef SMP 2090 free(tcp_pace.grps, M_TCPHPTS); 2091 #endif 2092 2093 counter_u64_free(hpts_hopelessly_behind); 2094 counter_u64_free(hpts_loops); 2095 counter_u64_free(back_tosleep); 2096 counter_u64_free(combined_wheel_wrap); 2097 counter_u64_free(wheel_wrap); 2098 counter_u64_free(hpts_wake_timeout); 2099 counter_u64_free(hpts_direct_awakening); 2100 counter_u64_free(hpts_back_tosleep); 2101 counter_u64_free(hpts_direct_call); 2102 counter_u64_free(cpu_uses_flowid); 2103 counter_u64_free(cpu_uses_random); 2104 } 2105 2106 static int 2107 tcp_hpts_modevent(module_t mod, int what, void *arg) 2108 { 2109 2110 switch (what) { 2111 case MOD_LOAD: 2112 tcp_hpts_mod_load(); 2113 return (0); 2114 case MOD_QUIESCE: 2115 /* 2116 * Since we are a dependency of TCP stack modules, they should 2117 * already be unloaded, and the HPTS ring is empty. However, 2118 * function pointer manipulations aren't 100% safe. Although, 2119 * tcp_hpts_mod_unload() use atomic(9) the userret() doesn't. 2120 * Thus, allow only forced unload of HPTS. 2121 */ 2122 return (EBUSY); 2123 case MOD_UNLOAD: 2124 tcp_hpts_mod_unload(); 2125 return (0); 2126 default: 2127 return (EINVAL); 2128 }; 2129 } 2130 2131 static moduledata_t tcp_hpts_module = { 2132 .name = "tcphpts", 2133 .evhand = tcp_hpts_modevent, 2134 }; 2135 2136 DECLARE_MODULE(tcphpts, tcp_hpts_module, SI_SUB_SOFTINTR, SI_ORDER_ANY); 2137 MODULE_VERSION(tcphpts, 1); 2138