1 /*- 2 * Copyright (c) 2016-2018 Netflix, Inc. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 1. Redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer. 9 * 2. Redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution. 12 * 13 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 14 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 16 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 17 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 18 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 19 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 20 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 21 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 22 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 23 * SUCH DAMAGE. 24 * 25 */ 26 #include <sys/cdefs.h> 27 __FBSDID("$FreeBSD$"); 28 29 #include "opt_inet.h" 30 #include "opt_inet6.h" 31 #include "opt_rss.h" 32 33 /** 34 * Some notes about usage. 35 * 36 * The tcp_hpts system is designed to provide a high precision timer 37 * system for tcp. Its main purpose is to provide a mechanism for 38 * pacing packets out onto the wire. It can be used in two ways 39 * by a given TCP stack (and those two methods can be used simultaneously). 40 * 41 * First, and probably the main thing its used by Rack and BBR, it can 42 * be used to call tcp_output() of a transport stack at some time in the future. 43 * The normal way this is done is that tcp_output() of the stack schedules 44 * itself to be called again by calling tcp_hpts_insert(tcpcb, slot). The 45 * slot is the time from now that the stack wants to be called but it 46 * must be converted to tcp_hpts's notion of slot. This is done with 47 * one of the macros HPTS_MS_TO_SLOTS or HPTS_USEC_TO_SLOTS. So a typical 48 * call from the tcp_output() routine might look like: 49 * 50 * tcp_hpts_insert(tp, HPTS_USEC_TO_SLOTS(550)); 51 * 52 * The above would schedule tcp_ouput() to be called in 550 useconds. 53 * Note that if using this mechanism the stack will want to add near 54 * its top a check to prevent unwanted calls (from user land or the 55 * arrival of incoming ack's). So it would add something like: 56 * 57 * if (tcp_in_hpts(inp)) 58 * return; 59 * 60 * to prevent output processing until the time alotted has gone by. 61 * Of course this is a bare bones example and the stack will probably 62 * have more consideration then just the above. 63 * 64 * In order to run input queued segments from the HPTS context the 65 * tcp stack must define an input function for 66 * tfb_do_queued_segments(). This function understands 67 * how to dequeue a array of packets that were input and 68 * knows how to call the correct processing routine. 69 * 70 * Locking in this is important as well so most likely the 71 * stack will need to define the tfb_do_segment_nounlock() 72 * splitting tfb_do_segment() into two parts. The main processing 73 * part that does not unlock the INP and returns a value of 1 or 0. 74 * It returns 0 if all is well and the lock was not released. It 75 * returns 1 if we had to destroy the TCB (a reset received etc). 76 * The remains of tfb_do_segment() then become just a simple call 77 * to the tfb_do_segment_nounlock() function and check the return 78 * code and possibly unlock. 79 * 80 * The stack must also set the flag on the INP that it supports this 81 * feature i.e. INP_SUPPORTS_MBUFQ. The LRO code recoginizes 82 * this flag as well and will queue packets when it is set. 83 * There are other flags as well INP_MBUF_QUEUE_READY and 84 * INP_DONT_SACK_QUEUE. The first flag tells the LRO code 85 * that we are in the pacer for output so there is no 86 * need to wake up the hpts system to get immediate 87 * input. The second tells the LRO code that its okay 88 * if a SACK arrives you can still defer input and let 89 * the current hpts timer run (this is usually set when 90 * a rack timer is up so we know SACK's are happening 91 * on the connection already and don't want to wakeup yet). 92 * 93 * There is a common functions within the rack_bbr_common code 94 * version i.e. ctf_do_queued_segments(). This function 95 * knows how to take the input queue of packets from tp->t_inqueue 96 * and process them digging out all the arguments, calling any bpf tap and 97 * calling into tfb_do_segment_nounlock(). The common 98 * function (ctf_do_queued_segments()) requires that 99 * you have defined the tfb_do_segment_nounlock() as 100 * described above. 101 */ 102 103 #include <sys/param.h> 104 #include <sys/bus.h> 105 #include <sys/interrupt.h> 106 #include <sys/module.h> 107 #include <sys/kernel.h> 108 #include <sys/hhook.h> 109 #include <sys/malloc.h> 110 #include <sys/mbuf.h> 111 #include <sys/proc.h> /* for proc0 declaration */ 112 #include <sys/socket.h> 113 #include <sys/socketvar.h> 114 #include <sys/sysctl.h> 115 #include <sys/systm.h> 116 #include <sys/refcount.h> 117 #include <sys/sched.h> 118 #include <sys/queue.h> 119 #include <sys/smp.h> 120 #include <sys/counter.h> 121 #include <sys/time.h> 122 #include <sys/kthread.h> 123 #include <sys/kern_prefetch.h> 124 125 #include <vm/uma.h> 126 #include <vm/vm.h> 127 128 #include <net/route.h> 129 #include <net/vnet.h> 130 131 #ifdef RSS 132 #include <net/netisr.h> 133 #include <net/rss_config.h> 134 #endif 135 136 #define TCPSTATES /* for logging */ 137 138 #include <netinet/in.h> 139 #include <netinet/in_kdtrace.h> 140 #include <netinet/in_pcb.h> 141 #include <netinet/ip.h> 142 #include <netinet/ip_icmp.h> /* required for icmp_var.h */ 143 #include <netinet/icmp_var.h> /* for ICMP_BANDLIM */ 144 #include <netinet/ip_var.h> 145 #include <netinet/ip6.h> 146 #include <netinet6/in6_pcb.h> 147 #include <netinet6/ip6_var.h> 148 #include <netinet/tcp.h> 149 #include <netinet/tcp_fsm.h> 150 #include <netinet/tcp_seq.h> 151 #include <netinet/tcp_timer.h> 152 #include <netinet/tcp_var.h> 153 #include <netinet/tcpip.h> 154 #include <netinet/cc/cc.h> 155 #include <netinet/tcp_hpts.h> 156 #include <netinet/tcp_log_buf.h> 157 158 #ifdef tcp_offload 159 #include <netinet/tcp_offload.h> 160 #endif 161 162 /* 163 * The hpts uses a 102400 wheel. The wheel 164 * defines the time in 10 usec increments (102400 x 10). 165 * This gives a range of 10usec - 1024ms to place 166 * an entry within. If the user requests more than 167 * 1.024 second, a remaineder is attached and the hpts 168 * when seeing the remainder will re-insert the 169 * inpcb forward in time from where it is until 170 * the remainder is zero. 171 */ 172 173 #define NUM_OF_HPTSI_SLOTS 102400 174 175 /* Each hpts has its own p_mtx which is used for locking */ 176 #define HPTS_MTX_ASSERT(hpts) mtx_assert(&(hpts)->p_mtx, MA_OWNED) 177 #define HPTS_LOCK(hpts) mtx_lock(&(hpts)->p_mtx) 178 #define HPTS_UNLOCK(hpts) mtx_unlock(&(hpts)->p_mtx) 179 struct tcp_hpts_entry { 180 /* Cache line 0x00 */ 181 struct mtx p_mtx; /* Mutex for hpts */ 182 struct timeval p_mysleep; /* Our min sleep time */ 183 uint64_t syscall_cnt; 184 uint64_t sleeping; /* What the actual sleep was (if sleeping) */ 185 uint16_t p_hpts_active; /* Flag that says hpts is awake */ 186 uint8_t p_wheel_complete; /* have we completed the wheel arc walk? */ 187 uint32_t p_curtick; /* Tick in 10 us the hpts is going to */ 188 uint32_t p_runningslot; /* Current tick we are at if we are running */ 189 uint32_t p_prev_slot; /* Previous slot we were on */ 190 uint32_t p_cur_slot; /* Current slot in wheel hpts is draining */ 191 uint32_t p_nxt_slot; /* The next slot outside the current range of 192 * slots that the hpts is running on. */ 193 int32_t p_on_queue_cnt; /* Count on queue in this hpts */ 194 uint32_t p_lasttick; /* Last tick before the current one */ 195 uint8_t p_direct_wake :1, /* boolean */ 196 p_on_min_sleep:1, /* boolean */ 197 p_hpts_wake_scheduled:1, /* boolean */ 198 p_avail:5; 199 uint8_t p_fill[3]; /* Fill to 32 bits */ 200 /* Cache line 0x40 */ 201 struct hptsh { 202 TAILQ_HEAD(, tcpcb) head; 203 uint32_t count; 204 uint32_t gencnt; 205 } *p_hptss; /* Hptsi wheel */ 206 uint32_t p_hpts_sleep_time; /* Current sleep interval having a max 207 * of 255ms */ 208 uint32_t overidden_sleep; /* what was overrided by min-sleep for logging */ 209 uint32_t saved_lasttick; /* for logging */ 210 uint32_t saved_curtick; /* for logging */ 211 uint32_t saved_curslot; /* for logging */ 212 uint32_t saved_prev_slot; /* for logging */ 213 uint32_t p_delayed_by; /* How much were we delayed by */ 214 /* Cache line 0x80 */ 215 struct sysctl_ctx_list hpts_ctx; 216 struct sysctl_oid *hpts_root; 217 struct intr_event *ie; 218 void *ie_cookie; 219 uint16_t p_num; /* The hpts number one per cpu */ 220 uint16_t p_cpu; /* The hpts CPU */ 221 /* There is extra space in here */ 222 /* Cache line 0x100 */ 223 struct callout co __aligned(CACHE_LINE_SIZE); 224 } __aligned(CACHE_LINE_SIZE); 225 226 static struct tcp_hptsi { 227 struct cpu_group **grps; 228 struct tcp_hpts_entry **rp_ent; /* Array of hptss */ 229 uint32_t *cts_last_ran; 230 uint32_t grp_cnt; 231 uint32_t rp_num_hptss; /* Number of hpts threads */ 232 } tcp_pace; 233 234 MALLOC_DEFINE(M_TCPHPTS, "tcp_hpts", "TCP hpts"); 235 #ifdef RSS 236 static int tcp_bind_threads = 1; 237 #else 238 static int tcp_bind_threads = 2; 239 #endif 240 static int tcp_use_irq_cpu = 0; 241 static uint32_t *cts_last_ran; 242 static int hpts_does_tp_logging = 0; 243 244 static int32_t tcp_hptsi(struct tcp_hpts_entry *hpts, int from_callout); 245 static void tcp_hpts_thread(void *ctx); 246 static void tcp_init_hptsi(void *st); 247 248 int32_t tcp_min_hptsi_time = DEFAULT_MIN_SLEEP; 249 static int conn_cnt_thresh = DEFAULT_CONNECTION_THESHOLD; 250 static int32_t dynamic_min_sleep = DYNAMIC_MIN_SLEEP; 251 static int32_t dynamic_max_sleep = DYNAMIC_MAX_SLEEP; 252 253 254 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, hpts, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 255 "TCP Hpts controls"); 256 SYSCTL_NODE(_net_inet_tcp_hpts, OID_AUTO, stats, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 257 "TCP Hpts statistics"); 258 259 #define timersub(tvp, uvp, vvp) \ 260 do { \ 261 (vvp)->tv_sec = (tvp)->tv_sec - (uvp)->tv_sec; \ 262 (vvp)->tv_usec = (tvp)->tv_usec - (uvp)->tv_usec; \ 263 if ((vvp)->tv_usec < 0) { \ 264 (vvp)->tv_sec--; \ 265 (vvp)->tv_usec += 1000000; \ 266 } \ 267 } while (0) 268 269 static int32_t tcp_hpts_precision = 120; 270 271 static struct hpts_domain_info { 272 int count; 273 int cpu[MAXCPU]; 274 } hpts_domains[MAXMEMDOM]; 275 276 counter_u64_t hpts_hopelessly_behind; 277 278 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, hopeless, CTLFLAG_RD, 279 &hpts_hopelessly_behind, 280 "Number of times hpts could not catch up and was behind hopelessly"); 281 282 counter_u64_t hpts_loops; 283 284 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, loops, CTLFLAG_RD, 285 &hpts_loops, "Number of times hpts had to loop to catch up"); 286 287 counter_u64_t back_tosleep; 288 289 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, no_tcbsfound, CTLFLAG_RD, 290 &back_tosleep, "Number of times hpts found no tcbs"); 291 292 counter_u64_t combined_wheel_wrap; 293 294 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, comb_wheel_wrap, CTLFLAG_RD, 295 &combined_wheel_wrap, "Number of times the wheel lagged enough to have an insert see wrap"); 296 297 counter_u64_t wheel_wrap; 298 299 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, wheel_wrap, CTLFLAG_RD, 300 &wheel_wrap, "Number of times the wheel lagged enough to have an insert see wrap"); 301 302 counter_u64_t hpts_direct_call; 303 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, direct_call, CTLFLAG_RD, 304 &hpts_direct_call, "Number of times hpts was called by syscall/trap or other entry"); 305 306 counter_u64_t hpts_wake_timeout; 307 308 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, timeout_wakeup, CTLFLAG_RD, 309 &hpts_wake_timeout, "Number of times hpts threads woke up via the callout expiring"); 310 311 counter_u64_t hpts_direct_awakening; 312 313 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, direct_awakening, CTLFLAG_RD, 314 &hpts_direct_awakening, "Number of times hpts threads woke up via the callout expiring"); 315 316 counter_u64_t hpts_back_tosleep; 317 318 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, back_tosleep, CTLFLAG_RD, 319 &hpts_back_tosleep, "Number of times hpts threads woke up via the callout expiring and went back to sleep no work"); 320 321 counter_u64_t cpu_uses_flowid; 322 counter_u64_t cpu_uses_random; 323 324 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, cpusel_flowid, CTLFLAG_RD, 325 &cpu_uses_flowid, "Number of times when setting cpuid we used the flowid field"); 326 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, cpusel_random, CTLFLAG_RD, 327 &cpu_uses_random, "Number of times when setting cpuid we used the a random value"); 328 329 TUNABLE_INT("net.inet.tcp.bind_hptss", &tcp_bind_threads); 330 TUNABLE_INT("net.inet.tcp.use_irq", &tcp_use_irq_cpu); 331 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, bind_hptss, CTLFLAG_RD, 332 &tcp_bind_threads, 2, 333 "Thread Binding tunable"); 334 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, use_irq, CTLFLAG_RD, 335 &tcp_use_irq_cpu, 0, 336 "Use of irq CPU tunable"); 337 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, precision, CTLFLAG_RW, 338 &tcp_hpts_precision, 120, 339 "Value for PRE() precision of callout"); 340 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, cnt_thresh, CTLFLAG_RW, 341 &conn_cnt_thresh, 0, 342 "How many connections (below) make us use the callout based mechanism"); 343 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, logging, CTLFLAG_RW, 344 &hpts_does_tp_logging, 0, 345 "Do we add to any tp that has logging on pacer logs"); 346 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, dyn_minsleep, CTLFLAG_RW, 347 &dynamic_min_sleep, 250, 348 "What is the dynamic minsleep value?"); 349 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, dyn_maxsleep, CTLFLAG_RW, 350 &dynamic_max_sleep, 5000, 351 "What is the dynamic maxsleep value?"); 352 353 static int32_t max_pacer_loops = 10; 354 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, loopmax, CTLFLAG_RW, 355 &max_pacer_loops, 10, 356 "What is the maximum number of times the pacer will loop trying to catch up"); 357 358 #define HPTS_MAX_SLEEP_ALLOWED (NUM_OF_HPTSI_SLOTS/2) 359 360 static uint32_t hpts_sleep_max = HPTS_MAX_SLEEP_ALLOWED; 361 362 static int 363 sysctl_net_inet_tcp_hpts_max_sleep(SYSCTL_HANDLER_ARGS) 364 { 365 int error; 366 uint32_t new; 367 368 new = hpts_sleep_max; 369 error = sysctl_handle_int(oidp, &new, 0, req); 370 if (error == 0 && req->newptr) { 371 if ((new < (dynamic_min_sleep/HPTS_TICKS_PER_SLOT)) || 372 (new > HPTS_MAX_SLEEP_ALLOWED)) 373 error = EINVAL; 374 else 375 hpts_sleep_max = new; 376 } 377 return (error); 378 } 379 380 static int 381 sysctl_net_inet_tcp_hpts_min_sleep(SYSCTL_HANDLER_ARGS) 382 { 383 int error; 384 uint32_t new; 385 386 new = tcp_min_hptsi_time; 387 error = sysctl_handle_int(oidp, &new, 0, req); 388 if (error == 0 && req->newptr) { 389 if (new < LOWEST_SLEEP_ALLOWED) 390 error = EINVAL; 391 else 392 tcp_min_hptsi_time = new; 393 } 394 return (error); 395 } 396 397 SYSCTL_PROC(_net_inet_tcp_hpts, OID_AUTO, maxsleep, 398 CTLTYPE_UINT | CTLFLAG_RW, 399 &hpts_sleep_max, 0, 400 &sysctl_net_inet_tcp_hpts_max_sleep, "IU", 401 "Maximum time hpts will sleep in slots"); 402 403 SYSCTL_PROC(_net_inet_tcp_hpts, OID_AUTO, minsleep, 404 CTLTYPE_UINT | CTLFLAG_RW, 405 &tcp_min_hptsi_time, 0, 406 &sysctl_net_inet_tcp_hpts_min_sleep, "IU", 407 "The minimum time the hpts must sleep before processing more slots"); 408 409 static int ticks_indicate_more_sleep = TICKS_INDICATE_MORE_SLEEP; 410 static int ticks_indicate_less_sleep = TICKS_INDICATE_LESS_SLEEP; 411 static int tcp_hpts_no_wake_over_thresh = 1; 412 413 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, more_sleep, CTLFLAG_RW, 414 &ticks_indicate_more_sleep, 0, 415 "If we only process this many or less on a timeout, we need longer sleep on the next callout"); 416 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, less_sleep, CTLFLAG_RW, 417 &ticks_indicate_less_sleep, 0, 418 "If we process this many or more on a timeout, we need less sleep on the next callout"); 419 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, nowake_over_thresh, CTLFLAG_RW, 420 &tcp_hpts_no_wake_over_thresh, 0, 421 "When we are over the threshold on the pacer do we prohibit wakeups?"); 422 423 static uint16_t 424 hpts_random_cpu(void) 425 { 426 uint16_t cpuid; 427 uint32_t ran; 428 429 ran = arc4random(); 430 cpuid = (((ran & 0xffff) % mp_ncpus) % tcp_pace.rp_num_hptss); 431 return (cpuid); 432 } 433 434 static void 435 tcp_hpts_log(struct tcp_hpts_entry *hpts, struct tcpcb *tp, struct timeval *tv, 436 int slots_to_run, int idx, int from_callout) 437 { 438 union tcp_log_stackspecific log; 439 /* 440 * Unused logs are 441 * 64 bit - delRate, rttProp, bw_inuse 442 * 16 bit - cwnd_gain 443 * 8 bit - bbr_state, bbr_substate, inhpts; 444 */ 445 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 446 log.u_bbr.flex1 = hpts->p_nxt_slot; 447 log.u_bbr.flex2 = hpts->p_cur_slot; 448 log.u_bbr.flex3 = hpts->p_prev_slot; 449 log.u_bbr.flex4 = idx; 450 log.u_bbr.flex5 = hpts->p_curtick; 451 log.u_bbr.flex6 = hpts->p_on_queue_cnt; 452 log.u_bbr.flex7 = hpts->p_cpu; 453 log.u_bbr.flex8 = (uint8_t)from_callout; 454 log.u_bbr.inflight = slots_to_run; 455 log.u_bbr.applimited = hpts->overidden_sleep; 456 log.u_bbr.delivered = hpts->saved_curtick; 457 log.u_bbr.timeStamp = tcp_tv_to_usectick(tv); 458 log.u_bbr.epoch = hpts->saved_curslot; 459 log.u_bbr.lt_epoch = hpts->saved_prev_slot; 460 log.u_bbr.pkts_out = hpts->p_delayed_by; 461 log.u_bbr.lost = hpts->p_hpts_sleep_time; 462 log.u_bbr.pacing_gain = hpts->p_cpu; 463 log.u_bbr.pkt_epoch = hpts->p_runningslot; 464 log.u_bbr.use_lt_bw = 1; 465 TCP_LOG_EVENTP(tp, NULL, 466 &tptosocket(tp)->so_rcv, 467 &tptosocket(tp)->so_snd, 468 BBR_LOG_HPTSDIAG, 0, 469 0, &log, false, tv); 470 } 471 472 static void 473 tcp_wakehpts(struct tcp_hpts_entry *hpts) 474 { 475 HPTS_MTX_ASSERT(hpts); 476 477 if (tcp_hpts_no_wake_over_thresh && (hpts->p_on_queue_cnt >= conn_cnt_thresh)) { 478 hpts->p_direct_wake = 0; 479 return; 480 } 481 if (hpts->p_hpts_wake_scheduled == 0) { 482 hpts->p_hpts_wake_scheduled = 1; 483 swi_sched(hpts->ie_cookie, 0); 484 } 485 } 486 487 static void 488 hpts_timeout_swi(void *arg) 489 { 490 struct tcp_hpts_entry *hpts; 491 492 hpts = (struct tcp_hpts_entry *)arg; 493 swi_sched(hpts->ie_cookie, 0); 494 } 495 496 static void 497 tcp_hpts_insert_internal(struct tcpcb *tp, struct tcp_hpts_entry *hpts) 498 { 499 struct inpcb *inp = tptoinpcb(tp); 500 struct hptsh *hptsh; 501 502 INP_WLOCK_ASSERT(inp); 503 HPTS_MTX_ASSERT(hpts); 504 MPASS(hpts->p_cpu == tp->t_hpts_cpu); 505 MPASS(!(inp->inp_flags & INP_DROPPED)); 506 507 hptsh = &hpts->p_hptss[tp->t_hpts_slot]; 508 509 if (tp->t_in_hpts == IHPTS_NONE) { 510 tp->t_in_hpts = IHPTS_ONQUEUE; 511 in_pcbref(inp); 512 } else if (tp->t_in_hpts == IHPTS_MOVING) { 513 tp->t_in_hpts = IHPTS_ONQUEUE; 514 } else 515 MPASS(tp->t_in_hpts == IHPTS_ONQUEUE); 516 tp->t_hpts_gencnt = hptsh->gencnt; 517 518 TAILQ_INSERT_TAIL(&hptsh->head, tp, t_hpts); 519 hptsh->count++; 520 hpts->p_on_queue_cnt++; 521 } 522 523 static struct tcp_hpts_entry * 524 tcp_hpts_lock(struct tcpcb *tp) 525 { 526 struct tcp_hpts_entry *hpts; 527 528 INP_LOCK_ASSERT(tptoinpcb(tp)); 529 530 hpts = tcp_pace.rp_ent[tp->t_hpts_cpu]; 531 HPTS_LOCK(hpts); 532 533 return (hpts); 534 } 535 536 static void 537 tcp_hpts_release(struct tcpcb *tp) 538 { 539 bool released __diagused; 540 541 tp->t_in_hpts = IHPTS_NONE; 542 released = in_pcbrele_wlocked(tptoinpcb(tp)); 543 MPASS(released == false); 544 } 545 546 /* 547 * Initialize newborn tcpcb to get ready for use with HPTS. 548 */ 549 void 550 tcp_hpts_init(struct tcpcb *tp) 551 { 552 553 tp->t_hpts_cpu = hpts_random_cpu(); 554 tp->t_lro_cpu = HPTS_CPU_NONE; 555 MPASS(!(tp->t_flags2 & TF2_HPTS_CPU_SET)); 556 } 557 558 /* 559 * Called normally with the INP_LOCKED but it 560 * does not matter, the hpts lock is the key 561 * but the lock order allows us to hold the 562 * INP lock and then get the hpts lock. 563 */ 564 void 565 tcp_hpts_remove(struct tcpcb *tp) 566 { 567 struct tcp_hpts_entry *hpts; 568 struct hptsh *hptsh; 569 570 INP_WLOCK_ASSERT(tptoinpcb(tp)); 571 572 hpts = tcp_hpts_lock(tp); 573 if (tp->t_in_hpts == IHPTS_ONQUEUE) { 574 hptsh = &hpts->p_hptss[tp->t_hpts_slot]; 575 tp->t_hpts_request = 0; 576 if (__predict_true(tp->t_hpts_gencnt == hptsh->gencnt)) { 577 TAILQ_REMOVE(&hptsh->head, tp, t_hpts); 578 MPASS(hptsh->count > 0); 579 hptsh->count--; 580 MPASS(hpts->p_on_queue_cnt > 0); 581 hpts->p_on_queue_cnt--; 582 tcp_hpts_release(tp); 583 } else { 584 /* 585 * tcp_hptsi() now owns the TAILQ head of this inp. 586 * Can't TAILQ_REMOVE, just mark it. 587 */ 588 #ifdef INVARIANTS 589 struct tcpcb *tmp; 590 591 TAILQ_FOREACH(tmp, &hptsh->head, t_hpts) 592 MPASS(tmp != tp); 593 #endif 594 tp->t_in_hpts = IHPTS_MOVING; 595 tp->t_hpts_slot = -1; 596 } 597 } else if (tp->t_in_hpts == IHPTS_MOVING) { 598 /* 599 * Handle a special race condition: 600 * tcp_hptsi() moves inpcb to detached tailq 601 * tcp_hpts_remove() marks as IHPTS_MOVING, slot = -1 602 * tcp_hpts_insert() sets slot to a meaningful value 603 * tcp_hpts_remove() again (we are here!), then in_pcbdrop() 604 * tcp_hptsi() finds pcb with meaningful slot and INP_DROPPED 605 */ 606 tp->t_hpts_slot = -1; 607 } 608 HPTS_UNLOCK(hpts); 609 } 610 611 static inline int 612 hpts_slot(uint32_t wheel_slot, uint32_t plus) 613 { 614 /* 615 * Given a slot on the wheel, what slot 616 * is that plus ticks out? 617 */ 618 KASSERT(wheel_slot < NUM_OF_HPTSI_SLOTS, ("Invalid tick %u not on wheel", wheel_slot)); 619 return ((wheel_slot + plus) % NUM_OF_HPTSI_SLOTS); 620 } 621 622 static inline int 623 tick_to_wheel(uint32_t cts_in_wticks) 624 { 625 /* 626 * Given a timestamp in ticks (so by 627 * default to get it to a real time one 628 * would multiply by 10.. i.e the number 629 * of ticks in a slot) map it to our limited 630 * space wheel. 631 */ 632 return (cts_in_wticks % NUM_OF_HPTSI_SLOTS); 633 } 634 635 static inline int 636 hpts_slots_diff(int prev_slot, int slot_now) 637 { 638 /* 639 * Given two slots that are someplace 640 * on our wheel. How far are they apart? 641 */ 642 if (slot_now > prev_slot) 643 return (slot_now - prev_slot); 644 else if (slot_now == prev_slot) 645 /* 646 * Special case, same means we can go all of our 647 * wheel less one slot. 648 */ 649 return (NUM_OF_HPTSI_SLOTS - 1); 650 else 651 return ((NUM_OF_HPTSI_SLOTS - prev_slot) + slot_now); 652 } 653 654 /* 655 * Given a slot on the wheel that is the current time 656 * mapped to the wheel (wheel_slot), what is the maximum 657 * distance forward that can be obtained without 658 * wrapping past either prev_slot or running_slot 659 * depending on the htps state? Also if passed 660 * a uint32_t *, fill it with the slot location. 661 * 662 * Note if you do not give this function the current 663 * time (that you think it is) mapped to the wheel slot 664 * then the results will not be what you expect and 665 * could lead to invalid inserts. 666 */ 667 static inline int32_t 668 max_slots_available(struct tcp_hpts_entry *hpts, uint32_t wheel_slot, uint32_t *target_slot) 669 { 670 uint32_t dis_to_travel, end_slot, pacer_to_now, avail_on_wheel; 671 672 if ((hpts->p_hpts_active == 1) && 673 (hpts->p_wheel_complete == 0)) { 674 end_slot = hpts->p_runningslot; 675 /* Back up one tick */ 676 if (end_slot == 0) 677 end_slot = NUM_OF_HPTSI_SLOTS - 1; 678 else 679 end_slot--; 680 if (target_slot) 681 *target_slot = end_slot; 682 } else { 683 /* 684 * For the case where we are 685 * not active, or we have 686 * completed the pass over 687 * the wheel, we can use the 688 * prev tick and subtract one from it. This puts us 689 * as far out as possible on the wheel. 690 */ 691 end_slot = hpts->p_prev_slot; 692 if (end_slot == 0) 693 end_slot = NUM_OF_HPTSI_SLOTS - 1; 694 else 695 end_slot--; 696 if (target_slot) 697 *target_slot = end_slot; 698 /* 699 * Now we have close to the full wheel left minus the 700 * time it has been since the pacer went to sleep. Note 701 * that wheel_tick, passed in, should be the current time 702 * from the perspective of the caller, mapped to the wheel. 703 */ 704 if (hpts->p_prev_slot != wheel_slot) 705 dis_to_travel = hpts_slots_diff(hpts->p_prev_slot, wheel_slot); 706 else 707 dis_to_travel = 1; 708 /* 709 * dis_to_travel in this case is the space from when the 710 * pacer stopped (p_prev_slot) and where our wheel_slot 711 * is now. To know how many slots we can put it in we 712 * subtract from the wheel size. We would not want 713 * to place something after p_prev_slot or it will 714 * get ran too soon. 715 */ 716 return (NUM_OF_HPTSI_SLOTS - dis_to_travel); 717 } 718 /* 719 * So how many slots are open between p_runningslot -> p_cur_slot 720 * that is what is currently un-available for insertion. Special 721 * case when we are at the last slot, this gets 1, so that 722 * the answer to how many slots are available is all but 1. 723 */ 724 if (hpts->p_runningslot == hpts->p_cur_slot) 725 dis_to_travel = 1; 726 else 727 dis_to_travel = hpts_slots_diff(hpts->p_runningslot, hpts->p_cur_slot); 728 /* 729 * How long has the pacer been running? 730 */ 731 if (hpts->p_cur_slot != wheel_slot) { 732 /* The pacer is a bit late */ 733 pacer_to_now = hpts_slots_diff(hpts->p_cur_slot, wheel_slot); 734 } else { 735 /* The pacer is right on time, now == pacers start time */ 736 pacer_to_now = 0; 737 } 738 /* 739 * To get the number left we can insert into we simply 740 * subtract the distance the pacer has to run from how 741 * many slots there are. 742 */ 743 avail_on_wheel = NUM_OF_HPTSI_SLOTS - dis_to_travel; 744 /* 745 * Now how many of those we will eat due to the pacer's 746 * time (p_cur_slot) of start being behind the 747 * real time (wheel_slot)? 748 */ 749 if (avail_on_wheel <= pacer_to_now) { 750 /* 751 * Wheel wrap, we can't fit on the wheel, that 752 * is unusual the system must be way overloaded! 753 * Insert into the assured slot, and return special 754 * "0". 755 */ 756 counter_u64_add(combined_wheel_wrap, 1); 757 *target_slot = hpts->p_nxt_slot; 758 return (0); 759 } else { 760 /* 761 * We know how many slots are open 762 * on the wheel (the reverse of what 763 * is left to run. Take away the time 764 * the pacer started to now (wheel_slot) 765 * and that tells you how many slots are 766 * open that can be inserted into that won't 767 * be touched by the pacer until later. 768 */ 769 return (avail_on_wheel - pacer_to_now); 770 } 771 } 772 773 774 #ifdef INVARIANTS 775 static void 776 check_if_slot_would_be_wrong(struct tcp_hpts_entry *hpts, struct tcpcb *tp, 777 uint32_t hptsslot, int line) 778 { 779 /* 780 * Sanity checks for the pacer with invariants 781 * on insert. 782 */ 783 KASSERT(hptsslot < NUM_OF_HPTSI_SLOTS, 784 ("hpts:%p tp:%p slot:%d > max", hpts, tp, hptsslot)); 785 if ((hpts->p_hpts_active) && 786 (hpts->p_wheel_complete == 0)) { 787 /* 788 * If the pacer is processing a arc 789 * of the wheel, we need to make 790 * sure we are not inserting within 791 * that arc. 792 */ 793 int distance, yet_to_run; 794 795 distance = hpts_slots_diff(hpts->p_runningslot, hptsslot); 796 if (hpts->p_runningslot != hpts->p_cur_slot) 797 yet_to_run = hpts_slots_diff(hpts->p_runningslot, hpts->p_cur_slot); 798 else 799 yet_to_run = 0; /* processing last slot */ 800 KASSERT(yet_to_run <= distance, ("hpts:%p tp:%p slot:%d " 801 "distance:%d yet_to_run:%d rs:%d cs:%d", hpts, tp, 802 hptsslot, distance, yet_to_run, hpts->p_runningslot, 803 hpts->p_cur_slot)); 804 } 805 } 806 #endif 807 808 uint32_t 809 tcp_hpts_insert_diag(struct tcpcb *tp, uint32_t slot, int32_t line, struct hpts_diag *diag) 810 { 811 struct tcp_hpts_entry *hpts; 812 struct timeval tv; 813 uint32_t slot_on, wheel_cts, last_slot, need_new_to = 0; 814 int32_t wheel_slot, maxslots; 815 bool need_wakeup = false; 816 817 INP_WLOCK_ASSERT(tptoinpcb(tp)); 818 MPASS(!(tptoinpcb(tp)->inp_flags & INP_DROPPED)); 819 MPASS(!tcp_in_hpts(tp)); 820 821 /* 822 * We now return the next-slot the hpts will be on, beyond its 823 * current run (if up) or where it was when it stopped if it is 824 * sleeping. 825 */ 826 hpts = tcp_hpts_lock(tp); 827 microuptime(&tv); 828 if (diag) { 829 memset(diag, 0, sizeof(struct hpts_diag)); 830 diag->p_hpts_active = hpts->p_hpts_active; 831 diag->p_prev_slot = hpts->p_prev_slot; 832 diag->p_runningslot = hpts->p_runningslot; 833 diag->p_nxt_slot = hpts->p_nxt_slot; 834 diag->p_cur_slot = hpts->p_cur_slot; 835 diag->p_curtick = hpts->p_curtick; 836 diag->p_lasttick = hpts->p_lasttick; 837 diag->slot_req = slot; 838 diag->p_on_min_sleep = hpts->p_on_min_sleep; 839 diag->hpts_sleep_time = hpts->p_hpts_sleep_time; 840 } 841 if (slot == 0) { 842 /* Ok we need to set it on the hpts in the current slot */ 843 tp->t_hpts_request = 0; 844 if ((hpts->p_hpts_active == 0) || (hpts->p_wheel_complete)) { 845 /* 846 * A sleeping hpts we want in next slot to run 847 * note that in this state p_prev_slot == p_cur_slot 848 */ 849 tp->t_hpts_slot = hpts_slot(hpts->p_prev_slot, 1); 850 if ((hpts->p_on_min_sleep == 0) && 851 (hpts->p_hpts_active == 0)) 852 need_wakeup = true; 853 } else 854 tp->t_hpts_slot = hpts->p_runningslot; 855 if (__predict_true(tp->t_in_hpts != IHPTS_MOVING)) 856 tcp_hpts_insert_internal(tp, hpts); 857 if (need_wakeup) { 858 /* 859 * Activate the hpts if it is sleeping and its 860 * timeout is not 1. 861 */ 862 hpts->p_direct_wake = 1; 863 tcp_wakehpts(hpts); 864 } 865 slot_on = hpts->p_nxt_slot; 866 HPTS_UNLOCK(hpts); 867 868 return (slot_on); 869 } 870 /* Get the current time relative to the wheel */ 871 wheel_cts = tcp_tv_to_hptstick(&tv); 872 /* Map it onto the wheel */ 873 wheel_slot = tick_to_wheel(wheel_cts); 874 /* Now what's the max we can place it at? */ 875 maxslots = max_slots_available(hpts, wheel_slot, &last_slot); 876 if (diag) { 877 diag->wheel_slot = wheel_slot; 878 diag->maxslots = maxslots; 879 diag->wheel_cts = wheel_cts; 880 } 881 if (maxslots == 0) { 882 /* The pacer is in a wheel wrap behind, yikes! */ 883 if (slot > 1) { 884 /* 885 * Reduce by 1 to prevent a forever loop in 886 * case something else is wrong. Note this 887 * probably does not hurt because the pacer 888 * if its true is so far behind we will be 889 * > 1second late calling anyway. 890 */ 891 slot--; 892 } 893 tp->t_hpts_slot = last_slot; 894 tp->t_hpts_request = slot; 895 } else if (maxslots >= slot) { 896 /* It all fits on the wheel */ 897 tp->t_hpts_request = 0; 898 tp->t_hpts_slot = hpts_slot(wheel_slot, slot); 899 } else { 900 /* It does not fit */ 901 tp->t_hpts_request = slot - maxslots; 902 tp->t_hpts_slot = last_slot; 903 } 904 if (diag) { 905 diag->slot_remaining = tp->t_hpts_request; 906 diag->inp_hptsslot = tp->t_hpts_slot; 907 } 908 #ifdef INVARIANTS 909 check_if_slot_would_be_wrong(hpts, tp, tp->t_hpts_slot, line); 910 #endif 911 if (__predict_true(tp->t_in_hpts != IHPTS_MOVING)) 912 tcp_hpts_insert_internal(tp, hpts); 913 if ((hpts->p_hpts_active == 0) && 914 (tp->t_hpts_request == 0) && 915 (hpts->p_on_min_sleep == 0)) { 916 /* 917 * The hpts is sleeping and NOT on a minimum 918 * sleep time, we need to figure out where 919 * it will wake up at and if we need to reschedule 920 * its time-out. 921 */ 922 uint32_t have_slept, yet_to_sleep; 923 924 /* Now do we need to restart the hpts's timer? */ 925 have_slept = hpts_slots_diff(hpts->p_prev_slot, wheel_slot); 926 if (have_slept < hpts->p_hpts_sleep_time) 927 yet_to_sleep = hpts->p_hpts_sleep_time - have_slept; 928 else { 929 /* We are over-due */ 930 yet_to_sleep = 0; 931 need_wakeup = 1; 932 } 933 if (diag) { 934 diag->have_slept = have_slept; 935 diag->yet_to_sleep = yet_to_sleep; 936 } 937 if (yet_to_sleep && 938 (yet_to_sleep > slot)) { 939 /* 940 * We need to reschedule the hpts's time-out. 941 */ 942 hpts->p_hpts_sleep_time = slot; 943 need_new_to = slot * HPTS_TICKS_PER_SLOT; 944 } 945 } 946 /* 947 * Now how far is the hpts sleeping to? if active is 1, its 948 * up and ticking we do nothing, otherwise we may need to 949 * reschedule its callout if need_new_to is set from above. 950 */ 951 if (need_wakeup) { 952 hpts->p_direct_wake = 1; 953 tcp_wakehpts(hpts); 954 if (diag) { 955 diag->need_new_to = 0; 956 diag->co_ret = 0xffff0000; 957 } 958 } else if (need_new_to) { 959 int32_t co_ret; 960 struct timeval tv; 961 sbintime_t sb; 962 963 tv.tv_sec = 0; 964 tv.tv_usec = 0; 965 while (need_new_to > HPTS_USEC_IN_SEC) { 966 tv.tv_sec++; 967 need_new_to -= HPTS_USEC_IN_SEC; 968 } 969 tv.tv_usec = need_new_to; 970 sb = tvtosbt(tv); 971 co_ret = callout_reset_sbt_on(&hpts->co, sb, 0, 972 hpts_timeout_swi, hpts, hpts->p_cpu, 973 (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision))); 974 if (diag) { 975 diag->need_new_to = need_new_to; 976 diag->co_ret = co_ret; 977 } 978 } 979 slot_on = hpts->p_nxt_slot; 980 HPTS_UNLOCK(hpts); 981 982 return (slot_on); 983 } 984 985 static uint16_t 986 hpts_cpuid(struct tcpcb *tp, int *failed) 987 { 988 struct inpcb *inp = tptoinpcb(tp); 989 u_int cpuid; 990 #ifdef NUMA 991 struct hpts_domain_info *di; 992 #endif 993 994 *failed = 0; 995 if (tp->t_flags2 & TF2_HPTS_CPU_SET) { 996 return (tp->t_hpts_cpu); 997 } 998 /* 999 * If we are using the irq cpu set by LRO or 1000 * the driver then it overrides all other domains. 1001 */ 1002 if (tcp_use_irq_cpu) { 1003 if (tp->t_lro_cpu == HPTS_CPU_NONE) { 1004 *failed = 1; 1005 return (0); 1006 } 1007 return (tp->t_lro_cpu); 1008 } 1009 /* If one is set the other must be the same */ 1010 #ifdef RSS 1011 cpuid = rss_hash2cpuid(inp->inp_flowid, inp->inp_flowtype); 1012 if (cpuid == NETISR_CPUID_NONE) 1013 return (hpts_random_cpu()); 1014 else 1015 return (cpuid); 1016 #endif 1017 /* 1018 * We don't have a flowid -> cpuid mapping, so cheat and just map 1019 * unknown cpuids to curcpu. Not the best, but apparently better 1020 * than defaulting to swi 0. 1021 */ 1022 if (inp->inp_flowtype == M_HASHTYPE_NONE) { 1023 counter_u64_add(cpu_uses_random, 1); 1024 return (hpts_random_cpu()); 1025 } 1026 /* 1027 * Hash to a thread based on the flowid. If we are using numa, 1028 * then restrict the hash to the numa domain where the inp lives. 1029 */ 1030 1031 #ifdef NUMA 1032 if ((vm_ndomains == 1) || 1033 (inp->inp_numa_domain == M_NODOM)) { 1034 #endif 1035 cpuid = inp->inp_flowid % mp_ncpus; 1036 #ifdef NUMA 1037 } else { 1038 /* Hash into the cpu's that use that domain */ 1039 di = &hpts_domains[inp->inp_numa_domain]; 1040 cpuid = di->cpu[inp->inp_flowid % di->count]; 1041 } 1042 #endif 1043 counter_u64_add(cpu_uses_flowid, 1); 1044 return (cpuid); 1045 } 1046 1047 static void 1048 tcp_hpts_set_max_sleep(struct tcp_hpts_entry *hpts, int wrap_loop_cnt) 1049 { 1050 uint32_t t = 0, i; 1051 1052 if ((hpts->p_on_queue_cnt) && (wrap_loop_cnt < 2)) { 1053 /* 1054 * Find next slot that is occupied and use that to 1055 * be the sleep time. 1056 */ 1057 for (i = 0, t = hpts_slot(hpts->p_cur_slot, 1); i < NUM_OF_HPTSI_SLOTS; i++) { 1058 if (TAILQ_EMPTY(&hpts->p_hptss[t].head) == 0) { 1059 break; 1060 } 1061 t = (t + 1) % NUM_OF_HPTSI_SLOTS; 1062 } 1063 KASSERT((i != NUM_OF_HPTSI_SLOTS), ("Hpts:%p cnt:%d but none found", hpts, hpts->p_on_queue_cnt)); 1064 hpts->p_hpts_sleep_time = min((i + 1), hpts_sleep_max); 1065 } else { 1066 /* No one on the wheel sleep for all but 400 slots or sleep max */ 1067 hpts->p_hpts_sleep_time = hpts_sleep_max; 1068 } 1069 } 1070 1071 static int32_t 1072 tcp_hptsi(struct tcp_hpts_entry *hpts, int from_callout) 1073 { 1074 struct tcpcb *tp; 1075 struct timeval tv; 1076 int32_t slots_to_run, i, error; 1077 int32_t loop_cnt = 0; 1078 int32_t did_prefetch = 0; 1079 int32_t prefetch_tp = 0; 1080 int32_t wrap_loop_cnt = 0; 1081 int32_t slot_pos_of_endpoint = 0; 1082 int32_t orig_exit_slot; 1083 int8_t completed_measure = 0, seen_endpoint = 0; 1084 1085 HPTS_MTX_ASSERT(hpts); 1086 NET_EPOCH_ASSERT(); 1087 /* record previous info for any logging */ 1088 hpts->saved_lasttick = hpts->p_lasttick; 1089 hpts->saved_curtick = hpts->p_curtick; 1090 hpts->saved_curslot = hpts->p_cur_slot; 1091 hpts->saved_prev_slot = hpts->p_prev_slot; 1092 1093 hpts->p_lasttick = hpts->p_curtick; 1094 hpts->p_curtick = tcp_gethptstick(&tv); 1095 cts_last_ran[hpts->p_num] = tcp_tv_to_usectick(&tv); 1096 orig_exit_slot = hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick); 1097 if ((hpts->p_on_queue_cnt == 0) || 1098 (hpts->p_lasttick == hpts->p_curtick)) { 1099 /* 1100 * No time has yet passed, 1101 * or nothing to do. 1102 */ 1103 hpts->p_prev_slot = hpts->p_cur_slot; 1104 hpts->p_lasttick = hpts->p_curtick; 1105 goto no_run; 1106 } 1107 again: 1108 hpts->p_wheel_complete = 0; 1109 HPTS_MTX_ASSERT(hpts); 1110 slots_to_run = hpts_slots_diff(hpts->p_prev_slot, hpts->p_cur_slot); 1111 if (((hpts->p_curtick - hpts->p_lasttick) > 1112 ((NUM_OF_HPTSI_SLOTS-1) * HPTS_TICKS_PER_SLOT)) && 1113 (hpts->p_on_queue_cnt != 0)) { 1114 /* 1115 * Wheel wrap is occuring, basically we 1116 * are behind and the distance between 1117 * run's has spread so much it has exceeded 1118 * the time on the wheel (1.024 seconds). This 1119 * is ugly and should NOT be happening. We 1120 * need to run the entire wheel. We last processed 1121 * p_prev_slot, so that needs to be the last slot 1122 * we run. The next slot after that should be our 1123 * reserved first slot for new, and then starts 1124 * the running position. Now the problem is the 1125 * reserved "not to yet" place does not exist 1126 * and there may be inp's in there that need 1127 * running. We can merge those into the 1128 * first slot at the head. 1129 */ 1130 wrap_loop_cnt++; 1131 hpts->p_nxt_slot = hpts_slot(hpts->p_prev_slot, 1); 1132 hpts->p_runningslot = hpts_slot(hpts->p_prev_slot, 2); 1133 /* 1134 * Adjust p_cur_slot to be where we are starting from 1135 * hopefully we will catch up (fat chance if something 1136 * is broken this bad :( ) 1137 */ 1138 hpts->p_cur_slot = hpts->p_prev_slot; 1139 /* 1140 * The next slot has guys to run too, and that would 1141 * be where we would normally start, lets move them into 1142 * the next slot (p_prev_slot + 2) so that we will 1143 * run them, the extra 10usecs of late (by being 1144 * put behind) does not really matter in this situation. 1145 */ 1146 TAILQ_FOREACH(tp, &hpts->p_hptss[hpts->p_nxt_slot].head, 1147 t_hpts) { 1148 MPASS(tp->t_hpts_slot == hpts->p_nxt_slot); 1149 MPASS(tp->t_hpts_gencnt == 1150 hpts->p_hptss[hpts->p_nxt_slot].gencnt); 1151 MPASS(tp->t_in_hpts == IHPTS_ONQUEUE); 1152 1153 /* 1154 * Update gencnt and nextslot accordingly to match 1155 * the new location. This is safe since it takes both 1156 * the INP lock and the pacer mutex to change the 1157 * t_hptsslot and t_hpts_gencnt. 1158 */ 1159 tp->t_hpts_gencnt = 1160 hpts->p_hptss[hpts->p_runningslot].gencnt; 1161 tp->t_hpts_slot = hpts->p_runningslot; 1162 } 1163 TAILQ_CONCAT(&hpts->p_hptss[hpts->p_runningslot].head, 1164 &hpts->p_hptss[hpts->p_nxt_slot].head, t_hpts); 1165 hpts->p_hptss[hpts->p_runningslot].count += 1166 hpts->p_hptss[hpts->p_nxt_slot].count; 1167 hpts->p_hptss[hpts->p_nxt_slot].count = 0; 1168 hpts->p_hptss[hpts->p_nxt_slot].gencnt++; 1169 slots_to_run = NUM_OF_HPTSI_SLOTS - 1; 1170 counter_u64_add(wheel_wrap, 1); 1171 } else { 1172 /* 1173 * Nxt slot is always one after p_runningslot though 1174 * its not used usually unless we are doing wheel wrap. 1175 */ 1176 hpts->p_nxt_slot = hpts->p_prev_slot; 1177 hpts->p_runningslot = hpts_slot(hpts->p_prev_slot, 1); 1178 } 1179 if (hpts->p_on_queue_cnt == 0) { 1180 goto no_one; 1181 } 1182 for (i = 0; i < slots_to_run; i++) { 1183 struct tcpcb *tp, *ntp; 1184 TAILQ_HEAD(, tcpcb) head = TAILQ_HEAD_INITIALIZER(head); 1185 struct hptsh *hptsh; 1186 uint32_t runningslot; 1187 1188 /* 1189 * Calculate our delay, if there are no extra ticks there 1190 * was not any (i.e. if slots_to_run == 1, no delay). 1191 */ 1192 hpts->p_delayed_by = (slots_to_run - (i + 1)) * 1193 HPTS_TICKS_PER_SLOT; 1194 1195 runningslot = hpts->p_runningslot; 1196 hptsh = &hpts->p_hptss[runningslot]; 1197 TAILQ_SWAP(&head, &hptsh->head, tcpcb, t_hpts); 1198 hpts->p_on_queue_cnt -= hptsh->count; 1199 hptsh->count = 0; 1200 hptsh->gencnt++; 1201 1202 HPTS_UNLOCK(hpts); 1203 1204 TAILQ_FOREACH_SAFE(tp, &head, t_hpts, ntp) { 1205 struct inpcb *inp = tptoinpcb(tp); 1206 bool set_cpu; 1207 1208 if (ntp != NULL) { 1209 /* 1210 * If we have a next tcpcb, see if we can 1211 * prefetch it. Note this may seem 1212 * "risky" since we have no locks (other 1213 * than the previous inp) and there no 1214 * assurance that ntp was not pulled while 1215 * we were processing tp and freed. If this 1216 * occurred it could mean that either: 1217 * 1218 * a) Its NULL (which is fine we won't go 1219 * here) <or> b) Its valid (which is cool we 1220 * will prefetch it) <or> c) The inp got 1221 * freed back to the slab which was 1222 * reallocated. Then the piece of memory was 1223 * re-used and something else (not an 1224 * address) is in inp_ppcb. If that occurs 1225 * we don't crash, but take a TLB shootdown 1226 * performance hit (same as if it was NULL 1227 * and we tried to pre-fetch it). 1228 * 1229 * Considering that the likelyhood of <c> is 1230 * quite rare we will take a risk on doing 1231 * this. If performance drops after testing 1232 * we can always take this out. NB: the 1233 * kern_prefetch on amd64 actually has 1234 * protection against a bad address now via 1235 * the DMAP_() tests. This will prevent the 1236 * TLB hit, and instead if <c> occurs just 1237 * cause us to load cache with a useless 1238 * address (to us). 1239 * 1240 * XXXGL: this comment and the prefetch action 1241 * could be outdated after tp == inp change. 1242 */ 1243 kern_prefetch(ntp, &prefetch_tp); 1244 prefetch_tp = 1; 1245 } 1246 1247 /* For debugging */ 1248 if (seen_endpoint == 0) { 1249 seen_endpoint = 1; 1250 orig_exit_slot = slot_pos_of_endpoint = 1251 runningslot; 1252 } else if (completed_measure == 0) { 1253 /* Record the new position */ 1254 orig_exit_slot = runningslot; 1255 } 1256 1257 INP_WLOCK(inp); 1258 if ((tp->t_flags2 & TF2_HPTS_CPU_SET) == 0) { 1259 set_cpu = true; 1260 } else { 1261 set_cpu = false; 1262 } 1263 1264 if (__predict_false(tp->t_in_hpts == IHPTS_MOVING)) { 1265 if (tp->t_hpts_slot == -1) { 1266 tp->t_in_hpts = IHPTS_NONE; 1267 if (in_pcbrele_wlocked(inp) == false) 1268 INP_WUNLOCK(inp); 1269 } else { 1270 HPTS_LOCK(hpts); 1271 tcp_hpts_insert_internal(tp, hpts); 1272 HPTS_UNLOCK(hpts); 1273 INP_WUNLOCK(inp); 1274 } 1275 continue; 1276 } 1277 1278 MPASS(tp->t_in_hpts == IHPTS_ONQUEUE); 1279 MPASS(!(inp->inp_flags & INP_DROPPED)); 1280 KASSERT(runningslot == tp->t_hpts_slot, 1281 ("Hpts:%p inp:%p slot mis-aligned %u vs %u", 1282 hpts, inp, runningslot, tp->t_hpts_slot)); 1283 1284 if (tp->t_hpts_request) { 1285 /* 1286 * This guy is deferred out further in time 1287 * then our wheel had available on it. 1288 * Push him back on the wheel or run it 1289 * depending. 1290 */ 1291 uint32_t maxslots, last_slot, remaining_slots; 1292 1293 remaining_slots = slots_to_run - (i + 1); 1294 if (tp->t_hpts_request > remaining_slots) { 1295 HPTS_LOCK(hpts); 1296 /* 1297 * How far out can we go? 1298 */ 1299 maxslots = max_slots_available(hpts, 1300 hpts->p_cur_slot, &last_slot); 1301 if (maxslots >= tp->t_hpts_request) { 1302 /* We can place it finally to 1303 * be processed. */ 1304 tp->t_hpts_slot = hpts_slot( 1305 hpts->p_runningslot, 1306 tp->t_hpts_request); 1307 tp->t_hpts_request = 0; 1308 } else { 1309 /* Work off some more time */ 1310 tp->t_hpts_slot = last_slot; 1311 tp->t_hpts_request -= 1312 maxslots; 1313 } 1314 tcp_hpts_insert_internal(tp, hpts); 1315 HPTS_UNLOCK(hpts); 1316 INP_WUNLOCK(inp); 1317 continue; 1318 } 1319 tp->t_hpts_request = 0; 1320 /* Fall through we will so do it now */ 1321 } 1322 1323 tcp_hpts_release(tp); 1324 if (set_cpu) { 1325 /* 1326 * Setup so the next time we will move to 1327 * the right CPU. This should be a rare 1328 * event. It will sometimes happens when we 1329 * are the client side (usually not the 1330 * server). Somehow tcp_output() gets called 1331 * before the tcp_do_segment() sets the 1332 * intial state. This means the r_cpu and 1333 * r_hpts_cpu is 0. We get on the hpts, and 1334 * then tcp_input() gets called setting up 1335 * the r_cpu to the correct value. The hpts 1336 * goes off and sees the mis-match. We 1337 * simply correct it here and the CPU will 1338 * switch to the new hpts nextime the tcb 1339 * gets added to the hpts (not this one) 1340 * :-) 1341 */ 1342 tcp_set_hpts(tp); 1343 } 1344 CURVNET_SET(inp->inp_vnet); 1345 /* Lets do any logging that we might want to */ 1346 if (hpts_does_tp_logging && tcp_bblogging_on(tp)) { 1347 tcp_hpts_log(hpts, tp, &tv, slots_to_run, i, from_callout); 1348 } 1349 1350 if (tp->t_fb_ptr != NULL) { 1351 kern_prefetch(tp->t_fb_ptr, &did_prefetch); 1352 did_prefetch = 1; 1353 } 1354 /* 1355 * We set TF2_HPTS_CALLS before any possible output. 1356 * The contract with the transport is that if it cares 1357 * about hpts calling it should clear the flag. That 1358 * way next time it is called it will know it is hpts. 1359 * 1360 * We also only call tfb_do_queued_segments() <or> 1361 * tcp_output(). It is expected that if segments are 1362 * queued and come in that the final input mbuf will 1363 * cause a call to output if it is needed. 1364 */ 1365 tp->t_flags2 |= TF2_HPTS_CALLS; 1366 if ((tp->t_flags2 & TF2_SUPPORTS_MBUFQ) && 1367 !STAILQ_EMPTY(&tp->t_inqueue)) { 1368 error = (*tp->t_fb->tfb_do_queued_segments)(tp, 0); 1369 if (error) { 1370 /* The input killed the connection */ 1371 goto skip_pacing; 1372 } 1373 } 1374 error = tcp_output(tp); 1375 if (error < 0) 1376 goto skip_pacing; 1377 INP_WUNLOCK(inp); 1378 skip_pacing: 1379 CURVNET_RESTORE(); 1380 } 1381 if (seen_endpoint) { 1382 /* 1383 * We now have a accurate distance between 1384 * slot_pos_of_endpoint <-> orig_exit_slot 1385 * to tell us how late we were, orig_exit_slot 1386 * is where we calculated the end of our cycle to 1387 * be when we first entered. 1388 */ 1389 completed_measure = 1; 1390 } 1391 HPTS_LOCK(hpts); 1392 hpts->p_runningslot++; 1393 if (hpts->p_runningslot >= NUM_OF_HPTSI_SLOTS) { 1394 hpts->p_runningslot = 0; 1395 } 1396 } 1397 no_one: 1398 HPTS_MTX_ASSERT(hpts); 1399 hpts->p_delayed_by = 0; 1400 /* 1401 * Check to see if we took an excess amount of time and need to run 1402 * more ticks (if we did not hit eno-bufs). 1403 */ 1404 hpts->p_prev_slot = hpts->p_cur_slot; 1405 hpts->p_lasttick = hpts->p_curtick; 1406 if ((from_callout == 0) || (loop_cnt > max_pacer_loops)) { 1407 /* 1408 * Something is serious slow we have 1409 * looped through processing the wheel 1410 * and by the time we cleared the 1411 * needs to run max_pacer_loops time 1412 * we still needed to run. That means 1413 * the system is hopelessly behind and 1414 * can never catch up :( 1415 * 1416 * We will just lie to this thread 1417 * and let it thing p_curtick is 1418 * correct. When it next awakens 1419 * it will find itself further behind. 1420 */ 1421 if (from_callout) 1422 counter_u64_add(hpts_hopelessly_behind, 1); 1423 goto no_run; 1424 } 1425 hpts->p_curtick = tcp_gethptstick(&tv); 1426 hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick); 1427 if (seen_endpoint == 0) { 1428 /* We saw no endpoint but we may be looping */ 1429 orig_exit_slot = hpts->p_cur_slot; 1430 } 1431 if ((wrap_loop_cnt < 2) && 1432 (hpts->p_lasttick != hpts->p_curtick)) { 1433 counter_u64_add(hpts_loops, 1); 1434 loop_cnt++; 1435 goto again; 1436 } 1437 no_run: 1438 cts_last_ran[hpts->p_num] = tcp_tv_to_usectick(&tv); 1439 /* 1440 * Set flag to tell that we are done for 1441 * any slot input that happens during 1442 * input. 1443 */ 1444 hpts->p_wheel_complete = 1; 1445 /* 1446 * Now did we spend too long running input and need to run more ticks? 1447 * Note that if wrap_loop_cnt < 2 then we should have the conditions 1448 * in the KASSERT's true. But if the wheel is behind i.e. wrap_loop_cnt 1449 * is greater than 2, then the condtion most likely are *not* true. 1450 * Also if we are called not from the callout, we don't run the wheel 1451 * multiple times so the slots may not align either. 1452 */ 1453 KASSERT(((hpts->p_prev_slot == hpts->p_cur_slot) || 1454 (wrap_loop_cnt >= 2) || (from_callout == 0)), 1455 ("H:%p p_prev_slot:%u not equal to p_cur_slot:%u", hpts, 1456 hpts->p_prev_slot, hpts->p_cur_slot)); 1457 KASSERT(((hpts->p_lasttick == hpts->p_curtick) 1458 || (wrap_loop_cnt >= 2) || (from_callout == 0)), 1459 ("H:%p p_lasttick:%u not equal to p_curtick:%u", hpts, 1460 hpts->p_lasttick, hpts->p_curtick)); 1461 if (from_callout && (hpts->p_lasttick != hpts->p_curtick)) { 1462 hpts->p_curtick = tcp_gethptstick(&tv); 1463 counter_u64_add(hpts_loops, 1); 1464 hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick); 1465 goto again; 1466 } 1467 1468 if (from_callout){ 1469 tcp_hpts_set_max_sleep(hpts, wrap_loop_cnt); 1470 } 1471 if (seen_endpoint) 1472 return(hpts_slots_diff(slot_pos_of_endpoint, orig_exit_slot)); 1473 else 1474 return (0); 1475 } 1476 1477 void 1478 __tcp_set_hpts(struct tcpcb *tp, int32_t line) 1479 { 1480 struct tcp_hpts_entry *hpts; 1481 int failed; 1482 1483 INP_WLOCK_ASSERT(tptoinpcb(tp)); 1484 1485 hpts = tcp_hpts_lock(tp); 1486 if (tp->t_in_hpts == IHPTS_NONE && !(tp->t_flags2 & TF2_HPTS_CPU_SET)) { 1487 tp->t_hpts_cpu = hpts_cpuid(tp, &failed); 1488 if (failed == 0) 1489 tp->t_flags2 |= TF2_HPTS_CPU_SET; 1490 } 1491 mtx_unlock(&hpts->p_mtx); 1492 } 1493 1494 static void 1495 __tcp_run_hpts(struct tcp_hpts_entry *hpts) 1496 { 1497 int ticks_ran; 1498 1499 if (hpts->p_hpts_active) { 1500 /* Already active */ 1501 return; 1502 } 1503 if (mtx_trylock(&hpts->p_mtx) == 0) { 1504 /* Someone else got the lock */ 1505 return; 1506 } 1507 if (hpts->p_hpts_active) 1508 goto out_with_mtx; 1509 hpts->syscall_cnt++; 1510 counter_u64_add(hpts_direct_call, 1); 1511 hpts->p_hpts_active = 1; 1512 ticks_ran = tcp_hptsi(hpts, 0); 1513 /* We may want to adjust the sleep values here */ 1514 if (hpts->p_on_queue_cnt >= conn_cnt_thresh) { 1515 if (ticks_ran > ticks_indicate_less_sleep) { 1516 struct timeval tv; 1517 sbintime_t sb; 1518 1519 hpts->p_mysleep.tv_usec /= 2; 1520 if (hpts->p_mysleep.tv_usec < dynamic_min_sleep) 1521 hpts->p_mysleep.tv_usec = dynamic_min_sleep; 1522 /* Reschedule with new to value */ 1523 tcp_hpts_set_max_sleep(hpts, 0); 1524 tv.tv_usec = hpts->p_hpts_sleep_time * HPTS_TICKS_PER_SLOT; 1525 /* Validate its in the right ranges */ 1526 if (tv.tv_usec < hpts->p_mysleep.tv_usec) { 1527 hpts->overidden_sleep = tv.tv_usec; 1528 tv.tv_usec = hpts->p_mysleep.tv_usec; 1529 } else if (tv.tv_usec > dynamic_max_sleep) { 1530 /* Lets not let sleep get above this value */ 1531 hpts->overidden_sleep = tv.tv_usec; 1532 tv.tv_usec = dynamic_max_sleep; 1533 } 1534 /* 1535 * In this mode the timer is a backstop to 1536 * all the userret/lro_flushes so we use 1537 * the dynamic value and set the on_min_sleep 1538 * flag so we will not be awoken. 1539 */ 1540 sb = tvtosbt(tv); 1541 /* Store off to make visible the actual sleep time */ 1542 hpts->sleeping = tv.tv_usec; 1543 callout_reset_sbt_on(&hpts->co, sb, 0, 1544 hpts_timeout_swi, hpts, hpts->p_cpu, 1545 (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision))); 1546 } else if (ticks_ran < ticks_indicate_more_sleep) { 1547 /* For the further sleep, don't reschedule hpts */ 1548 hpts->p_mysleep.tv_usec *= 2; 1549 if (hpts->p_mysleep.tv_usec > dynamic_max_sleep) 1550 hpts->p_mysleep.tv_usec = dynamic_max_sleep; 1551 } 1552 hpts->p_on_min_sleep = 1; 1553 } 1554 hpts->p_hpts_active = 0; 1555 out_with_mtx: 1556 HPTS_MTX_ASSERT(hpts); 1557 mtx_unlock(&hpts->p_mtx); 1558 } 1559 1560 static struct tcp_hpts_entry * 1561 tcp_choose_hpts_to_run(void) 1562 { 1563 int i, oldest_idx, start, end; 1564 uint32_t cts, time_since_ran, calc; 1565 1566 cts = tcp_get_usecs(NULL); 1567 time_since_ran = 0; 1568 /* Default is all one group */ 1569 start = 0; 1570 end = tcp_pace.rp_num_hptss; 1571 /* 1572 * If we have more than one L3 group figure out which one 1573 * this CPU is in. 1574 */ 1575 if (tcp_pace.grp_cnt > 1) { 1576 for (i = 0; i < tcp_pace.grp_cnt; i++) { 1577 if (CPU_ISSET(curcpu, &tcp_pace.grps[i]->cg_mask)) { 1578 start = tcp_pace.grps[i]->cg_first; 1579 end = (tcp_pace.grps[i]->cg_last + 1); 1580 break; 1581 } 1582 } 1583 } 1584 oldest_idx = -1; 1585 for (i = start; i < end; i++) { 1586 if (TSTMP_GT(cts, cts_last_ran[i])) 1587 calc = cts - cts_last_ran[i]; 1588 else 1589 calc = 0; 1590 if (calc > time_since_ran) { 1591 oldest_idx = i; 1592 time_since_ran = calc; 1593 } 1594 } 1595 if (oldest_idx >= 0) 1596 return(tcp_pace.rp_ent[oldest_idx]); 1597 else 1598 return(tcp_pace.rp_ent[(curcpu % tcp_pace.rp_num_hptss)]); 1599 } 1600 1601 1602 void 1603 tcp_run_hpts(void) 1604 { 1605 static struct tcp_hpts_entry *hpts; 1606 struct epoch_tracker et; 1607 1608 NET_EPOCH_ENTER(et); 1609 hpts = tcp_choose_hpts_to_run(); 1610 __tcp_run_hpts(hpts); 1611 NET_EPOCH_EXIT(et); 1612 } 1613 1614 1615 static void 1616 tcp_hpts_thread(void *ctx) 1617 { 1618 struct tcp_hpts_entry *hpts; 1619 struct epoch_tracker et; 1620 struct timeval tv; 1621 sbintime_t sb; 1622 int ticks_ran; 1623 1624 hpts = (struct tcp_hpts_entry *)ctx; 1625 mtx_lock(&hpts->p_mtx); 1626 if (hpts->p_direct_wake) { 1627 /* Signaled by input or output with low occupancy count. */ 1628 callout_stop(&hpts->co); 1629 counter_u64_add(hpts_direct_awakening, 1); 1630 } else { 1631 /* Timed out, the normal case. */ 1632 counter_u64_add(hpts_wake_timeout, 1); 1633 if (callout_pending(&hpts->co) || 1634 !callout_active(&hpts->co)) { 1635 mtx_unlock(&hpts->p_mtx); 1636 return; 1637 } 1638 } 1639 callout_deactivate(&hpts->co); 1640 hpts->p_hpts_wake_scheduled = 0; 1641 NET_EPOCH_ENTER(et); 1642 if (hpts->p_hpts_active) { 1643 /* 1644 * We are active already. This means that a syscall 1645 * trap or LRO is running in behalf of hpts. In that case 1646 * we need to double our timeout since there seems to be 1647 * enough activity in the system that we don't need to 1648 * run as often (if we were not directly woken). 1649 */ 1650 if (hpts->p_direct_wake == 0) { 1651 counter_u64_add(hpts_back_tosleep, 1); 1652 if (hpts->p_on_queue_cnt >= conn_cnt_thresh) { 1653 hpts->p_mysleep.tv_usec *= 2; 1654 if (hpts->p_mysleep.tv_usec > dynamic_max_sleep) 1655 hpts->p_mysleep.tv_usec = dynamic_max_sleep; 1656 tv.tv_usec = hpts->p_mysleep.tv_usec; 1657 hpts->p_on_min_sleep = 1; 1658 } else { 1659 /* 1660 * Here we have low count on the wheel, but 1661 * somehow we still collided with one of the 1662 * connections. Lets go back to sleep for a 1663 * min sleep time, but clear the flag so we 1664 * can be awoken by insert. 1665 */ 1666 hpts->p_on_min_sleep = 0; 1667 tv.tv_usec = tcp_min_hptsi_time; 1668 } 1669 } else { 1670 /* 1671 * Directly woken most likely to reset the 1672 * callout time. 1673 */ 1674 tv.tv_sec = 0; 1675 tv.tv_usec = hpts->p_mysleep.tv_usec; 1676 } 1677 goto back_to_sleep; 1678 } 1679 hpts->sleeping = 0; 1680 hpts->p_hpts_active = 1; 1681 ticks_ran = tcp_hptsi(hpts, 1); 1682 tv.tv_sec = 0; 1683 tv.tv_usec = hpts->p_hpts_sleep_time * HPTS_TICKS_PER_SLOT; 1684 if (hpts->p_on_queue_cnt >= conn_cnt_thresh) { 1685 if(hpts->p_direct_wake == 0) { 1686 /* 1687 * Only adjust sleep time if we were 1688 * called from the callout i.e. direct_wake == 0. 1689 */ 1690 if (ticks_ran < ticks_indicate_more_sleep) { 1691 hpts->p_mysleep.tv_usec *= 2; 1692 if (hpts->p_mysleep.tv_usec > dynamic_max_sleep) 1693 hpts->p_mysleep.tv_usec = dynamic_max_sleep; 1694 } else if (ticks_ran > ticks_indicate_less_sleep) { 1695 hpts->p_mysleep.tv_usec /= 2; 1696 if (hpts->p_mysleep.tv_usec < dynamic_min_sleep) 1697 hpts->p_mysleep.tv_usec = dynamic_min_sleep; 1698 } 1699 } 1700 if (tv.tv_usec < hpts->p_mysleep.tv_usec) { 1701 hpts->overidden_sleep = tv.tv_usec; 1702 tv.tv_usec = hpts->p_mysleep.tv_usec; 1703 } else if (tv.tv_usec > dynamic_max_sleep) { 1704 /* Lets not let sleep get above this value */ 1705 hpts->overidden_sleep = tv.tv_usec; 1706 tv.tv_usec = dynamic_max_sleep; 1707 } 1708 /* 1709 * In this mode the timer is a backstop to 1710 * all the userret/lro_flushes so we use 1711 * the dynamic value and set the on_min_sleep 1712 * flag so we will not be awoken. 1713 */ 1714 hpts->p_on_min_sleep = 1; 1715 } else if (hpts->p_on_queue_cnt == 0) { 1716 /* 1717 * No one on the wheel, please wake us up 1718 * if you insert on the wheel. 1719 */ 1720 hpts->p_on_min_sleep = 0; 1721 hpts->overidden_sleep = 0; 1722 } else { 1723 /* 1724 * We hit here when we have a low number of 1725 * clients on the wheel (our else clause). 1726 * We may need to go on min sleep, if we set 1727 * the flag we will not be awoken if someone 1728 * is inserted ahead of us. Clearing the flag 1729 * means we can be awoken. This is "old mode" 1730 * where the timer is what runs hpts mainly. 1731 */ 1732 if (tv.tv_usec < tcp_min_hptsi_time) { 1733 /* 1734 * Yes on min sleep, which means 1735 * we cannot be awoken. 1736 */ 1737 hpts->overidden_sleep = tv.tv_usec; 1738 tv.tv_usec = tcp_min_hptsi_time; 1739 hpts->p_on_min_sleep = 1; 1740 } else { 1741 /* Clear the min sleep flag */ 1742 hpts->overidden_sleep = 0; 1743 hpts->p_on_min_sleep = 0; 1744 } 1745 } 1746 HPTS_MTX_ASSERT(hpts); 1747 hpts->p_hpts_active = 0; 1748 back_to_sleep: 1749 hpts->p_direct_wake = 0; 1750 sb = tvtosbt(tv); 1751 /* Store off to make visible the actual sleep time */ 1752 hpts->sleeping = tv.tv_usec; 1753 callout_reset_sbt_on(&hpts->co, sb, 0, 1754 hpts_timeout_swi, hpts, hpts->p_cpu, 1755 (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision))); 1756 NET_EPOCH_EXIT(et); 1757 mtx_unlock(&hpts->p_mtx); 1758 } 1759 1760 #undef timersub 1761 1762 static int32_t 1763 hpts_count_level(struct cpu_group *cg) 1764 { 1765 int32_t count_l3, i; 1766 1767 count_l3 = 0; 1768 if (cg->cg_level == CG_SHARE_L3) 1769 count_l3++; 1770 /* Walk all the children looking for L3 */ 1771 for (i = 0; i < cg->cg_children; i++) { 1772 count_l3 += hpts_count_level(&cg->cg_child[i]); 1773 } 1774 return (count_l3); 1775 } 1776 1777 static void 1778 hpts_gather_grps(struct cpu_group **grps, int32_t *at, int32_t max, struct cpu_group *cg) 1779 { 1780 int32_t idx, i; 1781 1782 idx = *at; 1783 if (cg->cg_level == CG_SHARE_L3) { 1784 grps[idx] = cg; 1785 idx++; 1786 if (idx == max) { 1787 *at = idx; 1788 return; 1789 } 1790 } 1791 *at = idx; 1792 /* Walk all the children looking for L3 */ 1793 for (i = 0; i < cg->cg_children; i++) { 1794 hpts_gather_grps(grps, at, max, &cg->cg_child[i]); 1795 } 1796 } 1797 1798 static void 1799 tcp_init_hptsi(void *st) 1800 { 1801 struct cpu_group *cpu_top; 1802 int32_t error __diagused; 1803 int32_t i, j, bound = 0, created = 0; 1804 size_t sz, asz; 1805 struct timeval tv; 1806 sbintime_t sb; 1807 struct tcp_hpts_entry *hpts; 1808 struct pcpu *pc; 1809 char unit[16]; 1810 uint32_t ncpus = mp_ncpus ? mp_ncpus : MAXCPU; 1811 int count, domain; 1812 1813 #ifdef SMP 1814 cpu_top = smp_topo(); 1815 #else 1816 cpu_top = NULL; 1817 #endif 1818 tcp_pace.rp_num_hptss = ncpus; 1819 hpts_hopelessly_behind = counter_u64_alloc(M_WAITOK); 1820 hpts_loops = counter_u64_alloc(M_WAITOK); 1821 back_tosleep = counter_u64_alloc(M_WAITOK); 1822 combined_wheel_wrap = counter_u64_alloc(M_WAITOK); 1823 wheel_wrap = counter_u64_alloc(M_WAITOK); 1824 hpts_wake_timeout = counter_u64_alloc(M_WAITOK); 1825 hpts_direct_awakening = counter_u64_alloc(M_WAITOK); 1826 hpts_back_tosleep = counter_u64_alloc(M_WAITOK); 1827 hpts_direct_call = counter_u64_alloc(M_WAITOK); 1828 cpu_uses_flowid = counter_u64_alloc(M_WAITOK); 1829 cpu_uses_random = counter_u64_alloc(M_WAITOK); 1830 1831 sz = (tcp_pace.rp_num_hptss * sizeof(struct tcp_hpts_entry *)); 1832 tcp_pace.rp_ent = malloc(sz, M_TCPHPTS, M_WAITOK | M_ZERO); 1833 sz = (sizeof(uint32_t) * tcp_pace.rp_num_hptss); 1834 cts_last_ran = malloc(sz, M_TCPHPTS, M_WAITOK); 1835 tcp_pace.grp_cnt = 0; 1836 if (cpu_top == NULL) { 1837 tcp_pace.grp_cnt = 1; 1838 } else { 1839 /* Find out how many cache level 3 domains we have */ 1840 count = 0; 1841 tcp_pace.grp_cnt = hpts_count_level(cpu_top); 1842 if (tcp_pace.grp_cnt == 0) { 1843 tcp_pace.grp_cnt = 1; 1844 } 1845 sz = (tcp_pace.grp_cnt * sizeof(struct cpu_group *)); 1846 tcp_pace.grps = malloc(sz, M_TCPHPTS, M_WAITOK); 1847 /* Now populate the groups */ 1848 if (tcp_pace.grp_cnt == 1) { 1849 /* 1850 * All we need is the top level all cpu's are in 1851 * the same cache so when we use grp[0]->cg_mask 1852 * with the cg_first <-> cg_last it will include 1853 * all cpu's in it. The level here is probably 1854 * zero which is ok. 1855 */ 1856 tcp_pace.grps[0] = cpu_top; 1857 } else { 1858 /* 1859 * Here we must find all the level three cache domains 1860 * and setup our pointers to them. 1861 */ 1862 count = 0; 1863 hpts_gather_grps(tcp_pace.grps, &count, tcp_pace.grp_cnt, cpu_top); 1864 } 1865 } 1866 asz = sizeof(struct hptsh) * NUM_OF_HPTSI_SLOTS; 1867 for (i = 0; i < tcp_pace.rp_num_hptss; i++) { 1868 tcp_pace.rp_ent[i] = malloc(sizeof(struct tcp_hpts_entry), 1869 M_TCPHPTS, M_WAITOK | M_ZERO); 1870 tcp_pace.rp_ent[i]->p_hptss = malloc(asz, M_TCPHPTS, M_WAITOK); 1871 hpts = tcp_pace.rp_ent[i]; 1872 /* 1873 * Init all the hpts structures that are not specifically 1874 * zero'd by the allocations. Also lets attach them to the 1875 * appropriate sysctl block as well. 1876 */ 1877 mtx_init(&hpts->p_mtx, "tcp_hpts_lck", 1878 "hpts", MTX_DEF | MTX_DUPOK); 1879 for (j = 0; j < NUM_OF_HPTSI_SLOTS; j++) { 1880 TAILQ_INIT(&hpts->p_hptss[j].head); 1881 hpts->p_hptss[j].count = 0; 1882 hpts->p_hptss[j].gencnt = 0; 1883 } 1884 sysctl_ctx_init(&hpts->hpts_ctx); 1885 sprintf(unit, "%d", i); 1886 hpts->hpts_root = SYSCTL_ADD_NODE(&hpts->hpts_ctx, 1887 SYSCTL_STATIC_CHILDREN(_net_inet_tcp_hpts), 1888 OID_AUTO, 1889 unit, 1890 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 1891 ""); 1892 SYSCTL_ADD_INT(&hpts->hpts_ctx, 1893 SYSCTL_CHILDREN(hpts->hpts_root), 1894 OID_AUTO, "out_qcnt", CTLFLAG_RD, 1895 &hpts->p_on_queue_cnt, 0, 1896 "Count TCB's awaiting output processing"); 1897 SYSCTL_ADD_U16(&hpts->hpts_ctx, 1898 SYSCTL_CHILDREN(hpts->hpts_root), 1899 OID_AUTO, "active", CTLFLAG_RD, 1900 &hpts->p_hpts_active, 0, 1901 "Is the hpts active"); 1902 SYSCTL_ADD_UINT(&hpts->hpts_ctx, 1903 SYSCTL_CHILDREN(hpts->hpts_root), 1904 OID_AUTO, "curslot", CTLFLAG_RD, 1905 &hpts->p_cur_slot, 0, 1906 "What the current running pacers goal"); 1907 SYSCTL_ADD_UINT(&hpts->hpts_ctx, 1908 SYSCTL_CHILDREN(hpts->hpts_root), 1909 OID_AUTO, "runtick", CTLFLAG_RD, 1910 &hpts->p_runningslot, 0, 1911 "What the running pacers current slot is"); 1912 SYSCTL_ADD_UINT(&hpts->hpts_ctx, 1913 SYSCTL_CHILDREN(hpts->hpts_root), 1914 OID_AUTO, "curtick", CTLFLAG_RD, 1915 &hpts->p_curtick, 0, 1916 "What the running pacers last tick mapped to the wheel was"); 1917 SYSCTL_ADD_UINT(&hpts->hpts_ctx, 1918 SYSCTL_CHILDREN(hpts->hpts_root), 1919 OID_AUTO, "lastran", CTLFLAG_RD, 1920 &cts_last_ran[i], 0, 1921 "The last usec tick that this hpts ran"); 1922 SYSCTL_ADD_LONG(&hpts->hpts_ctx, 1923 SYSCTL_CHILDREN(hpts->hpts_root), 1924 OID_AUTO, "cur_min_sleep", CTLFLAG_RD, 1925 &hpts->p_mysleep.tv_usec, 1926 "What the running pacers is using for p_mysleep.tv_usec"); 1927 SYSCTL_ADD_U64(&hpts->hpts_ctx, 1928 SYSCTL_CHILDREN(hpts->hpts_root), 1929 OID_AUTO, "now_sleeping", CTLFLAG_RD, 1930 &hpts->sleeping, 0, 1931 "What the running pacers is actually sleeping for"); 1932 SYSCTL_ADD_U64(&hpts->hpts_ctx, 1933 SYSCTL_CHILDREN(hpts->hpts_root), 1934 OID_AUTO, "syscall_cnt", CTLFLAG_RD, 1935 &hpts->syscall_cnt, 0, 1936 "How many times we had syscalls on this hpts"); 1937 1938 hpts->p_hpts_sleep_time = hpts_sleep_max; 1939 hpts->p_num = i; 1940 hpts->p_curtick = tcp_gethptstick(&tv); 1941 cts_last_ran[i] = tcp_tv_to_usectick(&tv); 1942 hpts->p_prev_slot = hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick); 1943 hpts->p_cpu = 0xffff; 1944 hpts->p_nxt_slot = hpts_slot(hpts->p_cur_slot, 1); 1945 callout_init(&hpts->co, 1); 1946 } 1947 /* Don't try to bind to NUMA domains if we don't have any */ 1948 if (vm_ndomains == 1 && tcp_bind_threads == 2) 1949 tcp_bind_threads = 0; 1950 1951 /* 1952 * Now lets start ithreads to handle the hptss. 1953 */ 1954 for (i = 0; i < tcp_pace.rp_num_hptss; i++) { 1955 hpts = tcp_pace.rp_ent[i]; 1956 hpts->p_cpu = i; 1957 1958 error = swi_add(&hpts->ie, "hpts", 1959 tcp_hpts_thread, (void *)hpts, 1960 SWI_NET, INTR_MPSAFE, &hpts->ie_cookie); 1961 KASSERT(error == 0, 1962 ("Can't add hpts:%p i:%d err:%d", 1963 hpts, i, error)); 1964 created++; 1965 hpts->p_mysleep.tv_sec = 0; 1966 hpts->p_mysleep.tv_usec = tcp_min_hptsi_time; 1967 if (tcp_bind_threads == 1) { 1968 if (intr_event_bind(hpts->ie, i) == 0) 1969 bound++; 1970 } else if (tcp_bind_threads == 2) { 1971 /* Find the group for this CPU (i) and bind into it */ 1972 for (j = 0; j < tcp_pace.grp_cnt; j++) { 1973 if (CPU_ISSET(i, &tcp_pace.grps[j]->cg_mask)) { 1974 if (intr_event_bind_ithread_cpuset(hpts->ie, 1975 &tcp_pace.grps[j]->cg_mask) == 0) { 1976 bound++; 1977 pc = pcpu_find(i); 1978 domain = pc->pc_domain; 1979 count = hpts_domains[domain].count; 1980 hpts_domains[domain].cpu[count] = i; 1981 hpts_domains[domain].count++; 1982 break; 1983 } 1984 } 1985 } 1986 } 1987 tv.tv_sec = 0; 1988 tv.tv_usec = hpts->p_hpts_sleep_time * HPTS_TICKS_PER_SLOT; 1989 hpts->sleeping = tv.tv_usec; 1990 sb = tvtosbt(tv); 1991 callout_reset_sbt_on(&hpts->co, sb, 0, 1992 hpts_timeout_swi, hpts, hpts->p_cpu, 1993 (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision))); 1994 } 1995 /* 1996 * If we somehow have an empty domain, fall back to choosing 1997 * among all htps threads. 1998 */ 1999 for (i = 0; i < vm_ndomains; i++) { 2000 if (hpts_domains[i].count == 0) { 2001 tcp_bind_threads = 0; 2002 break; 2003 } 2004 } 2005 printf("TCP Hpts created %d swi interrupt threads and bound %d to %s\n", 2006 created, bound, 2007 tcp_bind_threads == 2 ? "NUMA domains" : "cpus"); 2008 #ifdef INVARIANTS 2009 printf("HPTS is in INVARIANT mode!!\n"); 2010 #endif 2011 } 2012 2013 SYSINIT(tcphptsi, SI_SUB_SOFTINTR, SI_ORDER_ANY, tcp_init_hptsi, NULL); 2014 MODULE_VERSION(tcphpts, 1); 2015