1 /*- 2 * Copyright (c) 2016-2018 Netflix, Inc. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 1. Redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer. 9 * 2. Redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution. 12 * 13 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 14 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 16 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 17 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 18 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 19 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 20 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 21 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 22 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 23 * SUCH DAMAGE. 24 * 25 */ 26 #include <sys/cdefs.h> 27 __FBSDID("$FreeBSD$"); 28 29 #include "opt_inet.h" 30 #include "opt_inet6.h" 31 #include "opt_tcpdebug.h" 32 /** 33 * Some notes about usage. 34 * 35 * The tcp_hpts system is designed to provide a high precision timer 36 * system for tcp. Its main purpose is to provide a mechanism for 37 * pacing packets out onto the wire. It can be used in two ways 38 * by a given TCP stack (and those two methods can be used simultaneously). 39 * 40 * First, and probably the main thing its used by Rack and BBR, it can 41 * be used to call tcp_output() of a transport stack at some time in the future. 42 * The normal way this is done is that tcp_output() of the stack schedules 43 * itself to be called again by calling tcp_hpts_insert(tcpcb, slot). The 44 * slot is the time from now that the stack wants to be called but it 45 * must be converted to tcp_hpts's notion of slot. This is done with 46 * one of the macros HPTS_MS_TO_SLOTS or HPTS_USEC_TO_SLOTS. So a typical 47 * call from the tcp_output() routine might look like: 48 * 49 * tcp_hpts_insert(tp, HPTS_USEC_TO_SLOTS(550)); 50 * 51 * The above would schedule tcp_ouput() to be called in 550 useconds. 52 * Note that if using this mechanism the stack will want to add near 53 * its top a check to prevent unwanted calls (from user land or the 54 * arrival of incoming ack's). So it would add something like: 55 * 56 * if (inp->inp_in_hpts) 57 * return; 58 * 59 * to prevent output processing until the time alotted has gone by. 60 * Of course this is a bare bones example and the stack will probably 61 * have more consideration then just the above. 62 * 63 * Now the second function (actually two functions I guess :D) 64 * the tcp_hpts system provides is the ability to either abort 65 * a connection (later) or process input on a connection. 66 * Why would you want to do this? To keep processor locality 67 * and or not have to worry about untangling any recursive 68 * locks. The input function now is hooked to the new LRO 69 * system as well. 70 * 71 * In order to use the input redirection function the 72 * tcp stack must define an input function for 73 * tfb_do_queued_segments(). This function understands 74 * how to dequeue a array of packets that were input and 75 * knows how to call the correct processing routine. 76 * 77 * Locking in this is important as well so most likely the 78 * stack will need to define the tfb_do_segment_nounlock() 79 * splitting tfb_do_segment() into two parts. The main processing 80 * part that does not unlock the INP and returns a value of 1 or 0. 81 * It returns 0 if all is well and the lock was not released. It 82 * returns 1 if we had to destroy the TCB (a reset received etc). 83 * The remains of tfb_do_segment() then become just a simple call 84 * to the tfb_do_segment_nounlock() function and check the return 85 * code and possibly unlock. 86 * 87 * The stack must also set the flag on the INP that it supports this 88 * feature i.e. INP_SUPPORTS_MBUFQ. The LRO code recoginizes 89 * this flag as well and will queue packets when it is set. 90 * There are other flags as well INP_MBUF_QUEUE_READY and 91 * INP_DONT_SACK_QUEUE. The first flag tells the LRO code 92 * that we are in the pacer for output so there is no 93 * need to wake up the hpts system to get immediate 94 * input. The second tells the LRO code that its okay 95 * if a SACK arrives you can still defer input and let 96 * the current hpts timer run (this is usually set when 97 * a rack timer is up so we know SACK's are happening 98 * on the connection already and don't want to wakeup yet). 99 * 100 * There is a common functions within the rack_bbr_common code 101 * version i.e. ctf_do_queued_segments(). This function 102 * knows how to take the input queue of packets from 103 * tp->t_in_pkts and process them digging out 104 * all the arguments, calling any bpf tap and 105 * calling into tfb_do_segment_nounlock(). The common 106 * function (ctf_do_queued_segments()) requires that 107 * you have defined the tfb_do_segment_nounlock() as 108 * described above. 109 * 110 * The second feature of the input side of hpts is the 111 * dropping of a connection. This is due to the way that 112 * locking may have occured on the INP_WLOCK. So if 113 * a stack wants to drop a connection it calls: 114 * 115 * tcp_set_inp_to_drop(tp, ETIMEDOUT) 116 * 117 * To schedule the tcp_hpts system to call 118 * 119 * tcp_drop(tp, drop_reason) 120 * 121 * at a future point. This is quite handy to prevent locking 122 * issues when dropping connections. 123 * 124 */ 125 126 #include <sys/param.h> 127 #include <sys/bus.h> 128 #include <sys/interrupt.h> 129 #include <sys/module.h> 130 #include <sys/kernel.h> 131 #include <sys/hhook.h> 132 #include <sys/malloc.h> 133 #include <sys/mbuf.h> 134 #include <sys/proc.h> /* for proc0 declaration */ 135 #include <sys/socket.h> 136 #include <sys/socketvar.h> 137 #include <sys/sysctl.h> 138 #include <sys/systm.h> 139 #include <sys/refcount.h> 140 #include <sys/sched.h> 141 #include <sys/queue.h> 142 #include <sys/smp.h> 143 #include <sys/counter.h> 144 #include <sys/time.h> 145 #include <sys/kthread.h> 146 #include <sys/kern_prefetch.h> 147 148 #include <vm/uma.h> 149 #include <vm/vm.h> 150 151 #include <net/route.h> 152 #include <net/vnet.h> 153 154 #define TCPSTATES /* for logging */ 155 156 #include <netinet/in.h> 157 #include <netinet/in_kdtrace.h> 158 #include <netinet/in_pcb.h> 159 #include <netinet/ip.h> 160 #include <netinet/ip_icmp.h> /* required for icmp_var.h */ 161 #include <netinet/icmp_var.h> /* for ICMP_BANDLIM */ 162 #include <netinet/ip_var.h> 163 #include <netinet/ip6.h> 164 #include <netinet6/in6_pcb.h> 165 #include <netinet6/ip6_var.h> 166 #include <netinet/tcp.h> 167 #include <netinet/tcp_fsm.h> 168 #include <netinet/tcp_seq.h> 169 #include <netinet/tcp_timer.h> 170 #include <netinet/tcp_var.h> 171 #include <netinet/tcpip.h> 172 #include <netinet/cc/cc.h> 173 #include <netinet/tcp_hpts.h> 174 #include <netinet/tcp_log_buf.h> 175 176 #ifdef tcpdebug 177 #include <netinet/tcp_debug.h> 178 #endif /* tcpdebug */ 179 #ifdef tcp_offload 180 #include <netinet/tcp_offload.h> 181 #endif 182 183 #include "opt_rss.h" 184 185 MALLOC_DEFINE(M_TCPHPTS, "tcp_hpts", "TCP hpts"); 186 #ifdef RSS 187 static int tcp_bind_threads = 1; 188 #else 189 static int tcp_bind_threads = 2; 190 #endif 191 TUNABLE_INT("net.inet.tcp.bind_hptss", &tcp_bind_threads); 192 193 static struct tcp_hptsi tcp_pace; 194 static int hpts_does_tp_logging = 0; 195 196 static void tcp_wakehpts(struct tcp_hpts_entry *p); 197 static void tcp_wakeinput(struct tcp_hpts_entry *p); 198 static void tcp_input_data(struct tcp_hpts_entry *hpts, struct timeval *tv); 199 static void tcp_hptsi(struct tcp_hpts_entry *hpts); 200 static void tcp_hpts_thread(void *ctx); 201 static void tcp_init_hptsi(void *st); 202 203 int32_t tcp_min_hptsi_time = DEFAULT_MIN_SLEEP; 204 static int32_t tcp_hpts_callout_skip_swi = 0; 205 206 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, hpts, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 207 "TCP Hpts controls"); 208 209 #define timersub(tvp, uvp, vvp) \ 210 do { \ 211 (vvp)->tv_sec = (tvp)->tv_sec - (uvp)->tv_sec; \ 212 (vvp)->tv_usec = (tvp)->tv_usec - (uvp)->tv_usec; \ 213 if ((vvp)->tv_usec < 0) { \ 214 (vvp)->tv_sec--; \ 215 (vvp)->tv_usec += 1000000; \ 216 } \ 217 } while (0) 218 219 static int32_t tcp_hpts_precision = 120; 220 221 struct hpts_domain_info { 222 int count; 223 int cpu[MAXCPU]; 224 }; 225 226 struct hpts_domain_info hpts_domains[MAXMEMDOM]; 227 228 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, precision, CTLFLAG_RW, 229 &tcp_hpts_precision, 120, 230 "Value for PRE() precision of callout"); 231 232 counter_u64_t hpts_hopelessly_behind; 233 234 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts, OID_AUTO, hopeless, CTLFLAG_RD, 235 &hpts_hopelessly_behind, 236 "Number of times hpts could not catch up and was behind hopelessly"); 237 238 counter_u64_t hpts_loops; 239 240 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts, OID_AUTO, loops, CTLFLAG_RD, 241 &hpts_loops, "Number of times hpts had to loop to catch up"); 242 243 244 counter_u64_t back_tosleep; 245 246 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts, OID_AUTO, no_tcbsfound, CTLFLAG_RD, 247 &back_tosleep, "Number of times hpts found no tcbs"); 248 249 counter_u64_t combined_wheel_wrap; 250 251 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts, OID_AUTO, comb_wheel_wrap, CTLFLAG_RD, 252 &combined_wheel_wrap, "Number of times the wheel lagged enough to have an insert see wrap"); 253 254 counter_u64_t wheel_wrap; 255 256 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts, OID_AUTO, wheel_wrap, CTLFLAG_RD, 257 &wheel_wrap, "Number of times the wheel lagged enough to have an insert see wrap"); 258 259 static int32_t out_ts_percision = 0; 260 261 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, out_tspercision, CTLFLAG_RW, 262 &out_ts_percision, 0, 263 "Do we use a percise timestamp for every output cts"); 264 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, logging, CTLFLAG_RW, 265 &hpts_does_tp_logging, 0, 266 "Do we add to any tp that has logging on pacer logs"); 267 268 static int32_t max_pacer_loops = 10; 269 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, loopmax, CTLFLAG_RW, 270 &max_pacer_loops, 10, 271 "What is the maximum number of times the pacer will loop trying to catch up"); 272 273 #define HPTS_MAX_SLEEP_ALLOWED (NUM_OF_HPTSI_SLOTS/2) 274 275 static uint32_t hpts_sleep_max = HPTS_MAX_SLEEP_ALLOWED; 276 277 278 static int 279 sysctl_net_inet_tcp_hpts_max_sleep(SYSCTL_HANDLER_ARGS) 280 { 281 int error; 282 uint32_t new; 283 284 new = hpts_sleep_max; 285 error = sysctl_handle_int(oidp, &new, 0, req); 286 if (error == 0 && req->newptr) { 287 if ((new < (NUM_OF_HPTSI_SLOTS / 4)) || 288 (new > HPTS_MAX_SLEEP_ALLOWED)) 289 error = EINVAL; 290 else 291 hpts_sleep_max = new; 292 } 293 return (error); 294 } 295 296 SYSCTL_PROC(_net_inet_tcp_hpts, OID_AUTO, maxsleep, 297 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 298 &hpts_sleep_max, 0, 299 &sysctl_net_inet_tcp_hpts_max_sleep, "IU", 300 "Maximum time hpts will sleep"); 301 302 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, minsleep, CTLFLAG_RW, 303 &tcp_min_hptsi_time, 0, 304 "The minimum time the hpts must sleep before processing more slots"); 305 306 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, skip_swi, CTLFLAG_RW, 307 &tcp_hpts_callout_skip_swi, 0, 308 "Do we have the callout call directly to the hpts?"); 309 310 static void 311 tcp_hpts_log(struct tcp_hpts_entry *hpts, struct tcpcb *tp, struct timeval *tv, 312 int ticks_to_run, int idx) 313 { 314 union tcp_log_stackspecific log; 315 316 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 317 log.u_bbr.flex1 = hpts->p_nxt_slot; 318 log.u_bbr.flex2 = hpts->p_cur_slot; 319 log.u_bbr.flex3 = hpts->p_prev_slot; 320 log.u_bbr.flex4 = idx; 321 log.u_bbr.flex5 = hpts->p_curtick; 322 log.u_bbr.flex6 = hpts->p_on_queue_cnt; 323 log.u_bbr.use_lt_bw = 1; 324 log.u_bbr.inflight = ticks_to_run; 325 log.u_bbr.applimited = hpts->overidden_sleep; 326 log.u_bbr.delivered = hpts->saved_curtick; 327 log.u_bbr.timeStamp = tcp_tv_to_usectick(tv); 328 log.u_bbr.epoch = hpts->saved_curslot; 329 log.u_bbr.lt_epoch = hpts->saved_prev_slot; 330 log.u_bbr.pkts_out = hpts->p_delayed_by; 331 log.u_bbr.lost = hpts->p_hpts_sleep_time; 332 log.u_bbr.cur_del_rate = hpts->p_runningtick; 333 TCP_LOG_EVENTP(tp, NULL, 334 &tp->t_inpcb->inp_socket->so_rcv, 335 &tp->t_inpcb->inp_socket->so_snd, 336 BBR_LOG_HPTSDIAG, 0, 337 0, &log, false, tv); 338 } 339 340 static void 341 hpts_timeout_swi(void *arg) 342 { 343 struct tcp_hpts_entry *hpts; 344 345 hpts = (struct tcp_hpts_entry *)arg; 346 swi_sched(hpts->ie_cookie, 0); 347 } 348 349 static void 350 hpts_timeout_dir(void *arg) 351 { 352 tcp_hpts_thread(arg); 353 } 354 355 static inline void 356 hpts_sane_pace_remove(struct tcp_hpts_entry *hpts, struct inpcb *inp, struct hptsh *head, int clear) 357 { 358 #ifdef INVARIANTS 359 if (mtx_owned(&hpts->p_mtx) == 0) { 360 /* We don't own the mutex? */ 361 panic("%s: hpts:%p inp:%p no hpts mutex", __FUNCTION__, hpts, inp); 362 } 363 if (hpts->p_cpu != inp->inp_hpts_cpu) { 364 /* It is not the right cpu/mutex? */ 365 panic("%s: hpts:%p inp:%p incorrect CPU", __FUNCTION__, hpts, inp); 366 } 367 if (inp->inp_in_hpts == 0) { 368 /* We are not on the hpts? */ 369 panic("%s: hpts:%p inp:%p not on the hpts?", __FUNCTION__, hpts, inp); 370 } 371 #endif 372 TAILQ_REMOVE(head, inp, inp_hpts); 373 hpts->p_on_queue_cnt--; 374 if (hpts->p_on_queue_cnt < 0) { 375 /* Count should not go negative .. */ 376 #ifdef INVARIANTS 377 panic("Hpts goes negative inp:%p hpts:%p", 378 inp, hpts); 379 #endif 380 hpts->p_on_queue_cnt = 0; 381 } 382 if (clear) { 383 inp->inp_hpts_request = 0; 384 inp->inp_in_hpts = 0; 385 } 386 } 387 388 static inline void 389 hpts_sane_pace_insert(struct tcp_hpts_entry *hpts, struct inpcb *inp, struct hptsh *head, int line, int noref) 390 { 391 #ifdef INVARIANTS 392 if (mtx_owned(&hpts->p_mtx) == 0) { 393 /* We don't own the mutex? */ 394 panic("%s: hpts:%p inp:%p no hpts mutex", __FUNCTION__, hpts, inp); 395 } 396 if (hpts->p_cpu != inp->inp_hpts_cpu) { 397 /* It is not the right cpu/mutex? */ 398 panic("%s: hpts:%p inp:%p incorrect CPU", __FUNCTION__, hpts, inp); 399 } 400 if ((noref == 0) && (inp->inp_in_hpts == 1)) { 401 /* We are already on the hpts? */ 402 panic("%s: hpts:%p inp:%p already on the hpts?", __FUNCTION__, hpts, inp); 403 } 404 #endif 405 TAILQ_INSERT_TAIL(head, inp, inp_hpts); 406 inp->inp_in_hpts = 1; 407 hpts->p_on_queue_cnt++; 408 if (noref == 0) { 409 in_pcbref(inp); 410 } 411 } 412 413 static inline void 414 hpts_sane_input_remove(struct tcp_hpts_entry *hpts, struct inpcb *inp, int clear) 415 { 416 #ifdef INVARIANTS 417 if (mtx_owned(&hpts->p_mtx) == 0) { 418 /* We don't own the mutex? */ 419 panic("%s: hpts:%p inp:%p no hpts mutex", __FUNCTION__, hpts, inp); 420 } 421 if (hpts->p_cpu != inp->inp_input_cpu) { 422 /* It is not the right cpu/mutex? */ 423 panic("%s: hpts:%p inp:%p incorrect CPU", __FUNCTION__, hpts, inp); 424 } 425 if (inp->inp_in_input == 0) { 426 /* We are not on the input hpts? */ 427 panic("%s: hpts:%p inp:%p not on the input hpts?", __FUNCTION__, hpts, inp); 428 } 429 #endif 430 TAILQ_REMOVE(&hpts->p_input, inp, inp_input); 431 hpts->p_on_inqueue_cnt--; 432 if (hpts->p_on_inqueue_cnt < 0) { 433 #ifdef INVARIANTS 434 panic("Hpts in goes negative inp:%p hpts:%p", 435 inp, hpts); 436 #endif 437 hpts->p_on_inqueue_cnt = 0; 438 } 439 #ifdef INVARIANTS 440 if (TAILQ_EMPTY(&hpts->p_input) && 441 (hpts->p_on_inqueue_cnt != 0)) { 442 /* We should not be empty with a queue count */ 443 panic("%s hpts:%p in_hpts input empty but cnt:%d", 444 __FUNCTION__, hpts, hpts->p_on_inqueue_cnt); 445 } 446 #endif 447 if (clear) 448 inp->inp_in_input = 0; 449 } 450 451 static inline void 452 hpts_sane_input_insert(struct tcp_hpts_entry *hpts, struct inpcb *inp, int line) 453 { 454 #ifdef INVARIANTS 455 if (mtx_owned(&hpts->p_mtx) == 0) { 456 /* We don't own the mutex? */ 457 panic("%s: hpts:%p inp:%p no hpts mutex", __FUNCTION__, hpts, inp); 458 } 459 if (hpts->p_cpu != inp->inp_input_cpu) { 460 /* It is not the right cpu/mutex? */ 461 panic("%s: hpts:%p inp:%p incorrect CPU", __FUNCTION__, hpts, inp); 462 } 463 if (inp->inp_in_input == 1) { 464 /* We are already on the input hpts? */ 465 panic("%s: hpts:%p inp:%p already on the input hpts?", __FUNCTION__, hpts, inp); 466 } 467 #endif 468 TAILQ_INSERT_TAIL(&hpts->p_input, inp, inp_input); 469 inp->inp_in_input = 1; 470 hpts->p_on_inqueue_cnt++; 471 in_pcbref(inp); 472 } 473 474 static void 475 tcp_wakehpts(struct tcp_hpts_entry *hpts) 476 { 477 HPTS_MTX_ASSERT(hpts); 478 if (hpts->p_hpts_wake_scheduled == 0) { 479 hpts->p_hpts_wake_scheduled = 1; 480 swi_sched(hpts->ie_cookie, 0); 481 } 482 } 483 484 static void 485 tcp_wakeinput(struct tcp_hpts_entry *hpts) 486 { 487 HPTS_MTX_ASSERT(hpts); 488 if (hpts->p_hpts_wake_scheduled == 0) { 489 hpts->p_hpts_wake_scheduled = 1; 490 swi_sched(hpts->ie_cookie, 0); 491 } 492 } 493 494 struct tcp_hpts_entry * 495 tcp_cur_hpts(struct inpcb *inp) 496 { 497 int32_t hpts_num; 498 struct tcp_hpts_entry *hpts; 499 500 hpts_num = inp->inp_hpts_cpu; 501 hpts = tcp_pace.rp_ent[hpts_num]; 502 return (hpts); 503 } 504 505 struct tcp_hpts_entry * 506 tcp_hpts_lock(struct inpcb *inp) 507 { 508 struct tcp_hpts_entry *hpts; 509 int32_t hpts_num; 510 511 again: 512 hpts_num = inp->inp_hpts_cpu; 513 hpts = tcp_pace.rp_ent[hpts_num]; 514 #ifdef INVARIANTS 515 if (mtx_owned(&hpts->p_mtx)) { 516 panic("Hpts:%p owns mtx prior-to lock line:%d", 517 hpts, __LINE__); 518 } 519 #endif 520 mtx_lock(&hpts->p_mtx); 521 if (hpts_num != inp->inp_hpts_cpu) { 522 mtx_unlock(&hpts->p_mtx); 523 goto again; 524 } 525 return (hpts); 526 } 527 528 struct tcp_hpts_entry * 529 tcp_input_lock(struct inpcb *inp) 530 { 531 struct tcp_hpts_entry *hpts; 532 int32_t hpts_num; 533 534 again: 535 hpts_num = inp->inp_input_cpu; 536 hpts = tcp_pace.rp_ent[hpts_num]; 537 #ifdef INVARIANTS 538 if (mtx_owned(&hpts->p_mtx)) { 539 panic("Hpts:%p owns mtx prior-to lock line:%d", 540 hpts, __LINE__); 541 } 542 #endif 543 mtx_lock(&hpts->p_mtx); 544 if (hpts_num != inp->inp_input_cpu) { 545 mtx_unlock(&hpts->p_mtx); 546 goto again; 547 } 548 return (hpts); 549 } 550 551 static void 552 tcp_remove_hpts_ref(struct inpcb *inp, struct tcp_hpts_entry *hpts, int line) 553 { 554 int32_t add_freed; 555 556 if (inp->inp_flags2 & INP_FREED) { 557 /* 558 * Need to play a special trick so that in_pcbrele_wlocked 559 * does not return 1 when it really should have returned 0. 560 */ 561 add_freed = 1; 562 inp->inp_flags2 &= ~INP_FREED; 563 } else { 564 add_freed = 0; 565 } 566 #ifndef INP_REF_DEBUG 567 if (in_pcbrele_wlocked(inp)) { 568 /* 569 * This should not happen. We have the inpcb referred to by 570 * the main socket (why we are called) and the hpts. It 571 * should always return 0. 572 */ 573 panic("inpcb:%p release ret 1", 574 inp); 575 } 576 #else 577 if (__in_pcbrele_wlocked(inp, line)) { 578 /* 579 * This should not happen. We have the inpcb referred to by 580 * the main socket (why we are called) and the hpts. It 581 * should always return 0. 582 */ 583 panic("inpcb:%p release ret 1", 584 inp); 585 } 586 #endif 587 if (add_freed) { 588 inp->inp_flags2 |= INP_FREED; 589 } 590 } 591 592 static void 593 tcp_hpts_remove_locked_output(struct tcp_hpts_entry *hpts, struct inpcb *inp, int32_t flags, int32_t line) 594 { 595 if (inp->inp_in_hpts) { 596 hpts_sane_pace_remove(hpts, inp, &hpts->p_hptss[inp->inp_hptsslot], 1); 597 tcp_remove_hpts_ref(inp, hpts, line); 598 } 599 } 600 601 static void 602 tcp_hpts_remove_locked_input(struct tcp_hpts_entry *hpts, struct inpcb *inp, int32_t flags, int32_t line) 603 { 604 HPTS_MTX_ASSERT(hpts); 605 if (inp->inp_in_input) { 606 hpts_sane_input_remove(hpts, inp, 1); 607 tcp_remove_hpts_ref(inp, hpts, line); 608 } 609 } 610 611 /* 612 * Called normally with the INP_LOCKED but it 613 * does not matter, the hpts lock is the key 614 * but the lock order allows us to hold the 615 * INP lock and then get the hpts lock. 616 * 617 * Valid values in the flags are 618 * HPTS_REMOVE_OUTPUT - remove from the output of the hpts. 619 * HPTS_REMOVE_INPUT - remove from the input of the hpts. 620 * Note that you can use one or both values together 621 * and get two actions. 622 */ 623 void 624 __tcp_hpts_remove(struct inpcb *inp, int32_t flags, int32_t line) 625 { 626 struct tcp_hpts_entry *hpts; 627 628 INP_WLOCK_ASSERT(inp); 629 if (flags & HPTS_REMOVE_OUTPUT) { 630 hpts = tcp_hpts_lock(inp); 631 tcp_hpts_remove_locked_output(hpts, inp, flags, line); 632 mtx_unlock(&hpts->p_mtx); 633 } 634 if (flags & HPTS_REMOVE_INPUT) { 635 hpts = tcp_input_lock(inp); 636 tcp_hpts_remove_locked_input(hpts, inp, flags, line); 637 mtx_unlock(&hpts->p_mtx); 638 } 639 } 640 641 static inline int 642 hpts_tick(uint32_t wheel_tick, uint32_t plus) 643 { 644 /* 645 * Given a slot on the wheel, what slot 646 * is that plus ticks out? 647 */ 648 KASSERT(wheel_tick < NUM_OF_HPTSI_SLOTS, ("Invalid tick %u not on wheel", wheel_tick)); 649 return ((wheel_tick + plus) % NUM_OF_HPTSI_SLOTS); 650 } 651 652 static inline int 653 tick_to_wheel(uint32_t cts_in_wticks) 654 { 655 /* 656 * Given a timestamp in wheel ticks (10usec inc's) 657 * map it to our limited space wheel. 658 */ 659 return (cts_in_wticks % NUM_OF_HPTSI_SLOTS); 660 } 661 662 static inline int 663 hpts_ticks_diff(int prev_tick, int tick_now) 664 { 665 /* 666 * Given two ticks that are someplace 667 * on our wheel. How far are they apart? 668 */ 669 if (tick_now > prev_tick) 670 return (tick_now - prev_tick); 671 else if (tick_now == prev_tick) 672 /* 673 * Special case, same means we can go all of our 674 * wheel less one slot. 675 */ 676 return (NUM_OF_HPTSI_SLOTS - 1); 677 else 678 return ((NUM_OF_HPTSI_SLOTS - prev_tick) + tick_now); 679 } 680 681 /* 682 * Given a tick on the wheel that is the current time 683 * mapped to the wheel (wheel_tick), what is the maximum 684 * distance forward that can be obtained without 685 * wrapping past either prev_tick or running_tick 686 * depending on the htps state? Also if passed 687 * a uint32_t *, fill it with the tick location. 688 * 689 * Note if you do not give this function the current 690 * time (that you think it is) mapped to the wheel 691 * then the results will not be what you expect and 692 * could lead to invalid inserts. 693 */ 694 static inline int32_t 695 max_ticks_available(struct tcp_hpts_entry *hpts, uint32_t wheel_tick, uint32_t *target_tick) 696 { 697 uint32_t dis_to_travel, end_tick, pacer_to_now, avail_on_wheel; 698 699 if ((hpts->p_hpts_active == 1) && 700 (hpts->p_wheel_complete == 0)) { 701 end_tick = hpts->p_runningtick; 702 /* Back up one tick */ 703 if (end_tick == 0) 704 end_tick = NUM_OF_HPTSI_SLOTS - 1; 705 else 706 end_tick--; 707 if (target_tick) 708 *target_tick = end_tick; 709 } else { 710 /* 711 * For the case where we are 712 * not active, or we have 713 * completed the pass over 714 * the wheel, we can use the 715 * prev tick and subtract one from it. This puts us 716 * as far out as possible on the wheel. 717 */ 718 end_tick = hpts->p_prev_slot; 719 if (end_tick == 0) 720 end_tick = NUM_OF_HPTSI_SLOTS - 1; 721 else 722 end_tick--; 723 if (target_tick) 724 *target_tick = end_tick; 725 /* 726 * Now we have close to the full wheel left minus the 727 * time it has been since the pacer went to sleep. Note 728 * that wheel_tick, passed in, should be the current time 729 * from the perspective of the caller, mapped to the wheel. 730 */ 731 if (hpts->p_prev_slot != wheel_tick) 732 dis_to_travel = hpts_ticks_diff(hpts->p_prev_slot, wheel_tick); 733 else 734 dis_to_travel = 1; 735 /* 736 * dis_to_travel in this case is the space from when the 737 * pacer stopped (p_prev_slot) and where our wheel_tick 738 * is now. To know how many slots we can put it in we 739 * subtract from the wheel size. We would not want 740 * to place something after p_prev_slot or it will 741 * get ran too soon. 742 */ 743 return (NUM_OF_HPTSI_SLOTS - dis_to_travel); 744 } 745 /* 746 * So how many slots are open between p_runningtick -> p_cur_slot 747 * that is what is currently un-available for insertion. Special 748 * case when we are at the last slot, this gets 1, so that 749 * the answer to how many slots are available is all but 1. 750 */ 751 if (hpts->p_runningtick == hpts->p_cur_slot) 752 dis_to_travel = 1; 753 else 754 dis_to_travel = hpts_ticks_diff(hpts->p_runningtick, hpts->p_cur_slot); 755 /* 756 * How long has the pacer been running? 757 */ 758 if (hpts->p_cur_slot != wheel_tick) { 759 /* The pacer is a bit late */ 760 pacer_to_now = hpts_ticks_diff(hpts->p_cur_slot, wheel_tick); 761 } else { 762 /* The pacer is right on time, now == pacers start time */ 763 pacer_to_now = 0; 764 } 765 /* 766 * To get the number left we can insert into we simply 767 * subract the distance the pacer has to run from how 768 * many slots there are. 769 */ 770 avail_on_wheel = NUM_OF_HPTSI_SLOTS - dis_to_travel; 771 /* 772 * Now how many of those we will eat due to the pacer's 773 * time (p_cur_slot) of start being behind the 774 * real time (wheel_tick)? 775 */ 776 if (avail_on_wheel <= pacer_to_now) { 777 /* 778 * Wheel wrap, we can't fit on the wheel, that 779 * is unusual the system must be way overloaded! 780 * Insert into the assured tick, and return special 781 * "0". 782 */ 783 counter_u64_add(combined_wheel_wrap, 1); 784 *target_tick = hpts->p_nxt_slot; 785 return (0); 786 } else { 787 /* 788 * We know how many slots are open 789 * on the wheel (the reverse of what 790 * is left to run. Take away the time 791 * the pacer started to now (wheel_tick) 792 * and that tells you how many slots are 793 * open that can be inserted into that won't 794 * be touched by the pacer until later. 795 */ 796 return (avail_on_wheel - pacer_to_now); 797 } 798 } 799 800 static int 801 tcp_queue_to_hpts_immediate_locked(struct inpcb *inp, struct tcp_hpts_entry *hpts, int32_t line, int32_t noref) 802 { 803 uint32_t need_wake = 0; 804 805 HPTS_MTX_ASSERT(hpts); 806 if (inp->inp_in_hpts == 0) { 807 /* Ok we need to set it on the hpts in the current slot */ 808 inp->inp_hpts_request = 0; 809 if ((hpts->p_hpts_active == 0) || 810 (hpts->p_wheel_complete)) { 811 /* 812 * A sleeping hpts we want in next slot to run 813 * note that in this state p_prev_slot == p_cur_slot 814 */ 815 inp->inp_hptsslot = hpts_tick(hpts->p_prev_slot, 1); 816 if ((hpts->p_on_min_sleep == 0) && (hpts->p_hpts_active == 0)) 817 need_wake = 1; 818 } else if ((void *)inp == hpts->p_inp) { 819 /* 820 * The hpts system is running and the caller 821 * was awoken by the hpts system. 822 * We can't allow you to go into the same slot we 823 * are in (we don't want a loop :-D). 824 */ 825 inp->inp_hptsslot = hpts->p_nxt_slot; 826 } else 827 inp->inp_hptsslot = hpts->p_runningtick; 828 hpts_sane_pace_insert(hpts, inp, &hpts->p_hptss[inp->inp_hptsslot], line, noref); 829 if (need_wake) { 830 /* 831 * Activate the hpts if it is sleeping and its 832 * timeout is not 1. 833 */ 834 hpts->p_direct_wake = 1; 835 tcp_wakehpts(hpts); 836 } 837 } 838 return (need_wake); 839 } 840 841 int 842 __tcp_queue_to_hpts_immediate(struct inpcb *inp, int32_t line) 843 { 844 int32_t ret; 845 struct tcp_hpts_entry *hpts; 846 847 INP_WLOCK_ASSERT(inp); 848 hpts = tcp_hpts_lock(inp); 849 ret = tcp_queue_to_hpts_immediate_locked(inp, hpts, line, 0); 850 mtx_unlock(&hpts->p_mtx); 851 return (ret); 852 } 853 854 #ifdef INVARIANTS 855 static void 856 check_if_slot_would_be_wrong(struct tcp_hpts_entry *hpts, struct inpcb *inp, uint32_t inp_hptsslot, int line) 857 { 858 /* 859 * Sanity checks for the pacer with invariants 860 * on insert. 861 */ 862 if (inp_hptsslot >= NUM_OF_HPTSI_SLOTS) 863 panic("hpts:%p inp:%p slot:%d > max", 864 hpts, inp, inp_hptsslot); 865 if ((hpts->p_hpts_active) && 866 (hpts->p_wheel_complete == 0)) { 867 /* 868 * If the pacer is processing a arc 869 * of the wheel, we need to make 870 * sure we are not inserting within 871 * that arc. 872 */ 873 int distance, yet_to_run; 874 875 distance = hpts_ticks_diff(hpts->p_runningtick, inp_hptsslot); 876 if (hpts->p_runningtick != hpts->p_cur_slot) 877 yet_to_run = hpts_ticks_diff(hpts->p_runningtick, hpts->p_cur_slot); 878 else 879 yet_to_run = 0; /* processing last slot */ 880 if (yet_to_run > distance) { 881 panic("hpts:%p inp:%p slot:%d distance:%d yet_to_run:%d rs:%d cs:%d", 882 hpts, inp, inp_hptsslot, 883 distance, yet_to_run, 884 hpts->p_runningtick, hpts->p_cur_slot); 885 } 886 } 887 } 888 #endif 889 890 static void 891 tcp_hpts_insert_locked(struct tcp_hpts_entry *hpts, struct inpcb *inp, uint32_t slot, int32_t line, 892 struct hpts_diag *diag, struct timeval *tv) 893 { 894 uint32_t need_new_to = 0; 895 uint32_t wheel_cts, last_tick; 896 int32_t wheel_tick, maxticks; 897 int8_t need_wakeup = 0; 898 899 HPTS_MTX_ASSERT(hpts); 900 if (diag) { 901 memset(diag, 0, sizeof(struct hpts_diag)); 902 diag->p_hpts_active = hpts->p_hpts_active; 903 diag->p_prev_slot = hpts->p_prev_slot; 904 diag->p_runningtick = hpts->p_runningtick; 905 diag->p_nxt_slot = hpts->p_nxt_slot; 906 diag->p_cur_slot = hpts->p_cur_slot; 907 diag->p_curtick = hpts->p_curtick; 908 diag->p_lasttick = hpts->p_lasttick; 909 diag->slot_req = slot; 910 diag->p_on_min_sleep = hpts->p_on_min_sleep; 911 diag->hpts_sleep_time = hpts->p_hpts_sleep_time; 912 } 913 if (inp->inp_in_hpts == 0) { 914 if (slot == 0) { 915 /* Immediate */ 916 tcp_queue_to_hpts_immediate_locked(inp, hpts, line, 0); 917 return; 918 } 919 /* Get the current time relative to the wheel */ 920 wheel_cts = tcp_tv_to_hptstick(tv); 921 /* Map it onto the wheel */ 922 wheel_tick = tick_to_wheel(wheel_cts); 923 /* Now what's the max we can place it at? */ 924 maxticks = max_ticks_available(hpts, wheel_tick, &last_tick); 925 if (diag) { 926 diag->wheel_tick = wheel_tick; 927 diag->maxticks = maxticks; 928 diag->wheel_cts = wheel_cts; 929 } 930 if (maxticks == 0) { 931 /* The pacer is in a wheel wrap behind, yikes! */ 932 if (slot > 1) { 933 /* 934 * Reduce by 1 to prevent a forever loop in 935 * case something else is wrong. Note this 936 * probably does not hurt because the pacer 937 * if its true is so far behind we will be 938 * > 1second late calling anyway. 939 */ 940 slot--; 941 } 942 inp->inp_hptsslot = last_tick; 943 inp->inp_hpts_request = slot; 944 } else if (maxticks >= slot) { 945 /* It all fits on the wheel */ 946 inp->inp_hpts_request = 0; 947 inp->inp_hptsslot = hpts_tick(wheel_tick, slot); 948 } else { 949 /* It does not fit */ 950 inp->inp_hpts_request = slot - maxticks; 951 inp->inp_hptsslot = last_tick; 952 } 953 if (diag) { 954 diag->slot_remaining = inp->inp_hpts_request; 955 diag->inp_hptsslot = inp->inp_hptsslot; 956 } 957 #ifdef INVARIANTS 958 check_if_slot_would_be_wrong(hpts, inp, inp->inp_hptsslot, line); 959 #endif 960 hpts_sane_pace_insert(hpts, inp, &hpts->p_hptss[inp->inp_hptsslot], line, 0); 961 if ((hpts->p_hpts_active == 0) && 962 (inp->inp_hpts_request == 0) && 963 (hpts->p_on_min_sleep == 0)) { 964 /* 965 * The hpts is sleeping and not on a minimum 966 * sleep time, we need to figure out where 967 * it will wake up at and if we need to reschedule 968 * its time-out. 969 */ 970 uint32_t have_slept, yet_to_sleep; 971 972 /* Now do we need to restart the hpts's timer? */ 973 have_slept = hpts_ticks_diff(hpts->p_prev_slot, wheel_tick); 974 if (have_slept < hpts->p_hpts_sleep_time) 975 yet_to_sleep = hpts->p_hpts_sleep_time - have_slept; 976 else { 977 /* We are over-due */ 978 yet_to_sleep = 0; 979 need_wakeup = 1; 980 } 981 if (diag) { 982 diag->have_slept = have_slept; 983 diag->yet_to_sleep = yet_to_sleep; 984 } 985 if (yet_to_sleep && 986 (yet_to_sleep > slot)) { 987 /* 988 * We need to reschedule the hpts's time-out. 989 */ 990 hpts->p_hpts_sleep_time = slot; 991 need_new_to = slot * HPTS_TICKS_PER_USEC; 992 } 993 } 994 /* 995 * Now how far is the hpts sleeping to? if active is 1, its 996 * up and ticking we do nothing, otherwise we may need to 997 * reschedule its callout if need_new_to is set from above. 998 */ 999 if (need_wakeup) { 1000 hpts->p_direct_wake = 1; 1001 tcp_wakehpts(hpts); 1002 if (diag) { 1003 diag->need_new_to = 0; 1004 diag->co_ret = 0xffff0000; 1005 } 1006 } else if (need_new_to) { 1007 int32_t co_ret; 1008 struct timeval tv; 1009 sbintime_t sb; 1010 1011 tv.tv_sec = 0; 1012 tv.tv_usec = 0; 1013 while (need_new_to > HPTS_USEC_IN_SEC) { 1014 tv.tv_sec++; 1015 need_new_to -= HPTS_USEC_IN_SEC; 1016 } 1017 tv.tv_usec = need_new_to; 1018 sb = tvtosbt(tv); 1019 if (tcp_hpts_callout_skip_swi == 0) { 1020 co_ret = callout_reset_sbt_on(&hpts->co, sb, 0, 1021 hpts_timeout_swi, hpts, hpts->p_cpu, 1022 (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision))); 1023 } else { 1024 co_ret = callout_reset_sbt_on(&hpts->co, sb, 0, 1025 hpts_timeout_dir, hpts, 1026 hpts->p_cpu, 1027 C_PREL(tcp_hpts_precision)); 1028 } 1029 if (diag) { 1030 diag->need_new_to = need_new_to; 1031 diag->co_ret = co_ret; 1032 } 1033 } 1034 } else { 1035 #ifdef INVARIANTS 1036 panic("Hpts:%p tp:%p already on hpts and add?", hpts, inp); 1037 #endif 1038 } 1039 } 1040 1041 uint32_t 1042 tcp_hpts_insert_diag(struct inpcb *inp, uint32_t slot, int32_t line, struct hpts_diag *diag) 1043 { 1044 struct tcp_hpts_entry *hpts; 1045 uint32_t slot_on; 1046 struct timeval tv; 1047 1048 /* 1049 * We now return the next-slot the hpts will be on, beyond its 1050 * current run (if up) or where it was when it stopped if it is 1051 * sleeping. 1052 */ 1053 INP_WLOCK_ASSERT(inp); 1054 hpts = tcp_hpts_lock(inp); 1055 microuptime(&tv); 1056 tcp_hpts_insert_locked(hpts, inp, slot, line, diag, &tv); 1057 slot_on = hpts->p_nxt_slot; 1058 mtx_unlock(&hpts->p_mtx); 1059 return (slot_on); 1060 } 1061 1062 uint32_t 1063 __tcp_hpts_insert(struct inpcb *inp, uint32_t slot, int32_t line){ 1064 return (tcp_hpts_insert_diag(inp, slot, line, NULL)); 1065 } 1066 int 1067 __tcp_queue_to_input_locked(struct inpcb *inp, struct tcp_hpts_entry *hpts, int32_t line) 1068 { 1069 int32_t retval = 0; 1070 1071 HPTS_MTX_ASSERT(hpts); 1072 if (inp->inp_in_input == 0) { 1073 /* Ok we need to set it on the hpts in the current slot */ 1074 hpts_sane_input_insert(hpts, inp, line); 1075 retval = 1; 1076 if (hpts->p_hpts_active == 0) { 1077 /* 1078 * Activate the hpts if it is sleeping. 1079 */ 1080 retval = 2; 1081 hpts->p_direct_wake = 1; 1082 tcp_wakeinput(hpts); 1083 } 1084 } else if (hpts->p_hpts_active == 0) { 1085 retval = 4; 1086 hpts->p_direct_wake = 1; 1087 tcp_wakeinput(hpts); 1088 } 1089 return (retval); 1090 } 1091 1092 int32_t 1093 __tcp_queue_to_input(struct inpcb *inp, int line) 1094 { 1095 struct tcp_hpts_entry *hpts; 1096 int32_t ret; 1097 1098 hpts = tcp_input_lock(inp); 1099 ret = __tcp_queue_to_input_locked(inp, hpts, line); 1100 mtx_unlock(&hpts->p_mtx); 1101 return (ret); 1102 } 1103 1104 void 1105 __tcp_set_inp_to_drop(struct inpcb *inp, uint16_t reason, int32_t line) 1106 { 1107 struct tcp_hpts_entry *hpts; 1108 struct tcpcb *tp; 1109 1110 tp = intotcpcb(inp); 1111 hpts = tcp_input_lock(tp->t_inpcb); 1112 if (inp->inp_in_input == 0) { 1113 /* Ok we need to set it on the hpts in the current slot */ 1114 hpts_sane_input_insert(hpts, inp, line); 1115 if (hpts->p_hpts_active == 0) { 1116 /* 1117 * Activate the hpts if it is sleeping. 1118 */ 1119 hpts->p_direct_wake = 1; 1120 tcp_wakeinput(hpts); 1121 } 1122 } else if (hpts->p_hpts_active == 0) { 1123 hpts->p_direct_wake = 1; 1124 tcp_wakeinput(hpts); 1125 } 1126 inp->inp_hpts_drop_reas = reason; 1127 mtx_unlock(&hpts->p_mtx); 1128 } 1129 1130 static uint16_t 1131 hpts_random_cpu(struct inpcb *inp){ 1132 /* 1133 * No flow type set distribute the load randomly. 1134 */ 1135 uint16_t cpuid; 1136 uint32_t ran; 1137 1138 /* 1139 * If one has been set use it i.e. we want both in and out on the 1140 * same hpts. 1141 */ 1142 if (inp->inp_input_cpu_set) { 1143 return (inp->inp_input_cpu); 1144 } else if (inp->inp_hpts_cpu_set) { 1145 return (inp->inp_hpts_cpu); 1146 } 1147 /* Nothing set use a random number */ 1148 ran = arc4random(); 1149 cpuid = (ran & 0xffff) % mp_ncpus; 1150 return (cpuid); 1151 } 1152 1153 static uint16_t 1154 hpts_cpuid(struct inpcb *inp){ 1155 u_int cpuid; 1156 #ifdef NUMA 1157 struct hpts_domain_info *di; 1158 #endif 1159 1160 /* 1161 * If one has been set use it i.e. we want both in and out on the 1162 * same hpts. 1163 */ 1164 if (inp->inp_input_cpu_set) { 1165 return (inp->inp_input_cpu); 1166 } else if (inp->inp_hpts_cpu_set) { 1167 return (inp->inp_hpts_cpu); 1168 } 1169 /* If one is set the other must be the same */ 1170 #ifdef RSS 1171 cpuid = rss_hash2cpuid(inp->inp_flowid, inp->inp_flowtype); 1172 if (cpuid == NETISR_CPUID_NONE) 1173 return (hpts_random_cpu(inp)); 1174 else 1175 return (cpuid); 1176 #else 1177 /* 1178 * We don't have a flowid -> cpuid mapping, so cheat and just map 1179 * unknown cpuids to curcpu. Not the best, but apparently better 1180 * than defaulting to swi 0. 1181 */ 1182 1183 if (inp->inp_flowtype == M_HASHTYPE_NONE) 1184 return (hpts_random_cpu(inp)); 1185 /* 1186 * Hash to a thread based on the flowid. If we are using numa, 1187 * then restrict the hash to the numa domain where the inp lives. 1188 */ 1189 #ifdef NUMA 1190 if (tcp_bind_threads == 2 && inp->inp_numa_domain != M_NODOM) { 1191 di = &hpts_domains[inp->inp_numa_domain]; 1192 cpuid = di->cpu[inp->inp_flowid % di->count]; 1193 } else 1194 #endif 1195 cpuid = inp->inp_flowid % mp_ncpus; 1196 1197 return (cpuid); 1198 #endif 1199 } 1200 1201 static void 1202 tcp_drop_in_pkts(struct tcpcb *tp) 1203 { 1204 struct mbuf *m, *n; 1205 1206 m = tp->t_in_pkt; 1207 if (m) 1208 n = m->m_nextpkt; 1209 else 1210 n = NULL; 1211 tp->t_in_pkt = NULL; 1212 while (m) { 1213 m_freem(m); 1214 m = n; 1215 if (m) 1216 n = m->m_nextpkt; 1217 } 1218 } 1219 1220 /* 1221 * Do NOT try to optimize the processing of inp's 1222 * by first pulling off all the inp's into a temporary 1223 * list (e.g. TAILQ_CONCAT). If you do that the subtle 1224 * interactions of switching CPU's will kill because of 1225 * problems in the linked list manipulation. Basically 1226 * you would switch cpu's with the hpts mutex locked 1227 * but then while you were processing one of the inp's 1228 * some other one that you switch will get a new 1229 * packet on the different CPU. It will insert it 1230 * on the new hpts's input list. Creating a temporary 1231 * link in the inp will not fix it either, since 1232 * the other hpts will be doing the same thing and 1233 * you will both end up using the temporary link. 1234 * 1235 * You will die in an ASSERT for tailq corruption if you 1236 * run INVARIANTS or you will die horribly without 1237 * INVARIANTS in some unknown way with a corrupt linked 1238 * list. 1239 */ 1240 static void 1241 tcp_input_data(struct tcp_hpts_entry *hpts, struct timeval *tv) 1242 { 1243 struct tcpcb *tp; 1244 struct inpcb *inp; 1245 uint16_t drop_reason; 1246 int16_t set_cpu; 1247 uint32_t did_prefetch = 0; 1248 int dropped; 1249 1250 HPTS_MTX_ASSERT(hpts); 1251 NET_EPOCH_ASSERT(); 1252 1253 while ((inp = TAILQ_FIRST(&hpts->p_input)) != NULL) { 1254 HPTS_MTX_ASSERT(hpts); 1255 hpts_sane_input_remove(hpts, inp, 0); 1256 if (inp->inp_input_cpu_set == 0) { 1257 set_cpu = 1; 1258 } else { 1259 set_cpu = 0; 1260 } 1261 hpts->p_inp = inp; 1262 drop_reason = inp->inp_hpts_drop_reas; 1263 inp->inp_in_input = 0; 1264 mtx_unlock(&hpts->p_mtx); 1265 INP_WLOCK(inp); 1266 #ifdef VIMAGE 1267 CURVNET_SET(inp->inp_vnet); 1268 #endif 1269 if ((inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) || 1270 (inp->inp_flags2 & INP_FREED)) { 1271 out: 1272 hpts->p_inp = NULL; 1273 if (in_pcbrele_wlocked(inp) == 0) { 1274 INP_WUNLOCK(inp); 1275 } 1276 #ifdef VIMAGE 1277 CURVNET_RESTORE(); 1278 #endif 1279 mtx_lock(&hpts->p_mtx); 1280 continue; 1281 } 1282 tp = intotcpcb(inp); 1283 if ((tp == NULL) || (tp->t_inpcb == NULL)) { 1284 goto out; 1285 } 1286 if (drop_reason) { 1287 /* This tcb is being destroyed for drop_reason */ 1288 tcp_drop_in_pkts(tp); 1289 tp = tcp_drop(tp, drop_reason); 1290 if (tp == NULL) { 1291 INP_WLOCK(inp); 1292 } 1293 if (in_pcbrele_wlocked(inp) == 0) 1294 INP_WUNLOCK(inp); 1295 #ifdef VIMAGE 1296 CURVNET_RESTORE(); 1297 #endif 1298 mtx_lock(&hpts->p_mtx); 1299 continue; 1300 } 1301 if (set_cpu) { 1302 /* 1303 * Setup so the next time we will move to the right 1304 * CPU. This should be a rare event. It will 1305 * sometimes happens when we are the client side 1306 * (usually not the server). Somehow tcp_output() 1307 * gets called before the tcp_do_segment() sets the 1308 * intial state. This means the r_cpu and r_hpts_cpu 1309 * is 0. We get on the hpts, and then tcp_input() 1310 * gets called setting up the r_cpu to the correct 1311 * value. The hpts goes off and sees the mis-match. 1312 * We simply correct it here and the CPU will switch 1313 * to the new hpts nextime the tcb gets added to the 1314 * the hpts (not this time) :-) 1315 */ 1316 tcp_set_hpts(inp); 1317 } 1318 if (tp->t_fb_ptr != NULL) { 1319 kern_prefetch(tp->t_fb_ptr, &did_prefetch); 1320 did_prefetch = 1; 1321 } 1322 if ((inp->inp_flags2 & INP_SUPPORTS_MBUFQ) && tp->t_in_pkt) { 1323 if (inp->inp_in_input) 1324 tcp_hpts_remove(inp, HPTS_REMOVE_INPUT); 1325 dropped = (*tp->t_fb->tfb_do_queued_segments)(inp->inp_socket, tp, 0); 1326 if (dropped) { 1327 /* Re-acquire the wlock so we can release the reference */ 1328 INP_WLOCK(inp); 1329 } 1330 } else if (tp->t_in_pkt) { 1331 /* 1332 * We reach here only if we had a 1333 * stack that supported INP_SUPPORTS_MBUFQ 1334 * and then somehow switched to a stack that 1335 * does not. The packets are basically stranded 1336 * and would hang with the connection until 1337 * cleanup without this code. Its not the 1338 * best way but I know of no other way to 1339 * handle it since the stack needs functions 1340 * it does not have to handle queued packets. 1341 */ 1342 tcp_drop_in_pkts(tp); 1343 } 1344 if (in_pcbrele_wlocked(inp) == 0) 1345 INP_WUNLOCK(inp); 1346 INP_UNLOCK_ASSERT(inp); 1347 #ifdef VIMAGE 1348 CURVNET_RESTORE(); 1349 #endif 1350 mtx_lock(&hpts->p_mtx); 1351 hpts->p_inp = NULL; 1352 } 1353 } 1354 1355 static void 1356 tcp_hptsi(struct tcp_hpts_entry *hpts) 1357 { 1358 struct tcpcb *tp; 1359 struct inpcb *inp = NULL, *ninp; 1360 struct timeval tv; 1361 int32_t ticks_to_run, i, error; 1362 int32_t paced_cnt = 0; 1363 int32_t loop_cnt = 0; 1364 int32_t did_prefetch = 0; 1365 int32_t prefetch_ninp = 0; 1366 int32_t prefetch_tp = 0; 1367 int32_t wrap_loop_cnt = 0; 1368 int16_t set_cpu; 1369 1370 HPTS_MTX_ASSERT(hpts); 1371 NET_EPOCH_ASSERT(); 1372 1373 /* record previous info for any logging */ 1374 hpts->saved_lasttick = hpts->p_lasttick; 1375 hpts->saved_curtick = hpts->p_curtick; 1376 hpts->saved_curslot = hpts->p_cur_slot; 1377 hpts->saved_prev_slot = hpts->p_prev_slot; 1378 1379 hpts->p_lasttick = hpts->p_curtick; 1380 hpts->p_curtick = tcp_gethptstick(&tv); 1381 hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick); 1382 if ((hpts->p_on_queue_cnt == 0) || 1383 (hpts->p_lasttick == hpts->p_curtick)) { 1384 /* 1385 * No time has yet passed, 1386 * or nothing to do. 1387 */ 1388 hpts->p_prev_slot = hpts->p_cur_slot; 1389 hpts->p_lasttick = hpts->p_curtick; 1390 goto no_run; 1391 } 1392 again: 1393 hpts->p_wheel_complete = 0; 1394 HPTS_MTX_ASSERT(hpts); 1395 ticks_to_run = hpts_ticks_diff(hpts->p_prev_slot, hpts->p_cur_slot); 1396 if (((hpts->p_curtick - hpts->p_lasttick) > ticks_to_run) && 1397 (hpts->p_on_queue_cnt != 0)) { 1398 /* 1399 * Wheel wrap is occuring, basically we 1400 * are behind and the distance between 1401 * run's has spread so much it has exceeded 1402 * the time on the wheel (1.024 seconds). This 1403 * is ugly and should NOT be happening. We 1404 * need to run the entire wheel. We last processed 1405 * p_prev_slot, so that needs to be the last slot 1406 * we run. The next slot after that should be our 1407 * reserved first slot for new, and then starts 1408 * the running postion. Now the problem is the 1409 * reserved "not to yet" place does not exist 1410 * and there may be inp's in there that need 1411 * running. We can merge those into the 1412 * first slot at the head. 1413 */ 1414 wrap_loop_cnt++; 1415 hpts->p_nxt_slot = hpts_tick(hpts->p_prev_slot, 1); 1416 hpts->p_runningtick = hpts_tick(hpts->p_prev_slot, 2); 1417 /* 1418 * Adjust p_cur_slot to be where we are starting from 1419 * hopefully we will catch up (fat chance if something 1420 * is broken this bad :( ) 1421 */ 1422 hpts->p_cur_slot = hpts->p_prev_slot; 1423 /* 1424 * The next slot has guys to run too, and that would 1425 * be where we would normally start, lets move them into 1426 * the next slot (p_prev_slot + 2) so that we will 1427 * run them, the extra 10usecs of late (by being 1428 * put behind) does not really matter in this situation. 1429 */ 1430 #ifdef INVARIANTS 1431 /* 1432 * To prevent a panic we need to update the inpslot to the 1433 * new location. This is safe since it takes both the 1434 * INP lock and the pacer mutex to change the inp_hptsslot. 1435 */ 1436 TAILQ_FOREACH(inp, &hpts->p_hptss[hpts->p_nxt_slot], inp_hpts) { 1437 inp->inp_hptsslot = hpts->p_runningtick; 1438 } 1439 #endif 1440 TAILQ_CONCAT(&hpts->p_hptss[hpts->p_runningtick], 1441 &hpts->p_hptss[hpts->p_nxt_slot], inp_hpts); 1442 ticks_to_run = NUM_OF_HPTSI_SLOTS - 1; 1443 counter_u64_add(wheel_wrap, 1); 1444 } else { 1445 /* 1446 * Nxt slot is always one after p_runningtick though 1447 * its not used usually unless we are doing wheel wrap. 1448 */ 1449 hpts->p_nxt_slot = hpts->p_prev_slot; 1450 hpts->p_runningtick = hpts_tick(hpts->p_prev_slot, 1); 1451 } 1452 #ifdef INVARIANTS 1453 if (TAILQ_EMPTY(&hpts->p_input) && 1454 (hpts->p_on_inqueue_cnt != 0)) { 1455 panic("tp:%p in_hpts input empty but cnt:%d", 1456 hpts, hpts->p_on_inqueue_cnt); 1457 } 1458 #endif 1459 HPTS_MTX_ASSERT(hpts); 1460 if (hpts->p_on_queue_cnt == 0) { 1461 goto no_one; 1462 } 1463 HPTS_MTX_ASSERT(hpts); 1464 for (i = 0; i < ticks_to_run; i++) { 1465 /* 1466 * Calculate our delay, if there are no extra ticks there 1467 * was not any (i.e. if ticks_to_run == 1, no delay). 1468 */ 1469 hpts->p_delayed_by = (ticks_to_run - (i + 1)) * HPTS_TICKS_PER_USEC; 1470 HPTS_MTX_ASSERT(hpts); 1471 while ((inp = TAILQ_FIRST(&hpts->p_hptss[hpts->p_runningtick])) != NULL) { 1472 /* For debugging */ 1473 hpts->p_inp = inp; 1474 paced_cnt++; 1475 #ifdef INVARIANTS 1476 if (hpts->p_runningtick != inp->inp_hptsslot) { 1477 panic("Hpts:%p inp:%p slot mis-aligned %u vs %u", 1478 hpts, inp, hpts->p_runningtick, inp->inp_hptsslot); 1479 } 1480 #endif 1481 /* Now pull it */ 1482 if (inp->inp_hpts_cpu_set == 0) { 1483 set_cpu = 1; 1484 } else { 1485 set_cpu = 0; 1486 } 1487 hpts_sane_pace_remove(hpts, inp, &hpts->p_hptss[hpts->p_runningtick], 0); 1488 if ((ninp = TAILQ_FIRST(&hpts->p_hptss[hpts->p_runningtick])) != NULL) { 1489 /* We prefetch the next inp if possible */ 1490 kern_prefetch(ninp, &prefetch_ninp); 1491 prefetch_ninp = 1; 1492 } 1493 if (inp->inp_hpts_request) { 1494 /* 1495 * This guy is deferred out further in time 1496 * then our wheel had available on it. 1497 * Push him back on the wheel or run it 1498 * depending. 1499 */ 1500 uint32_t maxticks, last_tick, remaining_slots; 1501 1502 remaining_slots = ticks_to_run - (i + 1); 1503 if (inp->inp_hpts_request > remaining_slots) { 1504 /* 1505 * How far out can we go? 1506 */ 1507 maxticks = max_ticks_available(hpts, hpts->p_cur_slot, &last_tick); 1508 if (maxticks >= inp->inp_hpts_request) { 1509 /* we can place it finally to be processed */ 1510 inp->inp_hptsslot = hpts_tick(hpts->p_runningtick, inp->inp_hpts_request); 1511 inp->inp_hpts_request = 0; 1512 } else { 1513 /* Work off some more time */ 1514 inp->inp_hptsslot = last_tick; 1515 inp->inp_hpts_request-= maxticks; 1516 } 1517 hpts_sane_pace_insert(hpts, inp, &hpts->p_hptss[inp->inp_hptsslot], __LINE__, 1); 1518 hpts->p_inp = NULL; 1519 continue; 1520 } 1521 inp->inp_hpts_request = 0; 1522 /* Fall through we will so do it now */ 1523 } 1524 /* 1525 * We clear the hpts flag here after dealing with 1526 * remaining slots. This way anyone looking with the 1527 * TCB lock will see its on the hpts until just 1528 * before we unlock. 1529 */ 1530 inp->inp_in_hpts = 0; 1531 mtx_unlock(&hpts->p_mtx); 1532 INP_WLOCK(inp); 1533 if (in_pcbrele_wlocked(inp)) { 1534 mtx_lock(&hpts->p_mtx); 1535 hpts->p_inp = NULL; 1536 continue; 1537 } 1538 if ((inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) || 1539 (inp->inp_flags2 & INP_FREED)) { 1540 out_now: 1541 #ifdef INVARIANTS 1542 if (mtx_owned(&hpts->p_mtx)) { 1543 panic("Hpts:%p owns mtx prior-to lock line:%d", 1544 hpts, __LINE__); 1545 } 1546 #endif 1547 INP_WUNLOCK(inp); 1548 mtx_lock(&hpts->p_mtx); 1549 hpts->p_inp = NULL; 1550 continue; 1551 } 1552 tp = intotcpcb(inp); 1553 if ((tp == NULL) || (tp->t_inpcb == NULL)) { 1554 goto out_now; 1555 } 1556 if (set_cpu) { 1557 /* 1558 * Setup so the next time we will move to 1559 * the right CPU. This should be a rare 1560 * event. It will sometimes happens when we 1561 * are the client side (usually not the 1562 * server). Somehow tcp_output() gets called 1563 * before the tcp_do_segment() sets the 1564 * intial state. This means the r_cpu and 1565 * r_hpts_cpu is 0. We get on the hpts, and 1566 * then tcp_input() gets called setting up 1567 * the r_cpu to the correct value. The hpts 1568 * goes off and sees the mis-match. We 1569 * simply correct it here and the CPU will 1570 * switch to the new hpts nextime the tcb 1571 * gets added to the the hpts (not this one) 1572 * :-) 1573 */ 1574 tcp_set_hpts(inp); 1575 } 1576 #ifdef VIMAGE 1577 CURVNET_SET(inp->inp_vnet); 1578 #endif 1579 /* Lets do any logging that we might want to */ 1580 if (hpts_does_tp_logging && (tp->t_logstate != TCP_LOG_STATE_OFF)) { 1581 tcp_hpts_log(hpts, tp, &tv, ticks_to_run, i); 1582 } 1583 /* 1584 * There is a hole here, we get the refcnt on the 1585 * inp so it will still be preserved but to make 1586 * sure we can get the INP we need to hold the p_mtx 1587 * above while we pull out the tp/inp, as long as 1588 * fini gets the lock first we are assured of having 1589 * a sane INP we can lock and test. 1590 */ 1591 #ifdef INVARIANTS 1592 if (mtx_owned(&hpts->p_mtx)) { 1593 panic("Hpts:%p owns mtx before tcp-output:%d", 1594 hpts, __LINE__); 1595 } 1596 #endif 1597 if (tp->t_fb_ptr != NULL) { 1598 kern_prefetch(tp->t_fb_ptr, &did_prefetch); 1599 did_prefetch = 1; 1600 } 1601 if ((inp->inp_flags2 & INP_SUPPORTS_MBUFQ) && tp->t_in_pkt) { 1602 error = (*tp->t_fb->tfb_do_queued_segments)(inp->inp_socket, tp, 0); 1603 if (error) { 1604 /* The input killed the connection */ 1605 goto skip_pacing; 1606 } 1607 } 1608 inp->inp_hpts_calls = 1; 1609 error = tp->t_fb->tfb_tcp_output(tp); 1610 inp->inp_hpts_calls = 0; 1611 if (ninp && ninp->inp_ppcb) { 1612 /* 1613 * If we have a nxt inp, see if we can 1614 * prefetch its ppcb. Note this may seem 1615 * "risky" since we have no locks (other 1616 * than the previous inp) and there no 1617 * assurance that ninp was not pulled while 1618 * we were processing inp and freed. If this 1619 * occured it could mean that either: 1620 * 1621 * a) Its NULL (which is fine we won't go 1622 * here) <or> b) Its valid (which is cool we 1623 * will prefetch it) <or> c) The inp got 1624 * freed back to the slab which was 1625 * reallocated. Then the piece of memory was 1626 * re-used and something else (not an 1627 * address) is in inp_ppcb. If that occurs 1628 * we don't crash, but take a TLB shootdown 1629 * performance hit (same as if it was NULL 1630 * and we tried to pre-fetch it). 1631 * 1632 * Considering that the likelyhood of <c> is 1633 * quite rare we will take a risk on doing 1634 * this. If performance drops after testing 1635 * we can always take this out. NB: the 1636 * kern_prefetch on amd64 actually has 1637 * protection against a bad address now via 1638 * the DMAP_() tests. This will prevent the 1639 * TLB hit, and instead if <c> occurs just 1640 * cause us to load cache with a useless 1641 * address (to us). 1642 */ 1643 kern_prefetch(ninp->inp_ppcb, &prefetch_tp); 1644 prefetch_tp = 1; 1645 } 1646 INP_WUNLOCK(inp); 1647 skip_pacing: 1648 #ifdef VIMAGE 1649 CURVNET_RESTORE(); 1650 #endif 1651 INP_UNLOCK_ASSERT(inp); 1652 #ifdef INVARIANTS 1653 if (mtx_owned(&hpts->p_mtx)) { 1654 panic("Hpts:%p owns mtx prior-to lock line:%d", 1655 hpts, __LINE__); 1656 } 1657 #endif 1658 mtx_lock(&hpts->p_mtx); 1659 hpts->p_inp = NULL; 1660 } 1661 HPTS_MTX_ASSERT(hpts); 1662 hpts->p_inp = NULL; 1663 hpts->p_runningtick++; 1664 if (hpts->p_runningtick >= NUM_OF_HPTSI_SLOTS) { 1665 hpts->p_runningtick = 0; 1666 } 1667 } 1668 no_one: 1669 HPTS_MTX_ASSERT(hpts); 1670 hpts->p_delayed_by = 0; 1671 /* 1672 * Check to see if we took an excess amount of time and need to run 1673 * more ticks (if we did not hit eno-bufs). 1674 */ 1675 #ifdef INVARIANTS 1676 if (TAILQ_EMPTY(&hpts->p_input) && 1677 (hpts->p_on_inqueue_cnt != 0)) { 1678 panic("tp:%p in_hpts input empty but cnt:%d", 1679 hpts, hpts->p_on_inqueue_cnt); 1680 } 1681 #endif 1682 hpts->p_prev_slot = hpts->p_cur_slot; 1683 hpts->p_lasttick = hpts->p_curtick; 1684 if (loop_cnt > max_pacer_loops) { 1685 /* 1686 * Something is serious slow we have 1687 * looped through processing the wheel 1688 * and by the time we cleared the 1689 * needs to run max_pacer_loops time 1690 * we still needed to run. That means 1691 * the system is hopelessly behind and 1692 * can never catch up :( 1693 * 1694 * We will just lie to this thread 1695 * and let it thing p_curtick is 1696 * correct. When it next awakens 1697 * it will find itself further behind. 1698 */ 1699 counter_u64_add(hpts_hopelessly_behind, 1); 1700 goto no_run; 1701 } 1702 hpts->p_curtick = tcp_gethptstick(&tv); 1703 hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick); 1704 if ((wrap_loop_cnt < 2) && 1705 (hpts->p_lasttick != hpts->p_curtick)) { 1706 counter_u64_add(hpts_loops, 1); 1707 loop_cnt++; 1708 goto again; 1709 } 1710 no_run: 1711 /* 1712 * Set flag to tell that we are done for 1713 * any slot input that happens during 1714 * input. 1715 */ 1716 hpts->p_wheel_complete = 1; 1717 /* 1718 * Run any input that may be there not covered 1719 * in running data. 1720 */ 1721 if (!TAILQ_EMPTY(&hpts->p_input)) { 1722 tcp_input_data(hpts, &tv); 1723 /* 1724 * Now did we spend too long running 1725 * input and need to run more ticks? 1726 */ 1727 KASSERT(hpts->p_prev_slot == hpts->p_cur_slot, 1728 ("H:%p p_prev_slot:%u not equal to p_cur_slot:%u", hpts, 1729 hpts->p_prev_slot, hpts->p_cur_slot)); 1730 KASSERT(hpts->p_lasttick == hpts->p_curtick, 1731 ("H:%p p_lasttick:%u not equal to p_curtick:%u", hpts, 1732 hpts->p_lasttick, hpts->p_curtick)); 1733 hpts->p_curtick = tcp_gethptstick(&tv); 1734 if (hpts->p_lasttick != hpts->p_curtick) { 1735 counter_u64_add(hpts_loops, 1); 1736 hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick); 1737 goto again; 1738 } 1739 } 1740 { 1741 uint32_t t = 0, i, fnd = 0; 1742 1743 if ((hpts->p_on_queue_cnt) && (wrap_loop_cnt < 2)) { 1744 /* 1745 * Find next slot that is occupied and use that to 1746 * be the sleep time. 1747 */ 1748 for (i = 0, t = hpts_tick(hpts->p_cur_slot, 1); i < NUM_OF_HPTSI_SLOTS; i++) { 1749 if (TAILQ_EMPTY(&hpts->p_hptss[t]) == 0) { 1750 fnd = 1; 1751 break; 1752 } 1753 t = (t + 1) % NUM_OF_HPTSI_SLOTS; 1754 } 1755 if (fnd) { 1756 hpts->p_hpts_sleep_time = min((i + 1), hpts_sleep_max); 1757 } else { 1758 #ifdef INVARIANTS 1759 panic("Hpts:%p cnt:%d but none found", hpts, hpts->p_on_queue_cnt); 1760 #endif 1761 counter_u64_add(back_tosleep, 1); 1762 hpts->p_on_queue_cnt = 0; 1763 goto non_found; 1764 } 1765 } else if (wrap_loop_cnt >= 2) { 1766 /* Special case handling */ 1767 hpts->p_hpts_sleep_time = tcp_min_hptsi_time; 1768 } else { 1769 /* No one on the wheel sleep for all but 400 slots or sleep max */ 1770 non_found: 1771 hpts->p_hpts_sleep_time = hpts_sleep_max; 1772 } 1773 } 1774 } 1775 1776 void 1777 __tcp_set_hpts(struct inpcb *inp, int32_t line) 1778 { 1779 struct tcp_hpts_entry *hpts; 1780 1781 INP_WLOCK_ASSERT(inp); 1782 hpts = tcp_hpts_lock(inp); 1783 if ((inp->inp_in_hpts == 0) && 1784 (inp->inp_hpts_cpu_set == 0)) { 1785 inp->inp_hpts_cpu = hpts_cpuid(inp); 1786 inp->inp_hpts_cpu_set = 1; 1787 } 1788 mtx_unlock(&hpts->p_mtx); 1789 hpts = tcp_input_lock(inp); 1790 if ((inp->inp_input_cpu_set == 0) && 1791 (inp->inp_in_input == 0)) { 1792 inp->inp_input_cpu = hpts_cpuid(inp); 1793 inp->inp_input_cpu_set = 1; 1794 } 1795 mtx_unlock(&hpts->p_mtx); 1796 } 1797 1798 uint16_t 1799 tcp_hpts_delayedby(struct inpcb *inp){ 1800 return (tcp_pace.rp_ent[inp->inp_hpts_cpu]->p_delayed_by); 1801 } 1802 1803 static void 1804 tcp_hpts_thread(void *ctx) 1805 { 1806 struct tcp_hpts_entry *hpts; 1807 struct epoch_tracker et; 1808 struct timeval tv; 1809 sbintime_t sb; 1810 1811 hpts = (struct tcp_hpts_entry *)ctx; 1812 mtx_lock(&hpts->p_mtx); 1813 if (hpts->p_direct_wake) { 1814 /* Signaled by input */ 1815 callout_stop(&hpts->co); 1816 } else { 1817 /* Timed out */ 1818 if (callout_pending(&hpts->co) || 1819 !callout_active(&hpts->co)) { 1820 mtx_unlock(&hpts->p_mtx); 1821 return; 1822 } 1823 callout_deactivate(&hpts->co); 1824 } 1825 hpts->p_hpts_wake_scheduled = 0; 1826 hpts->p_hpts_active = 1; 1827 NET_EPOCH_ENTER(et); 1828 tcp_hptsi(hpts); 1829 NET_EPOCH_EXIT(et); 1830 HPTS_MTX_ASSERT(hpts); 1831 tv.tv_sec = 0; 1832 tv.tv_usec = hpts->p_hpts_sleep_time * HPTS_TICKS_PER_USEC; 1833 if (tcp_min_hptsi_time && (tv.tv_usec < tcp_min_hptsi_time)) { 1834 hpts->overidden_sleep = tv.tv_usec; 1835 tv.tv_usec = tcp_min_hptsi_time; 1836 hpts->p_on_min_sleep = 1; 1837 } else { 1838 /* Clear the min sleep flag */ 1839 hpts->overidden_sleep = 0; 1840 hpts->p_on_min_sleep = 0; 1841 } 1842 hpts->p_hpts_active = 0; 1843 sb = tvtosbt(tv); 1844 if (tcp_hpts_callout_skip_swi == 0) { 1845 callout_reset_sbt_on(&hpts->co, sb, 0, 1846 hpts_timeout_swi, hpts, hpts->p_cpu, 1847 (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision))); 1848 } else { 1849 callout_reset_sbt_on(&hpts->co, sb, 0, 1850 hpts_timeout_dir, hpts, 1851 hpts->p_cpu, 1852 C_PREL(tcp_hpts_precision)); 1853 } 1854 hpts->p_direct_wake = 0; 1855 mtx_unlock(&hpts->p_mtx); 1856 } 1857 1858 #undef timersub 1859 1860 static void 1861 tcp_init_hptsi(void *st) 1862 { 1863 int32_t i, j, error, bound = 0, created = 0; 1864 size_t sz, asz; 1865 struct timeval tv; 1866 sbintime_t sb; 1867 struct tcp_hpts_entry *hpts; 1868 struct pcpu *pc; 1869 cpuset_t cs; 1870 char unit[16]; 1871 uint32_t ncpus = mp_ncpus ? mp_ncpus : MAXCPU; 1872 int count, domain; 1873 1874 tcp_pace.rp_proc = NULL; 1875 tcp_pace.rp_num_hptss = ncpus; 1876 hpts_hopelessly_behind = counter_u64_alloc(M_WAITOK); 1877 hpts_loops = counter_u64_alloc(M_WAITOK); 1878 back_tosleep = counter_u64_alloc(M_WAITOK); 1879 combined_wheel_wrap = counter_u64_alloc(M_WAITOK); 1880 wheel_wrap = counter_u64_alloc(M_WAITOK); 1881 sz = (tcp_pace.rp_num_hptss * sizeof(struct tcp_hpts_entry *)); 1882 tcp_pace.rp_ent = malloc(sz, M_TCPHPTS, M_WAITOK | M_ZERO); 1883 asz = sizeof(struct hptsh) * NUM_OF_HPTSI_SLOTS; 1884 for (i = 0; i < tcp_pace.rp_num_hptss; i++) { 1885 tcp_pace.rp_ent[i] = malloc(sizeof(struct tcp_hpts_entry), 1886 M_TCPHPTS, M_WAITOK | M_ZERO); 1887 tcp_pace.rp_ent[i]->p_hptss = malloc(asz, 1888 M_TCPHPTS, M_WAITOK); 1889 hpts = tcp_pace.rp_ent[i]; 1890 /* 1891 * Init all the hpts structures that are not specifically 1892 * zero'd by the allocations. Also lets attach them to the 1893 * appropriate sysctl block as well. 1894 */ 1895 mtx_init(&hpts->p_mtx, "tcp_hpts_lck", 1896 "hpts", MTX_DEF | MTX_DUPOK); 1897 TAILQ_INIT(&hpts->p_input); 1898 for (j = 0; j < NUM_OF_HPTSI_SLOTS; j++) { 1899 TAILQ_INIT(&hpts->p_hptss[j]); 1900 } 1901 sysctl_ctx_init(&hpts->hpts_ctx); 1902 sprintf(unit, "%d", i); 1903 hpts->hpts_root = SYSCTL_ADD_NODE(&hpts->hpts_ctx, 1904 SYSCTL_STATIC_CHILDREN(_net_inet_tcp_hpts), 1905 OID_AUTO, 1906 unit, 1907 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 1908 ""); 1909 SYSCTL_ADD_INT(&hpts->hpts_ctx, 1910 SYSCTL_CHILDREN(hpts->hpts_root), 1911 OID_AUTO, "in_qcnt", CTLFLAG_RD, 1912 &hpts->p_on_inqueue_cnt, 0, 1913 "Count TCB's awaiting input processing"); 1914 SYSCTL_ADD_INT(&hpts->hpts_ctx, 1915 SYSCTL_CHILDREN(hpts->hpts_root), 1916 OID_AUTO, "out_qcnt", CTLFLAG_RD, 1917 &hpts->p_on_queue_cnt, 0, 1918 "Count TCB's awaiting output processing"); 1919 SYSCTL_ADD_U16(&hpts->hpts_ctx, 1920 SYSCTL_CHILDREN(hpts->hpts_root), 1921 OID_AUTO, "active", CTLFLAG_RD, 1922 &hpts->p_hpts_active, 0, 1923 "Is the hpts active"); 1924 SYSCTL_ADD_UINT(&hpts->hpts_ctx, 1925 SYSCTL_CHILDREN(hpts->hpts_root), 1926 OID_AUTO, "curslot", CTLFLAG_RD, 1927 &hpts->p_cur_slot, 0, 1928 "What the current running pacers goal"); 1929 SYSCTL_ADD_UINT(&hpts->hpts_ctx, 1930 SYSCTL_CHILDREN(hpts->hpts_root), 1931 OID_AUTO, "runtick", CTLFLAG_RD, 1932 &hpts->p_runningtick, 0, 1933 "What the running pacers current slot is"); 1934 SYSCTL_ADD_UINT(&hpts->hpts_ctx, 1935 SYSCTL_CHILDREN(hpts->hpts_root), 1936 OID_AUTO, "curtick", CTLFLAG_RD, 1937 &hpts->p_curtick, 0, 1938 "What the running pacers last tick mapped to the wheel was"); 1939 hpts->p_hpts_sleep_time = hpts_sleep_max; 1940 hpts->p_num = i; 1941 hpts->p_curtick = tcp_gethptstick(&tv); 1942 hpts->p_prev_slot = hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick); 1943 hpts->p_cpu = 0xffff; 1944 hpts->p_nxt_slot = hpts_tick(hpts->p_cur_slot, 1); 1945 callout_init(&hpts->co, 1); 1946 } 1947 1948 /* Don't try to bind to NUMA domains if we don't have any */ 1949 if (vm_ndomains == 1 && tcp_bind_threads == 2) 1950 tcp_bind_threads = 0; 1951 1952 /* 1953 * Now lets start ithreads to handle the hptss. 1954 */ 1955 CPU_FOREACH(i) { 1956 hpts = tcp_pace.rp_ent[i]; 1957 hpts->p_cpu = i; 1958 error = swi_add(&hpts->ie, "hpts", 1959 tcp_hpts_thread, (void *)hpts, 1960 SWI_NET, INTR_MPSAFE, &hpts->ie_cookie); 1961 if (error) { 1962 panic("Can't add hpts:%p i:%d err:%d", 1963 hpts, i, error); 1964 } 1965 created++; 1966 if (tcp_bind_threads == 1) { 1967 if (intr_event_bind(hpts->ie, i) == 0) 1968 bound++; 1969 } else if (tcp_bind_threads == 2) { 1970 pc = pcpu_find(i); 1971 domain = pc->pc_domain; 1972 CPU_COPY(&cpuset_domain[domain], &cs); 1973 if (intr_event_bind_ithread_cpuset(hpts->ie, &cs) 1974 == 0) { 1975 bound++; 1976 count = hpts_domains[domain].count; 1977 hpts_domains[domain].cpu[count] = i; 1978 hpts_domains[domain].count++; 1979 } 1980 } 1981 tv.tv_sec = 0; 1982 tv.tv_usec = hpts->p_hpts_sleep_time * HPTS_TICKS_PER_USEC; 1983 sb = tvtosbt(tv); 1984 if (tcp_hpts_callout_skip_swi == 0) { 1985 callout_reset_sbt_on(&hpts->co, sb, 0, 1986 hpts_timeout_swi, hpts, hpts->p_cpu, 1987 (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision))); 1988 } else { 1989 callout_reset_sbt_on(&hpts->co, sb, 0, 1990 hpts_timeout_dir, hpts, 1991 hpts->p_cpu, 1992 C_PREL(tcp_hpts_precision)); 1993 } 1994 } 1995 /* 1996 * If we somehow have an empty domain, fall back to choosing 1997 * among all htps threads. 1998 */ 1999 for (i = 0; i < vm_ndomains; i++) { 2000 if (hpts_domains[i].count == 0) { 2001 tcp_bind_threads = 0; 2002 break; 2003 } 2004 } 2005 2006 printf("TCP Hpts created %d swi interrupt threads and bound %d to %s\n", 2007 created, bound, 2008 tcp_bind_threads == 2 ? "NUMA domains" : "cpus"); 2009 } 2010 2011 SYSINIT(tcphptsi, SI_SUB_KTHREAD_IDLE, SI_ORDER_ANY, tcp_init_hptsi, NULL); 2012 MODULE_VERSION(tcphpts, 1); 2013