xref: /freebsd/sys/netinet/tcp_hpts.c (revision 62ff619dcc3540659a319be71c9a489f1659e14a)
1 /*-
2  * Copyright (c) 2016-2018 Netflix, Inc.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  * 1. Redistributions of source code must retain the above copyright
8  *    notice, this list of conditions and the following disclaimer.
9  * 2. Redistributions in binary form must reproduce the above copyright
10  *    notice, this list of conditions and the following disclaimer in the
11  *    documentation and/or other materials provided with the distribution.
12  *
13  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
14  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
17  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23  * SUCH DAMAGE.
24  *
25  */
26 #include <sys/cdefs.h>
27 __FBSDID("$FreeBSD$");
28 
29 #include "opt_inet.h"
30 #include "opt_inet6.h"
31 #include "opt_rss.h"
32 #include "opt_tcpdebug.h"
33 
34 /**
35  * Some notes about usage.
36  *
37  * The tcp_hpts system is designed to provide a high precision timer
38  * system for tcp. Its main purpose is to provide a mechanism for
39  * pacing packets out onto the wire. It can be used in two ways
40  * by a given TCP stack (and those two methods can be used simultaneously).
41  *
42  * First, and probably the main thing its used by Rack and BBR, it can
43  * be used to call tcp_output() of a transport stack at some time in the future.
44  * The normal way this is done is that tcp_output() of the stack schedules
45  * itself to be called again by calling tcp_hpts_insert(tcpcb, slot). The
46  * slot is the time from now that the stack wants to be called but it
47  * must be converted to tcp_hpts's notion of slot. This is done with
48  * one of the macros HPTS_MS_TO_SLOTS or HPTS_USEC_TO_SLOTS. So a typical
49  * call from the tcp_output() routine might look like:
50  *
51  * tcp_hpts_insert(tp, HPTS_USEC_TO_SLOTS(550));
52  *
53  * The above would schedule tcp_ouput() to be called in 550 useconds.
54  * Note that if using this mechanism the stack will want to add near
55  * its top a check to prevent unwanted calls (from user land or the
56  * arrival of incoming ack's). So it would add something like:
57  *
58  * if (tcp_in_hpts(inp))
59  *    return;
60  *
61  * to prevent output processing until the time alotted has gone by.
62  * Of course this is a bare bones example and the stack will probably
63  * have more consideration then just the above.
64  *
65  * In order to run input queued segments from the HPTS context the
66  * tcp stack must define an input function for
67  * tfb_do_queued_segments(). This function understands
68  * how to dequeue a array of packets that were input and
69  * knows how to call the correct processing routine.
70  *
71  * Locking in this is important as well so most likely the
72  * stack will need to define the tfb_do_segment_nounlock()
73  * splitting tfb_do_segment() into two parts. The main processing
74  * part that does not unlock the INP and returns a value of 1 or 0.
75  * It returns 0 if all is well and the lock was not released. It
76  * returns 1 if we had to destroy the TCB (a reset received etc).
77  * The remains of tfb_do_segment() then become just a simple call
78  * to the tfb_do_segment_nounlock() function and check the return
79  * code and possibly unlock.
80  *
81  * The stack must also set the flag on the INP that it supports this
82  * feature i.e. INP_SUPPORTS_MBUFQ. The LRO code recoginizes
83  * this flag as well and will queue packets when it is set.
84  * There are other flags as well INP_MBUF_QUEUE_READY and
85  * INP_DONT_SACK_QUEUE. The first flag tells the LRO code
86  * that we are in the pacer for output so there is no
87  * need to wake up the hpts system to get immediate
88  * input. The second tells the LRO code that its okay
89  * if a SACK arrives you can still defer input and let
90  * the current hpts timer run (this is usually set when
91  * a rack timer is up so we know SACK's are happening
92  * on the connection already and don't want to wakeup yet).
93  *
94  * There is a common functions within the rack_bbr_common code
95  * version i.e. ctf_do_queued_segments(). This function
96  * knows how to take the input queue of packets from
97  * tp->t_in_pkts and process them digging out
98  * all the arguments, calling any bpf tap and
99  * calling into tfb_do_segment_nounlock(). The common
100  * function (ctf_do_queued_segments())  requires that
101  * you have defined the tfb_do_segment_nounlock() as
102  * described above.
103  */
104 
105 #include <sys/param.h>
106 #include <sys/bus.h>
107 #include <sys/interrupt.h>
108 #include <sys/module.h>
109 #include <sys/kernel.h>
110 #include <sys/hhook.h>
111 #include <sys/malloc.h>
112 #include <sys/mbuf.h>
113 #include <sys/proc.h>		/* for proc0 declaration */
114 #include <sys/socket.h>
115 #include <sys/socketvar.h>
116 #include <sys/sysctl.h>
117 #include <sys/systm.h>
118 #include <sys/refcount.h>
119 #include <sys/sched.h>
120 #include <sys/queue.h>
121 #include <sys/smp.h>
122 #include <sys/counter.h>
123 #include <sys/time.h>
124 #include <sys/kthread.h>
125 #include <sys/kern_prefetch.h>
126 
127 #include <vm/uma.h>
128 #include <vm/vm.h>
129 
130 #include <net/route.h>
131 #include <net/vnet.h>
132 
133 #ifdef RSS
134 #include <net/netisr.h>
135 #include <net/rss_config.h>
136 #endif
137 
138 #define TCPSTATES		/* for logging */
139 
140 #include <netinet/in.h>
141 #include <netinet/in_kdtrace.h>
142 #include <netinet/in_pcb.h>
143 #include <netinet/ip.h>
144 #include <netinet/ip_icmp.h>	/* required for icmp_var.h */
145 #include <netinet/icmp_var.h>	/* for ICMP_BANDLIM */
146 #include <netinet/ip_var.h>
147 #include <netinet/ip6.h>
148 #include <netinet6/in6_pcb.h>
149 #include <netinet6/ip6_var.h>
150 #include <netinet/tcp.h>
151 #include <netinet/tcp_fsm.h>
152 #include <netinet/tcp_seq.h>
153 #include <netinet/tcp_timer.h>
154 #include <netinet/tcp_var.h>
155 #include <netinet/tcpip.h>
156 #include <netinet/cc/cc.h>
157 #include <netinet/tcp_hpts.h>
158 #include <netinet/tcp_log_buf.h>
159 
160 #ifdef tcpdebug
161 #include <netinet/tcp_debug.h>
162 #endif				/* tcpdebug */
163 #ifdef tcp_offload
164 #include <netinet/tcp_offload.h>
165 #endif
166 
167 /*
168  * The hpts uses a 102400 wheel. The wheel
169  * defines the time in 10 usec increments (102400 x 10).
170  * This gives a range of 10usec - 1024ms to place
171  * an entry within. If the user requests more than
172  * 1.024 second, a remaineder is attached and the hpts
173  * when seeing the remainder will re-insert the
174  * inpcb forward in time from where it is until
175  * the remainder is zero.
176  */
177 
178 #define NUM_OF_HPTSI_SLOTS 102400
179 
180 /* Each hpts has its own p_mtx which is used for locking */
181 #define	HPTS_MTX_ASSERT(hpts)	mtx_assert(&(hpts)->p_mtx, MA_OWNED)
182 #define	HPTS_LOCK(hpts)		mtx_lock(&(hpts)->p_mtx)
183 #define	HPTS_UNLOCK(hpts)	mtx_unlock(&(hpts)->p_mtx)
184 struct tcp_hpts_entry {
185 	/* Cache line 0x00 */
186 	struct mtx p_mtx;	/* Mutex for hpts */
187 	struct timeval p_mysleep;	/* Our min sleep time */
188 	uint64_t syscall_cnt;
189 	uint64_t sleeping;	/* What the actual sleep was (if sleeping) */
190 	uint16_t p_hpts_active; /* Flag that says hpts is awake  */
191 	uint8_t p_wheel_complete; /* have we completed the wheel arc walk? */
192 	uint32_t p_curtick;	/* Tick in 10 us the hpts is going to */
193 	uint32_t p_runningslot; /* Current tick we are at if we are running */
194 	uint32_t p_prev_slot;	/* Previous slot we were on */
195 	uint32_t p_cur_slot;	/* Current slot in wheel hpts is draining */
196 	uint32_t p_nxt_slot;	/* The next slot outside the current range of
197 				 * slots that the hpts is running on. */
198 	int32_t p_on_queue_cnt;	/* Count on queue in this hpts */
199 	uint32_t p_lasttick;	/* Last tick before the current one */
200 	uint8_t p_direct_wake :1, /* boolean */
201 		p_on_min_sleep:1, /* boolean */
202 		p_hpts_wake_scheduled:1, /* boolean */
203 		p_avail:5;
204 	uint8_t p_fill[3];	  /* Fill to 32 bits */
205 	/* Cache line 0x40 */
206 	struct hptsh {
207 		TAILQ_HEAD(, inpcb)	head;
208 		uint32_t		count;
209 		uint32_t		gencnt;
210 	} *p_hptss;			/* Hptsi wheel */
211 	uint32_t p_hpts_sleep_time;	/* Current sleep interval having a max
212 					 * of 255ms */
213 	uint32_t overidden_sleep;	/* what was overrided by min-sleep for logging */
214 	uint32_t saved_lasttick;	/* for logging */
215 	uint32_t saved_curtick;		/* for logging */
216 	uint32_t saved_curslot;		/* for logging */
217 	uint32_t saved_prev_slot;       /* for logging */
218 	uint32_t p_delayed_by;	/* How much were we delayed by */
219 	/* Cache line 0x80 */
220 	struct sysctl_ctx_list hpts_ctx;
221 	struct sysctl_oid *hpts_root;
222 	struct intr_event *ie;
223 	void *ie_cookie;
224 	uint16_t p_num;		/* The hpts number one per cpu */
225 	uint16_t p_cpu;		/* The hpts CPU */
226 	/* There is extra space in here */
227 	/* Cache line 0x100 */
228 	struct callout co __aligned(CACHE_LINE_SIZE);
229 }               __aligned(CACHE_LINE_SIZE);
230 
231 static struct tcp_hptsi {
232 	struct cpu_group **grps;
233 	struct tcp_hpts_entry **rp_ent;	/* Array of hptss */
234 	uint32_t *cts_last_ran;
235 	uint32_t grp_cnt;
236 	uint32_t rp_num_hptss;	/* Number of hpts threads */
237 } tcp_pace;
238 
239 MALLOC_DEFINE(M_TCPHPTS, "tcp_hpts", "TCP hpts");
240 #ifdef RSS
241 static int tcp_bind_threads = 1;
242 #else
243 static int tcp_bind_threads = 2;
244 #endif
245 static int tcp_use_irq_cpu = 0;
246 static uint32_t *cts_last_ran;
247 static int hpts_does_tp_logging = 0;
248 
249 static int32_t tcp_hptsi(struct tcp_hpts_entry *hpts, int from_callout);
250 static void tcp_hpts_thread(void *ctx);
251 static void tcp_init_hptsi(void *st);
252 
253 int32_t tcp_min_hptsi_time = DEFAULT_MIN_SLEEP;
254 static int conn_cnt_thresh = DEFAULT_CONNECTION_THESHOLD;
255 static int32_t dynamic_min_sleep = DYNAMIC_MIN_SLEEP;
256 static int32_t dynamic_max_sleep = DYNAMIC_MAX_SLEEP;
257 
258 
259 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, hpts, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
260     "TCP Hpts controls");
261 SYSCTL_NODE(_net_inet_tcp_hpts, OID_AUTO, stats, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
262     "TCP Hpts statistics");
263 
264 #define	timersub(tvp, uvp, vvp)						\
265 	do {								\
266 		(vvp)->tv_sec = (tvp)->tv_sec - (uvp)->tv_sec;		\
267 		(vvp)->tv_usec = (tvp)->tv_usec - (uvp)->tv_usec;	\
268 		if ((vvp)->tv_usec < 0) {				\
269 			(vvp)->tv_sec--;				\
270 			(vvp)->tv_usec += 1000000;			\
271 		}							\
272 	} while (0)
273 
274 static int32_t tcp_hpts_precision = 120;
275 
276 static struct hpts_domain_info {
277 	int count;
278 	int cpu[MAXCPU];
279 } hpts_domains[MAXMEMDOM];
280 
281 enum {
282 	IHPTS_NONE = 0,
283 	IHPTS_ONQUEUE,
284 	IHPTS_MOVING,
285 };
286 
287 counter_u64_t hpts_hopelessly_behind;
288 
289 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, hopeless, CTLFLAG_RD,
290     &hpts_hopelessly_behind,
291     "Number of times hpts could not catch up and was behind hopelessly");
292 
293 counter_u64_t hpts_loops;
294 
295 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, loops, CTLFLAG_RD,
296     &hpts_loops, "Number of times hpts had to loop to catch up");
297 
298 counter_u64_t back_tosleep;
299 
300 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, no_tcbsfound, CTLFLAG_RD,
301     &back_tosleep, "Number of times hpts found no tcbs");
302 
303 counter_u64_t combined_wheel_wrap;
304 
305 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, comb_wheel_wrap, CTLFLAG_RD,
306     &combined_wheel_wrap, "Number of times the wheel lagged enough to have an insert see wrap");
307 
308 counter_u64_t wheel_wrap;
309 
310 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, wheel_wrap, CTLFLAG_RD,
311     &wheel_wrap, "Number of times the wheel lagged enough to have an insert see wrap");
312 
313 counter_u64_t hpts_direct_call;
314 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, direct_call, CTLFLAG_RD,
315     &hpts_direct_call, "Number of times hpts was called by syscall/trap or other entry");
316 
317 counter_u64_t hpts_wake_timeout;
318 
319 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, timeout_wakeup, CTLFLAG_RD,
320     &hpts_wake_timeout, "Number of times hpts threads woke up via the callout expiring");
321 
322 counter_u64_t hpts_direct_awakening;
323 
324 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, direct_awakening, CTLFLAG_RD,
325     &hpts_direct_awakening, "Number of times hpts threads woke up via the callout expiring");
326 
327 counter_u64_t hpts_back_tosleep;
328 
329 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, back_tosleep, CTLFLAG_RD,
330     &hpts_back_tosleep, "Number of times hpts threads woke up via the callout expiring and went back to sleep no work");
331 
332 counter_u64_t cpu_uses_flowid;
333 counter_u64_t cpu_uses_random;
334 
335 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, cpusel_flowid, CTLFLAG_RD,
336     &cpu_uses_flowid, "Number of times when setting cpuid we used the flowid field");
337 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, cpusel_random, CTLFLAG_RD,
338     &cpu_uses_random, "Number of times when setting cpuid we used the a random value");
339 
340 TUNABLE_INT("net.inet.tcp.bind_hptss", &tcp_bind_threads);
341 TUNABLE_INT("net.inet.tcp.use_irq", &tcp_use_irq_cpu);
342 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, bind_hptss, CTLFLAG_RD,
343     &tcp_bind_threads, 2,
344     "Thread Binding tunable");
345 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, use_irq, CTLFLAG_RD,
346     &tcp_use_irq_cpu, 0,
347     "Use of irq CPU  tunable");
348 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, precision, CTLFLAG_RW,
349     &tcp_hpts_precision, 120,
350     "Value for PRE() precision of callout");
351 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, cnt_thresh, CTLFLAG_RW,
352     &conn_cnt_thresh, 0,
353     "How many connections (below) make us use the callout based mechanism");
354 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, logging, CTLFLAG_RW,
355     &hpts_does_tp_logging, 0,
356     "Do we add to any tp that has logging on pacer logs");
357 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, dyn_minsleep, CTLFLAG_RW,
358     &dynamic_min_sleep, 250,
359     "What is the dynamic minsleep value?");
360 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, dyn_maxsleep, CTLFLAG_RW,
361     &dynamic_max_sleep, 5000,
362     "What is the dynamic maxsleep value?");
363 
364 static int32_t max_pacer_loops = 10;
365 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, loopmax, CTLFLAG_RW,
366     &max_pacer_loops, 10,
367     "What is the maximum number of times the pacer will loop trying to catch up");
368 
369 #define HPTS_MAX_SLEEP_ALLOWED (NUM_OF_HPTSI_SLOTS/2)
370 
371 static uint32_t hpts_sleep_max = HPTS_MAX_SLEEP_ALLOWED;
372 
373 static int
374 sysctl_net_inet_tcp_hpts_max_sleep(SYSCTL_HANDLER_ARGS)
375 {
376 	int error;
377 	uint32_t new;
378 
379 	new = hpts_sleep_max;
380 	error = sysctl_handle_int(oidp, &new, 0, req);
381 	if (error == 0 && req->newptr) {
382 		if ((new < (dynamic_min_sleep/HPTS_TICKS_PER_SLOT)) ||
383 		     (new > HPTS_MAX_SLEEP_ALLOWED))
384 			error = EINVAL;
385 		else
386 			hpts_sleep_max = new;
387 	}
388 	return (error);
389 }
390 
391 static int
392 sysctl_net_inet_tcp_hpts_min_sleep(SYSCTL_HANDLER_ARGS)
393 {
394 	int error;
395 	uint32_t new;
396 
397 	new = tcp_min_hptsi_time;
398 	error = sysctl_handle_int(oidp, &new, 0, req);
399 	if (error == 0 && req->newptr) {
400 		if (new < LOWEST_SLEEP_ALLOWED)
401 			error = EINVAL;
402 		else
403 			tcp_min_hptsi_time = new;
404 	}
405 	return (error);
406 }
407 
408 SYSCTL_PROC(_net_inet_tcp_hpts, OID_AUTO, maxsleep,
409     CTLTYPE_UINT | CTLFLAG_RW,
410     &hpts_sleep_max, 0,
411     &sysctl_net_inet_tcp_hpts_max_sleep, "IU",
412     "Maximum time hpts will sleep in slots");
413 
414 SYSCTL_PROC(_net_inet_tcp_hpts, OID_AUTO, minsleep,
415     CTLTYPE_UINT | CTLFLAG_RW,
416     &tcp_min_hptsi_time, 0,
417     &sysctl_net_inet_tcp_hpts_min_sleep, "IU",
418     "The minimum time the hpts must sleep before processing more slots");
419 
420 static int ticks_indicate_more_sleep = TICKS_INDICATE_MORE_SLEEP;
421 static int ticks_indicate_less_sleep = TICKS_INDICATE_LESS_SLEEP;
422 static int tcp_hpts_no_wake_over_thresh = 1;
423 
424 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, more_sleep, CTLFLAG_RW,
425     &ticks_indicate_more_sleep, 0,
426     "If we only process this many or less on a timeout, we need longer sleep on the next callout");
427 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, less_sleep, CTLFLAG_RW,
428     &ticks_indicate_less_sleep, 0,
429     "If we process this many or more on a timeout, we need less sleep on the next callout");
430 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, nowake_over_thresh, CTLFLAG_RW,
431     &tcp_hpts_no_wake_over_thresh, 0,
432     "When we are over the threshold on the pacer do we prohibit wakeups?");
433 
434 static void
435 tcp_hpts_log(struct tcp_hpts_entry *hpts, struct tcpcb *tp, struct timeval *tv,
436 	     int slots_to_run, int idx, int from_callout)
437 {
438 	union tcp_log_stackspecific log;
439 	/*
440 	 * Unused logs are
441 	 * 64 bit - delRate, rttProp, bw_inuse
442 	 * 16 bit - cwnd_gain
443 	 *  8 bit - bbr_state, bbr_substate, inhpts;
444 	 */
445 	memset(&log.u_bbr, 0, sizeof(log.u_bbr));
446 	log.u_bbr.flex1 = hpts->p_nxt_slot;
447 	log.u_bbr.flex2 = hpts->p_cur_slot;
448 	log.u_bbr.flex3 = hpts->p_prev_slot;
449 	log.u_bbr.flex4 = idx;
450 	log.u_bbr.flex5 = hpts->p_curtick;
451 	log.u_bbr.flex6 = hpts->p_on_queue_cnt;
452 	log.u_bbr.flex7 = hpts->p_cpu;
453 	log.u_bbr.flex8 = (uint8_t)from_callout;
454 	log.u_bbr.inflight = slots_to_run;
455 	log.u_bbr.applimited = hpts->overidden_sleep;
456 	log.u_bbr.delivered = hpts->saved_curtick;
457 	log.u_bbr.timeStamp = tcp_tv_to_usectick(tv);
458 	log.u_bbr.epoch = hpts->saved_curslot;
459 	log.u_bbr.lt_epoch = hpts->saved_prev_slot;
460 	log.u_bbr.pkts_out = hpts->p_delayed_by;
461 	log.u_bbr.lost = hpts->p_hpts_sleep_time;
462 	log.u_bbr.pacing_gain = hpts->p_cpu;
463 	log.u_bbr.pkt_epoch = hpts->p_runningslot;
464 	log.u_bbr.use_lt_bw = 1;
465 	TCP_LOG_EVENTP(tp, NULL,
466 		       &tp->t_inpcb->inp_socket->so_rcv,
467 		       &tp->t_inpcb->inp_socket->so_snd,
468 		       BBR_LOG_HPTSDIAG, 0,
469 		       0, &log, false, tv);
470 }
471 
472 static void
473 tcp_wakehpts(struct tcp_hpts_entry *hpts)
474 {
475 	HPTS_MTX_ASSERT(hpts);
476 
477 	if (tcp_hpts_no_wake_over_thresh && (hpts->p_on_queue_cnt >= conn_cnt_thresh)) {
478 		hpts->p_direct_wake = 0;
479 		return;
480 	}
481 	if (hpts->p_hpts_wake_scheduled == 0) {
482 		hpts->p_hpts_wake_scheduled = 1;
483 		swi_sched(hpts->ie_cookie, 0);
484 	}
485 }
486 
487 static void
488 hpts_timeout_swi(void *arg)
489 {
490 	struct tcp_hpts_entry *hpts;
491 
492 	hpts = (struct tcp_hpts_entry *)arg;
493 	swi_sched(hpts->ie_cookie, 0);
494 }
495 
496 static void
497 inp_hpts_insert(struct inpcb *inp, struct tcp_hpts_entry *hpts)
498 {
499 	struct hptsh *hptsh;
500 
501 	INP_WLOCK_ASSERT(inp);
502 	HPTS_MTX_ASSERT(hpts);
503 	MPASS(hpts->p_cpu == inp->inp_hpts_cpu);
504 	MPASS(!(inp->inp_flags & (INP_DROPPED|INP_TIMEWAIT)));
505 
506 	hptsh = &hpts->p_hptss[inp->inp_hptsslot];
507 
508 	if (inp->inp_in_hpts == IHPTS_NONE) {
509 		inp->inp_in_hpts = IHPTS_ONQUEUE;
510 		in_pcbref(inp);
511 	} else if (inp->inp_in_hpts == IHPTS_MOVING) {
512 		inp->inp_in_hpts = IHPTS_ONQUEUE;
513 	} else
514 		MPASS(inp->inp_in_hpts == IHPTS_ONQUEUE);
515 	inp->inp_hpts_gencnt = hptsh->gencnt;
516 
517 	TAILQ_INSERT_TAIL(&hptsh->head, inp, inp_hpts);
518 	hptsh->count++;
519 	hpts->p_on_queue_cnt++;
520 }
521 
522 static struct tcp_hpts_entry *
523 tcp_hpts_lock(struct inpcb *inp)
524 {
525 	struct tcp_hpts_entry *hpts;
526 
527 	INP_LOCK_ASSERT(inp);
528 
529 	hpts = tcp_pace.rp_ent[inp->inp_hpts_cpu];
530 	HPTS_LOCK(hpts);
531 
532 	return (hpts);
533 }
534 
535 static void
536 inp_hpts_release(struct inpcb *inp)
537 {
538 	bool released __diagused;
539 
540 	inp->inp_in_hpts = IHPTS_NONE;
541 	released = in_pcbrele_wlocked(inp);
542 	MPASS(released == false);
543 }
544 
545 /*
546  * Called normally with the INP_LOCKED but it
547  * does not matter, the hpts lock is the key
548  * but the lock order allows us to hold the
549  * INP lock and then get the hpts lock.
550  */
551 void
552 tcp_hpts_remove(struct inpcb *inp)
553 {
554 	struct tcp_hpts_entry *hpts;
555 	struct hptsh *hptsh;
556 
557 	INP_WLOCK_ASSERT(inp);
558 
559 	hpts = tcp_hpts_lock(inp);
560 	if (inp->inp_in_hpts == IHPTS_ONQUEUE) {
561 		hptsh = &hpts->p_hptss[inp->inp_hptsslot];
562 		inp->inp_hpts_request = 0;
563 		if (__predict_true(inp->inp_hpts_gencnt == hptsh->gencnt)) {
564 			TAILQ_REMOVE(&hptsh->head, inp, inp_hpts);
565 			MPASS(hptsh->count > 0);
566 			hptsh->count--;
567 			MPASS(hpts->p_on_queue_cnt > 0);
568 			hpts->p_on_queue_cnt--;
569 			inp_hpts_release(inp);
570 		} else {
571 			/*
572 			 * tcp_hptsi() now owns the TAILQ head of this inp.
573 			 * Can't TAILQ_REMOVE, just mark it.
574 			 */
575 #ifdef INVARIANTS
576 			struct inpcb *tmp;
577 
578 			TAILQ_FOREACH(tmp, &hptsh->head, inp_hpts)
579 				MPASS(tmp != inp);
580 #endif
581 			inp->inp_in_hpts = IHPTS_MOVING;
582 			inp->inp_hptsslot = -1;
583 		}
584 	} else if (inp->inp_in_hpts == IHPTS_MOVING) {
585 		/*
586 		 * Handle a special race condition:
587 		 * tcp_hptsi() moves inpcb to detached tailq
588 		 * tcp_hpts_remove() marks as IHPTS_MOVING, slot = -1
589 		 * tcp_hpts_insert() sets slot to a meaningful value
590 		 * tcp_hpts_remove() again (we are here!), then in_pcbdrop()
591 		 * tcp_hptsi() finds pcb with meaningful slot and INP_DROPPED
592 		 */
593 		inp->inp_hptsslot = -1;
594 	}
595 	HPTS_UNLOCK(hpts);
596 }
597 
598 bool
599 tcp_in_hpts(struct inpcb *inp)
600 {
601 
602 	return (inp->inp_in_hpts == IHPTS_ONQUEUE);
603 }
604 
605 static inline int
606 hpts_slot(uint32_t wheel_slot, uint32_t plus)
607 {
608 	/*
609 	 * Given a slot on the wheel, what slot
610 	 * is that plus ticks out?
611 	 */
612 	KASSERT(wheel_slot < NUM_OF_HPTSI_SLOTS, ("Invalid tick %u not on wheel", wheel_slot));
613 	return ((wheel_slot + plus) % NUM_OF_HPTSI_SLOTS);
614 }
615 
616 static inline int
617 tick_to_wheel(uint32_t cts_in_wticks)
618 {
619 	/*
620 	 * Given a timestamp in ticks (so by
621 	 * default to get it to a real time one
622 	 * would multiply by 10.. i.e the number
623 	 * of ticks in a slot) map it to our limited
624 	 * space wheel.
625 	 */
626 	return (cts_in_wticks % NUM_OF_HPTSI_SLOTS);
627 }
628 
629 static inline int
630 hpts_slots_diff(int prev_slot, int slot_now)
631 {
632 	/*
633 	 * Given two slots that are someplace
634 	 * on our wheel. How far are they apart?
635 	 */
636 	if (slot_now > prev_slot)
637 		return (slot_now - prev_slot);
638 	else if (slot_now == prev_slot)
639 		/*
640 		 * Special case, same means we can go all of our
641 		 * wheel less one slot.
642 		 */
643 		return (NUM_OF_HPTSI_SLOTS - 1);
644 	else
645 		return ((NUM_OF_HPTSI_SLOTS - prev_slot) + slot_now);
646 }
647 
648 /*
649  * Given a slot on the wheel that is the current time
650  * mapped to the wheel (wheel_slot), what is the maximum
651  * distance forward that can be obtained without
652  * wrapping past either prev_slot or running_slot
653  * depending on the htps state? Also if passed
654  * a uint32_t *, fill it with the slot location.
655  *
656  * Note if you do not give this function the current
657  * time (that you think it is) mapped to the wheel slot
658  * then the results will not be what you expect and
659  * could lead to invalid inserts.
660  */
661 static inline int32_t
662 max_slots_available(struct tcp_hpts_entry *hpts, uint32_t wheel_slot, uint32_t *target_slot)
663 {
664 	uint32_t dis_to_travel, end_slot, pacer_to_now, avail_on_wheel;
665 
666 	if ((hpts->p_hpts_active == 1) &&
667 	    (hpts->p_wheel_complete == 0)) {
668 		end_slot = hpts->p_runningslot;
669 		/* Back up one tick */
670 		if (end_slot == 0)
671 			end_slot = NUM_OF_HPTSI_SLOTS - 1;
672 		else
673 			end_slot--;
674 		if (target_slot)
675 			*target_slot = end_slot;
676 	} else {
677 		/*
678 		 * For the case where we are
679 		 * not active, or we have
680 		 * completed the pass over
681 		 * the wheel, we can use the
682 		 * prev tick and subtract one from it. This puts us
683 		 * as far out as possible on the wheel.
684 		 */
685 		end_slot = hpts->p_prev_slot;
686 		if (end_slot == 0)
687 			end_slot = NUM_OF_HPTSI_SLOTS - 1;
688 		else
689 			end_slot--;
690 		if (target_slot)
691 			*target_slot = end_slot;
692 		/*
693 		 * Now we have close to the full wheel left minus the
694 		 * time it has been since the pacer went to sleep. Note
695 		 * that wheel_tick, passed in, should be the current time
696 		 * from the perspective of the caller, mapped to the wheel.
697 		 */
698 		if (hpts->p_prev_slot != wheel_slot)
699 			dis_to_travel = hpts_slots_diff(hpts->p_prev_slot, wheel_slot);
700 		else
701 			dis_to_travel = 1;
702 		/*
703 		 * dis_to_travel in this case is the space from when the
704 		 * pacer stopped (p_prev_slot) and where our wheel_slot
705 		 * is now. To know how many slots we can put it in we
706 		 * subtract from the wheel size. We would not want
707 		 * to place something after p_prev_slot or it will
708 		 * get ran too soon.
709 		 */
710 		return (NUM_OF_HPTSI_SLOTS - dis_to_travel);
711 	}
712 	/*
713 	 * So how many slots are open between p_runningslot -> p_cur_slot
714 	 * that is what is currently un-available for insertion. Special
715 	 * case when we are at the last slot, this gets 1, so that
716 	 * the answer to how many slots are available is all but 1.
717 	 */
718 	if (hpts->p_runningslot == hpts->p_cur_slot)
719 		dis_to_travel = 1;
720 	else
721 		dis_to_travel = hpts_slots_diff(hpts->p_runningslot, hpts->p_cur_slot);
722 	/*
723 	 * How long has the pacer been running?
724 	 */
725 	if (hpts->p_cur_slot != wheel_slot) {
726 		/* The pacer is a bit late */
727 		pacer_to_now = hpts_slots_diff(hpts->p_cur_slot, wheel_slot);
728 	} else {
729 		/* The pacer is right on time, now == pacers start time */
730 		pacer_to_now = 0;
731 	}
732 	/*
733 	 * To get the number left we can insert into we simply
734 	 * subract the distance the pacer has to run from how
735 	 * many slots there are.
736 	 */
737 	avail_on_wheel = NUM_OF_HPTSI_SLOTS - dis_to_travel;
738 	/*
739 	 * Now how many of those we will eat due to the pacer's
740 	 * time (p_cur_slot) of start being behind the
741 	 * real time (wheel_slot)?
742 	 */
743 	if (avail_on_wheel <= pacer_to_now) {
744 		/*
745 		 * Wheel wrap, we can't fit on the wheel, that
746 		 * is unusual the system must be way overloaded!
747 		 * Insert into the assured slot, and return special
748 		 * "0".
749 		 */
750 		counter_u64_add(combined_wheel_wrap, 1);
751 		*target_slot = hpts->p_nxt_slot;
752 		return (0);
753 	} else {
754 		/*
755 		 * We know how many slots are open
756 		 * on the wheel (the reverse of what
757 		 * is left to run. Take away the time
758 		 * the pacer started to now (wheel_slot)
759 		 * and that tells you how many slots are
760 		 * open that can be inserted into that won't
761 		 * be touched by the pacer until later.
762 		 */
763 		return (avail_on_wheel - pacer_to_now);
764 	}
765 }
766 
767 
768 #ifdef INVARIANTS
769 static void
770 check_if_slot_would_be_wrong(struct tcp_hpts_entry *hpts, struct inpcb *inp, uint32_t inp_hptsslot, int line)
771 {
772 	/*
773 	 * Sanity checks for the pacer with invariants
774 	 * on insert.
775 	 */
776 	KASSERT(inp_hptsslot < NUM_OF_HPTSI_SLOTS,
777 		("hpts:%p inp:%p slot:%d > max",
778 		 hpts, inp, inp_hptsslot));
779 	if ((hpts->p_hpts_active) &&
780 	    (hpts->p_wheel_complete == 0)) {
781 		/*
782 		 * If the pacer is processing a arc
783 		 * of the wheel, we need to make
784 		 * sure we are not inserting within
785 		 * that arc.
786 		 */
787 		int distance, yet_to_run;
788 
789 		distance = hpts_slots_diff(hpts->p_runningslot, inp_hptsslot);
790 		if (hpts->p_runningslot != hpts->p_cur_slot)
791 			yet_to_run = hpts_slots_diff(hpts->p_runningslot, hpts->p_cur_slot);
792 		else
793 			yet_to_run = 0;	/* processing last slot */
794 		KASSERT(yet_to_run <= distance,
795 			("hpts:%p inp:%p slot:%d distance:%d yet_to_run:%d rs:%d cs:%d",
796 			 hpts, inp, inp_hptsslot,
797 			 distance, yet_to_run,
798 			 hpts->p_runningslot, hpts->p_cur_slot));
799 	}
800 }
801 #endif
802 
803 uint32_t
804 tcp_hpts_insert_diag(struct inpcb *inp, uint32_t slot, int32_t line, struct hpts_diag *diag)
805 {
806 	struct tcp_hpts_entry *hpts;
807 	struct timeval tv;
808 	uint32_t slot_on, wheel_cts, last_slot, need_new_to = 0;
809 	int32_t wheel_slot, maxslots;
810 	bool need_wakeup = false;
811 
812 	INP_WLOCK_ASSERT(inp);
813 	MPASS(!tcp_in_hpts(inp));
814 	MPASS(!(inp->inp_flags & (INP_DROPPED|INP_TIMEWAIT)));
815 
816 	/*
817 	 * We now return the next-slot the hpts will be on, beyond its
818 	 * current run (if up) or where it was when it stopped if it is
819 	 * sleeping.
820 	 */
821 	hpts = tcp_hpts_lock(inp);
822 	microuptime(&tv);
823 	if (diag) {
824 		memset(diag, 0, sizeof(struct hpts_diag));
825 		diag->p_hpts_active = hpts->p_hpts_active;
826 		diag->p_prev_slot = hpts->p_prev_slot;
827 		diag->p_runningslot = hpts->p_runningslot;
828 		diag->p_nxt_slot = hpts->p_nxt_slot;
829 		diag->p_cur_slot = hpts->p_cur_slot;
830 		diag->p_curtick = hpts->p_curtick;
831 		diag->p_lasttick = hpts->p_lasttick;
832 		diag->slot_req = slot;
833 		diag->p_on_min_sleep = hpts->p_on_min_sleep;
834 		diag->hpts_sleep_time = hpts->p_hpts_sleep_time;
835 	}
836 	if (slot == 0) {
837 		/* Ok we need to set it on the hpts in the current slot */
838 		inp->inp_hpts_request = 0;
839 		if ((hpts->p_hpts_active == 0) || (hpts->p_wheel_complete)) {
840 			/*
841 			 * A sleeping hpts we want in next slot to run
842 			 * note that in this state p_prev_slot == p_cur_slot
843 			 */
844 			inp->inp_hptsslot = hpts_slot(hpts->p_prev_slot, 1);
845 			if ((hpts->p_on_min_sleep == 0) &&
846 			    (hpts->p_hpts_active == 0))
847 				need_wakeup = true;
848 		} else
849 			inp->inp_hptsslot = hpts->p_runningslot;
850 		if (__predict_true(inp->inp_in_hpts != IHPTS_MOVING))
851 			inp_hpts_insert(inp, hpts);
852 		if (need_wakeup) {
853 			/*
854 			 * Activate the hpts if it is sleeping and its
855 			 * timeout is not 1.
856 			 */
857 			hpts->p_direct_wake = 1;
858 			tcp_wakehpts(hpts);
859 		}
860 		slot_on = hpts->p_nxt_slot;
861 		HPTS_UNLOCK(hpts);
862 
863 		return (slot_on);
864 	}
865 	/* Get the current time relative to the wheel */
866 	wheel_cts = tcp_tv_to_hptstick(&tv);
867 	/* Map it onto the wheel */
868 	wheel_slot = tick_to_wheel(wheel_cts);
869 	/* Now what's the max we can place it at? */
870 	maxslots = max_slots_available(hpts, wheel_slot, &last_slot);
871 	if (diag) {
872 		diag->wheel_slot = wheel_slot;
873 		diag->maxslots = maxslots;
874 		diag->wheel_cts = wheel_cts;
875 	}
876 	if (maxslots == 0) {
877 		/* The pacer is in a wheel wrap behind, yikes! */
878 		if (slot > 1) {
879 			/*
880 			 * Reduce by 1 to prevent a forever loop in
881 			 * case something else is wrong. Note this
882 			 * probably does not hurt because the pacer
883 			 * if its true is so far behind we will be
884 			 * > 1second late calling anyway.
885 			 */
886 			slot--;
887 		}
888 		inp->inp_hptsslot = last_slot;
889 		inp->inp_hpts_request = slot;
890 	} else 	if (maxslots >= slot) {
891 		/* It all fits on the wheel */
892 		inp->inp_hpts_request = 0;
893 		inp->inp_hptsslot = hpts_slot(wheel_slot, slot);
894 	} else {
895 		/* It does not fit */
896 		inp->inp_hpts_request = slot - maxslots;
897 		inp->inp_hptsslot = last_slot;
898 	}
899 	if (diag) {
900 		diag->slot_remaining = inp->inp_hpts_request;
901 		diag->inp_hptsslot = inp->inp_hptsslot;
902 	}
903 #ifdef INVARIANTS
904 	check_if_slot_would_be_wrong(hpts, inp, inp->inp_hptsslot, line);
905 #endif
906 	if (__predict_true(inp->inp_in_hpts != IHPTS_MOVING))
907 		inp_hpts_insert(inp, hpts);
908 	if ((hpts->p_hpts_active == 0) &&
909 	    (inp->inp_hpts_request == 0) &&
910 	    (hpts->p_on_min_sleep == 0)) {
911 		/*
912 		 * The hpts is sleeping and NOT on a minimum
913 		 * sleep time, we need to figure out where
914 		 * it will wake up at and if we need to reschedule
915 		 * its time-out.
916 		 */
917 		uint32_t have_slept, yet_to_sleep;
918 
919 		/* Now do we need to restart the hpts's timer? */
920 		have_slept = hpts_slots_diff(hpts->p_prev_slot, wheel_slot);
921 		if (have_slept < hpts->p_hpts_sleep_time)
922 			yet_to_sleep = hpts->p_hpts_sleep_time - have_slept;
923 		else {
924 			/* We are over-due */
925 			yet_to_sleep = 0;
926 			need_wakeup = 1;
927 		}
928 		if (diag) {
929 			diag->have_slept = have_slept;
930 			diag->yet_to_sleep = yet_to_sleep;
931 		}
932 		if (yet_to_sleep &&
933 		    (yet_to_sleep > slot)) {
934 			/*
935 			 * We need to reschedule the hpts's time-out.
936 			 */
937 			hpts->p_hpts_sleep_time = slot;
938 			need_new_to = slot * HPTS_TICKS_PER_SLOT;
939 		}
940 	}
941 	/*
942 	 * Now how far is the hpts sleeping to? if active is 1, its
943 	 * up and ticking we do nothing, otherwise we may need to
944 	 * reschedule its callout if need_new_to is set from above.
945 	 */
946 	if (need_wakeup) {
947 		hpts->p_direct_wake = 1;
948 		tcp_wakehpts(hpts);
949 		if (diag) {
950 			diag->need_new_to = 0;
951 			diag->co_ret = 0xffff0000;
952 		}
953 	} else if (need_new_to) {
954 		int32_t co_ret;
955 		struct timeval tv;
956 		sbintime_t sb;
957 
958 		tv.tv_sec = 0;
959 		tv.tv_usec = 0;
960 		while (need_new_to > HPTS_USEC_IN_SEC) {
961 			tv.tv_sec++;
962 			need_new_to -= HPTS_USEC_IN_SEC;
963 		}
964 		tv.tv_usec = need_new_to;
965 		sb = tvtosbt(tv);
966 		co_ret = callout_reset_sbt_on(&hpts->co, sb, 0,
967 					      hpts_timeout_swi, hpts, hpts->p_cpu,
968 					      (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision)));
969 		if (diag) {
970 			diag->need_new_to = need_new_to;
971 			diag->co_ret = co_ret;
972 		}
973 	}
974 	slot_on = hpts->p_nxt_slot;
975 	HPTS_UNLOCK(hpts);
976 
977 	return (slot_on);
978 }
979 
980 uint16_t
981 hpts_random_cpu(struct inpcb *inp){
982 	/*
983 	 * No flow type set distribute the load randomly.
984 	 */
985 	uint16_t cpuid;
986 	uint32_t ran;
987 
988 	/*
989 	 * Shortcut if it is already set. XXXGL: does it happen?
990 	 */
991 	if (inp->inp_hpts_cpu_set) {
992 		return (inp->inp_hpts_cpu);
993 	}
994 	/* Nothing set use a random number */
995 	ran = arc4random();
996 	cpuid = (((ran & 0xffff) % mp_ncpus) % tcp_pace.rp_num_hptss);
997 	return (cpuid);
998 }
999 
1000 static uint16_t
1001 hpts_cpuid(struct inpcb *inp, int *failed)
1002 {
1003 	u_int cpuid;
1004 #ifdef NUMA
1005 	struct hpts_domain_info *di;
1006 #endif
1007 
1008 	*failed = 0;
1009 	if (inp->inp_hpts_cpu_set) {
1010 		return (inp->inp_hpts_cpu);
1011 	}
1012 	/*
1013 	 * If we are using the irq cpu set by LRO or
1014 	 * the driver then it overrides all other domains.
1015 	 */
1016 	if (tcp_use_irq_cpu) {
1017 		if (inp->inp_irq_cpu_set == 0) {
1018 			*failed = 1;
1019 			return(0);
1020 		}
1021 		return(inp->inp_irq_cpu);
1022 	}
1023 	/* If one is set the other must be the same */
1024 #ifdef RSS
1025 	cpuid = rss_hash2cpuid(inp->inp_flowid, inp->inp_flowtype);
1026 	if (cpuid == NETISR_CPUID_NONE)
1027 		return (hpts_random_cpu(inp));
1028 	else
1029 		return (cpuid);
1030 #endif
1031 	/*
1032 	 * We don't have a flowid -> cpuid mapping, so cheat and just map
1033 	 * unknown cpuids to curcpu.  Not the best, but apparently better
1034 	 * than defaulting to swi 0.
1035 	 */
1036 	if (inp->inp_flowtype == M_HASHTYPE_NONE) {
1037 		counter_u64_add(cpu_uses_random, 1);
1038 		return (hpts_random_cpu(inp));
1039 	}
1040 	/*
1041 	 * Hash to a thread based on the flowid.  If we are using numa,
1042 	 * then restrict the hash to the numa domain where the inp lives.
1043 	 */
1044 
1045 #ifdef NUMA
1046 	if ((vm_ndomains == 1) ||
1047 	    (inp->inp_numa_domain == M_NODOM)) {
1048 #endif
1049 		cpuid = inp->inp_flowid % mp_ncpus;
1050 #ifdef NUMA
1051 	} else {
1052 		/* Hash into the cpu's that use that domain */
1053 		di = &hpts_domains[inp->inp_numa_domain];
1054 		cpuid = di->cpu[inp->inp_flowid % di->count];
1055 	}
1056 #endif
1057 	counter_u64_add(cpu_uses_flowid, 1);
1058 	return (cpuid);
1059 }
1060 
1061 #ifdef not_longer_used_gleb
1062 static void
1063 tcp_drop_in_pkts(struct tcpcb *tp)
1064 {
1065 	struct mbuf *m, *n;
1066 
1067 	m = tp->t_in_pkt;
1068 	if (m)
1069 		n = m->m_nextpkt;
1070 	else
1071 		n = NULL;
1072 	tp->t_in_pkt = NULL;
1073 	while (m) {
1074 		m_freem(m);
1075 		m = n;
1076 		if (m)
1077 			n = m->m_nextpkt;
1078 	}
1079 }
1080 #endif
1081 
1082 static void
1083 tcp_hpts_set_max_sleep(struct tcp_hpts_entry *hpts, int wrap_loop_cnt)
1084 {
1085 	uint32_t t = 0, i;
1086 
1087 	if ((hpts->p_on_queue_cnt) && (wrap_loop_cnt < 2)) {
1088 		/*
1089 		 * Find next slot that is occupied and use that to
1090 		 * be the sleep time.
1091 		 */
1092 		for (i = 0, t = hpts_slot(hpts->p_cur_slot, 1); i < NUM_OF_HPTSI_SLOTS; i++) {
1093 			if (TAILQ_EMPTY(&hpts->p_hptss[t].head) == 0) {
1094 				break;
1095 			}
1096 			t = (t + 1) % NUM_OF_HPTSI_SLOTS;
1097 		}
1098 		KASSERT((i != NUM_OF_HPTSI_SLOTS), ("Hpts:%p cnt:%d but none found", hpts, hpts->p_on_queue_cnt));
1099 		hpts->p_hpts_sleep_time = min((i + 1), hpts_sleep_max);
1100 	} else {
1101 		/* No one on the wheel sleep for all but 400 slots or sleep max  */
1102 		hpts->p_hpts_sleep_time = hpts_sleep_max;
1103 	}
1104 }
1105 
1106 static int32_t
1107 tcp_hptsi(struct tcp_hpts_entry *hpts, int from_callout)
1108 {
1109 	struct tcpcb *tp;
1110 	struct inpcb *inp;
1111 	struct timeval tv;
1112 	uint64_t total_slots_processed = 0;
1113 	int32_t slots_to_run, i, error;
1114 	int32_t paced_cnt = 0;
1115 	int32_t loop_cnt = 0;
1116 	int32_t did_prefetch = 0;
1117 	int32_t prefetch_ninp = 0;
1118 	int32_t prefetch_tp = 0;
1119 	int32_t wrap_loop_cnt = 0;
1120 	int32_t slot_pos_of_endpoint = 0;
1121 	int32_t orig_exit_slot;
1122 	int8_t completed_measure = 0, seen_endpoint = 0;
1123 
1124 	HPTS_MTX_ASSERT(hpts);
1125 	NET_EPOCH_ASSERT();
1126 	/* record previous info for any logging */
1127 	hpts->saved_lasttick = hpts->p_lasttick;
1128 	hpts->saved_curtick = hpts->p_curtick;
1129 	hpts->saved_curslot = hpts->p_cur_slot;
1130 	hpts->saved_prev_slot = hpts->p_prev_slot;
1131 
1132 	hpts->p_lasttick = hpts->p_curtick;
1133 	hpts->p_curtick = tcp_gethptstick(&tv);
1134 	cts_last_ran[hpts->p_num] = tcp_tv_to_usectick(&tv);
1135 	orig_exit_slot = hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick);
1136 	if ((hpts->p_on_queue_cnt == 0) ||
1137 	    (hpts->p_lasttick == hpts->p_curtick)) {
1138 		/*
1139 		 * No time has yet passed,
1140 		 * or nothing to do.
1141 		 */
1142 		hpts->p_prev_slot = hpts->p_cur_slot;
1143 		hpts->p_lasttick = hpts->p_curtick;
1144 		goto no_run;
1145 	}
1146 again:
1147 	hpts->p_wheel_complete = 0;
1148 	HPTS_MTX_ASSERT(hpts);
1149 	slots_to_run = hpts_slots_diff(hpts->p_prev_slot, hpts->p_cur_slot);
1150 	if (((hpts->p_curtick - hpts->p_lasttick) >
1151 	     ((NUM_OF_HPTSI_SLOTS-1) * HPTS_TICKS_PER_SLOT)) &&
1152 	    (hpts->p_on_queue_cnt != 0)) {
1153 		/*
1154 		 * Wheel wrap is occuring, basically we
1155 		 * are behind and the distance between
1156 		 * run's has spread so much it has exceeded
1157 		 * the time on the wheel (1.024 seconds). This
1158 		 * is ugly and should NOT be happening. We
1159 		 * need to run the entire wheel. We last processed
1160 		 * p_prev_slot, so that needs to be the last slot
1161 		 * we run. The next slot after that should be our
1162 		 * reserved first slot for new, and then starts
1163 		 * the running position. Now the problem is the
1164 		 * reserved "not to yet" place does not exist
1165 		 * and there may be inp's in there that need
1166 		 * running. We can merge those into the
1167 		 * first slot at the head.
1168 		 */
1169 		wrap_loop_cnt++;
1170 		hpts->p_nxt_slot = hpts_slot(hpts->p_prev_slot, 1);
1171 		hpts->p_runningslot = hpts_slot(hpts->p_prev_slot, 2);
1172 		/*
1173 		 * Adjust p_cur_slot to be where we are starting from
1174 		 * hopefully we will catch up (fat chance if something
1175 		 * is broken this bad :( )
1176 		 */
1177 		hpts->p_cur_slot = hpts->p_prev_slot;
1178 		/*
1179 		 * The next slot has guys to run too, and that would
1180 		 * be where we would normally start, lets move them into
1181 		 * the next slot (p_prev_slot + 2) so that we will
1182 		 * run them, the extra 10usecs of late (by being
1183 		 * put behind) does not really matter in this situation.
1184 		 */
1185 		TAILQ_FOREACH(inp, &hpts->p_hptss[hpts->p_nxt_slot].head,
1186 		    inp_hpts) {
1187 			MPASS(inp->inp_hptsslot == hpts->p_nxt_slot);
1188 			MPASS(inp->inp_hpts_gencnt ==
1189 			    hpts->p_hptss[hpts->p_nxt_slot].gencnt);
1190 			MPASS(inp->inp_in_hpts == IHPTS_ONQUEUE);
1191 
1192 			/*
1193 			 * Update gencnt and nextslot accordingly to match
1194 			 * the new location. This is safe since it takes both
1195 			 * the INP lock and the pacer mutex to change the
1196 			 * inp_hptsslot and inp_hpts_gencnt.
1197 			 */
1198 			inp->inp_hpts_gencnt =
1199 			    hpts->p_hptss[hpts->p_runningslot].gencnt;
1200 			inp->inp_hptsslot = hpts->p_runningslot;
1201 		}
1202 		TAILQ_CONCAT(&hpts->p_hptss[hpts->p_runningslot].head,
1203 		    &hpts->p_hptss[hpts->p_nxt_slot].head, inp_hpts);
1204 		hpts->p_hptss[hpts->p_runningslot].count +=
1205 		    hpts->p_hptss[hpts->p_nxt_slot].count;
1206 		hpts->p_hptss[hpts->p_nxt_slot].count = 0;
1207 		hpts->p_hptss[hpts->p_nxt_slot].gencnt++;
1208 		slots_to_run = NUM_OF_HPTSI_SLOTS - 1;
1209 		counter_u64_add(wheel_wrap, 1);
1210 	} else {
1211 		/*
1212 		 * Nxt slot is always one after p_runningslot though
1213 		 * its not used usually unless we are doing wheel wrap.
1214 		 */
1215 		hpts->p_nxt_slot = hpts->p_prev_slot;
1216 		hpts->p_runningslot = hpts_slot(hpts->p_prev_slot, 1);
1217 	}
1218 	if (hpts->p_on_queue_cnt == 0) {
1219 		goto no_one;
1220 	}
1221 	for (i = 0; i < slots_to_run; i++) {
1222 		struct inpcb *inp, *ninp;
1223 		TAILQ_HEAD(, inpcb) head = TAILQ_HEAD_INITIALIZER(head);
1224 		struct hptsh *hptsh;
1225 		uint32_t runningslot;
1226 
1227 		/*
1228 		 * Calculate our delay, if there are no extra ticks there
1229 		 * was not any (i.e. if slots_to_run == 1, no delay).
1230 		 */
1231 		hpts->p_delayed_by = (slots_to_run - (i + 1)) *
1232 		    HPTS_TICKS_PER_SLOT;
1233 
1234 		runningslot = hpts->p_runningslot;
1235 		hptsh = &hpts->p_hptss[runningslot];
1236 		TAILQ_SWAP(&head, &hptsh->head, inpcb, inp_hpts);
1237 		hpts->p_on_queue_cnt -= hptsh->count;
1238 		hptsh->count = 0;
1239 		hptsh->gencnt++;
1240 
1241 		HPTS_UNLOCK(hpts);
1242 
1243 		TAILQ_FOREACH_SAFE(inp, &head, inp_hpts, ninp) {
1244 			bool set_cpu;
1245 
1246 			if (ninp != NULL) {
1247 				/* We prefetch the next inp if possible */
1248 				kern_prefetch(ninp, &prefetch_ninp);
1249 				prefetch_ninp = 1;
1250 			}
1251 
1252 			/* For debugging */
1253 			if (seen_endpoint == 0) {
1254 				seen_endpoint = 1;
1255 				orig_exit_slot = slot_pos_of_endpoint =
1256 				    runningslot;
1257 			} else if (completed_measure == 0) {
1258 				/* Record the new position */
1259 				orig_exit_slot = runningslot;
1260 			}
1261 			total_slots_processed++;
1262 			paced_cnt++;
1263 
1264 			INP_WLOCK(inp);
1265 			if (inp->inp_hpts_cpu_set == 0) {
1266 				set_cpu = true;
1267 			} else {
1268 				set_cpu = false;
1269 			}
1270 
1271 			if (__predict_false(inp->inp_in_hpts == IHPTS_MOVING)) {
1272 				if (inp->inp_hptsslot == -1) {
1273 					inp->inp_in_hpts = IHPTS_NONE;
1274 					if (in_pcbrele_wlocked(inp) == false)
1275 						INP_WUNLOCK(inp);
1276 				} else {
1277 					HPTS_LOCK(hpts);
1278 					inp_hpts_insert(inp, hpts);
1279 					HPTS_UNLOCK(hpts);
1280 					INP_WUNLOCK(inp);
1281 				}
1282 				continue;
1283 			}
1284 
1285 			MPASS(inp->inp_in_hpts == IHPTS_ONQUEUE);
1286 			MPASS(!(inp->inp_flags & (INP_DROPPED|INP_TIMEWAIT)));
1287 			KASSERT(runningslot == inp->inp_hptsslot,
1288 				("Hpts:%p inp:%p slot mis-aligned %u vs %u",
1289 				 hpts, inp, runningslot, inp->inp_hptsslot));
1290 
1291 			if (inp->inp_hpts_request) {
1292 				/*
1293 				 * This guy is deferred out further in time
1294 				 * then our wheel had available on it.
1295 				 * Push him back on the wheel or run it
1296 				 * depending.
1297 				 */
1298 				uint32_t maxslots, last_slot, remaining_slots;
1299 
1300 				remaining_slots = slots_to_run - (i + 1);
1301 				if (inp->inp_hpts_request > remaining_slots) {
1302 					HPTS_LOCK(hpts);
1303 					/*
1304 					 * How far out can we go?
1305 					 */
1306 					maxslots = max_slots_available(hpts,
1307 					    hpts->p_cur_slot, &last_slot);
1308 					if (maxslots >= inp->inp_hpts_request) {
1309 						/* We can place it finally to
1310 						 * be processed.  */
1311 						inp->inp_hptsslot = hpts_slot(
1312 						    hpts->p_runningslot,
1313 						    inp->inp_hpts_request);
1314 						inp->inp_hpts_request = 0;
1315 					} else {
1316 						/* Work off some more time */
1317 						inp->inp_hptsslot = last_slot;
1318 						inp->inp_hpts_request -=
1319 						    maxslots;
1320 					}
1321 					inp_hpts_insert(inp, hpts);
1322 					HPTS_UNLOCK(hpts);
1323 					INP_WUNLOCK(inp);
1324 					continue;
1325 				}
1326 				inp->inp_hpts_request = 0;
1327 				/* Fall through we will so do it now */
1328 			}
1329 
1330 			inp_hpts_release(inp);
1331 			tp = intotcpcb(inp);
1332 			MPASS(tp);
1333 			if (set_cpu) {
1334 				/*
1335 				 * Setup so the next time we will move to
1336 				 * the right CPU. This should be a rare
1337 				 * event. It will sometimes happens when we
1338 				 * are the client side (usually not the
1339 				 * server). Somehow tcp_output() gets called
1340 				 * before the tcp_do_segment() sets the
1341 				 * intial state. This means the r_cpu and
1342 				 * r_hpts_cpu is 0. We get on the hpts, and
1343 				 * then tcp_input() gets called setting up
1344 				 * the r_cpu to the correct value. The hpts
1345 				 * goes off and sees the mis-match. We
1346 				 * simply correct it here and the CPU will
1347 				 * switch to the new hpts nextime the tcb
1348 				 * gets added to the the hpts (not this one)
1349 				 * :-)
1350 				 */
1351 				tcp_set_hpts(inp);
1352 			}
1353 			CURVNET_SET(inp->inp_vnet);
1354 			/* Lets do any logging that we might want to */
1355 			if (hpts_does_tp_logging && (tp->t_logstate != TCP_LOG_STATE_OFF)) {
1356 				tcp_hpts_log(hpts, tp, &tv, slots_to_run, i, from_callout);
1357 			}
1358 
1359 			if (tp->t_fb_ptr != NULL) {
1360 				kern_prefetch(tp->t_fb_ptr, &did_prefetch);
1361 				did_prefetch = 1;
1362 			}
1363 			if ((inp->inp_flags2 & INP_SUPPORTS_MBUFQ) && tp->t_in_pkt) {
1364 				error = (*tp->t_fb->tfb_do_queued_segments)(inp->inp_socket, tp, 0);
1365 				if (error) {
1366 					/* The input killed the connection */
1367 					goto skip_pacing;
1368 				}
1369 			}
1370 			inp->inp_hpts_calls = 1;
1371 			error = tcp_output(tp);
1372 			if (error < 0)
1373 				goto skip_pacing;
1374 			inp->inp_hpts_calls = 0;
1375 			if (ninp && ninp->inp_ppcb) {
1376 				/*
1377 				 * If we have a nxt inp, see if we can
1378 				 * prefetch its ppcb. Note this may seem
1379 				 * "risky" since we have no locks (other
1380 				 * than the previous inp) and there no
1381 				 * assurance that ninp was not pulled while
1382 				 * we were processing inp and freed. If this
1383 				 * occured it could mean that either:
1384 				 *
1385 				 * a) Its NULL (which is fine we won't go
1386 				 * here) <or> b) Its valid (which is cool we
1387 				 * will prefetch it) <or> c) The inp got
1388 				 * freed back to the slab which was
1389 				 * reallocated. Then the piece of memory was
1390 				 * re-used and something else (not an
1391 				 * address) is in inp_ppcb. If that occurs
1392 				 * we don't crash, but take a TLB shootdown
1393 				 * performance hit (same as if it was NULL
1394 				 * and we tried to pre-fetch it).
1395 				 *
1396 				 * Considering that the likelyhood of <c> is
1397 				 * quite rare we will take a risk on doing
1398 				 * this. If performance drops after testing
1399 				 * we can always take this out. NB: the
1400 				 * kern_prefetch on amd64 actually has
1401 				 * protection against a bad address now via
1402 				 * the DMAP_() tests. This will prevent the
1403 				 * TLB hit, and instead if <c> occurs just
1404 				 * cause us to load cache with a useless
1405 				 * address (to us).
1406 				 */
1407 				kern_prefetch(ninp->inp_ppcb, &prefetch_tp);
1408 				prefetch_tp = 1;
1409 			}
1410 			INP_WUNLOCK(inp);
1411 		skip_pacing:
1412 			CURVNET_RESTORE();
1413 		}
1414 		if (seen_endpoint) {
1415 			/*
1416 			 * We now have a accurate distance between
1417 			 * slot_pos_of_endpoint <-> orig_exit_slot
1418 			 * to tell us how late we were, orig_exit_slot
1419 			 * is where we calculated the end of our cycle to
1420 			 * be when we first entered.
1421 			 */
1422 			completed_measure = 1;
1423 		}
1424 		HPTS_LOCK(hpts);
1425 		hpts->p_runningslot++;
1426 		if (hpts->p_runningslot >= NUM_OF_HPTSI_SLOTS) {
1427 			hpts->p_runningslot = 0;
1428 		}
1429 	}
1430 no_one:
1431 	HPTS_MTX_ASSERT(hpts);
1432 	hpts->p_delayed_by = 0;
1433 	/*
1434 	 * Check to see if we took an excess amount of time and need to run
1435 	 * more ticks (if we did not hit eno-bufs).
1436 	 */
1437 	hpts->p_prev_slot = hpts->p_cur_slot;
1438 	hpts->p_lasttick = hpts->p_curtick;
1439 	if ((from_callout == 0) || (loop_cnt > max_pacer_loops)) {
1440 		/*
1441 		 * Something is serious slow we have
1442 		 * looped through processing the wheel
1443 		 * and by the time we cleared the
1444 		 * needs to run max_pacer_loops time
1445 		 * we still needed to run. That means
1446 		 * the system is hopelessly behind and
1447 		 * can never catch up :(
1448 		 *
1449 		 * We will just lie to this thread
1450 		 * and let it thing p_curtick is
1451 		 * correct. When it next awakens
1452 		 * it will find itself further behind.
1453 		 */
1454 		if (from_callout)
1455 			counter_u64_add(hpts_hopelessly_behind, 1);
1456 		goto no_run;
1457 	}
1458 	hpts->p_curtick = tcp_gethptstick(&tv);
1459 	hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick);
1460 	if (seen_endpoint == 0) {
1461 		/* We saw no endpoint but we may be looping */
1462 		orig_exit_slot = hpts->p_cur_slot;
1463 	}
1464 	if ((wrap_loop_cnt < 2) &&
1465 	    (hpts->p_lasttick != hpts->p_curtick)) {
1466 		counter_u64_add(hpts_loops, 1);
1467 		loop_cnt++;
1468 		goto again;
1469 	}
1470 no_run:
1471 	cts_last_ran[hpts->p_num] = tcp_tv_to_usectick(&tv);
1472 	/*
1473 	 * Set flag to tell that we are done for
1474 	 * any slot input that happens during
1475 	 * input.
1476 	 */
1477 	hpts->p_wheel_complete = 1;
1478 	/*
1479 	 * Now did we spend too long running input and need to run more ticks?
1480 	 * Note that if wrap_loop_cnt < 2 then we should have the conditions
1481 	 * in the KASSERT's true. But if the wheel is behind i.e. wrap_loop_cnt
1482 	 * is greater than 2, then the condtion most likely are *not* true.
1483 	 * Also if we are called not from the callout, we don't run the wheel
1484 	 * multiple times so the slots may not align either.
1485 	 */
1486 	KASSERT(((hpts->p_prev_slot == hpts->p_cur_slot) ||
1487 		 (wrap_loop_cnt >= 2) || (from_callout == 0)),
1488 		("H:%p p_prev_slot:%u not equal to p_cur_slot:%u", hpts,
1489 		 hpts->p_prev_slot, hpts->p_cur_slot));
1490 	KASSERT(((hpts->p_lasttick == hpts->p_curtick)
1491 		 || (wrap_loop_cnt >= 2) || (from_callout == 0)),
1492 		("H:%p p_lasttick:%u not equal to p_curtick:%u", hpts,
1493 		 hpts->p_lasttick, hpts->p_curtick));
1494 	if (from_callout && (hpts->p_lasttick != hpts->p_curtick)) {
1495 		hpts->p_curtick = tcp_gethptstick(&tv);
1496 		counter_u64_add(hpts_loops, 1);
1497 		hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick);
1498 		goto again;
1499 	}
1500 
1501 	if (from_callout){
1502 		tcp_hpts_set_max_sleep(hpts, wrap_loop_cnt);
1503 	}
1504 	if (seen_endpoint)
1505 		return(hpts_slots_diff(slot_pos_of_endpoint, orig_exit_slot));
1506 	else
1507 		return (0);
1508 }
1509 
1510 void
1511 __tcp_set_hpts(struct inpcb *inp, int32_t line)
1512 {
1513 	struct tcp_hpts_entry *hpts;
1514 	int failed;
1515 
1516 	INP_WLOCK_ASSERT(inp);
1517 	hpts = tcp_hpts_lock(inp);
1518 	if ((inp->inp_in_hpts == 0) &&
1519 	    (inp->inp_hpts_cpu_set == 0)) {
1520 		inp->inp_hpts_cpu = hpts_cpuid(inp, &failed);
1521 		if (failed == 0)
1522 			inp->inp_hpts_cpu_set = 1;
1523 	}
1524 	mtx_unlock(&hpts->p_mtx);
1525 }
1526 
1527 static void
1528 __tcp_run_hpts(struct tcp_hpts_entry *hpts)
1529 {
1530 	int ticks_ran;
1531 
1532 	if (hpts->p_hpts_active) {
1533 		/* Already active */
1534 		return;
1535 	}
1536 	if (mtx_trylock(&hpts->p_mtx) == 0) {
1537 		/* Someone else got the lock */
1538 		return;
1539 	}
1540 	if (hpts->p_hpts_active)
1541 		goto out_with_mtx;
1542 	hpts->syscall_cnt++;
1543 	counter_u64_add(hpts_direct_call, 1);
1544 	hpts->p_hpts_active = 1;
1545 	ticks_ran = tcp_hptsi(hpts, 0);
1546 	/* We may want to adjust the sleep values here */
1547 	if (hpts->p_on_queue_cnt >= conn_cnt_thresh) {
1548 		if (ticks_ran > ticks_indicate_less_sleep) {
1549 			struct timeval tv;
1550 			sbintime_t sb;
1551 
1552 			hpts->p_mysleep.tv_usec /= 2;
1553 			if (hpts->p_mysleep.tv_usec < dynamic_min_sleep)
1554 				hpts->p_mysleep.tv_usec = dynamic_min_sleep;
1555 			/* Reschedule with new to value */
1556 			tcp_hpts_set_max_sleep(hpts, 0);
1557 			tv.tv_usec = hpts->p_hpts_sleep_time * HPTS_TICKS_PER_SLOT;
1558 			/* Validate its in the right ranges */
1559 			if (tv.tv_usec < hpts->p_mysleep.tv_usec) {
1560 				hpts->overidden_sleep = tv.tv_usec;
1561 				tv.tv_usec = hpts->p_mysleep.tv_usec;
1562 			} else if (tv.tv_usec > dynamic_max_sleep) {
1563 				/* Lets not let sleep get above this value */
1564 				hpts->overidden_sleep = tv.tv_usec;
1565 				tv.tv_usec = dynamic_max_sleep;
1566 			}
1567 			/*
1568 			 * In this mode the timer is a backstop to
1569 			 * all the userret/lro_flushes so we use
1570 			 * the dynamic value and set the on_min_sleep
1571 			 * flag so we will not be awoken.
1572 			 */
1573 			sb = tvtosbt(tv);
1574 			/* Store off to make visible the actual sleep time */
1575 			hpts->sleeping = tv.tv_usec;
1576 			callout_reset_sbt_on(&hpts->co, sb, 0,
1577 					     hpts_timeout_swi, hpts, hpts->p_cpu,
1578 					     (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision)));
1579 		} else if (ticks_ran < ticks_indicate_more_sleep) {
1580 			/* For the further sleep, don't reschedule  hpts */
1581 			hpts->p_mysleep.tv_usec *= 2;
1582 			if (hpts->p_mysleep.tv_usec > dynamic_max_sleep)
1583 				hpts->p_mysleep.tv_usec = dynamic_max_sleep;
1584 		}
1585 		hpts->p_on_min_sleep = 1;
1586 	}
1587 	hpts->p_hpts_active = 0;
1588 out_with_mtx:
1589 	HPTS_MTX_ASSERT(hpts);
1590 	mtx_unlock(&hpts->p_mtx);
1591 }
1592 
1593 static struct tcp_hpts_entry *
1594 tcp_choose_hpts_to_run()
1595 {
1596 	int i, oldest_idx, start, end;
1597 	uint32_t cts, time_since_ran, calc;
1598 
1599 	cts = tcp_get_usecs(NULL);
1600 	time_since_ran = 0;
1601 	/* Default is all one group */
1602 	start = 0;
1603 	end = tcp_pace.rp_num_hptss;
1604 	/*
1605 	 * If we have more than one L3 group figure out which one
1606 	 * this CPU is in.
1607 	 */
1608 	if (tcp_pace.grp_cnt > 1) {
1609 		for (i = 0; i < tcp_pace.grp_cnt; i++) {
1610 			if (CPU_ISSET(curcpu, &tcp_pace.grps[i]->cg_mask)) {
1611 				start = tcp_pace.grps[i]->cg_first;
1612 				end = (tcp_pace.grps[i]->cg_last + 1);
1613 				break;
1614 			}
1615 		}
1616 	}
1617 	oldest_idx = -1;
1618 	for (i = start; i < end; i++) {
1619 		if (TSTMP_GT(cts, cts_last_ran[i]))
1620 			calc = cts - cts_last_ran[i];
1621 		else
1622 			calc = 0;
1623 		if (calc > time_since_ran) {
1624 			oldest_idx = i;
1625 			time_since_ran = calc;
1626 		}
1627 	}
1628 	if (oldest_idx >= 0)
1629 		return(tcp_pace.rp_ent[oldest_idx]);
1630 	else
1631 		return(tcp_pace.rp_ent[(curcpu % tcp_pace.rp_num_hptss)]);
1632 }
1633 
1634 
1635 void
1636 tcp_run_hpts(void)
1637 {
1638 	static struct tcp_hpts_entry *hpts;
1639 	struct epoch_tracker et;
1640 
1641 	NET_EPOCH_ENTER(et);
1642 	hpts = tcp_choose_hpts_to_run();
1643 	__tcp_run_hpts(hpts);
1644 	NET_EPOCH_EXIT(et);
1645 }
1646 
1647 
1648 static void
1649 tcp_hpts_thread(void *ctx)
1650 {
1651 	struct tcp_hpts_entry *hpts;
1652 	struct epoch_tracker et;
1653 	struct timeval tv;
1654 	sbintime_t sb;
1655 	int ticks_ran;
1656 
1657 	hpts = (struct tcp_hpts_entry *)ctx;
1658 	mtx_lock(&hpts->p_mtx);
1659 	if (hpts->p_direct_wake) {
1660 		/* Signaled by input or output with low occupancy count. */
1661 		callout_stop(&hpts->co);
1662 		counter_u64_add(hpts_direct_awakening, 1);
1663 	} else {
1664 		/* Timed out, the normal case. */
1665 		counter_u64_add(hpts_wake_timeout, 1);
1666 		if (callout_pending(&hpts->co) ||
1667 		    !callout_active(&hpts->co)) {
1668 			mtx_unlock(&hpts->p_mtx);
1669 			return;
1670 		}
1671 	}
1672 	callout_deactivate(&hpts->co);
1673 	hpts->p_hpts_wake_scheduled = 0;
1674 	NET_EPOCH_ENTER(et);
1675 	if (hpts->p_hpts_active) {
1676 		/*
1677 		 * We are active already. This means that a syscall
1678 		 * trap or LRO is running in behalf of hpts. In that case
1679 		 * we need to double our timeout since there seems to be
1680 		 * enough activity in the system that we don't need to
1681 		 * run as often (if we were not directly woken).
1682 		 */
1683 		if (hpts->p_direct_wake == 0) {
1684 			counter_u64_add(hpts_back_tosleep, 1);
1685 			if (hpts->p_on_queue_cnt >= conn_cnt_thresh) {
1686 				hpts->p_mysleep.tv_usec *= 2;
1687 				if (hpts->p_mysleep.tv_usec > dynamic_max_sleep)
1688 					hpts->p_mysleep.tv_usec = dynamic_max_sleep;
1689 				tv.tv_usec = hpts->p_mysleep.tv_usec;
1690 				hpts->p_on_min_sleep = 1;
1691 			} else {
1692 				/*
1693 				 * Here we have low count on the wheel, but
1694 				 * somehow we still collided with one of the
1695 				 * connections. Lets go back to sleep for a
1696 				 * min sleep time, but clear the flag so we
1697 				 * can be awoken by insert.
1698 				 */
1699 				hpts->p_on_min_sleep = 0;
1700 				tv.tv_usec = tcp_min_hptsi_time;
1701 			}
1702 		} else {
1703 			/*
1704 			 * Directly woken most likely to reset the
1705 			 * callout time.
1706 			 */
1707 			tv.tv_sec = 0;
1708 			tv.tv_usec = hpts->p_mysleep.tv_usec;
1709 		}
1710 		goto back_to_sleep;
1711 	}
1712 	hpts->sleeping = 0;
1713 	hpts->p_hpts_active = 1;
1714 	ticks_ran = tcp_hptsi(hpts, 1);
1715 	tv.tv_sec = 0;
1716 	tv.tv_usec = hpts->p_hpts_sleep_time * HPTS_TICKS_PER_SLOT;
1717 	if (hpts->p_on_queue_cnt >= conn_cnt_thresh) {
1718 		if(hpts->p_direct_wake == 0) {
1719 			/*
1720 			 * Only adjust sleep time if we were
1721 			 * called from the callout i.e. direct_wake == 0.
1722 			 */
1723 			if (ticks_ran < ticks_indicate_more_sleep) {
1724 				hpts->p_mysleep.tv_usec *= 2;
1725 				if (hpts->p_mysleep.tv_usec > dynamic_max_sleep)
1726 					hpts->p_mysleep.tv_usec = dynamic_max_sleep;
1727 			} else if (ticks_ran > ticks_indicate_less_sleep) {
1728 				hpts->p_mysleep.tv_usec /= 2;
1729 				if (hpts->p_mysleep.tv_usec < dynamic_min_sleep)
1730 					hpts->p_mysleep.tv_usec = dynamic_min_sleep;
1731 			}
1732 		}
1733 		if (tv.tv_usec < hpts->p_mysleep.tv_usec) {
1734 			hpts->overidden_sleep = tv.tv_usec;
1735 			tv.tv_usec = hpts->p_mysleep.tv_usec;
1736 		} else if (tv.tv_usec > dynamic_max_sleep) {
1737 			/* Lets not let sleep get above this value */
1738 			hpts->overidden_sleep = tv.tv_usec;
1739 			tv.tv_usec = dynamic_max_sleep;
1740 		}
1741 		/*
1742 		 * In this mode the timer is a backstop to
1743 		 * all the userret/lro_flushes so we use
1744 		 * the dynamic value and set the on_min_sleep
1745 		 * flag so we will not be awoken.
1746 		 */
1747 		hpts->p_on_min_sleep = 1;
1748 	} else if (hpts->p_on_queue_cnt == 0)  {
1749 		/*
1750 		 * No one on the wheel, please wake us up
1751 		 * if you insert on the wheel.
1752 		 */
1753 		hpts->p_on_min_sleep = 0;
1754 		hpts->overidden_sleep = 0;
1755 	} else {
1756 		/*
1757 		 * We hit here when we have a low number of
1758 		 * clients on the wheel (our else clause).
1759 		 * We may need to go on min sleep, if we set
1760 		 * the flag we will not be awoken if someone
1761 		 * is inserted ahead of us. Clearing the flag
1762 		 * means we can be awoken. This is "old mode"
1763 		 * where the timer is what runs hpts mainly.
1764 		 */
1765 		if (tv.tv_usec < tcp_min_hptsi_time) {
1766 			/*
1767 			 * Yes on min sleep, which means
1768 			 * we cannot be awoken.
1769 			 */
1770 			hpts->overidden_sleep = tv.tv_usec;
1771 			tv.tv_usec = tcp_min_hptsi_time;
1772 			hpts->p_on_min_sleep = 1;
1773 		} else {
1774 			/* Clear the min sleep flag */
1775 			hpts->overidden_sleep = 0;
1776 			hpts->p_on_min_sleep = 0;
1777 		}
1778 	}
1779 	HPTS_MTX_ASSERT(hpts);
1780 	hpts->p_hpts_active = 0;
1781 back_to_sleep:
1782 	hpts->p_direct_wake = 0;
1783 	sb = tvtosbt(tv);
1784 	/* Store off to make visible the actual sleep time */
1785 	hpts->sleeping = tv.tv_usec;
1786 	callout_reset_sbt_on(&hpts->co, sb, 0,
1787 			     hpts_timeout_swi, hpts, hpts->p_cpu,
1788 			     (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision)));
1789 	NET_EPOCH_EXIT(et);
1790 	mtx_unlock(&hpts->p_mtx);
1791 }
1792 
1793 #undef	timersub
1794 
1795 static int32_t
1796 hpts_count_level(struct cpu_group *cg)
1797 {
1798 	int32_t count_l3, i;
1799 
1800 	count_l3 = 0;
1801 	if (cg->cg_level == CG_SHARE_L3)
1802 		count_l3++;
1803 	/* Walk all the children looking for L3 */
1804 	for (i = 0; i < cg->cg_children; i++) {
1805 		count_l3 += hpts_count_level(&cg->cg_child[i]);
1806 	}
1807 	return (count_l3);
1808 }
1809 
1810 static void
1811 hpts_gather_grps(struct cpu_group **grps, int32_t *at, int32_t max, struct cpu_group *cg)
1812 {
1813 	int32_t idx, i;
1814 
1815 	idx = *at;
1816 	if (cg->cg_level == CG_SHARE_L3) {
1817 		grps[idx] = cg;
1818 		idx++;
1819 		if (idx == max) {
1820 			*at = idx;
1821 			return;
1822 		}
1823 	}
1824 	*at = idx;
1825 	/* Walk all the children looking for L3 */
1826 	for (i = 0; i < cg->cg_children; i++) {
1827 		hpts_gather_grps(grps, at, max, &cg->cg_child[i]);
1828 	}
1829 }
1830 
1831 static void
1832 tcp_init_hptsi(void *st)
1833 {
1834 	struct cpu_group *cpu_top;
1835 	int32_t error __diagused;
1836 	int32_t i, j, bound = 0, created = 0;
1837 	size_t sz, asz;
1838 	struct timeval tv;
1839 	sbintime_t sb;
1840 	struct tcp_hpts_entry *hpts;
1841 	struct pcpu *pc;
1842 	char unit[16];
1843 	uint32_t ncpus = mp_ncpus ? mp_ncpus : MAXCPU;
1844 	int count, domain;
1845 
1846 #ifdef SMP
1847 	cpu_top = smp_topo();
1848 #else
1849 	cpu_top = NULL;
1850 #endif
1851 	tcp_pace.rp_num_hptss = ncpus;
1852 	hpts_hopelessly_behind = counter_u64_alloc(M_WAITOK);
1853 	hpts_loops = counter_u64_alloc(M_WAITOK);
1854 	back_tosleep = counter_u64_alloc(M_WAITOK);
1855 	combined_wheel_wrap = counter_u64_alloc(M_WAITOK);
1856 	wheel_wrap = counter_u64_alloc(M_WAITOK);
1857 	hpts_wake_timeout = counter_u64_alloc(M_WAITOK);
1858 	hpts_direct_awakening = counter_u64_alloc(M_WAITOK);
1859 	hpts_back_tosleep = counter_u64_alloc(M_WAITOK);
1860 	hpts_direct_call = counter_u64_alloc(M_WAITOK);
1861 	cpu_uses_flowid = counter_u64_alloc(M_WAITOK);
1862 	cpu_uses_random = counter_u64_alloc(M_WAITOK);
1863 
1864 	sz = (tcp_pace.rp_num_hptss * sizeof(struct tcp_hpts_entry *));
1865 	tcp_pace.rp_ent = malloc(sz, M_TCPHPTS, M_WAITOK | M_ZERO);
1866 	sz = (sizeof(uint32_t) * tcp_pace.rp_num_hptss);
1867 	cts_last_ran = malloc(sz, M_TCPHPTS, M_WAITOK);
1868 	tcp_pace.grp_cnt = 0;
1869 	if (cpu_top == NULL) {
1870 		tcp_pace.grp_cnt = 1;
1871 	} else {
1872 		/* Find out how many cache level 3 domains we have */
1873 		count = 0;
1874 		tcp_pace.grp_cnt = hpts_count_level(cpu_top);
1875 		if (tcp_pace.grp_cnt == 0) {
1876 			tcp_pace.grp_cnt = 1;
1877 		}
1878 		sz = (tcp_pace.grp_cnt * sizeof(struct cpu_group *));
1879 		tcp_pace.grps = malloc(sz, M_TCPHPTS, M_WAITOK);
1880 		/* Now populate the groups */
1881 		if (tcp_pace.grp_cnt == 1) {
1882 			/*
1883 			 * All we need is the top level all cpu's are in
1884 			 * the same cache so when we use grp[0]->cg_mask
1885 			 * with the cg_first <-> cg_last it will include
1886 			 * all cpu's in it. The level here is probably
1887 			 * zero which is ok.
1888 			 */
1889 			tcp_pace.grps[0] = cpu_top;
1890 		} else {
1891 			/*
1892 			 * Here we must find all the level three cache domains
1893 			 * and setup our pointers to them.
1894 			 */
1895 			count = 0;
1896 			hpts_gather_grps(tcp_pace.grps, &count, tcp_pace.grp_cnt, cpu_top);
1897 		}
1898 	}
1899 	asz = sizeof(struct hptsh) * NUM_OF_HPTSI_SLOTS;
1900 	for (i = 0; i < tcp_pace.rp_num_hptss; i++) {
1901 		tcp_pace.rp_ent[i] = malloc(sizeof(struct tcp_hpts_entry),
1902 		    M_TCPHPTS, M_WAITOK | M_ZERO);
1903 		tcp_pace.rp_ent[i]->p_hptss = malloc(asz, M_TCPHPTS, M_WAITOK);
1904 		hpts = tcp_pace.rp_ent[i];
1905 		/*
1906 		 * Init all the hpts structures that are not specifically
1907 		 * zero'd by the allocations. Also lets attach them to the
1908 		 * appropriate sysctl block as well.
1909 		 */
1910 		mtx_init(&hpts->p_mtx, "tcp_hpts_lck",
1911 		    "hpts", MTX_DEF | MTX_DUPOK);
1912 		for (j = 0; j < NUM_OF_HPTSI_SLOTS; j++) {
1913 			TAILQ_INIT(&hpts->p_hptss[j].head);
1914 			hpts->p_hptss[j].count = 0;
1915 			hpts->p_hptss[j].gencnt = 0;
1916 		}
1917 		sysctl_ctx_init(&hpts->hpts_ctx);
1918 		sprintf(unit, "%d", i);
1919 		hpts->hpts_root = SYSCTL_ADD_NODE(&hpts->hpts_ctx,
1920 		    SYSCTL_STATIC_CHILDREN(_net_inet_tcp_hpts),
1921 		    OID_AUTO,
1922 		    unit,
1923 		    CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
1924 		    "");
1925 		SYSCTL_ADD_INT(&hpts->hpts_ctx,
1926 		    SYSCTL_CHILDREN(hpts->hpts_root),
1927 		    OID_AUTO, "out_qcnt", CTLFLAG_RD,
1928 		    &hpts->p_on_queue_cnt, 0,
1929 		    "Count TCB's awaiting output processing");
1930 		SYSCTL_ADD_U16(&hpts->hpts_ctx,
1931 		    SYSCTL_CHILDREN(hpts->hpts_root),
1932 		    OID_AUTO, "active", CTLFLAG_RD,
1933 		    &hpts->p_hpts_active, 0,
1934 		    "Is the hpts active");
1935 		SYSCTL_ADD_UINT(&hpts->hpts_ctx,
1936 		    SYSCTL_CHILDREN(hpts->hpts_root),
1937 		    OID_AUTO, "curslot", CTLFLAG_RD,
1938 		    &hpts->p_cur_slot, 0,
1939 		    "What the current running pacers goal");
1940 		SYSCTL_ADD_UINT(&hpts->hpts_ctx,
1941 		    SYSCTL_CHILDREN(hpts->hpts_root),
1942 		    OID_AUTO, "runtick", CTLFLAG_RD,
1943 		    &hpts->p_runningslot, 0,
1944 		    "What the running pacers current slot is");
1945 		SYSCTL_ADD_UINT(&hpts->hpts_ctx,
1946 		    SYSCTL_CHILDREN(hpts->hpts_root),
1947 		    OID_AUTO, "curtick", CTLFLAG_RD,
1948 		    &hpts->p_curtick, 0,
1949 		    "What the running pacers last tick mapped to the wheel was");
1950 		SYSCTL_ADD_UINT(&hpts->hpts_ctx,
1951 		    SYSCTL_CHILDREN(hpts->hpts_root),
1952 		    OID_AUTO, "lastran", CTLFLAG_RD,
1953 		    &cts_last_ran[i], 0,
1954 		    "The last usec tick that this hpts ran");
1955 		SYSCTL_ADD_LONG(&hpts->hpts_ctx,
1956 		    SYSCTL_CHILDREN(hpts->hpts_root),
1957 		    OID_AUTO, "cur_min_sleep", CTLFLAG_RD,
1958 		    &hpts->p_mysleep.tv_usec,
1959 		    "What the running pacers is using for p_mysleep.tv_usec");
1960 		SYSCTL_ADD_U64(&hpts->hpts_ctx,
1961 		    SYSCTL_CHILDREN(hpts->hpts_root),
1962 		    OID_AUTO, "now_sleeping", CTLFLAG_RD,
1963 		    &hpts->sleeping, 0,
1964 		    "What the running pacers is actually sleeping for");
1965 		SYSCTL_ADD_U64(&hpts->hpts_ctx,
1966 		    SYSCTL_CHILDREN(hpts->hpts_root),
1967 		    OID_AUTO, "syscall_cnt", CTLFLAG_RD,
1968 		    &hpts->syscall_cnt, 0,
1969 		    "How many times we had syscalls on this hpts");
1970 
1971 		hpts->p_hpts_sleep_time = hpts_sleep_max;
1972 		hpts->p_num = i;
1973 		hpts->p_curtick = tcp_gethptstick(&tv);
1974 		cts_last_ran[i] = tcp_tv_to_usectick(&tv);
1975 		hpts->p_prev_slot = hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick);
1976 		hpts->p_cpu = 0xffff;
1977 		hpts->p_nxt_slot = hpts_slot(hpts->p_cur_slot, 1);
1978 		callout_init(&hpts->co, 1);
1979 	}
1980 	/* Don't try to bind to NUMA domains if we don't have any */
1981 	if (vm_ndomains == 1 && tcp_bind_threads == 2)
1982 		tcp_bind_threads = 0;
1983 
1984 	/*
1985 	 * Now lets start ithreads to handle the hptss.
1986 	 */
1987 	for (i = 0; i < tcp_pace.rp_num_hptss; i++) {
1988 		hpts = tcp_pace.rp_ent[i];
1989 		hpts->p_cpu = i;
1990 
1991 		error = swi_add(&hpts->ie, "hpts",
1992 		    tcp_hpts_thread, (void *)hpts,
1993 		    SWI_NET, INTR_MPSAFE, &hpts->ie_cookie);
1994 		KASSERT(error == 0,
1995 			("Can't add hpts:%p i:%d err:%d",
1996 			 hpts, i, error));
1997 		created++;
1998 		hpts->p_mysleep.tv_sec = 0;
1999 		hpts->p_mysleep.tv_usec = tcp_min_hptsi_time;
2000 		if (tcp_bind_threads == 1) {
2001 			if (intr_event_bind(hpts->ie, i) == 0)
2002 				bound++;
2003 		} else if (tcp_bind_threads == 2) {
2004 			/* Find the group for this CPU (i) and bind into it */
2005 			for (j = 0; j < tcp_pace.grp_cnt; j++) {
2006 				if (CPU_ISSET(i, &tcp_pace.grps[j]->cg_mask)) {
2007 					if (intr_event_bind_ithread_cpuset(hpts->ie,
2008 						&tcp_pace.grps[j]->cg_mask) == 0) {
2009 						bound++;
2010 						pc = pcpu_find(i);
2011 						domain = pc->pc_domain;
2012 						count = hpts_domains[domain].count;
2013 						hpts_domains[domain].cpu[count] = i;
2014 						hpts_domains[domain].count++;
2015 						break;
2016 					}
2017 				}
2018 			}
2019 		}
2020 		tv.tv_sec = 0;
2021 		tv.tv_usec = hpts->p_hpts_sleep_time * HPTS_TICKS_PER_SLOT;
2022 		hpts->sleeping = tv.tv_usec;
2023 		sb = tvtosbt(tv);
2024 		callout_reset_sbt_on(&hpts->co, sb, 0,
2025 				     hpts_timeout_swi, hpts, hpts->p_cpu,
2026 				     (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision)));
2027 	}
2028 	/*
2029 	 * If we somehow have an empty domain, fall back to choosing
2030 	 * among all htps threads.
2031 	 */
2032 	for (i = 0; i < vm_ndomains; i++) {
2033 		if (hpts_domains[i].count == 0) {
2034 			tcp_bind_threads = 0;
2035 			break;
2036 		}
2037 	}
2038 	printf("TCP Hpts created %d swi interrupt threads and bound %d to %s\n",
2039 	    created, bound,
2040 	    tcp_bind_threads == 2 ? "NUMA domains" : "cpus");
2041 #ifdef INVARIANTS
2042 	printf("HPTS is in INVARIANT mode!!\n");
2043 #endif
2044 }
2045 
2046 SYSINIT(tcphptsi, SI_SUB_SOFTINTR, SI_ORDER_ANY, tcp_init_hptsi, NULL);
2047 MODULE_VERSION(tcphpts, 1);
2048