xref: /freebsd/sys/netinet/tcp_hpts.c (revision 5eb61f6c6549f134a4f3bed4c164345d4f616bad)
1 /*-
2  * Copyright (c) 2016-2018 Netflix, Inc.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  * 1. Redistributions of source code must retain the above copyright
8  *    notice, this list of conditions and the following disclaimer.
9  * 2. Redistributions in binary form must reproduce the above copyright
10  *    notice, this list of conditions and the following disclaimer in the
11  *    documentation and/or other materials provided with the distribution.
12  *
13  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
14  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
17  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23  * SUCH DAMAGE.
24  *
25  */
26 #include <sys/cdefs.h>
27 __FBSDID("$FreeBSD$");
28 
29 #include "opt_inet.h"
30 #include "opt_inet6.h"
31 #include "opt_rss.h"
32 #include "opt_tcpdebug.h"
33 
34 /**
35  * Some notes about usage.
36  *
37  * The tcp_hpts system is designed to provide a high precision timer
38  * system for tcp. Its main purpose is to provide a mechanism for
39  * pacing packets out onto the wire. It can be used in two ways
40  * by a given TCP stack (and those two methods can be used simultaneously).
41  *
42  * First, and probably the main thing its used by Rack and BBR, it can
43  * be used to call tcp_output() of a transport stack at some time in the future.
44  * The normal way this is done is that tcp_output() of the stack schedules
45  * itself to be called again by calling tcp_hpts_insert(tcpcb, slot). The
46  * slot is the time from now that the stack wants to be called but it
47  * must be converted to tcp_hpts's notion of slot. This is done with
48  * one of the macros HPTS_MS_TO_SLOTS or HPTS_USEC_TO_SLOTS. So a typical
49  * call from the tcp_output() routine might look like:
50  *
51  * tcp_hpts_insert(tp, HPTS_USEC_TO_SLOTS(550));
52  *
53  * The above would schedule tcp_ouput() to be called in 550 useconds.
54  * Note that if using this mechanism the stack will want to add near
55  * its top a check to prevent unwanted calls (from user land or the
56  * arrival of incoming ack's). So it would add something like:
57  *
58  * if (inp->inp_in_hpts)
59  *    return;
60  *
61  * to prevent output processing until the time alotted has gone by.
62  * Of course this is a bare bones example and the stack will probably
63  * have more consideration then just the above.
64  *
65  * Now the second function (actually two functions I guess :D)
66  * the tcp_hpts system provides is the  ability to either abort
67  * a connection (later) or process input on a connection.
68  * Why would you want to do this? To keep processor locality
69  * and or not have to worry about untangling any recursive
70  * locks. The input function now is hooked to the new LRO
71  * system as well.
72  *
73  * In order to use the input redirection function the
74  * tcp stack must define an input function for
75  * tfb_do_queued_segments(). This function understands
76  * how to dequeue a array of packets that were input and
77  * knows how to call the correct processing routine.
78  *
79  * Locking in this is important as well so most likely the
80  * stack will need to define the tfb_do_segment_nounlock()
81  * splitting tfb_do_segment() into two parts. The main processing
82  * part that does not unlock the INP and returns a value of 1 or 0.
83  * It returns 0 if all is well and the lock was not released. It
84  * returns 1 if we had to destroy the TCB (a reset received etc).
85  * The remains of tfb_do_segment() then become just a simple call
86  * to the tfb_do_segment_nounlock() function and check the return
87  * code and possibly unlock.
88  *
89  * The stack must also set the flag on the INP that it supports this
90  * feature i.e. INP_SUPPORTS_MBUFQ. The LRO code recoginizes
91  * this flag as well and will queue packets when it is set.
92  * There are other flags as well INP_MBUF_QUEUE_READY and
93  * INP_DONT_SACK_QUEUE. The first flag tells the LRO code
94  * that we are in the pacer for output so there is no
95  * need to wake up the hpts system to get immediate
96  * input. The second tells the LRO code that its okay
97  * if a SACK arrives you can still defer input and let
98  * the current hpts timer run (this is usually set when
99  * a rack timer is up so we know SACK's are happening
100  * on the connection already and don't want to wakeup yet).
101  *
102  * There is a common functions within the rack_bbr_common code
103  * version i.e. ctf_do_queued_segments(). This function
104  * knows how to take the input queue of packets from
105  * tp->t_in_pkts and process them digging out
106  * all the arguments, calling any bpf tap and
107  * calling into tfb_do_segment_nounlock(). The common
108  * function (ctf_do_queued_segments())  requires that
109  * you have defined the tfb_do_segment_nounlock() as
110  * described above.
111  *
112  * The second feature of the input side of hpts is the
113  * dropping of a connection. This is due to the way that
114  * locking may have occured on the INP_WLOCK. So if
115  * a stack wants to drop a connection it calls:
116  *
117  *     tcp_set_inp_to_drop(tp, ETIMEDOUT)
118  *
119  * To schedule the tcp_hpts system to call
120  *
121  *    tcp_drop(tp, drop_reason)
122  *
123  * at a future point. This is quite handy to prevent locking
124  * issues when dropping connections.
125  *
126  */
127 
128 #include <sys/param.h>
129 #include <sys/bus.h>
130 #include <sys/interrupt.h>
131 #include <sys/module.h>
132 #include <sys/kernel.h>
133 #include <sys/hhook.h>
134 #include <sys/malloc.h>
135 #include <sys/mbuf.h>
136 #include <sys/proc.h>		/* for proc0 declaration */
137 #include <sys/socket.h>
138 #include <sys/socketvar.h>
139 #include <sys/sysctl.h>
140 #include <sys/systm.h>
141 #include <sys/refcount.h>
142 #include <sys/sched.h>
143 #include <sys/queue.h>
144 #include <sys/smp.h>
145 #include <sys/counter.h>
146 #include <sys/time.h>
147 #include <sys/kthread.h>
148 #include <sys/kern_prefetch.h>
149 
150 #include <vm/uma.h>
151 #include <vm/vm.h>
152 
153 #include <net/route.h>
154 #include <net/vnet.h>
155 
156 #ifdef RSS
157 #include <net/netisr.h>
158 #include <net/rss_config.h>
159 #endif
160 
161 #define TCPSTATES		/* for logging */
162 
163 #include <netinet/in.h>
164 #include <netinet/in_kdtrace.h>
165 #include <netinet/in_pcb.h>
166 #include <netinet/ip.h>
167 #include <netinet/ip_icmp.h>	/* required for icmp_var.h */
168 #include <netinet/icmp_var.h>	/* for ICMP_BANDLIM */
169 #include <netinet/ip_var.h>
170 #include <netinet/ip6.h>
171 #include <netinet6/in6_pcb.h>
172 #include <netinet6/ip6_var.h>
173 #include <netinet/tcp.h>
174 #include <netinet/tcp_fsm.h>
175 #include <netinet/tcp_seq.h>
176 #include <netinet/tcp_timer.h>
177 #include <netinet/tcp_var.h>
178 #include <netinet/tcpip.h>
179 #include <netinet/cc/cc.h>
180 #include <netinet/tcp_hpts.h>
181 #include <netinet/tcp_log_buf.h>
182 
183 #ifdef tcpdebug
184 #include <netinet/tcp_debug.h>
185 #endif				/* tcpdebug */
186 #ifdef tcp_offload
187 #include <netinet/tcp_offload.h>
188 #endif
189 
190 MALLOC_DEFINE(M_TCPHPTS, "tcp_hpts", "TCP hpts");
191 #ifdef RSS
192 static int tcp_bind_threads = 1;
193 #else
194 static int tcp_bind_threads = 2;
195 #endif
196 static int tcp_use_irq_cpu = 0;
197 static struct tcp_hptsi tcp_pace;
198 static uint32_t *cts_last_ran;
199 static int hpts_does_tp_logging = 0;
200 static int hpts_use_assigned_cpu = 1;
201 static int32_t hpts_uses_oldest = OLDEST_THRESHOLD;
202 
203 static void tcp_input_data(struct tcp_hpts_entry *hpts, struct timeval *tv);
204 static int32_t tcp_hptsi(struct tcp_hpts_entry *hpts, int from_callout);
205 static void tcp_hpts_thread(void *ctx);
206 static void tcp_init_hptsi(void *st);
207 
208 int32_t tcp_min_hptsi_time = DEFAULT_MIN_SLEEP;
209 static int conn_cnt_thresh = DEFAULT_CONNECTION_THESHOLD;
210 static int32_t dynamic_min_sleep = DYNAMIC_MIN_SLEEP;
211 static int32_t dynamic_max_sleep = DYNAMIC_MAX_SLEEP;
212 
213 
214 
215 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, hpts, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
216     "TCP Hpts controls");
217 SYSCTL_NODE(_net_inet_tcp_hpts, OID_AUTO, stats, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
218     "TCP Hpts statistics");
219 
220 #define	timersub(tvp, uvp, vvp)						\
221 	do {								\
222 		(vvp)->tv_sec = (tvp)->tv_sec - (uvp)->tv_sec;		\
223 		(vvp)->tv_usec = (tvp)->tv_usec - (uvp)->tv_usec;	\
224 		if ((vvp)->tv_usec < 0) {				\
225 			(vvp)->tv_sec--;				\
226 			(vvp)->tv_usec += 1000000;			\
227 		}							\
228 	} while (0)
229 
230 static int32_t tcp_hpts_precision = 120;
231 
232 struct hpts_domain_info {
233 	int count;
234 	int cpu[MAXCPU];
235 };
236 
237 struct hpts_domain_info hpts_domains[MAXMEMDOM];
238 
239 counter_u64_t hpts_hopelessly_behind;
240 
241 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, hopeless, CTLFLAG_RD,
242     &hpts_hopelessly_behind,
243     "Number of times hpts could not catch up and was behind hopelessly");
244 
245 counter_u64_t hpts_loops;
246 
247 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, loops, CTLFLAG_RD,
248     &hpts_loops, "Number of times hpts had to loop to catch up");
249 
250 counter_u64_t back_tosleep;
251 
252 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, no_tcbsfound, CTLFLAG_RD,
253     &back_tosleep, "Number of times hpts found no tcbs");
254 
255 counter_u64_t combined_wheel_wrap;
256 
257 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, comb_wheel_wrap, CTLFLAG_RD,
258     &combined_wheel_wrap, "Number of times the wheel lagged enough to have an insert see wrap");
259 
260 counter_u64_t wheel_wrap;
261 
262 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, wheel_wrap, CTLFLAG_RD,
263     &wheel_wrap, "Number of times the wheel lagged enough to have an insert see wrap");
264 
265 counter_u64_t hpts_direct_call;
266 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, direct_call, CTLFLAG_RD,
267     &hpts_direct_call, "Number of times hpts was called by syscall/trap or other entry");
268 
269 counter_u64_t hpts_wake_timeout;
270 
271 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, timeout_wakeup, CTLFLAG_RD,
272     &hpts_wake_timeout, "Number of times hpts threads woke up via the callout expiring");
273 
274 counter_u64_t hpts_direct_awakening;
275 
276 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, direct_awakening, CTLFLAG_RD,
277     &hpts_direct_awakening, "Number of times hpts threads woke up via the callout expiring");
278 
279 counter_u64_t hpts_back_tosleep;
280 
281 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, back_tosleep, CTLFLAG_RD,
282     &hpts_back_tosleep, "Number of times hpts threads woke up via the callout expiring and went back to sleep no work");
283 
284 counter_u64_t cpu_uses_flowid;
285 counter_u64_t cpu_uses_random;
286 
287 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, cpusel_flowid, CTLFLAG_RD,
288     &cpu_uses_flowid, "Number of times when setting cpuid we used the flowid field");
289 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, cpusel_random, CTLFLAG_RD,
290     &cpu_uses_random, "Number of times when setting cpuid we used the a random value");
291 
292 TUNABLE_INT("net.inet.tcp.bind_hptss", &tcp_bind_threads);
293 TUNABLE_INT("net.inet.tcp.use_irq", &tcp_use_irq_cpu);
294 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, bind_hptss, CTLFLAG_RD,
295     &tcp_bind_threads, 2,
296     "Thread Binding tunable");
297 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, use_irq, CTLFLAG_RD,
298     &tcp_use_irq_cpu, 0,
299     "Use of irq CPU  tunable");
300 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, precision, CTLFLAG_RW,
301     &tcp_hpts_precision, 120,
302     "Value for PRE() precision of callout");
303 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, cnt_thresh, CTLFLAG_RW,
304     &conn_cnt_thresh, 0,
305     "How many connections (below) make us use the callout based mechanism");
306 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, logging, CTLFLAG_RW,
307     &hpts_does_tp_logging, 0,
308     "Do we add to any tp that has logging on pacer logs");
309 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, use_assigned_cpu, CTLFLAG_RW,
310     &hpts_use_assigned_cpu, 0,
311     "Do we start any hpts timer on the assigned cpu?");
312 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, use_oldest, CTLFLAG_RW,
313     &hpts_uses_oldest, OLDEST_THRESHOLD,
314     "Do syscalls look for the hpts that has been the longest since running (or just use cpu no if 0)?");
315 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, dyn_minsleep, CTLFLAG_RW,
316     &dynamic_min_sleep, 250,
317     "What is the dynamic minsleep value?");
318 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, dyn_maxsleep, CTLFLAG_RW,
319     &dynamic_max_sleep, 5000,
320     "What is the dynamic maxsleep value?");
321 
322 
323 
324 
325 
326 static int32_t max_pacer_loops = 10;
327 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, loopmax, CTLFLAG_RW,
328     &max_pacer_loops, 10,
329     "What is the maximum number of times the pacer will loop trying to catch up");
330 
331 #define HPTS_MAX_SLEEP_ALLOWED (NUM_OF_HPTSI_SLOTS/2)
332 
333 static uint32_t hpts_sleep_max = HPTS_MAX_SLEEP_ALLOWED;
334 
335 static int
336 sysctl_net_inet_tcp_hpts_max_sleep(SYSCTL_HANDLER_ARGS)
337 {
338 	int error;
339 	uint32_t new;
340 
341 	new = hpts_sleep_max;
342 	error = sysctl_handle_int(oidp, &new, 0, req);
343 	if (error == 0 && req->newptr) {
344 		if ((new < dynamic_min_sleep) ||
345 		    (new > HPTS_MAX_SLEEP_ALLOWED))
346 			error = EINVAL;
347 		else
348 			hpts_sleep_max = new;
349 	}
350 	return (error);
351 }
352 
353 static int
354 sysctl_net_inet_tcp_hpts_min_sleep(SYSCTL_HANDLER_ARGS)
355 {
356 	int error;
357 	uint32_t new;
358 
359 	new = tcp_min_hptsi_time;
360 	error = sysctl_handle_int(oidp, &new, 0, req);
361 	if (error == 0 && req->newptr) {
362 		if (new < LOWEST_SLEEP_ALLOWED)
363 			error = EINVAL;
364 		else
365 			tcp_min_hptsi_time = new;
366 	}
367 	return (error);
368 }
369 
370 SYSCTL_PROC(_net_inet_tcp_hpts, OID_AUTO, maxsleep,
371     CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
372     &hpts_sleep_max, 0,
373     &sysctl_net_inet_tcp_hpts_max_sleep, "IU",
374     "Maximum time hpts will sleep");
375 
376 SYSCTL_PROC(_net_inet_tcp_hpts, OID_AUTO, minsleep,
377     CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
378     &tcp_min_hptsi_time, 0,
379     &sysctl_net_inet_tcp_hpts_min_sleep, "IU",
380     "The minimum time the hpts must sleep before processing more slots");
381 
382 static int ticks_indicate_more_sleep = TICKS_INDICATE_MORE_SLEEP;
383 static int ticks_indicate_less_sleep = TICKS_INDICATE_LESS_SLEEP;
384 static int tcp_hpts_no_wake_over_thresh = 1;
385 
386 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, more_sleep, CTLFLAG_RW,
387     &ticks_indicate_more_sleep, 0,
388     "If we only process this many or less on a timeout, we need longer sleep on the next callout");
389 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, less_sleep, CTLFLAG_RW,
390     &ticks_indicate_less_sleep, 0,
391     "If we process this many or more on a timeout, we need less sleep on the next callout");
392 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, nowake_over_thresh, CTLFLAG_RW,
393     &tcp_hpts_no_wake_over_thresh, 0,
394     "When we are over the threshold on the pacer do we prohibit wakeups?");
395 
396 static void
397 tcp_hpts_log(struct tcp_hpts_entry *hpts, struct tcpcb *tp, struct timeval *tv,
398 	     int slots_to_run, int idx, int from_callout)
399 {
400 	union tcp_log_stackspecific log;
401 	/*
402 	 * Unused logs are
403 	 * 64 bit - delRate, rttProp, bw_inuse
404 	 * 16 bit - cwnd_gain
405 	 *  8 bit - bbr_state, bbr_substate, inhpts, ininput;
406 	 */
407 	memset(&log.u_bbr, 0, sizeof(log.u_bbr));
408 	log.u_bbr.flex1 = hpts->p_nxt_slot;
409 	log.u_bbr.flex2 = hpts->p_cur_slot;
410 	log.u_bbr.flex3 = hpts->p_prev_slot;
411 	log.u_bbr.flex4 = idx;
412 	log.u_bbr.flex5 = hpts->p_curtick;
413 	log.u_bbr.flex6 = hpts->p_on_queue_cnt;
414 	log.u_bbr.flex7 = hpts->p_cpu;
415 	log.u_bbr.flex8 = (uint8_t)from_callout;
416 	log.u_bbr.inflight = slots_to_run;
417 	log.u_bbr.applimited = hpts->overidden_sleep;
418 	log.u_bbr.delivered = hpts->saved_curtick;
419 	log.u_bbr.timeStamp = tcp_tv_to_usectick(tv);
420 	log.u_bbr.epoch = hpts->saved_curslot;
421 	log.u_bbr.lt_epoch = hpts->saved_prev_slot;
422 	log.u_bbr.pkts_out = hpts->p_delayed_by;
423 	log.u_bbr.lost = hpts->p_hpts_sleep_time;
424 	log.u_bbr.pacing_gain = hpts->p_cpu;
425 	log.u_bbr.pkt_epoch = hpts->p_runningslot;
426 	log.u_bbr.use_lt_bw = 1;
427 	TCP_LOG_EVENTP(tp, NULL,
428 		       &tp->t_inpcb->inp_socket->so_rcv,
429 		       &tp->t_inpcb->inp_socket->so_snd,
430 		       BBR_LOG_HPTSDIAG, 0,
431 		       0, &log, false, tv);
432 }
433 
434 static void
435 tcp_wakehpts(struct tcp_hpts_entry *hpts)
436 {
437 	HPTS_MTX_ASSERT(hpts);
438 
439 	if (tcp_hpts_no_wake_over_thresh && (hpts->p_on_queue_cnt >= conn_cnt_thresh)) {
440 		hpts->p_direct_wake = 0;
441 		return;
442 	}
443 	if (hpts->p_hpts_wake_scheduled == 0) {
444 		hpts->p_hpts_wake_scheduled = 1;
445 		swi_sched(hpts->ie_cookie, 0);
446 	}
447 }
448 
449 static void
450 hpts_timeout_swi(void *arg)
451 {
452 	struct tcp_hpts_entry *hpts;
453 
454 	hpts = (struct tcp_hpts_entry *)arg;
455 	swi_sched(hpts->ie_cookie, 0);
456 }
457 
458 static inline void
459 hpts_sane_pace_remove(struct tcp_hpts_entry *hpts, struct inpcb *inp, struct hptsh *head, int clear)
460 {
461 	HPTS_MTX_ASSERT(hpts);
462 	KASSERT(hpts->p_cpu == inp->inp_hpts_cpu, ("%s: hpts:%p inp:%p incorrect CPU", __FUNCTION__, hpts, inp));
463 	KASSERT(inp->inp_in_hpts != 0, ("%s: hpts:%p inp:%p not on the hpts?", __FUNCTION__, hpts, inp));
464 	TAILQ_REMOVE(head, inp, inp_hpts);
465 	hpts->p_on_queue_cnt--;
466 	KASSERT(hpts->p_on_queue_cnt >= 0,
467 		("Hpts goes negative inp:%p hpts:%p",
468 		 inp, hpts));
469 	if (clear) {
470 		inp->inp_hpts_request = 0;
471 		inp->inp_in_hpts = 0;
472 	}
473 }
474 
475 static inline void
476 hpts_sane_pace_insert(struct tcp_hpts_entry *hpts, struct inpcb *inp, struct hptsh *head, int line, int noref)
477 {
478 	HPTS_MTX_ASSERT(hpts);
479 	KASSERT(hpts->p_cpu == inp->inp_hpts_cpu,
480 		("%s: hpts:%p inp:%p incorrect CPU", __FUNCTION__, hpts, inp));
481 	KASSERT(((noref == 1) && (inp->inp_in_hpts == 1)) ||
482 		((noref == 0) && (inp->inp_in_hpts == 0)),
483 		("%s: hpts:%p inp:%p already on the hpts?",
484 		 __FUNCTION__, hpts, inp));
485 	TAILQ_INSERT_TAIL(head, inp, inp_hpts);
486 	inp->inp_in_hpts = 1;
487 	hpts->p_on_queue_cnt++;
488 	if (noref == 0) {
489 		in_pcbref(inp);
490 	}
491 }
492 
493 static inline void
494 hpts_sane_input_remove(struct tcp_hpts_entry *hpts, struct inpcb *inp, int clear)
495 {
496 	HPTS_MTX_ASSERT(hpts);
497 	KASSERT(hpts->p_cpu == inp->inp_hpts_cpu,
498 		("%s: hpts:%p inp:%p incorrect CPU", __FUNCTION__, hpts, inp));
499 	KASSERT(inp->inp_in_input != 0,
500 		("%s: hpts:%p inp:%p not on the input hpts?", __FUNCTION__, hpts, inp));
501 	TAILQ_REMOVE(&hpts->p_input, inp, inp_input);
502 	hpts->p_on_inqueue_cnt--;
503 	KASSERT(hpts->p_on_inqueue_cnt >= 0,
504 		("Hpts in goes negative inp:%p hpts:%p",
505 		 inp, hpts));
506 	KASSERT((((TAILQ_EMPTY(&hpts->p_input) != 0) && (hpts->p_on_inqueue_cnt == 0)) ||
507 		 ((TAILQ_EMPTY(&hpts->p_input) == 0) && (hpts->p_on_inqueue_cnt > 0))),
508 		("%s hpts:%p input cnt (p_on_inqueue):%d and queue state mismatch",
509 		 __FUNCTION__, hpts, hpts->p_on_inqueue_cnt));
510 	if (clear)
511 		inp->inp_in_input = 0;
512 }
513 
514 static inline void
515 hpts_sane_input_insert(struct tcp_hpts_entry *hpts, struct inpcb *inp, int line)
516 {
517 	HPTS_MTX_ASSERT(hpts);
518 	KASSERT(hpts->p_cpu == inp->inp_hpts_cpu,
519 		("%s: hpts:%p inp:%p incorrect CPU", __FUNCTION__, hpts, inp));
520 	KASSERT(inp->inp_in_input == 0,
521 		("%s: hpts:%p inp:%p already on the input hpts?", __FUNCTION__, hpts, inp));
522 	TAILQ_INSERT_TAIL(&hpts->p_input, inp, inp_input);
523 	inp->inp_in_input = 1;
524 	hpts->p_on_inqueue_cnt++;
525 	in_pcbref(inp);
526 }
527 
528 struct tcp_hpts_entry *
529 tcp_cur_hpts(struct inpcb *inp)
530 {
531 	int32_t hpts_num;
532 	struct tcp_hpts_entry *hpts;
533 
534 	hpts_num = inp->inp_hpts_cpu;
535 	hpts = tcp_pace.rp_ent[hpts_num];
536 	return (hpts);
537 }
538 
539 struct tcp_hpts_entry *
540 tcp_hpts_lock(struct inpcb *inp)
541 {
542 	struct tcp_hpts_entry *hpts;
543 	int32_t hpts_num;
544 
545 again:
546 	hpts_num = inp->inp_hpts_cpu;
547 	hpts = tcp_pace.rp_ent[hpts_num];
548 	KASSERT(mtx_owned(&hpts->p_mtx) == 0,
549 		("Hpts:%p owns mtx prior-to lock line:%d",
550 		 hpts, __LINE__));
551 	mtx_lock(&hpts->p_mtx);
552 	if (hpts_num != inp->inp_hpts_cpu) {
553 		mtx_unlock(&hpts->p_mtx);
554 		goto again;
555 	}
556 	return (hpts);
557 }
558 
559 struct tcp_hpts_entry *
560 tcp_input_lock(struct inpcb *inp)
561 {
562 	struct tcp_hpts_entry *hpts;
563 	int32_t hpts_num;
564 
565 again:
566 	hpts_num = inp->inp_input_cpu;
567 	hpts = tcp_pace.rp_ent[hpts_num];
568 	KASSERT(mtx_owned(&hpts->p_mtx) == 0,
569 		("Hpts:%p owns mtx prior-to lock line:%d",
570 		hpts, __LINE__));
571 	mtx_lock(&hpts->p_mtx);
572 	if (hpts_num != inp->inp_input_cpu) {
573 		mtx_unlock(&hpts->p_mtx);
574 		goto again;
575 	}
576 	return (hpts);
577 }
578 
579 static void
580 tcp_remove_hpts_ref(struct inpcb *inp, struct tcp_hpts_entry *hpts, int line)
581 {
582 	int32_t add_freed;
583 	int32_t ret;
584 
585 	if (inp->inp_flags2 & INP_FREED) {
586 		/*
587 		 * Need to play a special trick so that in_pcbrele_wlocked
588 		 * does not return 1 when it really should have returned 0.
589 		 */
590 		add_freed = 1;
591 		inp->inp_flags2 &= ~INP_FREED;
592 	} else {
593 		add_freed = 0;
594 	}
595 #ifndef INP_REF_DEBUG
596 	ret = in_pcbrele_wlocked(inp);
597 #else
598 	ret = __in_pcbrele_wlocked(inp, line);
599 #endif
600 	KASSERT(ret != 1, ("inpcb:%p release ret 1", inp));
601 	if (add_freed) {
602 		inp->inp_flags2 |= INP_FREED;
603 	}
604 }
605 
606 static void
607 tcp_hpts_remove_locked_output(struct tcp_hpts_entry *hpts, struct inpcb *inp, int32_t flags, int32_t line)
608 {
609 	if (inp->inp_in_hpts) {
610 		hpts_sane_pace_remove(hpts, inp, &hpts->p_hptss[inp->inp_hptsslot], 1);
611 		tcp_remove_hpts_ref(inp, hpts, line);
612 	}
613 }
614 
615 static void
616 tcp_hpts_remove_locked_input(struct tcp_hpts_entry *hpts, struct inpcb *inp, int32_t flags, int32_t line)
617 {
618 	HPTS_MTX_ASSERT(hpts);
619 	if (inp->inp_in_input) {
620 		hpts_sane_input_remove(hpts, inp, 1);
621 		tcp_remove_hpts_ref(inp, hpts, line);
622 	}
623 }
624 
625 /*
626  * Called normally with the INP_LOCKED but it
627  * does not matter, the hpts lock is the key
628  * but the lock order allows us to hold the
629  * INP lock and then get the hpts lock.
630  *
631  * Valid values in the flags are
632  * HPTS_REMOVE_OUTPUT - remove from the output of the hpts.
633  * HPTS_REMOVE_INPUT - remove from the input of the hpts.
634  * Note that you can use one or both values together
635  * and get two actions.
636  */
637 void
638 __tcp_hpts_remove(struct inpcb *inp, int32_t flags, int32_t line)
639 {
640 	struct tcp_hpts_entry *hpts;
641 
642 	INP_WLOCK_ASSERT(inp);
643 	if (flags & HPTS_REMOVE_OUTPUT) {
644 		hpts = tcp_hpts_lock(inp);
645 		tcp_hpts_remove_locked_output(hpts, inp, flags, line);
646 		mtx_unlock(&hpts->p_mtx);
647 	}
648 	if (flags & HPTS_REMOVE_INPUT) {
649 		hpts = tcp_input_lock(inp);
650 		tcp_hpts_remove_locked_input(hpts, inp, flags, line);
651 		mtx_unlock(&hpts->p_mtx);
652 	}
653 }
654 
655 static inline int
656 hpts_slot(uint32_t wheel_slot, uint32_t plus)
657 {
658 	/*
659 	 * Given a slot on the wheel, what slot
660 	 * is that plus ticks out?
661 	 */
662 	KASSERT(wheel_slot < NUM_OF_HPTSI_SLOTS, ("Invalid tick %u not on wheel", wheel_slot));
663 	return ((wheel_slot + plus) % NUM_OF_HPTSI_SLOTS);
664 }
665 
666 static inline int
667 tick_to_wheel(uint32_t cts_in_wticks)
668 {
669 	/*
670 	 * Given a timestamp in ticks (so by
671 	 * default to get it to a real time one
672 	 * would multiply by 10.. i.e the number
673 	 * of ticks in a slot) map it to our limited
674 	 * space wheel.
675 	 */
676 	return (cts_in_wticks % NUM_OF_HPTSI_SLOTS);
677 }
678 
679 static inline int
680 hpts_slots_diff(int prev_slot, int slot_now)
681 {
682 	/*
683 	 * Given two slots that are someplace
684 	 * on our wheel. How far are they apart?
685 	 */
686 	if (slot_now > prev_slot)
687 		return (slot_now - prev_slot);
688 	else if (slot_now == prev_slot)
689 		/*
690 		 * Special case, same means we can go all of our
691 		 * wheel less one slot.
692 		 */
693 		return (NUM_OF_HPTSI_SLOTS - 1);
694 	else
695 		return ((NUM_OF_HPTSI_SLOTS - prev_slot) + slot_now);
696 }
697 
698 /*
699  * Given a slot on the wheel that is the current time
700  * mapped to the wheel (wheel_slot), what is the maximum
701  * distance forward that can be obtained without
702  * wrapping past either prev_slot or running_slot
703  * depending on the htps state? Also if passed
704  * a uint32_t *, fill it with the slot location.
705  *
706  * Note if you do not give this function the current
707  * time (that you think it is) mapped to the wheel slot
708  * then the results will not be what you expect and
709  * could lead to invalid inserts.
710  */
711 static inline int32_t
712 max_slots_available(struct tcp_hpts_entry *hpts, uint32_t wheel_slot, uint32_t *target_slot)
713 {
714 	uint32_t dis_to_travel, end_slot, pacer_to_now, avail_on_wheel;
715 
716 	if ((hpts->p_hpts_active == 1) &&
717 	    (hpts->p_wheel_complete == 0)) {
718 		end_slot = hpts->p_runningslot;
719 		/* Back up one tick */
720 		if (end_slot == 0)
721 			end_slot = NUM_OF_HPTSI_SLOTS - 1;
722 		else
723 			end_slot--;
724 		if (target_slot)
725 			*target_slot = end_slot;
726 	} else {
727 		/*
728 		 * For the case where we are
729 		 * not active, or we have
730 		 * completed the pass over
731 		 * the wheel, we can use the
732 		 * prev tick and subtract one from it. This puts us
733 		 * as far out as possible on the wheel.
734 		 */
735 		end_slot = hpts->p_prev_slot;
736 		if (end_slot == 0)
737 			end_slot = NUM_OF_HPTSI_SLOTS - 1;
738 		else
739 			end_slot--;
740 		if (target_slot)
741 			*target_slot = end_slot;
742 		/*
743 		 * Now we have close to the full wheel left minus the
744 		 * time it has been since the pacer went to sleep. Note
745 		 * that wheel_tick, passed in, should be the current time
746 		 * from the perspective of the caller, mapped to the wheel.
747 		 */
748 		if (hpts->p_prev_slot != wheel_slot)
749 			dis_to_travel = hpts_slots_diff(hpts->p_prev_slot, wheel_slot);
750 		else
751 			dis_to_travel = 1;
752 		/*
753 		 * dis_to_travel in this case is the space from when the
754 		 * pacer stopped (p_prev_slot) and where our wheel_slot
755 		 * is now. To know how many slots we can put it in we
756 		 * subtract from the wheel size. We would not want
757 		 * to place something after p_prev_slot or it will
758 		 * get ran too soon.
759 		 */
760 		return (NUM_OF_HPTSI_SLOTS - dis_to_travel);
761 	}
762 	/*
763 	 * So how many slots are open between p_runningslot -> p_cur_slot
764 	 * that is what is currently un-available for insertion. Special
765 	 * case when we are at the last slot, this gets 1, so that
766 	 * the answer to how many slots are available is all but 1.
767 	 */
768 	if (hpts->p_runningslot == hpts->p_cur_slot)
769 		dis_to_travel = 1;
770 	else
771 		dis_to_travel = hpts_slots_diff(hpts->p_runningslot, hpts->p_cur_slot);
772 	/*
773 	 * How long has the pacer been running?
774 	 */
775 	if (hpts->p_cur_slot != wheel_slot) {
776 		/* The pacer is a bit late */
777 		pacer_to_now = hpts_slots_diff(hpts->p_cur_slot, wheel_slot);
778 	} else {
779 		/* The pacer is right on time, now == pacers start time */
780 		pacer_to_now = 0;
781 	}
782 	/*
783 	 * To get the number left we can insert into we simply
784 	 * subract the distance the pacer has to run from how
785 	 * many slots there are.
786 	 */
787 	avail_on_wheel = NUM_OF_HPTSI_SLOTS - dis_to_travel;
788 	/*
789 	 * Now how many of those we will eat due to the pacer's
790 	 * time (p_cur_slot) of start being behind the
791 	 * real time (wheel_slot)?
792 	 */
793 	if (avail_on_wheel <= pacer_to_now) {
794 		/*
795 		 * Wheel wrap, we can't fit on the wheel, that
796 		 * is unusual the system must be way overloaded!
797 		 * Insert into the assured slot, and return special
798 		 * "0".
799 		 */
800 		counter_u64_add(combined_wheel_wrap, 1);
801 		*target_slot = hpts->p_nxt_slot;
802 		return (0);
803 	} else {
804 		/*
805 		 * We know how many slots are open
806 		 * on the wheel (the reverse of what
807 		 * is left to run. Take away the time
808 		 * the pacer started to now (wheel_slot)
809 		 * and that tells you how many slots are
810 		 * open that can be inserted into that won't
811 		 * be touched by the pacer until later.
812 		 */
813 		return (avail_on_wheel - pacer_to_now);
814 	}
815 }
816 
817 static int
818 tcp_queue_to_hpts_immediate_locked(struct inpcb *inp, struct tcp_hpts_entry *hpts, int32_t line, int32_t noref)
819 {
820 	uint32_t need_wake = 0;
821 
822 	HPTS_MTX_ASSERT(hpts);
823 	if (inp->inp_in_hpts == 0) {
824 		/* Ok we need to set it on the hpts in the current slot */
825 		inp->inp_hpts_request = 0;
826 		if ((hpts->p_hpts_active == 0) ||
827 		    (hpts->p_wheel_complete)) {
828 			/*
829 			 * A sleeping hpts we want in next slot to run
830 			 * note that in this state p_prev_slot == p_cur_slot
831 			 */
832 			inp->inp_hptsslot = hpts_slot(hpts->p_prev_slot, 1);
833 			if ((hpts->p_on_min_sleep == 0) && (hpts->p_hpts_active == 0))
834 				need_wake = 1;
835 		} else if ((void *)inp == hpts->p_inp) {
836 			/*
837 			 * The hpts system is running and the caller
838 			 * was awoken by the hpts system.
839 			 * We can't allow you to go into the same slot we
840 			 * are in (we don't want a loop :-D).
841 			 */
842 			inp->inp_hptsslot = hpts->p_nxt_slot;
843 		} else
844 			inp->inp_hptsslot = hpts->p_runningslot;
845 		hpts_sane_pace_insert(hpts, inp, &hpts->p_hptss[inp->inp_hptsslot], line, noref);
846 		if (need_wake) {
847 			/*
848 			 * Activate the hpts if it is sleeping and its
849 			 * timeout is not 1.
850 			 */
851 			hpts->p_direct_wake = 1;
852 			tcp_wakehpts(hpts);
853 		}
854 	}
855 	return (need_wake);
856 }
857 
858 int
859 __tcp_queue_to_hpts_immediate(struct inpcb *inp, int32_t line)
860 {
861 	int32_t ret;
862 	struct tcp_hpts_entry *hpts;
863 
864 	INP_WLOCK_ASSERT(inp);
865 	hpts = tcp_hpts_lock(inp);
866 	ret = tcp_queue_to_hpts_immediate_locked(inp, hpts, line, 0);
867 	mtx_unlock(&hpts->p_mtx);
868 	return (ret);
869 }
870 
871 #ifdef INVARIANTS
872 static void
873 check_if_slot_would_be_wrong(struct tcp_hpts_entry *hpts, struct inpcb *inp, uint32_t inp_hptsslot, int line)
874 {
875 	/*
876 	 * Sanity checks for the pacer with invariants
877 	 * on insert.
878 	 */
879 	KASSERT(inp_hptsslot < NUM_OF_HPTSI_SLOTS,
880 		("hpts:%p inp:%p slot:%d > max",
881 		 hpts, inp, inp_hptsslot));
882 	if ((hpts->p_hpts_active) &&
883 	    (hpts->p_wheel_complete == 0)) {
884 		/*
885 		 * If the pacer is processing a arc
886 		 * of the wheel, we need to make
887 		 * sure we are not inserting within
888 		 * that arc.
889 		 */
890 		int distance, yet_to_run;
891 
892 		distance = hpts_slots_diff(hpts->p_runningslot, inp_hptsslot);
893 		if (hpts->p_runningslot != hpts->p_cur_slot)
894 			yet_to_run = hpts_slots_diff(hpts->p_runningslot, hpts->p_cur_slot);
895 		else
896 			yet_to_run = 0;	/* processing last slot */
897 		KASSERT(yet_to_run <= distance,
898 			("hpts:%p inp:%p slot:%d distance:%d yet_to_run:%d rs:%d cs:%d",
899 			 hpts, inp, inp_hptsslot,
900 			 distance, yet_to_run,
901 			 hpts->p_runningslot, hpts->p_cur_slot));
902 	}
903 }
904 #endif
905 
906 static void
907 tcp_hpts_insert_locked(struct tcp_hpts_entry *hpts, struct inpcb *inp, uint32_t slot, int32_t line,
908 		       struct hpts_diag *diag, struct timeval *tv)
909 {
910 	uint32_t need_new_to = 0;
911 	uint32_t wheel_cts;
912 	int32_t wheel_slot, maxslots, last_slot;
913 	int cpu;
914 	int8_t need_wakeup = 0;
915 
916 	HPTS_MTX_ASSERT(hpts);
917 	if (diag) {
918 		memset(diag, 0, sizeof(struct hpts_diag));
919 		diag->p_hpts_active = hpts->p_hpts_active;
920 		diag->p_prev_slot = hpts->p_prev_slot;
921 		diag->p_runningslot = hpts->p_runningslot;
922 		diag->p_nxt_slot = hpts->p_nxt_slot;
923 		diag->p_cur_slot = hpts->p_cur_slot;
924 		diag->p_curtick = hpts->p_curtick;
925 		diag->p_lasttick = hpts->p_lasttick;
926 		diag->slot_req = slot;
927 		diag->p_on_min_sleep = hpts->p_on_min_sleep;
928 		diag->hpts_sleep_time = hpts->p_hpts_sleep_time;
929 	}
930 	KASSERT(inp->inp_in_hpts == 0, ("Hpts:%p tp:%p already on hpts and add?", hpts, inp));
931 	if (slot == 0) {
932 		/* Immediate */
933 		tcp_queue_to_hpts_immediate_locked(inp, hpts, line, 0);
934 		return;
935 	}
936 	/* Get the current time relative to the wheel */
937 	wheel_cts = tcp_tv_to_hptstick(tv);
938 	/* Map it onto the wheel */
939 	wheel_slot = tick_to_wheel(wheel_cts);
940 	/* Now what's the max we can place it at? */
941 	maxslots = max_slots_available(hpts, wheel_slot, &last_slot);
942 	if (diag) {
943 		diag->wheel_slot = wheel_slot;
944 		diag->maxslots = maxslots;
945 		diag->wheel_cts = wheel_cts;
946 	}
947 	if (maxslots == 0) {
948 		/* The pacer is in a wheel wrap behind, yikes! */
949 		if (slot > 1) {
950 			/*
951 			 * Reduce by 1 to prevent a forever loop in
952 			 * case something else is wrong. Note this
953 			 * probably does not hurt because the pacer
954 			 * if its true is so far behind we will be
955 			 * > 1second late calling anyway.
956 			 */
957 			slot--;
958 		}
959 		inp->inp_hptsslot = last_slot;
960 		inp->inp_hpts_request = slot;
961 	} else 	if (maxslots >= slot) {
962 		/* It all fits on the wheel */
963 		inp->inp_hpts_request = 0;
964 		inp->inp_hptsslot = hpts_slot(wheel_slot, slot);
965 	} else {
966 		/* It does not fit */
967 		inp->inp_hpts_request = slot - maxslots;
968 		inp->inp_hptsslot = last_slot;
969 	}
970 	if (diag) {
971 		diag->slot_remaining = inp->inp_hpts_request;
972 		diag->inp_hptsslot = inp->inp_hptsslot;
973 	}
974 #ifdef INVARIANTS
975 	check_if_slot_would_be_wrong(hpts, inp, inp->inp_hptsslot, line);
976 #endif
977 	hpts_sane_pace_insert(hpts, inp, &hpts->p_hptss[inp->inp_hptsslot], line, 0);
978 	if ((hpts->p_hpts_active == 0) &&
979 	    (inp->inp_hpts_request == 0) &&
980 	    (hpts->p_on_min_sleep == 0)) {
981 		/*
982 		 * The hpts is sleeping and NOT on a minimum
983 		 * sleep time, we need to figure out where
984 		 * it will wake up at and if we need to reschedule
985 		 * its time-out.
986 		 */
987 		uint32_t have_slept, yet_to_sleep;
988 
989 		/* Now do we need to restart the hpts's timer? */
990 		have_slept = hpts_slots_diff(hpts->p_prev_slot, wheel_slot);
991 		if (have_slept < hpts->p_hpts_sleep_time)
992 			yet_to_sleep = hpts->p_hpts_sleep_time - have_slept;
993 		else {
994 			/* We are over-due */
995 			yet_to_sleep = 0;
996 			need_wakeup = 1;
997 		}
998 		if (diag) {
999 			diag->have_slept = have_slept;
1000 			diag->yet_to_sleep = yet_to_sleep;
1001 		}
1002 		if (yet_to_sleep &&
1003 		    (yet_to_sleep > slot)) {
1004 			/*
1005 			 * We need to reschedule the hpts's time-out.
1006 			 */
1007 			hpts->p_hpts_sleep_time = slot;
1008 			need_new_to = slot * HPTS_TICKS_PER_SLOT;
1009 		}
1010 	}
1011 	/*
1012 	 * Now how far is the hpts sleeping to? if active is 1, its
1013 	 * up and ticking we do nothing, otherwise we may need to
1014 	 * reschedule its callout if need_new_to is set from above.
1015 	 */
1016 	if (need_wakeup) {
1017 		hpts->p_direct_wake = 1;
1018 		tcp_wakehpts(hpts);
1019 		if (diag) {
1020 			diag->need_new_to = 0;
1021 			diag->co_ret = 0xffff0000;
1022 		}
1023 	} else if (need_new_to) {
1024 		int32_t co_ret;
1025 		struct timeval tv;
1026 		sbintime_t sb;
1027 
1028 		tv.tv_sec = 0;
1029 		tv.tv_usec = 0;
1030 		while (need_new_to > HPTS_USEC_IN_SEC) {
1031 			tv.tv_sec++;
1032 			need_new_to -= HPTS_USEC_IN_SEC;
1033 		}
1034 		tv.tv_usec = need_new_to;
1035 		sb = tvtosbt(tv);
1036 		cpu = (tcp_bind_threads || hpts_use_assigned_cpu) ?  hpts->p_cpu : curcpu;
1037 		co_ret = callout_reset_sbt_on(&hpts->co, sb, 0,
1038 					      hpts_timeout_swi, hpts, cpu,
1039 					      (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision)));
1040 		if (diag) {
1041 			diag->need_new_to = need_new_to;
1042 			diag->co_ret = co_ret;
1043 		}
1044 	}
1045 }
1046 
1047 uint32_t
1048 tcp_hpts_insert_diag(struct inpcb *inp, uint32_t slot, int32_t line, struct hpts_diag *diag)
1049 {
1050 	struct tcp_hpts_entry *hpts;
1051 	uint32_t slot_on;
1052 	struct timeval tv;
1053 
1054 	/*
1055 	 * We now return the next-slot the hpts will be on, beyond its
1056 	 * current run (if up) or where it was when it stopped if it is
1057 	 * sleeping.
1058 	 */
1059 	INP_WLOCK_ASSERT(inp);
1060 	hpts = tcp_hpts_lock(inp);
1061 	microuptime(&tv);
1062 	tcp_hpts_insert_locked(hpts, inp, slot, line, diag, &tv);
1063 	slot_on = hpts->p_nxt_slot;
1064 	mtx_unlock(&hpts->p_mtx);
1065 	return (slot_on);
1066 }
1067 
1068 uint32_t
1069 __tcp_hpts_insert(struct inpcb *inp, uint32_t slot, int32_t line){
1070 	return (tcp_hpts_insert_diag(inp, slot, line, NULL));
1071 }
1072 
1073 int
1074 __tcp_queue_to_input_locked(struct inpcb *inp, struct tcp_hpts_entry *hpts, int32_t line)
1075 {
1076 	int32_t retval = 0;
1077 
1078 	HPTS_MTX_ASSERT(hpts);
1079 	if (inp->inp_in_input == 0) {
1080 		/* Ok we need to set it on the hpts in the current slot */
1081 		hpts_sane_input_insert(hpts, inp, line);
1082 		retval = 1;
1083 		if ((hpts->p_hpts_active == 0) &&
1084 		    (hpts->p_on_min_sleep == 0)){
1085 			/*
1086 			 * Activate the hpts if it is sleeping.
1087 			 */
1088 			retval = 2;
1089 			hpts->p_direct_wake = 1;
1090 			tcp_wakehpts(hpts);
1091 		}
1092 	} else if ((hpts->p_hpts_active == 0) &&
1093 		   (hpts->p_on_min_sleep == 0)){
1094 		retval = 4;
1095 		hpts->p_direct_wake = 1;
1096 		tcp_wakehpts(hpts);
1097 	}
1098 	return (retval);
1099 }
1100 
1101 int32_t
1102 __tcp_queue_to_input(struct inpcb *inp, int line)
1103 {
1104 	struct tcp_hpts_entry *hpts;
1105 	int32_t ret;
1106 
1107 	hpts = tcp_input_lock(inp);
1108 	ret = __tcp_queue_to_input_locked(inp, hpts, line);
1109 	mtx_unlock(&hpts->p_mtx);
1110 	return (ret);
1111 }
1112 
1113 void
1114 __tcp_set_inp_to_drop(struct inpcb *inp, uint16_t reason, int32_t line)
1115 {
1116 	struct tcp_hpts_entry *hpts;
1117 	struct tcpcb *tp;
1118 
1119 	tp = intotcpcb(inp);
1120 	hpts = tcp_input_lock(tp->t_inpcb);
1121 	if (inp->inp_in_input == 0) {
1122 		/* Ok we need to set it on the hpts in the current slot */
1123 		hpts_sane_input_insert(hpts, inp, line);
1124 		if ((hpts->p_hpts_active == 0) &&
1125 		    (hpts->p_on_min_sleep == 0)){
1126 			/*
1127 			 * Activate the hpts if it is sleeping.
1128 			 */
1129 			hpts->p_direct_wake = 1;
1130 			tcp_wakehpts(hpts);
1131 		}
1132 	} else if ((hpts->p_hpts_active == 0) &&
1133 		   (hpts->p_on_min_sleep == 0)){
1134 		hpts->p_direct_wake = 1;
1135 		tcp_wakehpts(hpts);
1136 	}
1137 	inp->inp_hpts_drop_reas = reason;
1138 	mtx_unlock(&hpts->p_mtx);
1139 }
1140 
1141 uint16_t
1142 hpts_random_cpu(struct inpcb *inp){
1143 	/*
1144 	 * No flow type set distribute the load randomly.
1145 	 */
1146 	uint16_t cpuid;
1147 	uint32_t ran;
1148 
1149 	/*
1150 	 * If one has been set use it i.e. we want both in and out on the
1151 	 * same hpts.
1152 	 */
1153 	if (inp->inp_input_cpu_set) {
1154 		return (inp->inp_input_cpu);
1155 	} else if (inp->inp_hpts_cpu_set) {
1156 		return (inp->inp_hpts_cpu);
1157 	}
1158 	/* Nothing set use a random number */
1159 	ran = arc4random();
1160 	cpuid = (((ran & 0xffff) % mp_ncpus) % tcp_pace.rp_num_hptss);
1161 	return (cpuid);
1162 }
1163 
1164 static uint16_t
1165 hpts_cpuid(struct inpcb *inp, int *failed)
1166 {
1167 	u_int cpuid;
1168 #if !defined(RSS) && defined(NUMA)
1169 	struct hpts_domain_info *di;
1170 #endif
1171 
1172 	*failed = 0;
1173 	/*
1174 	 * If one has been set use it i.e. we want both in and out on the
1175 	 * same hpts.
1176 	 */
1177 	if (inp->inp_input_cpu_set) {
1178 		return (inp->inp_input_cpu);
1179 	} else if (inp->inp_hpts_cpu_set) {
1180 		return (inp->inp_hpts_cpu);
1181 	}
1182 	/*
1183 	 * If we are using the irq cpu set by LRO or
1184 	 * the driver then it overrides all other domains.
1185 	 */
1186 	if (tcp_use_irq_cpu) {
1187 		if (inp->inp_irq_cpu_set == 0) {
1188 			*failed = 1;
1189 			return(0);
1190 		}
1191 		return(inp->inp_irq_cpu);
1192 	}
1193 	/* If one is set the other must be the same */
1194 #ifdef RSS
1195 	cpuid = rss_hash2cpuid(inp->inp_flowid, inp->inp_flowtype);
1196 	if (cpuid == NETISR_CPUID_NONE)
1197 		return (hpts_random_cpu(inp));
1198 	else
1199 		return (cpuid);
1200 #else
1201 	/*
1202 	 * We don't have a flowid -> cpuid mapping, so cheat and just map
1203 	 * unknown cpuids to curcpu.  Not the best, but apparently better
1204 	 * than defaulting to swi 0.
1205 	 */
1206 	if (inp->inp_flowtype == M_HASHTYPE_NONE) {
1207 		counter_u64_add(cpu_uses_random, 1);
1208 		return (hpts_random_cpu(inp));
1209 	}
1210 	/*
1211 	 * Hash to a thread based on the flowid.  If we are using numa,
1212 	 * then restrict the hash to the numa domain where the inp lives.
1213 	 */
1214 #ifdef NUMA
1215 	if (tcp_bind_threads == 2 && inp->inp_numa_domain != M_NODOM) {
1216 		di = &hpts_domains[inp->inp_numa_domain];
1217 		cpuid = di->cpu[inp->inp_flowid % di->count];
1218 	} else
1219 #endif
1220 		cpuid = inp->inp_flowid % mp_ncpus;
1221 	counter_u64_add(cpu_uses_flowid, 1);
1222 	return (cpuid);
1223 #endif
1224 }
1225 
1226 static void
1227 tcp_drop_in_pkts(struct tcpcb *tp)
1228 {
1229 	struct mbuf *m, *n;
1230 
1231 	m = tp->t_in_pkt;
1232 	if (m)
1233 		n = m->m_nextpkt;
1234 	else
1235 		n = NULL;
1236 	tp->t_in_pkt = NULL;
1237 	while (m) {
1238 		m_freem(m);
1239 		m = n;
1240 		if (m)
1241 			n = m->m_nextpkt;
1242 	}
1243 }
1244 
1245 /*
1246  * Do NOT try to optimize the processing of inp's
1247  * by first pulling off all the inp's into a temporary
1248  * list (e.g. TAILQ_CONCAT). If you do that the subtle
1249  * interactions of switching CPU's will kill because of
1250  * problems in the linked list manipulation. Basically
1251  * you would switch cpu's with the hpts mutex locked
1252  * but then while you were processing one of the inp's
1253  * some other one that you switch will get a new
1254  * packet on the different CPU. It will insert it
1255  * on the new hpts's input list. Creating a temporary
1256  * link in the inp will not fix it either, since
1257  * the other hpts will be doing the same thing and
1258  * you will both end up using the temporary link.
1259  *
1260  * You will die in an ASSERT for tailq corruption if you
1261  * run INVARIANTS or you will die horribly without
1262  * INVARIANTS in some unknown way with a corrupt linked
1263  * list.
1264  */
1265 static void
1266 tcp_input_data(struct tcp_hpts_entry *hpts, struct timeval *tv)
1267 {
1268 	struct tcpcb *tp;
1269 	struct inpcb *inp;
1270 	uint16_t drop_reason;
1271 	int16_t set_cpu;
1272 	uint32_t did_prefetch = 0;
1273 	int dropped;
1274 
1275 	HPTS_MTX_ASSERT(hpts);
1276 	NET_EPOCH_ASSERT();
1277 
1278 	while ((inp = TAILQ_FIRST(&hpts->p_input)) != NULL) {
1279 		HPTS_MTX_ASSERT(hpts);
1280 		hpts_sane_input_remove(hpts, inp, 0);
1281 		if (inp->inp_input_cpu_set == 0) {
1282 			set_cpu = 1;
1283 		} else {
1284 			set_cpu = 0;
1285 		}
1286 		hpts->p_inp = inp;
1287 		drop_reason = inp->inp_hpts_drop_reas;
1288 		inp->inp_in_input = 0;
1289 		mtx_unlock(&hpts->p_mtx);
1290 		INP_WLOCK(inp);
1291 #ifdef VIMAGE
1292 		CURVNET_SET(inp->inp_vnet);
1293 #endif
1294 		if ((inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) ||
1295 		    (inp->inp_flags2 & INP_FREED)) {
1296 out:
1297 			hpts->p_inp = NULL;
1298 			if (in_pcbrele_wlocked(inp) == 0) {
1299 				INP_WUNLOCK(inp);
1300 			}
1301 #ifdef VIMAGE
1302 			CURVNET_RESTORE();
1303 #endif
1304 			mtx_lock(&hpts->p_mtx);
1305 			continue;
1306 		}
1307 		tp = intotcpcb(inp);
1308 		if ((tp == NULL) || (tp->t_inpcb == NULL)) {
1309 			goto out;
1310 		}
1311 		if (drop_reason) {
1312 			/* This tcb is being destroyed for drop_reason */
1313 			tcp_drop_in_pkts(tp);
1314 			tp = tcp_drop(tp, drop_reason);
1315 			if (tp == NULL) {
1316 				INP_WLOCK(inp);
1317 			}
1318 			if (in_pcbrele_wlocked(inp) == 0)
1319 				INP_WUNLOCK(inp);
1320 #ifdef VIMAGE
1321 			CURVNET_RESTORE();
1322 #endif
1323 			mtx_lock(&hpts->p_mtx);
1324 			continue;
1325 		}
1326 		if (set_cpu) {
1327 			/*
1328 			 * Setup so the next time we will move to the right
1329 			 * CPU. This should be a rare event. It will
1330 			 * sometimes happens when we are the client side
1331 			 * (usually not the server). Somehow tcp_output()
1332 			 * gets called before the tcp_do_segment() sets the
1333 			 * intial state. This means the r_cpu and r_hpts_cpu
1334 			 * is 0. We get on the hpts, and then tcp_input()
1335 			 * gets called setting up the r_cpu to the correct
1336 			 * value. The hpts goes off and sees the mis-match.
1337 			 * We simply correct it here and the CPU will switch
1338 			 * to the new hpts nextime the tcb gets added to the
1339 			 * the hpts (not this time) :-)
1340 			 */
1341 			tcp_set_hpts(inp);
1342 		}
1343 		if (tp->t_fb_ptr != NULL) {
1344 			kern_prefetch(tp->t_fb_ptr, &did_prefetch);
1345 			did_prefetch = 1;
1346 		}
1347 		if ((tp->t_fb->tfb_do_queued_segments != NULL) && tp->t_in_pkt) {
1348 			if (inp->inp_in_input)
1349 				tcp_hpts_remove(inp, HPTS_REMOVE_INPUT);
1350 			dropped = (*tp->t_fb->tfb_do_queued_segments)(inp->inp_socket, tp, 0);
1351 			if (dropped) {
1352 				/* Re-acquire the wlock so we can release the reference */
1353 				INP_WLOCK(inp);
1354 			}
1355 		} else if (tp->t_in_pkt) {
1356 			/*
1357 			 * We reach here only if we had a
1358 			 * stack that supported INP_SUPPORTS_MBUFQ
1359 			 * and then somehow switched to a stack that
1360 			 * does not. The packets are basically stranded
1361 			 * and would hang with the connection until
1362 			 * cleanup without this code. Its not the
1363 			 * best way but I know of no other way to
1364 			 * handle it since the stack needs functions
1365 			 * it does not have to handle queued packets.
1366 			 */
1367 			tcp_drop_in_pkts(tp);
1368 		}
1369 		if (in_pcbrele_wlocked(inp) == 0)
1370 			INP_WUNLOCK(inp);
1371 		INP_UNLOCK_ASSERT(inp);
1372 #ifdef VIMAGE
1373 		CURVNET_RESTORE();
1374 #endif
1375 		mtx_lock(&hpts->p_mtx);
1376 		hpts->p_inp = NULL;
1377 	}
1378 }
1379 
1380 static void
1381 tcp_hpts_set_max_sleep(struct tcp_hpts_entry *hpts, int wrap_loop_cnt)
1382 {
1383 	uint32_t t = 0, i, fnd = 0;
1384 
1385 	if ((hpts->p_on_queue_cnt) && (wrap_loop_cnt < 2)) {
1386 		/*
1387 		 * Find next slot that is occupied and use that to
1388 		 * be the sleep time.
1389 		 */
1390 		for (i = 0, t = hpts_slot(hpts->p_cur_slot, 1); i < NUM_OF_HPTSI_SLOTS; i++) {
1391 			if (TAILQ_EMPTY(&hpts->p_hptss[t]) == 0) {
1392 				fnd = 1;
1393 				break;
1394 			}
1395 			t = (t + 1) % NUM_OF_HPTSI_SLOTS;
1396 		}
1397 		KASSERT(fnd != 0, ("Hpts:%p cnt:%d but none found", hpts, hpts->p_on_queue_cnt));
1398 		hpts->p_hpts_sleep_time = min((i + 1), hpts_sleep_max);
1399 	} else {
1400 		/* No one on the wheel sleep for all but 400 slots or sleep max  */
1401 		hpts->p_hpts_sleep_time = hpts_sleep_max;
1402 	}
1403 }
1404 
1405 static int32_t
1406 tcp_hptsi(struct tcp_hpts_entry *hpts, int from_callout)
1407 {
1408 	struct tcpcb *tp;
1409 	struct inpcb *inp = NULL, *ninp;
1410 	struct timeval tv;
1411 	uint64_t total_slots_processed = 0;
1412 	int32_t slots_to_run, i, error;
1413 	int32_t paced_cnt = 0;
1414 	int32_t loop_cnt = 0;
1415 	int32_t did_prefetch = 0;
1416 	int32_t prefetch_ninp = 0;
1417 	int32_t prefetch_tp = 0;
1418 	int32_t wrap_loop_cnt = 0;
1419 	int32_t slot_pos_of_endpoint = 0;
1420 	int32_t orig_exit_slot;
1421 	int16_t set_cpu;
1422 	int8_t completed_measure = 0, seen_endpoint = 0;
1423 
1424 	HPTS_MTX_ASSERT(hpts);
1425 	NET_EPOCH_ASSERT();
1426 	/* record previous info for any logging */
1427 	hpts->saved_lasttick = hpts->p_lasttick;
1428 	hpts->saved_curtick = hpts->p_curtick;
1429 	hpts->saved_curslot = hpts->p_cur_slot;
1430 	hpts->saved_prev_slot = hpts->p_prev_slot;
1431 
1432 	hpts->p_lasttick = hpts->p_curtick;
1433 	hpts->p_curtick = tcp_gethptstick(&tv);
1434 	cts_last_ran[hpts->p_num] = tcp_tv_to_usectick(&tv);
1435 	orig_exit_slot = hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick);
1436 	if ((hpts->p_on_queue_cnt == 0) ||
1437 	    (hpts->p_lasttick == hpts->p_curtick)) {
1438 		/*
1439 		 * No time has yet passed,
1440 		 * or nothing to do.
1441 		 */
1442 		hpts->p_prev_slot = hpts->p_cur_slot;
1443 		hpts->p_lasttick = hpts->p_curtick;
1444 		goto no_run;
1445 	}
1446 again:
1447 	hpts->p_wheel_complete = 0;
1448 	HPTS_MTX_ASSERT(hpts);
1449 	slots_to_run = hpts_slots_diff(hpts->p_prev_slot, hpts->p_cur_slot);
1450 	if (((hpts->p_curtick - hpts->p_lasttick) >
1451 	     ((NUM_OF_HPTSI_SLOTS-1) * HPTS_TICKS_PER_SLOT)) &&
1452 	    (hpts->p_on_queue_cnt != 0)) {
1453 		/*
1454 		 * Wheel wrap is occuring, basically we
1455 		 * are behind and the distance between
1456 		 * run's has spread so much it has exceeded
1457 		 * the time on the wheel (1.024 seconds). This
1458 		 * is ugly and should NOT be happening. We
1459 		 * need to run the entire wheel. We last processed
1460 		 * p_prev_slot, so that needs to be the last slot
1461 		 * we run. The next slot after that should be our
1462 		 * reserved first slot for new, and then starts
1463 		 * the running postion. Now the problem is the
1464 		 * reserved "not to yet" place does not exist
1465 		 * and there may be inp's in there that need
1466 		 * running. We can merge those into the
1467 		 * first slot at the head.
1468 		 */
1469 		wrap_loop_cnt++;
1470 		hpts->p_nxt_slot = hpts_slot(hpts->p_prev_slot, 1);
1471 		hpts->p_runningslot = hpts_slot(hpts->p_prev_slot, 2);
1472 		/*
1473 		 * Adjust p_cur_slot to be where we are starting from
1474 		 * hopefully we will catch up (fat chance if something
1475 		 * is broken this bad :( )
1476 		 */
1477 		hpts->p_cur_slot = hpts->p_prev_slot;
1478 		/*
1479 		 * The next slot has guys to run too, and that would
1480 		 * be where we would normally start, lets move them into
1481 		 * the next slot (p_prev_slot + 2) so that we will
1482 		 * run them, the extra 10usecs of late (by being
1483 		 * put behind) does not really matter in this situation.
1484 		 */
1485 #ifdef INVARIANTS
1486 		/*
1487 		 * To prevent a panic we need to update the inpslot to the
1488 		 * new location. This is safe since it takes both the
1489 		 * INP lock and the pacer mutex to change the inp_hptsslot.
1490 		 */
1491 		TAILQ_FOREACH(inp, &hpts->p_hptss[hpts->p_nxt_slot], inp_hpts) {
1492 			inp->inp_hptsslot = hpts->p_runningslot;
1493 		}
1494 #endif
1495 		TAILQ_CONCAT(&hpts->p_hptss[hpts->p_runningslot],
1496 			     &hpts->p_hptss[hpts->p_nxt_slot], inp_hpts);
1497 		slots_to_run = NUM_OF_HPTSI_SLOTS - 1;
1498 		counter_u64_add(wheel_wrap, 1);
1499 	} else {
1500 		/*
1501 		 * Nxt slot is always one after p_runningslot though
1502 		 * its not used usually unless we are doing wheel wrap.
1503 		 */
1504 		hpts->p_nxt_slot = hpts->p_prev_slot;
1505 		hpts->p_runningslot = hpts_slot(hpts->p_prev_slot, 1);
1506 	}
1507 	KASSERT((((TAILQ_EMPTY(&hpts->p_input) != 0) && (hpts->p_on_inqueue_cnt == 0)) ||
1508 		 ((TAILQ_EMPTY(&hpts->p_input) == 0) && (hpts->p_on_inqueue_cnt > 0))),
1509 		("%s hpts:%p in_hpts cnt:%d and queue state mismatch",
1510 		 __FUNCTION__, hpts, hpts->p_on_inqueue_cnt));
1511 	HPTS_MTX_ASSERT(hpts);
1512 	if (hpts->p_on_queue_cnt == 0) {
1513 		goto no_one;
1514 	}
1515 	HPTS_MTX_ASSERT(hpts);
1516 	for (i = 0; i < slots_to_run; i++) {
1517 		/*
1518 		 * Calculate our delay, if there are no extra ticks there
1519 		 * was not any (i.e. if slots_to_run == 1, no delay).
1520 		 */
1521 		hpts->p_delayed_by = (slots_to_run - (i + 1)) * HPTS_TICKS_PER_SLOT;
1522 		HPTS_MTX_ASSERT(hpts);
1523 		while ((inp = TAILQ_FIRST(&hpts->p_hptss[hpts->p_runningslot])) != NULL) {
1524 			HPTS_MTX_ASSERT(hpts);
1525 			/* For debugging */
1526 			if (seen_endpoint == 0) {
1527 				seen_endpoint = 1;
1528 				orig_exit_slot = slot_pos_of_endpoint = hpts->p_runningslot;
1529 			} else if (completed_measure == 0) {
1530 				/* Record the new position */
1531 				orig_exit_slot = hpts->p_runningslot;
1532 			}
1533 			total_slots_processed++;
1534 			hpts->p_inp = inp;
1535 			paced_cnt++;
1536 			KASSERT(hpts->p_runningslot == inp->inp_hptsslot,
1537 				("Hpts:%p inp:%p slot mis-aligned %u vs %u",
1538 				 hpts, inp, hpts->p_runningslot, inp->inp_hptsslot));
1539 			/* Now pull it */
1540 			if (inp->inp_hpts_cpu_set == 0) {
1541 				set_cpu = 1;
1542 			} else {
1543 				set_cpu = 0;
1544 			}
1545 			hpts_sane_pace_remove(hpts, inp, &hpts->p_hptss[hpts->p_runningslot], 0);
1546 			if ((ninp = TAILQ_FIRST(&hpts->p_hptss[hpts->p_runningslot])) != NULL) {
1547 				/* We prefetch the next inp if possible */
1548 				kern_prefetch(ninp, &prefetch_ninp);
1549 				prefetch_ninp = 1;
1550 			}
1551 			if (inp->inp_hpts_request) {
1552 				/*
1553 				 * This guy is deferred out further in time
1554 				 * then our wheel had available on it.
1555 				 * Push him back on the wheel or run it
1556 				 * depending.
1557 				 */
1558 				uint32_t maxslots, last_slot, remaining_slots;
1559 
1560 				remaining_slots = slots_to_run - (i + 1);
1561 				if (inp->inp_hpts_request > remaining_slots) {
1562 					/*
1563 					 * How far out can we go?
1564 					 */
1565 					maxslots = max_slots_available(hpts, hpts->p_cur_slot, &last_slot);
1566 					if (maxslots >= inp->inp_hpts_request) {
1567 						/* we can place it finally to be processed  */
1568 						inp->inp_hptsslot = hpts_slot(hpts->p_runningslot, inp->inp_hpts_request);
1569 						inp->inp_hpts_request = 0;
1570 					} else {
1571 						/* Work off some more time */
1572 						inp->inp_hptsslot = last_slot;
1573 						inp->inp_hpts_request-= maxslots;
1574 					}
1575 					hpts_sane_pace_insert(hpts, inp, &hpts->p_hptss[inp->inp_hptsslot], __LINE__, 1);
1576 					hpts->p_inp = NULL;
1577 					continue;
1578 				}
1579 				inp->inp_hpts_request = 0;
1580 				/* Fall through we will so do it now */
1581 			}
1582 			/*
1583 			 * We clear the hpts flag here after dealing with
1584 			 * remaining slots. This way anyone looking with the
1585 			 * TCB lock will see its on the hpts until just
1586 			 * before we unlock.
1587 			 */
1588 			inp->inp_in_hpts = 0;
1589 			mtx_unlock(&hpts->p_mtx);
1590 			INP_WLOCK(inp);
1591 			if (in_pcbrele_wlocked(inp)) {
1592 				mtx_lock(&hpts->p_mtx);
1593 				hpts->p_inp = NULL;
1594 				continue;
1595 			}
1596 			if ((inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) ||
1597 			    (inp->inp_flags2 & INP_FREED)) {
1598 			out_now:
1599 				KASSERT(mtx_owned(&hpts->p_mtx) == 0,
1600 					("Hpts:%p owns mtx prior-to lock line:%d",
1601 					 hpts, __LINE__));
1602 				INP_WUNLOCK(inp);
1603 				mtx_lock(&hpts->p_mtx);
1604 				hpts->p_inp = NULL;
1605 				continue;
1606 			}
1607 			tp = intotcpcb(inp);
1608 			if ((tp == NULL) || (tp->t_inpcb == NULL)) {
1609 				goto out_now;
1610 			}
1611 			if (set_cpu) {
1612 				/*
1613 				 * Setup so the next time we will move to
1614 				 * the right CPU. This should be a rare
1615 				 * event. It will sometimes happens when we
1616 				 * are the client side (usually not the
1617 				 * server). Somehow tcp_output() gets called
1618 				 * before the tcp_do_segment() sets the
1619 				 * intial state. This means the r_cpu and
1620 				 * r_hpts_cpu is 0. We get on the hpts, and
1621 				 * then tcp_input() gets called setting up
1622 				 * the r_cpu to the correct value. The hpts
1623 				 * goes off and sees the mis-match. We
1624 				 * simply correct it here and the CPU will
1625 				 * switch to the new hpts nextime the tcb
1626 				 * gets added to the the hpts (not this one)
1627 				 * :-)
1628 				 */
1629 				tcp_set_hpts(inp);
1630 			}
1631 #ifdef VIMAGE
1632 			CURVNET_SET(inp->inp_vnet);
1633 #endif
1634 			/* Lets do any logging that we might want to */
1635 			if (hpts_does_tp_logging && (tp->t_logstate != TCP_LOG_STATE_OFF)) {
1636 				tcp_hpts_log(hpts, tp, &tv, slots_to_run, i, from_callout);
1637 			}
1638 			/*
1639 			 * There is a hole here, we get the refcnt on the
1640 			 * inp so it will still be preserved but to make
1641 			 * sure we can get the INP we need to hold the p_mtx
1642 			 * above while we pull out the tp/inp,  as long as
1643 			 * fini gets the lock first we are assured of having
1644 			 * a sane INP we can lock and test.
1645 			 */
1646 			KASSERT(mtx_owned(&hpts->p_mtx) == 0,
1647 				("Hpts:%p owns mtx prior-to tcp_output call line:%d",
1648 				 hpts, __LINE__));
1649 
1650 			if (tp->t_fb_ptr != NULL) {
1651 				kern_prefetch(tp->t_fb_ptr, &did_prefetch);
1652 				did_prefetch = 1;
1653 			}
1654 			if ((inp->inp_flags2 & INP_SUPPORTS_MBUFQ) && tp->t_in_pkt) {
1655 				error = (*tp->t_fb->tfb_do_queued_segments)(inp->inp_socket, tp, 0);
1656 				if (error) {
1657 					/* The input killed the connection */
1658 					goto skip_pacing;
1659 				}
1660 			}
1661 			inp->inp_hpts_calls = 1;
1662 			error = tp->t_fb->tfb_tcp_output(tp);
1663 			inp->inp_hpts_calls = 0;
1664 			if (ninp && ninp->inp_ppcb) {
1665 				/*
1666 				 * If we have a nxt inp, see if we can
1667 				 * prefetch its ppcb. Note this may seem
1668 				 * "risky" since we have no locks (other
1669 				 * than the previous inp) and there no
1670 				 * assurance that ninp was not pulled while
1671 				 * we were processing inp and freed. If this
1672 				 * occured it could mean that either:
1673 				 *
1674 				 * a) Its NULL (which is fine we won't go
1675 				 * here) <or> b) Its valid (which is cool we
1676 				 * will prefetch it) <or> c) The inp got
1677 				 * freed back to the slab which was
1678 				 * reallocated. Then the piece of memory was
1679 				 * re-used and something else (not an
1680 				 * address) is in inp_ppcb. If that occurs
1681 				 * we don't crash, but take a TLB shootdown
1682 				 * performance hit (same as if it was NULL
1683 				 * and we tried to pre-fetch it).
1684 				 *
1685 				 * Considering that the likelyhood of <c> is
1686 				 * quite rare we will take a risk on doing
1687 				 * this. If performance drops after testing
1688 				 * we can always take this out. NB: the
1689 				 * kern_prefetch on amd64 actually has
1690 				 * protection against a bad address now via
1691 				 * the DMAP_() tests. This will prevent the
1692 				 * TLB hit, and instead if <c> occurs just
1693 				 * cause us to load cache with a useless
1694 				 * address (to us).
1695 				 */
1696 				kern_prefetch(ninp->inp_ppcb, &prefetch_tp);
1697 				prefetch_tp = 1;
1698 			}
1699 			INP_WUNLOCK(inp);
1700 		skip_pacing:
1701 #ifdef VIMAGE
1702 			CURVNET_RESTORE();
1703 #endif
1704 			INP_UNLOCK_ASSERT(inp);
1705 			KASSERT(mtx_owned(&hpts->p_mtx) == 0,
1706 				("Hpts:%p owns mtx prior-to lock line:%d",
1707 				 hpts, __LINE__));
1708 			mtx_lock(&hpts->p_mtx);
1709 			hpts->p_inp = NULL;
1710 		}
1711 		if (seen_endpoint) {
1712 			/*
1713 			 * We now have a accurate distance between
1714 			 * slot_pos_of_endpoint <-> orig_exit_slot
1715 			 * to tell us how late we were, orig_exit_slot
1716 			 * is where we calculated the end of our cycle to
1717 			 * be when we first entered.
1718 			 */
1719 			completed_measure = 1;
1720 		}
1721 		HPTS_MTX_ASSERT(hpts);
1722 		hpts->p_inp = NULL;
1723 		hpts->p_runningslot++;
1724 		if (hpts->p_runningslot >= NUM_OF_HPTSI_SLOTS) {
1725 			hpts->p_runningslot = 0;
1726 		}
1727 	}
1728 no_one:
1729 	HPTS_MTX_ASSERT(hpts);
1730 	hpts->p_delayed_by = 0;
1731 	/*
1732 	 * Check to see if we took an excess amount of time and need to run
1733 	 * more ticks (if we did not hit eno-bufs).
1734 	 */
1735 	KASSERT((((TAILQ_EMPTY(&hpts->p_input) != 0) && (hpts->p_on_inqueue_cnt == 0)) ||
1736 		 ((TAILQ_EMPTY(&hpts->p_input) == 0) && (hpts->p_on_inqueue_cnt > 0))),
1737 		("%s hpts:%p in_hpts cnt:%d queue state mismatch",
1738 		 __FUNCTION__, hpts, hpts->p_on_inqueue_cnt));
1739 	hpts->p_prev_slot = hpts->p_cur_slot;
1740 	hpts->p_lasttick = hpts->p_curtick;
1741 	if ((from_callout == 0) || (loop_cnt > max_pacer_loops)) {
1742 		/*
1743 		 * Something is serious slow we have
1744 		 * looped through processing the wheel
1745 		 * and by the time we cleared the
1746 		 * needs to run max_pacer_loops time
1747 		 * we still needed to run. That means
1748 		 * the system is hopelessly behind and
1749 		 * can never catch up :(
1750 		 *
1751 		 * We will just lie to this thread
1752 		 * and let it thing p_curtick is
1753 		 * correct. When it next awakens
1754 		 * it will find itself further behind.
1755 		 */
1756 		if (from_callout)
1757 			counter_u64_add(hpts_hopelessly_behind, 1);
1758 		goto no_run;
1759 	}
1760 	hpts->p_curtick = tcp_gethptstick(&tv);
1761 	hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick);
1762 	if (seen_endpoint == 0) {
1763 		/* We saw no endpoint but we may be looping */
1764 		orig_exit_slot = hpts->p_cur_slot;
1765 	}
1766 	if ((wrap_loop_cnt < 2) &&
1767 	    (hpts->p_lasttick != hpts->p_curtick)) {
1768 		counter_u64_add(hpts_loops, 1);
1769 		loop_cnt++;
1770 		goto again;
1771 	}
1772 no_run:
1773 	cts_last_ran[hpts->p_num] = tcp_tv_to_usectick(&tv);
1774 	/*
1775 	 * Set flag to tell that we are done for
1776 	 * any slot input that happens during
1777 	 * input.
1778 	 */
1779 	hpts->p_wheel_complete = 1;
1780 	/*
1781 	 * Run any input that may be there not covered
1782 	 * in running data.
1783 	 */
1784 	if (!TAILQ_EMPTY(&hpts->p_input)) {
1785 		tcp_input_data(hpts, &tv);
1786 		/*
1787 		 * Now did we spend too long running input and need to run more ticks?
1788 		 * Note that if wrap_loop_cnt < 2 then we should have the conditions
1789 		 * in the KASSERT's true. But if the wheel is behind i.e. wrap_loop_cnt
1790 		 * is greater than 2, then the condtion most likely are *not* true. Also
1791 		 * if we are called not from the callout, we don't run the wheel multiple
1792 		 * times so the slots may not align either.
1793 		 */
1794 		KASSERT(((hpts->p_prev_slot == hpts->p_cur_slot) ||
1795 			 (wrap_loop_cnt >= 2) || (from_callout == 0)),
1796 			("H:%p p_prev_slot:%u not equal to p_cur_slot:%u", hpts,
1797 			 hpts->p_prev_slot, hpts->p_cur_slot));
1798 		KASSERT(((hpts->p_lasttick == hpts->p_curtick)
1799 			 || (wrap_loop_cnt >= 2) || (from_callout == 0)),
1800 			("H:%p p_lasttick:%u not equal to p_curtick:%u", hpts,
1801 			 hpts->p_lasttick, hpts->p_curtick));
1802 		if (from_callout && (hpts->p_lasttick != hpts->p_curtick)) {
1803 			hpts->p_curtick = tcp_gethptstick(&tv);
1804 			counter_u64_add(hpts_loops, 1);
1805 			hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick);
1806 			goto again;
1807 		}
1808 	}
1809 	if (from_callout){
1810 		tcp_hpts_set_max_sleep(hpts, wrap_loop_cnt);
1811 	}
1812 	if (seen_endpoint)
1813 		return(hpts_slots_diff(slot_pos_of_endpoint, orig_exit_slot));
1814 	else
1815 		return (0);
1816 }
1817 
1818 void
1819 __tcp_set_hpts(struct inpcb *inp, int32_t line)
1820 {
1821 	struct tcp_hpts_entry *hpts;
1822 	int failed;
1823 
1824 	INP_WLOCK_ASSERT(inp);
1825 	hpts = tcp_hpts_lock(inp);
1826 	if ((inp->inp_in_hpts == 0) &&
1827 	    (inp->inp_hpts_cpu_set == 0)) {
1828 		inp->inp_hpts_cpu = hpts_cpuid(inp, &failed);
1829 		if (failed == 0)
1830 			inp->inp_hpts_cpu_set = 1;
1831 	}
1832 	mtx_unlock(&hpts->p_mtx);
1833 	hpts = tcp_input_lock(inp);
1834 	if ((inp->inp_input_cpu_set == 0) &&
1835 	    (inp->inp_in_input == 0)) {
1836 		inp->inp_input_cpu = hpts_cpuid(inp, &failed);
1837 		if (failed == 0)
1838 			inp->inp_input_cpu_set = 1;
1839 	}
1840 	mtx_unlock(&hpts->p_mtx);
1841 }
1842 
1843 uint16_t
1844 tcp_hpts_delayedby(struct inpcb *inp){
1845 	return (tcp_pace.rp_ent[inp->inp_hpts_cpu]->p_delayed_by);
1846 }
1847 
1848 static void
1849 __tcp_run_hpts(struct tcp_hpts_entry *hpts)
1850 {
1851 	int ticks_ran;
1852 
1853 	if (hpts->p_hpts_active) {
1854 		/* Already active */
1855 		return;
1856 	}
1857 	if (mtx_trylock(&hpts->p_mtx) == 0) {
1858 		/* Someone else got the lock */
1859 		return;
1860 	}
1861 	if (hpts->p_hpts_active)
1862 		goto out_with_mtx;
1863 	hpts->syscall_cnt++;
1864 	counter_u64_add(hpts_direct_call, 1);
1865 	hpts->p_hpts_active = 1;
1866 	ticks_ran = tcp_hptsi(hpts, 0);
1867 	/* We may want to adjust the sleep values here */
1868 	if (hpts->p_on_queue_cnt >= conn_cnt_thresh) {
1869 		if (ticks_ran > ticks_indicate_less_sleep) {
1870 			struct timeval tv;
1871 			sbintime_t sb;
1872 			int cpu;
1873 
1874 			hpts->p_mysleep.tv_usec /= 2;
1875 			if (hpts->p_mysleep.tv_usec < dynamic_min_sleep)
1876 				hpts->p_mysleep.tv_usec = dynamic_min_sleep;
1877 			/* Reschedule with new to value */
1878 			tcp_hpts_set_max_sleep(hpts, 0);
1879 			tv.tv_usec = hpts->p_hpts_sleep_time * HPTS_TICKS_PER_SLOT;
1880 			/* Validate its in the right ranges */
1881 			if (tv.tv_usec < hpts->p_mysleep.tv_usec) {
1882 				hpts->overidden_sleep = tv.tv_usec;
1883 				tv.tv_usec = hpts->p_mysleep.tv_usec;
1884 			} else if (tv.tv_usec > dynamic_max_sleep) {
1885 				/* Lets not let sleep get above this value */
1886 				hpts->overidden_sleep = tv.tv_usec;
1887 				tv.tv_usec = dynamic_max_sleep;
1888 			}
1889 			/*
1890 			 * In this mode the timer is a backstop to
1891 			 * all the userret/lro_flushes so we use
1892 			 * the dynamic value and set the on_min_sleep
1893 			 * flag so we will not be awoken.
1894 			 */
1895 			sb = tvtosbt(tv);
1896 			cpu = (tcp_bind_threads || hpts_use_assigned_cpu) ?  hpts->p_cpu : curcpu;
1897 			/* Store off to make visible the actual sleep time */
1898 			hpts->sleeping = tv.tv_usec;
1899 			callout_reset_sbt_on(&hpts->co, sb, 0,
1900 					     hpts_timeout_swi, hpts, cpu,
1901 					     (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision)));
1902 		} else if (ticks_ran < ticks_indicate_more_sleep) {
1903 			/* For the further sleep, don't reschedule  hpts */
1904 			hpts->p_mysleep.tv_usec *= 2;
1905 			if (hpts->p_mysleep.tv_usec > dynamic_max_sleep)
1906 				hpts->p_mysleep.tv_usec = dynamic_max_sleep;
1907 		}
1908 		hpts->p_on_min_sleep = 1;
1909 	}
1910 	hpts->p_hpts_active = 0;
1911 out_with_mtx:
1912 	HPTS_MTX_ASSERT(hpts);
1913 	mtx_unlock(&hpts->p_mtx);
1914 }
1915 
1916 static struct tcp_hpts_entry *
1917 tcp_choose_hpts_to_run()
1918 {
1919 	int i, oldest_idx;
1920 	uint32_t cts, time_since_ran, calc;
1921 
1922 	if ((hpts_uses_oldest == 0) ||
1923 	    ((hpts_uses_oldest > 1) &&
1924 	     (tcp_pace.rp_ent[(tcp_pace.rp_num_hptss-1)]->p_on_queue_cnt >= hpts_uses_oldest))) {
1925 		/*
1926 		 * We have either disabled the feature (0), or
1927 		 * we have crossed over the oldest threshold on the
1928 		 * last hpts. We use the last one for simplification
1929 		 * since we don't want to use the first one (it may
1930 		 * have starting connections that have not settled
1931 		 * on the cpu yet).
1932 		 */
1933 		return(tcp_pace.rp_ent[(curcpu % tcp_pace.rp_num_hptss)]);
1934 	}
1935 	/* Lets find the oldest hpts to attempt to run */
1936 	cts = tcp_get_usecs(NULL);
1937 	time_since_ran = 0;
1938 	oldest_idx = -1;
1939 	for (i = 0; i < tcp_pace.rp_num_hptss; i++) {
1940 		if (TSTMP_GT(cts, cts_last_ran[i]))
1941 			calc = cts - cts_last_ran[i];
1942 		else
1943 			calc = 0;
1944 		if (calc > time_since_ran) {
1945 			oldest_idx = i;
1946 			time_since_ran = calc;
1947 		}
1948 	}
1949 	if (oldest_idx >= 0)
1950 		return(tcp_pace.rp_ent[oldest_idx]);
1951 	else
1952 		return(tcp_pace.rp_ent[(curcpu % tcp_pace.rp_num_hptss)]);
1953 }
1954 
1955 
1956 void
1957 tcp_run_hpts(void)
1958 {
1959 	static struct tcp_hpts_entry *hpts;
1960 	struct epoch_tracker et;
1961 
1962 	NET_EPOCH_ENTER(et);
1963 	hpts = tcp_choose_hpts_to_run();
1964 	__tcp_run_hpts(hpts);
1965 	NET_EPOCH_EXIT(et);
1966 }
1967 
1968 
1969 static void
1970 tcp_hpts_thread(void *ctx)
1971 {
1972 	struct tcp_hpts_entry *hpts;
1973 	struct epoch_tracker et;
1974 	struct timeval tv;
1975 	sbintime_t sb;
1976 	int cpu, ticks_ran;
1977 
1978 	hpts = (struct tcp_hpts_entry *)ctx;
1979 	mtx_lock(&hpts->p_mtx);
1980 	if (hpts->p_direct_wake) {
1981 		/* Signaled by input or output with low occupancy count. */
1982 		callout_stop(&hpts->co);
1983 		counter_u64_add(hpts_direct_awakening, 1);
1984 	} else {
1985 		/* Timed out, the normal case. */
1986 		counter_u64_add(hpts_wake_timeout, 1);
1987 		if (callout_pending(&hpts->co) ||
1988 		    !callout_active(&hpts->co)) {
1989 			mtx_unlock(&hpts->p_mtx);
1990 			return;
1991 		}
1992 	}
1993 	callout_deactivate(&hpts->co);
1994 	hpts->p_hpts_wake_scheduled = 0;
1995 	NET_EPOCH_ENTER(et);
1996 	if (hpts->p_hpts_active) {
1997 		/*
1998 		 * We are active already. This means that a syscall
1999 		 * trap or LRO is running in behalf of hpts. In that case
2000 		 * we need to double our timeout since there seems to be
2001 		 * enough activity in the system that we don't need to
2002 		 * run as often (if we were not directly woken).
2003 		 */
2004 		if (hpts->p_direct_wake == 0) {
2005 			counter_u64_add(hpts_back_tosleep, 1);
2006 			if (hpts->p_on_queue_cnt >= conn_cnt_thresh) {
2007 				hpts->p_mysleep.tv_usec *= 2;
2008 				if (hpts->p_mysleep.tv_usec > dynamic_max_sleep)
2009 					hpts->p_mysleep.tv_usec = dynamic_max_sleep;
2010 				tv.tv_usec = hpts->p_mysleep.tv_usec;
2011 				hpts->p_on_min_sleep = 1;
2012 			} else {
2013 				/*
2014 				 * Here we have low count on the wheel, but
2015 				 * somehow we still collided with one of the
2016 				 * connections. Lets go back to sleep for a
2017 				 * min sleep time, but clear the flag so we
2018 				 * can be awoken by insert.
2019 				 */
2020 				hpts->p_on_min_sleep = 0;
2021 				tv.tv_usec = tcp_min_hptsi_time;
2022 			}
2023 		} else {
2024 			/*
2025 			 * Directly woken most likely to reset the
2026 			 * callout time.
2027 			 */
2028 			tv.tv_sec = 0;
2029 			tv.tv_usec = hpts->p_mysleep.tv_usec;
2030 		}
2031 		goto back_to_sleep;
2032 	}
2033 	hpts->sleeping = 0;
2034 	hpts->p_hpts_active = 1;
2035 	ticks_ran = tcp_hptsi(hpts, 1);
2036 	tv.tv_sec = 0;
2037 	tv.tv_usec = hpts->p_hpts_sleep_time * HPTS_TICKS_PER_SLOT;
2038 	if (hpts->p_on_queue_cnt >= conn_cnt_thresh) {
2039 		if(hpts->p_direct_wake == 0) {
2040 			/*
2041 			 * Only adjust sleep time if we were
2042 			 * called from the callout i.e. direct_wake == 0.
2043 			 */
2044 			if (ticks_ran < ticks_indicate_more_sleep) {
2045 				hpts->p_mysleep.tv_usec *= 2;
2046 				if (hpts->p_mysleep.tv_usec > dynamic_max_sleep)
2047 					hpts->p_mysleep.tv_usec = dynamic_max_sleep;
2048 			} else if (ticks_ran > ticks_indicate_less_sleep) {
2049 				hpts->p_mysleep.tv_usec /= 2;
2050 				if (hpts->p_mysleep.tv_usec < dynamic_min_sleep)
2051 					hpts->p_mysleep.tv_usec = dynamic_min_sleep;
2052 			}
2053 		}
2054 		if (tv.tv_usec < hpts->p_mysleep.tv_usec) {
2055 			hpts->overidden_sleep = tv.tv_usec;
2056 			tv.tv_usec = hpts->p_mysleep.tv_usec;
2057 		} else if (tv.tv_usec > dynamic_max_sleep) {
2058 			/* Lets not let sleep get above this value */
2059 			hpts->overidden_sleep = tv.tv_usec;
2060 			tv.tv_usec = dynamic_max_sleep;
2061 		}
2062 		/*
2063 		 * In this mode the timer is a backstop to
2064 		 * all the userret/lro_flushes so we use
2065 		 * the dynamic value and set the on_min_sleep
2066 		 * flag so we will not be awoken.
2067 		 */
2068 		hpts->p_on_min_sleep = 1;
2069 	} else if (hpts->p_on_queue_cnt == 0)  {
2070 		/*
2071 		 * No one on the wheel, please wake us up
2072 		 * if you insert on the wheel.
2073 		 */
2074 		hpts->p_on_min_sleep = 0;
2075 		hpts->overidden_sleep = 0;
2076 	} else {
2077 		/*
2078 		 * We hit here when we have a low number of
2079 		 * clients on the wheel (our else clause).
2080 		 * We may need to go on min sleep, if we set
2081 		 * the flag we will not be awoken if someone
2082 		 * is inserted ahead of us. Clearing the flag
2083 		 * means we can be awoken. This is "old mode"
2084 		 * where the timer is what runs hpts mainly.
2085 		 */
2086 		if (tv.tv_usec < tcp_min_hptsi_time) {
2087 			/*
2088 			 * Yes on min sleep, which means
2089 			 * we cannot be awoken.
2090 			 */
2091 			hpts->overidden_sleep = tv.tv_usec;
2092 			tv.tv_usec = tcp_min_hptsi_time;
2093 			hpts->p_on_min_sleep = 1;
2094 		} else {
2095 			/* Clear the min sleep flag */
2096 			hpts->overidden_sleep = 0;
2097 			hpts->p_on_min_sleep = 0;
2098 		}
2099 	}
2100 	HPTS_MTX_ASSERT(hpts);
2101 	hpts->p_hpts_active = 0;
2102 back_to_sleep:
2103 	hpts->p_direct_wake = 0;
2104 	sb = tvtosbt(tv);
2105 	cpu = (tcp_bind_threads || hpts_use_assigned_cpu) ?  hpts->p_cpu : curcpu;
2106 	/* Store off to make visible the actual sleep time */
2107 	hpts->sleeping = tv.tv_usec;
2108 	callout_reset_sbt_on(&hpts->co, sb, 0,
2109 			     hpts_timeout_swi, hpts, cpu,
2110 			     (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision)));
2111 	NET_EPOCH_EXIT(et);
2112 	mtx_unlock(&hpts->p_mtx);
2113 }
2114 
2115 #undef	timersub
2116 
2117 static void
2118 tcp_init_hptsi(void *st)
2119 {
2120 	int32_t i, j, error, bound = 0, created = 0;
2121 	size_t sz, asz;
2122 	struct timeval tv;
2123 	sbintime_t sb;
2124 	struct tcp_hpts_entry *hpts;
2125 	struct pcpu *pc;
2126 	cpuset_t cs;
2127 	char unit[16];
2128 	uint32_t ncpus = mp_ncpus ? mp_ncpus : MAXCPU;
2129 	int count, domain, cpu;
2130 
2131 	tcp_pace.rp_proc = NULL;
2132 	tcp_pace.rp_num_hptss = ncpus;
2133 	hpts_hopelessly_behind = counter_u64_alloc(M_WAITOK);
2134 	hpts_loops = counter_u64_alloc(M_WAITOK);
2135 	back_tosleep = counter_u64_alloc(M_WAITOK);
2136 	combined_wheel_wrap = counter_u64_alloc(M_WAITOK);
2137 	wheel_wrap = counter_u64_alloc(M_WAITOK);
2138 	hpts_wake_timeout = counter_u64_alloc(M_WAITOK);
2139 	hpts_direct_awakening = counter_u64_alloc(M_WAITOK);
2140 	hpts_back_tosleep = counter_u64_alloc(M_WAITOK);
2141 	hpts_direct_call = counter_u64_alloc(M_WAITOK);
2142 	cpu_uses_flowid = counter_u64_alloc(M_WAITOK);
2143 	cpu_uses_random = counter_u64_alloc(M_WAITOK);
2144 
2145 
2146 	sz = (tcp_pace.rp_num_hptss * sizeof(struct tcp_hpts_entry *));
2147 	tcp_pace.rp_ent = malloc(sz, M_TCPHPTS, M_WAITOK | M_ZERO);
2148 	sz = (sizeof(uint32_t) * tcp_pace.rp_num_hptss);
2149 	cts_last_ran = malloc(sz, M_TCPHPTS, M_WAITOK);
2150 	asz = sizeof(struct hptsh) * NUM_OF_HPTSI_SLOTS;
2151 	for (i = 0; i < tcp_pace.rp_num_hptss; i++) {
2152 		tcp_pace.rp_ent[i] = malloc(sizeof(struct tcp_hpts_entry),
2153 		    M_TCPHPTS, M_WAITOK | M_ZERO);
2154 		tcp_pace.rp_ent[i]->p_hptss = malloc(asz,
2155 		    M_TCPHPTS, M_WAITOK);
2156 		hpts = tcp_pace.rp_ent[i];
2157 		/*
2158 		 * Init all the hpts structures that are not specifically
2159 		 * zero'd by the allocations. Also lets attach them to the
2160 		 * appropriate sysctl block as well.
2161 		 */
2162 		mtx_init(&hpts->p_mtx, "tcp_hpts_lck",
2163 		    "hpts", MTX_DEF | MTX_DUPOK);
2164 		TAILQ_INIT(&hpts->p_input);
2165 		for (j = 0; j < NUM_OF_HPTSI_SLOTS; j++) {
2166 			TAILQ_INIT(&hpts->p_hptss[j]);
2167 		}
2168 		sysctl_ctx_init(&hpts->hpts_ctx);
2169 		sprintf(unit, "%d", i);
2170 		hpts->hpts_root = SYSCTL_ADD_NODE(&hpts->hpts_ctx,
2171 		    SYSCTL_STATIC_CHILDREN(_net_inet_tcp_hpts),
2172 		    OID_AUTO,
2173 		    unit,
2174 		    CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
2175 		    "");
2176 		SYSCTL_ADD_INT(&hpts->hpts_ctx,
2177 		    SYSCTL_CHILDREN(hpts->hpts_root),
2178 		    OID_AUTO, "in_qcnt", CTLFLAG_RD,
2179 		    &hpts->p_on_inqueue_cnt, 0,
2180 		    "Count TCB's awaiting input processing");
2181 		SYSCTL_ADD_INT(&hpts->hpts_ctx,
2182 		    SYSCTL_CHILDREN(hpts->hpts_root),
2183 		    OID_AUTO, "out_qcnt", CTLFLAG_RD,
2184 		    &hpts->p_on_queue_cnt, 0,
2185 		    "Count TCB's awaiting output processing");
2186 		SYSCTL_ADD_U16(&hpts->hpts_ctx,
2187 		    SYSCTL_CHILDREN(hpts->hpts_root),
2188 		    OID_AUTO, "active", CTLFLAG_RD,
2189 		    &hpts->p_hpts_active, 0,
2190 		    "Is the hpts active");
2191 		SYSCTL_ADD_UINT(&hpts->hpts_ctx,
2192 		    SYSCTL_CHILDREN(hpts->hpts_root),
2193 		    OID_AUTO, "curslot", CTLFLAG_RD,
2194 		    &hpts->p_cur_slot, 0,
2195 		    "What the current running pacers goal");
2196 		SYSCTL_ADD_UINT(&hpts->hpts_ctx,
2197 		    SYSCTL_CHILDREN(hpts->hpts_root),
2198 		    OID_AUTO, "runtick", CTLFLAG_RD,
2199 		    &hpts->p_runningslot, 0,
2200 		    "What the running pacers current slot is");
2201 		SYSCTL_ADD_UINT(&hpts->hpts_ctx,
2202 		    SYSCTL_CHILDREN(hpts->hpts_root),
2203 		    OID_AUTO, "curtick", CTLFLAG_RD,
2204 		    &hpts->p_curtick, 0,
2205 		    "What the running pacers last tick mapped to the wheel was");
2206 		SYSCTL_ADD_UINT(&hpts->hpts_ctx,
2207 		    SYSCTL_CHILDREN(hpts->hpts_root),
2208 		    OID_AUTO, "lastran", CTLFLAG_RD,
2209 		    &cts_last_ran[i], 0,
2210 		    "The last usec tick that this hpts ran");
2211 		SYSCTL_ADD_LONG(&hpts->hpts_ctx,
2212 		    SYSCTL_CHILDREN(hpts->hpts_root),
2213 		    OID_AUTO, "cur_min_sleep", CTLFLAG_RD,
2214 		    &hpts->p_mysleep.tv_usec,
2215 		    "What the running pacers is using for p_mysleep.tv_usec");
2216 		SYSCTL_ADD_U64(&hpts->hpts_ctx,
2217 		    SYSCTL_CHILDREN(hpts->hpts_root),
2218 		    OID_AUTO, "now_sleeping", CTLFLAG_RD,
2219 		    &hpts->sleeping, 0,
2220 		    "What the running pacers is actually sleeping for");
2221 		SYSCTL_ADD_U64(&hpts->hpts_ctx,
2222 		    SYSCTL_CHILDREN(hpts->hpts_root),
2223 		    OID_AUTO, "syscall_cnt", CTLFLAG_RD,
2224 		    &hpts->syscall_cnt, 0,
2225 		    "How many times we had syscalls on this hpts");
2226 
2227 		hpts->p_hpts_sleep_time = hpts_sleep_max;
2228 		hpts->p_num = i;
2229 		hpts->p_curtick = tcp_gethptstick(&tv);
2230 		cts_last_ran[i] = tcp_tv_to_usectick(&tv);
2231 		hpts->p_prev_slot = hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick);
2232 		hpts->p_cpu = 0xffff;
2233 		hpts->p_nxt_slot = hpts_slot(hpts->p_cur_slot, 1);
2234 		callout_init(&hpts->co, 1);
2235 	}
2236 
2237 	/* Don't try to bind to NUMA domains if we don't have any */
2238 	if (vm_ndomains == 1 && tcp_bind_threads == 2)
2239 		tcp_bind_threads = 0;
2240 
2241 	/*
2242 	 * Now lets start ithreads to handle the hptss.
2243 	 */
2244 	for (i = 0; i < tcp_pace.rp_num_hptss; i++) {
2245 		hpts = tcp_pace.rp_ent[i];
2246 		hpts->p_cpu = i;
2247 		error = swi_add(&hpts->ie, "hpts",
2248 		    tcp_hpts_thread, (void *)hpts,
2249 		    SWI_NET, INTR_MPSAFE, &hpts->ie_cookie);
2250 		KASSERT(error == 0,
2251 			("Can't add hpts:%p i:%d err:%d",
2252 			 hpts, i, error));
2253 		created++;
2254 		hpts->p_mysleep.tv_sec = 0;
2255 		hpts->p_mysleep.tv_usec = tcp_min_hptsi_time;
2256 		if (tcp_bind_threads == 1) {
2257 			if (intr_event_bind(hpts->ie, i) == 0)
2258 				bound++;
2259 		} else if (tcp_bind_threads == 2) {
2260 			pc = pcpu_find(i);
2261 			domain = pc->pc_domain;
2262 			CPU_COPY(&cpuset_domain[domain], &cs);
2263 			if (intr_event_bind_ithread_cpuset(hpts->ie, &cs)
2264 			    == 0) {
2265 				bound++;
2266 				count = hpts_domains[domain].count;
2267 				hpts_domains[domain].cpu[count] = i;
2268 				hpts_domains[domain].count++;
2269 			}
2270 		}
2271 		tv.tv_sec = 0;
2272 		tv.tv_usec = hpts->p_hpts_sleep_time * HPTS_TICKS_PER_SLOT;
2273 		hpts->sleeping = tv.tv_usec;
2274 		sb = tvtosbt(tv);
2275 		cpu = (tcp_bind_threads || hpts_use_assigned_cpu) ?  hpts->p_cpu : curcpu;
2276 		callout_reset_sbt_on(&hpts->co, sb, 0,
2277 				     hpts_timeout_swi, hpts, cpu,
2278 				     (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision)));
2279 	}
2280 	/*
2281 	 * If we somehow have an empty domain, fall back to choosing
2282 	 * among all htps threads.
2283 	 */
2284 	for (i = 0; i < vm_ndomains; i++) {
2285 		if (hpts_domains[i].count == 0) {
2286 			tcp_bind_threads = 0;
2287 			break;
2288 		}
2289 	}
2290 	printf("TCP Hpts created %d swi interrupt threads and bound %d to %s\n",
2291 	    created, bound,
2292 	    tcp_bind_threads == 2 ? "NUMA domains" : "cpus");
2293 #ifdef INVARIANTS
2294 	printf("HPTS is in INVARIANT mode!!\n");
2295 #endif
2296 }
2297 
2298 SYSINIT(tcphptsi, SI_SUB_SOFTINTR, SI_ORDER_ANY, tcp_init_hptsi, NULL);
2299 MODULE_VERSION(tcphpts, 1);
2300