1 /*- 2 * Copyright (c) 2016-2018 Netflix, Inc. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 1. Redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer. 9 * 2. Redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution. 12 * 13 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 14 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 16 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 17 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 18 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 19 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 20 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 21 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 22 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 23 * SUCH DAMAGE. 24 * 25 */ 26 #include <sys/cdefs.h> 27 __FBSDID("$FreeBSD$"); 28 29 #include "opt_inet.h" 30 #include "opt_inet6.h" 31 #include "opt_rss.h" 32 #include "opt_tcpdebug.h" 33 34 /** 35 * Some notes about usage. 36 * 37 * The tcp_hpts system is designed to provide a high precision timer 38 * system for tcp. Its main purpose is to provide a mechanism for 39 * pacing packets out onto the wire. It can be used in two ways 40 * by a given TCP stack (and those two methods can be used simultaneously). 41 * 42 * First, and probably the main thing its used by Rack and BBR, it can 43 * be used to call tcp_output() of a transport stack at some time in the future. 44 * The normal way this is done is that tcp_output() of the stack schedules 45 * itself to be called again by calling tcp_hpts_insert(tcpcb, slot). The 46 * slot is the time from now that the stack wants to be called but it 47 * must be converted to tcp_hpts's notion of slot. This is done with 48 * one of the macros HPTS_MS_TO_SLOTS or HPTS_USEC_TO_SLOTS. So a typical 49 * call from the tcp_output() routine might look like: 50 * 51 * tcp_hpts_insert(tp, HPTS_USEC_TO_SLOTS(550)); 52 * 53 * The above would schedule tcp_ouput() to be called in 550 useconds. 54 * Note that if using this mechanism the stack will want to add near 55 * its top a check to prevent unwanted calls (from user land or the 56 * arrival of incoming ack's). So it would add something like: 57 * 58 * if (inp->inp_in_hpts) 59 * return; 60 * 61 * to prevent output processing until the time alotted has gone by. 62 * Of course this is a bare bones example and the stack will probably 63 * have more consideration then just the above. 64 * 65 * Now the second function (actually two functions I guess :D) 66 * the tcp_hpts system provides is the ability to either abort 67 * a connection (later) or process input on a connection. 68 * Why would you want to do this? To keep processor locality 69 * and or not have to worry about untangling any recursive 70 * locks. The input function now is hooked to the new LRO 71 * system as well. 72 * 73 * In order to use the input redirection function the 74 * tcp stack must define an input function for 75 * tfb_do_queued_segments(). This function understands 76 * how to dequeue a array of packets that were input and 77 * knows how to call the correct processing routine. 78 * 79 * Locking in this is important as well so most likely the 80 * stack will need to define the tfb_do_segment_nounlock() 81 * splitting tfb_do_segment() into two parts. The main processing 82 * part that does not unlock the INP and returns a value of 1 or 0. 83 * It returns 0 if all is well and the lock was not released. It 84 * returns 1 if we had to destroy the TCB (a reset received etc). 85 * The remains of tfb_do_segment() then become just a simple call 86 * to the tfb_do_segment_nounlock() function and check the return 87 * code and possibly unlock. 88 * 89 * The stack must also set the flag on the INP that it supports this 90 * feature i.e. INP_SUPPORTS_MBUFQ. The LRO code recoginizes 91 * this flag as well and will queue packets when it is set. 92 * There are other flags as well INP_MBUF_QUEUE_READY and 93 * INP_DONT_SACK_QUEUE. The first flag tells the LRO code 94 * that we are in the pacer for output so there is no 95 * need to wake up the hpts system to get immediate 96 * input. The second tells the LRO code that its okay 97 * if a SACK arrives you can still defer input and let 98 * the current hpts timer run (this is usually set when 99 * a rack timer is up so we know SACK's are happening 100 * on the connection already and don't want to wakeup yet). 101 * 102 * There is a common functions within the rack_bbr_common code 103 * version i.e. ctf_do_queued_segments(). This function 104 * knows how to take the input queue of packets from 105 * tp->t_in_pkts and process them digging out 106 * all the arguments, calling any bpf tap and 107 * calling into tfb_do_segment_nounlock(). The common 108 * function (ctf_do_queued_segments()) requires that 109 * you have defined the tfb_do_segment_nounlock() as 110 * described above. 111 * 112 * The second feature of the input side of hpts is the 113 * dropping of a connection. This is due to the way that 114 * locking may have occured on the INP_WLOCK. So if 115 * a stack wants to drop a connection it calls: 116 * 117 * tcp_set_inp_to_drop(tp, ETIMEDOUT) 118 * 119 * To schedule the tcp_hpts system to call 120 * 121 * tcp_drop(tp, drop_reason) 122 * 123 * at a future point. This is quite handy to prevent locking 124 * issues when dropping connections. 125 * 126 */ 127 128 #include <sys/param.h> 129 #include <sys/bus.h> 130 #include <sys/interrupt.h> 131 #include <sys/module.h> 132 #include <sys/kernel.h> 133 #include <sys/hhook.h> 134 #include <sys/malloc.h> 135 #include <sys/mbuf.h> 136 #include <sys/proc.h> /* for proc0 declaration */ 137 #include <sys/socket.h> 138 #include <sys/socketvar.h> 139 #include <sys/sysctl.h> 140 #include <sys/systm.h> 141 #include <sys/refcount.h> 142 #include <sys/sched.h> 143 #include <sys/queue.h> 144 #include <sys/smp.h> 145 #include <sys/counter.h> 146 #include <sys/time.h> 147 #include <sys/kthread.h> 148 #include <sys/kern_prefetch.h> 149 150 #include <vm/uma.h> 151 #include <vm/vm.h> 152 153 #include <net/route.h> 154 #include <net/vnet.h> 155 156 #ifdef RSS 157 #include <net/netisr.h> 158 #include <net/rss_config.h> 159 #endif 160 161 #define TCPSTATES /* for logging */ 162 163 #include <netinet/in.h> 164 #include <netinet/in_kdtrace.h> 165 #include <netinet/in_pcb.h> 166 #include <netinet/ip.h> 167 #include <netinet/ip_icmp.h> /* required for icmp_var.h */ 168 #include <netinet/icmp_var.h> /* for ICMP_BANDLIM */ 169 #include <netinet/ip_var.h> 170 #include <netinet/ip6.h> 171 #include <netinet6/in6_pcb.h> 172 #include <netinet6/ip6_var.h> 173 #include <netinet/tcp.h> 174 #include <netinet/tcp_fsm.h> 175 #include <netinet/tcp_seq.h> 176 #include <netinet/tcp_timer.h> 177 #include <netinet/tcp_var.h> 178 #include <netinet/tcpip.h> 179 #include <netinet/cc/cc.h> 180 #include <netinet/tcp_hpts.h> 181 #include <netinet/tcp_log_buf.h> 182 183 #ifdef tcpdebug 184 #include <netinet/tcp_debug.h> 185 #endif /* tcpdebug */ 186 #ifdef tcp_offload 187 #include <netinet/tcp_offload.h> 188 #endif 189 190 MALLOC_DEFINE(M_TCPHPTS, "tcp_hpts", "TCP hpts"); 191 #ifdef RSS 192 static int tcp_bind_threads = 1; 193 #else 194 static int tcp_bind_threads = 2; 195 #endif 196 static int tcp_use_irq_cpu = 0; 197 static struct tcp_hptsi tcp_pace; 198 static uint32_t *cts_last_ran; 199 static int hpts_does_tp_logging = 0; 200 static int hpts_use_assigned_cpu = 1; 201 static int32_t hpts_uses_oldest = OLDEST_THRESHOLD; 202 203 static void tcp_input_data(struct tcp_hpts_entry *hpts, struct timeval *tv); 204 static int32_t tcp_hptsi(struct tcp_hpts_entry *hpts, int from_callout); 205 static void tcp_hpts_thread(void *ctx); 206 static void tcp_init_hptsi(void *st); 207 208 int32_t tcp_min_hptsi_time = DEFAULT_MIN_SLEEP; 209 static int conn_cnt_thresh = DEFAULT_CONNECTION_THESHOLD; 210 static int32_t dynamic_min_sleep = DYNAMIC_MIN_SLEEP; 211 static int32_t dynamic_max_sleep = DYNAMIC_MAX_SLEEP; 212 213 214 215 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, hpts, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 216 "TCP Hpts controls"); 217 SYSCTL_NODE(_net_inet_tcp_hpts, OID_AUTO, stats, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 218 "TCP Hpts statistics"); 219 220 #define timersub(tvp, uvp, vvp) \ 221 do { \ 222 (vvp)->tv_sec = (tvp)->tv_sec - (uvp)->tv_sec; \ 223 (vvp)->tv_usec = (tvp)->tv_usec - (uvp)->tv_usec; \ 224 if ((vvp)->tv_usec < 0) { \ 225 (vvp)->tv_sec--; \ 226 (vvp)->tv_usec += 1000000; \ 227 } \ 228 } while (0) 229 230 static int32_t tcp_hpts_precision = 120; 231 232 struct hpts_domain_info { 233 int count; 234 int cpu[MAXCPU]; 235 }; 236 237 struct hpts_domain_info hpts_domains[MAXMEMDOM]; 238 239 counter_u64_t hpts_hopelessly_behind; 240 241 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, hopeless, CTLFLAG_RD, 242 &hpts_hopelessly_behind, 243 "Number of times hpts could not catch up and was behind hopelessly"); 244 245 counter_u64_t hpts_loops; 246 247 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, loops, CTLFLAG_RD, 248 &hpts_loops, "Number of times hpts had to loop to catch up"); 249 250 counter_u64_t back_tosleep; 251 252 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, no_tcbsfound, CTLFLAG_RD, 253 &back_tosleep, "Number of times hpts found no tcbs"); 254 255 counter_u64_t combined_wheel_wrap; 256 257 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, comb_wheel_wrap, CTLFLAG_RD, 258 &combined_wheel_wrap, "Number of times the wheel lagged enough to have an insert see wrap"); 259 260 counter_u64_t wheel_wrap; 261 262 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, wheel_wrap, CTLFLAG_RD, 263 &wheel_wrap, "Number of times the wheel lagged enough to have an insert see wrap"); 264 265 counter_u64_t hpts_direct_call; 266 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, direct_call, CTLFLAG_RD, 267 &hpts_direct_call, "Number of times hpts was called by syscall/trap or other entry"); 268 269 counter_u64_t hpts_wake_timeout; 270 271 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, timeout_wakeup, CTLFLAG_RD, 272 &hpts_wake_timeout, "Number of times hpts threads woke up via the callout expiring"); 273 274 counter_u64_t hpts_direct_awakening; 275 276 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, direct_awakening, CTLFLAG_RD, 277 &hpts_direct_awakening, "Number of times hpts threads woke up via the callout expiring"); 278 279 counter_u64_t hpts_back_tosleep; 280 281 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, back_tosleep, CTLFLAG_RD, 282 &hpts_back_tosleep, "Number of times hpts threads woke up via the callout expiring and went back to sleep no work"); 283 284 counter_u64_t cpu_uses_flowid; 285 counter_u64_t cpu_uses_random; 286 287 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, cpusel_flowid, CTLFLAG_RD, 288 &cpu_uses_flowid, "Number of times when setting cpuid we used the flowid field"); 289 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, cpusel_random, CTLFLAG_RD, 290 &cpu_uses_random, "Number of times when setting cpuid we used the a random value"); 291 292 TUNABLE_INT("net.inet.tcp.bind_hptss", &tcp_bind_threads); 293 TUNABLE_INT("net.inet.tcp.use_irq", &tcp_use_irq_cpu); 294 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, bind_hptss, CTLFLAG_RD, 295 &tcp_bind_threads, 2, 296 "Thread Binding tunable"); 297 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, use_irq, CTLFLAG_RD, 298 &tcp_use_irq_cpu, 0, 299 "Use of irq CPU tunable"); 300 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, precision, CTLFLAG_RW, 301 &tcp_hpts_precision, 120, 302 "Value for PRE() precision of callout"); 303 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, cnt_thresh, CTLFLAG_RW, 304 &conn_cnt_thresh, 0, 305 "How many connections (below) make us use the callout based mechanism"); 306 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, logging, CTLFLAG_RW, 307 &hpts_does_tp_logging, 0, 308 "Do we add to any tp that has logging on pacer logs"); 309 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, use_assigned_cpu, CTLFLAG_RW, 310 &hpts_use_assigned_cpu, 0, 311 "Do we start any hpts timer on the assigned cpu?"); 312 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, use_oldest, CTLFLAG_RW, 313 &hpts_uses_oldest, OLDEST_THRESHOLD, 314 "Do syscalls look for the hpts that has been the longest since running (or just use cpu no if 0)?"); 315 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, dyn_minsleep, CTLFLAG_RW, 316 &dynamic_min_sleep, 250, 317 "What is the dynamic minsleep value?"); 318 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, dyn_maxsleep, CTLFLAG_RW, 319 &dynamic_max_sleep, 5000, 320 "What is the dynamic maxsleep value?"); 321 322 323 324 325 326 static int32_t max_pacer_loops = 10; 327 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, loopmax, CTLFLAG_RW, 328 &max_pacer_loops, 10, 329 "What is the maximum number of times the pacer will loop trying to catch up"); 330 331 #define HPTS_MAX_SLEEP_ALLOWED (NUM_OF_HPTSI_SLOTS/2) 332 333 static uint32_t hpts_sleep_max = HPTS_MAX_SLEEP_ALLOWED; 334 335 static int 336 sysctl_net_inet_tcp_hpts_max_sleep(SYSCTL_HANDLER_ARGS) 337 { 338 int error; 339 uint32_t new; 340 341 new = hpts_sleep_max; 342 error = sysctl_handle_int(oidp, &new, 0, req); 343 if (error == 0 && req->newptr) { 344 if ((new < dynamic_min_sleep) || 345 (new > HPTS_MAX_SLEEP_ALLOWED)) 346 error = EINVAL; 347 else 348 hpts_sleep_max = new; 349 } 350 return (error); 351 } 352 353 static int 354 sysctl_net_inet_tcp_hpts_min_sleep(SYSCTL_HANDLER_ARGS) 355 { 356 int error; 357 uint32_t new; 358 359 new = tcp_min_hptsi_time; 360 error = sysctl_handle_int(oidp, &new, 0, req); 361 if (error == 0 && req->newptr) { 362 if (new < LOWEST_SLEEP_ALLOWED) 363 error = EINVAL; 364 else 365 tcp_min_hptsi_time = new; 366 } 367 return (error); 368 } 369 370 SYSCTL_PROC(_net_inet_tcp_hpts, OID_AUTO, maxsleep, 371 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 372 &hpts_sleep_max, 0, 373 &sysctl_net_inet_tcp_hpts_max_sleep, "IU", 374 "Maximum time hpts will sleep"); 375 376 SYSCTL_PROC(_net_inet_tcp_hpts, OID_AUTO, minsleep, 377 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 378 &tcp_min_hptsi_time, 0, 379 &sysctl_net_inet_tcp_hpts_min_sleep, "IU", 380 "The minimum time the hpts must sleep before processing more slots"); 381 382 static int ticks_indicate_more_sleep = TICKS_INDICATE_MORE_SLEEP; 383 static int ticks_indicate_less_sleep = TICKS_INDICATE_LESS_SLEEP; 384 static int tcp_hpts_no_wake_over_thresh = 1; 385 386 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, more_sleep, CTLFLAG_RW, 387 &ticks_indicate_more_sleep, 0, 388 "If we only process this many or less on a timeout, we need longer sleep on the next callout"); 389 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, less_sleep, CTLFLAG_RW, 390 &ticks_indicate_less_sleep, 0, 391 "If we process this many or more on a timeout, we need less sleep on the next callout"); 392 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, nowake_over_thresh, CTLFLAG_RW, 393 &tcp_hpts_no_wake_over_thresh, 0, 394 "When we are over the threshold on the pacer do we prohibit wakeups?"); 395 396 static void 397 tcp_hpts_log(struct tcp_hpts_entry *hpts, struct tcpcb *tp, struct timeval *tv, 398 int slots_to_run, int idx, int from_callout) 399 { 400 union tcp_log_stackspecific log; 401 /* 402 * Unused logs are 403 * 64 bit - delRate, rttProp, bw_inuse 404 * 16 bit - cwnd_gain 405 * 8 bit - bbr_state, bbr_substate, inhpts, ininput; 406 */ 407 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 408 log.u_bbr.flex1 = hpts->p_nxt_slot; 409 log.u_bbr.flex2 = hpts->p_cur_slot; 410 log.u_bbr.flex3 = hpts->p_prev_slot; 411 log.u_bbr.flex4 = idx; 412 log.u_bbr.flex5 = hpts->p_curtick; 413 log.u_bbr.flex6 = hpts->p_on_queue_cnt; 414 log.u_bbr.flex7 = hpts->p_cpu; 415 log.u_bbr.flex8 = (uint8_t)from_callout; 416 log.u_bbr.inflight = slots_to_run; 417 log.u_bbr.applimited = hpts->overidden_sleep; 418 log.u_bbr.delivered = hpts->saved_curtick; 419 log.u_bbr.timeStamp = tcp_tv_to_usectick(tv); 420 log.u_bbr.epoch = hpts->saved_curslot; 421 log.u_bbr.lt_epoch = hpts->saved_prev_slot; 422 log.u_bbr.pkts_out = hpts->p_delayed_by; 423 log.u_bbr.lost = hpts->p_hpts_sleep_time; 424 log.u_bbr.pacing_gain = hpts->p_cpu; 425 log.u_bbr.pkt_epoch = hpts->p_runningslot; 426 log.u_bbr.use_lt_bw = 1; 427 TCP_LOG_EVENTP(tp, NULL, 428 &tp->t_inpcb->inp_socket->so_rcv, 429 &tp->t_inpcb->inp_socket->so_snd, 430 BBR_LOG_HPTSDIAG, 0, 431 0, &log, false, tv); 432 } 433 434 static void 435 tcp_wakehpts(struct tcp_hpts_entry *hpts) 436 { 437 HPTS_MTX_ASSERT(hpts); 438 439 if (tcp_hpts_no_wake_over_thresh && (hpts->p_on_queue_cnt >= conn_cnt_thresh)) { 440 hpts->p_direct_wake = 0; 441 return; 442 } 443 if (hpts->p_hpts_wake_scheduled == 0) { 444 hpts->p_hpts_wake_scheduled = 1; 445 swi_sched(hpts->ie_cookie, 0); 446 } 447 } 448 449 static void 450 hpts_timeout_swi(void *arg) 451 { 452 struct tcp_hpts_entry *hpts; 453 454 hpts = (struct tcp_hpts_entry *)arg; 455 swi_sched(hpts->ie_cookie, 0); 456 } 457 458 static inline void 459 hpts_sane_pace_remove(struct tcp_hpts_entry *hpts, struct inpcb *inp, struct hptsh *head, int clear) 460 { 461 HPTS_MTX_ASSERT(hpts); 462 KASSERT(hpts->p_cpu == inp->inp_hpts_cpu, ("%s: hpts:%p inp:%p incorrect CPU", __FUNCTION__, hpts, inp)); 463 KASSERT(inp->inp_in_hpts != 0, ("%s: hpts:%p inp:%p not on the hpts?", __FUNCTION__, hpts, inp)); 464 TAILQ_REMOVE(head, inp, inp_hpts); 465 hpts->p_on_queue_cnt--; 466 KASSERT(hpts->p_on_queue_cnt >= 0, 467 ("Hpts goes negative inp:%p hpts:%p", 468 inp, hpts)); 469 if (clear) { 470 inp->inp_hpts_request = 0; 471 inp->inp_in_hpts = 0; 472 } 473 } 474 475 static inline void 476 hpts_sane_pace_insert(struct tcp_hpts_entry *hpts, struct inpcb *inp, struct hptsh *head, int line, int noref) 477 { 478 HPTS_MTX_ASSERT(hpts); 479 KASSERT(hpts->p_cpu == inp->inp_hpts_cpu, 480 ("%s: hpts:%p inp:%p incorrect CPU", __FUNCTION__, hpts, inp)); 481 KASSERT(((noref == 1) && (inp->inp_in_hpts == 1)) || 482 ((noref == 0) && (inp->inp_in_hpts == 0)), 483 ("%s: hpts:%p inp:%p already on the hpts?", 484 __FUNCTION__, hpts, inp)); 485 TAILQ_INSERT_TAIL(head, inp, inp_hpts); 486 inp->inp_in_hpts = 1; 487 hpts->p_on_queue_cnt++; 488 if (noref == 0) { 489 in_pcbref(inp); 490 } 491 } 492 493 static inline void 494 hpts_sane_input_remove(struct tcp_hpts_entry *hpts, struct inpcb *inp, int clear) 495 { 496 HPTS_MTX_ASSERT(hpts); 497 KASSERT(hpts->p_cpu == inp->inp_hpts_cpu, 498 ("%s: hpts:%p inp:%p incorrect CPU", __FUNCTION__, hpts, inp)); 499 KASSERT(inp->inp_in_input != 0, 500 ("%s: hpts:%p inp:%p not on the input hpts?", __FUNCTION__, hpts, inp)); 501 TAILQ_REMOVE(&hpts->p_input, inp, inp_input); 502 hpts->p_on_inqueue_cnt--; 503 KASSERT(hpts->p_on_inqueue_cnt >= 0, 504 ("Hpts in goes negative inp:%p hpts:%p", 505 inp, hpts)); 506 KASSERT((((TAILQ_EMPTY(&hpts->p_input) != 0) && (hpts->p_on_inqueue_cnt == 0)) || 507 ((TAILQ_EMPTY(&hpts->p_input) == 0) && (hpts->p_on_inqueue_cnt > 0))), 508 ("%s hpts:%p input cnt (p_on_inqueue):%d and queue state mismatch", 509 __FUNCTION__, hpts, hpts->p_on_inqueue_cnt)); 510 if (clear) 511 inp->inp_in_input = 0; 512 } 513 514 static inline void 515 hpts_sane_input_insert(struct tcp_hpts_entry *hpts, struct inpcb *inp, int line) 516 { 517 HPTS_MTX_ASSERT(hpts); 518 KASSERT(hpts->p_cpu == inp->inp_hpts_cpu, 519 ("%s: hpts:%p inp:%p incorrect CPU", __FUNCTION__, hpts, inp)); 520 KASSERT(inp->inp_in_input == 0, 521 ("%s: hpts:%p inp:%p already on the input hpts?", __FUNCTION__, hpts, inp)); 522 TAILQ_INSERT_TAIL(&hpts->p_input, inp, inp_input); 523 inp->inp_in_input = 1; 524 hpts->p_on_inqueue_cnt++; 525 in_pcbref(inp); 526 } 527 528 struct tcp_hpts_entry * 529 tcp_cur_hpts(struct inpcb *inp) 530 { 531 int32_t hpts_num; 532 struct tcp_hpts_entry *hpts; 533 534 hpts_num = inp->inp_hpts_cpu; 535 hpts = tcp_pace.rp_ent[hpts_num]; 536 return (hpts); 537 } 538 539 struct tcp_hpts_entry * 540 tcp_hpts_lock(struct inpcb *inp) 541 { 542 struct tcp_hpts_entry *hpts; 543 int32_t hpts_num; 544 545 again: 546 hpts_num = inp->inp_hpts_cpu; 547 hpts = tcp_pace.rp_ent[hpts_num]; 548 KASSERT(mtx_owned(&hpts->p_mtx) == 0, 549 ("Hpts:%p owns mtx prior-to lock line:%d", 550 hpts, __LINE__)); 551 mtx_lock(&hpts->p_mtx); 552 if (hpts_num != inp->inp_hpts_cpu) { 553 mtx_unlock(&hpts->p_mtx); 554 goto again; 555 } 556 return (hpts); 557 } 558 559 struct tcp_hpts_entry * 560 tcp_input_lock(struct inpcb *inp) 561 { 562 struct tcp_hpts_entry *hpts; 563 int32_t hpts_num; 564 565 again: 566 hpts_num = inp->inp_input_cpu; 567 hpts = tcp_pace.rp_ent[hpts_num]; 568 KASSERT(mtx_owned(&hpts->p_mtx) == 0, 569 ("Hpts:%p owns mtx prior-to lock line:%d", 570 hpts, __LINE__)); 571 mtx_lock(&hpts->p_mtx); 572 if (hpts_num != inp->inp_input_cpu) { 573 mtx_unlock(&hpts->p_mtx); 574 goto again; 575 } 576 return (hpts); 577 } 578 579 static void 580 tcp_remove_hpts_ref(struct inpcb *inp, struct tcp_hpts_entry *hpts, int line) 581 { 582 int32_t add_freed; 583 int32_t ret; 584 585 if (inp->inp_flags2 & INP_FREED) { 586 /* 587 * Need to play a special trick so that in_pcbrele_wlocked 588 * does not return 1 when it really should have returned 0. 589 */ 590 add_freed = 1; 591 inp->inp_flags2 &= ~INP_FREED; 592 } else { 593 add_freed = 0; 594 } 595 #ifndef INP_REF_DEBUG 596 ret = in_pcbrele_wlocked(inp); 597 #else 598 ret = __in_pcbrele_wlocked(inp, line); 599 #endif 600 KASSERT(ret != 1, ("inpcb:%p release ret 1", inp)); 601 if (add_freed) { 602 inp->inp_flags2 |= INP_FREED; 603 } 604 } 605 606 static void 607 tcp_hpts_remove_locked_output(struct tcp_hpts_entry *hpts, struct inpcb *inp, int32_t flags, int32_t line) 608 { 609 if (inp->inp_in_hpts) { 610 hpts_sane_pace_remove(hpts, inp, &hpts->p_hptss[inp->inp_hptsslot], 1); 611 tcp_remove_hpts_ref(inp, hpts, line); 612 } 613 } 614 615 static void 616 tcp_hpts_remove_locked_input(struct tcp_hpts_entry *hpts, struct inpcb *inp, int32_t flags, int32_t line) 617 { 618 HPTS_MTX_ASSERT(hpts); 619 if (inp->inp_in_input) { 620 hpts_sane_input_remove(hpts, inp, 1); 621 tcp_remove_hpts_ref(inp, hpts, line); 622 } 623 } 624 625 /* 626 * Called normally with the INP_LOCKED but it 627 * does not matter, the hpts lock is the key 628 * but the lock order allows us to hold the 629 * INP lock and then get the hpts lock. 630 * 631 * Valid values in the flags are 632 * HPTS_REMOVE_OUTPUT - remove from the output of the hpts. 633 * HPTS_REMOVE_INPUT - remove from the input of the hpts. 634 * Note that you can use one or both values together 635 * and get two actions. 636 */ 637 void 638 __tcp_hpts_remove(struct inpcb *inp, int32_t flags, int32_t line) 639 { 640 struct tcp_hpts_entry *hpts; 641 642 INP_WLOCK_ASSERT(inp); 643 if (flags & HPTS_REMOVE_OUTPUT) { 644 hpts = tcp_hpts_lock(inp); 645 tcp_hpts_remove_locked_output(hpts, inp, flags, line); 646 mtx_unlock(&hpts->p_mtx); 647 } 648 if (flags & HPTS_REMOVE_INPUT) { 649 hpts = tcp_input_lock(inp); 650 tcp_hpts_remove_locked_input(hpts, inp, flags, line); 651 mtx_unlock(&hpts->p_mtx); 652 } 653 } 654 655 static inline int 656 hpts_slot(uint32_t wheel_slot, uint32_t plus) 657 { 658 /* 659 * Given a slot on the wheel, what slot 660 * is that plus ticks out? 661 */ 662 KASSERT(wheel_slot < NUM_OF_HPTSI_SLOTS, ("Invalid tick %u not on wheel", wheel_slot)); 663 return ((wheel_slot + plus) % NUM_OF_HPTSI_SLOTS); 664 } 665 666 static inline int 667 tick_to_wheel(uint32_t cts_in_wticks) 668 { 669 /* 670 * Given a timestamp in ticks (so by 671 * default to get it to a real time one 672 * would multiply by 10.. i.e the number 673 * of ticks in a slot) map it to our limited 674 * space wheel. 675 */ 676 return (cts_in_wticks % NUM_OF_HPTSI_SLOTS); 677 } 678 679 static inline int 680 hpts_slots_diff(int prev_slot, int slot_now) 681 { 682 /* 683 * Given two slots that are someplace 684 * on our wheel. How far are they apart? 685 */ 686 if (slot_now > prev_slot) 687 return (slot_now - prev_slot); 688 else if (slot_now == prev_slot) 689 /* 690 * Special case, same means we can go all of our 691 * wheel less one slot. 692 */ 693 return (NUM_OF_HPTSI_SLOTS - 1); 694 else 695 return ((NUM_OF_HPTSI_SLOTS - prev_slot) + slot_now); 696 } 697 698 /* 699 * Given a slot on the wheel that is the current time 700 * mapped to the wheel (wheel_slot), what is the maximum 701 * distance forward that can be obtained without 702 * wrapping past either prev_slot or running_slot 703 * depending on the htps state? Also if passed 704 * a uint32_t *, fill it with the slot location. 705 * 706 * Note if you do not give this function the current 707 * time (that you think it is) mapped to the wheel slot 708 * then the results will not be what you expect and 709 * could lead to invalid inserts. 710 */ 711 static inline int32_t 712 max_slots_available(struct tcp_hpts_entry *hpts, uint32_t wheel_slot, uint32_t *target_slot) 713 { 714 uint32_t dis_to_travel, end_slot, pacer_to_now, avail_on_wheel; 715 716 if ((hpts->p_hpts_active == 1) && 717 (hpts->p_wheel_complete == 0)) { 718 end_slot = hpts->p_runningslot; 719 /* Back up one tick */ 720 if (end_slot == 0) 721 end_slot = NUM_OF_HPTSI_SLOTS - 1; 722 else 723 end_slot--; 724 if (target_slot) 725 *target_slot = end_slot; 726 } else { 727 /* 728 * For the case where we are 729 * not active, or we have 730 * completed the pass over 731 * the wheel, we can use the 732 * prev tick and subtract one from it. This puts us 733 * as far out as possible on the wheel. 734 */ 735 end_slot = hpts->p_prev_slot; 736 if (end_slot == 0) 737 end_slot = NUM_OF_HPTSI_SLOTS - 1; 738 else 739 end_slot--; 740 if (target_slot) 741 *target_slot = end_slot; 742 /* 743 * Now we have close to the full wheel left minus the 744 * time it has been since the pacer went to sleep. Note 745 * that wheel_tick, passed in, should be the current time 746 * from the perspective of the caller, mapped to the wheel. 747 */ 748 if (hpts->p_prev_slot != wheel_slot) 749 dis_to_travel = hpts_slots_diff(hpts->p_prev_slot, wheel_slot); 750 else 751 dis_to_travel = 1; 752 /* 753 * dis_to_travel in this case is the space from when the 754 * pacer stopped (p_prev_slot) and where our wheel_slot 755 * is now. To know how many slots we can put it in we 756 * subtract from the wheel size. We would not want 757 * to place something after p_prev_slot or it will 758 * get ran too soon. 759 */ 760 return (NUM_OF_HPTSI_SLOTS - dis_to_travel); 761 } 762 /* 763 * So how many slots are open between p_runningslot -> p_cur_slot 764 * that is what is currently un-available for insertion. Special 765 * case when we are at the last slot, this gets 1, so that 766 * the answer to how many slots are available is all but 1. 767 */ 768 if (hpts->p_runningslot == hpts->p_cur_slot) 769 dis_to_travel = 1; 770 else 771 dis_to_travel = hpts_slots_diff(hpts->p_runningslot, hpts->p_cur_slot); 772 /* 773 * How long has the pacer been running? 774 */ 775 if (hpts->p_cur_slot != wheel_slot) { 776 /* The pacer is a bit late */ 777 pacer_to_now = hpts_slots_diff(hpts->p_cur_slot, wheel_slot); 778 } else { 779 /* The pacer is right on time, now == pacers start time */ 780 pacer_to_now = 0; 781 } 782 /* 783 * To get the number left we can insert into we simply 784 * subract the distance the pacer has to run from how 785 * many slots there are. 786 */ 787 avail_on_wheel = NUM_OF_HPTSI_SLOTS - dis_to_travel; 788 /* 789 * Now how many of those we will eat due to the pacer's 790 * time (p_cur_slot) of start being behind the 791 * real time (wheel_slot)? 792 */ 793 if (avail_on_wheel <= pacer_to_now) { 794 /* 795 * Wheel wrap, we can't fit on the wheel, that 796 * is unusual the system must be way overloaded! 797 * Insert into the assured slot, and return special 798 * "0". 799 */ 800 counter_u64_add(combined_wheel_wrap, 1); 801 *target_slot = hpts->p_nxt_slot; 802 return (0); 803 } else { 804 /* 805 * We know how many slots are open 806 * on the wheel (the reverse of what 807 * is left to run. Take away the time 808 * the pacer started to now (wheel_slot) 809 * and that tells you how many slots are 810 * open that can be inserted into that won't 811 * be touched by the pacer until later. 812 */ 813 return (avail_on_wheel - pacer_to_now); 814 } 815 } 816 817 static int 818 tcp_queue_to_hpts_immediate_locked(struct inpcb *inp, struct tcp_hpts_entry *hpts, int32_t line, int32_t noref) 819 { 820 uint32_t need_wake = 0; 821 822 HPTS_MTX_ASSERT(hpts); 823 if (inp->inp_in_hpts == 0) { 824 /* Ok we need to set it on the hpts in the current slot */ 825 inp->inp_hpts_request = 0; 826 if ((hpts->p_hpts_active == 0) || 827 (hpts->p_wheel_complete)) { 828 /* 829 * A sleeping hpts we want in next slot to run 830 * note that in this state p_prev_slot == p_cur_slot 831 */ 832 inp->inp_hptsslot = hpts_slot(hpts->p_prev_slot, 1); 833 if ((hpts->p_on_min_sleep == 0) && (hpts->p_hpts_active == 0)) 834 need_wake = 1; 835 } else if ((void *)inp == hpts->p_inp) { 836 /* 837 * The hpts system is running and the caller 838 * was awoken by the hpts system. 839 * We can't allow you to go into the same slot we 840 * are in (we don't want a loop :-D). 841 */ 842 inp->inp_hptsslot = hpts->p_nxt_slot; 843 } else 844 inp->inp_hptsslot = hpts->p_runningslot; 845 hpts_sane_pace_insert(hpts, inp, &hpts->p_hptss[inp->inp_hptsslot], line, noref); 846 if (need_wake) { 847 /* 848 * Activate the hpts if it is sleeping and its 849 * timeout is not 1. 850 */ 851 hpts->p_direct_wake = 1; 852 tcp_wakehpts(hpts); 853 } 854 } 855 return (need_wake); 856 } 857 858 int 859 __tcp_queue_to_hpts_immediate(struct inpcb *inp, int32_t line) 860 { 861 int32_t ret; 862 struct tcp_hpts_entry *hpts; 863 864 INP_WLOCK_ASSERT(inp); 865 hpts = tcp_hpts_lock(inp); 866 ret = tcp_queue_to_hpts_immediate_locked(inp, hpts, line, 0); 867 mtx_unlock(&hpts->p_mtx); 868 return (ret); 869 } 870 871 #ifdef INVARIANTS 872 static void 873 check_if_slot_would_be_wrong(struct tcp_hpts_entry *hpts, struct inpcb *inp, uint32_t inp_hptsslot, int line) 874 { 875 /* 876 * Sanity checks for the pacer with invariants 877 * on insert. 878 */ 879 KASSERT(inp_hptsslot < NUM_OF_HPTSI_SLOTS, 880 ("hpts:%p inp:%p slot:%d > max", 881 hpts, inp, inp_hptsslot)); 882 if ((hpts->p_hpts_active) && 883 (hpts->p_wheel_complete == 0)) { 884 /* 885 * If the pacer is processing a arc 886 * of the wheel, we need to make 887 * sure we are not inserting within 888 * that arc. 889 */ 890 int distance, yet_to_run; 891 892 distance = hpts_slots_diff(hpts->p_runningslot, inp_hptsslot); 893 if (hpts->p_runningslot != hpts->p_cur_slot) 894 yet_to_run = hpts_slots_diff(hpts->p_runningslot, hpts->p_cur_slot); 895 else 896 yet_to_run = 0; /* processing last slot */ 897 KASSERT(yet_to_run <= distance, 898 ("hpts:%p inp:%p slot:%d distance:%d yet_to_run:%d rs:%d cs:%d", 899 hpts, inp, inp_hptsslot, 900 distance, yet_to_run, 901 hpts->p_runningslot, hpts->p_cur_slot)); 902 } 903 } 904 #endif 905 906 static void 907 tcp_hpts_insert_locked(struct tcp_hpts_entry *hpts, struct inpcb *inp, uint32_t slot, int32_t line, 908 struct hpts_diag *diag, struct timeval *tv) 909 { 910 uint32_t need_new_to = 0; 911 uint32_t wheel_cts; 912 int32_t wheel_slot, maxslots, last_slot; 913 int cpu; 914 int8_t need_wakeup = 0; 915 916 HPTS_MTX_ASSERT(hpts); 917 if (diag) { 918 memset(diag, 0, sizeof(struct hpts_diag)); 919 diag->p_hpts_active = hpts->p_hpts_active; 920 diag->p_prev_slot = hpts->p_prev_slot; 921 diag->p_runningslot = hpts->p_runningslot; 922 diag->p_nxt_slot = hpts->p_nxt_slot; 923 diag->p_cur_slot = hpts->p_cur_slot; 924 diag->p_curtick = hpts->p_curtick; 925 diag->p_lasttick = hpts->p_lasttick; 926 diag->slot_req = slot; 927 diag->p_on_min_sleep = hpts->p_on_min_sleep; 928 diag->hpts_sleep_time = hpts->p_hpts_sleep_time; 929 } 930 KASSERT(inp->inp_in_hpts == 0, ("Hpts:%p tp:%p already on hpts and add?", hpts, inp)); 931 if (slot == 0) { 932 /* Immediate */ 933 tcp_queue_to_hpts_immediate_locked(inp, hpts, line, 0); 934 return; 935 } 936 /* Get the current time relative to the wheel */ 937 wheel_cts = tcp_tv_to_hptstick(tv); 938 /* Map it onto the wheel */ 939 wheel_slot = tick_to_wheel(wheel_cts); 940 /* Now what's the max we can place it at? */ 941 maxslots = max_slots_available(hpts, wheel_slot, &last_slot); 942 if (diag) { 943 diag->wheel_slot = wheel_slot; 944 diag->maxslots = maxslots; 945 diag->wheel_cts = wheel_cts; 946 } 947 if (maxslots == 0) { 948 /* The pacer is in a wheel wrap behind, yikes! */ 949 if (slot > 1) { 950 /* 951 * Reduce by 1 to prevent a forever loop in 952 * case something else is wrong. Note this 953 * probably does not hurt because the pacer 954 * if its true is so far behind we will be 955 * > 1second late calling anyway. 956 */ 957 slot--; 958 } 959 inp->inp_hptsslot = last_slot; 960 inp->inp_hpts_request = slot; 961 } else if (maxslots >= slot) { 962 /* It all fits on the wheel */ 963 inp->inp_hpts_request = 0; 964 inp->inp_hptsslot = hpts_slot(wheel_slot, slot); 965 } else { 966 /* It does not fit */ 967 inp->inp_hpts_request = slot - maxslots; 968 inp->inp_hptsslot = last_slot; 969 } 970 if (diag) { 971 diag->slot_remaining = inp->inp_hpts_request; 972 diag->inp_hptsslot = inp->inp_hptsslot; 973 } 974 #ifdef INVARIANTS 975 check_if_slot_would_be_wrong(hpts, inp, inp->inp_hptsslot, line); 976 #endif 977 hpts_sane_pace_insert(hpts, inp, &hpts->p_hptss[inp->inp_hptsslot], line, 0); 978 if ((hpts->p_hpts_active == 0) && 979 (inp->inp_hpts_request == 0) && 980 (hpts->p_on_min_sleep == 0)) { 981 /* 982 * The hpts is sleeping and NOT on a minimum 983 * sleep time, we need to figure out where 984 * it will wake up at and if we need to reschedule 985 * its time-out. 986 */ 987 uint32_t have_slept, yet_to_sleep; 988 989 /* Now do we need to restart the hpts's timer? */ 990 have_slept = hpts_slots_diff(hpts->p_prev_slot, wheel_slot); 991 if (have_slept < hpts->p_hpts_sleep_time) 992 yet_to_sleep = hpts->p_hpts_sleep_time - have_slept; 993 else { 994 /* We are over-due */ 995 yet_to_sleep = 0; 996 need_wakeup = 1; 997 } 998 if (diag) { 999 diag->have_slept = have_slept; 1000 diag->yet_to_sleep = yet_to_sleep; 1001 } 1002 if (yet_to_sleep && 1003 (yet_to_sleep > slot)) { 1004 /* 1005 * We need to reschedule the hpts's time-out. 1006 */ 1007 hpts->p_hpts_sleep_time = slot; 1008 need_new_to = slot * HPTS_TICKS_PER_SLOT; 1009 } 1010 } 1011 /* 1012 * Now how far is the hpts sleeping to? if active is 1, its 1013 * up and ticking we do nothing, otherwise we may need to 1014 * reschedule its callout if need_new_to is set from above. 1015 */ 1016 if (need_wakeup) { 1017 hpts->p_direct_wake = 1; 1018 tcp_wakehpts(hpts); 1019 if (diag) { 1020 diag->need_new_to = 0; 1021 diag->co_ret = 0xffff0000; 1022 } 1023 } else if (need_new_to) { 1024 int32_t co_ret; 1025 struct timeval tv; 1026 sbintime_t sb; 1027 1028 tv.tv_sec = 0; 1029 tv.tv_usec = 0; 1030 while (need_new_to > HPTS_USEC_IN_SEC) { 1031 tv.tv_sec++; 1032 need_new_to -= HPTS_USEC_IN_SEC; 1033 } 1034 tv.tv_usec = need_new_to; 1035 sb = tvtosbt(tv); 1036 cpu = (tcp_bind_threads || hpts_use_assigned_cpu) ? hpts->p_cpu : curcpu; 1037 co_ret = callout_reset_sbt_on(&hpts->co, sb, 0, 1038 hpts_timeout_swi, hpts, cpu, 1039 (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision))); 1040 if (diag) { 1041 diag->need_new_to = need_new_to; 1042 diag->co_ret = co_ret; 1043 } 1044 } 1045 } 1046 1047 uint32_t 1048 tcp_hpts_insert_diag(struct inpcb *inp, uint32_t slot, int32_t line, struct hpts_diag *diag) 1049 { 1050 struct tcp_hpts_entry *hpts; 1051 uint32_t slot_on; 1052 struct timeval tv; 1053 1054 /* 1055 * We now return the next-slot the hpts will be on, beyond its 1056 * current run (if up) or where it was when it stopped if it is 1057 * sleeping. 1058 */ 1059 INP_WLOCK_ASSERT(inp); 1060 hpts = tcp_hpts_lock(inp); 1061 microuptime(&tv); 1062 tcp_hpts_insert_locked(hpts, inp, slot, line, diag, &tv); 1063 slot_on = hpts->p_nxt_slot; 1064 mtx_unlock(&hpts->p_mtx); 1065 return (slot_on); 1066 } 1067 1068 uint32_t 1069 __tcp_hpts_insert(struct inpcb *inp, uint32_t slot, int32_t line){ 1070 return (tcp_hpts_insert_diag(inp, slot, line, NULL)); 1071 } 1072 1073 int 1074 __tcp_queue_to_input_locked(struct inpcb *inp, struct tcp_hpts_entry *hpts, int32_t line) 1075 { 1076 int32_t retval = 0; 1077 1078 HPTS_MTX_ASSERT(hpts); 1079 if (inp->inp_in_input == 0) { 1080 /* Ok we need to set it on the hpts in the current slot */ 1081 hpts_sane_input_insert(hpts, inp, line); 1082 retval = 1; 1083 if ((hpts->p_hpts_active == 0) && 1084 (hpts->p_on_min_sleep == 0)){ 1085 /* 1086 * Activate the hpts if it is sleeping. 1087 */ 1088 retval = 2; 1089 hpts->p_direct_wake = 1; 1090 tcp_wakehpts(hpts); 1091 } 1092 } else if ((hpts->p_hpts_active == 0) && 1093 (hpts->p_on_min_sleep == 0)){ 1094 retval = 4; 1095 hpts->p_direct_wake = 1; 1096 tcp_wakehpts(hpts); 1097 } 1098 return (retval); 1099 } 1100 1101 int32_t 1102 __tcp_queue_to_input(struct inpcb *inp, int line) 1103 { 1104 struct tcp_hpts_entry *hpts; 1105 int32_t ret; 1106 1107 hpts = tcp_input_lock(inp); 1108 ret = __tcp_queue_to_input_locked(inp, hpts, line); 1109 mtx_unlock(&hpts->p_mtx); 1110 return (ret); 1111 } 1112 1113 void 1114 __tcp_set_inp_to_drop(struct inpcb *inp, uint16_t reason, int32_t line) 1115 { 1116 struct tcp_hpts_entry *hpts; 1117 struct tcpcb *tp; 1118 1119 tp = intotcpcb(inp); 1120 hpts = tcp_input_lock(tp->t_inpcb); 1121 if (inp->inp_in_input == 0) { 1122 /* Ok we need to set it on the hpts in the current slot */ 1123 hpts_sane_input_insert(hpts, inp, line); 1124 if ((hpts->p_hpts_active == 0) && 1125 (hpts->p_on_min_sleep == 0)){ 1126 /* 1127 * Activate the hpts if it is sleeping. 1128 */ 1129 hpts->p_direct_wake = 1; 1130 tcp_wakehpts(hpts); 1131 } 1132 } else if ((hpts->p_hpts_active == 0) && 1133 (hpts->p_on_min_sleep == 0)){ 1134 hpts->p_direct_wake = 1; 1135 tcp_wakehpts(hpts); 1136 } 1137 inp->inp_hpts_drop_reas = reason; 1138 mtx_unlock(&hpts->p_mtx); 1139 } 1140 1141 uint16_t 1142 hpts_random_cpu(struct inpcb *inp){ 1143 /* 1144 * No flow type set distribute the load randomly. 1145 */ 1146 uint16_t cpuid; 1147 uint32_t ran; 1148 1149 /* 1150 * If one has been set use it i.e. we want both in and out on the 1151 * same hpts. 1152 */ 1153 if (inp->inp_input_cpu_set) { 1154 return (inp->inp_input_cpu); 1155 } else if (inp->inp_hpts_cpu_set) { 1156 return (inp->inp_hpts_cpu); 1157 } 1158 /* Nothing set use a random number */ 1159 ran = arc4random(); 1160 cpuid = (((ran & 0xffff) % mp_ncpus) % tcp_pace.rp_num_hptss); 1161 return (cpuid); 1162 } 1163 1164 static uint16_t 1165 hpts_cpuid(struct inpcb *inp, int *failed) 1166 { 1167 u_int cpuid; 1168 #if !defined(RSS) && defined(NUMA) 1169 struct hpts_domain_info *di; 1170 #endif 1171 1172 *failed = 0; 1173 /* 1174 * If one has been set use it i.e. we want both in and out on the 1175 * same hpts. 1176 */ 1177 if (inp->inp_input_cpu_set) { 1178 return (inp->inp_input_cpu); 1179 } else if (inp->inp_hpts_cpu_set) { 1180 return (inp->inp_hpts_cpu); 1181 } 1182 /* 1183 * If we are using the irq cpu set by LRO or 1184 * the driver then it overrides all other domains. 1185 */ 1186 if (tcp_use_irq_cpu) { 1187 if (inp->inp_irq_cpu_set == 0) { 1188 *failed = 1; 1189 return(0); 1190 } 1191 return(inp->inp_irq_cpu); 1192 } 1193 /* If one is set the other must be the same */ 1194 #ifdef RSS 1195 cpuid = rss_hash2cpuid(inp->inp_flowid, inp->inp_flowtype); 1196 if (cpuid == NETISR_CPUID_NONE) 1197 return (hpts_random_cpu(inp)); 1198 else 1199 return (cpuid); 1200 #else 1201 /* 1202 * We don't have a flowid -> cpuid mapping, so cheat and just map 1203 * unknown cpuids to curcpu. Not the best, but apparently better 1204 * than defaulting to swi 0. 1205 */ 1206 if (inp->inp_flowtype == M_HASHTYPE_NONE) { 1207 counter_u64_add(cpu_uses_random, 1); 1208 return (hpts_random_cpu(inp)); 1209 } 1210 /* 1211 * Hash to a thread based on the flowid. If we are using numa, 1212 * then restrict the hash to the numa domain where the inp lives. 1213 */ 1214 #ifdef NUMA 1215 if (tcp_bind_threads == 2 && inp->inp_numa_domain != M_NODOM) { 1216 di = &hpts_domains[inp->inp_numa_domain]; 1217 cpuid = di->cpu[inp->inp_flowid % di->count]; 1218 } else 1219 #endif 1220 cpuid = inp->inp_flowid % mp_ncpus; 1221 counter_u64_add(cpu_uses_flowid, 1); 1222 return (cpuid); 1223 #endif 1224 } 1225 1226 static void 1227 tcp_drop_in_pkts(struct tcpcb *tp) 1228 { 1229 struct mbuf *m, *n; 1230 1231 m = tp->t_in_pkt; 1232 if (m) 1233 n = m->m_nextpkt; 1234 else 1235 n = NULL; 1236 tp->t_in_pkt = NULL; 1237 while (m) { 1238 m_freem(m); 1239 m = n; 1240 if (m) 1241 n = m->m_nextpkt; 1242 } 1243 } 1244 1245 /* 1246 * Do NOT try to optimize the processing of inp's 1247 * by first pulling off all the inp's into a temporary 1248 * list (e.g. TAILQ_CONCAT). If you do that the subtle 1249 * interactions of switching CPU's will kill because of 1250 * problems in the linked list manipulation. Basically 1251 * you would switch cpu's with the hpts mutex locked 1252 * but then while you were processing one of the inp's 1253 * some other one that you switch will get a new 1254 * packet on the different CPU. It will insert it 1255 * on the new hpts's input list. Creating a temporary 1256 * link in the inp will not fix it either, since 1257 * the other hpts will be doing the same thing and 1258 * you will both end up using the temporary link. 1259 * 1260 * You will die in an ASSERT for tailq corruption if you 1261 * run INVARIANTS or you will die horribly without 1262 * INVARIANTS in some unknown way with a corrupt linked 1263 * list. 1264 */ 1265 static void 1266 tcp_input_data(struct tcp_hpts_entry *hpts, struct timeval *tv) 1267 { 1268 struct tcpcb *tp; 1269 struct inpcb *inp; 1270 uint16_t drop_reason; 1271 int16_t set_cpu; 1272 uint32_t did_prefetch = 0; 1273 int dropped; 1274 1275 HPTS_MTX_ASSERT(hpts); 1276 NET_EPOCH_ASSERT(); 1277 1278 while ((inp = TAILQ_FIRST(&hpts->p_input)) != NULL) { 1279 HPTS_MTX_ASSERT(hpts); 1280 hpts_sane_input_remove(hpts, inp, 0); 1281 if (inp->inp_input_cpu_set == 0) { 1282 set_cpu = 1; 1283 } else { 1284 set_cpu = 0; 1285 } 1286 hpts->p_inp = inp; 1287 drop_reason = inp->inp_hpts_drop_reas; 1288 inp->inp_in_input = 0; 1289 mtx_unlock(&hpts->p_mtx); 1290 INP_WLOCK(inp); 1291 #ifdef VIMAGE 1292 CURVNET_SET(inp->inp_vnet); 1293 #endif 1294 if ((inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) || 1295 (inp->inp_flags2 & INP_FREED)) { 1296 out: 1297 hpts->p_inp = NULL; 1298 if (in_pcbrele_wlocked(inp) == 0) { 1299 INP_WUNLOCK(inp); 1300 } 1301 #ifdef VIMAGE 1302 CURVNET_RESTORE(); 1303 #endif 1304 mtx_lock(&hpts->p_mtx); 1305 continue; 1306 } 1307 tp = intotcpcb(inp); 1308 if ((tp == NULL) || (tp->t_inpcb == NULL)) { 1309 goto out; 1310 } 1311 if (drop_reason) { 1312 /* This tcb is being destroyed for drop_reason */ 1313 tcp_drop_in_pkts(tp); 1314 tp = tcp_drop(tp, drop_reason); 1315 if (tp == NULL) { 1316 INP_WLOCK(inp); 1317 } 1318 if (in_pcbrele_wlocked(inp) == 0) 1319 INP_WUNLOCK(inp); 1320 #ifdef VIMAGE 1321 CURVNET_RESTORE(); 1322 #endif 1323 mtx_lock(&hpts->p_mtx); 1324 continue; 1325 } 1326 if (set_cpu) { 1327 /* 1328 * Setup so the next time we will move to the right 1329 * CPU. This should be a rare event. It will 1330 * sometimes happens when we are the client side 1331 * (usually not the server). Somehow tcp_output() 1332 * gets called before the tcp_do_segment() sets the 1333 * intial state. This means the r_cpu and r_hpts_cpu 1334 * is 0. We get on the hpts, and then tcp_input() 1335 * gets called setting up the r_cpu to the correct 1336 * value. The hpts goes off and sees the mis-match. 1337 * We simply correct it here and the CPU will switch 1338 * to the new hpts nextime the tcb gets added to the 1339 * the hpts (not this time) :-) 1340 */ 1341 tcp_set_hpts(inp); 1342 } 1343 if (tp->t_fb_ptr != NULL) { 1344 kern_prefetch(tp->t_fb_ptr, &did_prefetch); 1345 did_prefetch = 1; 1346 } 1347 if ((tp->t_fb->tfb_do_queued_segments != NULL) && tp->t_in_pkt) { 1348 if (inp->inp_in_input) 1349 tcp_hpts_remove(inp, HPTS_REMOVE_INPUT); 1350 dropped = (*tp->t_fb->tfb_do_queued_segments)(inp->inp_socket, tp, 0); 1351 if (dropped) { 1352 /* Re-acquire the wlock so we can release the reference */ 1353 INP_WLOCK(inp); 1354 } 1355 } else if (tp->t_in_pkt) { 1356 /* 1357 * We reach here only if we had a 1358 * stack that supported INP_SUPPORTS_MBUFQ 1359 * and then somehow switched to a stack that 1360 * does not. The packets are basically stranded 1361 * and would hang with the connection until 1362 * cleanup without this code. Its not the 1363 * best way but I know of no other way to 1364 * handle it since the stack needs functions 1365 * it does not have to handle queued packets. 1366 */ 1367 tcp_drop_in_pkts(tp); 1368 } 1369 if (in_pcbrele_wlocked(inp) == 0) 1370 INP_WUNLOCK(inp); 1371 INP_UNLOCK_ASSERT(inp); 1372 #ifdef VIMAGE 1373 CURVNET_RESTORE(); 1374 #endif 1375 mtx_lock(&hpts->p_mtx); 1376 hpts->p_inp = NULL; 1377 } 1378 } 1379 1380 static void 1381 tcp_hpts_set_max_sleep(struct tcp_hpts_entry *hpts, int wrap_loop_cnt) 1382 { 1383 uint32_t t = 0, i, fnd = 0; 1384 1385 if ((hpts->p_on_queue_cnt) && (wrap_loop_cnt < 2)) { 1386 /* 1387 * Find next slot that is occupied and use that to 1388 * be the sleep time. 1389 */ 1390 for (i = 0, t = hpts_slot(hpts->p_cur_slot, 1); i < NUM_OF_HPTSI_SLOTS; i++) { 1391 if (TAILQ_EMPTY(&hpts->p_hptss[t]) == 0) { 1392 fnd = 1; 1393 break; 1394 } 1395 t = (t + 1) % NUM_OF_HPTSI_SLOTS; 1396 } 1397 KASSERT(fnd != 0, ("Hpts:%p cnt:%d but none found", hpts, hpts->p_on_queue_cnt)); 1398 hpts->p_hpts_sleep_time = min((i + 1), hpts_sleep_max); 1399 } else { 1400 /* No one on the wheel sleep for all but 400 slots or sleep max */ 1401 hpts->p_hpts_sleep_time = hpts_sleep_max; 1402 } 1403 } 1404 1405 static int32_t 1406 tcp_hptsi(struct tcp_hpts_entry *hpts, int from_callout) 1407 { 1408 struct tcpcb *tp; 1409 struct inpcb *inp = NULL, *ninp; 1410 struct timeval tv; 1411 uint64_t total_slots_processed = 0; 1412 int32_t slots_to_run, i, error; 1413 int32_t paced_cnt = 0; 1414 int32_t loop_cnt = 0; 1415 int32_t did_prefetch = 0; 1416 int32_t prefetch_ninp = 0; 1417 int32_t prefetch_tp = 0; 1418 int32_t wrap_loop_cnt = 0; 1419 int32_t slot_pos_of_endpoint = 0; 1420 int32_t orig_exit_slot; 1421 int16_t set_cpu; 1422 int8_t completed_measure = 0, seen_endpoint = 0; 1423 1424 HPTS_MTX_ASSERT(hpts); 1425 NET_EPOCH_ASSERT(); 1426 /* record previous info for any logging */ 1427 hpts->saved_lasttick = hpts->p_lasttick; 1428 hpts->saved_curtick = hpts->p_curtick; 1429 hpts->saved_curslot = hpts->p_cur_slot; 1430 hpts->saved_prev_slot = hpts->p_prev_slot; 1431 1432 hpts->p_lasttick = hpts->p_curtick; 1433 hpts->p_curtick = tcp_gethptstick(&tv); 1434 cts_last_ran[hpts->p_num] = tcp_tv_to_usectick(&tv); 1435 orig_exit_slot = hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick); 1436 if ((hpts->p_on_queue_cnt == 0) || 1437 (hpts->p_lasttick == hpts->p_curtick)) { 1438 /* 1439 * No time has yet passed, 1440 * or nothing to do. 1441 */ 1442 hpts->p_prev_slot = hpts->p_cur_slot; 1443 hpts->p_lasttick = hpts->p_curtick; 1444 goto no_run; 1445 } 1446 again: 1447 hpts->p_wheel_complete = 0; 1448 HPTS_MTX_ASSERT(hpts); 1449 slots_to_run = hpts_slots_diff(hpts->p_prev_slot, hpts->p_cur_slot); 1450 if (((hpts->p_curtick - hpts->p_lasttick) > 1451 ((NUM_OF_HPTSI_SLOTS-1) * HPTS_TICKS_PER_SLOT)) && 1452 (hpts->p_on_queue_cnt != 0)) { 1453 /* 1454 * Wheel wrap is occuring, basically we 1455 * are behind and the distance between 1456 * run's has spread so much it has exceeded 1457 * the time on the wheel (1.024 seconds). This 1458 * is ugly and should NOT be happening. We 1459 * need to run the entire wheel. We last processed 1460 * p_prev_slot, so that needs to be the last slot 1461 * we run. The next slot after that should be our 1462 * reserved first slot for new, and then starts 1463 * the running postion. Now the problem is the 1464 * reserved "not to yet" place does not exist 1465 * and there may be inp's in there that need 1466 * running. We can merge those into the 1467 * first slot at the head. 1468 */ 1469 wrap_loop_cnt++; 1470 hpts->p_nxt_slot = hpts_slot(hpts->p_prev_slot, 1); 1471 hpts->p_runningslot = hpts_slot(hpts->p_prev_slot, 2); 1472 /* 1473 * Adjust p_cur_slot to be where we are starting from 1474 * hopefully we will catch up (fat chance if something 1475 * is broken this bad :( ) 1476 */ 1477 hpts->p_cur_slot = hpts->p_prev_slot; 1478 /* 1479 * The next slot has guys to run too, and that would 1480 * be where we would normally start, lets move them into 1481 * the next slot (p_prev_slot + 2) so that we will 1482 * run them, the extra 10usecs of late (by being 1483 * put behind) does not really matter in this situation. 1484 */ 1485 #ifdef INVARIANTS 1486 /* 1487 * To prevent a panic we need to update the inpslot to the 1488 * new location. This is safe since it takes both the 1489 * INP lock and the pacer mutex to change the inp_hptsslot. 1490 */ 1491 TAILQ_FOREACH(inp, &hpts->p_hptss[hpts->p_nxt_slot], inp_hpts) { 1492 inp->inp_hptsslot = hpts->p_runningslot; 1493 } 1494 #endif 1495 TAILQ_CONCAT(&hpts->p_hptss[hpts->p_runningslot], 1496 &hpts->p_hptss[hpts->p_nxt_slot], inp_hpts); 1497 slots_to_run = NUM_OF_HPTSI_SLOTS - 1; 1498 counter_u64_add(wheel_wrap, 1); 1499 } else { 1500 /* 1501 * Nxt slot is always one after p_runningslot though 1502 * its not used usually unless we are doing wheel wrap. 1503 */ 1504 hpts->p_nxt_slot = hpts->p_prev_slot; 1505 hpts->p_runningslot = hpts_slot(hpts->p_prev_slot, 1); 1506 } 1507 KASSERT((((TAILQ_EMPTY(&hpts->p_input) != 0) && (hpts->p_on_inqueue_cnt == 0)) || 1508 ((TAILQ_EMPTY(&hpts->p_input) == 0) && (hpts->p_on_inqueue_cnt > 0))), 1509 ("%s hpts:%p in_hpts cnt:%d and queue state mismatch", 1510 __FUNCTION__, hpts, hpts->p_on_inqueue_cnt)); 1511 HPTS_MTX_ASSERT(hpts); 1512 if (hpts->p_on_queue_cnt == 0) { 1513 goto no_one; 1514 } 1515 HPTS_MTX_ASSERT(hpts); 1516 for (i = 0; i < slots_to_run; i++) { 1517 /* 1518 * Calculate our delay, if there are no extra ticks there 1519 * was not any (i.e. if slots_to_run == 1, no delay). 1520 */ 1521 hpts->p_delayed_by = (slots_to_run - (i + 1)) * HPTS_TICKS_PER_SLOT; 1522 HPTS_MTX_ASSERT(hpts); 1523 while ((inp = TAILQ_FIRST(&hpts->p_hptss[hpts->p_runningslot])) != NULL) { 1524 HPTS_MTX_ASSERT(hpts); 1525 /* For debugging */ 1526 if (seen_endpoint == 0) { 1527 seen_endpoint = 1; 1528 orig_exit_slot = slot_pos_of_endpoint = hpts->p_runningslot; 1529 } else if (completed_measure == 0) { 1530 /* Record the new position */ 1531 orig_exit_slot = hpts->p_runningslot; 1532 } 1533 total_slots_processed++; 1534 hpts->p_inp = inp; 1535 paced_cnt++; 1536 KASSERT(hpts->p_runningslot == inp->inp_hptsslot, 1537 ("Hpts:%p inp:%p slot mis-aligned %u vs %u", 1538 hpts, inp, hpts->p_runningslot, inp->inp_hptsslot)); 1539 /* Now pull it */ 1540 if (inp->inp_hpts_cpu_set == 0) { 1541 set_cpu = 1; 1542 } else { 1543 set_cpu = 0; 1544 } 1545 hpts_sane_pace_remove(hpts, inp, &hpts->p_hptss[hpts->p_runningslot], 0); 1546 if ((ninp = TAILQ_FIRST(&hpts->p_hptss[hpts->p_runningslot])) != NULL) { 1547 /* We prefetch the next inp if possible */ 1548 kern_prefetch(ninp, &prefetch_ninp); 1549 prefetch_ninp = 1; 1550 } 1551 if (inp->inp_hpts_request) { 1552 /* 1553 * This guy is deferred out further in time 1554 * then our wheel had available on it. 1555 * Push him back on the wheel or run it 1556 * depending. 1557 */ 1558 uint32_t maxslots, last_slot, remaining_slots; 1559 1560 remaining_slots = slots_to_run - (i + 1); 1561 if (inp->inp_hpts_request > remaining_slots) { 1562 /* 1563 * How far out can we go? 1564 */ 1565 maxslots = max_slots_available(hpts, hpts->p_cur_slot, &last_slot); 1566 if (maxslots >= inp->inp_hpts_request) { 1567 /* we can place it finally to be processed */ 1568 inp->inp_hptsslot = hpts_slot(hpts->p_runningslot, inp->inp_hpts_request); 1569 inp->inp_hpts_request = 0; 1570 } else { 1571 /* Work off some more time */ 1572 inp->inp_hptsslot = last_slot; 1573 inp->inp_hpts_request-= maxslots; 1574 } 1575 hpts_sane_pace_insert(hpts, inp, &hpts->p_hptss[inp->inp_hptsslot], __LINE__, 1); 1576 hpts->p_inp = NULL; 1577 continue; 1578 } 1579 inp->inp_hpts_request = 0; 1580 /* Fall through we will so do it now */ 1581 } 1582 /* 1583 * We clear the hpts flag here after dealing with 1584 * remaining slots. This way anyone looking with the 1585 * TCB lock will see its on the hpts until just 1586 * before we unlock. 1587 */ 1588 inp->inp_in_hpts = 0; 1589 mtx_unlock(&hpts->p_mtx); 1590 INP_WLOCK(inp); 1591 if (in_pcbrele_wlocked(inp)) { 1592 mtx_lock(&hpts->p_mtx); 1593 hpts->p_inp = NULL; 1594 continue; 1595 } 1596 if ((inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) || 1597 (inp->inp_flags2 & INP_FREED)) { 1598 out_now: 1599 KASSERT(mtx_owned(&hpts->p_mtx) == 0, 1600 ("Hpts:%p owns mtx prior-to lock line:%d", 1601 hpts, __LINE__)); 1602 INP_WUNLOCK(inp); 1603 mtx_lock(&hpts->p_mtx); 1604 hpts->p_inp = NULL; 1605 continue; 1606 } 1607 tp = intotcpcb(inp); 1608 if ((tp == NULL) || (tp->t_inpcb == NULL)) { 1609 goto out_now; 1610 } 1611 if (set_cpu) { 1612 /* 1613 * Setup so the next time we will move to 1614 * the right CPU. This should be a rare 1615 * event. It will sometimes happens when we 1616 * are the client side (usually not the 1617 * server). Somehow tcp_output() gets called 1618 * before the tcp_do_segment() sets the 1619 * intial state. This means the r_cpu and 1620 * r_hpts_cpu is 0. We get on the hpts, and 1621 * then tcp_input() gets called setting up 1622 * the r_cpu to the correct value. The hpts 1623 * goes off and sees the mis-match. We 1624 * simply correct it here and the CPU will 1625 * switch to the new hpts nextime the tcb 1626 * gets added to the the hpts (not this one) 1627 * :-) 1628 */ 1629 tcp_set_hpts(inp); 1630 } 1631 #ifdef VIMAGE 1632 CURVNET_SET(inp->inp_vnet); 1633 #endif 1634 /* Lets do any logging that we might want to */ 1635 if (hpts_does_tp_logging && (tp->t_logstate != TCP_LOG_STATE_OFF)) { 1636 tcp_hpts_log(hpts, tp, &tv, slots_to_run, i, from_callout); 1637 } 1638 /* 1639 * There is a hole here, we get the refcnt on the 1640 * inp so it will still be preserved but to make 1641 * sure we can get the INP we need to hold the p_mtx 1642 * above while we pull out the tp/inp, as long as 1643 * fini gets the lock first we are assured of having 1644 * a sane INP we can lock and test. 1645 */ 1646 KASSERT(mtx_owned(&hpts->p_mtx) == 0, 1647 ("Hpts:%p owns mtx prior-to tcp_output call line:%d", 1648 hpts, __LINE__)); 1649 1650 if (tp->t_fb_ptr != NULL) { 1651 kern_prefetch(tp->t_fb_ptr, &did_prefetch); 1652 did_prefetch = 1; 1653 } 1654 if ((inp->inp_flags2 & INP_SUPPORTS_MBUFQ) && tp->t_in_pkt) { 1655 error = (*tp->t_fb->tfb_do_queued_segments)(inp->inp_socket, tp, 0); 1656 if (error) { 1657 /* The input killed the connection */ 1658 goto skip_pacing; 1659 } 1660 } 1661 inp->inp_hpts_calls = 1; 1662 error = tp->t_fb->tfb_tcp_output(tp); 1663 inp->inp_hpts_calls = 0; 1664 if (ninp && ninp->inp_ppcb) { 1665 /* 1666 * If we have a nxt inp, see if we can 1667 * prefetch its ppcb. Note this may seem 1668 * "risky" since we have no locks (other 1669 * than the previous inp) and there no 1670 * assurance that ninp was not pulled while 1671 * we were processing inp and freed. If this 1672 * occured it could mean that either: 1673 * 1674 * a) Its NULL (which is fine we won't go 1675 * here) <or> b) Its valid (which is cool we 1676 * will prefetch it) <or> c) The inp got 1677 * freed back to the slab which was 1678 * reallocated. Then the piece of memory was 1679 * re-used and something else (not an 1680 * address) is in inp_ppcb. If that occurs 1681 * we don't crash, but take a TLB shootdown 1682 * performance hit (same as if it was NULL 1683 * and we tried to pre-fetch it). 1684 * 1685 * Considering that the likelyhood of <c> is 1686 * quite rare we will take a risk on doing 1687 * this. If performance drops after testing 1688 * we can always take this out. NB: the 1689 * kern_prefetch on amd64 actually has 1690 * protection against a bad address now via 1691 * the DMAP_() tests. This will prevent the 1692 * TLB hit, and instead if <c> occurs just 1693 * cause us to load cache with a useless 1694 * address (to us). 1695 */ 1696 kern_prefetch(ninp->inp_ppcb, &prefetch_tp); 1697 prefetch_tp = 1; 1698 } 1699 INP_WUNLOCK(inp); 1700 skip_pacing: 1701 #ifdef VIMAGE 1702 CURVNET_RESTORE(); 1703 #endif 1704 INP_UNLOCK_ASSERT(inp); 1705 KASSERT(mtx_owned(&hpts->p_mtx) == 0, 1706 ("Hpts:%p owns mtx prior-to lock line:%d", 1707 hpts, __LINE__)); 1708 mtx_lock(&hpts->p_mtx); 1709 hpts->p_inp = NULL; 1710 } 1711 if (seen_endpoint) { 1712 /* 1713 * We now have a accurate distance between 1714 * slot_pos_of_endpoint <-> orig_exit_slot 1715 * to tell us how late we were, orig_exit_slot 1716 * is where we calculated the end of our cycle to 1717 * be when we first entered. 1718 */ 1719 completed_measure = 1; 1720 } 1721 HPTS_MTX_ASSERT(hpts); 1722 hpts->p_inp = NULL; 1723 hpts->p_runningslot++; 1724 if (hpts->p_runningslot >= NUM_OF_HPTSI_SLOTS) { 1725 hpts->p_runningslot = 0; 1726 } 1727 } 1728 no_one: 1729 HPTS_MTX_ASSERT(hpts); 1730 hpts->p_delayed_by = 0; 1731 /* 1732 * Check to see if we took an excess amount of time and need to run 1733 * more ticks (if we did not hit eno-bufs). 1734 */ 1735 KASSERT((((TAILQ_EMPTY(&hpts->p_input) != 0) && (hpts->p_on_inqueue_cnt == 0)) || 1736 ((TAILQ_EMPTY(&hpts->p_input) == 0) && (hpts->p_on_inqueue_cnt > 0))), 1737 ("%s hpts:%p in_hpts cnt:%d queue state mismatch", 1738 __FUNCTION__, hpts, hpts->p_on_inqueue_cnt)); 1739 hpts->p_prev_slot = hpts->p_cur_slot; 1740 hpts->p_lasttick = hpts->p_curtick; 1741 if ((from_callout == 0) || (loop_cnt > max_pacer_loops)) { 1742 /* 1743 * Something is serious slow we have 1744 * looped through processing the wheel 1745 * and by the time we cleared the 1746 * needs to run max_pacer_loops time 1747 * we still needed to run. That means 1748 * the system is hopelessly behind and 1749 * can never catch up :( 1750 * 1751 * We will just lie to this thread 1752 * and let it thing p_curtick is 1753 * correct. When it next awakens 1754 * it will find itself further behind. 1755 */ 1756 if (from_callout) 1757 counter_u64_add(hpts_hopelessly_behind, 1); 1758 goto no_run; 1759 } 1760 hpts->p_curtick = tcp_gethptstick(&tv); 1761 hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick); 1762 if (seen_endpoint == 0) { 1763 /* We saw no endpoint but we may be looping */ 1764 orig_exit_slot = hpts->p_cur_slot; 1765 } 1766 if ((wrap_loop_cnt < 2) && 1767 (hpts->p_lasttick != hpts->p_curtick)) { 1768 counter_u64_add(hpts_loops, 1); 1769 loop_cnt++; 1770 goto again; 1771 } 1772 no_run: 1773 cts_last_ran[hpts->p_num] = tcp_tv_to_usectick(&tv); 1774 /* 1775 * Set flag to tell that we are done for 1776 * any slot input that happens during 1777 * input. 1778 */ 1779 hpts->p_wheel_complete = 1; 1780 /* 1781 * Run any input that may be there not covered 1782 * in running data. 1783 */ 1784 if (!TAILQ_EMPTY(&hpts->p_input)) { 1785 tcp_input_data(hpts, &tv); 1786 /* 1787 * Now did we spend too long running input and need to run more ticks? 1788 * Note that if wrap_loop_cnt < 2 then we should have the conditions 1789 * in the KASSERT's true. But if the wheel is behind i.e. wrap_loop_cnt 1790 * is greater than 2, then the condtion most likely are *not* true. Also 1791 * if we are called not from the callout, we don't run the wheel multiple 1792 * times so the slots may not align either. 1793 */ 1794 KASSERT(((hpts->p_prev_slot == hpts->p_cur_slot) || 1795 (wrap_loop_cnt >= 2) || (from_callout == 0)), 1796 ("H:%p p_prev_slot:%u not equal to p_cur_slot:%u", hpts, 1797 hpts->p_prev_slot, hpts->p_cur_slot)); 1798 KASSERT(((hpts->p_lasttick == hpts->p_curtick) 1799 || (wrap_loop_cnt >= 2) || (from_callout == 0)), 1800 ("H:%p p_lasttick:%u not equal to p_curtick:%u", hpts, 1801 hpts->p_lasttick, hpts->p_curtick)); 1802 if (from_callout && (hpts->p_lasttick != hpts->p_curtick)) { 1803 hpts->p_curtick = tcp_gethptstick(&tv); 1804 counter_u64_add(hpts_loops, 1); 1805 hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick); 1806 goto again; 1807 } 1808 } 1809 if (from_callout){ 1810 tcp_hpts_set_max_sleep(hpts, wrap_loop_cnt); 1811 } 1812 if (seen_endpoint) 1813 return(hpts_slots_diff(slot_pos_of_endpoint, orig_exit_slot)); 1814 else 1815 return (0); 1816 } 1817 1818 void 1819 __tcp_set_hpts(struct inpcb *inp, int32_t line) 1820 { 1821 struct tcp_hpts_entry *hpts; 1822 int failed; 1823 1824 INP_WLOCK_ASSERT(inp); 1825 hpts = tcp_hpts_lock(inp); 1826 if ((inp->inp_in_hpts == 0) && 1827 (inp->inp_hpts_cpu_set == 0)) { 1828 inp->inp_hpts_cpu = hpts_cpuid(inp, &failed); 1829 if (failed == 0) 1830 inp->inp_hpts_cpu_set = 1; 1831 } 1832 mtx_unlock(&hpts->p_mtx); 1833 hpts = tcp_input_lock(inp); 1834 if ((inp->inp_input_cpu_set == 0) && 1835 (inp->inp_in_input == 0)) { 1836 inp->inp_input_cpu = hpts_cpuid(inp, &failed); 1837 if (failed == 0) 1838 inp->inp_input_cpu_set = 1; 1839 } 1840 mtx_unlock(&hpts->p_mtx); 1841 } 1842 1843 uint16_t 1844 tcp_hpts_delayedby(struct inpcb *inp){ 1845 return (tcp_pace.rp_ent[inp->inp_hpts_cpu]->p_delayed_by); 1846 } 1847 1848 static void 1849 __tcp_run_hpts(struct tcp_hpts_entry *hpts) 1850 { 1851 int ticks_ran; 1852 1853 if (hpts->p_hpts_active) { 1854 /* Already active */ 1855 return; 1856 } 1857 if (mtx_trylock(&hpts->p_mtx) == 0) { 1858 /* Someone else got the lock */ 1859 return; 1860 } 1861 if (hpts->p_hpts_active) 1862 goto out_with_mtx; 1863 hpts->syscall_cnt++; 1864 counter_u64_add(hpts_direct_call, 1); 1865 hpts->p_hpts_active = 1; 1866 ticks_ran = tcp_hptsi(hpts, 0); 1867 /* We may want to adjust the sleep values here */ 1868 if (hpts->p_on_queue_cnt >= conn_cnt_thresh) { 1869 if (ticks_ran > ticks_indicate_less_sleep) { 1870 struct timeval tv; 1871 sbintime_t sb; 1872 int cpu; 1873 1874 hpts->p_mysleep.tv_usec /= 2; 1875 if (hpts->p_mysleep.tv_usec < dynamic_min_sleep) 1876 hpts->p_mysleep.tv_usec = dynamic_min_sleep; 1877 /* Reschedule with new to value */ 1878 tcp_hpts_set_max_sleep(hpts, 0); 1879 tv.tv_usec = hpts->p_hpts_sleep_time * HPTS_TICKS_PER_SLOT; 1880 /* Validate its in the right ranges */ 1881 if (tv.tv_usec < hpts->p_mysleep.tv_usec) { 1882 hpts->overidden_sleep = tv.tv_usec; 1883 tv.tv_usec = hpts->p_mysleep.tv_usec; 1884 } else if (tv.tv_usec > dynamic_max_sleep) { 1885 /* Lets not let sleep get above this value */ 1886 hpts->overidden_sleep = tv.tv_usec; 1887 tv.tv_usec = dynamic_max_sleep; 1888 } 1889 /* 1890 * In this mode the timer is a backstop to 1891 * all the userret/lro_flushes so we use 1892 * the dynamic value and set the on_min_sleep 1893 * flag so we will not be awoken. 1894 */ 1895 sb = tvtosbt(tv); 1896 cpu = (tcp_bind_threads || hpts_use_assigned_cpu) ? hpts->p_cpu : curcpu; 1897 /* Store off to make visible the actual sleep time */ 1898 hpts->sleeping = tv.tv_usec; 1899 callout_reset_sbt_on(&hpts->co, sb, 0, 1900 hpts_timeout_swi, hpts, cpu, 1901 (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision))); 1902 } else if (ticks_ran < ticks_indicate_more_sleep) { 1903 /* For the further sleep, don't reschedule hpts */ 1904 hpts->p_mysleep.tv_usec *= 2; 1905 if (hpts->p_mysleep.tv_usec > dynamic_max_sleep) 1906 hpts->p_mysleep.tv_usec = dynamic_max_sleep; 1907 } 1908 hpts->p_on_min_sleep = 1; 1909 } 1910 hpts->p_hpts_active = 0; 1911 out_with_mtx: 1912 HPTS_MTX_ASSERT(hpts); 1913 mtx_unlock(&hpts->p_mtx); 1914 } 1915 1916 static struct tcp_hpts_entry * 1917 tcp_choose_hpts_to_run() 1918 { 1919 int i, oldest_idx; 1920 uint32_t cts, time_since_ran, calc; 1921 1922 if ((hpts_uses_oldest == 0) || 1923 ((hpts_uses_oldest > 1) && 1924 (tcp_pace.rp_ent[(tcp_pace.rp_num_hptss-1)]->p_on_queue_cnt >= hpts_uses_oldest))) { 1925 /* 1926 * We have either disabled the feature (0), or 1927 * we have crossed over the oldest threshold on the 1928 * last hpts. We use the last one for simplification 1929 * since we don't want to use the first one (it may 1930 * have starting connections that have not settled 1931 * on the cpu yet). 1932 */ 1933 return(tcp_pace.rp_ent[(curcpu % tcp_pace.rp_num_hptss)]); 1934 } 1935 /* Lets find the oldest hpts to attempt to run */ 1936 cts = tcp_get_usecs(NULL); 1937 time_since_ran = 0; 1938 oldest_idx = -1; 1939 for (i = 0; i < tcp_pace.rp_num_hptss; i++) { 1940 if (TSTMP_GT(cts, cts_last_ran[i])) 1941 calc = cts - cts_last_ran[i]; 1942 else 1943 calc = 0; 1944 if (calc > time_since_ran) { 1945 oldest_idx = i; 1946 time_since_ran = calc; 1947 } 1948 } 1949 if (oldest_idx >= 0) 1950 return(tcp_pace.rp_ent[oldest_idx]); 1951 else 1952 return(tcp_pace.rp_ent[(curcpu % tcp_pace.rp_num_hptss)]); 1953 } 1954 1955 1956 void 1957 tcp_run_hpts(void) 1958 { 1959 static struct tcp_hpts_entry *hpts; 1960 struct epoch_tracker et; 1961 1962 NET_EPOCH_ENTER(et); 1963 hpts = tcp_choose_hpts_to_run(); 1964 __tcp_run_hpts(hpts); 1965 NET_EPOCH_EXIT(et); 1966 } 1967 1968 1969 static void 1970 tcp_hpts_thread(void *ctx) 1971 { 1972 struct tcp_hpts_entry *hpts; 1973 struct epoch_tracker et; 1974 struct timeval tv; 1975 sbintime_t sb; 1976 int cpu, ticks_ran; 1977 1978 hpts = (struct tcp_hpts_entry *)ctx; 1979 mtx_lock(&hpts->p_mtx); 1980 if (hpts->p_direct_wake) { 1981 /* Signaled by input or output with low occupancy count. */ 1982 callout_stop(&hpts->co); 1983 counter_u64_add(hpts_direct_awakening, 1); 1984 } else { 1985 /* Timed out, the normal case. */ 1986 counter_u64_add(hpts_wake_timeout, 1); 1987 if (callout_pending(&hpts->co) || 1988 !callout_active(&hpts->co)) { 1989 mtx_unlock(&hpts->p_mtx); 1990 return; 1991 } 1992 } 1993 callout_deactivate(&hpts->co); 1994 hpts->p_hpts_wake_scheduled = 0; 1995 NET_EPOCH_ENTER(et); 1996 if (hpts->p_hpts_active) { 1997 /* 1998 * We are active already. This means that a syscall 1999 * trap or LRO is running in behalf of hpts. In that case 2000 * we need to double our timeout since there seems to be 2001 * enough activity in the system that we don't need to 2002 * run as often (if we were not directly woken). 2003 */ 2004 if (hpts->p_direct_wake == 0) { 2005 counter_u64_add(hpts_back_tosleep, 1); 2006 if (hpts->p_on_queue_cnt >= conn_cnt_thresh) { 2007 hpts->p_mysleep.tv_usec *= 2; 2008 if (hpts->p_mysleep.tv_usec > dynamic_max_sleep) 2009 hpts->p_mysleep.tv_usec = dynamic_max_sleep; 2010 tv.tv_usec = hpts->p_mysleep.tv_usec; 2011 hpts->p_on_min_sleep = 1; 2012 } else { 2013 /* 2014 * Here we have low count on the wheel, but 2015 * somehow we still collided with one of the 2016 * connections. Lets go back to sleep for a 2017 * min sleep time, but clear the flag so we 2018 * can be awoken by insert. 2019 */ 2020 hpts->p_on_min_sleep = 0; 2021 tv.tv_usec = tcp_min_hptsi_time; 2022 } 2023 } else { 2024 /* 2025 * Directly woken most likely to reset the 2026 * callout time. 2027 */ 2028 tv.tv_sec = 0; 2029 tv.tv_usec = hpts->p_mysleep.tv_usec; 2030 } 2031 goto back_to_sleep; 2032 } 2033 hpts->sleeping = 0; 2034 hpts->p_hpts_active = 1; 2035 ticks_ran = tcp_hptsi(hpts, 1); 2036 tv.tv_sec = 0; 2037 tv.tv_usec = hpts->p_hpts_sleep_time * HPTS_TICKS_PER_SLOT; 2038 if (hpts->p_on_queue_cnt >= conn_cnt_thresh) { 2039 if(hpts->p_direct_wake == 0) { 2040 /* 2041 * Only adjust sleep time if we were 2042 * called from the callout i.e. direct_wake == 0. 2043 */ 2044 if (ticks_ran < ticks_indicate_more_sleep) { 2045 hpts->p_mysleep.tv_usec *= 2; 2046 if (hpts->p_mysleep.tv_usec > dynamic_max_sleep) 2047 hpts->p_mysleep.tv_usec = dynamic_max_sleep; 2048 } else if (ticks_ran > ticks_indicate_less_sleep) { 2049 hpts->p_mysleep.tv_usec /= 2; 2050 if (hpts->p_mysleep.tv_usec < dynamic_min_sleep) 2051 hpts->p_mysleep.tv_usec = dynamic_min_sleep; 2052 } 2053 } 2054 if (tv.tv_usec < hpts->p_mysleep.tv_usec) { 2055 hpts->overidden_sleep = tv.tv_usec; 2056 tv.tv_usec = hpts->p_mysleep.tv_usec; 2057 } else if (tv.tv_usec > dynamic_max_sleep) { 2058 /* Lets not let sleep get above this value */ 2059 hpts->overidden_sleep = tv.tv_usec; 2060 tv.tv_usec = dynamic_max_sleep; 2061 } 2062 /* 2063 * In this mode the timer is a backstop to 2064 * all the userret/lro_flushes so we use 2065 * the dynamic value and set the on_min_sleep 2066 * flag so we will not be awoken. 2067 */ 2068 hpts->p_on_min_sleep = 1; 2069 } else if (hpts->p_on_queue_cnt == 0) { 2070 /* 2071 * No one on the wheel, please wake us up 2072 * if you insert on the wheel. 2073 */ 2074 hpts->p_on_min_sleep = 0; 2075 hpts->overidden_sleep = 0; 2076 } else { 2077 /* 2078 * We hit here when we have a low number of 2079 * clients on the wheel (our else clause). 2080 * We may need to go on min sleep, if we set 2081 * the flag we will not be awoken if someone 2082 * is inserted ahead of us. Clearing the flag 2083 * means we can be awoken. This is "old mode" 2084 * where the timer is what runs hpts mainly. 2085 */ 2086 if (tv.tv_usec < tcp_min_hptsi_time) { 2087 /* 2088 * Yes on min sleep, which means 2089 * we cannot be awoken. 2090 */ 2091 hpts->overidden_sleep = tv.tv_usec; 2092 tv.tv_usec = tcp_min_hptsi_time; 2093 hpts->p_on_min_sleep = 1; 2094 } else { 2095 /* Clear the min sleep flag */ 2096 hpts->overidden_sleep = 0; 2097 hpts->p_on_min_sleep = 0; 2098 } 2099 } 2100 HPTS_MTX_ASSERT(hpts); 2101 hpts->p_hpts_active = 0; 2102 back_to_sleep: 2103 hpts->p_direct_wake = 0; 2104 sb = tvtosbt(tv); 2105 cpu = (tcp_bind_threads || hpts_use_assigned_cpu) ? hpts->p_cpu : curcpu; 2106 /* Store off to make visible the actual sleep time */ 2107 hpts->sleeping = tv.tv_usec; 2108 callout_reset_sbt_on(&hpts->co, sb, 0, 2109 hpts_timeout_swi, hpts, cpu, 2110 (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision))); 2111 NET_EPOCH_EXIT(et); 2112 mtx_unlock(&hpts->p_mtx); 2113 } 2114 2115 #undef timersub 2116 2117 static void 2118 tcp_init_hptsi(void *st) 2119 { 2120 int32_t i, j, error, bound = 0, created = 0; 2121 size_t sz, asz; 2122 struct timeval tv; 2123 sbintime_t sb; 2124 struct tcp_hpts_entry *hpts; 2125 struct pcpu *pc; 2126 cpuset_t cs; 2127 char unit[16]; 2128 uint32_t ncpus = mp_ncpus ? mp_ncpus : MAXCPU; 2129 int count, domain, cpu; 2130 2131 tcp_pace.rp_proc = NULL; 2132 tcp_pace.rp_num_hptss = ncpus; 2133 hpts_hopelessly_behind = counter_u64_alloc(M_WAITOK); 2134 hpts_loops = counter_u64_alloc(M_WAITOK); 2135 back_tosleep = counter_u64_alloc(M_WAITOK); 2136 combined_wheel_wrap = counter_u64_alloc(M_WAITOK); 2137 wheel_wrap = counter_u64_alloc(M_WAITOK); 2138 hpts_wake_timeout = counter_u64_alloc(M_WAITOK); 2139 hpts_direct_awakening = counter_u64_alloc(M_WAITOK); 2140 hpts_back_tosleep = counter_u64_alloc(M_WAITOK); 2141 hpts_direct_call = counter_u64_alloc(M_WAITOK); 2142 cpu_uses_flowid = counter_u64_alloc(M_WAITOK); 2143 cpu_uses_random = counter_u64_alloc(M_WAITOK); 2144 2145 2146 sz = (tcp_pace.rp_num_hptss * sizeof(struct tcp_hpts_entry *)); 2147 tcp_pace.rp_ent = malloc(sz, M_TCPHPTS, M_WAITOK | M_ZERO); 2148 sz = (sizeof(uint32_t) * tcp_pace.rp_num_hptss); 2149 cts_last_ran = malloc(sz, M_TCPHPTS, M_WAITOK); 2150 asz = sizeof(struct hptsh) * NUM_OF_HPTSI_SLOTS; 2151 for (i = 0; i < tcp_pace.rp_num_hptss; i++) { 2152 tcp_pace.rp_ent[i] = malloc(sizeof(struct tcp_hpts_entry), 2153 M_TCPHPTS, M_WAITOK | M_ZERO); 2154 tcp_pace.rp_ent[i]->p_hptss = malloc(asz, 2155 M_TCPHPTS, M_WAITOK); 2156 hpts = tcp_pace.rp_ent[i]; 2157 /* 2158 * Init all the hpts structures that are not specifically 2159 * zero'd by the allocations. Also lets attach them to the 2160 * appropriate sysctl block as well. 2161 */ 2162 mtx_init(&hpts->p_mtx, "tcp_hpts_lck", 2163 "hpts", MTX_DEF | MTX_DUPOK); 2164 TAILQ_INIT(&hpts->p_input); 2165 for (j = 0; j < NUM_OF_HPTSI_SLOTS; j++) { 2166 TAILQ_INIT(&hpts->p_hptss[j]); 2167 } 2168 sysctl_ctx_init(&hpts->hpts_ctx); 2169 sprintf(unit, "%d", i); 2170 hpts->hpts_root = SYSCTL_ADD_NODE(&hpts->hpts_ctx, 2171 SYSCTL_STATIC_CHILDREN(_net_inet_tcp_hpts), 2172 OID_AUTO, 2173 unit, 2174 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 2175 ""); 2176 SYSCTL_ADD_INT(&hpts->hpts_ctx, 2177 SYSCTL_CHILDREN(hpts->hpts_root), 2178 OID_AUTO, "in_qcnt", CTLFLAG_RD, 2179 &hpts->p_on_inqueue_cnt, 0, 2180 "Count TCB's awaiting input processing"); 2181 SYSCTL_ADD_INT(&hpts->hpts_ctx, 2182 SYSCTL_CHILDREN(hpts->hpts_root), 2183 OID_AUTO, "out_qcnt", CTLFLAG_RD, 2184 &hpts->p_on_queue_cnt, 0, 2185 "Count TCB's awaiting output processing"); 2186 SYSCTL_ADD_U16(&hpts->hpts_ctx, 2187 SYSCTL_CHILDREN(hpts->hpts_root), 2188 OID_AUTO, "active", CTLFLAG_RD, 2189 &hpts->p_hpts_active, 0, 2190 "Is the hpts active"); 2191 SYSCTL_ADD_UINT(&hpts->hpts_ctx, 2192 SYSCTL_CHILDREN(hpts->hpts_root), 2193 OID_AUTO, "curslot", CTLFLAG_RD, 2194 &hpts->p_cur_slot, 0, 2195 "What the current running pacers goal"); 2196 SYSCTL_ADD_UINT(&hpts->hpts_ctx, 2197 SYSCTL_CHILDREN(hpts->hpts_root), 2198 OID_AUTO, "runtick", CTLFLAG_RD, 2199 &hpts->p_runningslot, 0, 2200 "What the running pacers current slot is"); 2201 SYSCTL_ADD_UINT(&hpts->hpts_ctx, 2202 SYSCTL_CHILDREN(hpts->hpts_root), 2203 OID_AUTO, "curtick", CTLFLAG_RD, 2204 &hpts->p_curtick, 0, 2205 "What the running pacers last tick mapped to the wheel was"); 2206 SYSCTL_ADD_UINT(&hpts->hpts_ctx, 2207 SYSCTL_CHILDREN(hpts->hpts_root), 2208 OID_AUTO, "lastran", CTLFLAG_RD, 2209 &cts_last_ran[i], 0, 2210 "The last usec tick that this hpts ran"); 2211 SYSCTL_ADD_LONG(&hpts->hpts_ctx, 2212 SYSCTL_CHILDREN(hpts->hpts_root), 2213 OID_AUTO, "cur_min_sleep", CTLFLAG_RD, 2214 &hpts->p_mysleep.tv_usec, 2215 "What the running pacers is using for p_mysleep.tv_usec"); 2216 SYSCTL_ADD_U64(&hpts->hpts_ctx, 2217 SYSCTL_CHILDREN(hpts->hpts_root), 2218 OID_AUTO, "now_sleeping", CTLFLAG_RD, 2219 &hpts->sleeping, 0, 2220 "What the running pacers is actually sleeping for"); 2221 SYSCTL_ADD_U64(&hpts->hpts_ctx, 2222 SYSCTL_CHILDREN(hpts->hpts_root), 2223 OID_AUTO, "syscall_cnt", CTLFLAG_RD, 2224 &hpts->syscall_cnt, 0, 2225 "How many times we had syscalls on this hpts"); 2226 2227 hpts->p_hpts_sleep_time = hpts_sleep_max; 2228 hpts->p_num = i; 2229 hpts->p_curtick = tcp_gethptstick(&tv); 2230 cts_last_ran[i] = tcp_tv_to_usectick(&tv); 2231 hpts->p_prev_slot = hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick); 2232 hpts->p_cpu = 0xffff; 2233 hpts->p_nxt_slot = hpts_slot(hpts->p_cur_slot, 1); 2234 callout_init(&hpts->co, 1); 2235 } 2236 2237 /* Don't try to bind to NUMA domains if we don't have any */ 2238 if (vm_ndomains == 1 && tcp_bind_threads == 2) 2239 tcp_bind_threads = 0; 2240 2241 /* 2242 * Now lets start ithreads to handle the hptss. 2243 */ 2244 for (i = 0; i < tcp_pace.rp_num_hptss; i++) { 2245 hpts = tcp_pace.rp_ent[i]; 2246 hpts->p_cpu = i; 2247 error = swi_add(&hpts->ie, "hpts", 2248 tcp_hpts_thread, (void *)hpts, 2249 SWI_NET, INTR_MPSAFE, &hpts->ie_cookie); 2250 KASSERT(error == 0, 2251 ("Can't add hpts:%p i:%d err:%d", 2252 hpts, i, error)); 2253 created++; 2254 hpts->p_mysleep.tv_sec = 0; 2255 hpts->p_mysleep.tv_usec = tcp_min_hptsi_time; 2256 if (tcp_bind_threads == 1) { 2257 if (intr_event_bind(hpts->ie, i) == 0) 2258 bound++; 2259 } else if (tcp_bind_threads == 2) { 2260 pc = pcpu_find(i); 2261 domain = pc->pc_domain; 2262 CPU_COPY(&cpuset_domain[domain], &cs); 2263 if (intr_event_bind_ithread_cpuset(hpts->ie, &cs) 2264 == 0) { 2265 bound++; 2266 count = hpts_domains[domain].count; 2267 hpts_domains[domain].cpu[count] = i; 2268 hpts_domains[domain].count++; 2269 } 2270 } 2271 tv.tv_sec = 0; 2272 tv.tv_usec = hpts->p_hpts_sleep_time * HPTS_TICKS_PER_SLOT; 2273 hpts->sleeping = tv.tv_usec; 2274 sb = tvtosbt(tv); 2275 cpu = (tcp_bind_threads || hpts_use_assigned_cpu) ? hpts->p_cpu : curcpu; 2276 callout_reset_sbt_on(&hpts->co, sb, 0, 2277 hpts_timeout_swi, hpts, cpu, 2278 (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision))); 2279 } 2280 /* 2281 * If we somehow have an empty domain, fall back to choosing 2282 * among all htps threads. 2283 */ 2284 for (i = 0; i < vm_ndomains; i++) { 2285 if (hpts_domains[i].count == 0) { 2286 tcp_bind_threads = 0; 2287 break; 2288 } 2289 } 2290 printf("TCP Hpts created %d swi interrupt threads and bound %d to %s\n", 2291 created, bound, 2292 tcp_bind_threads == 2 ? "NUMA domains" : "cpus"); 2293 #ifdef INVARIANTS 2294 printf("HPTS is in INVARIANT mode!!\n"); 2295 #endif 2296 } 2297 2298 SYSINIT(tcphptsi, SI_SUB_SOFTINTR, SI_ORDER_ANY, tcp_init_hptsi, NULL); 2299 MODULE_VERSION(tcphpts, 1); 2300