1 /*- 2 * Copyright (c) 2016-2018 Netflix, Inc. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 1. Redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer. 9 * 2. Redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution. 12 * 13 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 14 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 16 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 17 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 18 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 19 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 20 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 21 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 22 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 23 * SUCH DAMAGE. 24 * 25 */ 26 #include <sys/cdefs.h> 27 #include "opt_inet.h" 28 #include "opt_inet6.h" 29 #include "opt_rss.h" 30 31 /** 32 * Some notes about usage. 33 * 34 * The tcp_hpts system is designed to provide a high precision timer 35 * system for tcp. Its main purpose is to provide a mechanism for 36 * pacing packets out onto the wire. It can be used in two ways 37 * by a given TCP stack (and those two methods can be used simultaneously). 38 * 39 * First, and probably the main thing its used by Rack and BBR, it can 40 * be used to call tcp_output() of a transport stack at some time in the future. 41 * The normal way this is done is that tcp_output() of the stack schedules 42 * itself to be called again by calling tcp_hpts_insert(tcpcb, slot). The 43 * slot is the time from now that the stack wants to be called but it 44 * must be converted to tcp_hpts's notion of slot. This is done with 45 * one of the macros HPTS_MS_TO_SLOTS or HPTS_USEC_TO_SLOTS. So a typical 46 * call from the tcp_output() routine might look like: 47 * 48 * tcp_hpts_insert(tp, HPTS_USEC_TO_SLOTS(550)); 49 * 50 * The above would schedule tcp_output() to be called in 550 useconds. 51 * Note that if using this mechanism the stack will want to add near 52 * its top a check to prevent unwanted calls (from user land or the 53 * arrival of incoming ack's). So it would add something like: 54 * 55 * if (tcp_in_hpts(inp)) 56 * return; 57 * 58 * to prevent output processing until the time alotted has gone by. 59 * Of course this is a bare bones example and the stack will probably 60 * have more consideration then just the above. 61 * 62 * In order to run input queued segments from the HPTS context the 63 * tcp stack must define an input function for 64 * tfb_do_queued_segments(). This function understands 65 * how to dequeue a array of packets that were input and 66 * knows how to call the correct processing routine. 67 * 68 * Locking in this is important as well so most likely the 69 * stack will need to define the tfb_do_segment_nounlock() 70 * splitting tfb_do_segment() into two parts. The main processing 71 * part that does not unlock the INP and returns a value of 1 or 0. 72 * It returns 0 if all is well and the lock was not released. It 73 * returns 1 if we had to destroy the TCB (a reset received etc). 74 * The remains of tfb_do_segment() then become just a simple call 75 * to the tfb_do_segment_nounlock() function and check the return 76 * code and possibly unlock. 77 * 78 * The stack must also set the flag on the INP that it supports this 79 * feature i.e. INP_SUPPORTS_MBUFQ. The LRO code recoginizes 80 * this flag as well and will queue packets when it is set. 81 * There are other flags as well INP_MBUF_QUEUE_READY and 82 * INP_DONT_SACK_QUEUE. The first flag tells the LRO code 83 * that we are in the pacer for output so there is no 84 * need to wake up the hpts system to get immediate 85 * input. The second tells the LRO code that its okay 86 * if a SACK arrives you can still defer input and let 87 * the current hpts timer run (this is usually set when 88 * a rack timer is up so we know SACK's are happening 89 * on the connection already and don't want to wakeup yet). 90 * 91 * There is a common functions within the rack_bbr_common code 92 * version i.e. ctf_do_queued_segments(). This function 93 * knows how to take the input queue of packets from tp->t_inqueue 94 * and process them digging out all the arguments, calling any bpf tap and 95 * calling into tfb_do_segment_nounlock(). The common 96 * function (ctf_do_queued_segments()) requires that 97 * you have defined the tfb_do_segment_nounlock() as 98 * described above. 99 */ 100 101 #include <sys/param.h> 102 #include <sys/bus.h> 103 #include <sys/interrupt.h> 104 #include <sys/module.h> 105 #include <sys/kernel.h> 106 #include <sys/hhook.h> 107 #include <sys/malloc.h> 108 #include <sys/mbuf.h> 109 #include <sys/proc.h> /* for proc0 declaration */ 110 #include <sys/socket.h> 111 #include <sys/socketvar.h> 112 #include <sys/sysctl.h> 113 #include <sys/systm.h> 114 #include <sys/refcount.h> 115 #include <sys/sched.h> 116 #include <sys/queue.h> 117 #include <sys/smp.h> 118 #include <sys/counter.h> 119 #include <sys/time.h> 120 #include <sys/kthread.h> 121 #include <sys/kern_prefetch.h> 122 123 #include <vm/uma.h> 124 #include <vm/vm.h> 125 126 #include <net/route.h> 127 #include <net/vnet.h> 128 129 #ifdef RSS 130 #include <net/netisr.h> 131 #include <net/rss_config.h> 132 #endif 133 134 #define TCPSTATES /* for logging */ 135 136 #include <netinet/in.h> 137 #include <netinet/in_kdtrace.h> 138 #include <netinet/in_pcb.h> 139 #include <netinet/ip.h> 140 #include <netinet/ip_icmp.h> /* required for icmp_var.h */ 141 #include <netinet/icmp_var.h> /* for ICMP_BANDLIM */ 142 #include <netinet/ip_var.h> 143 #include <netinet/ip6.h> 144 #include <netinet6/in6_pcb.h> 145 #include <netinet6/ip6_var.h> 146 #include <netinet/tcp.h> 147 #include <netinet/tcp_fsm.h> 148 #include <netinet/tcp_seq.h> 149 #include <netinet/tcp_timer.h> 150 #include <netinet/tcp_var.h> 151 #include <netinet/tcpip.h> 152 #include <netinet/cc/cc.h> 153 #include <netinet/tcp_hpts.h> 154 #include <netinet/tcp_log_buf.h> 155 156 #ifdef tcp_offload 157 #include <netinet/tcp_offload.h> 158 #endif 159 160 /* 161 * The hpts uses a 102400 wheel. The wheel 162 * defines the time in 10 usec increments (102400 x 10). 163 * This gives a range of 10usec - 1024ms to place 164 * an entry within. If the user requests more than 165 * 1.024 second, a remaineder is attached and the hpts 166 * when seeing the remainder will re-insert the 167 * inpcb forward in time from where it is until 168 * the remainder is zero. 169 */ 170 171 #define NUM_OF_HPTSI_SLOTS 102400 172 173 /* Each hpts has its own p_mtx which is used for locking */ 174 #define HPTS_MTX_ASSERT(hpts) mtx_assert(&(hpts)->p_mtx, MA_OWNED) 175 #define HPTS_LOCK(hpts) mtx_lock(&(hpts)->p_mtx) 176 #define HPTS_TRYLOCK(hpts) mtx_trylock(&(hpts)->p_mtx) 177 #define HPTS_UNLOCK(hpts) mtx_unlock(&(hpts)->p_mtx) 178 struct tcp_hpts_entry { 179 /* Cache line 0x00 */ 180 struct mtx p_mtx; /* Mutex for hpts */ 181 struct timeval p_mysleep; /* Our min sleep time */ 182 uint64_t syscall_cnt; 183 uint64_t sleeping; /* What the actual sleep was (if sleeping) */ 184 uint16_t p_hpts_active; /* Flag that says hpts is awake */ 185 uint8_t p_wheel_complete; /* have we completed the wheel arc walk? */ 186 uint32_t p_curtick; /* Tick in 10 us the hpts is going to */ 187 uint32_t p_runningslot; /* Current tick we are at if we are running */ 188 uint32_t p_prev_slot; /* Previous slot we were on */ 189 uint32_t p_cur_slot; /* Current slot in wheel hpts is draining */ 190 uint32_t p_nxt_slot; /* The next slot outside the current range of 191 * slots that the hpts is running on. */ 192 int32_t p_on_queue_cnt; /* Count on queue in this hpts */ 193 uint32_t p_lasttick; /* Last tick before the current one */ 194 uint8_t p_direct_wake :1, /* boolean */ 195 p_on_min_sleep:1, /* boolean */ 196 p_hpts_wake_scheduled:1, /* boolean */ 197 hit_callout_thresh:1, 198 p_avail:4; 199 uint8_t p_fill[3]; /* Fill to 32 bits */ 200 /* Cache line 0x40 */ 201 struct hptsh { 202 TAILQ_HEAD(, tcpcb) head; 203 uint32_t count; 204 uint32_t gencnt; 205 } *p_hptss; /* Hptsi wheel */ 206 uint32_t p_hpts_sleep_time; /* Current sleep interval having a max 207 * of 255ms */ 208 uint32_t overidden_sleep; /* what was overrided by min-sleep for logging */ 209 uint32_t saved_lasttick; /* for logging */ 210 uint32_t saved_curtick; /* for logging */ 211 uint32_t saved_curslot; /* for logging */ 212 uint32_t saved_prev_slot; /* for logging */ 213 uint32_t p_delayed_by; /* How much were we delayed by */ 214 /* Cache line 0x80 */ 215 struct sysctl_ctx_list hpts_ctx; 216 struct sysctl_oid *hpts_root; 217 struct intr_event *ie; 218 void *ie_cookie; 219 uint16_t p_num; /* The hpts number one per cpu */ 220 uint16_t p_cpu; /* The hpts CPU */ 221 /* There is extra space in here */ 222 /* Cache line 0x100 */ 223 struct callout co __aligned(CACHE_LINE_SIZE); 224 } __aligned(CACHE_LINE_SIZE); 225 226 static struct tcp_hptsi { 227 struct cpu_group **grps; 228 struct tcp_hpts_entry **rp_ent; /* Array of hptss */ 229 uint32_t *cts_last_ran; 230 uint32_t grp_cnt; 231 uint32_t rp_num_hptss; /* Number of hpts threads */ 232 } tcp_pace; 233 234 static MALLOC_DEFINE(M_TCPHPTS, "tcp_hpts", "TCP hpts"); 235 #ifdef RSS 236 static int tcp_bind_threads = 1; 237 #else 238 static int tcp_bind_threads = 2; 239 #endif 240 static int tcp_use_irq_cpu = 0; 241 static int hpts_does_tp_logging = 0; 242 243 static int32_t tcp_hptsi(struct tcp_hpts_entry *hpts, bool from_callout); 244 static void tcp_hpts_thread(void *ctx); 245 246 int32_t tcp_min_hptsi_time = DEFAULT_MIN_SLEEP; 247 static int conn_cnt_thresh = DEFAULT_CONNECTION_THESHOLD; 248 static int32_t dynamic_min_sleep = DYNAMIC_MIN_SLEEP; 249 static int32_t dynamic_max_sleep = DYNAMIC_MAX_SLEEP; 250 251 252 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, hpts, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 253 "TCP Hpts controls"); 254 SYSCTL_NODE(_net_inet_tcp_hpts, OID_AUTO, stats, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 255 "TCP Hpts statistics"); 256 257 #define timersub(tvp, uvp, vvp) \ 258 do { \ 259 (vvp)->tv_sec = (tvp)->tv_sec - (uvp)->tv_sec; \ 260 (vvp)->tv_usec = (tvp)->tv_usec - (uvp)->tv_usec; \ 261 if ((vvp)->tv_usec < 0) { \ 262 (vvp)->tv_sec--; \ 263 (vvp)->tv_usec += 1000000; \ 264 } \ 265 } while (0) 266 267 static int32_t tcp_hpts_precision = 120; 268 269 static struct hpts_domain_info { 270 int count; 271 int cpu[MAXCPU]; 272 } hpts_domains[MAXMEMDOM]; 273 274 counter_u64_t hpts_hopelessly_behind; 275 276 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, hopeless, CTLFLAG_RD, 277 &hpts_hopelessly_behind, 278 "Number of times hpts could not catch up and was behind hopelessly"); 279 280 counter_u64_t hpts_loops; 281 282 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, loops, CTLFLAG_RD, 283 &hpts_loops, "Number of times hpts had to loop to catch up"); 284 285 counter_u64_t back_tosleep; 286 287 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, no_tcbsfound, CTLFLAG_RD, 288 &back_tosleep, "Number of times hpts found no tcbs"); 289 290 counter_u64_t combined_wheel_wrap; 291 292 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, comb_wheel_wrap, CTLFLAG_RD, 293 &combined_wheel_wrap, "Number of times the wheel lagged enough to have an insert see wrap"); 294 295 counter_u64_t wheel_wrap; 296 297 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, wheel_wrap, CTLFLAG_RD, 298 &wheel_wrap, "Number of times the wheel lagged enough to have an insert see wrap"); 299 300 counter_u64_t hpts_direct_call; 301 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, direct_call, CTLFLAG_RD, 302 &hpts_direct_call, "Number of times hpts was called by syscall/trap or other entry"); 303 304 counter_u64_t hpts_wake_timeout; 305 306 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, timeout_wakeup, CTLFLAG_RD, 307 &hpts_wake_timeout, "Number of times hpts threads woke up via the callout expiring"); 308 309 counter_u64_t hpts_direct_awakening; 310 311 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, direct_awakening, CTLFLAG_RD, 312 &hpts_direct_awakening, "Number of times hpts threads woke up via the callout expiring"); 313 314 counter_u64_t hpts_back_tosleep; 315 316 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, back_tosleep, CTLFLAG_RD, 317 &hpts_back_tosleep, "Number of times hpts threads woke up via the callout expiring and went back to sleep no work"); 318 319 counter_u64_t cpu_uses_flowid; 320 counter_u64_t cpu_uses_random; 321 322 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, cpusel_flowid, CTLFLAG_RD, 323 &cpu_uses_flowid, "Number of times when setting cpuid we used the flowid field"); 324 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, cpusel_random, CTLFLAG_RD, 325 &cpu_uses_random, "Number of times when setting cpuid we used the a random value"); 326 327 TUNABLE_INT("net.inet.tcp.bind_hptss", &tcp_bind_threads); 328 TUNABLE_INT("net.inet.tcp.use_irq", &tcp_use_irq_cpu); 329 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, bind_hptss, CTLFLAG_RD, 330 &tcp_bind_threads, 2, 331 "Thread Binding tunable"); 332 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, use_irq, CTLFLAG_RD, 333 &tcp_use_irq_cpu, 0, 334 "Use of irq CPU tunable"); 335 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, precision, CTLFLAG_RW, 336 &tcp_hpts_precision, 120, 337 "Value for PRE() precision of callout"); 338 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, cnt_thresh, CTLFLAG_RW, 339 &conn_cnt_thresh, 0, 340 "How many connections (below) make us use the callout based mechanism"); 341 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, logging, CTLFLAG_RW, 342 &hpts_does_tp_logging, 0, 343 "Do we add to any tp that has logging on pacer logs"); 344 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, dyn_minsleep, CTLFLAG_RW, 345 &dynamic_min_sleep, 250, 346 "What is the dynamic minsleep value?"); 347 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, dyn_maxsleep, CTLFLAG_RW, 348 &dynamic_max_sleep, 5000, 349 "What is the dynamic maxsleep value?"); 350 351 static int32_t max_pacer_loops = 10; 352 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, loopmax, CTLFLAG_RW, 353 &max_pacer_loops, 10, 354 "What is the maximum number of times the pacer will loop trying to catch up"); 355 356 #define HPTS_MAX_SLEEP_ALLOWED (NUM_OF_HPTSI_SLOTS/2) 357 358 static uint32_t hpts_sleep_max = HPTS_MAX_SLEEP_ALLOWED; 359 360 static int 361 sysctl_net_inet_tcp_hpts_max_sleep(SYSCTL_HANDLER_ARGS) 362 { 363 int error; 364 uint32_t new; 365 366 new = hpts_sleep_max; 367 error = sysctl_handle_int(oidp, &new, 0, req); 368 if (error == 0 && req->newptr) { 369 if ((new < (dynamic_min_sleep/HPTS_TICKS_PER_SLOT)) || 370 (new > HPTS_MAX_SLEEP_ALLOWED)) 371 error = EINVAL; 372 else 373 hpts_sleep_max = new; 374 } 375 return (error); 376 } 377 378 static int 379 sysctl_net_inet_tcp_hpts_min_sleep(SYSCTL_HANDLER_ARGS) 380 { 381 int error; 382 uint32_t new; 383 384 new = tcp_min_hptsi_time; 385 error = sysctl_handle_int(oidp, &new, 0, req); 386 if (error == 0 && req->newptr) { 387 if (new < LOWEST_SLEEP_ALLOWED) 388 error = EINVAL; 389 else 390 tcp_min_hptsi_time = new; 391 } 392 return (error); 393 } 394 395 SYSCTL_PROC(_net_inet_tcp_hpts, OID_AUTO, maxsleep, 396 CTLTYPE_UINT | CTLFLAG_RW, 397 &hpts_sleep_max, 0, 398 &sysctl_net_inet_tcp_hpts_max_sleep, "IU", 399 "Maximum time hpts will sleep in slots"); 400 401 SYSCTL_PROC(_net_inet_tcp_hpts, OID_AUTO, minsleep, 402 CTLTYPE_UINT | CTLFLAG_RW, 403 &tcp_min_hptsi_time, 0, 404 &sysctl_net_inet_tcp_hpts_min_sleep, "IU", 405 "The minimum time the hpts must sleep before processing more slots"); 406 407 static int ticks_indicate_more_sleep = TICKS_INDICATE_MORE_SLEEP; 408 static int ticks_indicate_less_sleep = TICKS_INDICATE_LESS_SLEEP; 409 static int tcp_hpts_no_wake_over_thresh = 1; 410 411 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, more_sleep, CTLFLAG_RW, 412 &ticks_indicate_more_sleep, 0, 413 "If we only process this many or less on a timeout, we need longer sleep on the next callout"); 414 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, less_sleep, CTLFLAG_RW, 415 &ticks_indicate_less_sleep, 0, 416 "If we process this many or more on a timeout, we need less sleep on the next callout"); 417 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, nowake_over_thresh, CTLFLAG_RW, 418 &tcp_hpts_no_wake_over_thresh, 0, 419 "When we are over the threshold on the pacer do we prohibit wakeups?"); 420 421 static uint16_t 422 hpts_random_cpu(void) 423 { 424 uint16_t cpuid; 425 uint32_t ran; 426 427 ran = arc4random(); 428 cpuid = (((ran & 0xffff) % mp_ncpus) % tcp_pace.rp_num_hptss); 429 return (cpuid); 430 } 431 432 static void 433 tcp_hpts_log(struct tcp_hpts_entry *hpts, struct tcpcb *tp, struct timeval *tv, 434 int slots_to_run, int idx, bool from_callout) 435 { 436 if (hpts_does_tp_logging && tcp_bblogging_on(tp)) { 437 union tcp_log_stackspecific log; 438 /* 439 * Unused logs are 440 * 64 bit - delRate, rttProp, bw_inuse 441 * 16 bit - cwnd_gain 442 * 8 bit - bbr_state, bbr_substate, inhpts; 443 */ 444 memset(&log, 0, sizeof(log)); 445 log.u_bbr.flex1 = hpts->p_nxt_slot; 446 log.u_bbr.flex2 = hpts->p_cur_slot; 447 log.u_bbr.flex3 = hpts->p_prev_slot; 448 log.u_bbr.flex4 = idx; 449 log.u_bbr.flex5 = hpts->p_curtick; 450 log.u_bbr.flex6 = hpts->p_on_queue_cnt; 451 log.u_bbr.flex7 = hpts->p_cpu; 452 log.u_bbr.flex8 = (uint8_t)from_callout; 453 log.u_bbr.inflight = slots_to_run; 454 log.u_bbr.applimited = hpts->overidden_sleep; 455 log.u_bbr.delivered = hpts->saved_curtick; 456 log.u_bbr.timeStamp = tcp_tv_to_usectick(tv); 457 log.u_bbr.epoch = hpts->saved_curslot; 458 log.u_bbr.lt_epoch = hpts->saved_prev_slot; 459 log.u_bbr.pkts_out = hpts->p_delayed_by; 460 log.u_bbr.lost = hpts->p_hpts_sleep_time; 461 log.u_bbr.pacing_gain = hpts->p_cpu; 462 log.u_bbr.pkt_epoch = hpts->p_runningslot; 463 log.u_bbr.use_lt_bw = 1; 464 TCP_LOG_EVENTP(tp, NULL, 465 &tptosocket(tp)->so_rcv, 466 &tptosocket(tp)->so_snd, 467 BBR_LOG_HPTSDIAG, 0, 468 0, &log, false, tv); 469 } 470 } 471 472 static void 473 tcp_wakehpts(struct tcp_hpts_entry *hpts) 474 { 475 HPTS_MTX_ASSERT(hpts); 476 477 if (tcp_hpts_no_wake_over_thresh && (hpts->p_on_queue_cnt >= conn_cnt_thresh)) { 478 hpts->p_direct_wake = 0; 479 return; 480 } 481 if (hpts->p_hpts_wake_scheduled == 0) { 482 hpts->p_hpts_wake_scheduled = 1; 483 swi_sched(hpts->ie_cookie, 0); 484 } 485 } 486 487 static void 488 hpts_timeout_swi(void *arg) 489 { 490 struct tcp_hpts_entry *hpts; 491 492 hpts = (struct tcp_hpts_entry *)arg; 493 swi_sched(hpts->ie_cookie, 0); 494 } 495 496 static void 497 tcp_hpts_insert_internal(struct tcpcb *tp, struct tcp_hpts_entry *hpts) 498 { 499 struct inpcb *inp = tptoinpcb(tp); 500 struct hptsh *hptsh; 501 502 INP_WLOCK_ASSERT(inp); 503 HPTS_MTX_ASSERT(hpts); 504 MPASS(hpts->p_cpu == tp->t_hpts_cpu); 505 MPASS(!(inp->inp_flags & INP_DROPPED)); 506 507 hptsh = &hpts->p_hptss[tp->t_hpts_slot]; 508 509 if (tp->t_in_hpts == IHPTS_NONE) { 510 tp->t_in_hpts = IHPTS_ONQUEUE; 511 in_pcbref(inp); 512 } else if (tp->t_in_hpts == IHPTS_MOVING) { 513 tp->t_in_hpts = IHPTS_ONQUEUE; 514 } else 515 MPASS(tp->t_in_hpts == IHPTS_ONQUEUE); 516 tp->t_hpts_gencnt = hptsh->gencnt; 517 518 TAILQ_INSERT_TAIL(&hptsh->head, tp, t_hpts); 519 hptsh->count++; 520 hpts->p_on_queue_cnt++; 521 } 522 523 static struct tcp_hpts_entry * 524 tcp_hpts_lock(struct tcpcb *tp) 525 { 526 struct tcp_hpts_entry *hpts; 527 528 INP_LOCK_ASSERT(tptoinpcb(tp)); 529 530 hpts = tcp_pace.rp_ent[tp->t_hpts_cpu]; 531 HPTS_LOCK(hpts); 532 533 return (hpts); 534 } 535 536 static void 537 tcp_hpts_release(struct tcpcb *tp) 538 { 539 bool released __diagused; 540 541 tp->t_in_hpts = IHPTS_NONE; 542 released = in_pcbrele_wlocked(tptoinpcb(tp)); 543 MPASS(released == false); 544 } 545 546 /* 547 * Initialize tcpcb to get ready for use with HPTS. We will know which CPU 548 * is preferred on the first incoming packet. Before that avoid crowding 549 * a single CPU with newborn connections and use a random one. 550 * This initialization is normally called on a newborn tcpcb, but potentially 551 * can be called once again if stack is switched. In that case we inherit CPU 552 * that the previous stack has set, be it random or not. In extreme cases, 553 * e.g. syzkaller fuzzing, a tcpcb can already be in HPTS in IHPTS_MOVING state 554 * and has never received a first packet. 555 */ 556 void 557 tcp_hpts_init(struct tcpcb *tp) 558 { 559 560 if (__predict_true(tp->t_hpts_cpu == HPTS_CPU_NONE)) { 561 tp->t_hpts_cpu = hpts_random_cpu(); 562 MPASS(!(tp->t_flags2 & TF2_HPTS_CPU_SET)); 563 } 564 } 565 566 /* 567 * Called normally with the INP_LOCKED but it 568 * does not matter, the hpts lock is the key 569 * but the lock order allows us to hold the 570 * INP lock and then get the hpts lock. 571 */ 572 void 573 tcp_hpts_remove(struct tcpcb *tp) 574 { 575 struct tcp_hpts_entry *hpts; 576 struct hptsh *hptsh; 577 578 INP_WLOCK_ASSERT(tptoinpcb(tp)); 579 580 hpts = tcp_hpts_lock(tp); 581 if (tp->t_in_hpts == IHPTS_ONQUEUE) { 582 hptsh = &hpts->p_hptss[tp->t_hpts_slot]; 583 tp->t_hpts_request = 0; 584 if (__predict_true(tp->t_hpts_gencnt == hptsh->gencnt)) { 585 TAILQ_REMOVE(&hptsh->head, tp, t_hpts); 586 MPASS(hptsh->count > 0); 587 hptsh->count--; 588 MPASS(hpts->p_on_queue_cnt > 0); 589 hpts->p_on_queue_cnt--; 590 tcp_hpts_release(tp); 591 } else { 592 /* 593 * tcp_hptsi() now owns the TAILQ head of this inp. 594 * Can't TAILQ_REMOVE, just mark it. 595 */ 596 #ifdef INVARIANTS 597 struct tcpcb *tmp; 598 599 TAILQ_FOREACH(tmp, &hptsh->head, t_hpts) 600 MPASS(tmp != tp); 601 #endif 602 tp->t_in_hpts = IHPTS_MOVING; 603 tp->t_hpts_slot = -1; 604 } 605 } else if (tp->t_in_hpts == IHPTS_MOVING) { 606 /* 607 * Handle a special race condition: 608 * tcp_hptsi() moves inpcb to detached tailq 609 * tcp_hpts_remove() marks as IHPTS_MOVING, slot = -1 610 * tcp_hpts_insert() sets slot to a meaningful value 611 * tcp_hpts_remove() again (we are here!), then in_pcbdrop() 612 * tcp_hptsi() finds pcb with meaningful slot and INP_DROPPED 613 */ 614 tp->t_hpts_slot = -1; 615 } 616 HPTS_UNLOCK(hpts); 617 } 618 619 static inline int 620 hpts_slot(uint32_t wheel_slot, uint32_t plus) 621 { 622 /* 623 * Given a slot on the wheel, what slot 624 * is that plus ticks out? 625 */ 626 KASSERT(wheel_slot < NUM_OF_HPTSI_SLOTS, ("Invalid tick %u not on wheel", wheel_slot)); 627 return ((wheel_slot + plus) % NUM_OF_HPTSI_SLOTS); 628 } 629 630 static inline int 631 tick_to_wheel(uint32_t cts_in_wticks) 632 { 633 /* 634 * Given a timestamp in ticks (so by 635 * default to get it to a real time one 636 * would multiply by 10.. i.e the number 637 * of ticks in a slot) map it to our limited 638 * space wheel. 639 */ 640 return (cts_in_wticks % NUM_OF_HPTSI_SLOTS); 641 } 642 643 static inline int 644 hpts_slots_diff(int prev_slot, int slot_now) 645 { 646 /* 647 * Given two slots that are someplace 648 * on our wheel. How far are they apart? 649 */ 650 if (slot_now > prev_slot) 651 return (slot_now - prev_slot); 652 else if (slot_now == prev_slot) 653 /* 654 * Special case, same means we can go all of our 655 * wheel less one slot. 656 */ 657 return (NUM_OF_HPTSI_SLOTS - 1); 658 else 659 return ((NUM_OF_HPTSI_SLOTS - prev_slot) + slot_now); 660 } 661 662 /* 663 * Given a slot on the wheel that is the current time 664 * mapped to the wheel (wheel_slot), what is the maximum 665 * distance forward that can be obtained without 666 * wrapping past either prev_slot or running_slot 667 * depending on the htps state? Also if passed 668 * a uint32_t *, fill it with the slot location. 669 * 670 * Note if you do not give this function the current 671 * time (that you think it is) mapped to the wheel slot 672 * then the results will not be what you expect and 673 * could lead to invalid inserts. 674 */ 675 static inline int32_t 676 max_slots_available(struct tcp_hpts_entry *hpts, uint32_t wheel_slot, uint32_t *target_slot) 677 { 678 uint32_t dis_to_travel, end_slot, pacer_to_now, avail_on_wheel; 679 680 if ((hpts->p_hpts_active == 1) && 681 (hpts->p_wheel_complete == 0)) { 682 end_slot = hpts->p_runningslot; 683 /* Back up one tick */ 684 if (end_slot == 0) 685 end_slot = NUM_OF_HPTSI_SLOTS - 1; 686 else 687 end_slot--; 688 if (target_slot) 689 *target_slot = end_slot; 690 } else { 691 /* 692 * For the case where we are 693 * not active, or we have 694 * completed the pass over 695 * the wheel, we can use the 696 * prev tick and subtract one from it. This puts us 697 * as far out as possible on the wheel. 698 */ 699 end_slot = hpts->p_prev_slot; 700 if (end_slot == 0) 701 end_slot = NUM_OF_HPTSI_SLOTS - 1; 702 else 703 end_slot--; 704 if (target_slot) 705 *target_slot = end_slot; 706 /* 707 * Now we have close to the full wheel left minus the 708 * time it has been since the pacer went to sleep. Note 709 * that wheel_tick, passed in, should be the current time 710 * from the perspective of the caller, mapped to the wheel. 711 */ 712 if (hpts->p_prev_slot != wheel_slot) 713 dis_to_travel = hpts_slots_diff(hpts->p_prev_slot, wheel_slot); 714 else 715 dis_to_travel = 1; 716 /* 717 * dis_to_travel in this case is the space from when the 718 * pacer stopped (p_prev_slot) and where our wheel_slot 719 * is now. To know how many slots we can put it in we 720 * subtract from the wheel size. We would not want 721 * to place something after p_prev_slot or it will 722 * get ran too soon. 723 */ 724 return (NUM_OF_HPTSI_SLOTS - dis_to_travel); 725 } 726 /* 727 * So how many slots are open between p_runningslot -> p_cur_slot 728 * that is what is currently un-available for insertion. Special 729 * case when we are at the last slot, this gets 1, so that 730 * the answer to how many slots are available is all but 1. 731 */ 732 if (hpts->p_runningslot == hpts->p_cur_slot) 733 dis_to_travel = 1; 734 else 735 dis_to_travel = hpts_slots_diff(hpts->p_runningslot, hpts->p_cur_slot); 736 /* 737 * How long has the pacer been running? 738 */ 739 if (hpts->p_cur_slot != wheel_slot) { 740 /* The pacer is a bit late */ 741 pacer_to_now = hpts_slots_diff(hpts->p_cur_slot, wheel_slot); 742 } else { 743 /* The pacer is right on time, now == pacers start time */ 744 pacer_to_now = 0; 745 } 746 /* 747 * To get the number left we can insert into we simply 748 * subtract the distance the pacer has to run from how 749 * many slots there are. 750 */ 751 avail_on_wheel = NUM_OF_HPTSI_SLOTS - dis_to_travel; 752 /* 753 * Now how many of those we will eat due to the pacer's 754 * time (p_cur_slot) of start being behind the 755 * real time (wheel_slot)? 756 */ 757 if (avail_on_wheel <= pacer_to_now) { 758 /* 759 * Wheel wrap, we can't fit on the wheel, that 760 * is unusual the system must be way overloaded! 761 * Insert into the assured slot, and return special 762 * "0". 763 */ 764 counter_u64_add(combined_wheel_wrap, 1); 765 if (target_slot) 766 *target_slot = hpts->p_nxt_slot; 767 return (0); 768 } else { 769 /* 770 * We know how many slots are open 771 * on the wheel (the reverse of what 772 * is left to run. Take away the time 773 * the pacer started to now (wheel_slot) 774 * and that tells you how many slots are 775 * open that can be inserted into that won't 776 * be touched by the pacer until later. 777 */ 778 return (avail_on_wheel - pacer_to_now); 779 } 780 } 781 782 783 #ifdef INVARIANTS 784 static void 785 check_if_slot_would_be_wrong(struct tcp_hpts_entry *hpts, struct tcpcb *tp, 786 uint32_t hptsslot, int line) 787 { 788 /* 789 * Sanity checks for the pacer with invariants 790 * on insert. 791 */ 792 KASSERT(hptsslot < NUM_OF_HPTSI_SLOTS, 793 ("hpts:%p tp:%p slot:%d > max", hpts, tp, hptsslot)); 794 if ((hpts->p_hpts_active) && 795 (hpts->p_wheel_complete == 0)) { 796 /* 797 * If the pacer is processing a arc 798 * of the wheel, we need to make 799 * sure we are not inserting within 800 * that arc. 801 */ 802 int distance, yet_to_run; 803 804 distance = hpts_slots_diff(hpts->p_runningslot, hptsslot); 805 if (hpts->p_runningslot != hpts->p_cur_slot) 806 yet_to_run = hpts_slots_diff(hpts->p_runningslot, hpts->p_cur_slot); 807 else 808 yet_to_run = 0; /* processing last slot */ 809 KASSERT(yet_to_run <= distance, ("hpts:%p tp:%p slot:%d " 810 "distance:%d yet_to_run:%d rs:%d cs:%d", hpts, tp, 811 hptsslot, distance, yet_to_run, hpts->p_runningslot, 812 hpts->p_cur_slot)); 813 } 814 } 815 #endif 816 817 uint32_t 818 tcp_hpts_insert_diag(struct tcpcb *tp, uint32_t slot, int32_t line, struct hpts_diag *diag) 819 { 820 struct tcp_hpts_entry *hpts; 821 struct timeval tv; 822 uint32_t slot_on, wheel_cts, last_slot, need_new_to = 0; 823 int32_t wheel_slot, maxslots; 824 bool need_wakeup = false; 825 826 INP_WLOCK_ASSERT(tptoinpcb(tp)); 827 MPASS(!(tptoinpcb(tp)->inp_flags & INP_DROPPED)); 828 MPASS(!(tp->t_in_hpts == IHPTS_ONQUEUE)); 829 830 /* 831 * We now return the next-slot the hpts will be on, beyond its 832 * current run (if up) or where it was when it stopped if it is 833 * sleeping. 834 */ 835 hpts = tcp_hpts_lock(tp); 836 microuptime(&tv); 837 if (diag) { 838 memset(diag, 0, sizeof(struct hpts_diag)); 839 diag->p_hpts_active = hpts->p_hpts_active; 840 diag->p_prev_slot = hpts->p_prev_slot; 841 diag->p_runningslot = hpts->p_runningslot; 842 diag->p_nxt_slot = hpts->p_nxt_slot; 843 diag->p_cur_slot = hpts->p_cur_slot; 844 diag->p_curtick = hpts->p_curtick; 845 diag->p_lasttick = hpts->p_lasttick; 846 diag->slot_req = slot; 847 diag->p_on_min_sleep = hpts->p_on_min_sleep; 848 diag->hpts_sleep_time = hpts->p_hpts_sleep_time; 849 } 850 if (slot == 0) { 851 /* Ok we need to set it on the hpts in the current slot */ 852 tp->t_hpts_request = 0; 853 if ((hpts->p_hpts_active == 0) || (hpts->p_wheel_complete)) { 854 /* 855 * A sleeping hpts we want in next slot to run 856 * note that in this state p_prev_slot == p_cur_slot 857 */ 858 tp->t_hpts_slot = hpts_slot(hpts->p_prev_slot, 1); 859 if ((hpts->p_on_min_sleep == 0) && 860 (hpts->p_hpts_active == 0)) 861 need_wakeup = true; 862 } else 863 tp->t_hpts_slot = hpts->p_runningslot; 864 if (__predict_true(tp->t_in_hpts != IHPTS_MOVING)) 865 tcp_hpts_insert_internal(tp, hpts); 866 if (need_wakeup) { 867 /* 868 * Activate the hpts if it is sleeping and its 869 * timeout is not 1. 870 */ 871 hpts->p_direct_wake = 1; 872 tcp_wakehpts(hpts); 873 } 874 slot_on = hpts->p_nxt_slot; 875 HPTS_UNLOCK(hpts); 876 877 return (slot_on); 878 } 879 /* Get the current time relative to the wheel */ 880 wheel_cts = tcp_tv_to_hptstick(&tv); 881 /* Map it onto the wheel */ 882 wheel_slot = tick_to_wheel(wheel_cts); 883 /* Now what's the max we can place it at? */ 884 maxslots = max_slots_available(hpts, wheel_slot, &last_slot); 885 if (diag) { 886 diag->wheel_slot = wheel_slot; 887 diag->maxslots = maxslots; 888 diag->wheel_cts = wheel_cts; 889 } 890 if (maxslots == 0) { 891 /* The pacer is in a wheel wrap behind, yikes! */ 892 if (slot > 1) { 893 /* 894 * Reduce by 1 to prevent a forever loop in 895 * case something else is wrong. Note this 896 * probably does not hurt because the pacer 897 * if its true is so far behind we will be 898 * > 1second late calling anyway. 899 */ 900 slot--; 901 } 902 tp->t_hpts_slot = last_slot; 903 tp->t_hpts_request = slot; 904 } else if (maxslots >= slot) { 905 /* It all fits on the wheel */ 906 tp->t_hpts_request = 0; 907 tp->t_hpts_slot = hpts_slot(wheel_slot, slot); 908 } else { 909 /* It does not fit */ 910 tp->t_hpts_request = slot - maxslots; 911 tp->t_hpts_slot = last_slot; 912 } 913 if (diag) { 914 diag->slot_remaining = tp->t_hpts_request; 915 diag->inp_hptsslot = tp->t_hpts_slot; 916 } 917 #ifdef INVARIANTS 918 check_if_slot_would_be_wrong(hpts, tp, tp->t_hpts_slot, line); 919 #endif 920 if (__predict_true(tp->t_in_hpts != IHPTS_MOVING)) 921 tcp_hpts_insert_internal(tp, hpts); 922 if ((hpts->p_hpts_active == 0) && 923 (tp->t_hpts_request == 0) && 924 (hpts->p_on_min_sleep == 0)) { 925 /* 926 * The hpts is sleeping and NOT on a minimum 927 * sleep time, we need to figure out where 928 * it will wake up at and if we need to reschedule 929 * its time-out. 930 */ 931 uint32_t have_slept, yet_to_sleep; 932 933 /* Now do we need to restart the hpts's timer? */ 934 have_slept = hpts_slots_diff(hpts->p_prev_slot, wheel_slot); 935 if (have_slept < hpts->p_hpts_sleep_time) 936 yet_to_sleep = hpts->p_hpts_sleep_time - have_slept; 937 else { 938 /* We are over-due */ 939 yet_to_sleep = 0; 940 need_wakeup = 1; 941 } 942 if (diag) { 943 diag->have_slept = have_slept; 944 diag->yet_to_sleep = yet_to_sleep; 945 } 946 if (yet_to_sleep && 947 (yet_to_sleep > slot)) { 948 /* 949 * We need to reschedule the hpts's time-out. 950 */ 951 hpts->p_hpts_sleep_time = slot; 952 need_new_to = slot * HPTS_TICKS_PER_SLOT; 953 } 954 } 955 /* 956 * Now how far is the hpts sleeping to? if active is 1, its 957 * up and ticking we do nothing, otherwise we may need to 958 * reschedule its callout if need_new_to is set from above. 959 */ 960 if (need_wakeup) { 961 hpts->p_direct_wake = 1; 962 tcp_wakehpts(hpts); 963 if (diag) { 964 diag->need_new_to = 0; 965 diag->co_ret = 0xffff0000; 966 } 967 } else if (need_new_to) { 968 int32_t co_ret; 969 struct timeval tv; 970 sbintime_t sb; 971 972 tv.tv_sec = 0; 973 tv.tv_usec = 0; 974 while (need_new_to > HPTS_USEC_IN_SEC) { 975 tv.tv_sec++; 976 need_new_to -= HPTS_USEC_IN_SEC; 977 } 978 tv.tv_usec = need_new_to; 979 sb = tvtosbt(tv); 980 co_ret = callout_reset_sbt_on(&hpts->co, sb, 0, 981 hpts_timeout_swi, hpts, hpts->p_cpu, 982 (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision))); 983 if (diag) { 984 diag->need_new_to = need_new_to; 985 diag->co_ret = co_ret; 986 } 987 } 988 slot_on = hpts->p_nxt_slot; 989 HPTS_UNLOCK(hpts); 990 991 return (slot_on); 992 } 993 994 static uint16_t 995 hpts_cpuid(struct tcpcb *tp, int *failed) 996 { 997 struct inpcb *inp = tptoinpcb(tp); 998 u_int cpuid; 999 #ifdef NUMA 1000 struct hpts_domain_info *di; 1001 #endif 1002 1003 *failed = 0; 1004 if (tp->t_flags2 & TF2_HPTS_CPU_SET) { 1005 return (tp->t_hpts_cpu); 1006 } 1007 /* 1008 * If we are using the irq cpu set by LRO or 1009 * the driver then it overrides all other domains. 1010 */ 1011 if (tcp_use_irq_cpu) { 1012 if (tp->t_lro_cpu == HPTS_CPU_NONE) { 1013 *failed = 1; 1014 return (0); 1015 } 1016 return (tp->t_lro_cpu); 1017 } 1018 /* If one is set the other must be the same */ 1019 #ifdef RSS 1020 cpuid = rss_hash2cpuid(inp->inp_flowid, inp->inp_flowtype); 1021 if (cpuid == NETISR_CPUID_NONE) 1022 return (hpts_random_cpu()); 1023 else 1024 return (cpuid); 1025 #endif 1026 /* 1027 * We don't have a flowid -> cpuid mapping, so cheat and just map 1028 * unknown cpuids to curcpu. Not the best, but apparently better 1029 * than defaulting to swi 0. 1030 */ 1031 if (inp->inp_flowtype == M_HASHTYPE_NONE) { 1032 counter_u64_add(cpu_uses_random, 1); 1033 return (hpts_random_cpu()); 1034 } 1035 /* 1036 * Hash to a thread based on the flowid. If we are using numa, 1037 * then restrict the hash to the numa domain where the inp lives. 1038 */ 1039 1040 #ifdef NUMA 1041 if ((vm_ndomains == 1) || 1042 (inp->inp_numa_domain == M_NODOM)) { 1043 #endif 1044 cpuid = inp->inp_flowid % mp_ncpus; 1045 #ifdef NUMA 1046 } else { 1047 /* Hash into the cpu's that use that domain */ 1048 di = &hpts_domains[inp->inp_numa_domain]; 1049 cpuid = di->cpu[inp->inp_flowid % di->count]; 1050 } 1051 #endif 1052 counter_u64_add(cpu_uses_flowid, 1); 1053 return (cpuid); 1054 } 1055 1056 static void 1057 tcp_hpts_set_max_sleep(struct tcp_hpts_entry *hpts, int wrap_loop_cnt) 1058 { 1059 uint32_t t = 0, i; 1060 1061 if ((hpts->p_on_queue_cnt) && (wrap_loop_cnt < 2)) { 1062 /* 1063 * Find next slot that is occupied and use that to 1064 * be the sleep time. 1065 */ 1066 for (i = 0, t = hpts_slot(hpts->p_cur_slot, 1); i < NUM_OF_HPTSI_SLOTS; i++) { 1067 if (TAILQ_EMPTY(&hpts->p_hptss[t].head) == 0) { 1068 break; 1069 } 1070 t = (t + 1) % NUM_OF_HPTSI_SLOTS; 1071 } 1072 KASSERT((i != NUM_OF_HPTSI_SLOTS), ("Hpts:%p cnt:%d but none found", hpts, hpts->p_on_queue_cnt)); 1073 hpts->p_hpts_sleep_time = min((i + 1), hpts_sleep_max); 1074 } else { 1075 /* No one on the wheel sleep for all but 400 slots or sleep max */ 1076 hpts->p_hpts_sleep_time = hpts_sleep_max; 1077 } 1078 } 1079 1080 static int32_t 1081 tcp_hptsi(struct tcp_hpts_entry *hpts, bool from_callout) 1082 { 1083 struct tcpcb *tp; 1084 struct timeval tv; 1085 int32_t slots_to_run, i, error; 1086 int32_t loop_cnt = 0; 1087 int32_t did_prefetch = 0; 1088 int32_t prefetch_tp = 0; 1089 int32_t wrap_loop_cnt = 0; 1090 int32_t slot_pos_of_endpoint = 0; 1091 int32_t orig_exit_slot; 1092 bool completed_measure, seen_endpoint; 1093 1094 completed_measure = false; 1095 seen_endpoint = false; 1096 1097 HPTS_MTX_ASSERT(hpts); 1098 NET_EPOCH_ASSERT(); 1099 /* record previous info for any logging */ 1100 hpts->saved_lasttick = hpts->p_lasttick; 1101 hpts->saved_curtick = hpts->p_curtick; 1102 hpts->saved_curslot = hpts->p_cur_slot; 1103 hpts->saved_prev_slot = hpts->p_prev_slot; 1104 1105 hpts->p_lasttick = hpts->p_curtick; 1106 hpts->p_curtick = tcp_gethptstick(&tv); 1107 tcp_pace.cts_last_ran[hpts->p_num] = tcp_tv_to_usectick(&tv); 1108 orig_exit_slot = hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick); 1109 if ((hpts->p_on_queue_cnt == 0) || 1110 (hpts->p_lasttick == hpts->p_curtick)) { 1111 /* 1112 * No time has yet passed, 1113 * or nothing to do. 1114 */ 1115 hpts->p_prev_slot = hpts->p_cur_slot; 1116 hpts->p_lasttick = hpts->p_curtick; 1117 goto no_run; 1118 } 1119 again: 1120 hpts->p_wheel_complete = 0; 1121 HPTS_MTX_ASSERT(hpts); 1122 slots_to_run = hpts_slots_diff(hpts->p_prev_slot, hpts->p_cur_slot); 1123 if (((hpts->p_curtick - hpts->p_lasttick) > 1124 ((NUM_OF_HPTSI_SLOTS-1) * HPTS_TICKS_PER_SLOT)) && 1125 (hpts->p_on_queue_cnt != 0)) { 1126 /* 1127 * Wheel wrap is occuring, basically we 1128 * are behind and the distance between 1129 * run's has spread so much it has exceeded 1130 * the time on the wheel (1.024 seconds). This 1131 * is ugly and should NOT be happening. We 1132 * need to run the entire wheel. We last processed 1133 * p_prev_slot, so that needs to be the last slot 1134 * we run. The next slot after that should be our 1135 * reserved first slot for new, and then starts 1136 * the running position. Now the problem is the 1137 * reserved "not to yet" place does not exist 1138 * and there may be inp's in there that need 1139 * running. We can merge those into the 1140 * first slot at the head. 1141 */ 1142 wrap_loop_cnt++; 1143 hpts->p_nxt_slot = hpts_slot(hpts->p_prev_slot, 1); 1144 hpts->p_runningslot = hpts_slot(hpts->p_prev_slot, 2); 1145 /* 1146 * Adjust p_cur_slot to be where we are starting from 1147 * hopefully we will catch up (fat chance if something 1148 * is broken this bad :( ) 1149 */ 1150 hpts->p_cur_slot = hpts->p_prev_slot; 1151 /* 1152 * The next slot has guys to run too, and that would 1153 * be where we would normally start, lets move them into 1154 * the next slot (p_prev_slot + 2) so that we will 1155 * run them, the extra 10usecs of late (by being 1156 * put behind) does not really matter in this situation. 1157 */ 1158 TAILQ_FOREACH(tp, &hpts->p_hptss[hpts->p_nxt_slot].head, 1159 t_hpts) { 1160 MPASS(tp->t_hpts_slot == hpts->p_nxt_slot); 1161 MPASS(tp->t_hpts_gencnt == 1162 hpts->p_hptss[hpts->p_nxt_slot].gencnt); 1163 MPASS(tp->t_in_hpts == IHPTS_ONQUEUE); 1164 1165 /* 1166 * Update gencnt and nextslot accordingly to match 1167 * the new location. This is safe since it takes both 1168 * the INP lock and the pacer mutex to change the 1169 * t_hptsslot and t_hpts_gencnt. 1170 */ 1171 tp->t_hpts_gencnt = 1172 hpts->p_hptss[hpts->p_runningslot].gencnt; 1173 tp->t_hpts_slot = hpts->p_runningslot; 1174 } 1175 TAILQ_CONCAT(&hpts->p_hptss[hpts->p_runningslot].head, 1176 &hpts->p_hptss[hpts->p_nxt_slot].head, t_hpts); 1177 hpts->p_hptss[hpts->p_runningslot].count += 1178 hpts->p_hptss[hpts->p_nxt_slot].count; 1179 hpts->p_hptss[hpts->p_nxt_slot].count = 0; 1180 hpts->p_hptss[hpts->p_nxt_slot].gencnt++; 1181 slots_to_run = NUM_OF_HPTSI_SLOTS - 1; 1182 counter_u64_add(wheel_wrap, 1); 1183 } else { 1184 /* 1185 * Nxt slot is always one after p_runningslot though 1186 * its not used usually unless we are doing wheel wrap. 1187 */ 1188 hpts->p_nxt_slot = hpts->p_prev_slot; 1189 hpts->p_runningslot = hpts_slot(hpts->p_prev_slot, 1); 1190 } 1191 if (hpts->p_on_queue_cnt == 0) { 1192 goto no_one; 1193 } 1194 for (i = 0; i < slots_to_run; i++) { 1195 struct tcpcb *tp, *ntp; 1196 TAILQ_HEAD(, tcpcb) head = TAILQ_HEAD_INITIALIZER(head); 1197 struct hptsh *hptsh; 1198 uint32_t runningslot; 1199 1200 /* 1201 * Calculate our delay, if there are no extra ticks there 1202 * was not any (i.e. if slots_to_run == 1, no delay). 1203 */ 1204 hpts->p_delayed_by = (slots_to_run - (i + 1)) * 1205 HPTS_TICKS_PER_SLOT; 1206 1207 runningslot = hpts->p_runningslot; 1208 hptsh = &hpts->p_hptss[runningslot]; 1209 TAILQ_SWAP(&head, &hptsh->head, tcpcb, t_hpts); 1210 hpts->p_on_queue_cnt -= hptsh->count; 1211 hptsh->count = 0; 1212 hptsh->gencnt++; 1213 1214 HPTS_UNLOCK(hpts); 1215 1216 TAILQ_FOREACH_SAFE(tp, &head, t_hpts, ntp) { 1217 struct inpcb *inp = tptoinpcb(tp); 1218 bool set_cpu; 1219 1220 if (ntp != NULL) { 1221 /* 1222 * If we have a next tcpcb, see if we can 1223 * prefetch it. Note this may seem 1224 * "risky" since we have no locks (other 1225 * than the previous inp) and there no 1226 * assurance that ntp was not pulled while 1227 * we were processing tp and freed. If this 1228 * occurred it could mean that either: 1229 * 1230 * a) Its NULL (which is fine we won't go 1231 * here) <or> b) Its valid (which is cool we 1232 * will prefetch it) <or> c) The inp got 1233 * freed back to the slab which was 1234 * reallocated. Then the piece of memory was 1235 * re-used and something else (not an 1236 * address) is in inp_ppcb. If that occurs 1237 * we don't crash, but take a TLB shootdown 1238 * performance hit (same as if it was NULL 1239 * and we tried to pre-fetch it). 1240 * 1241 * Considering that the likelyhood of <c> is 1242 * quite rare we will take a risk on doing 1243 * this. If performance drops after testing 1244 * we can always take this out. NB: the 1245 * kern_prefetch on amd64 actually has 1246 * protection against a bad address now via 1247 * the DMAP_() tests. This will prevent the 1248 * TLB hit, and instead if <c> occurs just 1249 * cause us to load cache with a useless 1250 * address (to us). 1251 * 1252 * XXXGL: this comment and the prefetch action 1253 * could be outdated after tp == inp change. 1254 */ 1255 kern_prefetch(ntp, &prefetch_tp); 1256 prefetch_tp = 1; 1257 } 1258 1259 /* For debugging */ 1260 if (!seen_endpoint) { 1261 seen_endpoint = true; 1262 orig_exit_slot = slot_pos_of_endpoint = 1263 runningslot; 1264 } else if (!completed_measure) { 1265 /* Record the new position */ 1266 orig_exit_slot = runningslot; 1267 } 1268 1269 INP_WLOCK(inp); 1270 if ((tp->t_flags2 & TF2_HPTS_CPU_SET) == 0) { 1271 set_cpu = true; 1272 } else { 1273 set_cpu = false; 1274 } 1275 1276 if (__predict_false(tp->t_in_hpts == IHPTS_MOVING)) { 1277 if (tp->t_hpts_slot == -1) { 1278 tp->t_in_hpts = IHPTS_NONE; 1279 if (in_pcbrele_wlocked(inp) == false) 1280 INP_WUNLOCK(inp); 1281 } else { 1282 HPTS_LOCK(hpts); 1283 tcp_hpts_insert_internal(tp, hpts); 1284 HPTS_UNLOCK(hpts); 1285 INP_WUNLOCK(inp); 1286 } 1287 continue; 1288 } 1289 1290 MPASS(tp->t_in_hpts == IHPTS_ONQUEUE); 1291 MPASS(!(inp->inp_flags & INP_DROPPED)); 1292 KASSERT(runningslot == tp->t_hpts_slot, 1293 ("Hpts:%p inp:%p slot mis-aligned %u vs %u", 1294 hpts, inp, runningslot, tp->t_hpts_slot)); 1295 1296 if (tp->t_hpts_request) { 1297 /* 1298 * This guy is deferred out further in time 1299 * then our wheel had available on it. 1300 * Push him back on the wheel or run it 1301 * depending. 1302 */ 1303 uint32_t maxslots, last_slot, remaining_slots; 1304 1305 remaining_slots = slots_to_run - (i + 1); 1306 if (tp->t_hpts_request > remaining_slots) { 1307 HPTS_LOCK(hpts); 1308 /* 1309 * How far out can we go? 1310 */ 1311 maxslots = max_slots_available(hpts, 1312 hpts->p_cur_slot, &last_slot); 1313 if (maxslots >= tp->t_hpts_request) { 1314 /* We can place it finally to 1315 * be processed. */ 1316 tp->t_hpts_slot = hpts_slot( 1317 hpts->p_runningslot, 1318 tp->t_hpts_request); 1319 tp->t_hpts_request = 0; 1320 } else { 1321 /* Work off some more time */ 1322 tp->t_hpts_slot = last_slot; 1323 tp->t_hpts_request -= 1324 maxslots; 1325 } 1326 tcp_hpts_insert_internal(tp, hpts); 1327 HPTS_UNLOCK(hpts); 1328 INP_WUNLOCK(inp); 1329 continue; 1330 } 1331 tp->t_hpts_request = 0; 1332 /* Fall through we will so do it now */ 1333 } 1334 1335 tcp_hpts_release(tp); 1336 if (set_cpu) { 1337 /* 1338 * Setup so the next time we will move to 1339 * the right CPU. This should be a rare 1340 * event. It will sometimes happens when we 1341 * are the client side (usually not the 1342 * server). Somehow tcp_output() gets called 1343 * before the tcp_do_segment() sets the 1344 * intial state. This means the r_cpu and 1345 * r_hpts_cpu is 0. We get on the hpts, and 1346 * then tcp_input() gets called setting up 1347 * the r_cpu to the correct value. The hpts 1348 * goes off and sees the mis-match. We 1349 * simply correct it here and the CPU will 1350 * switch to the new hpts nextime the tcb 1351 * gets added to the hpts (not this one) 1352 * :-) 1353 */ 1354 tcp_set_hpts(tp); 1355 } 1356 CURVNET_SET(inp->inp_vnet); 1357 /* Lets do any logging that we might want to */ 1358 tcp_hpts_log(hpts, tp, &tv, slots_to_run, i, from_callout); 1359 1360 if (tp->t_fb_ptr != NULL) { 1361 kern_prefetch(tp->t_fb_ptr, &did_prefetch); 1362 did_prefetch = 1; 1363 } 1364 /* 1365 * We set TF2_HPTS_CALLS before any possible output. 1366 * The contract with the transport is that if it cares 1367 * about hpts calling it should clear the flag. That 1368 * way next time it is called it will know it is hpts. 1369 * 1370 * We also only call tfb_do_queued_segments() <or> 1371 * tcp_output(). It is expected that if segments are 1372 * queued and come in that the final input mbuf will 1373 * cause a call to output if it is needed so we do 1374 * not need a second call to tcp_output(). So we do 1375 * one or the other but not both. 1376 * 1377 * XXXGL: some KPI abuse here. tfb_do_queued_segments 1378 * returns unlocked with positive error (always 1) and 1379 * tcp_output returns unlocked with negative error. 1380 */ 1381 tp->t_flags2 |= TF2_HPTS_CALLS; 1382 if ((tp->t_flags2 & TF2_SUPPORTS_MBUFQ) && 1383 !STAILQ_EMPTY(&tp->t_inqueue)) 1384 error = -(*tp->t_fb->tfb_do_queued_segments)(tp, 1385 0); 1386 else 1387 error = tcp_output(tp); 1388 if (__predict_true(error >= 0)) 1389 INP_WUNLOCK(inp); 1390 CURVNET_RESTORE(); 1391 } 1392 if (seen_endpoint) { 1393 /* 1394 * We now have a accurate distance between 1395 * slot_pos_of_endpoint <-> orig_exit_slot 1396 * to tell us how late we were, orig_exit_slot 1397 * is where we calculated the end of our cycle to 1398 * be when we first entered. 1399 */ 1400 completed_measure = true; 1401 } 1402 HPTS_LOCK(hpts); 1403 hpts->p_runningslot++; 1404 if (hpts->p_runningslot >= NUM_OF_HPTSI_SLOTS) { 1405 hpts->p_runningslot = 0; 1406 } 1407 } 1408 no_one: 1409 HPTS_MTX_ASSERT(hpts); 1410 hpts->p_delayed_by = 0; 1411 /* 1412 * Check to see if we took an excess amount of time and need to run 1413 * more ticks (if we did not hit eno-bufs). 1414 */ 1415 hpts->p_prev_slot = hpts->p_cur_slot; 1416 hpts->p_lasttick = hpts->p_curtick; 1417 if (!from_callout || (loop_cnt > max_pacer_loops)) { 1418 /* 1419 * Something is serious slow we have 1420 * looped through processing the wheel 1421 * and by the time we cleared the 1422 * needs to run max_pacer_loops time 1423 * we still needed to run. That means 1424 * the system is hopelessly behind and 1425 * can never catch up :( 1426 * 1427 * We will just lie to this thread 1428 * and let it thing p_curtick is 1429 * correct. When it next awakens 1430 * it will find itself further behind. 1431 */ 1432 if (from_callout) 1433 counter_u64_add(hpts_hopelessly_behind, 1); 1434 goto no_run; 1435 } 1436 hpts->p_curtick = tcp_gethptstick(&tv); 1437 hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick); 1438 if (!seen_endpoint) { 1439 /* We saw no endpoint but we may be looping */ 1440 orig_exit_slot = hpts->p_cur_slot; 1441 } 1442 if ((wrap_loop_cnt < 2) && 1443 (hpts->p_lasttick != hpts->p_curtick)) { 1444 counter_u64_add(hpts_loops, 1); 1445 loop_cnt++; 1446 goto again; 1447 } 1448 no_run: 1449 tcp_pace.cts_last_ran[hpts->p_num] = tcp_tv_to_usectick(&tv); 1450 /* 1451 * Set flag to tell that we are done for 1452 * any slot input that happens during 1453 * input. 1454 */ 1455 hpts->p_wheel_complete = 1; 1456 /* 1457 * Now did we spend too long running input and need to run more ticks? 1458 * Note that if wrap_loop_cnt < 2 then we should have the conditions 1459 * in the KASSERT's true. But if the wheel is behind i.e. wrap_loop_cnt 1460 * is greater than 2, then the condtion most likely are *not* true. 1461 * Also if we are called not from the callout, we don't run the wheel 1462 * multiple times so the slots may not align either. 1463 */ 1464 KASSERT(((hpts->p_prev_slot == hpts->p_cur_slot) || 1465 (wrap_loop_cnt >= 2) || !from_callout), 1466 ("H:%p p_prev_slot:%u not equal to p_cur_slot:%u", hpts, 1467 hpts->p_prev_slot, hpts->p_cur_slot)); 1468 KASSERT(((hpts->p_lasttick == hpts->p_curtick) 1469 || (wrap_loop_cnt >= 2) || !from_callout), 1470 ("H:%p p_lasttick:%u not equal to p_curtick:%u", hpts, 1471 hpts->p_lasttick, hpts->p_curtick)); 1472 if (from_callout && (hpts->p_lasttick != hpts->p_curtick)) { 1473 hpts->p_curtick = tcp_gethptstick(&tv); 1474 counter_u64_add(hpts_loops, 1); 1475 hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick); 1476 goto again; 1477 } 1478 1479 if (from_callout) { 1480 tcp_hpts_set_max_sleep(hpts, wrap_loop_cnt); 1481 } 1482 if (seen_endpoint) 1483 return(hpts_slots_diff(slot_pos_of_endpoint, orig_exit_slot)); 1484 else 1485 return (0); 1486 } 1487 1488 void 1489 tcp_set_hpts(struct tcpcb *tp) 1490 { 1491 struct tcp_hpts_entry *hpts; 1492 int failed; 1493 1494 INP_WLOCK_ASSERT(tptoinpcb(tp)); 1495 1496 hpts = tcp_hpts_lock(tp); 1497 if (tp->t_in_hpts == IHPTS_NONE && !(tp->t_flags2 & TF2_HPTS_CPU_SET)) { 1498 tp->t_hpts_cpu = hpts_cpuid(tp, &failed); 1499 if (failed == 0) 1500 tp->t_flags2 |= TF2_HPTS_CPU_SET; 1501 } 1502 HPTS_UNLOCK(hpts); 1503 } 1504 1505 static struct tcp_hpts_entry * 1506 tcp_choose_hpts_to_run(void) 1507 { 1508 int i, oldest_idx, start, end; 1509 uint32_t cts, time_since_ran, calc; 1510 1511 cts = tcp_get_usecs(NULL); 1512 time_since_ran = 0; 1513 /* Default is all one group */ 1514 start = 0; 1515 end = tcp_pace.rp_num_hptss; 1516 /* 1517 * If we have more than one L3 group figure out which one 1518 * this CPU is in. 1519 */ 1520 if (tcp_pace.grp_cnt > 1) { 1521 for (i = 0; i < tcp_pace.grp_cnt; i++) { 1522 if (CPU_ISSET(curcpu, &tcp_pace.grps[i]->cg_mask)) { 1523 start = tcp_pace.grps[i]->cg_first; 1524 end = (tcp_pace.grps[i]->cg_last + 1); 1525 break; 1526 } 1527 } 1528 } 1529 oldest_idx = -1; 1530 for (i = start; i < end; i++) { 1531 if (TSTMP_GT(cts, tcp_pace.cts_last_ran[i])) 1532 calc = cts - tcp_pace.cts_last_ran[i]; 1533 else 1534 calc = 0; 1535 if (calc > time_since_ran) { 1536 oldest_idx = i; 1537 time_since_ran = calc; 1538 } 1539 } 1540 if (oldest_idx >= 0) 1541 return(tcp_pace.rp_ent[oldest_idx]); 1542 else 1543 return(tcp_pace.rp_ent[(curcpu % tcp_pace.rp_num_hptss)]); 1544 } 1545 1546 static void 1547 __tcp_run_hpts(void) 1548 { 1549 struct epoch_tracker et; 1550 struct tcp_hpts_entry *hpts; 1551 int ticks_ran; 1552 1553 hpts = tcp_choose_hpts_to_run(); 1554 1555 if (hpts->p_hpts_active) { 1556 /* Already active */ 1557 return; 1558 } 1559 if (!HPTS_TRYLOCK(hpts)) { 1560 /* Someone else got the lock */ 1561 return; 1562 } 1563 NET_EPOCH_ENTER(et); 1564 if (hpts->p_hpts_active) 1565 goto out_with_mtx; 1566 hpts->syscall_cnt++; 1567 counter_u64_add(hpts_direct_call, 1); 1568 hpts->p_hpts_active = 1; 1569 ticks_ran = tcp_hptsi(hpts, false); 1570 /* We may want to adjust the sleep values here */ 1571 if (hpts->p_on_queue_cnt >= conn_cnt_thresh) { 1572 if (ticks_ran > ticks_indicate_less_sleep) { 1573 struct timeval tv; 1574 sbintime_t sb; 1575 1576 hpts->p_mysleep.tv_usec /= 2; 1577 if (hpts->p_mysleep.tv_usec < dynamic_min_sleep) 1578 hpts->p_mysleep.tv_usec = dynamic_min_sleep; 1579 /* Reschedule with new to value */ 1580 tcp_hpts_set_max_sleep(hpts, 0); 1581 tv.tv_sec = 0; 1582 tv.tv_usec = hpts->p_hpts_sleep_time * HPTS_TICKS_PER_SLOT; 1583 /* Validate its in the right ranges */ 1584 if (tv.tv_usec < hpts->p_mysleep.tv_usec) { 1585 hpts->overidden_sleep = tv.tv_usec; 1586 tv.tv_usec = hpts->p_mysleep.tv_usec; 1587 } else if (tv.tv_usec > dynamic_max_sleep) { 1588 /* Lets not let sleep get above this value */ 1589 hpts->overidden_sleep = tv.tv_usec; 1590 tv.tv_usec = dynamic_max_sleep; 1591 } 1592 /* 1593 * In this mode the timer is a backstop to 1594 * all the userret/lro_flushes so we use 1595 * the dynamic value and set the on_min_sleep 1596 * flag so we will not be awoken. 1597 */ 1598 sb = tvtosbt(tv); 1599 /* Store off to make visible the actual sleep time */ 1600 hpts->sleeping = tv.tv_usec; 1601 callout_reset_sbt_on(&hpts->co, sb, 0, 1602 hpts_timeout_swi, hpts, hpts->p_cpu, 1603 (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision))); 1604 } else if (ticks_ran < ticks_indicate_more_sleep) { 1605 /* For the further sleep, don't reschedule hpts */ 1606 hpts->p_mysleep.tv_usec *= 2; 1607 if (hpts->p_mysleep.tv_usec > dynamic_max_sleep) 1608 hpts->p_mysleep.tv_usec = dynamic_max_sleep; 1609 } 1610 hpts->p_on_min_sleep = 1; 1611 } 1612 hpts->p_hpts_active = 0; 1613 out_with_mtx: 1614 HPTS_UNLOCK(hpts); 1615 NET_EPOCH_EXIT(et); 1616 } 1617 1618 static void 1619 tcp_hpts_thread(void *ctx) 1620 { 1621 struct tcp_hpts_entry *hpts; 1622 struct epoch_tracker et; 1623 struct timeval tv; 1624 sbintime_t sb; 1625 int ticks_ran; 1626 1627 hpts = (struct tcp_hpts_entry *)ctx; 1628 HPTS_LOCK(hpts); 1629 if (hpts->p_direct_wake) { 1630 /* Signaled by input or output with low occupancy count. */ 1631 callout_stop(&hpts->co); 1632 counter_u64_add(hpts_direct_awakening, 1); 1633 } else { 1634 /* Timed out, the normal case. */ 1635 counter_u64_add(hpts_wake_timeout, 1); 1636 if (callout_pending(&hpts->co) || 1637 !callout_active(&hpts->co)) { 1638 HPTS_UNLOCK(hpts); 1639 return; 1640 } 1641 } 1642 callout_deactivate(&hpts->co); 1643 hpts->p_hpts_wake_scheduled = 0; 1644 NET_EPOCH_ENTER(et); 1645 if (hpts->p_hpts_active) { 1646 /* 1647 * We are active already. This means that a syscall 1648 * trap or LRO is running in behalf of hpts. In that case 1649 * we need to double our timeout since there seems to be 1650 * enough activity in the system that we don't need to 1651 * run as often (if we were not directly woken). 1652 */ 1653 tv.tv_sec = 0; 1654 if (hpts->p_direct_wake == 0) { 1655 counter_u64_add(hpts_back_tosleep, 1); 1656 if (hpts->p_on_queue_cnt >= conn_cnt_thresh) { 1657 hpts->p_mysleep.tv_usec *= 2; 1658 if (hpts->p_mysleep.tv_usec > dynamic_max_sleep) 1659 hpts->p_mysleep.tv_usec = dynamic_max_sleep; 1660 tv.tv_usec = hpts->p_mysleep.tv_usec; 1661 hpts->p_on_min_sleep = 1; 1662 } else { 1663 /* 1664 * Here we have low count on the wheel, but 1665 * somehow we still collided with one of the 1666 * connections. Lets go back to sleep for a 1667 * min sleep time, but clear the flag so we 1668 * can be awoken by insert. 1669 */ 1670 hpts->p_on_min_sleep = 0; 1671 tv.tv_usec = tcp_min_hptsi_time; 1672 } 1673 } else { 1674 /* 1675 * Directly woken most likely to reset the 1676 * callout time. 1677 */ 1678 tv.tv_usec = hpts->p_mysleep.tv_usec; 1679 } 1680 goto back_to_sleep; 1681 } 1682 hpts->sleeping = 0; 1683 hpts->p_hpts_active = 1; 1684 ticks_ran = tcp_hptsi(hpts, true); 1685 tv.tv_sec = 0; 1686 tv.tv_usec = hpts->p_hpts_sleep_time * HPTS_TICKS_PER_SLOT; 1687 if ((hpts->p_on_queue_cnt > conn_cnt_thresh) && (hpts->hit_callout_thresh == 0)) { 1688 hpts->hit_callout_thresh = 1; 1689 atomic_add_int(&hpts_that_need_softclock, 1); 1690 } else if ((hpts->p_on_queue_cnt <= conn_cnt_thresh) && (hpts->hit_callout_thresh == 1)) { 1691 hpts->hit_callout_thresh = 0; 1692 atomic_subtract_int(&hpts_that_need_softclock, 1); 1693 } 1694 if (hpts->p_on_queue_cnt >= conn_cnt_thresh) { 1695 if(hpts->p_direct_wake == 0) { 1696 /* 1697 * Only adjust sleep time if we were 1698 * called from the callout i.e. direct_wake == 0. 1699 */ 1700 if (ticks_ran < ticks_indicate_more_sleep) { 1701 hpts->p_mysleep.tv_usec *= 2; 1702 if (hpts->p_mysleep.tv_usec > dynamic_max_sleep) 1703 hpts->p_mysleep.tv_usec = dynamic_max_sleep; 1704 } else if (ticks_ran > ticks_indicate_less_sleep) { 1705 hpts->p_mysleep.tv_usec /= 2; 1706 if (hpts->p_mysleep.tv_usec < dynamic_min_sleep) 1707 hpts->p_mysleep.tv_usec = dynamic_min_sleep; 1708 } 1709 } 1710 if (tv.tv_usec < hpts->p_mysleep.tv_usec) { 1711 hpts->overidden_sleep = tv.tv_usec; 1712 tv.tv_usec = hpts->p_mysleep.tv_usec; 1713 } else if (tv.tv_usec > dynamic_max_sleep) { 1714 /* Lets not let sleep get above this value */ 1715 hpts->overidden_sleep = tv.tv_usec; 1716 tv.tv_usec = dynamic_max_sleep; 1717 } 1718 /* 1719 * In this mode the timer is a backstop to 1720 * all the userret/lro_flushes so we use 1721 * the dynamic value and set the on_min_sleep 1722 * flag so we will not be awoken. 1723 */ 1724 hpts->p_on_min_sleep = 1; 1725 } else if (hpts->p_on_queue_cnt == 0) { 1726 /* 1727 * No one on the wheel, please wake us up 1728 * if you insert on the wheel. 1729 */ 1730 hpts->p_on_min_sleep = 0; 1731 hpts->overidden_sleep = 0; 1732 } else { 1733 /* 1734 * We hit here when we have a low number of 1735 * clients on the wheel (our else clause). 1736 * We may need to go on min sleep, if we set 1737 * the flag we will not be awoken if someone 1738 * is inserted ahead of us. Clearing the flag 1739 * means we can be awoken. This is "old mode" 1740 * where the timer is what runs hpts mainly. 1741 */ 1742 if (tv.tv_usec < tcp_min_hptsi_time) { 1743 /* 1744 * Yes on min sleep, which means 1745 * we cannot be awoken. 1746 */ 1747 hpts->overidden_sleep = tv.tv_usec; 1748 tv.tv_usec = tcp_min_hptsi_time; 1749 hpts->p_on_min_sleep = 1; 1750 } else { 1751 /* Clear the min sleep flag */ 1752 hpts->overidden_sleep = 0; 1753 hpts->p_on_min_sleep = 0; 1754 } 1755 } 1756 HPTS_MTX_ASSERT(hpts); 1757 hpts->p_hpts_active = 0; 1758 back_to_sleep: 1759 hpts->p_direct_wake = 0; 1760 sb = tvtosbt(tv); 1761 /* Store off to make visible the actual sleep time */ 1762 hpts->sleeping = tv.tv_usec; 1763 callout_reset_sbt_on(&hpts->co, sb, 0, 1764 hpts_timeout_swi, hpts, hpts->p_cpu, 1765 (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision))); 1766 NET_EPOCH_EXIT(et); 1767 HPTS_UNLOCK(hpts); 1768 } 1769 1770 #undef timersub 1771 1772 static int32_t 1773 hpts_count_level(struct cpu_group *cg) 1774 { 1775 int32_t count_l3, i; 1776 1777 count_l3 = 0; 1778 if (cg->cg_level == CG_SHARE_L3) 1779 count_l3++; 1780 /* Walk all the children looking for L3 */ 1781 for (i = 0; i < cg->cg_children; i++) { 1782 count_l3 += hpts_count_level(&cg->cg_child[i]); 1783 } 1784 return (count_l3); 1785 } 1786 1787 static void 1788 hpts_gather_grps(struct cpu_group **grps, int32_t *at, int32_t max, struct cpu_group *cg) 1789 { 1790 int32_t idx, i; 1791 1792 idx = *at; 1793 if (cg->cg_level == CG_SHARE_L3) { 1794 grps[idx] = cg; 1795 idx++; 1796 if (idx == max) { 1797 *at = idx; 1798 return; 1799 } 1800 } 1801 *at = idx; 1802 /* Walk all the children looking for L3 */ 1803 for (i = 0; i < cg->cg_children; i++) { 1804 hpts_gather_grps(grps, at, max, &cg->cg_child[i]); 1805 } 1806 } 1807 1808 static void 1809 tcp_hpts_mod_load(void) 1810 { 1811 struct cpu_group *cpu_top; 1812 int32_t error __diagused; 1813 int32_t i, j, bound = 0, created = 0; 1814 size_t sz, asz; 1815 struct timeval tv; 1816 sbintime_t sb; 1817 struct tcp_hpts_entry *hpts; 1818 struct pcpu *pc; 1819 char unit[16]; 1820 uint32_t ncpus = mp_ncpus ? mp_ncpus : MAXCPU; 1821 int count, domain; 1822 1823 #ifdef SMP 1824 cpu_top = smp_topo(); 1825 #else 1826 cpu_top = NULL; 1827 #endif 1828 tcp_pace.rp_num_hptss = ncpus; 1829 hpts_hopelessly_behind = counter_u64_alloc(M_WAITOK); 1830 hpts_loops = counter_u64_alloc(M_WAITOK); 1831 back_tosleep = counter_u64_alloc(M_WAITOK); 1832 combined_wheel_wrap = counter_u64_alloc(M_WAITOK); 1833 wheel_wrap = counter_u64_alloc(M_WAITOK); 1834 hpts_wake_timeout = counter_u64_alloc(M_WAITOK); 1835 hpts_direct_awakening = counter_u64_alloc(M_WAITOK); 1836 hpts_back_tosleep = counter_u64_alloc(M_WAITOK); 1837 hpts_direct_call = counter_u64_alloc(M_WAITOK); 1838 cpu_uses_flowid = counter_u64_alloc(M_WAITOK); 1839 cpu_uses_random = counter_u64_alloc(M_WAITOK); 1840 1841 sz = (tcp_pace.rp_num_hptss * sizeof(struct tcp_hpts_entry *)); 1842 tcp_pace.rp_ent = malloc(sz, M_TCPHPTS, M_WAITOK | M_ZERO); 1843 sz = (sizeof(uint32_t) * tcp_pace.rp_num_hptss); 1844 tcp_pace.cts_last_ran = malloc(sz, M_TCPHPTS, M_WAITOK); 1845 tcp_pace.grp_cnt = 0; 1846 if (cpu_top == NULL) { 1847 tcp_pace.grp_cnt = 1; 1848 } else { 1849 /* Find out how many cache level 3 domains we have */ 1850 count = 0; 1851 tcp_pace.grp_cnt = hpts_count_level(cpu_top); 1852 if (tcp_pace.grp_cnt == 0) { 1853 tcp_pace.grp_cnt = 1; 1854 } 1855 sz = (tcp_pace.grp_cnt * sizeof(struct cpu_group *)); 1856 tcp_pace.grps = malloc(sz, M_TCPHPTS, M_WAITOK); 1857 /* Now populate the groups */ 1858 if (tcp_pace.grp_cnt == 1) { 1859 /* 1860 * All we need is the top level all cpu's are in 1861 * the same cache so when we use grp[0]->cg_mask 1862 * with the cg_first <-> cg_last it will include 1863 * all cpu's in it. The level here is probably 1864 * zero which is ok. 1865 */ 1866 tcp_pace.grps[0] = cpu_top; 1867 } else { 1868 /* 1869 * Here we must find all the level three cache domains 1870 * and setup our pointers to them. 1871 */ 1872 count = 0; 1873 hpts_gather_grps(tcp_pace.grps, &count, tcp_pace.grp_cnt, cpu_top); 1874 } 1875 } 1876 asz = sizeof(struct hptsh) * NUM_OF_HPTSI_SLOTS; 1877 for (i = 0; i < tcp_pace.rp_num_hptss; i++) { 1878 tcp_pace.rp_ent[i] = malloc(sizeof(struct tcp_hpts_entry), 1879 M_TCPHPTS, M_WAITOK | M_ZERO); 1880 tcp_pace.rp_ent[i]->p_hptss = malloc(asz, M_TCPHPTS, M_WAITOK); 1881 hpts = tcp_pace.rp_ent[i]; 1882 /* 1883 * Init all the hpts structures that are not specifically 1884 * zero'd by the allocations. Also lets attach them to the 1885 * appropriate sysctl block as well. 1886 */ 1887 mtx_init(&hpts->p_mtx, "tcp_hpts_lck", 1888 "hpts", MTX_DEF | MTX_DUPOK); 1889 for (j = 0; j < NUM_OF_HPTSI_SLOTS; j++) { 1890 TAILQ_INIT(&hpts->p_hptss[j].head); 1891 hpts->p_hptss[j].count = 0; 1892 hpts->p_hptss[j].gencnt = 0; 1893 } 1894 sysctl_ctx_init(&hpts->hpts_ctx); 1895 sprintf(unit, "%d", i); 1896 hpts->hpts_root = SYSCTL_ADD_NODE(&hpts->hpts_ctx, 1897 SYSCTL_STATIC_CHILDREN(_net_inet_tcp_hpts), 1898 OID_AUTO, 1899 unit, 1900 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 1901 ""); 1902 SYSCTL_ADD_INT(&hpts->hpts_ctx, 1903 SYSCTL_CHILDREN(hpts->hpts_root), 1904 OID_AUTO, "out_qcnt", CTLFLAG_RD, 1905 &hpts->p_on_queue_cnt, 0, 1906 "Count TCB's awaiting output processing"); 1907 SYSCTL_ADD_U16(&hpts->hpts_ctx, 1908 SYSCTL_CHILDREN(hpts->hpts_root), 1909 OID_AUTO, "active", CTLFLAG_RD, 1910 &hpts->p_hpts_active, 0, 1911 "Is the hpts active"); 1912 SYSCTL_ADD_UINT(&hpts->hpts_ctx, 1913 SYSCTL_CHILDREN(hpts->hpts_root), 1914 OID_AUTO, "curslot", CTLFLAG_RD, 1915 &hpts->p_cur_slot, 0, 1916 "What the current running pacers goal"); 1917 SYSCTL_ADD_UINT(&hpts->hpts_ctx, 1918 SYSCTL_CHILDREN(hpts->hpts_root), 1919 OID_AUTO, "runtick", CTLFLAG_RD, 1920 &hpts->p_runningslot, 0, 1921 "What the running pacers current slot is"); 1922 SYSCTL_ADD_UINT(&hpts->hpts_ctx, 1923 SYSCTL_CHILDREN(hpts->hpts_root), 1924 OID_AUTO, "curtick", CTLFLAG_RD, 1925 &hpts->p_curtick, 0, 1926 "What the running pacers last tick mapped to the wheel was"); 1927 SYSCTL_ADD_UINT(&hpts->hpts_ctx, 1928 SYSCTL_CHILDREN(hpts->hpts_root), 1929 OID_AUTO, "lastran", CTLFLAG_RD, 1930 &tcp_pace.cts_last_ran[i], 0, 1931 "The last usec tick that this hpts ran"); 1932 SYSCTL_ADD_LONG(&hpts->hpts_ctx, 1933 SYSCTL_CHILDREN(hpts->hpts_root), 1934 OID_AUTO, "cur_min_sleep", CTLFLAG_RD, 1935 &hpts->p_mysleep.tv_usec, 1936 "What the running pacers is using for p_mysleep.tv_usec"); 1937 SYSCTL_ADD_U64(&hpts->hpts_ctx, 1938 SYSCTL_CHILDREN(hpts->hpts_root), 1939 OID_AUTO, "now_sleeping", CTLFLAG_RD, 1940 &hpts->sleeping, 0, 1941 "What the running pacers is actually sleeping for"); 1942 SYSCTL_ADD_U64(&hpts->hpts_ctx, 1943 SYSCTL_CHILDREN(hpts->hpts_root), 1944 OID_AUTO, "syscall_cnt", CTLFLAG_RD, 1945 &hpts->syscall_cnt, 0, 1946 "How many times we had syscalls on this hpts"); 1947 1948 hpts->p_hpts_sleep_time = hpts_sleep_max; 1949 hpts->p_num = i; 1950 hpts->p_curtick = tcp_gethptstick(&tv); 1951 tcp_pace.cts_last_ran[i] = tcp_tv_to_usectick(&tv); 1952 hpts->p_prev_slot = hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick); 1953 hpts->p_cpu = 0xffff; 1954 hpts->p_nxt_slot = hpts_slot(hpts->p_cur_slot, 1); 1955 callout_init(&hpts->co, 1); 1956 } 1957 /* Don't try to bind to NUMA domains if we don't have any */ 1958 if (vm_ndomains == 1 && tcp_bind_threads == 2) 1959 tcp_bind_threads = 0; 1960 1961 /* 1962 * Now lets start ithreads to handle the hptss. 1963 */ 1964 for (i = 0; i < tcp_pace.rp_num_hptss; i++) { 1965 hpts = tcp_pace.rp_ent[i]; 1966 hpts->p_cpu = i; 1967 1968 error = swi_add(&hpts->ie, "hpts", 1969 tcp_hpts_thread, (void *)hpts, 1970 SWI_NET, INTR_MPSAFE, &hpts->ie_cookie); 1971 KASSERT(error == 0, 1972 ("Can't add hpts:%p i:%d err:%d", 1973 hpts, i, error)); 1974 created++; 1975 hpts->p_mysleep.tv_sec = 0; 1976 hpts->p_mysleep.tv_usec = tcp_min_hptsi_time; 1977 if (tcp_bind_threads == 1) { 1978 if (intr_event_bind(hpts->ie, i) == 0) 1979 bound++; 1980 } else if (tcp_bind_threads == 2) { 1981 /* Find the group for this CPU (i) and bind into it */ 1982 for (j = 0; j < tcp_pace.grp_cnt; j++) { 1983 if (CPU_ISSET(i, &tcp_pace.grps[j]->cg_mask)) { 1984 if (intr_event_bind_ithread_cpuset(hpts->ie, 1985 &tcp_pace.grps[j]->cg_mask) == 0) { 1986 bound++; 1987 pc = pcpu_find(i); 1988 domain = pc->pc_domain; 1989 count = hpts_domains[domain].count; 1990 hpts_domains[domain].cpu[count] = i; 1991 hpts_domains[domain].count++; 1992 break; 1993 } 1994 } 1995 } 1996 } 1997 tv.tv_sec = 0; 1998 tv.tv_usec = hpts->p_hpts_sleep_time * HPTS_TICKS_PER_SLOT; 1999 hpts->sleeping = tv.tv_usec; 2000 sb = tvtosbt(tv); 2001 callout_reset_sbt_on(&hpts->co, sb, 0, 2002 hpts_timeout_swi, hpts, hpts->p_cpu, 2003 (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision))); 2004 } 2005 /* 2006 * If we somehow have an empty domain, fall back to choosing 2007 * among all htps threads. 2008 */ 2009 for (i = 0; i < vm_ndomains; i++) { 2010 if (hpts_domains[i].count == 0) { 2011 tcp_bind_threads = 0; 2012 break; 2013 } 2014 } 2015 tcp_hpts_softclock = __tcp_run_hpts; 2016 tcp_lro_hpts_init(); 2017 printf("TCP Hpts created %d swi interrupt threads and bound %d to %s\n", 2018 created, bound, 2019 tcp_bind_threads == 2 ? "NUMA domains" : "cpus"); 2020 } 2021 2022 static void 2023 tcp_hpts_mod_unload(void) 2024 { 2025 int rv __diagused; 2026 2027 tcp_lro_hpts_uninit(); 2028 atomic_store_ptr(&tcp_hpts_softclock, NULL); 2029 2030 for (int i = 0; i < tcp_pace.rp_num_hptss; i++) { 2031 struct tcp_hpts_entry *hpts = tcp_pace.rp_ent[i]; 2032 2033 rv = callout_drain(&hpts->co); 2034 MPASS(rv != 0); 2035 2036 rv = swi_remove(hpts->ie_cookie); 2037 MPASS(rv == 0); 2038 2039 rv = sysctl_ctx_free(&hpts->hpts_ctx); 2040 MPASS(rv == 0); 2041 2042 mtx_destroy(&hpts->p_mtx); 2043 free(hpts->p_hptss, M_TCPHPTS); 2044 free(hpts, M_TCPHPTS); 2045 } 2046 2047 free(tcp_pace.rp_ent, M_TCPHPTS); 2048 free(tcp_pace.cts_last_ran, M_TCPHPTS); 2049 #ifdef SMP 2050 free(tcp_pace.grps, M_TCPHPTS); 2051 #endif 2052 2053 counter_u64_free(hpts_hopelessly_behind); 2054 counter_u64_free(hpts_loops); 2055 counter_u64_free(back_tosleep); 2056 counter_u64_free(combined_wheel_wrap); 2057 counter_u64_free(wheel_wrap); 2058 counter_u64_free(hpts_wake_timeout); 2059 counter_u64_free(hpts_direct_awakening); 2060 counter_u64_free(hpts_back_tosleep); 2061 counter_u64_free(hpts_direct_call); 2062 counter_u64_free(cpu_uses_flowid); 2063 counter_u64_free(cpu_uses_random); 2064 } 2065 2066 static int 2067 tcp_hpts_modevent(module_t mod, int what, void *arg) 2068 { 2069 2070 switch (what) { 2071 case MOD_LOAD: 2072 tcp_hpts_mod_load(); 2073 return (0); 2074 case MOD_QUIESCE: 2075 /* 2076 * Since we are a dependency of TCP stack modules, they should 2077 * already be unloaded, and the HPTS ring is empty. However, 2078 * function pointer manipulations aren't 100% safe. Although, 2079 * tcp_hpts_mod_unload() use atomic(9) the userret() doesn't. 2080 * Thus, allow only forced unload of HPTS. 2081 */ 2082 return (EBUSY); 2083 case MOD_UNLOAD: 2084 tcp_hpts_mod_unload(); 2085 return (0); 2086 default: 2087 return (EINVAL); 2088 }; 2089 } 2090 2091 static moduledata_t tcp_hpts_module = { 2092 .name = "tcphpts", 2093 .evhand = tcp_hpts_modevent, 2094 }; 2095 2096 DECLARE_MODULE(tcphpts, tcp_hpts_module, SI_SUB_SOFTINTR, SI_ORDER_ANY); 2097 MODULE_VERSION(tcphpts, 1); 2098