1 /*- 2 * Copyright (c) 2016-2018 Netflix, Inc. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 1. Redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer. 9 * 2. Redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution. 12 * 13 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 14 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 16 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 17 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 18 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 19 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 20 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 21 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 22 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 23 * SUCH DAMAGE. 24 * 25 */ 26 #include <sys/cdefs.h> 27 __FBSDID("$FreeBSD$"); 28 29 #include "opt_inet.h" 30 #include "opt_inet6.h" 31 #include "opt_tcpdebug.h" 32 /** 33 * Some notes about usage. 34 * 35 * The tcp_hpts system is designed to provide a high precision timer 36 * system for tcp. Its main purpose is to provide a mechanism for 37 * pacing packets out onto the wire. It can be used in two ways 38 * by a given TCP stack (and those two methods can be used simultaneously). 39 * 40 * First, and probably the main thing its used by Rack and BBR, it can 41 * be used to call tcp_output() of a transport stack at some time in the future. 42 * The normal way this is done is that tcp_output() of the stack schedules 43 * itself to be called again by calling tcp_hpts_insert(tcpcb, slot). The 44 * slot is the time from now that the stack wants to be called but it 45 * must be converted to tcp_hpts's notion of slot. This is done with 46 * one of the macros HPTS_MS_TO_SLOTS or HPTS_USEC_TO_SLOTS. So a typical 47 * call from the tcp_output() routine might look like: 48 * 49 * tcp_hpts_insert(tp, HPTS_USEC_TO_SLOTS(550)); 50 * 51 * The above would schedule tcp_ouput() to be called in 550 useconds. 52 * Note that if using this mechanism the stack will want to add near 53 * its top a check to prevent unwanted calls (from user land or the 54 * arrival of incoming ack's). So it would add something like: 55 * 56 * if (inp->inp_in_hpts) 57 * return; 58 * 59 * to prevent output processing until the time alotted has gone by. 60 * Of course this is a bare bones example and the stack will probably 61 * have more consideration then just the above. 62 * 63 * Now the second function (actually two functions I guess :D) 64 * the tcp_hpts system provides is the ability to either abort 65 * a connection (later) or process input on a connection. 66 * Why would you want to do this? To keep processor locality 67 * and or not have to worry about untangling any recursive 68 * locks. The input function now is hooked to the new LRO 69 * system as well. 70 * 71 * In order to use the input redirection function the 72 * tcp stack must define an input function for 73 * tfb_do_queued_segments(). This function understands 74 * how to dequeue a array of packets that were input and 75 * knows how to call the correct processing routine. 76 * 77 * Locking in this is important as well so most likely the 78 * stack will need to define the tfb_do_segment_nounlock() 79 * splitting tfb_do_segment() into two parts. The main processing 80 * part that does not unlock the INP and returns a value of 1 or 0. 81 * It returns 0 if all is well and the lock was not released. It 82 * returns 1 if we had to destroy the TCB (a reset received etc). 83 * The remains of tfb_do_segment() then become just a simple call 84 * to the tfb_do_segment_nounlock() function and check the return 85 * code and possibly unlock. 86 * 87 * The stack must also set the flag on the INP that it supports this 88 * feature i.e. INP_SUPPORTS_MBUFQ. The LRO code recoginizes 89 * this flag as well and will queue packets when it is set. 90 * There are other flags as well INP_MBUF_QUEUE_READY and 91 * INP_DONT_SACK_QUEUE. The first flag tells the LRO code 92 * that we are in the pacer for output so there is no 93 * need to wake up the hpts system to get immediate 94 * input. The second tells the LRO code that its okay 95 * if a SACK arrives you can still defer input and let 96 * the current hpts timer run (this is usually set when 97 * a rack timer is up so we know SACK's are happening 98 * on the connection already and don't want to wakeup yet). 99 * 100 * There is a common functions within the rack_bbr_common code 101 * version i.e. ctf_do_queued_segments(). This function 102 * knows how to take the input queue of packets from 103 * tp->t_in_pkts and process them digging out 104 * all the arguments, calling any bpf tap and 105 * calling into tfb_do_segment_nounlock(). The common 106 * function (ctf_do_queued_segments()) requires that 107 * you have defined the tfb_do_segment_nounlock() as 108 * described above. 109 * 110 * The second feature of the input side of hpts is the 111 * dropping of a connection. This is due to the way that 112 * locking may have occured on the INP_WLOCK. So if 113 * a stack wants to drop a connection it calls: 114 * 115 * tcp_set_inp_to_drop(tp, ETIMEDOUT) 116 * 117 * To schedule the tcp_hpts system to call 118 * 119 * tcp_drop(tp, drop_reason) 120 * 121 * at a future point. This is quite handy to prevent locking 122 * issues when dropping connections. 123 * 124 */ 125 126 #include <sys/param.h> 127 #include <sys/bus.h> 128 #include <sys/interrupt.h> 129 #include <sys/module.h> 130 #include <sys/kernel.h> 131 #include <sys/hhook.h> 132 #include <sys/malloc.h> 133 #include <sys/mbuf.h> 134 #include <sys/proc.h> /* for proc0 declaration */ 135 #include <sys/socket.h> 136 #include <sys/socketvar.h> 137 #include <sys/sysctl.h> 138 #include <sys/systm.h> 139 #include <sys/refcount.h> 140 #include <sys/sched.h> 141 #include <sys/queue.h> 142 #include <sys/smp.h> 143 #include <sys/counter.h> 144 #include <sys/time.h> 145 #include <sys/kthread.h> 146 #include <sys/kern_prefetch.h> 147 148 #include <vm/uma.h> 149 #include <vm/vm.h> 150 151 #include <net/route.h> 152 #include <net/vnet.h> 153 154 #define TCPSTATES /* for logging */ 155 156 #include <netinet/in.h> 157 #include <netinet/in_kdtrace.h> 158 #include <netinet/in_pcb.h> 159 #include <netinet/ip.h> 160 #include <netinet/ip_icmp.h> /* required for icmp_var.h */ 161 #include <netinet/icmp_var.h> /* for ICMP_BANDLIM */ 162 #include <netinet/ip_var.h> 163 #include <netinet/ip6.h> 164 #include <netinet6/in6_pcb.h> 165 #include <netinet6/ip6_var.h> 166 #include <netinet/tcp.h> 167 #include <netinet/tcp_fsm.h> 168 #include <netinet/tcp_seq.h> 169 #include <netinet/tcp_timer.h> 170 #include <netinet/tcp_var.h> 171 #include <netinet/tcpip.h> 172 #include <netinet/cc/cc.h> 173 #include <netinet/tcp_hpts.h> 174 #include <netinet/tcp_log_buf.h> 175 176 #ifdef tcpdebug 177 #include <netinet/tcp_debug.h> 178 #endif /* tcpdebug */ 179 #ifdef tcp_offload 180 #include <netinet/tcp_offload.h> 181 #endif 182 183 #include "opt_rss.h" 184 185 MALLOC_DEFINE(M_TCPHPTS, "tcp_hpts", "TCP hpts"); 186 #ifdef RSS 187 static int tcp_bind_threads = 1; 188 #else 189 static int tcp_bind_threads = 2; 190 #endif 191 TUNABLE_INT("net.inet.tcp.bind_hptss", &tcp_bind_threads); 192 193 static struct tcp_hptsi tcp_pace; 194 static int hpts_does_tp_logging = 0; 195 196 static void tcp_wakehpts(struct tcp_hpts_entry *p); 197 static void tcp_wakeinput(struct tcp_hpts_entry *p); 198 static void tcp_input_data(struct tcp_hpts_entry *hpts, struct timeval *tv); 199 static void tcp_hptsi(struct tcp_hpts_entry *hpts); 200 static void tcp_hpts_thread(void *ctx); 201 static void tcp_init_hptsi(void *st); 202 203 int32_t tcp_min_hptsi_time = DEFAULT_MIN_SLEEP; 204 static int32_t tcp_hpts_callout_skip_swi = 0; 205 206 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, hpts, CTLFLAG_RW, 0, "TCP Hpts controls"); 207 208 #define timersub(tvp, uvp, vvp) \ 209 do { \ 210 (vvp)->tv_sec = (tvp)->tv_sec - (uvp)->tv_sec; \ 211 (vvp)->tv_usec = (tvp)->tv_usec - (uvp)->tv_usec; \ 212 if ((vvp)->tv_usec < 0) { \ 213 (vvp)->tv_sec--; \ 214 (vvp)->tv_usec += 1000000; \ 215 } \ 216 } while (0) 217 218 static int32_t tcp_hpts_precision = 120; 219 220 struct hpts_domain_info { 221 int count; 222 int cpu[MAXCPU]; 223 }; 224 225 struct hpts_domain_info hpts_domains[MAXMEMDOM]; 226 227 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, precision, CTLFLAG_RW, 228 &tcp_hpts_precision, 120, 229 "Value for PRE() precision of callout"); 230 231 counter_u64_t hpts_hopelessly_behind; 232 233 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts, OID_AUTO, hopeless, CTLFLAG_RD, 234 &hpts_hopelessly_behind, 235 "Number of times hpts could not catch up and was behind hopelessly"); 236 237 counter_u64_t hpts_loops; 238 239 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts, OID_AUTO, loops, CTLFLAG_RD, 240 &hpts_loops, "Number of times hpts had to loop to catch up"); 241 242 243 counter_u64_t back_tosleep; 244 245 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts, OID_AUTO, no_tcbsfound, CTLFLAG_RD, 246 &back_tosleep, "Number of times hpts found no tcbs"); 247 248 counter_u64_t combined_wheel_wrap; 249 250 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts, OID_AUTO, comb_wheel_wrap, CTLFLAG_RD, 251 &combined_wheel_wrap, "Number of times the wheel lagged enough to have an insert see wrap"); 252 253 counter_u64_t wheel_wrap; 254 255 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts, OID_AUTO, wheel_wrap, CTLFLAG_RD, 256 &wheel_wrap, "Number of times the wheel lagged enough to have an insert see wrap"); 257 258 static int32_t out_ts_percision = 0; 259 260 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, out_tspercision, CTLFLAG_RW, 261 &out_ts_percision, 0, 262 "Do we use a percise timestamp for every output cts"); 263 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, logging, CTLFLAG_RW, 264 &hpts_does_tp_logging, 0, 265 "Do we add to any tp that has logging on pacer logs"); 266 267 static int32_t max_pacer_loops = 10; 268 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, loopmax, CTLFLAG_RW, 269 &max_pacer_loops, 10, 270 "What is the maximum number of times the pacer will loop trying to catch up"); 271 272 #define HPTS_MAX_SLEEP_ALLOWED (NUM_OF_HPTSI_SLOTS/2) 273 274 static uint32_t hpts_sleep_max = HPTS_MAX_SLEEP_ALLOWED; 275 276 277 static int 278 sysctl_net_inet_tcp_hpts_max_sleep(SYSCTL_HANDLER_ARGS) 279 { 280 int error; 281 uint32_t new; 282 283 new = hpts_sleep_max; 284 error = sysctl_handle_int(oidp, &new, 0, req); 285 if (error == 0 && req->newptr) { 286 if ((new < (NUM_OF_HPTSI_SLOTS / 4)) || 287 (new > HPTS_MAX_SLEEP_ALLOWED)) 288 error = EINVAL; 289 else 290 hpts_sleep_max = new; 291 } 292 return (error); 293 } 294 295 SYSCTL_PROC(_net_inet_tcp_hpts, OID_AUTO, maxsleep, 296 CTLTYPE_UINT | CTLFLAG_RW, 297 &hpts_sleep_max, 0, 298 &sysctl_net_inet_tcp_hpts_max_sleep, "IU", 299 "Maximum time hpts will sleep"); 300 301 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, minsleep, CTLFLAG_RW, 302 &tcp_min_hptsi_time, 0, 303 "The minimum time the hpts must sleep before processing more slots"); 304 305 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, skip_swi, CTLFLAG_RW, 306 &tcp_hpts_callout_skip_swi, 0, 307 "Do we have the callout call directly to the hpts?"); 308 309 static void 310 tcp_hpts_log(struct tcp_hpts_entry *hpts, struct tcpcb *tp, struct timeval *tv, 311 int ticks_to_run, int idx) 312 { 313 union tcp_log_stackspecific log; 314 315 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 316 log.u_bbr.flex1 = hpts->p_nxt_slot; 317 log.u_bbr.flex2 = hpts->p_cur_slot; 318 log.u_bbr.flex3 = hpts->p_prev_slot; 319 log.u_bbr.flex4 = idx; 320 log.u_bbr.flex5 = hpts->p_curtick; 321 log.u_bbr.flex6 = hpts->p_on_queue_cnt; 322 log.u_bbr.use_lt_bw = 1; 323 log.u_bbr.inflight = ticks_to_run; 324 log.u_bbr.applimited = hpts->overidden_sleep; 325 log.u_bbr.delivered = hpts->saved_curtick; 326 log.u_bbr.timeStamp = tcp_tv_to_usectick(tv); 327 log.u_bbr.epoch = hpts->saved_curslot; 328 log.u_bbr.lt_epoch = hpts->saved_prev_slot; 329 log.u_bbr.pkts_out = hpts->p_delayed_by; 330 log.u_bbr.lost = hpts->p_hpts_sleep_time; 331 log.u_bbr.cur_del_rate = hpts->p_runningtick; 332 TCP_LOG_EVENTP(tp, NULL, 333 &tp->t_inpcb->inp_socket->so_rcv, 334 &tp->t_inpcb->inp_socket->so_snd, 335 BBR_LOG_HPTSDIAG, 0, 336 0, &log, false, tv); 337 } 338 339 static void 340 hpts_timeout_swi(void *arg) 341 { 342 struct tcp_hpts_entry *hpts; 343 344 hpts = (struct tcp_hpts_entry *)arg; 345 swi_sched(hpts->ie_cookie, 0); 346 } 347 348 static void 349 hpts_timeout_dir(void *arg) 350 { 351 tcp_hpts_thread(arg); 352 } 353 354 static inline void 355 hpts_sane_pace_remove(struct tcp_hpts_entry *hpts, struct inpcb *inp, struct hptsh *head, int clear) 356 { 357 #ifdef INVARIANTS 358 if (mtx_owned(&hpts->p_mtx) == 0) { 359 /* We don't own the mutex? */ 360 panic("%s: hpts:%p inp:%p no hpts mutex", __FUNCTION__, hpts, inp); 361 } 362 if (hpts->p_cpu != inp->inp_hpts_cpu) { 363 /* It is not the right cpu/mutex? */ 364 panic("%s: hpts:%p inp:%p incorrect CPU", __FUNCTION__, hpts, inp); 365 } 366 if (inp->inp_in_hpts == 0) { 367 /* We are not on the hpts? */ 368 panic("%s: hpts:%p inp:%p not on the hpts?", __FUNCTION__, hpts, inp); 369 } 370 #endif 371 TAILQ_REMOVE(head, inp, inp_hpts); 372 hpts->p_on_queue_cnt--; 373 if (hpts->p_on_queue_cnt < 0) { 374 /* Count should not go negative .. */ 375 #ifdef INVARIANTS 376 panic("Hpts goes negative inp:%p hpts:%p", 377 inp, hpts); 378 #endif 379 hpts->p_on_queue_cnt = 0; 380 } 381 if (clear) { 382 inp->inp_hpts_request = 0; 383 inp->inp_in_hpts = 0; 384 } 385 } 386 387 static inline void 388 hpts_sane_pace_insert(struct tcp_hpts_entry *hpts, struct inpcb *inp, struct hptsh *head, int line, int noref) 389 { 390 #ifdef INVARIANTS 391 if (mtx_owned(&hpts->p_mtx) == 0) { 392 /* We don't own the mutex? */ 393 panic("%s: hpts:%p inp:%p no hpts mutex", __FUNCTION__, hpts, inp); 394 } 395 if (hpts->p_cpu != inp->inp_hpts_cpu) { 396 /* It is not the right cpu/mutex? */ 397 panic("%s: hpts:%p inp:%p incorrect CPU", __FUNCTION__, hpts, inp); 398 } 399 if ((noref == 0) && (inp->inp_in_hpts == 1)) { 400 /* We are already on the hpts? */ 401 panic("%s: hpts:%p inp:%p already on the hpts?", __FUNCTION__, hpts, inp); 402 } 403 #endif 404 TAILQ_INSERT_TAIL(head, inp, inp_hpts); 405 inp->inp_in_hpts = 1; 406 hpts->p_on_queue_cnt++; 407 if (noref == 0) { 408 in_pcbref(inp); 409 } 410 } 411 412 static inline void 413 hpts_sane_input_remove(struct tcp_hpts_entry *hpts, struct inpcb *inp, int clear) 414 { 415 #ifdef INVARIANTS 416 if (mtx_owned(&hpts->p_mtx) == 0) { 417 /* We don't own the mutex? */ 418 panic("%s: hpts:%p inp:%p no hpts mutex", __FUNCTION__, hpts, inp); 419 } 420 if (hpts->p_cpu != inp->inp_input_cpu) { 421 /* It is not the right cpu/mutex? */ 422 panic("%s: hpts:%p inp:%p incorrect CPU", __FUNCTION__, hpts, inp); 423 } 424 if (inp->inp_in_input == 0) { 425 /* We are not on the input hpts? */ 426 panic("%s: hpts:%p inp:%p not on the input hpts?", __FUNCTION__, hpts, inp); 427 } 428 #endif 429 TAILQ_REMOVE(&hpts->p_input, inp, inp_input); 430 hpts->p_on_inqueue_cnt--; 431 if (hpts->p_on_inqueue_cnt < 0) { 432 #ifdef INVARIANTS 433 panic("Hpts in goes negative inp:%p hpts:%p", 434 inp, hpts); 435 #endif 436 hpts->p_on_inqueue_cnt = 0; 437 } 438 #ifdef INVARIANTS 439 if (TAILQ_EMPTY(&hpts->p_input) && 440 (hpts->p_on_inqueue_cnt != 0)) { 441 /* We should not be empty with a queue count */ 442 panic("%s hpts:%p in_hpts input empty but cnt:%d", 443 __FUNCTION__, hpts, hpts->p_on_inqueue_cnt); 444 } 445 #endif 446 if (clear) 447 inp->inp_in_input = 0; 448 } 449 450 static inline void 451 hpts_sane_input_insert(struct tcp_hpts_entry *hpts, struct inpcb *inp, int line) 452 { 453 #ifdef INVARIANTS 454 if (mtx_owned(&hpts->p_mtx) == 0) { 455 /* We don't own the mutex? */ 456 panic("%s: hpts:%p inp:%p no hpts mutex", __FUNCTION__, hpts, inp); 457 } 458 if (hpts->p_cpu != inp->inp_input_cpu) { 459 /* It is not the right cpu/mutex? */ 460 panic("%s: hpts:%p inp:%p incorrect CPU", __FUNCTION__, hpts, inp); 461 } 462 if (inp->inp_in_input == 1) { 463 /* We are already on the input hpts? */ 464 panic("%s: hpts:%p inp:%p already on the input hpts?", __FUNCTION__, hpts, inp); 465 } 466 #endif 467 TAILQ_INSERT_TAIL(&hpts->p_input, inp, inp_input); 468 inp->inp_in_input = 1; 469 hpts->p_on_inqueue_cnt++; 470 in_pcbref(inp); 471 } 472 473 static void 474 tcp_wakehpts(struct tcp_hpts_entry *hpts) 475 { 476 HPTS_MTX_ASSERT(hpts); 477 if (hpts->p_hpts_wake_scheduled == 0) { 478 hpts->p_hpts_wake_scheduled = 1; 479 swi_sched(hpts->ie_cookie, 0); 480 } 481 } 482 483 static void 484 tcp_wakeinput(struct tcp_hpts_entry *hpts) 485 { 486 HPTS_MTX_ASSERT(hpts); 487 if (hpts->p_hpts_wake_scheduled == 0) { 488 hpts->p_hpts_wake_scheduled = 1; 489 swi_sched(hpts->ie_cookie, 0); 490 } 491 } 492 493 struct tcp_hpts_entry * 494 tcp_cur_hpts(struct inpcb *inp) 495 { 496 int32_t hpts_num; 497 struct tcp_hpts_entry *hpts; 498 499 hpts_num = inp->inp_hpts_cpu; 500 hpts = tcp_pace.rp_ent[hpts_num]; 501 return (hpts); 502 } 503 504 struct tcp_hpts_entry * 505 tcp_hpts_lock(struct inpcb *inp) 506 { 507 struct tcp_hpts_entry *hpts; 508 int32_t hpts_num; 509 510 again: 511 hpts_num = inp->inp_hpts_cpu; 512 hpts = tcp_pace.rp_ent[hpts_num]; 513 #ifdef INVARIANTS 514 if (mtx_owned(&hpts->p_mtx)) { 515 panic("Hpts:%p owns mtx prior-to lock line:%d", 516 hpts, __LINE__); 517 } 518 #endif 519 mtx_lock(&hpts->p_mtx); 520 if (hpts_num != inp->inp_hpts_cpu) { 521 mtx_unlock(&hpts->p_mtx); 522 goto again; 523 } 524 return (hpts); 525 } 526 527 struct tcp_hpts_entry * 528 tcp_input_lock(struct inpcb *inp) 529 { 530 struct tcp_hpts_entry *hpts; 531 int32_t hpts_num; 532 533 again: 534 hpts_num = inp->inp_input_cpu; 535 hpts = tcp_pace.rp_ent[hpts_num]; 536 #ifdef INVARIANTS 537 if (mtx_owned(&hpts->p_mtx)) { 538 panic("Hpts:%p owns mtx prior-to lock line:%d", 539 hpts, __LINE__); 540 } 541 #endif 542 mtx_lock(&hpts->p_mtx); 543 if (hpts_num != inp->inp_input_cpu) { 544 mtx_unlock(&hpts->p_mtx); 545 goto again; 546 } 547 return (hpts); 548 } 549 550 static void 551 tcp_remove_hpts_ref(struct inpcb *inp, struct tcp_hpts_entry *hpts, int line) 552 { 553 int32_t add_freed; 554 555 if (inp->inp_flags2 & INP_FREED) { 556 /* 557 * Need to play a special trick so that in_pcbrele_wlocked 558 * does not return 1 when it really should have returned 0. 559 */ 560 add_freed = 1; 561 inp->inp_flags2 &= ~INP_FREED; 562 } else { 563 add_freed = 0; 564 } 565 #ifndef INP_REF_DEBUG 566 if (in_pcbrele_wlocked(inp)) { 567 /* 568 * This should not happen. We have the inpcb referred to by 569 * the main socket (why we are called) and the hpts. It 570 * should always return 0. 571 */ 572 panic("inpcb:%p release ret 1", 573 inp); 574 } 575 #else 576 if (__in_pcbrele_wlocked(inp, line)) { 577 /* 578 * This should not happen. We have the inpcb referred to by 579 * the main socket (why we are called) and the hpts. It 580 * should always return 0. 581 */ 582 panic("inpcb:%p release ret 1", 583 inp); 584 } 585 #endif 586 if (add_freed) { 587 inp->inp_flags2 |= INP_FREED; 588 } 589 } 590 591 static void 592 tcp_hpts_remove_locked_output(struct tcp_hpts_entry *hpts, struct inpcb *inp, int32_t flags, int32_t line) 593 { 594 if (inp->inp_in_hpts) { 595 hpts_sane_pace_remove(hpts, inp, &hpts->p_hptss[inp->inp_hptsslot], 1); 596 tcp_remove_hpts_ref(inp, hpts, line); 597 } 598 } 599 600 static void 601 tcp_hpts_remove_locked_input(struct tcp_hpts_entry *hpts, struct inpcb *inp, int32_t flags, int32_t line) 602 { 603 HPTS_MTX_ASSERT(hpts); 604 if (inp->inp_in_input) { 605 hpts_sane_input_remove(hpts, inp, 1); 606 tcp_remove_hpts_ref(inp, hpts, line); 607 } 608 } 609 610 /* 611 * Called normally with the INP_LOCKED but it 612 * does not matter, the hpts lock is the key 613 * but the lock order allows us to hold the 614 * INP lock and then get the hpts lock. 615 * 616 * Valid values in the flags are 617 * HPTS_REMOVE_OUTPUT - remove from the output of the hpts. 618 * HPTS_REMOVE_INPUT - remove from the input of the hpts. 619 * Note that you can use one or both values together 620 * and get two actions. 621 */ 622 void 623 __tcp_hpts_remove(struct inpcb *inp, int32_t flags, int32_t line) 624 { 625 struct tcp_hpts_entry *hpts; 626 627 INP_WLOCK_ASSERT(inp); 628 if (flags & HPTS_REMOVE_OUTPUT) { 629 hpts = tcp_hpts_lock(inp); 630 tcp_hpts_remove_locked_output(hpts, inp, flags, line); 631 mtx_unlock(&hpts->p_mtx); 632 } 633 if (flags & HPTS_REMOVE_INPUT) { 634 hpts = tcp_input_lock(inp); 635 tcp_hpts_remove_locked_input(hpts, inp, flags, line); 636 mtx_unlock(&hpts->p_mtx); 637 } 638 } 639 640 static inline int 641 hpts_tick(uint32_t wheel_tick, uint32_t plus) 642 { 643 /* 644 * Given a slot on the wheel, what slot 645 * is that plus ticks out? 646 */ 647 KASSERT(wheel_tick < NUM_OF_HPTSI_SLOTS, ("Invalid tick %u not on wheel", wheel_tick)); 648 return ((wheel_tick + plus) % NUM_OF_HPTSI_SLOTS); 649 } 650 651 static inline int 652 tick_to_wheel(uint32_t cts_in_wticks) 653 { 654 /* 655 * Given a timestamp in wheel ticks (10usec inc's) 656 * map it to our limited space wheel. 657 */ 658 return (cts_in_wticks % NUM_OF_HPTSI_SLOTS); 659 } 660 661 static inline int 662 hpts_ticks_diff(int prev_tick, int tick_now) 663 { 664 /* 665 * Given two ticks that are someplace 666 * on our wheel. How far are they apart? 667 */ 668 if (tick_now > prev_tick) 669 return (tick_now - prev_tick); 670 else if (tick_now == prev_tick) 671 /* 672 * Special case, same means we can go all of our 673 * wheel less one slot. 674 */ 675 return (NUM_OF_HPTSI_SLOTS - 1); 676 else 677 return ((NUM_OF_HPTSI_SLOTS - prev_tick) + tick_now); 678 } 679 680 /* 681 * Given a tick on the wheel that is the current time 682 * mapped to the wheel (wheel_tick), what is the maximum 683 * distance forward that can be obtained without 684 * wrapping past either prev_tick or running_tick 685 * depending on the htps state? Also if passed 686 * a uint32_t *, fill it with the tick location. 687 * 688 * Note if you do not give this function the current 689 * time (that you think it is) mapped to the wheel 690 * then the results will not be what you expect and 691 * could lead to invalid inserts. 692 */ 693 static inline int32_t 694 max_ticks_available(struct tcp_hpts_entry *hpts, uint32_t wheel_tick, uint32_t *target_tick) 695 { 696 uint32_t dis_to_travel, end_tick, pacer_to_now, avail_on_wheel; 697 698 if ((hpts->p_hpts_active == 1) && 699 (hpts->p_wheel_complete == 0)) { 700 end_tick = hpts->p_runningtick; 701 /* Back up one tick */ 702 if (end_tick == 0) 703 end_tick = NUM_OF_HPTSI_SLOTS - 1; 704 else 705 end_tick--; 706 if (target_tick) 707 *target_tick = end_tick; 708 } else { 709 /* 710 * For the case where we are 711 * not active, or we have 712 * completed the pass over 713 * the wheel, we can use the 714 * prev tick and subtract one from it. This puts us 715 * as far out as possible on the wheel. 716 */ 717 end_tick = hpts->p_prev_slot; 718 if (end_tick == 0) 719 end_tick = NUM_OF_HPTSI_SLOTS - 1; 720 else 721 end_tick--; 722 if (target_tick) 723 *target_tick = end_tick; 724 /* 725 * Now we have close to the full wheel left minus the 726 * time it has been since the pacer went to sleep. Note 727 * that wheel_tick, passed in, should be the current time 728 * from the perspective of the caller, mapped to the wheel. 729 */ 730 if (hpts->p_prev_slot != wheel_tick) 731 dis_to_travel = hpts_ticks_diff(hpts->p_prev_slot, wheel_tick); 732 else 733 dis_to_travel = 1; 734 /* 735 * dis_to_travel in this case is the space from when the 736 * pacer stopped (p_prev_slot) and where our wheel_tick 737 * is now. To know how many slots we can put it in we 738 * subtract from the wheel size. We would not want 739 * to place something after p_prev_slot or it will 740 * get ran too soon. 741 */ 742 return (NUM_OF_HPTSI_SLOTS - dis_to_travel); 743 } 744 /* 745 * So how many slots are open between p_runningtick -> p_cur_slot 746 * that is what is currently un-available for insertion. Special 747 * case when we are at the last slot, this gets 1, so that 748 * the answer to how many slots are available is all but 1. 749 */ 750 if (hpts->p_runningtick == hpts->p_cur_slot) 751 dis_to_travel = 1; 752 else 753 dis_to_travel = hpts_ticks_diff(hpts->p_runningtick, hpts->p_cur_slot); 754 /* 755 * How long has the pacer been running? 756 */ 757 if (hpts->p_cur_slot != wheel_tick) { 758 /* The pacer is a bit late */ 759 pacer_to_now = hpts_ticks_diff(hpts->p_cur_slot, wheel_tick); 760 } else { 761 /* The pacer is right on time, now == pacers start time */ 762 pacer_to_now = 0; 763 } 764 /* 765 * To get the number left we can insert into we simply 766 * subract the distance the pacer has to run from how 767 * many slots there are. 768 */ 769 avail_on_wheel = NUM_OF_HPTSI_SLOTS - dis_to_travel; 770 /* 771 * Now how many of those we will eat due to the pacer's 772 * time (p_cur_slot) of start being behind the 773 * real time (wheel_tick)? 774 */ 775 if (avail_on_wheel <= pacer_to_now) { 776 /* 777 * Wheel wrap, we can't fit on the wheel, that 778 * is unusual the system must be way overloaded! 779 * Insert into the assured tick, and return special 780 * "0". 781 */ 782 counter_u64_add(combined_wheel_wrap, 1); 783 *target_tick = hpts->p_nxt_slot; 784 return (0); 785 } else { 786 /* 787 * We know how many slots are open 788 * on the wheel (the reverse of what 789 * is left to run. Take away the time 790 * the pacer started to now (wheel_tick) 791 * and that tells you how many slots are 792 * open that can be inserted into that won't 793 * be touched by the pacer until later. 794 */ 795 return (avail_on_wheel - pacer_to_now); 796 } 797 } 798 799 static int 800 tcp_queue_to_hpts_immediate_locked(struct inpcb *inp, struct tcp_hpts_entry *hpts, int32_t line, int32_t noref) 801 { 802 uint32_t need_wake = 0; 803 804 HPTS_MTX_ASSERT(hpts); 805 if (inp->inp_in_hpts == 0) { 806 /* Ok we need to set it on the hpts in the current slot */ 807 inp->inp_hpts_request = 0; 808 if ((hpts->p_hpts_active == 0) || 809 (hpts->p_wheel_complete)) { 810 /* 811 * A sleeping hpts we want in next slot to run 812 * note that in this state p_prev_slot == p_cur_slot 813 */ 814 inp->inp_hptsslot = hpts_tick(hpts->p_prev_slot, 1); 815 if ((hpts->p_on_min_sleep == 0) && (hpts->p_hpts_active == 0)) 816 need_wake = 1; 817 } else if ((void *)inp == hpts->p_inp) { 818 /* 819 * The hpts system is running and the caller 820 * was awoken by the hpts system. 821 * We can't allow you to go into the same slot we 822 * are in (we don't want a loop :-D). 823 */ 824 inp->inp_hptsslot = hpts->p_nxt_slot; 825 } else 826 inp->inp_hptsslot = hpts->p_runningtick; 827 hpts_sane_pace_insert(hpts, inp, &hpts->p_hptss[inp->inp_hptsslot], line, noref); 828 if (need_wake) { 829 /* 830 * Activate the hpts if it is sleeping and its 831 * timeout is not 1. 832 */ 833 hpts->p_direct_wake = 1; 834 tcp_wakehpts(hpts); 835 } 836 } 837 return (need_wake); 838 } 839 840 int 841 __tcp_queue_to_hpts_immediate(struct inpcb *inp, int32_t line) 842 { 843 int32_t ret; 844 struct tcp_hpts_entry *hpts; 845 846 INP_WLOCK_ASSERT(inp); 847 hpts = tcp_hpts_lock(inp); 848 ret = tcp_queue_to_hpts_immediate_locked(inp, hpts, line, 0); 849 mtx_unlock(&hpts->p_mtx); 850 return (ret); 851 } 852 853 #ifdef INVARIANTS 854 static void 855 check_if_slot_would_be_wrong(struct tcp_hpts_entry *hpts, struct inpcb *inp, uint32_t inp_hptsslot, int line) 856 { 857 /* 858 * Sanity checks for the pacer with invariants 859 * on insert. 860 */ 861 if (inp_hptsslot >= NUM_OF_HPTSI_SLOTS) 862 panic("hpts:%p inp:%p slot:%d > max", 863 hpts, inp, inp_hptsslot); 864 if ((hpts->p_hpts_active) && 865 (hpts->p_wheel_complete == 0)) { 866 /* 867 * If the pacer is processing a arc 868 * of the wheel, we need to make 869 * sure we are not inserting within 870 * that arc. 871 */ 872 int distance, yet_to_run; 873 874 distance = hpts_ticks_diff(hpts->p_runningtick, inp_hptsslot); 875 if (hpts->p_runningtick != hpts->p_cur_slot) 876 yet_to_run = hpts_ticks_diff(hpts->p_runningtick, hpts->p_cur_slot); 877 else 878 yet_to_run = 0; /* processing last slot */ 879 if (yet_to_run > distance) { 880 panic("hpts:%p inp:%p slot:%d distance:%d yet_to_run:%d rs:%d cs:%d", 881 hpts, inp, inp_hptsslot, 882 distance, yet_to_run, 883 hpts->p_runningtick, hpts->p_cur_slot); 884 } 885 } 886 } 887 #endif 888 889 static void 890 tcp_hpts_insert_locked(struct tcp_hpts_entry *hpts, struct inpcb *inp, uint32_t slot, int32_t line, 891 struct hpts_diag *diag, struct timeval *tv) 892 { 893 uint32_t need_new_to = 0; 894 uint32_t wheel_cts, last_tick; 895 int32_t wheel_tick, maxticks; 896 int8_t need_wakeup = 0; 897 898 HPTS_MTX_ASSERT(hpts); 899 if (diag) { 900 memset(diag, 0, sizeof(struct hpts_diag)); 901 diag->p_hpts_active = hpts->p_hpts_active; 902 diag->p_prev_slot = hpts->p_prev_slot; 903 diag->p_runningtick = hpts->p_runningtick; 904 diag->p_nxt_slot = hpts->p_nxt_slot; 905 diag->p_cur_slot = hpts->p_cur_slot; 906 diag->p_curtick = hpts->p_curtick; 907 diag->p_lasttick = hpts->p_lasttick; 908 diag->slot_req = slot; 909 diag->p_on_min_sleep = hpts->p_on_min_sleep; 910 diag->hpts_sleep_time = hpts->p_hpts_sleep_time; 911 } 912 if (inp->inp_in_hpts == 0) { 913 if (slot == 0) { 914 /* Immediate */ 915 tcp_queue_to_hpts_immediate_locked(inp, hpts, line, 0); 916 return; 917 } 918 /* Get the current time relative to the wheel */ 919 wheel_cts = tcp_tv_to_hptstick(tv); 920 /* Map it onto the wheel */ 921 wheel_tick = tick_to_wheel(wheel_cts); 922 /* Now what's the max we can place it at? */ 923 maxticks = max_ticks_available(hpts, wheel_tick, &last_tick); 924 if (diag) { 925 diag->wheel_tick = wheel_tick; 926 diag->maxticks = maxticks; 927 diag->wheel_cts = wheel_cts; 928 } 929 if (maxticks == 0) { 930 /* The pacer is in a wheel wrap behind, yikes! */ 931 if (slot > 1) { 932 /* 933 * Reduce by 1 to prevent a forever loop in 934 * case something else is wrong. Note this 935 * probably does not hurt because the pacer 936 * if its true is so far behind we will be 937 * > 1second late calling anyway. 938 */ 939 slot--; 940 } 941 inp->inp_hptsslot = last_tick; 942 inp->inp_hpts_request = slot; 943 } else if (maxticks >= slot) { 944 /* It all fits on the wheel */ 945 inp->inp_hpts_request = 0; 946 inp->inp_hptsslot = hpts_tick(wheel_tick, slot); 947 } else { 948 /* It does not fit */ 949 inp->inp_hpts_request = slot - maxticks; 950 inp->inp_hptsslot = last_tick; 951 } 952 if (diag) { 953 diag->slot_remaining = inp->inp_hpts_request; 954 diag->inp_hptsslot = inp->inp_hptsslot; 955 } 956 #ifdef INVARIANTS 957 check_if_slot_would_be_wrong(hpts, inp, inp->inp_hptsslot, line); 958 #endif 959 hpts_sane_pace_insert(hpts, inp, &hpts->p_hptss[inp->inp_hptsslot], line, 0); 960 if ((hpts->p_hpts_active == 0) && 961 (inp->inp_hpts_request == 0) && 962 (hpts->p_on_min_sleep == 0)) { 963 /* 964 * The hpts is sleeping and not on a minimum 965 * sleep time, we need to figure out where 966 * it will wake up at and if we need to reschedule 967 * its time-out. 968 */ 969 uint32_t have_slept, yet_to_sleep; 970 971 /* Now do we need to restart the hpts's timer? */ 972 have_slept = hpts_ticks_diff(hpts->p_prev_slot, wheel_tick); 973 if (have_slept < hpts->p_hpts_sleep_time) 974 yet_to_sleep = hpts->p_hpts_sleep_time - have_slept; 975 else { 976 /* We are over-due */ 977 yet_to_sleep = 0; 978 need_wakeup = 1; 979 } 980 if (diag) { 981 diag->have_slept = have_slept; 982 diag->yet_to_sleep = yet_to_sleep; 983 } 984 if (yet_to_sleep && 985 (yet_to_sleep > slot)) { 986 /* 987 * We need to reschedule the hpts's time-out. 988 */ 989 hpts->p_hpts_sleep_time = slot; 990 need_new_to = slot * HPTS_TICKS_PER_USEC; 991 } 992 } 993 /* 994 * Now how far is the hpts sleeping to? if active is 1, its 995 * up and ticking we do nothing, otherwise we may need to 996 * reschedule its callout if need_new_to is set from above. 997 */ 998 if (need_wakeup) { 999 hpts->p_direct_wake = 1; 1000 tcp_wakehpts(hpts); 1001 if (diag) { 1002 diag->need_new_to = 0; 1003 diag->co_ret = 0xffff0000; 1004 } 1005 } else if (need_new_to) { 1006 int32_t co_ret; 1007 struct timeval tv; 1008 sbintime_t sb; 1009 1010 tv.tv_sec = 0; 1011 tv.tv_usec = 0; 1012 while (need_new_to > HPTS_USEC_IN_SEC) { 1013 tv.tv_sec++; 1014 need_new_to -= HPTS_USEC_IN_SEC; 1015 } 1016 tv.tv_usec = need_new_to; 1017 sb = tvtosbt(tv); 1018 if (tcp_hpts_callout_skip_swi == 0) { 1019 co_ret = callout_reset_sbt_on(&hpts->co, sb, 0, 1020 hpts_timeout_swi, hpts, hpts->p_cpu, 1021 (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision))); 1022 } else { 1023 co_ret = callout_reset_sbt_on(&hpts->co, sb, 0, 1024 hpts_timeout_dir, hpts, 1025 hpts->p_cpu, 1026 C_PREL(tcp_hpts_precision)); 1027 } 1028 if (diag) { 1029 diag->need_new_to = need_new_to; 1030 diag->co_ret = co_ret; 1031 } 1032 } 1033 } else { 1034 #ifdef INVARIANTS 1035 panic("Hpts:%p tp:%p already on hpts and add?", hpts, inp); 1036 #endif 1037 } 1038 } 1039 1040 uint32_t 1041 tcp_hpts_insert_diag(struct inpcb *inp, uint32_t slot, int32_t line, struct hpts_diag *diag) 1042 { 1043 struct tcp_hpts_entry *hpts; 1044 uint32_t slot_on; 1045 struct timeval tv; 1046 1047 /* 1048 * We now return the next-slot the hpts will be on, beyond its 1049 * current run (if up) or where it was when it stopped if it is 1050 * sleeping. 1051 */ 1052 INP_WLOCK_ASSERT(inp); 1053 hpts = tcp_hpts_lock(inp); 1054 microuptime(&tv); 1055 tcp_hpts_insert_locked(hpts, inp, slot, line, diag, &tv); 1056 slot_on = hpts->p_nxt_slot; 1057 mtx_unlock(&hpts->p_mtx); 1058 return (slot_on); 1059 } 1060 1061 uint32_t 1062 __tcp_hpts_insert(struct inpcb *inp, uint32_t slot, int32_t line){ 1063 return (tcp_hpts_insert_diag(inp, slot, line, NULL)); 1064 } 1065 int 1066 __tcp_queue_to_input_locked(struct inpcb *inp, struct tcp_hpts_entry *hpts, int32_t line) 1067 { 1068 int32_t retval = 0; 1069 1070 HPTS_MTX_ASSERT(hpts); 1071 if (inp->inp_in_input == 0) { 1072 /* Ok we need to set it on the hpts in the current slot */ 1073 hpts_sane_input_insert(hpts, inp, line); 1074 retval = 1; 1075 if (hpts->p_hpts_active == 0) { 1076 /* 1077 * Activate the hpts if it is sleeping. 1078 */ 1079 retval = 2; 1080 hpts->p_direct_wake = 1; 1081 tcp_wakeinput(hpts); 1082 } 1083 } else if (hpts->p_hpts_active == 0) { 1084 retval = 4; 1085 hpts->p_direct_wake = 1; 1086 tcp_wakeinput(hpts); 1087 } 1088 return (retval); 1089 } 1090 1091 int32_t 1092 __tcp_queue_to_input(struct inpcb *inp, int line) 1093 { 1094 struct tcp_hpts_entry *hpts; 1095 int32_t ret; 1096 1097 hpts = tcp_input_lock(inp); 1098 ret = __tcp_queue_to_input_locked(inp, hpts, line); 1099 mtx_unlock(&hpts->p_mtx); 1100 return (ret); 1101 } 1102 1103 void 1104 __tcp_set_inp_to_drop(struct inpcb *inp, uint16_t reason, int32_t line) 1105 { 1106 struct tcp_hpts_entry *hpts; 1107 struct tcpcb *tp; 1108 1109 tp = intotcpcb(inp); 1110 hpts = tcp_input_lock(tp->t_inpcb); 1111 if (inp->inp_in_input == 0) { 1112 /* Ok we need to set it on the hpts in the current slot */ 1113 hpts_sane_input_insert(hpts, inp, line); 1114 if (hpts->p_hpts_active == 0) { 1115 /* 1116 * Activate the hpts if it is sleeping. 1117 */ 1118 hpts->p_direct_wake = 1; 1119 tcp_wakeinput(hpts); 1120 } 1121 } else if (hpts->p_hpts_active == 0) { 1122 hpts->p_direct_wake = 1; 1123 tcp_wakeinput(hpts); 1124 } 1125 inp->inp_hpts_drop_reas = reason; 1126 mtx_unlock(&hpts->p_mtx); 1127 } 1128 1129 static uint16_t 1130 hpts_random_cpu(struct inpcb *inp){ 1131 /* 1132 * No flow type set distribute the load randomly. 1133 */ 1134 uint16_t cpuid; 1135 uint32_t ran; 1136 1137 /* 1138 * If one has been set use it i.e. we want both in and out on the 1139 * same hpts. 1140 */ 1141 if (inp->inp_input_cpu_set) { 1142 return (inp->inp_input_cpu); 1143 } else if (inp->inp_hpts_cpu_set) { 1144 return (inp->inp_hpts_cpu); 1145 } 1146 /* Nothing set use a random number */ 1147 ran = arc4random(); 1148 cpuid = (ran & 0xffff) % mp_ncpus; 1149 return (cpuid); 1150 } 1151 1152 static uint16_t 1153 hpts_cpuid(struct inpcb *inp){ 1154 u_int cpuid; 1155 #ifdef NUMA 1156 struct hpts_domain_info *di; 1157 #endif 1158 1159 /* 1160 * If one has been set use it i.e. we want both in and out on the 1161 * same hpts. 1162 */ 1163 if (inp->inp_input_cpu_set) { 1164 return (inp->inp_input_cpu); 1165 } else if (inp->inp_hpts_cpu_set) { 1166 return (inp->inp_hpts_cpu); 1167 } 1168 /* If one is set the other must be the same */ 1169 #ifdef RSS 1170 cpuid = rss_hash2cpuid(inp->inp_flowid, inp->inp_flowtype); 1171 if (cpuid == NETISR_CPUID_NONE) 1172 return (hpts_random_cpu(inp)); 1173 else 1174 return (cpuid); 1175 #else 1176 /* 1177 * We don't have a flowid -> cpuid mapping, so cheat and just map 1178 * unknown cpuids to curcpu. Not the best, but apparently better 1179 * than defaulting to swi 0. 1180 */ 1181 1182 if (inp->inp_flowtype == M_HASHTYPE_NONE) 1183 return (hpts_random_cpu(inp)); 1184 /* 1185 * Hash to a thread based on the flowid. If we are using numa, 1186 * then restrict the hash to the numa domain where the inp lives. 1187 */ 1188 #ifdef NUMA 1189 if (tcp_bind_threads == 2 && inp->inp_numa_domain != M_NODOM) { 1190 di = &hpts_domains[inp->inp_numa_domain]; 1191 cpuid = di->cpu[inp->inp_flowid % di->count]; 1192 } else 1193 #endif 1194 cpuid = inp->inp_flowid % mp_ncpus; 1195 1196 return (cpuid); 1197 #endif 1198 } 1199 1200 static void 1201 tcp_drop_in_pkts(struct tcpcb *tp) 1202 { 1203 struct mbuf *m, *n; 1204 1205 m = tp->t_in_pkt; 1206 if (m) 1207 n = m->m_nextpkt; 1208 else 1209 n = NULL; 1210 tp->t_in_pkt = NULL; 1211 while (m) { 1212 m_freem(m); 1213 m = n; 1214 if (m) 1215 n = m->m_nextpkt; 1216 } 1217 } 1218 1219 /* 1220 * Do NOT try to optimize the processing of inp's 1221 * by first pulling off all the inp's into a temporary 1222 * list (e.g. TAILQ_CONCAT). If you do that the subtle 1223 * interactions of switching CPU's will kill because of 1224 * problems in the linked list manipulation. Basically 1225 * you would switch cpu's with the hpts mutex locked 1226 * but then while you were processing one of the inp's 1227 * some other one that you switch will get a new 1228 * packet on the different CPU. It will insert it 1229 * on the new hpts's input list. Creating a temporary 1230 * link in the inp will not fix it either, since 1231 * the other hpts will be doing the same thing and 1232 * you will both end up using the temporary link. 1233 * 1234 * You will die in an ASSERT for tailq corruption if you 1235 * run INVARIANTS or you will die horribly without 1236 * INVARIANTS in some unknown way with a corrupt linked 1237 * list. 1238 */ 1239 static void 1240 tcp_input_data(struct tcp_hpts_entry *hpts, struct timeval *tv) 1241 { 1242 struct tcpcb *tp; 1243 struct inpcb *inp; 1244 uint16_t drop_reason; 1245 int16_t set_cpu; 1246 uint32_t did_prefetch = 0; 1247 int dropped; 1248 1249 HPTS_MTX_ASSERT(hpts); 1250 NET_EPOCH_ASSERT(); 1251 1252 while ((inp = TAILQ_FIRST(&hpts->p_input)) != NULL) { 1253 HPTS_MTX_ASSERT(hpts); 1254 hpts_sane_input_remove(hpts, inp, 0); 1255 if (inp->inp_input_cpu_set == 0) { 1256 set_cpu = 1; 1257 } else { 1258 set_cpu = 0; 1259 } 1260 hpts->p_inp = inp; 1261 drop_reason = inp->inp_hpts_drop_reas; 1262 inp->inp_in_input = 0; 1263 mtx_unlock(&hpts->p_mtx); 1264 INP_WLOCK(inp); 1265 #ifdef VIMAGE 1266 CURVNET_SET(inp->inp_vnet); 1267 #endif 1268 if ((inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) || 1269 (inp->inp_flags2 & INP_FREED)) { 1270 out: 1271 hpts->p_inp = NULL; 1272 if (in_pcbrele_wlocked(inp) == 0) { 1273 INP_WUNLOCK(inp); 1274 } 1275 #ifdef VIMAGE 1276 CURVNET_RESTORE(); 1277 #endif 1278 mtx_lock(&hpts->p_mtx); 1279 continue; 1280 } 1281 tp = intotcpcb(inp); 1282 if ((tp == NULL) || (tp->t_inpcb == NULL)) { 1283 goto out; 1284 } 1285 if (drop_reason) { 1286 /* This tcb is being destroyed for drop_reason */ 1287 tcp_drop_in_pkts(tp); 1288 tp = tcp_drop(tp, drop_reason); 1289 if (tp == NULL) { 1290 INP_WLOCK(inp); 1291 } 1292 if (in_pcbrele_wlocked(inp) == 0) 1293 INP_WUNLOCK(inp); 1294 #ifdef VIMAGE 1295 CURVNET_RESTORE(); 1296 #endif 1297 mtx_lock(&hpts->p_mtx); 1298 continue; 1299 } 1300 if (set_cpu) { 1301 /* 1302 * Setup so the next time we will move to the right 1303 * CPU. This should be a rare event. It will 1304 * sometimes happens when we are the client side 1305 * (usually not the server). Somehow tcp_output() 1306 * gets called before the tcp_do_segment() sets the 1307 * intial state. This means the r_cpu and r_hpts_cpu 1308 * is 0. We get on the hpts, and then tcp_input() 1309 * gets called setting up the r_cpu to the correct 1310 * value. The hpts goes off and sees the mis-match. 1311 * We simply correct it here and the CPU will switch 1312 * to the new hpts nextime the tcb gets added to the 1313 * the hpts (not this time) :-) 1314 */ 1315 tcp_set_hpts(inp); 1316 } 1317 if (tp->t_fb_ptr != NULL) { 1318 kern_prefetch(tp->t_fb_ptr, &did_prefetch); 1319 did_prefetch = 1; 1320 } 1321 if ((inp->inp_flags2 & INP_SUPPORTS_MBUFQ) && tp->t_in_pkt) { 1322 if (inp->inp_in_input) 1323 tcp_hpts_remove(inp, HPTS_REMOVE_INPUT); 1324 dropped = (*tp->t_fb->tfb_do_queued_segments)(inp->inp_socket, tp, 0); 1325 if (dropped) { 1326 /* Re-acquire the wlock so we can release the reference */ 1327 INP_WLOCK(inp); 1328 } 1329 } else if (tp->t_in_pkt) { 1330 /* 1331 * We reach here only if we had a 1332 * stack that supported INP_SUPPORTS_MBUFQ 1333 * and then somehow switched to a stack that 1334 * does not. The packets are basically stranded 1335 * and would hang with the connection until 1336 * cleanup without this code. Its not the 1337 * best way but I know of no other way to 1338 * handle it since the stack needs functions 1339 * it does not have to handle queued packets. 1340 */ 1341 tcp_drop_in_pkts(tp); 1342 } 1343 if (in_pcbrele_wlocked(inp) == 0) 1344 INP_WUNLOCK(inp); 1345 INP_UNLOCK_ASSERT(inp); 1346 #ifdef VIMAGE 1347 CURVNET_RESTORE(); 1348 #endif 1349 mtx_lock(&hpts->p_mtx); 1350 hpts->p_inp = NULL; 1351 } 1352 } 1353 1354 static void 1355 tcp_hptsi(struct tcp_hpts_entry *hpts) 1356 { 1357 struct tcpcb *tp; 1358 struct inpcb *inp = NULL, *ninp; 1359 struct timeval tv; 1360 int32_t ticks_to_run, i, error; 1361 int32_t paced_cnt = 0; 1362 int32_t loop_cnt = 0; 1363 int32_t did_prefetch = 0; 1364 int32_t prefetch_ninp = 0; 1365 int32_t prefetch_tp = 0; 1366 int32_t wrap_loop_cnt = 0; 1367 int16_t set_cpu; 1368 1369 HPTS_MTX_ASSERT(hpts); 1370 NET_EPOCH_ASSERT(); 1371 1372 /* record previous info for any logging */ 1373 hpts->saved_lasttick = hpts->p_lasttick; 1374 hpts->saved_curtick = hpts->p_curtick; 1375 hpts->saved_curslot = hpts->p_cur_slot; 1376 hpts->saved_prev_slot = hpts->p_prev_slot; 1377 1378 hpts->p_lasttick = hpts->p_curtick; 1379 hpts->p_curtick = tcp_gethptstick(&tv); 1380 hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick); 1381 if ((hpts->p_on_queue_cnt == 0) || 1382 (hpts->p_lasttick == hpts->p_curtick)) { 1383 /* 1384 * No time has yet passed, 1385 * or nothing to do. 1386 */ 1387 hpts->p_prev_slot = hpts->p_cur_slot; 1388 hpts->p_lasttick = hpts->p_curtick; 1389 goto no_run; 1390 } 1391 again: 1392 hpts->p_wheel_complete = 0; 1393 HPTS_MTX_ASSERT(hpts); 1394 ticks_to_run = hpts_ticks_diff(hpts->p_prev_slot, hpts->p_cur_slot); 1395 if (((hpts->p_curtick - hpts->p_lasttick) > ticks_to_run) && 1396 (hpts->p_on_queue_cnt != 0)) { 1397 /* 1398 * Wheel wrap is occuring, basically we 1399 * are behind and the distance between 1400 * run's has spread so much it has exceeded 1401 * the time on the wheel (1.024 seconds). This 1402 * is ugly and should NOT be happening. We 1403 * need to run the entire wheel. We last processed 1404 * p_prev_slot, so that needs to be the last slot 1405 * we run. The next slot after that should be our 1406 * reserved first slot for new, and then starts 1407 * the running postion. Now the problem is the 1408 * reserved "not to yet" place does not exist 1409 * and there may be inp's in there that need 1410 * running. We can merge those into the 1411 * first slot at the head. 1412 */ 1413 wrap_loop_cnt++; 1414 hpts->p_nxt_slot = hpts_tick(hpts->p_prev_slot, 1); 1415 hpts->p_runningtick = hpts_tick(hpts->p_prev_slot, 2); 1416 /* 1417 * Adjust p_cur_slot to be where we are starting from 1418 * hopefully we will catch up (fat chance if something 1419 * is broken this bad :( ) 1420 */ 1421 hpts->p_cur_slot = hpts->p_prev_slot; 1422 /* 1423 * The next slot has guys to run too, and that would 1424 * be where we would normally start, lets move them into 1425 * the next slot (p_prev_slot + 2) so that we will 1426 * run them, the extra 10usecs of late (by being 1427 * put behind) does not really matter in this situation. 1428 */ 1429 #ifdef INVARIANTS 1430 /* 1431 * To prevent a panic we need to update the inpslot to the 1432 * new location. This is safe since it takes both the 1433 * INP lock and the pacer mutex to change the inp_hptsslot. 1434 */ 1435 TAILQ_FOREACH(inp, &hpts->p_hptss[hpts->p_nxt_slot], inp_hpts) { 1436 inp->inp_hptsslot = hpts->p_runningtick; 1437 } 1438 #endif 1439 TAILQ_CONCAT(&hpts->p_hptss[hpts->p_runningtick], 1440 &hpts->p_hptss[hpts->p_nxt_slot], inp_hpts); 1441 ticks_to_run = NUM_OF_HPTSI_SLOTS - 1; 1442 counter_u64_add(wheel_wrap, 1); 1443 } else { 1444 /* 1445 * Nxt slot is always one after p_runningtick though 1446 * its not used usually unless we are doing wheel wrap. 1447 */ 1448 hpts->p_nxt_slot = hpts->p_prev_slot; 1449 hpts->p_runningtick = hpts_tick(hpts->p_prev_slot, 1); 1450 } 1451 #ifdef INVARIANTS 1452 if (TAILQ_EMPTY(&hpts->p_input) && 1453 (hpts->p_on_inqueue_cnt != 0)) { 1454 panic("tp:%p in_hpts input empty but cnt:%d", 1455 hpts, hpts->p_on_inqueue_cnt); 1456 } 1457 #endif 1458 HPTS_MTX_ASSERT(hpts); 1459 if (hpts->p_on_queue_cnt == 0) { 1460 goto no_one; 1461 } 1462 HPTS_MTX_ASSERT(hpts); 1463 for (i = 0; i < ticks_to_run; i++) { 1464 /* 1465 * Calculate our delay, if there are no extra ticks there 1466 * was not any (i.e. if ticks_to_run == 1, no delay). 1467 */ 1468 hpts->p_delayed_by = (ticks_to_run - (i + 1)) * HPTS_TICKS_PER_USEC; 1469 HPTS_MTX_ASSERT(hpts); 1470 while ((inp = TAILQ_FIRST(&hpts->p_hptss[hpts->p_runningtick])) != NULL) { 1471 /* For debugging */ 1472 hpts->p_inp = inp; 1473 paced_cnt++; 1474 #ifdef INVARIANTS 1475 if (hpts->p_runningtick != inp->inp_hptsslot) { 1476 panic("Hpts:%p inp:%p slot mis-aligned %u vs %u", 1477 hpts, inp, hpts->p_runningtick, inp->inp_hptsslot); 1478 } 1479 #endif 1480 /* Now pull it */ 1481 if (inp->inp_hpts_cpu_set == 0) { 1482 set_cpu = 1; 1483 } else { 1484 set_cpu = 0; 1485 } 1486 hpts_sane_pace_remove(hpts, inp, &hpts->p_hptss[hpts->p_runningtick], 0); 1487 if ((ninp = TAILQ_FIRST(&hpts->p_hptss[hpts->p_runningtick])) != NULL) { 1488 /* We prefetch the next inp if possible */ 1489 kern_prefetch(ninp, &prefetch_ninp); 1490 prefetch_ninp = 1; 1491 } 1492 if (inp->inp_hpts_request) { 1493 /* 1494 * This guy is deferred out further in time 1495 * then our wheel had available on it. 1496 * Push him back on the wheel or run it 1497 * depending. 1498 */ 1499 uint32_t maxticks, last_tick, remaining_slots; 1500 1501 remaining_slots = ticks_to_run - (i + 1); 1502 if (inp->inp_hpts_request > remaining_slots) { 1503 /* 1504 * How far out can we go? 1505 */ 1506 maxticks = max_ticks_available(hpts, hpts->p_cur_slot, &last_tick); 1507 if (maxticks >= inp->inp_hpts_request) { 1508 /* we can place it finally to be processed */ 1509 inp->inp_hptsslot = hpts_tick(hpts->p_runningtick, inp->inp_hpts_request); 1510 inp->inp_hpts_request = 0; 1511 } else { 1512 /* Work off some more time */ 1513 inp->inp_hptsslot = last_tick; 1514 inp->inp_hpts_request-= maxticks; 1515 } 1516 hpts_sane_pace_insert(hpts, inp, &hpts->p_hptss[inp->inp_hptsslot], __LINE__, 1); 1517 hpts->p_inp = NULL; 1518 continue; 1519 } 1520 inp->inp_hpts_request = 0; 1521 /* Fall through we will so do it now */ 1522 } 1523 /* 1524 * We clear the hpts flag here after dealing with 1525 * remaining slots. This way anyone looking with the 1526 * TCB lock will see its on the hpts until just 1527 * before we unlock. 1528 */ 1529 inp->inp_in_hpts = 0; 1530 mtx_unlock(&hpts->p_mtx); 1531 INP_WLOCK(inp); 1532 if (in_pcbrele_wlocked(inp)) { 1533 mtx_lock(&hpts->p_mtx); 1534 hpts->p_inp = NULL; 1535 continue; 1536 } 1537 if ((inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) || 1538 (inp->inp_flags2 & INP_FREED)) { 1539 out_now: 1540 #ifdef INVARIANTS 1541 if (mtx_owned(&hpts->p_mtx)) { 1542 panic("Hpts:%p owns mtx prior-to lock line:%d", 1543 hpts, __LINE__); 1544 } 1545 #endif 1546 INP_WUNLOCK(inp); 1547 mtx_lock(&hpts->p_mtx); 1548 hpts->p_inp = NULL; 1549 continue; 1550 } 1551 tp = intotcpcb(inp); 1552 if ((tp == NULL) || (tp->t_inpcb == NULL)) { 1553 goto out_now; 1554 } 1555 if (set_cpu) { 1556 /* 1557 * Setup so the next time we will move to 1558 * the right CPU. This should be a rare 1559 * event. It will sometimes happens when we 1560 * are the client side (usually not the 1561 * server). Somehow tcp_output() gets called 1562 * before the tcp_do_segment() sets the 1563 * intial state. This means the r_cpu and 1564 * r_hpts_cpu is 0. We get on the hpts, and 1565 * then tcp_input() gets called setting up 1566 * the r_cpu to the correct value. The hpts 1567 * goes off and sees the mis-match. We 1568 * simply correct it here and the CPU will 1569 * switch to the new hpts nextime the tcb 1570 * gets added to the the hpts (not this one) 1571 * :-) 1572 */ 1573 tcp_set_hpts(inp); 1574 } 1575 #ifdef VIMAGE 1576 CURVNET_SET(inp->inp_vnet); 1577 #endif 1578 /* Lets do any logging that we might want to */ 1579 if (hpts_does_tp_logging && (tp->t_logstate != TCP_LOG_STATE_OFF)) { 1580 tcp_hpts_log(hpts, tp, &tv, ticks_to_run, i); 1581 } 1582 /* 1583 * There is a hole here, we get the refcnt on the 1584 * inp so it will still be preserved but to make 1585 * sure we can get the INP we need to hold the p_mtx 1586 * above while we pull out the tp/inp, as long as 1587 * fini gets the lock first we are assured of having 1588 * a sane INP we can lock and test. 1589 */ 1590 #ifdef INVARIANTS 1591 if (mtx_owned(&hpts->p_mtx)) { 1592 panic("Hpts:%p owns mtx before tcp-output:%d", 1593 hpts, __LINE__); 1594 } 1595 #endif 1596 if (tp->t_fb_ptr != NULL) { 1597 kern_prefetch(tp->t_fb_ptr, &did_prefetch); 1598 did_prefetch = 1; 1599 } 1600 if ((inp->inp_flags2 & INP_SUPPORTS_MBUFQ) && tp->t_in_pkt) { 1601 error = (*tp->t_fb->tfb_do_queued_segments)(inp->inp_socket, tp, 0); 1602 if (error) { 1603 /* The input killed the connection */ 1604 goto skip_pacing; 1605 } 1606 } 1607 inp->inp_hpts_calls = 1; 1608 error = tp->t_fb->tfb_tcp_output(tp); 1609 inp->inp_hpts_calls = 0; 1610 if (ninp && ninp->inp_ppcb) { 1611 /* 1612 * If we have a nxt inp, see if we can 1613 * prefetch its ppcb. Note this may seem 1614 * "risky" since we have no locks (other 1615 * than the previous inp) and there no 1616 * assurance that ninp was not pulled while 1617 * we were processing inp and freed. If this 1618 * occured it could mean that either: 1619 * 1620 * a) Its NULL (which is fine we won't go 1621 * here) <or> b) Its valid (which is cool we 1622 * will prefetch it) <or> c) The inp got 1623 * freed back to the slab which was 1624 * reallocated. Then the piece of memory was 1625 * re-used and something else (not an 1626 * address) is in inp_ppcb. If that occurs 1627 * we don't crash, but take a TLB shootdown 1628 * performance hit (same as if it was NULL 1629 * and we tried to pre-fetch it). 1630 * 1631 * Considering that the likelyhood of <c> is 1632 * quite rare we will take a risk on doing 1633 * this. If performance drops after testing 1634 * we can always take this out. NB: the 1635 * kern_prefetch on amd64 actually has 1636 * protection against a bad address now via 1637 * the DMAP_() tests. This will prevent the 1638 * TLB hit, and instead if <c> occurs just 1639 * cause us to load cache with a useless 1640 * address (to us). 1641 */ 1642 kern_prefetch(ninp->inp_ppcb, &prefetch_tp); 1643 prefetch_tp = 1; 1644 } 1645 INP_WUNLOCK(inp); 1646 skip_pacing: 1647 #ifdef VIMAGE 1648 CURVNET_RESTORE(); 1649 #endif 1650 INP_UNLOCK_ASSERT(inp); 1651 #ifdef INVARIANTS 1652 if (mtx_owned(&hpts->p_mtx)) { 1653 panic("Hpts:%p owns mtx prior-to lock line:%d", 1654 hpts, __LINE__); 1655 } 1656 #endif 1657 mtx_lock(&hpts->p_mtx); 1658 hpts->p_inp = NULL; 1659 } 1660 HPTS_MTX_ASSERT(hpts); 1661 hpts->p_inp = NULL; 1662 hpts->p_runningtick++; 1663 if (hpts->p_runningtick >= NUM_OF_HPTSI_SLOTS) { 1664 hpts->p_runningtick = 0; 1665 } 1666 } 1667 no_one: 1668 HPTS_MTX_ASSERT(hpts); 1669 hpts->p_delayed_by = 0; 1670 /* 1671 * Check to see if we took an excess amount of time and need to run 1672 * more ticks (if we did not hit eno-bufs). 1673 */ 1674 #ifdef INVARIANTS 1675 if (TAILQ_EMPTY(&hpts->p_input) && 1676 (hpts->p_on_inqueue_cnt != 0)) { 1677 panic("tp:%p in_hpts input empty but cnt:%d", 1678 hpts, hpts->p_on_inqueue_cnt); 1679 } 1680 #endif 1681 hpts->p_prev_slot = hpts->p_cur_slot; 1682 hpts->p_lasttick = hpts->p_curtick; 1683 if (loop_cnt > max_pacer_loops) { 1684 /* 1685 * Something is serious slow we have 1686 * looped through processing the wheel 1687 * and by the time we cleared the 1688 * needs to run max_pacer_loops time 1689 * we still needed to run. That means 1690 * the system is hopelessly behind and 1691 * can never catch up :( 1692 * 1693 * We will just lie to this thread 1694 * and let it thing p_curtick is 1695 * correct. When it next awakens 1696 * it will find itself further behind. 1697 */ 1698 counter_u64_add(hpts_hopelessly_behind, 1); 1699 goto no_run; 1700 } 1701 hpts->p_curtick = tcp_gethptstick(&tv); 1702 hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick); 1703 if ((wrap_loop_cnt < 2) && 1704 (hpts->p_lasttick != hpts->p_curtick)) { 1705 counter_u64_add(hpts_loops, 1); 1706 loop_cnt++; 1707 goto again; 1708 } 1709 no_run: 1710 /* 1711 * Set flag to tell that we are done for 1712 * any slot input that happens during 1713 * input. 1714 */ 1715 hpts->p_wheel_complete = 1; 1716 /* 1717 * Run any input that may be there not covered 1718 * in running data. 1719 */ 1720 if (!TAILQ_EMPTY(&hpts->p_input)) { 1721 tcp_input_data(hpts, &tv); 1722 /* 1723 * Now did we spend too long running 1724 * input and need to run more ticks? 1725 */ 1726 KASSERT(hpts->p_prev_slot == hpts->p_cur_slot, 1727 ("H:%p p_prev_slot:%u not equal to p_cur_slot:%u", hpts, 1728 hpts->p_prev_slot, hpts->p_cur_slot)); 1729 KASSERT(hpts->p_lasttick == hpts->p_curtick, 1730 ("H:%p p_lasttick:%u not equal to p_curtick:%u", hpts, 1731 hpts->p_lasttick, hpts->p_curtick)); 1732 hpts->p_curtick = tcp_gethptstick(&tv); 1733 if (hpts->p_lasttick != hpts->p_curtick) { 1734 counter_u64_add(hpts_loops, 1); 1735 hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick); 1736 goto again; 1737 } 1738 } 1739 { 1740 uint32_t t = 0, i, fnd = 0; 1741 1742 if ((hpts->p_on_queue_cnt) && (wrap_loop_cnt < 2)) { 1743 /* 1744 * Find next slot that is occupied and use that to 1745 * be the sleep time. 1746 */ 1747 for (i = 0, t = hpts_tick(hpts->p_cur_slot, 1); i < NUM_OF_HPTSI_SLOTS; i++) { 1748 if (TAILQ_EMPTY(&hpts->p_hptss[t]) == 0) { 1749 fnd = 1; 1750 break; 1751 } 1752 t = (t + 1) % NUM_OF_HPTSI_SLOTS; 1753 } 1754 if (fnd) { 1755 hpts->p_hpts_sleep_time = min((i + 1), hpts_sleep_max); 1756 } else { 1757 #ifdef INVARIANTS 1758 panic("Hpts:%p cnt:%d but none found", hpts, hpts->p_on_queue_cnt); 1759 #endif 1760 counter_u64_add(back_tosleep, 1); 1761 hpts->p_on_queue_cnt = 0; 1762 goto non_found; 1763 } 1764 } else if (wrap_loop_cnt >= 2) { 1765 /* Special case handling */ 1766 hpts->p_hpts_sleep_time = tcp_min_hptsi_time; 1767 } else { 1768 /* No one on the wheel sleep for all but 400 slots or sleep max */ 1769 non_found: 1770 hpts->p_hpts_sleep_time = hpts_sleep_max; 1771 } 1772 } 1773 } 1774 1775 void 1776 __tcp_set_hpts(struct inpcb *inp, int32_t line) 1777 { 1778 struct tcp_hpts_entry *hpts; 1779 1780 INP_WLOCK_ASSERT(inp); 1781 hpts = tcp_hpts_lock(inp); 1782 if ((inp->inp_in_hpts == 0) && 1783 (inp->inp_hpts_cpu_set == 0)) { 1784 inp->inp_hpts_cpu = hpts_cpuid(inp); 1785 inp->inp_hpts_cpu_set = 1; 1786 } 1787 mtx_unlock(&hpts->p_mtx); 1788 hpts = tcp_input_lock(inp); 1789 if ((inp->inp_input_cpu_set == 0) && 1790 (inp->inp_in_input == 0)) { 1791 inp->inp_input_cpu = hpts_cpuid(inp); 1792 inp->inp_input_cpu_set = 1; 1793 } 1794 mtx_unlock(&hpts->p_mtx); 1795 } 1796 1797 uint16_t 1798 tcp_hpts_delayedby(struct inpcb *inp){ 1799 return (tcp_pace.rp_ent[inp->inp_hpts_cpu]->p_delayed_by); 1800 } 1801 1802 static void 1803 tcp_hpts_thread(void *ctx) 1804 { 1805 struct tcp_hpts_entry *hpts; 1806 struct epoch_tracker et; 1807 struct timeval tv; 1808 sbintime_t sb; 1809 1810 hpts = (struct tcp_hpts_entry *)ctx; 1811 mtx_lock(&hpts->p_mtx); 1812 if (hpts->p_direct_wake) { 1813 /* Signaled by input */ 1814 callout_stop(&hpts->co); 1815 } else { 1816 /* Timed out */ 1817 if (callout_pending(&hpts->co) || 1818 !callout_active(&hpts->co)) { 1819 mtx_unlock(&hpts->p_mtx); 1820 return; 1821 } 1822 callout_deactivate(&hpts->co); 1823 } 1824 hpts->p_hpts_wake_scheduled = 0; 1825 hpts->p_hpts_active = 1; 1826 NET_EPOCH_ENTER(et); 1827 tcp_hptsi(hpts); 1828 NET_EPOCH_EXIT(et); 1829 HPTS_MTX_ASSERT(hpts); 1830 tv.tv_sec = 0; 1831 tv.tv_usec = hpts->p_hpts_sleep_time * HPTS_TICKS_PER_USEC; 1832 if (tcp_min_hptsi_time && (tv.tv_usec < tcp_min_hptsi_time)) { 1833 hpts->overidden_sleep = tv.tv_usec; 1834 tv.tv_usec = tcp_min_hptsi_time; 1835 hpts->p_on_min_sleep = 1; 1836 } else { 1837 /* Clear the min sleep flag */ 1838 hpts->overidden_sleep = 0; 1839 hpts->p_on_min_sleep = 0; 1840 } 1841 hpts->p_hpts_active = 0; 1842 sb = tvtosbt(tv); 1843 if (tcp_hpts_callout_skip_swi == 0) { 1844 callout_reset_sbt_on(&hpts->co, sb, 0, 1845 hpts_timeout_swi, hpts, hpts->p_cpu, 1846 (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision))); 1847 } else { 1848 callout_reset_sbt_on(&hpts->co, sb, 0, 1849 hpts_timeout_dir, hpts, 1850 hpts->p_cpu, 1851 C_PREL(tcp_hpts_precision)); 1852 } 1853 hpts->p_direct_wake = 0; 1854 mtx_unlock(&hpts->p_mtx); 1855 } 1856 1857 #undef timersub 1858 1859 static void 1860 tcp_init_hptsi(void *st) 1861 { 1862 int32_t i, j, error, bound = 0, created = 0; 1863 size_t sz, asz; 1864 struct timeval tv; 1865 sbintime_t sb; 1866 struct tcp_hpts_entry *hpts; 1867 struct pcpu *pc; 1868 cpuset_t cs; 1869 char unit[16]; 1870 uint32_t ncpus = mp_ncpus ? mp_ncpus : MAXCPU; 1871 int count, domain; 1872 1873 tcp_pace.rp_proc = NULL; 1874 tcp_pace.rp_num_hptss = ncpus; 1875 hpts_hopelessly_behind = counter_u64_alloc(M_WAITOK); 1876 hpts_loops = counter_u64_alloc(M_WAITOK); 1877 back_tosleep = counter_u64_alloc(M_WAITOK); 1878 combined_wheel_wrap = counter_u64_alloc(M_WAITOK); 1879 wheel_wrap = counter_u64_alloc(M_WAITOK); 1880 sz = (tcp_pace.rp_num_hptss * sizeof(struct tcp_hpts_entry *)); 1881 tcp_pace.rp_ent = malloc(sz, M_TCPHPTS, M_WAITOK | M_ZERO); 1882 asz = sizeof(struct hptsh) * NUM_OF_HPTSI_SLOTS; 1883 for (i = 0; i < tcp_pace.rp_num_hptss; i++) { 1884 tcp_pace.rp_ent[i] = malloc(sizeof(struct tcp_hpts_entry), 1885 M_TCPHPTS, M_WAITOK | M_ZERO); 1886 tcp_pace.rp_ent[i]->p_hptss = malloc(asz, 1887 M_TCPHPTS, M_WAITOK); 1888 hpts = tcp_pace.rp_ent[i]; 1889 /* 1890 * Init all the hpts structures that are not specifically 1891 * zero'd by the allocations. Also lets attach them to the 1892 * appropriate sysctl block as well. 1893 */ 1894 mtx_init(&hpts->p_mtx, "tcp_hpts_lck", 1895 "hpts", MTX_DEF | MTX_DUPOK); 1896 TAILQ_INIT(&hpts->p_input); 1897 for (j = 0; j < NUM_OF_HPTSI_SLOTS; j++) { 1898 TAILQ_INIT(&hpts->p_hptss[j]); 1899 } 1900 sysctl_ctx_init(&hpts->hpts_ctx); 1901 sprintf(unit, "%d", i); 1902 hpts->hpts_root = SYSCTL_ADD_NODE(&hpts->hpts_ctx, 1903 SYSCTL_STATIC_CHILDREN(_net_inet_tcp_hpts), 1904 OID_AUTO, 1905 unit, 1906 CTLFLAG_RW, 0, 1907 ""); 1908 SYSCTL_ADD_INT(&hpts->hpts_ctx, 1909 SYSCTL_CHILDREN(hpts->hpts_root), 1910 OID_AUTO, "in_qcnt", CTLFLAG_RD, 1911 &hpts->p_on_inqueue_cnt, 0, 1912 "Count TCB's awaiting input processing"); 1913 SYSCTL_ADD_INT(&hpts->hpts_ctx, 1914 SYSCTL_CHILDREN(hpts->hpts_root), 1915 OID_AUTO, "out_qcnt", CTLFLAG_RD, 1916 &hpts->p_on_queue_cnt, 0, 1917 "Count TCB's awaiting output processing"); 1918 SYSCTL_ADD_U16(&hpts->hpts_ctx, 1919 SYSCTL_CHILDREN(hpts->hpts_root), 1920 OID_AUTO, "active", CTLFLAG_RD, 1921 &hpts->p_hpts_active, 0, 1922 "Is the hpts active"); 1923 SYSCTL_ADD_UINT(&hpts->hpts_ctx, 1924 SYSCTL_CHILDREN(hpts->hpts_root), 1925 OID_AUTO, "curslot", CTLFLAG_RD, 1926 &hpts->p_cur_slot, 0, 1927 "What the current running pacers goal"); 1928 SYSCTL_ADD_UINT(&hpts->hpts_ctx, 1929 SYSCTL_CHILDREN(hpts->hpts_root), 1930 OID_AUTO, "runtick", CTLFLAG_RD, 1931 &hpts->p_runningtick, 0, 1932 "What the running pacers current slot is"); 1933 SYSCTL_ADD_UINT(&hpts->hpts_ctx, 1934 SYSCTL_CHILDREN(hpts->hpts_root), 1935 OID_AUTO, "curtick", CTLFLAG_RD, 1936 &hpts->p_curtick, 0, 1937 "What the running pacers last tick mapped to the wheel was"); 1938 hpts->p_hpts_sleep_time = hpts_sleep_max; 1939 hpts->p_num = i; 1940 hpts->p_curtick = tcp_gethptstick(&tv); 1941 hpts->p_prev_slot = hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick); 1942 hpts->p_cpu = 0xffff; 1943 hpts->p_nxt_slot = hpts_tick(hpts->p_cur_slot, 1); 1944 callout_init(&hpts->co, 1); 1945 } 1946 1947 /* Don't try to bind to NUMA domains if we don't have any */ 1948 if (vm_ndomains == 1 && tcp_bind_threads == 2) 1949 tcp_bind_threads = 0; 1950 1951 /* 1952 * Now lets start ithreads to handle the hptss. 1953 */ 1954 CPU_FOREACH(i) { 1955 hpts = tcp_pace.rp_ent[i]; 1956 hpts->p_cpu = i; 1957 error = swi_add(&hpts->ie, "hpts", 1958 tcp_hpts_thread, (void *)hpts, 1959 SWI_NET, INTR_MPSAFE, &hpts->ie_cookie); 1960 if (error) { 1961 panic("Can't add hpts:%p i:%d err:%d", 1962 hpts, i, error); 1963 } 1964 created++; 1965 if (tcp_bind_threads == 1) { 1966 if (intr_event_bind(hpts->ie, i) == 0) 1967 bound++; 1968 } else if (tcp_bind_threads == 2) { 1969 pc = pcpu_find(i); 1970 domain = pc->pc_domain; 1971 CPU_COPY(&cpuset_domain[domain], &cs); 1972 if (intr_event_bind_ithread_cpuset(hpts->ie, &cs) 1973 == 0) { 1974 bound++; 1975 count = hpts_domains[domain].count; 1976 hpts_domains[domain].cpu[count] = i; 1977 hpts_domains[domain].count++; 1978 } 1979 } 1980 tv.tv_sec = 0; 1981 tv.tv_usec = hpts->p_hpts_sleep_time * HPTS_TICKS_PER_USEC; 1982 sb = tvtosbt(tv); 1983 if (tcp_hpts_callout_skip_swi == 0) { 1984 callout_reset_sbt_on(&hpts->co, sb, 0, 1985 hpts_timeout_swi, hpts, hpts->p_cpu, 1986 (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision))); 1987 } else { 1988 callout_reset_sbt_on(&hpts->co, sb, 0, 1989 hpts_timeout_dir, hpts, 1990 hpts->p_cpu, 1991 C_PREL(tcp_hpts_precision)); 1992 } 1993 } 1994 /* 1995 * If we somehow have an empty domain, fall back to choosing 1996 * among all htps threads. 1997 */ 1998 for (i = 0; i < vm_ndomains; i++) { 1999 if (hpts_domains[i].count == 0) { 2000 tcp_bind_threads = 0; 2001 break; 2002 } 2003 } 2004 2005 printf("TCP Hpts created %d swi interrupt threads and bound %d to %s\n", 2006 created, bound, 2007 tcp_bind_threads == 2 ? "NUMA domains" : "cpus"); 2008 } 2009 2010 SYSINIT(tcphptsi, SI_SUB_KTHREAD_IDLE, SI_ORDER_ANY, tcp_init_hptsi, NULL); 2011 MODULE_VERSION(tcphpts, 1); 2012