1 /*- 2 * Copyright (c) 2016-2018 Netflix, Inc. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 1. Redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer. 9 * 2. Redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution. 12 * 13 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 14 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 16 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 17 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 18 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 19 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 20 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 21 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 22 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 23 * SUCH DAMAGE. 24 * 25 */ 26 #include <sys/cdefs.h> 27 __FBSDID("$FreeBSD$"); 28 29 #include "opt_inet.h" 30 #include "opt_inet6.h" 31 #include "opt_rss.h" 32 33 /** 34 * Some notes about usage. 35 * 36 * The tcp_hpts system is designed to provide a high precision timer 37 * system for tcp. Its main purpose is to provide a mechanism for 38 * pacing packets out onto the wire. It can be used in two ways 39 * by a given TCP stack (and those two methods can be used simultaneously). 40 * 41 * First, and probably the main thing its used by Rack and BBR, it can 42 * be used to call tcp_output() of a transport stack at some time in the future. 43 * The normal way this is done is that tcp_output() of the stack schedules 44 * itself to be called again by calling tcp_hpts_insert(tcpcb, slot). The 45 * slot is the time from now that the stack wants to be called but it 46 * must be converted to tcp_hpts's notion of slot. This is done with 47 * one of the macros HPTS_MS_TO_SLOTS or HPTS_USEC_TO_SLOTS. So a typical 48 * call from the tcp_output() routine might look like: 49 * 50 * tcp_hpts_insert(tp, HPTS_USEC_TO_SLOTS(550)); 51 * 52 * The above would schedule tcp_ouput() to be called in 550 useconds. 53 * Note that if using this mechanism the stack will want to add near 54 * its top a check to prevent unwanted calls (from user land or the 55 * arrival of incoming ack's). So it would add something like: 56 * 57 * if (tcp_in_hpts(inp)) 58 * return; 59 * 60 * to prevent output processing until the time alotted has gone by. 61 * Of course this is a bare bones example and the stack will probably 62 * have more consideration then just the above. 63 * 64 * In order to run input queued segments from the HPTS context the 65 * tcp stack must define an input function for 66 * tfb_do_queued_segments(). This function understands 67 * how to dequeue a array of packets that were input and 68 * knows how to call the correct processing routine. 69 * 70 * Locking in this is important as well so most likely the 71 * stack will need to define the tfb_do_segment_nounlock() 72 * splitting tfb_do_segment() into two parts. The main processing 73 * part that does not unlock the INP and returns a value of 1 or 0. 74 * It returns 0 if all is well and the lock was not released. It 75 * returns 1 if we had to destroy the TCB (a reset received etc). 76 * The remains of tfb_do_segment() then become just a simple call 77 * to the tfb_do_segment_nounlock() function and check the return 78 * code and possibly unlock. 79 * 80 * The stack must also set the flag on the INP that it supports this 81 * feature i.e. INP_SUPPORTS_MBUFQ. The LRO code recoginizes 82 * this flag as well and will queue packets when it is set. 83 * There are other flags as well INP_MBUF_QUEUE_READY and 84 * INP_DONT_SACK_QUEUE. The first flag tells the LRO code 85 * that we are in the pacer for output so there is no 86 * need to wake up the hpts system to get immediate 87 * input. The second tells the LRO code that its okay 88 * if a SACK arrives you can still defer input and let 89 * the current hpts timer run (this is usually set when 90 * a rack timer is up so we know SACK's are happening 91 * on the connection already and don't want to wakeup yet). 92 * 93 * There is a common functions within the rack_bbr_common code 94 * version i.e. ctf_do_queued_segments(). This function 95 * knows how to take the input queue of packets from 96 * tp->t_in_pkts and process them digging out 97 * all the arguments, calling any bpf tap and 98 * calling into tfb_do_segment_nounlock(). The common 99 * function (ctf_do_queued_segments()) requires that 100 * you have defined the tfb_do_segment_nounlock() as 101 * described above. 102 */ 103 104 #include <sys/param.h> 105 #include <sys/bus.h> 106 #include <sys/interrupt.h> 107 #include <sys/module.h> 108 #include <sys/kernel.h> 109 #include <sys/hhook.h> 110 #include <sys/malloc.h> 111 #include <sys/mbuf.h> 112 #include <sys/proc.h> /* for proc0 declaration */ 113 #include <sys/socket.h> 114 #include <sys/socketvar.h> 115 #include <sys/sysctl.h> 116 #include <sys/systm.h> 117 #include <sys/refcount.h> 118 #include <sys/sched.h> 119 #include <sys/queue.h> 120 #include <sys/smp.h> 121 #include <sys/counter.h> 122 #include <sys/time.h> 123 #include <sys/kthread.h> 124 #include <sys/kern_prefetch.h> 125 126 #include <vm/uma.h> 127 #include <vm/vm.h> 128 129 #include <net/route.h> 130 #include <net/vnet.h> 131 132 #ifdef RSS 133 #include <net/netisr.h> 134 #include <net/rss_config.h> 135 #endif 136 137 #define TCPSTATES /* for logging */ 138 139 #include <netinet/in.h> 140 #include <netinet/in_kdtrace.h> 141 #include <netinet/in_pcb.h> 142 #include <netinet/ip.h> 143 #include <netinet/ip_icmp.h> /* required for icmp_var.h */ 144 #include <netinet/icmp_var.h> /* for ICMP_BANDLIM */ 145 #include <netinet/ip_var.h> 146 #include <netinet/ip6.h> 147 #include <netinet6/in6_pcb.h> 148 #include <netinet6/ip6_var.h> 149 #include <netinet/tcp.h> 150 #include <netinet/tcp_fsm.h> 151 #include <netinet/tcp_seq.h> 152 #include <netinet/tcp_timer.h> 153 #include <netinet/tcp_var.h> 154 #include <netinet/tcpip.h> 155 #include <netinet/cc/cc.h> 156 #include <netinet/tcp_hpts.h> 157 #include <netinet/tcp_log_buf.h> 158 159 #ifdef tcp_offload 160 #include <netinet/tcp_offload.h> 161 #endif 162 163 /* 164 * The hpts uses a 102400 wheel. The wheel 165 * defines the time in 10 usec increments (102400 x 10). 166 * This gives a range of 10usec - 1024ms to place 167 * an entry within. If the user requests more than 168 * 1.024 second, a remaineder is attached and the hpts 169 * when seeing the remainder will re-insert the 170 * inpcb forward in time from where it is until 171 * the remainder is zero. 172 */ 173 174 #define NUM_OF_HPTSI_SLOTS 102400 175 176 /* Each hpts has its own p_mtx which is used for locking */ 177 #define HPTS_MTX_ASSERT(hpts) mtx_assert(&(hpts)->p_mtx, MA_OWNED) 178 #define HPTS_LOCK(hpts) mtx_lock(&(hpts)->p_mtx) 179 #define HPTS_UNLOCK(hpts) mtx_unlock(&(hpts)->p_mtx) 180 struct tcp_hpts_entry { 181 /* Cache line 0x00 */ 182 struct mtx p_mtx; /* Mutex for hpts */ 183 struct timeval p_mysleep; /* Our min sleep time */ 184 uint64_t syscall_cnt; 185 uint64_t sleeping; /* What the actual sleep was (if sleeping) */ 186 uint16_t p_hpts_active; /* Flag that says hpts is awake */ 187 uint8_t p_wheel_complete; /* have we completed the wheel arc walk? */ 188 uint32_t p_curtick; /* Tick in 10 us the hpts is going to */ 189 uint32_t p_runningslot; /* Current tick we are at if we are running */ 190 uint32_t p_prev_slot; /* Previous slot we were on */ 191 uint32_t p_cur_slot; /* Current slot in wheel hpts is draining */ 192 uint32_t p_nxt_slot; /* The next slot outside the current range of 193 * slots that the hpts is running on. */ 194 int32_t p_on_queue_cnt; /* Count on queue in this hpts */ 195 uint32_t p_lasttick; /* Last tick before the current one */ 196 uint8_t p_direct_wake :1, /* boolean */ 197 p_on_min_sleep:1, /* boolean */ 198 p_hpts_wake_scheduled:1, /* boolean */ 199 p_avail:5; 200 uint8_t p_fill[3]; /* Fill to 32 bits */ 201 /* Cache line 0x40 */ 202 struct hptsh { 203 TAILQ_HEAD(, inpcb) head; 204 uint32_t count; 205 uint32_t gencnt; 206 } *p_hptss; /* Hptsi wheel */ 207 uint32_t p_hpts_sleep_time; /* Current sleep interval having a max 208 * of 255ms */ 209 uint32_t overidden_sleep; /* what was overrided by min-sleep for logging */ 210 uint32_t saved_lasttick; /* for logging */ 211 uint32_t saved_curtick; /* for logging */ 212 uint32_t saved_curslot; /* for logging */ 213 uint32_t saved_prev_slot; /* for logging */ 214 uint32_t p_delayed_by; /* How much were we delayed by */ 215 /* Cache line 0x80 */ 216 struct sysctl_ctx_list hpts_ctx; 217 struct sysctl_oid *hpts_root; 218 struct intr_event *ie; 219 void *ie_cookie; 220 uint16_t p_num; /* The hpts number one per cpu */ 221 uint16_t p_cpu; /* The hpts CPU */ 222 /* There is extra space in here */ 223 /* Cache line 0x100 */ 224 struct callout co __aligned(CACHE_LINE_SIZE); 225 } __aligned(CACHE_LINE_SIZE); 226 227 static struct tcp_hptsi { 228 struct cpu_group **grps; 229 struct tcp_hpts_entry **rp_ent; /* Array of hptss */ 230 uint32_t *cts_last_ran; 231 uint32_t grp_cnt; 232 uint32_t rp_num_hptss; /* Number of hpts threads */ 233 } tcp_pace; 234 235 MALLOC_DEFINE(M_TCPHPTS, "tcp_hpts", "TCP hpts"); 236 #ifdef RSS 237 static int tcp_bind_threads = 1; 238 #else 239 static int tcp_bind_threads = 2; 240 #endif 241 static int tcp_use_irq_cpu = 0; 242 static uint32_t *cts_last_ran; 243 static int hpts_does_tp_logging = 0; 244 245 static int32_t tcp_hptsi(struct tcp_hpts_entry *hpts, int from_callout); 246 static void tcp_hpts_thread(void *ctx); 247 static void tcp_init_hptsi(void *st); 248 249 int32_t tcp_min_hptsi_time = DEFAULT_MIN_SLEEP; 250 static int conn_cnt_thresh = DEFAULT_CONNECTION_THESHOLD; 251 static int32_t dynamic_min_sleep = DYNAMIC_MIN_SLEEP; 252 static int32_t dynamic_max_sleep = DYNAMIC_MAX_SLEEP; 253 254 255 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, hpts, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 256 "TCP Hpts controls"); 257 SYSCTL_NODE(_net_inet_tcp_hpts, OID_AUTO, stats, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 258 "TCP Hpts statistics"); 259 260 #define timersub(tvp, uvp, vvp) \ 261 do { \ 262 (vvp)->tv_sec = (tvp)->tv_sec - (uvp)->tv_sec; \ 263 (vvp)->tv_usec = (tvp)->tv_usec - (uvp)->tv_usec; \ 264 if ((vvp)->tv_usec < 0) { \ 265 (vvp)->tv_sec--; \ 266 (vvp)->tv_usec += 1000000; \ 267 } \ 268 } while (0) 269 270 static int32_t tcp_hpts_precision = 120; 271 272 static struct hpts_domain_info { 273 int count; 274 int cpu[MAXCPU]; 275 } hpts_domains[MAXMEMDOM]; 276 277 enum { 278 IHPTS_NONE = 0, 279 IHPTS_ONQUEUE, 280 IHPTS_MOVING, 281 }; 282 283 counter_u64_t hpts_hopelessly_behind; 284 285 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, hopeless, CTLFLAG_RD, 286 &hpts_hopelessly_behind, 287 "Number of times hpts could not catch up and was behind hopelessly"); 288 289 counter_u64_t hpts_loops; 290 291 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, loops, CTLFLAG_RD, 292 &hpts_loops, "Number of times hpts had to loop to catch up"); 293 294 counter_u64_t back_tosleep; 295 296 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, no_tcbsfound, CTLFLAG_RD, 297 &back_tosleep, "Number of times hpts found no tcbs"); 298 299 counter_u64_t combined_wheel_wrap; 300 301 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, comb_wheel_wrap, CTLFLAG_RD, 302 &combined_wheel_wrap, "Number of times the wheel lagged enough to have an insert see wrap"); 303 304 counter_u64_t wheel_wrap; 305 306 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, wheel_wrap, CTLFLAG_RD, 307 &wheel_wrap, "Number of times the wheel lagged enough to have an insert see wrap"); 308 309 counter_u64_t hpts_direct_call; 310 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, direct_call, CTLFLAG_RD, 311 &hpts_direct_call, "Number of times hpts was called by syscall/trap or other entry"); 312 313 counter_u64_t hpts_wake_timeout; 314 315 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, timeout_wakeup, CTLFLAG_RD, 316 &hpts_wake_timeout, "Number of times hpts threads woke up via the callout expiring"); 317 318 counter_u64_t hpts_direct_awakening; 319 320 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, direct_awakening, CTLFLAG_RD, 321 &hpts_direct_awakening, "Number of times hpts threads woke up via the callout expiring"); 322 323 counter_u64_t hpts_back_tosleep; 324 325 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, back_tosleep, CTLFLAG_RD, 326 &hpts_back_tosleep, "Number of times hpts threads woke up via the callout expiring and went back to sleep no work"); 327 328 counter_u64_t cpu_uses_flowid; 329 counter_u64_t cpu_uses_random; 330 331 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, cpusel_flowid, CTLFLAG_RD, 332 &cpu_uses_flowid, "Number of times when setting cpuid we used the flowid field"); 333 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, cpusel_random, CTLFLAG_RD, 334 &cpu_uses_random, "Number of times when setting cpuid we used the a random value"); 335 336 TUNABLE_INT("net.inet.tcp.bind_hptss", &tcp_bind_threads); 337 TUNABLE_INT("net.inet.tcp.use_irq", &tcp_use_irq_cpu); 338 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, bind_hptss, CTLFLAG_RD, 339 &tcp_bind_threads, 2, 340 "Thread Binding tunable"); 341 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, use_irq, CTLFLAG_RD, 342 &tcp_use_irq_cpu, 0, 343 "Use of irq CPU tunable"); 344 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, precision, CTLFLAG_RW, 345 &tcp_hpts_precision, 120, 346 "Value for PRE() precision of callout"); 347 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, cnt_thresh, CTLFLAG_RW, 348 &conn_cnt_thresh, 0, 349 "How many connections (below) make us use the callout based mechanism"); 350 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, logging, CTLFLAG_RW, 351 &hpts_does_tp_logging, 0, 352 "Do we add to any tp that has logging on pacer logs"); 353 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, dyn_minsleep, CTLFLAG_RW, 354 &dynamic_min_sleep, 250, 355 "What is the dynamic minsleep value?"); 356 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, dyn_maxsleep, CTLFLAG_RW, 357 &dynamic_max_sleep, 5000, 358 "What is the dynamic maxsleep value?"); 359 360 static int32_t max_pacer_loops = 10; 361 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, loopmax, CTLFLAG_RW, 362 &max_pacer_loops, 10, 363 "What is the maximum number of times the pacer will loop trying to catch up"); 364 365 #define HPTS_MAX_SLEEP_ALLOWED (NUM_OF_HPTSI_SLOTS/2) 366 367 static uint32_t hpts_sleep_max = HPTS_MAX_SLEEP_ALLOWED; 368 369 static int 370 sysctl_net_inet_tcp_hpts_max_sleep(SYSCTL_HANDLER_ARGS) 371 { 372 int error; 373 uint32_t new; 374 375 new = hpts_sleep_max; 376 error = sysctl_handle_int(oidp, &new, 0, req); 377 if (error == 0 && req->newptr) { 378 if ((new < (dynamic_min_sleep/HPTS_TICKS_PER_SLOT)) || 379 (new > HPTS_MAX_SLEEP_ALLOWED)) 380 error = EINVAL; 381 else 382 hpts_sleep_max = new; 383 } 384 return (error); 385 } 386 387 static int 388 sysctl_net_inet_tcp_hpts_min_sleep(SYSCTL_HANDLER_ARGS) 389 { 390 int error; 391 uint32_t new; 392 393 new = tcp_min_hptsi_time; 394 error = sysctl_handle_int(oidp, &new, 0, req); 395 if (error == 0 && req->newptr) { 396 if (new < LOWEST_SLEEP_ALLOWED) 397 error = EINVAL; 398 else 399 tcp_min_hptsi_time = new; 400 } 401 return (error); 402 } 403 404 SYSCTL_PROC(_net_inet_tcp_hpts, OID_AUTO, maxsleep, 405 CTLTYPE_UINT | CTLFLAG_RW, 406 &hpts_sleep_max, 0, 407 &sysctl_net_inet_tcp_hpts_max_sleep, "IU", 408 "Maximum time hpts will sleep in slots"); 409 410 SYSCTL_PROC(_net_inet_tcp_hpts, OID_AUTO, minsleep, 411 CTLTYPE_UINT | CTLFLAG_RW, 412 &tcp_min_hptsi_time, 0, 413 &sysctl_net_inet_tcp_hpts_min_sleep, "IU", 414 "The minimum time the hpts must sleep before processing more slots"); 415 416 static int ticks_indicate_more_sleep = TICKS_INDICATE_MORE_SLEEP; 417 static int ticks_indicate_less_sleep = TICKS_INDICATE_LESS_SLEEP; 418 static int tcp_hpts_no_wake_over_thresh = 1; 419 420 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, more_sleep, CTLFLAG_RW, 421 &ticks_indicate_more_sleep, 0, 422 "If we only process this many or less on a timeout, we need longer sleep on the next callout"); 423 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, less_sleep, CTLFLAG_RW, 424 &ticks_indicate_less_sleep, 0, 425 "If we process this many or more on a timeout, we need less sleep on the next callout"); 426 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, nowake_over_thresh, CTLFLAG_RW, 427 &tcp_hpts_no_wake_over_thresh, 0, 428 "When we are over the threshold on the pacer do we prohibit wakeups?"); 429 430 static void 431 tcp_hpts_log(struct tcp_hpts_entry *hpts, struct tcpcb *tp, struct timeval *tv, 432 int slots_to_run, int idx, int from_callout) 433 { 434 union tcp_log_stackspecific log; 435 /* 436 * Unused logs are 437 * 64 bit - delRate, rttProp, bw_inuse 438 * 16 bit - cwnd_gain 439 * 8 bit - bbr_state, bbr_substate, inhpts; 440 */ 441 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 442 log.u_bbr.flex1 = hpts->p_nxt_slot; 443 log.u_bbr.flex2 = hpts->p_cur_slot; 444 log.u_bbr.flex3 = hpts->p_prev_slot; 445 log.u_bbr.flex4 = idx; 446 log.u_bbr.flex5 = hpts->p_curtick; 447 log.u_bbr.flex6 = hpts->p_on_queue_cnt; 448 log.u_bbr.flex7 = hpts->p_cpu; 449 log.u_bbr.flex8 = (uint8_t)from_callout; 450 log.u_bbr.inflight = slots_to_run; 451 log.u_bbr.applimited = hpts->overidden_sleep; 452 log.u_bbr.delivered = hpts->saved_curtick; 453 log.u_bbr.timeStamp = tcp_tv_to_usectick(tv); 454 log.u_bbr.epoch = hpts->saved_curslot; 455 log.u_bbr.lt_epoch = hpts->saved_prev_slot; 456 log.u_bbr.pkts_out = hpts->p_delayed_by; 457 log.u_bbr.lost = hpts->p_hpts_sleep_time; 458 log.u_bbr.pacing_gain = hpts->p_cpu; 459 log.u_bbr.pkt_epoch = hpts->p_runningslot; 460 log.u_bbr.use_lt_bw = 1; 461 TCP_LOG_EVENTP(tp, NULL, 462 &tptosocket(tp)->so_rcv, 463 &tptosocket(tp)->so_snd, 464 BBR_LOG_HPTSDIAG, 0, 465 0, &log, false, tv); 466 } 467 468 static void 469 tcp_wakehpts(struct tcp_hpts_entry *hpts) 470 { 471 HPTS_MTX_ASSERT(hpts); 472 473 if (tcp_hpts_no_wake_over_thresh && (hpts->p_on_queue_cnt >= conn_cnt_thresh)) { 474 hpts->p_direct_wake = 0; 475 return; 476 } 477 if (hpts->p_hpts_wake_scheduled == 0) { 478 hpts->p_hpts_wake_scheduled = 1; 479 swi_sched(hpts->ie_cookie, 0); 480 } 481 } 482 483 static void 484 hpts_timeout_swi(void *arg) 485 { 486 struct tcp_hpts_entry *hpts; 487 488 hpts = (struct tcp_hpts_entry *)arg; 489 swi_sched(hpts->ie_cookie, 0); 490 } 491 492 static void 493 inp_hpts_insert(struct inpcb *inp, struct tcp_hpts_entry *hpts) 494 { 495 struct hptsh *hptsh; 496 497 INP_WLOCK_ASSERT(inp); 498 HPTS_MTX_ASSERT(hpts); 499 MPASS(hpts->p_cpu == inp->inp_hpts_cpu); 500 MPASS(!(inp->inp_flags & INP_DROPPED)); 501 502 hptsh = &hpts->p_hptss[inp->inp_hptsslot]; 503 504 if (inp->inp_in_hpts == IHPTS_NONE) { 505 inp->inp_in_hpts = IHPTS_ONQUEUE; 506 in_pcbref(inp); 507 } else if (inp->inp_in_hpts == IHPTS_MOVING) { 508 inp->inp_in_hpts = IHPTS_ONQUEUE; 509 } else 510 MPASS(inp->inp_in_hpts == IHPTS_ONQUEUE); 511 inp->inp_hpts_gencnt = hptsh->gencnt; 512 513 TAILQ_INSERT_TAIL(&hptsh->head, inp, inp_hpts); 514 hptsh->count++; 515 hpts->p_on_queue_cnt++; 516 } 517 518 static struct tcp_hpts_entry * 519 tcp_hpts_lock(struct inpcb *inp) 520 { 521 struct tcp_hpts_entry *hpts; 522 523 INP_LOCK_ASSERT(inp); 524 525 hpts = tcp_pace.rp_ent[inp->inp_hpts_cpu]; 526 HPTS_LOCK(hpts); 527 528 return (hpts); 529 } 530 531 static void 532 inp_hpts_release(struct inpcb *inp) 533 { 534 bool released __diagused; 535 536 inp->inp_in_hpts = IHPTS_NONE; 537 released = in_pcbrele_wlocked(inp); 538 MPASS(released == false); 539 } 540 541 /* 542 * Called normally with the INP_LOCKED but it 543 * does not matter, the hpts lock is the key 544 * but the lock order allows us to hold the 545 * INP lock and then get the hpts lock. 546 */ 547 void 548 tcp_hpts_remove(struct inpcb *inp) 549 { 550 struct tcp_hpts_entry *hpts; 551 struct hptsh *hptsh; 552 553 INP_WLOCK_ASSERT(inp); 554 555 hpts = tcp_hpts_lock(inp); 556 if (inp->inp_in_hpts == IHPTS_ONQUEUE) { 557 hptsh = &hpts->p_hptss[inp->inp_hptsslot]; 558 inp->inp_hpts_request = 0; 559 if (__predict_true(inp->inp_hpts_gencnt == hptsh->gencnt)) { 560 TAILQ_REMOVE(&hptsh->head, inp, inp_hpts); 561 MPASS(hptsh->count > 0); 562 hptsh->count--; 563 MPASS(hpts->p_on_queue_cnt > 0); 564 hpts->p_on_queue_cnt--; 565 inp_hpts_release(inp); 566 } else { 567 /* 568 * tcp_hptsi() now owns the TAILQ head of this inp. 569 * Can't TAILQ_REMOVE, just mark it. 570 */ 571 #ifdef INVARIANTS 572 struct inpcb *tmp; 573 574 TAILQ_FOREACH(tmp, &hptsh->head, inp_hpts) 575 MPASS(tmp != inp); 576 #endif 577 inp->inp_in_hpts = IHPTS_MOVING; 578 inp->inp_hptsslot = -1; 579 } 580 } else if (inp->inp_in_hpts == IHPTS_MOVING) { 581 /* 582 * Handle a special race condition: 583 * tcp_hptsi() moves inpcb to detached tailq 584 * tcp_hpts_remove() marks as IHPTS_MOVING, slot = -1 585 * tcp_hpts_insert() sets slot to a meaningful value 586 * tcp_hpts_remove() again (we are here!), then in_pcbdrop() 587 * tcp_hptsi() finds pcb with meaningful slot and INP_DROPPED 588 */ 589 inp->inp_hptsslot = -1; 590 } 591 HPTS_UNLOCK(hpts); 592 } 593 594 bool 595 tcp_in_hpts(struct inpcb *inp) 596 { 597 598 return (inp->inp_in_hpts == IHPTS_ONQUEUE); 599 } 600 601 static inline int 602 hpts_slot(uint32_t wheel_slot, uint32_t plus) 603 { 604 /* 605 * Given a slot on the wheel, what slot 606 * is that plus ticks out? 607 */ 608 KASSERT(wheel_slot < NUM_OF_HPTSI_SLOTS, ("Invalid tick %u not on wheel", wheel_slot)); 609 return ((wheel_slot + plus) % NUM_OF_HPTSI_SLOTS); 610 } 611 612 static inline int 613 tick_to_wheel(uint32_t cts_in_wticks) 614 { 615 /* 616 * Given a timestamp in ticks (so by 617 * default to get it to a real time one 618 * would multiply by 10.. i.e the number 619 * of ticks in a slot) map it to our limited 620 * space wheel. 621 */ 622 return (cts_in_wticks % NUM_OF_HPTSI_SLOTS); 623 } 624 625 static inline int 626 hpts_slots_diff(int prev_slot, int slot_now) 627 { 628 /* 629 * Given two slots that are someplace 630 * on our wheel. How far are they apart? 631 */ 632 if (slot_now > prev_slot) 633 return (slot_now - prev_slot); 634 else if (slot_now == prev_slot) 635 /* 636 * Special case, same means we can go all of our 637 * wheel less one slot. 638 */ 639 return (NUM_OF_HPTSI_SLOTS - 1); 640 else 641 return ((NUM_OF_HPTSI_SLOTS - prev_slot) + slot_now); 642 } 643 644 /* 645 * Given a slot on the wheel that is the current time 646 * mapped to the wheel (wheel_slot), what is the maximum 647 * distance forward that can be obtained without 648 * wrapping past either prev_slot or running_slot 649 * depending on the htps state? Also if passed 650 * a uint32_t *, fill it with the slot location. 651 * 652 * Note if you do not give this function the current 653 * time (that you think it is) mapped to the wheel slot 654 * then the results will not be what you expect and 655 * could lead to invalid inserts. 656 */ 657 static inline int32_t 658 max_slots_available(struct tcp_hpts_entry *hpts, uint32_t wheel_slot, uint32_t *target_slot) 659 { 660 uint32_t dis_to_travel, end_slot, pacer_to_now, avail_on_wheel; 661 662 if ((hpts->p_hpts_active == 1) && 663 (hpts->p_wheel_complete == 0)) { 664 end_slot = hpts->p_runningslot; 665 /* Back up one tick */ 666 if (end_slot == 0) 667 end_slot = NUM_OF_HPTSI_SLOTS - 1; 668 else 669 end_slot--; 670 if (target_slot) 671 *target_slot = end_slot; 672 } else { 673 /* 674 * For the case where we are 675 * not active, or we have 676 * completed the pass over 677 * the wheel, we can use the 678 * prev tick and subtract one from it. This puts us 679 * as far out as possible on the wheel. 680 */ 681 end_slot = hpts->p_prev_slot; 682 if (end_slot == 0) 683 end_slot = NUM_OF_HPTSI_SLOTS - 1; 684 else 685 end_slot--; 686 if (target_slot) 687 *target_slot = end_slot; 688 /* 689 * Now we have close to the full wheel left minus the 690 * time it has been since the pacer went to sleep. Note 691 * that wheel_tick, passed in, should be the current time 692 * from the perspective of the caller, mapped to the wheel. 693 */ 694 if (hpts->p_prev_slot != wheel_slot) 695 dis_to_travel = hpts_slots_diff(hpts->p_prev_slot, wheel_slot); 696 else 697 dis_to_travel = 1; 698 /* 699 * dis_to_travel in this case is the space from when the 700 * pacer stopped (p_prev_slot) and where our wheel_slot 701 * is now. To know how many slots we can put it in we 702 * subtract from the wheel size. We would not want 703 * to place something after p_prev_slot or it will 704 * get ran too soon. 705 */ 706 return (NUM_OF_HPTSI_SLOTS - dis_to_travel); 707 } 708 /* 709 * So how many slots are open between p_runningslot -> p_cur_slot 710 * that is what is currently un-available for insertion. Special 711 * case when we are at the last slot, this gets 1, so that 712 * the answer to how many slots are available is all but 1. 713 */ 714 if (hpts->p_runningslot == hpts->p_cur_slot) 715 dis_to_travel = 1; 716 else 717 dis_to_travel = hpts_slots_diff(hpts->p_runningslot, hpts->p_cur_slot); 718 /* 719 * How long has the pacer been running? 720 */ 721 if (hpts->p_cur_slot != wheel_slot) { 722 /* The pacer is a bit late */ 723 pacer_to_now = hpts_slots_diff(hpts->p_cur_slot, wheel_slot); 724 } else { 725 /* The pacer is right on time, now == pacers start time */ 726 pacer_to_now = 0; 727 } 728 /* 729 * To get the number left we can insert into we simply 730 * subtract the distance the pacer has to run from how 731 * many slots there are. 732 */ 733 avail_on_wheel = NUM_OF_HPTSI_SLOTS - dis_to_travel; 734 /* 735 * Now how many of those we will eat due to the pacer's 736 * time (p_cur_slot) of start being behind the 737 * real time (wheel_slot)? 738 */ 739 if (avail_on_wheel <= pacer_to_now) { 740 /* 741 * Wheel wrap, we can't fit on the wheel, that 742 * is unusual the system must be way overloaded! 743 * Insert into the assured slot, and return special 744 * "0". 745 */ 746 counter_u64_add(combined_wheel_wrap, 1); 747 *target_slot = hpts->p_nxt_slot; 748 return (0); 749 } else { 750 /* 751 * We know how many slots are open 752 * on the wheel (the reverse of what 753 * is left to run. Take away the time 754 * the pacer started to now (wheel_slot) 755 * and that tells you how many slots are 756 * open that can be inserted into that won't 757 * be touched by the pacer until later. 758 */ 759 return (avail_on_wheel - pacer_to_now); 760 } 761 } 762 763 764 #ifdef INVARIANTS 765 static void 766 check_if_slot_would_be_wrong(struct tcp_hpts_entry *hpts, struct inpcb *inp, uint32_t inp_hptsslot, int line) 767 { 768 /* 769 * Sanity checks for the pacer with invariants 770 * on insert. 771 */ 772 KASSERT(inp_hptsslot < NUM_OF_HPTSI_SLOTS, 773 ("hpts:%p inp:%p slot:%d > max", 774 hpts, inp, inp_hptsslot)); 775 if ((hpts->p_hpts_active) && 776 (hpts->p_wheel_complete == 0)) { 777 /* 778 * If the pacer is processing a arc 779 * of the wheel, we need to make 780 * sure we are not inserting within 781 * that arc. 782 */ 783 int distance, yet_to_run; 784 785 distance = hpts_slots_diff(hpts->p_runningslot, inp_hptsslot); 786 if (hpts->p_runningslot != hpts->p_cur_slot) 787 yet_to_run = hpts_slots_diff(hpts->p_runningslot, hpts->p_cur_slot); 788 else 789 yet_to_run = 0; /* processing last slot */ 790 KASSERT(yet_to_run <= distance, 791 ("hpts:%p inp:%p slot:%d distance:%d yet_to_run:%d rs:%d cs:%d", 792 hpts, inp, inp_hptsslot, 793 distance, yet_to_run, 794 hpts->p_runningslot, hpts->p_cur_slot)); 795 } 796 } 797 #endif 798 799 uint32_t 800 tcp_hpts_insert_diag(struct inpcb *inp, uint32_t slot, int32_t line, struct hpts_diag *diag) 801 { 802 struct tcp_hpts_entry *hpts; 803 struct timeval tv; 804 uint32_t slot_on, wheel_cts, last_slot, need_new_to = 0; 805 int32_t wheel_slot, maxslots; 806 bool need_wakeup = false; 807 808 INP_WLOCK_ASSERT(inp); 809 MPASS(!tcp_in_hpts(inp)); 810 MPASS(!(inp->inp_flags & INP_DROPPED)); 811 812 /* 813 * We now return the next-slot the hpts will be on, beyond its 814 * current run (if up) or where it was when it stopped if it is 815 * sleeping. 816 */ 817 hpts = tcp_hpts_lock(inp); 818 microuptime(&tv); 819 if (diag) { 820 memset(diag, 0, sizeof(struct hpts_diag)); 821 diag->p_hpts_active = hpts->p_hpts_active; 822 diag->p_prev_slot = hpts->p_prev_slot; 823 diag->p_runningslot = hpts->p_runningslot; 824 diag->p_nxt_slot = hpts->p_nxt_slot; 825 diag->p_cur_slot = hpts->p_cur_slot; 826 diag->p_curtick = hpts->p_curtick; 827 diag->p_lasttick = hpts->p_lasttick; 828 diag->slot_req = slot; 829 diag->p_on_min_sleep = hpts->p_on_min_sleep; 830 diag->hpts_sleep_time = hpts->p_hpts_sleep_time; 831 } 832 if (slot == 0) { 833 /* Ok we need to set it on the hpts in the current slot */ 834 inp->inp_hpts_request = 0; 835 if ((hpts->p_hpts_active == 0) || (hpts->p_wheel_complete)) { 836 /* 837 * A sleeping hpts we want in next slot to run 838 * note that in this state p_prev_slot == p_cur_slot 839 */ 840 inp->inp_hptsslot = hpts_slot(hpts->p_prev_slot, 1); 841 if ((hpts->p_on_min_sleep == 0) && 842 (hpts->p_hpts_active == 0)) 843 need_wakeup = true; 844 } else 845 inp->inp_hptsslot = hpts->p_runningslot; 846 if (__predict_true(inp->inp_in_hpts != IHPTS_MOVING)) 847 inp_hpts_insert(inp, hpts); 848 if (need_wakeup) { 849 /* 850 * Activate the hpts if it is sleeping and its 851 * timeout is not 1. 852 */ 853 hpts->p_direct_wake = 1; 854 tcp_wakehpts(hpts); 855 } 856 slot_on = hpts->p_nxt_slot; 857 HPTS_UNLOCK(hpts); 858 859 return (slot_on); 860 } 861 /* Get the current time relative to the wheel */ 862 wheel_cts = tcp_tv_to_hptstick(&tv); 863 /* Map it onto the wheel */ 864 wheel_slot = tick_to_wheel(wheel_cts); 865 /* Now what's the max we can place it at? */ 866 maxslots = max_slots_available(hpts, wheel_slot, &last_slot); 867 if (diag) { 868 diag->wheel_slot = wheel_slot; 869 diag->maxslots = maxslots; 870 diag->wheel_cts = wheel_cts; 871 } 872 if (maxslots == 0) { 873 /* The pacer is in a wheel wrap behind, yikes! */ 874 if (slot > 1) { 875 /* 876 * Reduce by 1 to prevent a forever loop in 877 * case something else is wrong. Note this 878 * probably does not hurt because the pacer 879 * if its true is so far behind we will be 880 * > 1second late calling anyway. 881 */ 882 slot--; 883 } 884 inp->inp_hptsslot = last_slot; 885 inp->inp_hpts_request = slot; 886 } else if (maxslots >= slot) { 887 /* It all fits on the wheel */ 888 inp->inp_hpts_request = 0; 889 inp->inp_hptsslot = hpts_slot(wheel_slot, slot); 890 } else { 891 /* It does not fit */ 892 inp->inp_hpts_request = slot - maxslots; 893 inp->inp_hptsslot = last_slot; 894 } 895 if (diag) { 896 diag->slot_remaining = inp->inp_hpts_request; 897 diag->inp_hptsslot = inp->inp_hptsslot; 898 } 899 #ifdef INVARIANTS 900 check_if_slot_would_be_wrong(hpts, inp, inp->inp_hptsslot, line); 901 #endif 902 if (__predict_true(inp->inp_in_hpts != IHPTS_MOVING)) 903 inp_hpts_insert(inp, hpts); 904 if ((hpts->p_hpts_active == 0) && 905 (inp->inp_hpts_request == 0) && 906 (hpts->p_on_min_sleep == 0)) { 907 /* 908 * The hpts is sleeping and NOT on a minimum 909 * sleep time, we need to figure out where 910 * it will wake up at and if we need to reschedule 911 * its time-out. 912 */ 913 uint32_t have_slept, yet_to_sleep; 914 915 /* Now do we need to restart the hpts's timer? */ 916 have_slept = hpts_slots_diff(hpts->p_prev_slot, wheel_slot); 917 if (have_slept < hpts->p_hpts_sleep_time) 918 yet_to_sleep = hpts->p_hpts_sleep_time - have_slept; 919 else { 920 /* We are over-due */ 921 yet_to_sleep = 0; 922 need_wakeup = 1; 923 } 924 if (diag) { 925 diag->have_slept = have_slept; 926 diag->yet_to_sleep = yet_to_sleep; 927 } 928 if (yet_to_sleep && 929 (yet_to_sleep > slot)) { 930 /* 931 * We need to reschedule the hpts's time-out. 932 */ 933 hpts->p_hpts_sleep_time = slot; 934 need_new_to = slot * HPTS_TICKS_PER_SLOT; 935 } 936 } 937 /* 938 * Now how far is the hpts sleeping to? if active is 1, its 939 * up and ticking we do nothing, otherwise we may need to 940 * reschedule its callout if need_new_to is set from above. 941 */ 942 if (need_wakeup) { 943 hpts->p_direct_wake = 1; 944 tcp_wakehpts(hpts); 945 if (diag) { 946 diag->need_new_to = 0; 947 diag->co_ret = 0xffff0000; 948 } 949 } else if (need_new_to) { 950 int32_t co_ret; 951 struct timeval tv; 952 sbintime_t sb; 953 954 tv.tv_sec = 0; 955 tv.tv_usec = 0; 956 while (need_new_to > HPTS_USEC_IN_SEC) { 957 tv.tv_sec++; 958 need_new_to -= HPTS_USEC_IN_SEC; 959 } 960 tv.tv_usec = need_new_to; 961 sb = tvtosbt(tv); 962 co_ret = callout_reset_sbt_on(&hpts->co, sb, 0, 963 hpts_timeout_swi, hpts, hpts->p_cpu, 964 (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision))); 965 if (diag) { 966 diag->need_new_to = need_new_to; 967 diag->co_ret = co_ret; 968 } 969 } 970 slot_on = hpts->p_nxt_slot; 971 HPTS_UNLOCK(hpts); 972 973 return (slot_on); 974 } 975 976 uint16_t 977 hpts_random_cpu(struct inpcb *inp){ 978 /* 979 * No flow type set distribute the load randomly. 980 */ 981 uint16_t cpuid; 982 uint32_t ran; 983 984 /* 985 * Shortcut if it is already set. XXXGL: does it happen? 986 */ 987 if (inp->inp_hpts_cpu_set) { 988 return (inp->inp_hpts_cpu); 989 } 990 /* Nothing set use a random number */ 991 ran = arc4random(); 992 cpuid = (((ran & 0xffff) % mp_ncpus) % tcp_pace.rp_num_hptss); 993 return (cpuid); 994 } 995 996 static uint16_t 997 hpts_cpuid(struct inpcb *inp, int *failed) 998 { 999 u_int cpuid; 1000 #ifdef NUMA 1001 struct hpts_domain_info *di; 1002 #endif 1003 1004 *failed = 0; 1005 if (inp->inp_hpts_cpu_set) { 1006 return (inp->inp_hpts_cpu); 1007 } 1008 /* 1009 * If we are using the irq cpu set by LRO or 1010 * the driver then it overrides all other domains. 1011 */ 1012 if (tcp_use_irq_cpu) { 1013 if (inp->inp_irq_cpu_set == 0) { 1014 *failed = 1; 1015 return(0); 1016 } 1017 return(inp->inp_irq_cpu); 1018 } 1019 /* If one is set the other must be the same */ 1020 #ifdef RSS 1021 cpuid = rss_hash2cpuid(inp->inp_flowid, inp->inp_flowtype); 1022 if (cpuid == NETISR_CPUID_NONE) 1023 return (hpts_random_cpu(inp)); 1024 else 1025 return (cpuid); 1026 #endif 1027 /* 1028 * We don't have a flowid -> cpuid mapping, so cheat and just map 1029 * unknown cpuids to curcpu. Not the best, but apparently better 1030 * than defaulting to swi 0. 1031 */ 1032 if (inp->inp_flowtype == M_HASHTYPE_NONE) { 1033 counter_u64_add(cpu_uses_random, 1); 1034 return (hpts_random_cpu(inp)); 1035 } 1036 /* 1037 * Hash to a thread based on the flowid. If we are using numa, 1038 * then restrict the hash to the numa domain where the inp lives. 1039 */ 1040 1041 #ifdef NUMA 1042 if ((vm_ndomains == 1) || 1043 (inp->inp_numa_domain == M_NODOM)) { 1044 #endif 1045 cpuid = inp->inp_flowid % mp_ncpus; 1046 #ifdef NUMA 1047 } else { 1048 /* Hash into the cpu's that use that domain */ 1049 di = &hpts_domains[inp->inp_numa_domain]; 1050 cpuid = di->cpu[inp->inp_flowid % di->count]; 1051 } 1052 #endif 1053 counter_u64_add(cpu_uses_flowid, 1); 1054 return (cpuid); 1055 } 1056 1057 static void 1058 tcp_hpts_set_max_sleep(struct tcp_hpts_entry *hpts, int wrap_loop_cnt) 1059 { 1060 uint32_t t = 0, i; 1061 1062 if ((hpts->p_on_queue_cnt) && (wrap_loop_cnt < 2)) { 1063 /* 1064 * Find next slot that is occupied and use that to 1065 * be the sleep time. 1066 */ 1067 for (i = 0, t = hpts_slot(hpts->p_cur_slot, 1); i < NUM_OF_HPTSI_SLOTS; i++) { 1068 if (TAILQ_EMPTY(&hpts->p_hptss[t].head) == 0) { 1069 break; 1070 } 1071 t = (t + 1) % NUM_OF_HPTSI_SLOTS; 1072 } 1073 KASSERT((i != NUM_OF_HPTSI_SLOTS), ("Hpts:%p cnt:%d but none found", hpts, hpts->p_on_queue_cnt)); 1074 hpts->p_hpts_sleep_time = min((i + 1), hpts_sleep_max); 1075 } else { 1076 /* No one on the wheel sleep for all but 400 slots or sleep max */ 1077 hpts->p_hpts_sleep_time = hpts_sleep_max; 1078 } 1079 } 1080 1081 static int32_t 1082 tcp_hptsi(struct tcp_hpts_entry *hpts, int from_callout) 1083 { 1084 struct tcpcb *tp; 1085 struct inpcb *inp; 1086 struct timeval tv; 1087 int32_t slots_to_run, i, error; 1088 int32_t loop_cnt = 0; 1089 int32_t did_prefetch = 0; 1090 int32_t prefetch_ninp = 0; 1091 int32_t prefetch_tp = 0; 1092 int32_t wrap_loop_cnt = 0; 1093 int32_t slot_pos_of_endpoint = 0; 1094 int32_t orig_exit_slot; 1095 int8_t completed_measure = 0, seen_endpoint = 0; 1096 1097 HPTS_MTX_ASSERT(hpts); 1098 NET_EPOCH_ASSERT(); 1099 /* record previous info for any logging */ 1100 hpts->saved_lasttick = hpts->p_lasttick; 1101 hpts->saved_curtick = hpts->p_curtick; 1102 hpts->saved_curslot = hpts->p_cur_slot; 1103 hpts->saved_prev_slot = hpts->p_prev_slot; 1104 1105 hpts->p_lasttick = hpts->p_curtick; 1106 hpts->p_curtick = tcp_gethptstick(&tv); 1107 cts_last_ran[hpts->p_num] = tcp_tv_to_usectick(&tv); 1108 orig_exit_slot = hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick); 1109 if ((hpts->p_on_queue_cnt == 0) || 1110 (hpts->p_lasttick == hpts->p_curtick)) { 1111 /* 1112 * No time has yet passed, 1113 * or nothing to do. 1114 */ 1115 hpts->p_prev_slot = hpts->p_cur_slot; 1116 hpts->p_lasttick = hpts->p_curtick; 1117 goto no_run; 1118 } 1119 again: 1120 hpts->p_wheel_complete = 0; 1121 HPTS_MTX_ASSERT(hpts); 1122 slots_to_run = hpts_slots_diff(hpts->p_prev_slot, hpts->p_cur_slot); 1123 if (((hpts->p_curtick - hpts->p_lasttick) > 1124 ((NUM_OF_HPTSI_SLOTS-1) * HPTS_TICKS_PER_SLOT)) && 1125 (hpts->p_on_queue_cnt != 0)) { 1126 /* 1127 * Wheel wrap is occuring, basically we 1128 * are behind and the distance between 1129 * run's has spread so much it has exceeded 1130 * the time on the wheel (1.024 seconds). This 1131 * is ugly and should NOT be happening. We 1132 * need to run the entire wheel. We last processed 1133 * p_prev_slot, so that needs to be the last slot 1134 * we run. The next slot after that should be our 1135 * reserved first slot for new, and then starts 1136 * the running position. Now the problem is the 1137 * reserved "not to yet" place does not exist 1138 * and there may be inp's in there that need 1139 * running. We can merge those into the 1140 * first slot at the head. 1141 */ 1142 wrap_loop_cnt++; 1143 hpts->p_nxt_slot = hpts_slot(hpts->p_prev_slot, 1); 1144 hpts->p_runningslot = hpts_slot(hpts->p_prev_slot, 2); 1145 /* 1146 * Adjust p_cur_slot to be where we are starting from 1147 * hopefully we will catch up (fat chance if something 1148 * is broken this bad :( ) 1149 */ 1150 hpts->p_cur_slot = hpts->p_prev_slot; 1151 /* 1152 * The next slot has guys to run too, and that would 1153 * be where we would normally start, lets move them into 1154 * the next slot (p_prev_slot + 2) so that we will 1155 * run them, the extra 10usecs of late (by being 1156 * put behind) does not really matter in this situation. 1157 */ 1158 TAILQ_FOREACH(inp, &hpts->p_hptss[hpts->p_nxt_slot].head, 1159 inp_hpts) { 1160 MPASS(inp->inp_hptsslot == hpts->p_nxt_slot); 1161 MPASS(inp->inp_hpts_gencnt == 1162 hpts->p_hptss[hpts->p_nxt_slot].gencnt); 1163 MPASS(inp->inp_in_hpts == IHPTS_ONQUEUE); 1164 1165 /* 1166 * Update gencnt and nextslot accordingly to match 1167 * the new location. This is safe since it takes both 1168 * the INP lock and the pacer mutex to change the 1169 * inp_hptsslot and inp_hpts_gencnt. 1170 */ 1171 inp->inp_hpts_gencnt = 1172 hpts->p_hptss[hpts->p_runningslot].gencnt; 1173 inp->inp_hptsslot = hpts->p_runningslot; 1174 } 1175 TAILQ_CONCAT(&hpts->p_hptss[hpts->p_runningslot].head, 1176 &hpts->p_hptss[hpts->p_nxt_slot].head, inp_hpts); 1177 hpts->p_hptss[hpts->p_runningslot].count += 1178 hpts->p_hptss[hpts->p_nxt_slot].count; 1179 hpts->p_hptss[hpts->p_nxt_slot].count = 0; 1180 hpts->p_hptss[hpts->p_nxt_slot].gencnt++; 1181 slots_to_run = NUM_OF_HPTSI_SLOTS - 1; 1182 counter_u64_add(wheel_wrap, 1); 1183 } else { 1184 /* 1185 * Nxt slot is always one after p_runningslot though 1186 * its not used usually unless we are doing wheel wrap. 1187 */ 1188 hpts->p_nxt_slot = hpts->p_prev_slot; 1189 hpts->p_runningslot = hpts_slot(hpts->p_prev_slot, 1); 1190 } 1191 if (hpts->p_on_queue_cnt == 0) { 1192 goto no_one; 1193 } 1194 for (i = 0; i < slots_to_run; i++) { 1195 struct inpcb *inp, *ninp; 1196 TAILQ_HEAD(, inpcb) head = TAILQ_HEAD_INITIALIZER(head); 1197 struct hptsh *hptsh; 1198 uint32_t runningslot; 1199 1200 /* 1201 * Calculate our delay, if there are no extra ticks there 1202 * was not any (i.e. if slots_to_run == 1, no delay). 1203 */ 1204 hpts->p_delayed_by = (slots_to_run - (i + 1)) * 1205 HPTS_TICKS_PER_SLOT; 1206 1207 runningslot = hpts->p_runningslot; 1208 hptsh = &hpts->p_hptss[runningslot]; 1209 TAILQ_SWAP(&head, &hptsh->head, inpcb, inp_hpts); 1210 hpts->p_on_queue_cnt -= hptsh->count; 1211 hptsh->count = 0; 1212 hptsh->gencnt++; 1213 1214 HPTS_UNLOCK(hpts); 1215 1216 TAILQ_FOREACH_SAFE(inp, &head, inp_hpts, ninp) { 1217 bool set_cpu; 1218 1219 if (ninp != NULL) { 1220 /* We prefetch the next inp if possible */ 1221 kern_prefetch(ninp, &prefetch_ninp); 1222 prefetch_ninp = 1; 1223 } 1224 1225 /* For debugging */ 1226 if (seen_endpoint == 0) { 1227 seen_endpoint = 1; 1228 orig_exit_slot = slot_pos_of_endpoint = 1229 runningslot; 1230 } else if (completed_measure == 0) { 1231 /* Record the new position */ 1232 orig_exit_slot = runningslot; 1233 } 1234 1235 INP_WLOCK(inp); 1236 if (inp->inp_hpts_cpu_set == 0) { 1237 set_cpu = true; 1238 } else { 1239 set_cpu = false; 1240 } 1241 1242 if (__predict_false(inp->inp_in_hpts == IHPTS_MOVING)) { 1243 if (inp->inp_hptsslot == -1) { 1244 inp->inp_in_hpts = IHPTS_NONE; 1245 if (in_pcbrele_wlocked(inp) == false) 1246 INP_WUNLOCK(inp); 1247 } else { 1248 HPTS_LOCK(hpts); 1249 inp_hpts_insert(inp, hpts); 1250 HPTS_UNLOCK(hpts); 1251 INP_WUNLOCK(inp); 1252 } 1253 continue; 1254 } 1255 1256 MPASS(inp->inp_in_hpts == IHPTS_ONQUEUE); 1257 MPASS(!(inp->inp_flags & INP_DROPPED)); 1258 KASSERT(runningslot == inp->inp_hptsslot, 1259 ("Hpts:%p inp:%p slot mis-aligned %u vs %u", 1260 hpts, inp, runningslot, inp->inp_hptsslot)); 1261 1262 if (inp->inp_hpts_request) { 1263 /* 1264 * This guy is deferred out further in time 1265 * then our wheel had available on it. 1266 * Push him back on the wheel or run it 1267 * depending. 1268 */ 1269 uint32_t maxslots, last_slot, remaining_slots; 1270 1271 remaining_slots = slots_to_run - (i + 1); 1272 if (inp->inp_hpts_request > remaining_slots) { 1273 HPTS_LOCK(hpts); 1274 /* 1275 * How far out can we go? 1276 */ 1277 maxslots = max_slots_available(hpts, 1278 hpts->p_cur_slot, &last_slot); 1279 if (maxslots >= inp->inp_hpts_request) { 1280 /* We can place it finally to 1281 * be processed. */ 1282 inp->inp_hptsslot = hpts_slot( 1283 hpts->p_runningslot, 1284 inp->inp_hpts_request); 1285 inp->inp_hpts_request = 0; 1286 } else { 1287 /* Work off some more time */ 1288 inp->inp_hptsslot = last_slot; 1289 inp->inp_hpts_request -= 1290 maxslots; 1291 } 1292 inp_hpts_insert(inp, hpts); 1293 HPTS_UNLOCK(hpts); 1294 INP_WUNLOCK(inp); 1295 continue; 1296 } 1297 inp->inp_hpts_request = 0; 1298 /* Fall through we will so do it now */ 1299 } 1300 1301 inp_hpts_release(inp); 1302 tp = intotcpcb(inp); 1303 MPASS(tp); 1304 if (set_cpu) { 1305 /* 1306 * Setup so the next time we will move to 1307 * the right CPU. This should be a rare 1308 * event. It will sometimes happens when we 1309 * are the client side (usually not the 1310 * server). Somehow tcp_output() gets called 1311 * before the tcp_do_segment() sets the 1312 * intial state. This means the r_cpu and 1313 * r_hpts_cpu is 0. We get on the hpts, and 1314 * then tcp_input() gets called setting up 1315 * the r_cpu to the correct value. The hpts 1316 * goes off and sees the mis-match. We 1317 * simply correct it here and the CPU will 1318 * switch to the new hpts nextime the tcb 1319 * gets added to the hpts (not this one) 1320 * :-) 1321 */ 1322 tcp_set_hpts(inp); 1323 } 1324 CURVNET_SET(inp->inp_vnet); 1325 /* Lets do any logging that we might want to */ 1326 if (hpts_does_tp_logging && tcp_bblogging_on(tp)) { 1327 tcp_hpts_log(hpts, tp, &tv, slots_to_run, i, from_callout); 1328 } 1329 1330 if (tp->t_fb_ptr != NULL) { 1331 kern_prefetch(tp->t_fb_ptr, &did_prefetch); 1332 did_prefetch = 1; 1333 } 1334 if ((inp->inp_flags2 & INP_SUPPORTS_MBUFQ) && tp->t_in_pkt) { 1335 error = (*tp->t_fb->tfb_do_queued_segments)(tp, 0); 1336 if (error) { 1337 /* The input killed the connection */ 1338 goto skip_pacing; 1339 } 1340 } 1341 inp->inp_hpts_calls = 1; 1342 error = tcp_output(tp); 1343 if (error < 0) 1344 goto skip_pacing; 1345 inp->inp_hpts_calls = 0; 1346 if (ninp) { 1347 /* 1348 * If we have a nxt inp, see if we can 1349 * prefetch it. Note this may seem 1350 * "risky" since we have no locks (other 1351 * than the previous inp) and there no 1352 * assurance that ninp was not pulled while 1353 * we were processing inp and freed. If this 1354 * occurred it could mean that either: 1355 * 1356 * a) Its NULL (which is fine we won't go 1357 * here) <or> b) Its valid (which is cool we 1358 * will prefetch it) <or> c) The inp got 1359 * freed back to the slab which was 1360 * reallocated. Then the piece of memory was 1361 * re-used and something else (not an 1362 * address) is in inp_ppcb. If that occurs 1363 * we don't crash, but take a TLB shootdown 1364 * performance hit (same as if it was NULL 1365 * and we tried to pre-fetch it). 1366 * 1367 * Considering that the likelyhood of <c> is 1368 * quite rare we will take a risk on doing 1369 * this. If performance drops after testing 1370 * we can always take this out. NB: the 1371 * kern_prefetch on amd64 actually has 1372 * protection against a bad address now via 1373 * the DMAP_() tests. This will prevent the 1374 * TLB hit, and instead if <c> occurs just 1375 * cause us to load cache with a useless 1376 * address (to us). 1377 * 1378 * XXXGL: with tcpcb == inpcb, I'm unsure this 1379 * prefetch is still correct and useful. 1380 */ 1381 kern_prefetch(ninp, &prefetch_tp); 1382 prefetch_tp = 1; 1383 } 1384 INP_WUNLOCK(inp); 1385 skip_pacing: 1386 CURVNET_RESTORE(); 1387 } 1388 if (seen_endpoint) { 1389 /* 1390 * We now have a accurate distance between 1391 * slot_pos_of_endpoint <-> orig_exit_slot 1392 * to tell us how late we were, orig_exit_slot 1393 * is where we calculated the end of our cycle to 1394 * be when we first entered. 1395 */ 1396 completed_measure = 1; 1397 } 1398 HPTS_LOCK(hpts); 1399 hpts->p_runningslot++; 1400 if (hpts->p_runningslot >= NUM_OF_HPTSI_SLOTS) { 1401 hpts->p_runningslot = 0; 1402 } 1403 } 1404 no_one: 1405 HPTS_MTX_ASSERT(hpts); 1406 hpts->p_delayed_by = 0; 1407 /* 1408 * Check to see if we took an excess amount of time and need to run 1409 * more ticks (if we did not hit eno-bufs). 1410 */ 1411 hpts->p_prev_slot = hpts->p_cur_slot; 1412 hpts->p_lasttick = hpts->p_curtick; 1413 if ((from_callout == 0) || (loop_cnt > max_pacer_loops)) { 1414 /* 1415 * Something is serious slow we have 1416 * looped through processing the wheel 1417 * and by the time we cleared the 1418 * needs to run max_pacer_loops time 1419 * we still needed to run. That means 1420 * the system is hopelessly behind and 1421 * can never catch up :( 1422 * 1423 * We will just lie to this thread 1424 * and let it thing p_curtick is 1425 * correct. When it next awakens 1426 * it will find itself further behind. 1427 */ 1428 if (from_callout) 1429 counter_u64_add(hpts_hopelessly_behind, 1); 1430 goto no_run; 1431 } 1432 hpts->p_curtick = tcp_gethptstick(&tv); 1433 hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick); 1434 if (seen_endpoint == 0) { 1435 /* We saw no endpoint but we may be looping */ 1436 orig_exit_slot = hpts->p_cur_slot; 1437 } 1438 if ((wrap_loop_cnt < 2) && 1439 (hpts->p_lasttick != hpts->p_curtick)) { 1440 counter_u64_add(hpts_loops, 1); 1441 loop_cnt++; 1442 goto again; 1443 } 1444 no_run: 1445 cts_last_ran[hpts->p_num] = tcp_tv_to_usectick(&tv); 1446 /* 1447 * Set flag to tell that we are done for 1448 * any slot input that happens during 1449 * input. 1450 */ 1451 hpts->p_wheel_complete = 1; 1452 /* 1453 * Now did we spend too long running input and need to run more ticks? 1454 * Note that if wrap_loop_cnt < 2 then we should have the conditions 1455 * in the KASSERT's true. But if the wheel is behind i.e. wrap_loop_cnt 1456 * is greater than 2, then the condtion most likely are *not* true. 1457 * Also if we are called not from the callout, we don't run the wheel 1458 * multiple times so the slots may not align either. 1459 */ 1460 KASSERT(((hpts->p_prev_slot == hpts->p_cur_slot) || 1461 (wrap_loop_cnt >= 2) || (from_callout == 0)), 1462 ("H:%p p_prev_slot:%u not equal to p_cur_slot:%u", hpts, 1463 hpts->p_prev_slot, hpts->p_cur_slot)); 1464 KASSERT(((hpts->p_lasttick == hpts->p_curtick) 1465 || (wrap_loop_cnt >= 2) || (from_callout == 0)), 1466 ("H:%p p_lasttick:%u not equal to p_curtick:%u", hpts, 1467 hpts->p_lasttick, hpts->p_curtick)); 1468 if (from_callout && (hpts->p_lasttick != hpts->p_curtick)) { 1469 hpts->p_curtick = tcp_gethptstick(&tv); 1470 counter_u64_add(hpts_loops, 1); 1471 hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick); 1472 goto again; 1473 } 1474 1475 if (from_callout){ 1476 tcp_hpts_set_max_sleep(hpts, wrap_loop_cnt); 1477 } 1478 if (seen_endpoint) 1479 return(hpts_slots_diff(slot_pos_of_endpoint, orig_exit_slot)); 1480 else 1481 return (0); 1482 } 1483 1484 void 1485 __tcp_set_hpts(struct inpcb *inp, int32_t line) 1486 { 1487 struct tcp_hpts_entry *hpts; 1488 int failed; 1489 1490 INP_WLOCK_ASSERT(inp); 1491 hpts = tcp_hpts_lock(inp); 1492 if ((inp->inp_in_hpts == 0) && 1493 (inp->inp_hpts_cpu_set == 0)) { 1494 inp->inp_hpts_cpu = hpts_cpuid(inp, &failed); 1495 if (failed == 0) 1496 inp->inp_hpts_cpu_set = 1; 1497 } 1498 mtx_unlock(&hpts->p_mtx); 1499 } 1500 1501 static void 1502 __tcp_run_hpts(struct tcp_hpts_entry *hpts) 1503 { 1504 int ticks_ran; 1505 1506 if (hpts->p_hpts_active) { 1507 /* Already active */ 1508 return; 1509 } 1510 if (mtx_trylock(&hpts->p_mtx) == 0) { 1511 /* Someone else got the lock */ 1512 return; 1513 } 1514 if (hpts->p_hpts_active) 1515 goto out_with_mtx; 1516 hpts->syscall_cnt++; 1517 counter_u64_add(hpts_direct_call, 1); 1518 hpts->p_hpts_active = 1; 1519 ticks_ran = tcp_hptsi(hpts, 0); 1520 /* We may want to adjust the sleep values here */ 1521 if (hpts->p_on_queue_cnt >= conn_cnt_thresh) { 1522 if (ticks_ran > ticks_indicate_less_sleep) { 1523 struct timeval tv; 1524 sbintime_t sb; 1525 1526 hpts->p_mysleep.tv_usec /= 2; 1527 if (hpts->p_mysleep.tv_usec < dynamic_min_sleep) 1528 hpts->p_mysleep.tv_usec = dynamic_min_sleep; 1529 /* Reschedule with new to value */ 1530 tcp_hpts_set_max_sleep(hpts, 0); 1531 tv.tv_usec = hpts->p_hpts_sleep_time * HPTS_TICKS_PER_SLOT; 1532 /* Validate its in the right ranges */ 1533 if (tv.tv_usec < hpts->p_mysleep.tv_usec) { 1534 hpts->overidden_sleep = tv.tv_usec; 1535 tv.tv_usec = hpts->p_mysleep.tv_usec; 1536 } else if (tv.tv_usec > dynamic_max_sleep) { 1537 /* Lets not let sleep get above this value */ 1538 hpts->overidden_sleep = tv.tv_usec; 1539 tv.tv_usec = dynamic_max_sleep; 1540 } 1541 /* 1542 * In this mode the timer is a backstop to 1543 * all the userret/lro_flushes so we use 1544 * the dynamic value and set the on_min_sleep 1545 * flag so we will not be awoken. 1546 */ 1547 sb = tvtosbt(tv); 1548 /* Store off to make visible the actual sleep time */ 1549 hpts->sleeping = tv.tv_usec; 1550 callout_reset_sbt_on(&hpts->co, sb, 0, 1551 hpts_timeout_swi, hpts, hpts->p_cpu, 1552 (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision))); 1553 } else if (ticks_ran < ticks_indicate_more_sleep) { 1554 /* For the further sleep, don't reschedule hpts */ 1555 hpts->p_mysleep.tv_usec *= 2; 1556 if (hpts->p_mysleep.tv_usec > dynamic_max_sleep) 1557 hpts->p_mysleep.tv_usec = dynamic_max_sleep; 1558 } 1559 hpts->p_on_min_sleep = 1; 1560 } 1561 hpts->p_hpts_active = 0; 1562 out_with_mtx: 1563 HPTS_MTX_ASSERT(hpts); 1564 mtx_unlock(&hpts->p_mtx); 1565 } 1566 1567 static struct tcp_hpts_entry * 1568 tcp_choose_hpts_to_run(void) 1569 { 1570 int i, oldest_idx, start, end; 1571 uint32_t cts, time_since_ran, calc; 1572 1573 cts = tcp_get_usecs(NULL); 1574 time_since_ran = 0; 1575 /* Default is all one group */ 1576 start = 0; 1577 end = tcp_pace.rp_num_hptss; 1578 /* 1579 * If we have more than one L3 group figure out which one 1580 * this CPU is in. 1581 */ 1582 if (tcp_pace.grp_cnt > 1) { 1583 for (i = 0; i < tcp_pace.grp_cnt; i++) { 1584 if (CPU_ISSET(curcpu, &tcp_pace.grps[i]->cg_mask)) { 1585 start = tcp_pace.grps[i]->cg_first; 1586 end = (tcp_pace.grps[i]->cg_last + 1); 1587 break; 1588 } 1589 } 1590 } 1591 oldest_idx = -1; 1592 for (i = start; i < end; i++) { 1593 if (TSTMP_GT(cts, cts_last_ran[i])) 1594 calc = cts - cts_last_ran[i]; 1595 else 1596 calc = 0; 1597 if (calc > time_since_ran) { 1598 oldest_idx = i; 1599 time_since_ran = calc; 1600 } 1601 } 1602 if (oldest_idx >= 0) 1603 return(tcp_pace.rp_ent[oldest_idx]); 1604 else 1605 return(tcp_pace.rp_ent[(curcpu % tcp_pace.rp_num_hptss)]); 1606 } 1607 1608 1609 void 1610 tcp_run_hpts(void) 1611 { 1612 static struct tcp_hpts_entry *hpts; 1613 struct epoch_tracker et; 1614 1615 NET_EPOCH_ENTER(et); 1616 hpts = tcp_choose_hpts_to_run(); 1617 __tcp_run_hpts(hpts); 1618 NET_EPOCH_EXIT(et); 1619 } 1620 1621 1622 static void 1623 tcp_hpts_thread(void *ctx) 1624 { 1625 struct tcp_hpts_entry *hpts; 1626 struct epoch_tracker et; 1627 struct timeval tv; 1628 sbintime_t sb; 1629 int ticks_ran; 1630 1631 hpts = (struct tcp_hpts_entry *)ctx; 1632 mtx_lock(&hpts->p_mtx); 1633 if (hpts->p_direct_wake) { 1634 /* Signaled by input or output with low occupancy count. */ 1635 callout_stop(&hpts->co); 1636 counter_u64_add(hpts_direct_awakening, 1); 1637 } else { 1638 /* Timed out, the normal case. */ 1639 counter_u64_add(hpts_wake_timeout, 1); 1640 if (callout_pending(&hpts->co) || 1641 !callout_active(&hpts->co)) { 1642 mtx_unlock(&hpts->p_mtx); 1643 return; 1644 } 1645 } 1646 callout_deactivate(&hpts->co); 1647 hpts->p_hpts_wake_scheduled = 0; 1648 NET_EPOCH_ENTER(et); 1649 if (hpts->p_hpts_active) { 1650 /* 1651 * We are active already. This means that a syscall 1652 * trap or LRO is running in behalf of hpts. In that case 1653 * we need to double our timeout since there seems to be 1654 * enough activity in the system that we don't need to 1655 * run as often (if we were not directly woken). 1656 */ 1657 if (hpts->p_direct_wake == 0) { 1658 counter_u64_add(hpts_back_tosleep, 1); 1659 if (hpts->p_on_queue_cnt >= conn_cnt_thresh) { 1660 hpts->p_mysleep.tv_usec *= 2; 1661 if (hpts->p_mysleep.tv_usec > dynamic_max_sleep) 1662 hpts->p_mysleep.tv_usec = dynamic_max_sleep; 1663 tv.tv_usec = hpts->p_mysleep.tv_usec; 1664 hpts->p_on_min_sleep = 1; 1665 } else { 1666 /* 1667 * Here we have low count on the wheel, but 1668 * somehow we still collided with one of the 1669 * connections. Lets go back to sleep for a 1670 * min sleep time, but clear the flag so we 1671 * can be awoken by insert. 1672 */ 1673 hpts->p_on_min_sleep = 0; 1674 tv.tv_usec = tcp_min_hptsi_time; 1675 } 1676 } else { 1677 /* 1678 * Directly woken most likely to reset the 1679 * callout time. 1680 */ 1681 tv.tv_sec = 0; 1682 tv.tv_usec = hpts->p_mysleep.tv_usec; 1683 } 1684 goto back_to_sleep; 1685 } 1686 hpts->sleeping = 0; 1687 hpts->p_hpts_active = 1; 1688 ticks_ran = tcp_hptsi(hpts, 1); 1689 tv.tv_sec = 0; 1690 tv.tv_usec = hpts->p_hpts_sleep_time * HPTS_TICKS_PER_SLOT; 1691 if (hpts->p_on_queue_cnt >= conn_cnt_thresh) { 1692 if(hpts->p_direct_wake == 0) { 1693 /* 1694 * Only adjust sleep time if we were 1695 * called from the callout i.e. direct_wake == 0. 1696 */ 1697 if (ticks_ran < ticks_indicate_more_sleep) { 1698 hpts->p_mysleep.tv_usec *= 2; 1699 if (hpts->p_mysleep.tv_usec > dynamic_max_sleep) 1700 hpts->p_mysleep.tv_usec = dynamic_max_sleep; 1701 } else if (ticks_ran > ticks_indicate_less_sleep) { 1702 hpts->p_mysleep.tv_usec /= 2; 1703 if (hpts->p_mysleep.tv_usec < dynamic_min_sleep) 1704 hpts->p_mysleep.tv_usec = dynamic_min_sleep; 1705 } 1706 } 1707 if (tv.tv_usec < hpts->p_mysleep.tv_usec) { 1708 hpts->overidden_sleep = tv.tv_usec; 1709 tv.tv_usec = hpts->p_mysleep.tv_usec; 1710 } else if (tv.tv_usec > dynamic_max_sleep) { 1711 /* Lets not let sleep get above this value */ 1712 hpts->overidden_sleep = tv.tv_usec; 1713 tv.tv_usec = dynamic_max_sleep; 1714 } 1715 /* 1716 * In this mode the timer is a backstop to 1717 * all the userret/lro_flushes so we use 1718 * the dynamic value and set the on_min_sleep 1719 * flag so we will not be awoken. 1720 */ 1721 hpts->p_on_min_sleep = 1; 1722 } else if (hpts->p_on_queue_cnt == 0) { 1723 /* 1724 * No one on the wheel, please wake us up 1725 * if you insert on the wheel. 1726 */ 1727 hpts->p_on_min_sleep = 0; 1728 hpts->overidden_sleep = 0; 1729 } else { 1730 /* 1731 * We hit here when we have a low number of 1732 * clients on the wheel (our else clause). 1733 * We may need to go on min sleep, if we set 1734 * the flag we will not be awoken if someone 1735 * is inserted ahead of us. Clearing the flag 1736 * means we can be awoken. This is "old mode" 1737 * where the timer is what runs hpts mainly. 1738 */ 1739 if (tv.tv_usec < tcp_min_hptsi_time) { 1740 /* 1741 * Yes on min sleep, which means 1742 * we cannot be awoken. 1743 */ 1744 hpts->overidden_sleep = tv.tv_usec; 1745 tv.tv_usec = tcp_min_hptsi_time; 1746 hpts->p_on_min_sleep = 1; 1747 } else { 1748 /* Clear the min sleep flag */ 1749 hpts->overidden_sleep = 0; 1750 hpts->p_on_min_sleep = 0; 1751 } 1752 } 1753 HPTS_MTX_ASSERT(hpts); 1754 hpts->p_hpts_active = 0; 1755 back_to_sleep: 1756 hpts->p_direct_wake = 0; 1757 sb = tvtosbt(tv); 1758 /* Store off to make visible the actual sleep time */ 1759 hpts->sleeping = tv.tv_usec; 1760 callout_reset_sbt_on(&hpts->co, sb, 0, 1761 hpts_timeout_swi, hpts, hpts->p_cpu, 1762 (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision))); 1763 NET_EPOCH_EXIT(et); 1764 mtx_unlock(&hpts->p_mtx); 1765 } 1766 1767 #undef timersub 1768 1769 static int32_t 1770 hpts_count_level(struct cpu_group *cg) 1771 { 1772 int32_t count_l3, i; 1773 1774 count_l3 = 0; 1775 if (cg->cg_level == CG_SHARE_L3) 1776 count_l3++; 1777 /* Walk all the children looking for L3 */ 1778 for (i = 0; i < cg->cg_children; i++) { 1779 count_l3 += hpts_count_level(&cg->cg_child[i]); 1780 } 1781 return (count_l3); 1782 } 1783 1784 static void 1785 hpts_gather_grps(struct cpu_group **grps, int32_t *at, int32_t max, struct cpu_group *cg) 1786 { 1787 int32_t idx, i; 1788 1789 idx = *at; 1790 if (cg->cg_level == CG_SHARE_L3) { 1791 grps[idx] = cg; 1792 idx++; 1793 if (idx == max) { 1794 *at = idx; 1795 return; 1796 } 1797 } 1798 *at = idx; 1799 /* Walk all the children looking for L3 */ 1800 for (i = 0; i < cg->cg_children; i++) { 1801 hpts_gather_grps(grps, at, max, &cg->cg_child[i]); 1802 } 1803 } 1804 1805 static void 1806 tcp_init_hptsi(void *st) 1807 { 1808 struct cpu_group *cpu_top; 1809 int32_t error __diagused; 1810 int32_t i, j, bound = 0, created = 0; 1811 size_t sz, asz; 1812 struct timeval tv; 1813 sbintime_t sb; 1814 struct tcp_hpts_entry *hpts; 1815 struct pcpu *pc; 1816 char unit[16]; 1817 uint32_t ncpus = mp_ncpus ? mp_ncpus : MAXCPU; 1818 int count, domain; 1819 1820 #ifdef SMP 1821 cpu_top = smp_topo(); 1822 #else 1823 cpu_top = NULL; 1824 #endif 1825 tcp_pace.rp_num_hptss = ncpus; 1826 hpts_hopelessly_behind = counter_u64_alloc(M_WAITOK); 1827 hpts_loops = counter_u64_alloc(M_WAITOK); 1828 back_tosleep = counter_u64_alloc(M_WAITOK); 1829 combined_wheel_wrap = counter_u64_alloc(M_WAITOK); 1830 wheel_wrap = counter_u64_alloc(M_WAITOK); 1831 hpts_wake_timeout = counter_u64_alloc(M_WAITOK); 1832 hpts_direct_awakening = counter_u64_alloc(M_WAITOK); 1833 hpts_back_tosleep = counter_u64_alloc(M_WAITOK); 1834 hpts_direct_call = counter_u64_alloc(M_WAITOK); 1835 cpu_uses_flowid = counter_u64_alloc(M_WAITOK); 1836 cpu_uses_random = counter_u64_alloc(M_WAITOK); 1837 1838 sz = (tcp_pace.rp_num_hptss * sizeof(struct tcp_hpts_entry *)); 1839 tcp_pace.rp_ent = malloc(sz, M_TCPHPTS, M_WAITOK | M_ZERO); 1840 sz = (sizeof(uint32_t) * tcp_pace.rp_num_hptss); 1841 cts_last_ran = malloc(sz, M_TCPHPTS, M_WAITOK); 1842 tcp_pace.grp_cnt = 0; 1843 if (cpu_top == NULL) { 1844 tcp_pace.grp_cnt = 1; 1845 } else { 1846 /* Find out how many cache level 3 domains we have */ 1847 count = 0; 1848 tcp_pace.grp_cnt = hpts_count_level(cpu_top); 1849 if (tcp_pace.grp_cnt == 0) { 1850 tcp_pace.grp_cnt = 1; 1851 } 1852 sz = (tcp_pace.grp_cnt * sizeof(struct cpu_group *)); 1853 tcp_pace.grps = malloc(sz, M_TCPHPTS, M_WAITOK); 1854 /* Now populate the groups */ 1855 if (tcp_pace.grp_cnt == 1) { 1856 /* 1857 * All we need is the top level all cpu's are in 1858 * the same cache so when we use grp[0]->cg_mask 1859 * with the cg_first <-> cg_last it will include 1860 * all cpu's in it. The level here is probably 1861 * zero which is ok. 1862 */ 1863 tcp_pace.grps[0] = cpu_top; 1864 } else { 1865 /* 1866 * Here we must find all the level three cache domains 1867 * and setup our pointers to them. 1868 */ 1869 count = 0; 1870 hpts_gather_grps(tcp_pace.grps, &count, tcp_pace.grp_cnt, cpu_top); 1871 } 1872 } 1873 asz = sizeof(struct hptsh) * NUM_OF_HPTSI_SLOTS; 1874 for (i = 0; i < tcp_pace.rp_num_hptss; i++) { 1875 tcp_pace.rp_ent[i] = malloc(sizeof(struct tcp_hpts_entry), 1876 M_TCPHPTS, M_WAITOK | M_ZERO); 1877 tcp_pace.rp_ent[i]->p_hptss = malloc(asz, M_TCPHPTS, M_WAITOK); 1878 hpts = tcp_pace.rp_ent[i]; 1879 /* 1880 * Init all the hpts structures that are not specifically 1881 * zero'd by the allocations. Also lets attach them to the 1882 * appropriate sysctl block as well. 1883 */ 1884 mtx_init(&hpts->p_mtx, "tcp_hpts_lck", 1885 "hpts", MTX_DEF | MTX_DUPOK); 1886 for (j = 0; j < NUM_OF_HPTSI_SLOTS; j++) { 1887 TAILQ_INIT(&hpts->p_hptss[j].head); 1888 hpts->p_hptss[j].count = 0; 1889 hpts->p_hptss[j].gencnt = 0; 1890 } 1891 sysctl_ctx_init(&hpts->hpts_ctx); 1892 sprintf(unit, "%d", i); 1893 hpts->hpts_root = SYSCTL_ADD_NODE(&hpts->hpts_ctx, 1894 SYSCTL_STATIC_CHILDREN(_net_inet_tcp_hpts), 1895 OID_AUTO, 1896 unit, 1897 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 1898 ""); 1899 SYSCTL_ADD_INT(&hpts->hpts_ctx, 1900 SYSCTL_CHILDREN(hpts->hpts_root), 1901 OID_AUTO, "out_qcnt", CTLFLAG_RD, 1902 &hpts->p_on_queue_cnt, 0, 1903 "Count TCB's awaiting output processing"); 1904 SYSCTL_ADD_U16(&hpts->hpts_ctx, 1905 SYSCTL_CHILDREN(hpts->hpts_root), 1906 OID_AUTO, "active", CTLFLAG_RD, 1907 &hpts->p_hpts_active, 0, 1908 "Is the hpts active"); 1909 SYSCTL_ADD_UINT(&hpts->hpts_ctx, 1910 SYSCTL_CHILDREN(hpts->hpts_root), 1911 OID_AUTO, "curslot", CTLFLAG_RD, 1912 &hpts->p_cur_slot, 0, 1913 "What the current running pacers goal"); 1914 SYSCTL_ADD_UINT(&hpts->hpts_ctx, 1915 SYSCTL_CHILDREN(hpts->hpts_root), 1916 OID_AUTO, "runtick", CTLFLAG_RD, 1917 &hpts->p_runningslot, 0, 1918 "What the running pacers current slot is"); 1919 SYSCTL_ADD_UINT(&hpts->hpts_ctx, 1920 SYSCTL_CHILDREN(hpts->hpts_root), 1921 OID_AUTO, "curtick", CTLFLAG_RD, 1922 &hpts->p_curtick, 0, 1923 "What the running pacers last tick mapped to the wheel was"); 1924 SYSCTL_ADD_UINT(&hpts->hpts_ctx, 1925 SYSCTL_CHILDREN(hpts->hpts_root), 1926 OID_AUTO, "lastran", CTLFLAG_RD, 1927 &cts_last_ran[i], 0, 1928 "The last usec tick that this hpts ran"); 1929 SYSCTL_ADD_LONG(&hpts->hpts_ctx, 1930 SYSCTL_CHILDREN(hpts->hpts_root), 1931 OID_AUTO, "cur_min_sleep", CTLFLAG_RD, 1932 &hpts->p_mysleep.tv_usec, 1933 "What the running pacers is using for p_mysleep.tv_usec"); 1934 SYSCTL_ADD_U64(&hpts->hpts_ctx, 1935 SYSCTL_CHILDREN(hpts->hpts_root), 1936 OID_AUTO, "now_sleeping", CTLFLAG_RD, 1937 &hpts->sleeping, 0, 1938 "What the running pacers is actually sleeping for"); 1939 SYSCTL_ADD_U64(&hpts->hpts_ctx, 1940 SYSCTL_CHILDREN(hpts->hpts_root), 1941 OID_AUTO, "syscall_cnt", CTLFLAG_RD, 1942 &hpts->syscall_cnt, 0, 1943 "How many times we had syscalls on this hpts"); 1944 1945 hpts->p_hpts_sleep_time = hpts_sleep_max; 1946 hpts->p_num = i; 1947 hpts->p_curtick = tcp_gethptstick(&tv); 1948 cts_last_ran[i] = tcp_tv_to_usectick(&tv); 1949 hpts->p_prev_slot = hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick); 1950 hpts->p_cpu = 0xffff; 1951 hpts->p_nxt_slot = hpts_slot(hpts->p_cur_slot, 1); 1952 callout_init(&hpts->co, 1); 1953 } 1954 /* Don't try to bind to NUMA domains if we don't have any */ 1955 if (vm_ndomains == 1 && tcp_bind_threads == 2) 1956 tcp_bind_threads = 0; 1957 1958 /* 1959 * Now lets start ithreads to handle the hptss. 1960 */ 1961 for (i = 0; i < tcp_pace.rp_num_hptss; i++) { 1962 hpts = tcp_pace.rp_ent[i]; 1963 hpts->p_cpu = i; 1964 1965 error = swi_add(&hpts->ie, "hpts", 1966 tcp_hpts_thread, (void *)hpts, 1967 SWI_NET, INTR_MPSAFE, &hpts->ie_cookie); 1968 KASSERT(error == 0, 1969 ("Can't add hpts:%p i:%d err:%d", 1970 hpts, i, error)); 1971 created++; 1972 hpts->p_mysleep.tv_sec = 0; 1973 hpts->p_mysleep.tv_usec = tcp_min_hptsi_time; 1974 if (tcp_bind_threads == 1) { 1975 if (intr_event_bind(hpts->ie, i) == 0) 1976 bound++; 1977 } else if (tcp_bind_threads == 2) { 1978 /* Find the group for this CPU (i) and bind into it */ 1979 for (j = 0; j < tcp_pace.grp_cnt; j++) { 1980 if (CPU_ISSET(i, &tcp_pace.grps[j]->cg_mask)) { 1981 if (intr_event_bind_ithread_cpuset(hpts->ie, 1982 &tcp_pace.grps[j]->cg_mask) == 0) { 1983 bound++; 1984 pc = pcpu_find(i); 1985 domain = pc->pc_domain; 1986 count = hpts_domains[domain].count; 1987 hpts_domains[domain].cpu[count] = i; 1988 hpts_domains[domain].count++; 1989 break; 1990 } 1991 } 1992 } 1993 } 1994 tv.tv_sec = 0; 1995 tv.tv_usec = hpts->p_hpts_sleep_time * HPTS_TICKS_PER_SLOT; 1996 hpts->sleeping = tv.tv_usec; 1997 sb = tvtosbt(tv); 1998 callout_reset_sbt_on(&hpts->co, sb, 0, 1999 hpts_timeout_swi, hpts, hpts->p_cpu, 2000 (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision))); 2001 } 2002 /* 2003 * If we somehow have an empty domain, fall back to choosing 2004 * among all htps threads. 2005 */ 2006 for (i = 0; i < vm_ndomains; i++) { 2007 if (hpts_domains[i].count == 0) { 2008 tcp_bind_threads = 0; 2009 break; 2010 } 2011 } 2012 printf("TCP Hpts created %d swi interrupt threads and bound %d to %s\n", 2013 created, bound, 2014 tcp_bind_threads == 2 ? "NUMA domains" : "cpus"); 2015 #ifdef INVARIANTS 2016 printf("HPTS is in INVARIANT mode!!\n"); 2017 #endif 2018 } 2019 2020 SYSINIT(tcphptsi, SI_SUB_SOFTINTR, SI_ORDER_ANY, tcp_init_hptsi, NULL); 2021 MODULE_VERSION(tcphpts, 1); 2022