xref: /freebsd/sys/netinet/tcp_hpts.c (revision 182b21d4627655ff95f9ecd8a8e1066184391f16)
1 /*-
2  * Copyright (c) 2016-2018 Netflix, Inc.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  * 1. Redistributions of source code must retain the above copyright
8  *    notice, this list of conditions and the following disclaimer.
9  * 2. Redistributions in binary form must reproduce the above copyright
10  *    notice, this list of conditions and the following disclaimer in the
11  *    documentation and/or other materials provided with the distribution.
12  *
13  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
14  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
17  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23  * SUCH DAMAGE.
24  *
25  */
26 #include <sys/cdefs.h>
27 __FBSDID("$FreeBSD$");
28 
29 #include "opt_inet.h"
30 #include "opt_inet6.h"
31 #include "opt_rss.h"
32 
33 /**
34  * Some notes about usage.
35  *
36  * The tcp_hpts system is designed to provide a high precision timer
37  * system for tcp. Its main purpose is to provide a mechanism for
38  * pacing packets out onto the wire. It can be used in two ways
39  * by a given TCP stack (and those two methods can be used simultaneously).
40  *
41  * First, and probably the main thing its used by Rack and BBR, it can
42  * be used to call tcp_output() of a transport stack at some time in the future.
43  * The normal way this is done is that tcp_output() of the stack schedules
44  * itself to be called again by calling tcp_hpts_insert(tcpcb, slot). The
45  * slot is the time from now that the stack wants to be called but it
46  * must be converted to tcp_hpts's notion of slot. This is done with
47  * one of the macros HPTS_MS_TO_SLOTS or HPTS_USEC_TO_SLOTS. So a typical
48  * call from the tcp_output() routine might look like:
49  *
50  * tcp_hpts_insert(tp, HPTS_USEC_TO_SLOTS(550));
51  *
52  * The above would schedule tcp_ouput() to be called in 550 useconds.
53  * Note that if using this mechanism the stack will want to add near
54  * its top a check to prevent unwanted calls (from user land or the
55  * arrival of incoming ack's). So it would add something like:
56  *
57  * if (tcp_in_hpts(inp))
58  *    return;
59  *
60  * to prevent output processing until the time alotted has gone by.
61  * Of course this is a bare bones example and the stack will probably
62  * have more consideration then just the above.
63  *
64  * In order to run input queued segments from the HPTS context the
65  * tcp stack must define an input function for
66  * tfb_do_queued_segments(). This function understands
67  * how to dequeue a array of packets that were input and
68  * knows how to call the correct processing routine.
69  *
70  * Locking in this is important as well so most likely the
71  * stack will need to define the tfb_do_segment_nounlock()
72  * splitting tfb_do_segment() into two parts. The main processing
73  * part that does not unlock the INP and returns a value of 1 or 0.
74  * It returns 0 if all is well and the lock was not released. It
75  * returns 1 if we had to destroy the TCB (a reset received etc).
76  * The remains of tfb_do_segment() then become just a simple call
77  * to the tfb_do_segment_nounlock() function and check the return
78  * code and possibly unlock.
79  *
80  * The stack must also set the flag on the INP that it supports this
81  * feature i.e. INP_SUPPORTS_MBUFQ. The LRO code recoginizes
82  * this flag as well and will queue packets when it is set.
83  * There are other flags as well INP_MBUF_QUEUE_READY and
84  * INP_DONT_SACK_QUEUE. The first flag tells the LRO code
85  * that we are in the pacer for output so there is no
86  * need to wake up the hpts system to get immediate
87  * input. The second tells the LRO code that its okay
88  * if a SACK arrives you can still defer input and let
89  * the current hpts timer run (this is usually set when
90  * a rack timer is up so we know SACK's are happening
91  * on the connection already and don't want to wakeup yet).
92  *
93  * There is a common functions within the rack_bbr_common code
94  * version i.e. ctf_do_queued_segments(). This function
95  * knows how to take the input queue of packets from
96  * tp->t_in_pkts and process them digging out
97  * all the arguments, calling any bpf tap and
98  * calling into tfb_do_segment_nounlock(). The common
99  * function (ctf_do_queued_segments())  requires that
100  * you have defined the tfb_do_segment_nounlock() as
101  * described above.
102  */
103 
104 #include <sys/param.h>
105 #include <sys/bus.h>
106 #include <sys/interrupt.h>
107 #include <sys/module.h>
108 #include <sys/kernel.h>
109 #include <sys/hhook.h>
110 #include <sys/malloc.h>
111 #include <sys/mbuf.h>
112 #include <sys/proc.h>		/* for proc0 declaration */
113 #include <sys/socket.h>
114 #include <sys/socketvar.h>
115 #include <sys/sysctl.h>
116 #include <sys/systm.h>
117 #include <sys/refcount.h>
118 #include <sys/sched.h>
119 #include <sys/queue.h>
120 #include <sys/smp.h>
121 #include <sys/counter.h>
122 #include <sys/time.h>
123 #include <sys/kthread.h>
124 #include <sys/kern_prefetch.h>
125 
126 #include <vm/uma.h>
127 #include <vm/vm.h>
128 
129 #include <net/route.h>
130 #include <net/vnet.h>
131 
132 #ifdef RSS
133 #include <net/netisr.h>
134 #include <net/rss_config.h>
135 #endif
136 
137 #define TCPSTATES		/* for logging */
138 
139 #include <netinet/in.h>
140 #include <netinet/in_kdtrace.h>
141 #include <netinet/in_pcb.h>
142 #include <netinet/ip.h>
143 #include <netinet/ip_icmp.h>	/* required for icmp_var.h */
144 #include <netinet/icmp_var.h>	/* for ICMP_BANDLIM */
145 #include <netinet/ip_var.h>
146 #include <netinet/ip6.h>
147 #include <netinet6/in6_pcb.h>
148 #include <netinet6/ip6_var.h>
149 #include <netinet/tcp.h>
150 #include <netinet/tcp_fsm.h>
151 #include <netinet/tcp_seq.h>
152 #include <netinet/tcp_timer.h>
153 #include <netinet/tcp_var.h>
154 #include <netinet/tcpip.h>
155 #include <netinet/cc/cc.h>
156 #include <netinet/tcp_hpts.h>
157 #include <netinet/tcp_log_buf.h>
158 
159 #ifdef tcp_offload
160 #include <netinet/tcp_offload.h>
161 #endif
162 
163 /*
164  * The hpts uses a 102400 wheel. The wheel
165  * defines the time in 10 usec increments (102400 x 10).
166  * This gives a range of 10usec - 1024ms to place
167  * an entry within. If the user requests more than
168  * 1.024 second, a remaineder is attached and the hpts
169  * when seeing the remainder will re-insert the
170  * inpcb forward in time from where it is until
171  * the remainder is zero.
172  */
173 
174 #define NUM_OF_HPTSI_SLOTS 102400
175 
176 /* Each hpts has its own p_mtx which is used for locking */
177 #define	HPTS_MTX_ASSERT(hpts)	mtx_assert(&(hpts)->p_mtx, MA_OWNED)
178 #define	HPTS_LOCK(hpts)		mtx_lock(&(hpts)->p_mtx)
179 #define	HPTS_UNLOCK(hpts)	mtx_unlock(&(hpts)->p_mtx)
180 struct tcp_hpts_entry {
181 	/* Cache line 0x00 */
182 	struct mtx p_mtx;	/* Mutex for hpts */
183 	struct timeval p_mysleep;	/* Our min sleep time */
184 	uint64_t syscall_cnt;
185 	uint64_t sleeping;	/* What the actual sleep was (if sleeping) */
186 	uint16_t p_hpts_active; /* Flag that says hpts is awake  */
187 	uint8_t p_wheel_complete; /* have we completed the wheel arc walk? */
188 	uint32_t p_curtick;	/* Tick in 10 us the hpts is going to */
189 	uint32_t p_runningslot; /* Current tick we are at if we are running */
190 	uint32_t p_prev_slot;	/* Previous slot we were on */
191 	uint32_t p_cur_slot;	/* Current slot in wheel hpts is draining */
192 	uint32_t p_nxt_slot;	/* The next slot outside the current range of
193 				 * slots that the hpts is running on. */
194 	int32_t p_on_queue_cnt;	/* Count on queue in this hpts */
195 	uint32_t p_lasttick;	/* Last tick before the current one */
196 	uint8_t p_direct_wake :1, /* boolean */
197 		p_on_min_sleep:1, /* boolean */
198 		p_hpts_wake_scheduled:1, /* boolean */
199 		p_avail:5;
200 	uint8_t p_fill[3];	  /* Fill to 32 bits */
201 	/* Cache line 0x40 */
202 	struct hptsh {
203 		TAILQ_HEAD(, inpcb)	head;
204 		uint32_t		count;
205 		uint32_t		gencnt;
206 	} *p_hptss;			/* Hptsi wheel */
207 	uint32_t p_hpts_sleep_time;	/* Current sleep interval having a max
208 					 * of 255ms */
209 	uint32_t overidden_sleep;	/* what was overrided by min-sleep for logging */
210 	uint32_t saved_lasttick;	/* for logging */
211 	uint32_t saved_curtick;		/* for logging */
212 	uint32_t saved_curslot;		/* for logging */
213 	uint32_t saved_prev_slot;       /* for logging */
214 	uint32_t p_delayed_by;	/* How much were we delayed by */
215 	/* Cache line 0x80 */
216 	struct sysctl_ctx_list hpts_ctx;
217 	struct sysctl_oid *hpts_root;
218 	struct intr_event *ie;
219 	void *ie_cookie;
220 	uint16_t p_num;		/* The hpts number one per cpu */
221 	uint16_t p_cpu;		/* The hpts CPU */
222 	/* There is extra space in here */
223 	/* Cache line 0x100 */
224 	struct callout co __aligned(CACHE_LINE_SIZE);
225 }               __aligned(CACHE_LINE_SIZE);
226 
227 static struct tcp_hptsi {
228 	struct cpu_group **grps;
229 	struct tcp_hpts_entry **rp_ent;	/* Array of hptss */
230 	uint32_t *cts_last_ran;
231 	uint32_t grp_cnt;
232 	uint32_t rp_num_hptss;	/* Number of hpts threads */
233 } tcp_pace;
234 
235 MALLOC_DEFINE(M_TCPHPTS, "tcp_hpts", "TCP hpts");
236 #ifdef RSS
237 static int tcp_bind_threads = 1;
238 #else
239 static int tcp_bind_threads = 2;
240 #endif
241 static int tcp_use_irq_cpu = 0;
242 static uint32_t *cts_last_ran;
243 static int hpts_does_tp_logging = 0;
244 
245 static int32_t tcp_hptsi(struct tcp_hpts_entry *hpts, int from_callout);
246 static void tcp_hpts_thread(void *ctx);
247 static void tcp_init_hptsi(void *st);
248 
249 int32_t tcp_min_hptsi_time = DEFAULT_MIN_SLEEP;
250 static int conn_cnt_thresh = DEFAULT_CONNECTION_THESHOLD;
251 static int32_t dynamic_min_sleep = DYNAMIC_MIN_SLEEP;
252 static int32_t dynamic_max_sleep = DYNAMIC_MAX_SLEEP;
253 
254 
255 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, hpts, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
256     "TCP Hpts controls");
257 SYSCTL_NODE(_net_inet_tcp_hpts, OID_AUTO, stats, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
258     "TCP Hpts statistics");
259 
260 #define	timersub(tvp, uvp, vvp)						\
261 	do {								\
262 		(vvp)->tv_sec = (tvp)->tv_sec - (uvp)->tv_sec;		\
263 		(vvp)->tv_usec = (tvp)->tv_usec - (uvp)->tv_usec;	\
264 		if ((vvp)->tv_usec < 0) {				\
265 			(vvp)->tv_sec--;				\
266 			(vvp)->tv_usec += 1000000;			\
267 		}							\
268 	} while (0)
269 
270 static int32_t tcp_hpts_precision = 120;
271 
272 static struct hpts_domain_info {
273 	int count;
274 	int cpu[MAXCPU];
275 } hpts_domains[MAXMEMDOM];
276 
277 enum {
278 	IHPTS_NONE = 0,
279 	IHPTS_ONQUEUE,
280 	IHPTS_MOVING,
281 };
282 
283 counter_u64_t hpts_hopelessly_behind;
284 
285 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, hopeless, CTLFLAG_RD,
286     &hpts_hopelessly_behind,
287     "Number of times hpts could not catch up and was behind hopelessly");
288 
289 counter_u64_t hpts_loops;
290 
291 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, loops, CTLFLAG_RD,
292     &hpts_loops, "Number of times hpts had to loop to catch up");
293 
294 counter_u64_t back_tosleep;
295 
296 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, no_tcbsfound, CTLFLAG_RD,
297     &back_tosleep, "Number of times hpts found no tcbs");
298 
299 counter_u64_t combined_wheel_wrap;
300 
301 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, comb_wheel_wrap, CTLFLAG_RD,
302     &combined_wheel_wrap, "Number of times the wheel lagged enough to have an insert see wrap");
303 
304 counter_u64_t wheel_wrap;
305 
306 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, wheel_wrap, CTLFLAG_RD,
307     &wheel_wrap, "Number of times the wheel lagged enough to have an insert see wrap");
308 
309 counter_u64_t hpts_direct_call;
310 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, direct_call, CTLFLAG_RD,
311     &hpts_direct_call, "Number of times hpts was called by syscall/trap or other entry");
312 
313 counter_u64_t hpts_wake_timeout;
314 
315 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, timeout_wakeup, CTLFLAG_RD,
316     &hpts_wake_timeout, "Number of times hpts threads woke up via the callout expiring");
317 
318 counter_u64_t hpts_direct_awakening;
319 
320 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, direct_awakening, CTLFLAG_RD,
321     &hpts_direct_awakening, "Number of times hpts threads woke up via the callout expiring");
322 
323 counter_u64_t hpts_back_tosleep;
324 
325 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, back_tosleep, CTLFLAG_RD,
326     &hpts_back_tosleep, "Number of times hpts threads woke up via the callout expiring and went back to sleep no work");
327 
328 counter_u64_t cpu_uses_flowid;
329 counter_u64_t cpu_uses_random;
330 
331 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, cpusel_flowid, CTLFLAG_RD,
332     &cpu_uses_flowid, "Number of times when setting cpuid we used the flowid field");
333 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, cpusel_random, CTLFLAG_RD,
334     &cpu_uses_random, "Number of times when setting cpuid we used the a random value");
335 
336 TUNABLE_INT("net.inet.tcp.bind_hptss", &tcp_bind_threads);
337 TUNABLE_INT("net.inet.tcp.use_irq", &tcp_use_irq_cpu);
338 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, bind_hptss, CTLFLAG_RD,
339     &tcp_bind_threads, 2,
340     "Thread Binding tunable");
341 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, use_irq, CTLFLAG_RD,
342     &tcp_use_irq_cpu, 0,
343     "Use of irq CPU  tunable");
344 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, precision, CTLFLAG_RW,
345     &tcp_hpts_precision, 120,
346     "Value for PRE() precision of callout");
347 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, cnt_thresh, CTLFLAG_RW,
348     &conn_cnt_thresh, 0,
349     "How many connections (below) make us use the callout based mechanism");
350 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, logging, CTLFLAG_RW,
351     &hpts_does_tp_logging, 0,
352     "Do we add to any tp that has logging on pacer logs");
353 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, dyn_minsleep, CTLFLAG_RW,
354     &dynamic_min_sleep, 250,
355     "What is the dynamic minsleep value?");
356 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, dyn_maxsleep, CTLFLAG_RW,
357     &dynamic_max_sleep, 5000,
358     "What is the dynamic maxsleep value?");
359 
360 static int32_t max_pacer_loops = 10;
361 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, loopmax, CTLFLAG_RW,
362     &max_pacer_loops, 10,
363     "What is the maximum number of times the pacer will loop trying to catch up");
364 
365 #define HPTS_MAX_SLEEP_ALLOWED (NUM_OF_HPTSI_SLOTS/2)
366 
367 static uint32_t hpts_sleep_max = HPTS_MAX_SLEEP_ALLOWED;
368 
369 static int
370 sysctl_net_inet_tcp_hpts_max_sleep(SYSCTL_HANDLER_ARGS)
371 {
372 	int error;
373 	uint32_t new;
374 
375 	new = hpts_sleep_max;
376 	error = sysctl_handle_int(oidp, &new, 0, req);
377 	if (error == 0 && req->newptr) {
378 		if ((new < (dynamic_min_sleep/HPTS_TICKS_PER_SLOT)) ||
379 		     (new > HPTS_MAX_SLEEP_ALLOWED))
380 			error = EINVAL;
381 		else
382 			hpts_sleep_max = new;
383 	}
384 	return (error);
385 }
386 
387 static int
388 sysctl_net_inet_tcp_hpts_min_sleep(SYSCTL_HANDLER_ARGS)
389 {
390 	int error;
391 	uint32_t new;
392 
393 	new = tcp_min_hptsi_time;
394 	error = sysctl_handle_int(oidp, &new, 0, req);
395 	if (error == 0 && req->newptr) {
396 		if (new < LOWEST_SLEEP_ALLOWED)
397 			error = EINVAL;
398 		else
399 			tcp_min_hptsi_time = new;
400 	}
401 	return (error);
402 }
403 
404 SYSCTL_PROC(_net_inet_tcp_hpts, OID_AUTO, maxsleep,
405     CTLTYPE_UINT | CTLFLAG_RW,
406     &hpts_sleep_max, 0,
407     &sysctl_net_inet_tcp_hpts_max_sleep, "IU",
408     "Maximum time hpts will sleep in slots");
409 
410 SYSCTL_PROC(_net_inet_tcp_hpts, OID_AUTO, minsleep,
411     CTLTYPE_UINT | CTLFLAG_RW,
412     &tcp_min_hptsi_time, 0,
413     &sysctl_net_inet_tcp_hpts_min_sleep, "IU",
414     "The minimum time the hpts must sleep before processing more slots");
415 
416 static int ticks_indicate_more_sleep = TICKS_INDICATE_MORE_SLEEP;
417 static int ticks_indicate_less_sleep = TICKS_INDICATE_LESS_SLEEP;
418 static int tcp_hpts_no_wake_over_thresh = 1;
419 
420 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, more_sleep, CTLFLAG_RW,
421     &ticks_indicate_more_sleep, 0,
422     "If we only process this many or less on a timeout, we need longer sleep on the next callout");
423 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, less_sleep, CTLFLAG_RW,
424     &ticks_indicate_less_sleep, 0,
425     "If we process this many or more on a timeout, we need less sleep on the next callout");
426 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, nowake_over_thresh, CTLFLAG_RW,
427     &tcp_hpts_no_wake_over_thresh, 0,
428     "When we are over the threshold on the pacer do we prohibit wakeups?");
429 
430 static void
431 tcp_hpts_log(struct tcp_hpts_entry *hpts, struct tcpcb *tp, struct timeval *tv,
432 	     int slots_to_run, int idx, int from_callout)
433 {
434 	union tcp_log_stackspecific log;
435 	/*
436 	 * Unused logs are
437 	 * 64 bit - delRate, rttProp, bw_inuse
438 	 * 16 bit - cwnd_gain
439 	 *  8 bit - bbr_state, bbr_substate, inhpts;
440 	 */
441 	memset(&log.u_bbr, 0, sizeof(log.u_bbr));
442 	log.u_bbr.flex1 = hpts->p_nxt_slot;
443 	log.u_bbr.flex2 = hpts->p_cur_slot;
444 	log.u_bbr.flex3 = hpts->p_prev_slot;
445 	log.u_bbr.flex4 = idx;
446 	log.u_bbr.flex5 = hpts->p_curtick;
447 	log.u_bbr.flex6 = hpts->p_on_queue_cnt;
448 	log.u_bbr.flex7 = hpts->p_cpu;
449 	log.u_bbr.flex8 = (uint8_t)from_callout;
450 	log.u_bbr.inflight = slots_to_run;
451 	log.u_bbr.applimited = hpts->overidden_sleep;
452 	log.u_bbr.delivered = hpts->saved_curtick;
453 	log.u_bbr.timeStamp = tcp_tv_to_usectick(tv);
454 	log.u_bbr.epoch = hpts->saved_curslot;
455 	log.u_bbr.lt_epoch = hpts->saved_prev_slot;
456 	log.u_bbr.pkts_out = hpts->p_delayed_by;
457 	log.u_bbr.lost = hpts->p_hpts_sleep_time;
458 	log.u_bbr.pacing_gain = hpts->p_cpu;
459 	log.u_bbr.pkt_epoch = hpts->p_runningslot;
460 	log.u_bbr.use_lt_bw = 1;
461 	TCP_LOG_EVENTP(tp, NULL,
462 		       &tptosocket(tp)->so_rcv,
463 		       &tptosocket(tp)->so_snd,
464 		       BBR_LOG_HPTSDIAG, 0,
465 		       0, &log, false, tv);
466 }
467 
468 static void
469 tcp_wakehpts(struct tcp_hpts_entry *hpts)
470 {
471 	HPTS_MTX_ASSERT(hpts);
472 
473 	if (tcp_hpts_no_wake_over_thresh && (hpts->p_on_queue_cnt >= conn_cnt_thresh)) {
474 		hpts->p_direct_wake = 0;
475 		return;
476 	}
477 	if (hpts->p_hpts_wake_scheduled == 0) {
478 		hpts->p_hpts_wake_scheduled = 1;
479 		swi_sched(hpts->ie_cookie, 0);
480 	}
481 }
482 
483 static void
484 hpts_timeout_swi(void *arg)
485 {
486 	struct tcp_hpts_entry *hpts;
487 
488 	hpts = (struct tcp_hpts_entry *)arg;
489 	swi_sched(hpts->ie_cookie, 0);
490 }
491 
492 static void
493 inp_hpts_insert(struct inpcb *inp, struct tcp_hpts_entry *hpts)
494 {
495 	struct hptsh *hptsh;
496 
497 	INP_WLOCK_ASSERT(inp);
498 	HPTS_MTX_ASSERT(hpts);
499 	MPASS(hpts->p_cpu == inp->inp_hpts_cpu);
500 	MPASS(!(inp->inp_flags & INP_DROPPED));
501 
502 	hptsh = &hpts->p_hptss[inp->inp_hptsslot];
503 
504 	if (inp->inp_in_hpts == IHPTS_NONE) {
505 		inp->inp_in_hpts = IHPTS_ONQUEUE;
506 		in_pcbref(inp);
507 	} else if (inp->inp_in_hpts == IHPTS_MOVING) {
508 		inp->inp_in_hpts = IHPTS_ONQUEUE;
509 	} else
510 		MPASS(inp->inp_in_hpts == IHPTS_ONQUEUE);
511 	inp->inp_hpts_gencnt = hptsh->gencnt;
512 
513 	TAILQ_INSERT_TAIL(&hptsh->head, inp, inp_hpts);
514 	hptsh->count++;
515 	hpts->p_on_queue_cnt++;
516 }
517 
518 static struct tcp_hpts_entry *
519 tcp_hpts_lock(struct inpcb *inp)
520 {
521 	struct tcp_hpts_entry *hpts;
522 
523 	INP_LOCK_ASSERT(inp);
524 
525 	hpts = tcp_pace.rp_ent[inp->inp_hpts_cpu];
526 	HPTS_LOCK(hpts);
527 
528 	return (hpts);
529 }
530 
531 static void
532 inp_hpts_release(struct inpcb *inp)
533 {
534 	bool released __diagused;
535 
536 	inp->inp_in_hpts = IHPTS_NONE;
537 	released = in_pcbrele_wlocked(inp);
538 	MPASS(released == false);
539 }
540 
541 /*
542  * Called normally with the INP_LOCKED but it
543  * does not matter, the hpts lock is the key
544  * but the lock order allows us to hold the
545  * INP lock and then get the hpts lock.
546  */
547 void
548 tcp_hpts_remove(struct inpcb *inp)
549 {
550 	struct tcp_hpts_entry *hpts;
551 	struct hptsh *hptsh;
552 
553 	INP_WLOCK_ASSERT(inp);
554 
555 	hpts = tcp_hpts_lock(inp);
556 	if (inp->inp_in_hpts == IHPTS_ONQUEUE) {
557 		hptsh = &hpts->p_hptss[inp->inp_hptsslot];
558 		inp->inp_hpts_request = 0;
559 		if (__predict_true(inp->inp_hpts_gencnt == hptsh->gencnt)) {
560 			TAILQ_REMOVE(&hptsh->head, inp, inp_hpts);
561 			MPASS(hptsh->count > 0);
562 			hptsh->count--;
563 			MPASS(hpts->p_on_queue_cnt > 0);
564 			hpts->p_on_queue_cnt--;
565 			inp_hpts_release(inp);
566 		} else {
567 			/*
568 			 * tcp_hptsi() now owns the TAILQ head of this inp.
569 			 * Can't TAILQ_REMOVE, just mark it.
570 			 */
571 #ifdef INVARIANTS
572 			struct inpcb *tmp;
573 
574 			TAILQ_FOREACH(tmp, &hptsh->head, inp_hpts)
575 				MPASS(tmp != inp);
576 #endif
577 			inp->inp_in_hpts = IHPTS_MOVING;
578 			inp->inp_hptsslot = -1;
579 		}
580 	} else if (inp->inp_in_hpts == IHPTS_MOVING) {
581 		/*
582 		 * Handle a special race condition:
583 		 * tcp_hptsi() moves inpcb to detached tailq
584 		 * tcp_hpts_remove() marks as IHPTS_MOVING, slot = -1
585 		 * tcp_hpts_insert() sets slot to a meaningful value
586 		 * tcp_hpts_remove() again (we are here!), then in_pcbdrop()
587 		 * tcp_hptsi() finds pcb with meaningful slot and INP_DROPPED
588 		 */
589 		inp->inp_hptsslot = -1;
590 	}
591 	HPTS_UNLOCK(hpts);
592 }
593 
594 bool
595 tcp_in_hpts(struct inpcb *inp)
596 {
597 
598 	return (inp->inp_in_hpts == IHPTS_ONQUEUE);
599 }
600 
601 static inline int
602 hpts_slot(uint32_t wheel_slot, uint32_t plus)
603 {
604 	/*
605 	 * Given a slot on the wheel, what slot
606 	 * is that plus ticks out?
607 	 */
608 	KASSERT(wheel_slot < NUM_OF_HPTSI_SLOTS, ("Invalid tick %u not on wheel", wheel_slot));
609 	return ((wheel_slot + plus) % NUM_OF_HPTSI_SLOTS);
610 }
611 
612 static inline int
613 tick_to_wheel(uint32_t cts_in_wticks)
614 {
615 	/*
616 	 * Given a timestamp in ticks (so by
617 	 * default to get it to a real time one
618 	 * would multiply by 10.. i.e the number
619 	 * of ticks in a slot) map it to our limited
620 	 * space wheel.
621 	 */
622 	return (cts_in_wticks % NUM_OF_HPTSI_SLOTS);
623 }
624 
625 static inline int
626 hpts_slots_diff(int prev_slot, int slot_now)
627 {
628 	/*
629 	 * Given two slots that are someplace
630 	 * on our wheel. How far are they apart?
631 	 */
632 	if (slot_now > prev_slot)
633 		return (slot_now - prev_slot);
634 	else if (slot_now == prev_slot)
635 		/*
636 		 * Special case, same means we can go all of our
637 		 * wheel less one slot.
638 		 */
639 		return (NUM_OF_HPTSI_SLOTS - 1);
640 	else
641 		return ((NUM_OF_HPTSI_SLOTS - prev_slot) + slot_now);
642 }
643 
644 /*
645  * Given a slot on the wheel that is the current time
646  * mapped to the wheel (wheel_slot), what is the maximum
647  * distance forward that can be obtained without
648  * wrapping past either prev_slot or running_slot
649  * depending on the htps state? Also if passed
650  * a uint32_t *, fill it with the slot location.
651  *
652  * Note if you do not give this function the current
653  * time (that you think it is) mapped to the wheel slot
654  * then the results will not be what you expect and
655  * could lead to invalid inserts.
656  */
657 static inline int32_t
658 max_slots_available(struct tcp_hpts_entry *hpts, uint32_t wheel_slot, uint32_t *target_slot)
659 {
660 	uint32_t dis_to_travel, end_slot, pacer_to_now, avail_on_wheel;
661 
662 	if ((hpts->p_hpts_active == 1) &&
663 	    (hpts->p_wheel_complete == 0)) {
664 		end_slot = hpts->p_runningslot;
665 		/* Back up one tick */
666 		if (end_slot == 0)
667 			end_slot = NUM_OF_HPTSI_SLOTS - 1;
668 		else
669 			end_slot--;
670 		if (target_slot)
671 			*target_slot = end_slot;
672 	} else {
673 		/*
674 		 * For the case where we are
675 		 * not active, or we have
676 		 * completed the pass over
677 		 * the wheel, we can use the
678 		 * prev tick and subtract one from it. This puts us
679 		 * as far out as possible on the wheel.
680 		 */
681 		end_slot = hpts->p_prev_slot;
682 		if (end_slot == 0)
683 			end_slot = NUM_OF_HPTSI_SLOTS - 1;
684 		else
685 			end_slot--;
686 		if (target_slot)
687 			*target_slot = end_slot;
688 		/*
689 		 * Now we have close to the full wheel left minus the
690 		 * time it has been since the pacer went to sleep. Note
691 		 * that wheel_tick, passed in, should be the current time
692 		 * from the perspective of the caller, mapped to the wheel.
693 		 */
694 		if (hpts->p_prev_slot != wheel_slot)
695 			dis_to_travel = hpts_slots_diff(hpts->p_prev_slot, wheel_slot);
696 		else
697 			dis_to_travel = 1;
698 		/*
699 		 * dis_to_travel in this case is the space from when the
700 		 * pacer stopped (p_prev_slot) and where our wheel_slot
701 		 * is now. To know how many slots we can put it in we
702 		 * subtract from the wheel size. We would not want
703 		 * to place something after p_prev_slot or it will
704 		 * get ran too soon.
705 		 */
706 		return (NUM_OF_HPTSI_SLOTS - dis_to_travel);
707 	}
708 	/*
709 	 * So how many slots are open between p_runningslot -> p_cur_slot
710 	 * that is what is currently un-available for insertion. Special
711 	 * case when we are at the last slot, this gets 1, so that
712 	 * the answer to how many slots are available is all but 1.
713 	 */
714 	if (hpts->p_runningslot == hpts->p_cur_slot)
715 		dis_to_travel = 1;
716 	else
717 		dis_to_travel = hpts_slots_diff(hpts->p_runningslot, hpts->p_cur_slot);
718 	/*
719 	 * How long has the pacer been running?
720 	 */
721 	if (hpts->p_cur_slot != wheel_slot) {
722 		/* The pacer is a bit late */
723 		pacer_to_now = hpts_slots_diff(hpts->p_cur_slot, wheel_slot);
724 	} else {
725 		/* The pacer is right on time, now == pacers start time */
726 		pacer_to_now = 0;
727 	}
728 	/*
729 	 * To get the number left we can insert into we simply
730 	 * subtract the distance the pacer has to run from how
731 	 * many slots there are.
732 	 */
733 	avail_on_wheel = NUM_OF_HPTSI_SLOTS - dis_to_travel;
734 	/*
735 	 * Now how many of those we will eat due to the pacer's
736 	 * time (p_cur_slot) of start being behind the
737 	 * real time (wheel_slot)?
738 	 */
739 	if (avail_on_wheel <= pacer_to_now) {
740 		/*
741 		 * Wheel wrap, we can't fit on the wheel, that
742 		 * is unusual the system must be way overloaded!
743 		 * Insert into the assured slot, and return special
744 		 * "0".
745 		 */
746 		counter_u64_add(combined_wheel_wrap, 1);
747 		*target_slot = hpts->p_nxt_slot;
748 		return (0);
749 	} else {
750 		/*
751 		 * We know how many slots are open
752 		 * on the wheel (the reverse of what
753 		 * is left to run. Take away the time
754 		 * the pacer started to now (wheel_slot)
755 		 * and that tells you how many slots are
756 		 * open that can be inserted into that won't
757 		 * be touched by the pacer until later.
758 		 */
759 		return (avail_on_wheel - pacer_to_now);
760 	}
761 }
762 
763 
764 #ifdef INVARIANTS
765 static void
766 check_if_slot_would_be_wrong(struct tcp_hpts_entry *hpts, struct inpcb *inp, uint32_t inp_hptsslot, int line)
767 {
768 	/*
769 	 * Sanity checks for the pacer with invariants
770 	 * on insert.
771 	 */
772 	KASSERT(inp_hptsslot < NUM_OF_HPTSI_SLOTS,
773 		("hpts:%p inp:%p slot:%d > max",
774 		 hpts, inp, inp_hptsslot));
775 	if ((hpts->p_hpts_active) &&
776 	    (hpts->p_wheel_complete == 0)) {
777 		/*
778 		 * If the pacer is processing a arc
779 		 * of the wheel, we need to make
780 		 * sure we are not inserting within
781 		 * that arc.
782 		 */
783 		int distance, yet_to_run;
784 
785 		distance = hpts_slots_diff(hpts->p_runningslot, inp_hptsslot);
786 		if (hpts->p_runningslot != hpts->p_cur_slot)
787 			yet_to_run = hpts_slots_diff(hpts->p_runningslot, hpts->p_cur_slot);
788 		else
789 			yet_to_run = 0;	/* processing last slot */
790 		KASSERT(yet_to_run <= distance,
791 			("hpts:%p inp:%p slot:%d distance:%d yet_to_run:%d rs:%d cs:%d",
792 			 hpts, inp, inp_hptsslot,
793 			 distance, yet_to_run,
794 			 hpts->p_runningslot, hpts->p_cur_slot));
795 	}
796 }
797 #endif
798 
799 uint32_t
800 tcp_hpts_insert_diag(struct inpcb *inp, uint32_t slot, int32_t line, struct hpts_diag *diag)
801 {
802 	struct tcp_hpts_entry *hpts;
803 	struct timeval tv;
804 	uint32_t slot_on, wheel_cts, last_slot, need_new_to = 0;
805 	int32_t wheel_slot, maxslots;
806 	bool need_wakeup = false;
807 
808 	INP_WLOCK_ASSERT(inp);
809 	MPASS(!tcp_in_hpts(inp));
810 	MPASS(!(inp->inp_flags & INP_DROPPED));
811 
812 	/*
813 	 * We now return the next-slot the hpts will be on, beyond its
814 	 * current run (if up) or where it was when it stopped if it is
815 	 * sleeping.
816 	 */
817 	hpts = tcp_hpts_lock(inp);
818 	microuptime(&tv);
819 	if (diag) {
820 		memset(diag, 0, sizeof(struct hpts_diag));
821 		diag->p_hpts_active = hpts->p_hpts_active;
822 		diag->p_prev_slot = hpts->p_prev_slot;
823 		diag->p_runningslot = hpts->p_runningslot;
824 		diag->p_nxt_slot = hpts->p_nxt_slot;
825 		diag->p_cur_slot = hpts->p_cur_slot;
826 		diag->p_curtick = hpts->p_curtick;
827 		diag->p_lasttick = hpts->p_lasttick;
828 		diag->slot_req = slot;
829 		diag->p_on_min_sleep = hpts->p_on_min_sleep;
830 		diag->hpts_sleep_time = hpts->p_hpts_sleep_time;
831 	}
832 	if (slot == 0) {
833 		/* Ok we need to set it on the hpts in the current slot */
834 		inp->inp_hpts_request = 0;
835 		if ((hpts->p_hpts_active == 0) || (hpts->p_wheel_complete)) {
836 			/*
837 			 * A sleeping hpts we want in next slot to run
838 			 * note that in this state p_prev_slot == p_cur_slot
839 			 */
840 			inp->inp_hptsslot = hpts_slot(hpts->p_prev_slot, 1);
841 			if ((hpts->p_on_min_sleep == 0) &&
842 			    (hpts->p_hpts_active == 0))
843 				need_wakeup = true;
844 		} else
845 			inp->inp_hptsslot = hpts->p_runningslot;
846 		if (__predict_true(inp->inp_in_hpts != IHPTS_MOVING))
847 			inp_hpts_insert(inp, hpts);
848 		if (need_wakeup) {
849 			/*
850 			 * Activate the hpts if it is sleeping and its
851 			 * timeout is not 1.
852 			 */
853 			hpts->p_direct_wake = 1;
854 			tcp_wakehpts(hpts);
855 		}
856 		slot_on = hpts->p_nxt_slot;
857 		HPTS_UNLOCK(hpts);
858 
859 		return (slot_on);
860 	}
861 	/* Get the current time relative to the wheel */
862 	wheel_cts = tcp_tv_to_hptstick(&tv);
863 	/* Map it onto the wheel */
864 	wheel_slot = tick_to_wheel(wheel_cts);
865 	/* Now what's the max we can place it at? */
866 	maxslots = max_slots_available(hpts, wheel_slot, &last_slot);
867 	if (diag) {
868 		diag->wheel_slot = wheel_slot;
869 		diag->maxslots = maxslots;
870 		diag->wheel_cts = wheel_cts;
871 	}
872 	if (maxslots == 0) {
873 		/* The pacer is in a wheel wrap behind, yikes! */
874 		if (slot > 1) {
875 			/*
876 			 * Reduce by 1 to prevent a forever loop in
877 			 * case something else is wrong. Note this
878 			 * probably does not hurt because the pacer
879 			 * if its true is so far behind we will be
880 			 * > 1second late calling anyway.
881 			 */
882 			slot--;
883 		}
884 		inp->inp_hptsslot = last_slot;
885 		inp->inp_hpts_request = slot;
886 	} else 	if (maxslots >= slot) {
887 		/* It all fits on the wheel */
888 		inp->inp_hpts_request = 0;
889 		inp->inp_hptsslot = hpts_slot(wheel_slot, slot);
890 	} else {
891 		/* It does not fit */
892 		inp->inp_hpts_request = slot - maxslots;
893 		inp->inp_hptsslot = last_slot;
894 	}
895 	if (diag) {
896 		diag->slot_remaining = inp->inp_hpts_request;
897 		diag->inp_hptsslot = inp->inp_hptsslot;
898 	}
899 #ifdef INVARIANTS
900 	check_if_slot_would_be_wrong(hpts, inp, inp->inp_hptsslot, line);
901 #endif
902 	if (__predict_true(inp->inp_in_hpts != IHPTS_MOVING))
903 		inp_hpts_insert(inp, hpts);
904 	if ((hpts->p_hpts_active == 0) &&
905 	    (inp->inp_hpts_request == 0) &&
906 	    (hpts->p_on_min_sleep == 0)) {
907 		/*
908 		 * The hpts is sleeping and NOT on a minimum
909 		 * sleep time, we need to figure out where
910 		 * it will wake up at and if we need to reschedule
911 		 * its time-out.
912 		 */
913 		uint32_t have_slept, yet_to_sleep;
914 
915 		/* Now do we need to restart the hpts's timer? */
916 		have_slept = hpts_slots_diff(hpts->p_prev_slot, wheel_slot);
917 		if (have_slept < hpts->p_hpts_sleep_time)
918 			yet_to_sleep = hpts->p_hpts_sleep_time - have_slept;
919 		else {
920 			/* We are over-due */
921 			yet_to_sleep = 0;
922 			need_wakeup = 1;
923 		}
924 		if (diag) {
925 			diag->have_slept = have_slept;
926 			diag->yet_to_sleep = yet_to_sleep;
927 		}
928 		if (yet_to_sleep &&
929 		    (yet_to_sleep > slot)) {
930 			/*
931 			 * We need to reschedule the hpts's time-out.
932 			 */
933 			hpts->p_hpts_sleep_time = slot;
934 			need_new_to = slot * HPTS_TICKS_PER_SLOT;
935 		}
936 	}
937 	/*
938 	 * Now how far is the hpts sleeping to? if active is 1, its
939 	 * up and ticking we do nothing, otherwise we may need to
940 	 * reschedule its callout if need_new_to is set from above.
941 	 */
942 	if (need_wakeup) {
943 		hpts->p_direct_wake = 1;
944 		tcp_wakehpts(hpts);
945 		if (diag) {
946 			diag->need_new_to = 0;
947 			diag->co_ret = 0xffff0000;
948 		}
949 	} else if (need_new_to) {
950 		int32_t co_ret;
951 		struct timeval tv;
952 		sbintime_t sb;
953 
954 		tv.tv_sec = 0;
955 		tv.tv_usec = 0;
956 		while (need_new_to > HPTS_USEC_IN_SEC) {
957 			tv.tv_sec++;
958 			need_new_to -= HPTS_USEC_IN_SEC;
959 		}
960 		tv.tv_usec = need_new_to;
961 		sb = tvtosbt(tv);
962 		co_ret = callout_reset_sbt_on(&hpts->co, sb, 0,
963 					      hpts_timeout_swi, hpts, hpts->p_cpu,
964 					      (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision)));
965 		if (diag) {
966 			diag->need_new_to = need_new_to;
967 			diag->co_ret = co_ret;
968 		}
969 	}
970 	slot_on = hpts->p_nxt_slot;
971 	HPTS_UNLOCK(hpts);
972 
973 	return (slot_on);
974 }
975 
976 uint16_t
977 hpts_random_cpu(struct inpcb *inp){
978 	/*
979 	 * No flow type set distribute the load randomly.
980 	 */
981 	uint16_t cpuid;
982 	uint32_t ran;
983 
984 	/*
985 	 * Shortcut if it is already set. XXXGL: does it happen?
986 	 */
987 	if (inp->inp_hpts_cpu_set) {
988 		return (inp->inp_hpts_cpu);
989 	}
990 	/* Nothing set use a random number */
991 	ran = arc4random();
992 	cpuid = (((ran & 0xffff) % mp_ncpus) % tcp_pace.rp_num_hptss);
993 	return (cpuid);
994 }
995 
996 static uint16_t
997 hpts_cpuid(struct inpcb *inp, int *failed)
998 {
999 	u_int cpuid;
1000 #ifdef NUMA
1001 	struct hpts_domain_info *di;
1002 #endif
1003 
1004 	*failed = 0;
1005 	if (inp->inp_hpts_cpu_set) {
1006 		return (inp->inp_hpts_cpu);
1007 	}
1008 	/*
1009 	 * If we are using the irq cpu set by LRO or
1010 	 * the driver then it overrides all other domains.
1011 	 */
1012 	if (tcp_use_irq_cpu) {
1013 		if (inp->inp_irq_cpu_set == 0) {
1014 			*failed = 1;
1015 			return(0);
1016 		}
1017 		return(inp->inp_irq_cpu);
1018 	}
1019 	/* If one is set the other must be the same */
1020 #ifdef RSS
1021 	cpuid = rss_hash2cpuid(inp->inp_flowid, inp->inp_flowtype);
1022 	if (cpuid == NETISR_CPUID_NONE)
1023 		return (hpts_random_cpu(inp));
1024 	else
1025 		return (cpuid);
1026 #endif
1027 	/*
1028 	 * We don't have a flowid -> cpuid mapping, so cheat and just map
1029 	 * unknown cpuids to curcpu.  Not the best, but apparently better
1030 	 * than defaulting to swi 0.
1031 	 */
1032 	if (inp->inp_flowtype == M_HASHTYPE_NONE) {
1033 		counter_u64_add(cpu_uses_random, 1);
1034 		return (hpts_random_cpu(inp));
1035 	}
1036 	/*
1037 	 * Hash to a thread based on the flowid.  If we are using numa,
1038 	 * then restrict the hash to the numa domain where the inp lives.
1039 	 */
1040 
1041 #ifdef NUMA
1042 	if ((vm_ndomains == 1) ||
1043 	    (inp->inp_numa_domain == M_NODOM)) {
1044 #endif
1045 		cpuid = inp->inp_flowid % mp_ncpus;
1046 #ifdef NUMA
1047 	} else {
1048 		/* Hash into the cpu's that use that domain */
1049 		di = &hpts_domains[inp->inp_numa_domain];
1050 		cpuid = di->cpu[inp->inp_flowid % di->count];
1051 	}
1052 #endif
1053 	counter_u64_add(cpu_uses_flowid, 1);
1054 	return (cpuid);
1055 }
1056 
1057 static void
1058 tcp_hpts_set_max_sleep(struct tcp_hpts_entry *hpts, int wrap_loop_cnt)
1059 {
1060 	uint32_t t = 0, i;
1061 
1062 	if ((hpts->p_on_queue_cnt) && (wrap_loop_cnt < 2)) {
1063 		/*
1064 		 * Find next slot that is occupied and use that to
1065 		 * be the sleep time.
1066 		 */
1067 		for (i = 0, t = hpts_slot(hpts->p_cur_slot, 1); i < NUM_OF_HPTSI_SLOTS; i++) {
1068 			if (TAILQ_EMPTY(&hpts->p_hptss[t].head) == 0) {
1069 				break;
1070 			}
1071 			t = (t + 1) % NUM_OF_HPTSI_SLOTS;
1072 		}
1073 		KASSERT((i != NUM_OF_HPTSI_SLOTS), ("Hpts:%p cnt:%d but none found", hpts, hpts->p_on_queue_cnt));
1074 		hpts->p_hpts_sleep_time = min((i + 1), hpts_sleep_max);
1075 	} else {
1076 		/* No one on the wheel sleep for all but 400 slots or sleep max  */
1077 		hpts->p_hpts_sleep_time = hpts_sleep_max;
1078 	}
1079 }
1080 
1081 static int32_t
1082 tcp_hptsi(struct tcp_hpts_entry *hpts, int from_callout)
1083 {
1084 	struct tcpcb *tp;
1085 	struct inpcb *inp;
1086 	struct timeval tv;
1087 	int32_t slots_to_run, i, error;
1088 	int32_t loop_cnt = 0;
1089 	int32_t did_prefetch = 0;
1090 	int32_t prefetch_ninp = 0;
1091 	int32_t prefetch_tp = 0;
1092 	int32_t wrap_loop_cnt = 0;
1093 	int32_t slot_pos_of_endpoint = 0;
1094 	int32_t orig_exit_slot;
1095 	int8_t completed_measure = 0, seen_endpoint = 0;
1096 
1097 	HPTS_MTX_ASSERT(hpts);
1098 	NET_EPOCH_ASSERT();
1099 	/* record previous info for any logging */
1100 	hpts->saved_lasttick = hpts->p_lasttick;
1101 	hpts->saved_curtick = hpts->p_curtick;
1102 	hpts->saved_curslot = hpts->p_cur_slot;
1103 	hpts->saved_prev_slot = hpts->p_prev_slot;
1104 
1105 	hpts->p_lasttick = hpts->p_curtick;
1106 	hpts->p_curtick = tcp_gethptstick(&tv);
1107 	cts_last_ran[hpts->p_num] = tcp_tv_to_usectick(&tv);
1108 	orig_exit_slot = hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick);
1109 	if ((hpts->p_on_queue_cnt == 0) ||
1110 	    (hpts->p_lasttick == hpts->p_curtick)) {
1111 		/*
1112 		 * No time has yet passed,
1113 		 * or nothing to do.
1114 		 */
1115 		hpts->p_prev_slot = hpts->p_cur_slot;
1116 		hpts->p_lasttick = hpts->p_curtick;
1117 		goto no_run;
1118 	}
1119 again:
1120 	hpts->p_wheel_complete = 0;
1121 	HPTS_MTX_ASSERT(hpts);
1122 	slots_to_run = hpts_slots_diff(hpts->p_prev_slot, hpts->p_cur_slot);
1123 	if (((hpts->p_curtick - hpts->p_lasttick) >
1124 	     ((NUM_OF_HPTSI_SLOTS-1) * HPTS_TICKS_PER_SLOT)) &&
1125 	    (hpts->p_on_queue_cnt != 0)) {
1126 		/*
1127 		 * Wheel wrap is occuring, basically we
1128 		 * are behind and the distance between
1129 		 * run's has spread so much it has exceeded
1130 		 * the time on the wheel (1.024 seconds). This
1131 		 * is ugly and should NOT be happening. We
1132 		 * need to run the entire wheel. We last processed
1133 		 * p_prev_slot, so that needs to be the last slot
1134 		 * we run. The next slot after that should be our
1135 		 * reserved first slot for new, and then starts
1136 		 * the running position. Now the problem is the
1137 		 * reserved "not to yet" place does not exist
1138 		 * and there may be inp's in there that need
1139 		 * running. We can merge those into the
1140 		 * first slot at the head.
1141 		 */
1142 		wrap_loop_cnt++;
1143 		hpts->p_nxt_slot = hpts_slot(hpts->p_prev_slot, 1);
1144 		hpts->p_runningslot = hpts_slot(hpts->p_prev_slot, 2);
1145 		/*
1146 		 * Adjust p_cur_slot to be where we are starting from
1147 		 * hopefully we will catch up (fat chance if something
1148 		 * is broken this bad :( )
1149 		 */
1150 		hpts->p_cur_slot = hpts->p_prev_slot;
1151 		/*
1152 		 * The next slot has guys to run too, and that would
1153 		 * be where we would normally start, lets move them into
1154 		 * the next slot (p_prev_slot + 2) so that we will
1155 		 * run them, the extra 10usecs of late (by being
1156 		 * put behind) does not really matter in this situation.
1157 		 */
1158 		TAILQ_FOREACH(inp, &hpts->p_hptss[hpts->p_nxt_slot].head,
1159 		    inp_hpts) {
1160 			MPASS(inp->inp_hptsslot == hpts->p_nxt_slot);
1161 			MPASS(inp->inp_hpts_gencnt ==
1162 			    hpts->p_hptss[hpts->p_nxt_slot].gencnt);
1163 			MPASS(inp->inp_in_hpts == IHPTS_ONQUEUE);
1164 
1165 			/*
1166 			 * Update gencnt and nextslot accordingly to match
1167 			 * the new location. This is safe since it takes both
1168 			 * the INP lock and the pacer mutex to change the
1169 			 * inp_hptsslot and inp_hpts_gencnt.
1170 			 */
1171 			inp->inp_hpts_gencnt =
1172 			    hpts->p_hptss[hpts->p_runningslot].gencnt;
1173 			inp->inp_hptsslot = hpts->p_runningslot;
1174 		}
1175 		TAILQ_CONCAT(&hpts->p_hptss[hpts->p_runningslot].head,
1176 		    &hpts->p_hptss[hpts->p_nxt_slot].head, inp_hpts);
1177 		hpts->p_hptss[hpts->p_runningslot].count +=
1178 		    hpts->p_hptss[hpts->p_nxt_slot].count;
1179 		hpts->p_hptss[hpts->p_nxt_slot].count = 0;
1180 		hpts->p_hptss[hpts->p_nxt_slot].gencnt++;
1181 		slots_to_run = NUM_OF_HPTSI_SLOTS - 1;
1182 		counter_u64_add(wheel_wrap, 1);
1183 	} else {
1184 		/*
1185 		 * Nxt slot is always one after p_runningslot though
1186 		 * its not used usually unless we are doing wheel wrap.
1187 		 */
1188 		hpts->p_nxt_slot = hpts->p_prev_slot;
1189 		hpts->p_runningslot = hpts_slot(hpts->p_prev_slot, 1);
1190 	}
1191 	if (hpts->p_on_queue_cnt == 0) {
1192 		goto no_one;
1193 	}
1194 	for (i = 0; i < slots_to_run; i++) {
1195 		struct inpcb *inp, *ninp;
1196 		TAILQ_HEAD(, inpcb) head = TAILQ_HEAD_INITIALIZER(head);
1197 		struct hptsh *hptsh;
1198 		uint32_t runningslot;
1199 
1200 		/*
1201 		 * Calculate our delay, if there are no extra ticks there
1202 		 * was not any (i.e. if slots_to_run == 1, no delay).
1203 		 */
1204 		hpts->p_delayed_by = (slots_to_run - (i + 1)) *
1205 		    HPTS_TICKS_PER_SLOT;
1206 
1207 		runningslot = hpts->p_runningslot;
1208 		hptsh = &hpts->p_hptss[runningslot];
1209 		TAILQ_SWAP(&head, &hptsh->head, inpcb, inp_hpts);
1210 		hpts->p_on_queue_cnt -= hptsh->count;
1211 		hptsh->count = 0;
1212 		hptsh->gencnt++;
1213 
1214 		HPTS_UNLOCK(hpts);
1215 
1216 		TAILQ_FOREACH_SAFE(inp, &head, inp_hpts, ninp) {
1217 			bool set_cpu;
1218 
1219 			if (ninp != NULL) {
1220 				/* We prefetch the next inp if possible */
1221 				kern_prefetch(ninp, &prefetch_ninp);
1222 				prefetch_ninp = 1;
1223 			}
1224 
1225 			/* For debugging */
1226 			if (seen_endpoint == 0) {
1227 				seen_endpoint = 1;
1228 				orig_exit_slot = slot_pos_of_endpoint =
1229 				    runningslot;
1230 			} else if (completed_measure == 0) {
1231 				/* Record the new position */
1232 				orig_exit_slot = runningslot;
1233 			}
1234 
1235 			INP_WLOCK(inp);
1236 			if (inp->inp_hpts_cpu_set == 0) {
1237 				set_cpu = true;
1238 			} else {
1239 				set_cpu = false;
1240 			}
1241 
1242 			if (__predict_false(inp->inp_in_hpts == IHPTS_MOVING)) {
1243 				if (inp->inp_hptsslot == -1) {
1244 					inp->inp_in_hpts = IHPTS_NONE;
1245 					if (in_pcbrele_wlocked(inp) == false)
1246 						INP_WUNLOCK(inp);
1247 				} else {
1248 					HPTS_LOCK(hpts);
1249 					inp_hpts_insert(inp, hpts);
1250 					HPTS_UNLOCK(hpts);
1251 					INP_WUNLOCK(inp);
1252 				}
1253 				continue;
1254 			}
1255 
1256 			MPASS(inp->inp_in_hpts == IHPTS_ONQUEUE);
1257 			MPASS(!(inp->inp_flags & INP_DROPPED));
1258 			KASSERT(runningslot == inp->inp_hptsslot,
1259 				("Hpts:%p inp:%p slot mis-aligned %u vs %u",
1260 				 hpts, inp, runningslot, inp->inp_hptsslot));
1261 
1262 			if (inp->inp_hpts_request) {
1263 				/*
1264 				 * This guy is deferred out further in time
1265 				 * then our wheel had available on it.
1266 				 * Push him back on the wheel or run it
1267 				 * depending.
1268 				 */
1269 				uint32_t maxslots, last_slot, remaining_slots;
1270 
1271 				remaining_slots = slots_to_run - (i + 1);
1272 				if (inp->inp_hpts_request > remaining_slots) {
1273 					HPTS_LOCK(hpts);
1274 					/*
1275 					 * How far out can we go?
1276 					 */
1277 					maxslots = max_slots_available(hpts,
1278 					    hpts->p_cur_slot, &last_slot);
1279 					if (maxslots >= inp->inp_hpts_request) {
1280 						/* We can place it finally to
1281 						 * be processed.  */
1282 						inp->inp_hptsslot = hpts_slot(
1283 						    hpts->p_runningslot,
1284 						    inp->inp_hpts_request);
1285 						inp->inp_hpts_request = 0;
1286 					} else {
1287 						/* Work off some more time */
1288 						inp->inp_hptsslot = last_slot;
1289 						inp->inp_hpts_request -=
1290 						    maxslots;
1291 					}
1292 					inp_hpts_insert(inp, hpts);
1293 					HPTS_UNLOCK(hpts);
1294 					INP_WUNLOCK(inp);
1295 					continue;
1296 				}
1297 				inp->inp_hpts_request = 0;
1298 				/* Fall through we will so do it now */
1299 			}
1300 
1301 			inp_hpts_release(inp);
1302 			tp = intotcpcb(inp);
1303 			MPASS(tp);
1304 			if (set_cpu) {
1305 				/*
1306 				 * Setup so the next time we will move to
1307 				 * the right CPU. This should be a rare
1308 				 * event. It will sometimes happens when we
1309 				 * are the client side (usually not the
1310 				 * server). Somehow tcp_output() gets called
1311 				 * before the tcp_do_segment() sets the
1312 				 * intial state. This means the r_cpu and
1313 				 * r_hpts_cpu is 0. We get on the hpts, and
1314 				 * then tcp_input() gets called setting up
1315 				 * the r_cpu to the correct value. The hpts
1316 				 * goes off and sees the mis-match. We
1317 				 * simply correct it here and the CPU will
1318 				 * switch to the new hpts nextime the tcb
1319 				 * gets added to the hpts (not this one)
1320 				 * :-)
1321 				 */
1322 				tcp_set_hpts(inp);
1323 			}
1324 			CURVNET_SET(inp->inp_vnet);
1325 			/* Lets do any logging that we might want to */
1326 			if (hpts_does_tp_logging && tcp_bblogging_on(tp)) {
1327 				tcp_hpts_log(hpts, tp, &tv, slots_to_run, i, from_callout);
1328 			}
1329 
1330 			if (tp->t_fb_ptr != NULL) {
1331 				kern_prefetch(tp->t_fb_ptr, &did_prefetch);
1332 				did_prefetch = 1;
1333 			}
1334 			if ((inp->inp_flags2 & INP_SUPPORTS_MBUFQ) && tp->t_in_pkt) {
1335 				error = (*tp->t_fb->tfb_do_queued_segments)(tp, 0);
1336 				if (error) {
1337 					/* The input killed the connection */
1338 					goto skip_pacing;
1339 				}
1340 			}
1341 			inp->inp_hpts_calls = 1;
1342 			error = tcp_output(tp);
1343 			if (error < 0)
1344 				goto skip_pacing;
1345 			inp->inp_hpts_calls = 0;
1346 			if (ninp) {
1347 				/*
1348 				 * If we have a nxt inp, see if we can
1349 				 * prefetch it. Note this may seem
1350 				 * "risky" since we have no locks (other
1351 				 * than the previous inp) and there no
1352 				 * assurance that ninp was not pulled while
1353 				 * we were processing inp and freed. If this
1354 				 * occurred it could mean that either:
1355 				 *
1356 				 * a) Its NULL (which is fine we won't go
1357 				 * here) <or> b) Its valid (which is cool we
1358 				 * will prefetch it) <or> c) The inp got
1359 				 * freed back to the slab which was
1360 				 * reallocated. Then the piece of memory was
1361 				 * re-used and something else (not an
1362 				 * address) is in inp_ppcb. If that occurs
1363 				 * we don't crash, but take a TLB shootdown
1364 				 * performance hit (same as if it was NULL
1365 				 * and we tried to pre-fetch it).
1366 				 *
1367 				 * Considering that the likelyhood of <c> is
1368 				 * quite rare we will take a risk on doing
1369 				 * this. If performance drops after testing
1370 				 * we can always take this out. NB: the
1371 				 * kern_prefetch on amd64 actually has
1372 				 * protection against a bad address now via
1373 				 * the DMAP_() tests. This will prevent the
1374 				 * TLB hit, and instead if <c> occurs just
1375 				 * cause us to load cache with a useless
1376 				 * address (to us).
1377 				 *
1378 				 * XXXGL: with tcpcb == inpcb, I'm unsure this
1379 				 * prefetch is still correct and useful.
1380 				 */
1381 				kern_prefetch(ninp, &prefetch_tp);
1382 				prefetch_tp = 1;
1383 			}
1384 			INP_WUNLOCK(inp);
1385 		skip_pacing:
1386 			CURVNET_RESTORE();
1387 		}
1388 		if (seen_endpoint) {
1389 			/*
1390 			 * We now have a accurate distance between
1391 			 * slot_pos_of_endpoint <-> orig_exit_slot
1392 			 * to tell us how late we were, orig_exit_slot
1393 			 * is where we calculated the end of our cycle to
1394 			 * be when we first entered.
1395 			 */
1396 			completed_measure = 1;
1397 		}
1398 		HPTS_LOCK(hpts);
1399 		hpts->p_runningslot++;
1400 		if (hpts->p_runningslot >= NUM_OF_HPTSI_SLOTS) {
1401 			hpts->p_runningslot = 0;
1402 		}
1403 	}
1404 no_one:
1405 	HPTS_MTX_ASSERT(hpts);
1406 	hpts->p_delayed_by = 0;
1407 	/*
1408 	 * Check to see if we took an excess amount of time and need to run
1409 	 * more ticks (if we did not hit eno-bufs).
1410 	 */
1411 	hpts->p_prev_slot = hpts->p_cur_slot;
1412 	hpts->p_lasttick = hpts->p_curtick;
1413 	if ((from_callout == 0) || (loop_cnt > max_pacer_loops)) {
1414 		/*
1415 		 * Something is serious slow we have
1416 		 * looped through processing the wheel
1417 		 * and by the time we cleared the
1418 		 * needs to run max_pacer_loops time
1419 		 * we still needed to run. That means
1420 		 * the system is hopelessly behind and
1421 		 * can never catch up :(
1422 		 *
1423 		 * We will just lie to this thread
1424 		 * and let it thing p_curtick is
1425 		 * correct. When it next awakens
1426 		 * it will find itself further behind.
1427 		 */
1428 		if (from_callout)
1429 			counter_u64_add(hpts_hopelessly_behind, 1);
1430 		goto no_run;
1431 	}
1432 	hpts->p_curtick = tcp_gethptstick(&tv);
1433 	hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick);
1434 	if (seen_endpoint == 0) {
1435 		/* We saw no endpoint but we may be looping */
1436 		orig_exit_slot = hpts->p_cur_slot;
1437 	}
1438 	if ((wrap_loop_cnt < 2) &&
1439 	    (hpts->p_lasttick != hpts->p_curtick)) {
1440 		counter_u64_add(hpts_loops, 1);
1441 		loop_cnt++;
1442 		goto again;
1443 	}
1444 no_run:
1445 	cts_last_ran[hpts->p_num] = tcp_tv_to_usectick(&tv);
1446 	/*
1447 	 * Set flag to tell that we are done for
1448 	 * any slot input that happens during
1449 	 * input.
1450 	 */
1451 	hpts->p_wheel_complete = 1;
1452 	/*
1453 	 * Now did we spend too long running input and need to run more ticks?
1454 	 * Note that if wrap_loop_cnt < 2 then we should have the conditions
1455 	 * in the KASSERT's true. But if the wheel is behind i.e. wrap_loop_cnt
1456 	 * is greater than 2, then the condtion most likely are *not* true.
1457 	 * Also if we are called not from the callout, we don't run the wheel
1458 	 * multiple times so the slots may not align either.
1459 	 */
1460 	KASSERT(((hpts->p_prev_slot == hpts->p_cur_slot) ||
1461 		 (wrap_loop_cnt >= 2) || (from_callout == 0)),
1462 		("H:%p p_prev_slot:%u not equal to p_cur_slot:%u", hpts,
1463 		 hpts->p_prev_slot, hpts->p_cur_slot));
1464 	KASSERT(((hpts->p_lasttick == hpts->p_curtick)
1465 		 || (wrap_loop_cnt >= 2) || (from_callout == 0)),
1466 		("H:%p p_lasttick:%u not equal to p_curtick:%u", hpts,
1467 		 hpts->p_lasttick, hpts->p_curtick));
1468 	if (from_callout && (hpts->p_lasttick != hpts->p_curtick)) {
1469 		hpts->p_curtick = tcp_gethptstick(&tv);
1470 		counter_u64_add(hpts_loops, 1);
1471 		hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick);
1472 		goto again;
1473 	}
1474 
1475 	if (from_callout){
1476 		tcp_hpts_set_max_sleep(hpts, wrap_loop_cnt);
1477 	}
1478 	if (seen_endpoint)
1479 		return(hpts_slots_diff(slot_pos_of_endpoint, orig_exit_slot));
1480 	else
1481 		return (0);
1482 }
1483 
1484 void
1485 __tcp_set_hpts(struct inpcb *inp, int32_t line)
1486 {
1487 	struct tcp_hpts_entry *hpts;
1488 	int failed;
1489 
1490 	INP_WLOCK_ASSERT(inp);
1491 	hpts = tcp_hpts_lock(inp);
1492 	if ((inp->inp_in_hpts == 0) &&
1493 	    (inp->inp_hpts_cpu_set == 0)) {
1494 		inp->inp_hpts_cpu = hpts_cpuid(inp, &failed);
1495 		if (failed == 0)
1496 			inp->inp_hpts_cpu_set = 1;
1497 	}
1498 	mtx_unlock(&hpts->p_mtx);
1499 }
1500 
1501 static void
1502 __tcp_run_hpts(struct tcp_hpts_entry *hpts)
1503 {
1504 	int ticks_ran;
1505 
1506 	if (hpts->p_hpts_active) {
1507 		/* Already active */
1508 		return;
1509 	}
1510 	if (mtx_trylock(&hpts->p_mtx) == 0) {
1511 		/* Someone else got the lock */
1512 		return;
1513 	}
1514 	if (hpts->p_hpts_active)
1515 		goto out_with_mtx;
1516 	hpts->syscall_cnt++;
1517 	counter_u64_add(hpts_direct_call, 1);
1518 	hpts->p_hpts_active = 1;
1519 	ticks_ran = tcp_hptsi(hpts, 0);
1520 	/* We may want to adjust the sleep values here */
1521 	if (hpts->p_on_queue_cnt >= conn_cnt_thresh) {
1522 		if (ticks_ran > ticks_indicate_less_sleep) {
1523 			struct timeval tv;
1524 			sbintime_t sb;
1525 
1526 			hpts->p_mysleep.tv_usec /= 2;
1527 			if (hpts->p_mysleep.tv_usec < dynamic_min_sleep)
1528 				hpts->p_mysleep.tv_usec = dynamic_min_sleep;
1529 			/* Reschedule with new to value */
1530 			tcp_hpts_set_max_sleep(hpts, 0);
1531 			tv.tv_usec = hpts->p_hpts_sleep_time * HPTS_TICKS_PER_SLOT;
1532 			/* Validate its in the right ranges */
1533 			if (tv.tv_usec < hpts->p_mysleep.tv_usec) {
1534 				hpts->overidden_sleep = tv.tv_usec;
1535 				tv.tv_usec = hpts->p_mysleep.tv_usec;
1536 			} else if (tv.tv_usec > dynamic_max_sleep) {
1537 				/* Lets not let sleep get above this value */
1538 				hpts->overidden_sleep = tv.tv_usec;
1539 				tv.tv_usec = dynamic_max_sleep;
1540 			}
1541 			/*
1542 			 * In this mode the timer is a backstop to
1543 			 * all the userret/lro_flushes so we use
1544 			 * the dynamic value and set the on_min_sleep
1545 			 * flag so we will not be awoken.
1546 			 */
1547 			sb = tvtosbt(tv);
1548 			/* Store off to make visible the actual sleep time */
1549 			hpts->sleeping = tv.tv_usec;
1550 			callout_reset_sbt_on(&hpts->co, sb, 0,
1551 					     hpts_timeout_swi, hpts, hpts->p_cpu,
1552 					     (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision)));
1553 		} else if (ticks_ran < ticks_indicate_more_sleep) {
1554 			/* For the further sleep, don't reschedule  hpts */
1555 			hpts->p_mysleep.tv_usec *= 2;
1556 			if (hpts->p_mysleep.tv_usec > dynamic_max_sleep)
1557 				hpts->p_mysleep.tv_usec = dynamic_max_sleep;
1558 		}
1559 		hpts->p_on_min_sleep = 1;
1560 	}
1561 	hpts->p_hpts_active = 0;
1562 out_with_mtx:
1563 	HPTS_MTX_ASSERT(hpts);
1564 	mtx_unlock(&hpts->p_mtx);
1565 }
1566 
1567 static struct tcp_hpts_entry *
1568 tcp_choose_hpts_to_run(void)
1569 {
1570 	int i, oldest_idx, start, end;
1571 	uint32_t cts, time_since_ran, calc;
1572 
1573 	cts = tcp_get_usecs(NULL);
1574 	time_since_ran = 0;
1575 	/* Default is all one group */
1576 	start = 0;
1577 	end = tcp_pace.rp_num_hptss;
1578 	/*
1579 	 * If we have more than one L3 group figure out which one
1580 	 * this CPU is in.
1581 	 */
1582 	if (tcp_pace.grp_cnt > 1) {
1583 		for (i = 0; i < tcp_pace.grp_cnt; i++) {
1584 			if (CPU_ISSET(curcpu, &tcp_pace.grps[i]->cg_mask)) {
1585 				start = tcp_pace.grps[i]->cg_first;
1586 				end = (tcp_pace.grps[i]->cg_last + 1);
1587 				break;
1588 			}
1589 		}
1590 	}
1591 	oldest_idx = -1;
1592 	for (i = start; i < end; i++) {
1593 		if (TSTMP_GT(cts, cts_last_ran[i]))
1594 			calc = cts - cts_last_ran[i];
1595 		else
1596 			calc = 0;
1597 		if (calc > time_since_ran) {
1598 			oldest_idx = i;
1599 			time_since_ran = calc;
1600 		}
1601 	}
1602 	if (oldest_idx >= 0)
1603 		return(tcp_pace.rp_ent[oldest_idx]);
1604 	else
1605 		return(tcp_pace.rp_ent[(curcpu % tcp_pace.rp_num_hptss)]);
1606 }
1607 
1608 
1609 void
1610 tcp_run_hpts(void)
1611 {
1612 	static struct tcp_hpts_entry *hpts;
1613 	struct epoch_tracker et;
1614 
1615 	NET_EPOCH_ENTER(et);
1616 	hpts = tcp_choose_hpts_to_run();
1617 	__tcp_run_hpts(hpts);
1618 	NET_EPOCH_EXIT(et);
1619 }
1620 
1621 
1622 static void
1623 tcp_hpts_thread(void *ctx)
1624 {
1625 	struct tcp_hpts_entry *hpts;
1626 	struct epoch_tracker et;
1627 	struct timeval tv;
1628 	sbintime_t sb;
1629 	int ticks_ran;
1630 
1631 	hpts = (struct tcp_hpts_entry *)ctx;
1632 	mtx_lock(&hpts->p_mtx);
1633 	if (hpts->p_direct_wake) {
1634 		/* Signaled by input or output with low occupancy count. */
1635 		callout_stop(&hpts->co);
1636 		counter_u64_add(hpts_direct_awakening, 1);
1637 	} else {
1638 		/* Timed out, the normal case. */
1639 		counter_u64_add(hpts_wake_timeout, 1);
1640 		if (callout_pending(&hpts->co) ||
1641 		    !callout_active(&hpts->co)) {
1642 			mtx_unlock(&hpts->p_mtx);
1643 			return;
1644 		}
1645 	}
1646 	callout_deactivate(&hpts->co);
1647 	hpts->p_hpts_wake_scheduled = 0;
1648 	NET_EPOCH_ENTER(et);
1649 	if (hpts->p_hpts_active) {
1650 		/*
1651 		 * We are active already. This means that a syscall
1652 		 * trap or LRO is running in behalf of hpts. In that case
1653 		 * we need to double our timeout since there seems to be
1654 		 * enough activity in the system that we don't need to
1655 		 * run as often (if we were not directly woken).
1656 		 */
1657 		if (hpts->p_direct_wake == 0) {
1658 			counter_u64_add(hpts_back_tosleep, 1);
1659 			if (hpts->p_on_queue_cnt >= conn_cnt_thresh) {
1660 				hpts->p_mysleep.tv_usec *= 2;
1661 				if (hpts->p_mysleep.tv_usec > dynamic_max_sleep)
1662 					hpts->p_mysleep.tv_usec = dynamic_max_sleep;
1663 				tv.tv_usec = hpts->p_mysleep.tv_usec;
1664 				hpts->p_on_min_sleep = 1;
1665 			} else {
1666 				/*
1667 				 * Here we have low count on the wheel, but
1668 				 * somehow we still collided with one of the
1669 				 * connections. Lets go back to sleep for a
1670 				 * min sleep time, but clear the flag so we
1671 				 * can be awoken by insert.
1672 				 */
1673 				hpts->p_on_min_sleep = 0;
1674 				tv.tv_usec = tcp_min_hptsi_time;
1675 			}
1676 		} else {
1677 			/*
1678 			 * Directly woken most likely to reset the
1679 			 * callout time.
1680 			 */
1681 			tv.tv_sec = 0;
1682 			tv.tv_usec = hpts->p_mysleep.tv_usec;
1683 		}
1684 		goto back_to_sleep;
1685 	}
1686 	hpts->sleeping = 0;
1687 	hpts->p_hpts_active = 1;
1688 	ticks_ran = tcp_hptsi(hpts, 1);
1689 	tv.tv_sec = 0;
1690 	tv.tv_usec = hpts->p_hpts_sleep_time * HPTS_TICKS_PER_SLOT;
1691 	if (hpts->p_on_queue_cnt >= conn_cnt_thresh) {
1692 		if(hpts->p_direct_wake == 0) {
1693 			/*
1694 			 * Only adjust sleep time if we were
1695 			 * called from the callout i.e. direct_wake == 0.
1696 			 */
1697 			if (ticks_ran < ticks_indicate_more_sleep) {
1698 				hpts->p_mysleep.tv_usec *= 2;
1699 				if (hpts->p_mysleep.tv_usec > dynamic_max_sleep)
1700 					hpts->p_mysleep.tv_usec = dynamic_max_sleep;
1701 			} else if (ticks_ran > ticks_indicate_less_sleep) {
1702 				hpts->p_mysleep.tv_usec /= 2;
1703 				if (hpts->p_mysleep.tv_usec < dynamic_min_sleep)
1704 					hpts->p_mysleep.tv_usec = dynamic_min_sleep;
1705 			}
1706 		}
1707 		if (tv.tv_usec < hpts->p_mysleep.tv_usec) {
1708 			hpts->overidden_sleep = tv.tv_usec;
1709 			tv.tv_usec = hpts->p_mysleep.tv_usec;
1710 		} else if (tv.tv_usec > dynamic_max_sleep) {
1711 			/* Lets not let sleep get above this value */
1712 			hpts->overidden_sleep = tv.tv_usec;
1713 			tv.tv_usec = dynamic_max_sleep;
1714 		}
1715 		/*
1716 		 * In this mode the timer is a backstop to
1717 		 * all the userret/lro_flushes so we use
1718 		 * the dynamic value and set the on_min_sleep
1719 		 * flag so we will not be awoken.
1720 		 */
1721 		hpts->p_on_min_sleep = 1;
1722 	} else if (hpts->p_on_queue_cnt == 0)  {
1723 		/*
1724 		 * No one on the wheel, please wake us up
1725 		 * if you insert on the wheel.
1726 		 */
1727 		hpts->p_on_min_sleep = 0;
1728 		hpts->overidden_sleep = 0;
1729 	} else {
1730 		/*
1731 		 * We hit here when we have a low number of
1732 		 * clients on the wheel (our else clause).
1733 		 * We may need to go on min sleep, if we set
1734 		 * the flag we will not be awoken if someone
1735 		 * is inserted ahead of us. Clearing the flag
1736 		 * means we can be awoken. This is "old mode"
1737 		 * where the timer is what runs hpts mainly.
1738 		 */
1739 		if (tv.tv_usec < tcp_min_hptsi_time) {
1740 			/*
1741 			 * Yes on min sleep, which means
1742 			 * we cannot be awoken.
1743 			 */
1744 			hpts->overidden_sleep = tv.tv_usec;
1745 			tv.tv_usec = tcp_min_hptsi_time;
1746 			hpts->p_on_min_sleep = 1;
1747 		} else {
1748 			/* Clear the min sleep flag */
1749 			hpts->overidden_sleep = 0;
1750 			hpts->p_on_min_sleep = 0;
1751 		}
1752 	}
1753 	HPTS_MTX_ASSERT(hpts);
1754 	hpts->p_hpts_active = 0;
1755 back_to_sleep:
1756 	hpts->p_direct_wake = 0;
1757 	sb = tvtosbt(tv);
1758 	/* Store off to make visible the actual sleep time */
1759 	hpts->sleeping = tv.tv_usec;
1760 	callout_reset_sbt_on(&hpts->co, sb, 0,
1761 			     hpts_timeout_swi, hpts, hpts->p_cpu,
1762 			     (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision)));
1763 	NET_EPOCH_EXIT(et);
1764 	mtx_unlock(&hpts->p_mtx);
1765 }
1766 
1767 #undef	timersub
1768 
1769 static int32_t
1770 hpts_count_level(struct cpu_group *cg)
1771 {
1772 	int32_t count_l3, i;
1773 
1774 	count_l3 = 0;
1775 	if (cg->cg_level == CG_SHARE_L3)
1776 		count_l3++;
1777 	/* Walk all the children looking for L3 */
1778 	for (i = 0; i < cg->cg_children; i++) {
1779 		count_l3 += hpts_count_level(&cg->cg_child[i]);
1780 	}
1781 	return (count_l3);
1782 }
1783 
1784 static void
1785 hpts_gather_grps(struct cpu_group **grps, int32_t *at, int32_t max, struct cpu_group *cg)
1786 {
1787 	int32_t idx, i;
1788 
1789 	idx = *at;
1790 	if (cg->cg_level == CG_SHARE_L3) {
1791 		grps[idx] = cg;
1792 		idx++;
1793 		if (idx == max) {
1794 			*at = idx;
1795 			return;
1796 		}
1797 	}
1798 	*at = idx;
1799 	/* Walk all the children looking for L3 */
1800 	for (i = 0; i < cg->cg_children; i++) {
1801 		hpts_gather_grps(grps, at, max, &cg->cg_child[i]);
1802 	}
1803 }
1804 
1805 static void
1806 tcp_init_hptsi(void *st)
1807 {
1808 	struct cpu_group *cpu_top;
1809 	int32_t error __diagused;
1810 	int32_t i, j, bound = 0, created = 0;
1811 	size_t sz, asz;
1812 	struct timeval tv;
1813 	sbintime_t sb;
1814 	struct tcp_hpts_entry *hpts;
1815 	struct pcpu *pc;
1816 	char unit[16];
1817 	uint32_t ncpus = mp_ncpus ? mp_ncpus : MAXCPU;
1818 	int count, domain;
1819 
1820 #ifdef SMP
1821 	cpu_top = smp_topo();
1822 #else
1823 	cpu_top = NULL;
1824 #endif
1825 	tcp_pace.rp_num_hptss = ncpus;
1826 	hpts_hopelessly_behind = counter_u64_alloc(M_WAITOK);
1827 	hpts_loops = counter_u64_alloc(M_WAITOK);
1828 	back_tosleep = counter_u64_alloc(M_WAITOK);
1829 	combined_wheel_wrap = counter_u64_alloc(M_WAITOK);
1830 	wheel_wrap = counter_u64_alloc(M_WAITOK);
1831 	hpts_wake_timeout = counter_u64_alloc(M_WAITOK);
1832 	hpts_direct_awakening = counter_u64_alloc(M_WAITOK);
1833 	hpts_back_tosleep = counter_u64_alloc(M_WAITOK);
1834 	hpts_direct_call = counter_u64_alloc(M_WAITOK);
1835 	cpu_uses_flowid = counter_u64_alloc(M_WAITOK);
1836 	cpu_uses_random = counter_u64_alloc(M_WAITOK);
1837 
1838 	sz = (tcp_pace.rp_num_hptss * sizeof(struct tcp_hpts_entry *));
1839 	tcp_pace.rp_ent = malloc(sz, M_TCPHPTS, M_WAITOK | M_ZERO);
1840 	sz = (sizeof(uint32_t) * tcp_pace.rp_num_hptss);
1841 	cts_last_ran = malloc(sz, M_TCPHPTS, M_WAITOK);
1842 	tcp_pace.grp_cnt = 0;
1843 	if (cpu_top == NULL) {
1844 		tcp_pace.grp_cnt = 1;
1845 	} else {
1846 		/* Find out how many cache level 3 domains we have */
1847 		count = 0;
1848 		tcp_pace.grp_cnt = hpts_count_level(cpu_top);
1849 		if (tcp_pace.grp_cnt == 0) {
1850 			tcp_pace.grp_cnt = 1;
1851 		}
1852 		sz = (tcp_pace.grp_cnt * sizeof(struct cpu_group *));
1853 		tcp_pace.grps = malloc(sz, M_TCPHPTS, M_WAITOK);
1854 		/* Now populate the groups */
1855 		if (tcp_pace.grp_cnt == 1) {
1856 			/*
1857 			 * All we need is the top level all cpu's are in
1858 			 * the same cache so when we use grp[0]->cg_mask
1859 			 * with the cg_first <-> cg_last it will include
1860 			 * all cpu's in it. The level here is probably
1861 			 * zero which is ok.
1862 			 */
1863 			tcp_pace.grps[0] = cpu_top;
1864 		} else {
1865 			/*
1866 			 * Here we must find all the level three cache domains
1867 			 * and setup our pointers to them.
1868 			 */
1869 			count = 0;
1870 			hpts_gather_grps(tcp_pace.grps, &count, tcp_pace.grp_cnt, cpu_top);
1871 		}
1872 	}
1873 	asz = sizeof(struct hptsh) * NUM_OF_HPTSI_SLOTS;
1874 	for (i = 0; i < tcp_pace.rp_num_hptss; i++) {
1875 		tcp_pace.rp_ent[i] = malloc(sizeof(struct tcp_hpts_entry),
1876 		    M_TCPHPTS, M_WAITOK | M_ZERO);
1877 		tcp_pace.rp_ent[i]->p_hptss = malloc(asz, M_TCPHPTS, M_WAITOK);
1878 		hpts = tcp_pace.rp_ent[i];
1879 		/*
1880 		 * Init all the hpts structures that are not specifically
1881 		 * zero'd by the allocations. Also lets attach them to the
1882 		 * appropriate sysctl block as well.
1883 		 */
1884 		mtx_init(&hpts->p_mtx, "tcp_hpts_lck",
1885 		    "hpts", MTX_DEF | MTX_DUPOK);
1886 		for (j = 0; j < NUM_OF_HPTSI_SLOTS; j++) {
1887 			TAILQ_INIT(&hpts->p_hptss[j].head);
1888 			hpts->p_hptss[j].count = 0;
1889 			hpts->p_hptss[j].gencnt = 0;
1890 		}
1891 		sysctl_ctx_init(&hpts->hpts_ctx);
1892 		sprintf(unit, "%d", i);
1893 		hpts->hpts_root = SYSCTL_ADD_NODE(&hpts->hpts_ctx,
1894 		    SYSCTL_STATIC_CHILDREN(_net_inet_tcp_hpts),
1895 		    OID_AUTO,
1896 		    unit,
1897 		    CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
1898 		    "");
1899 		SYSCTL_ADD_INT(&hpts->hpts_ctx,
1900 		    SYSCTL_CHILDREN(hpts->hpts_root),
1901 		    OID_AUTO, "out_qcnt", CTLFLAG_RD,
1902 		    &hpts->p_on_queue_cnt, 0,
1903 		    "Count TCB's awaiting output processing");
1904 		SYSCTL_ADD_U16(&hpts->hpts_ctx,
1905 		    SYSCTL_CHILDREN(hpts->hpts_root),
1906 		    OID_AUTO, "active", CTLFLAG_RD,
1907 		    &hpts->p_hpts_active, 0,
1908 		    "Is the hpts active");
1909 		SYSCTL_ADD_UINT(&hpts->hpts_ctx,
1910 		    SYSCTL_CHILDREN(hpts->hpts_root),
1911 		    OID_AUTO, "curslot", CTLFLAG_RD,
1912 		    &hpts->p_cur_slot, 0,
1913 		    "What the current running pacers goal");
1914 		SYSCTL_ADD_UINT(&hpts->hpts_ctx,
1915 		    SYSCTL_CHILDREN(hpts->hpts_root),
1916 		    OID_AUTO, "runtick", CTLFLAG_RD,
1917 		    &hpts->p_runningslot, 0,
1918 		    "What the running pacers current slot is");
1919 		SYSCTL_ADD_UINT(&hpts->hpts_ctx,
1920 		    SYSCTL_CHILDREN(hpts->hpts_root),
1921 		    OID_AUTO, "curtick", CTLFLAG_RD,
1922 		    &hpts->p_curtick, 0,
1923 		    "What the running pacers last tick mapped to the wheel was");
1924 		SYSCTL_ADD_UINT(&hpts->hpts_ctx,
1925 		    SYSCTL_CHILDREN(hpts->hpts_root),
1926 		    OID_AUTO, "lastran", CTLFLAG_RD,
1927 		    &cts_last_ran[i], 0,
1928 		    "The last usec tick that this hpts ran");
1929 		SYSCTL_ADD_LONG(&hpts->hpts_ctx,
1930 		    SYSCTL_CHILDREN(hpts->hpts_root),
1931 		    OID_AUTO, "cur_min_sleep", CTLFLAG_RD,
1932 		    &hpts->p_mysleep.tv_usec,
1933 		    "What the running pacers is using for p_mysleep.tv_usec");
1934 		SYSCTL_ADD_U64(&hpts->hpts_ctx,
1935 		    SYSCTL_CHILDREN(hpts->hpts_root),
1936 		    OID_AUTO, "now_sleeping", CTLFLAG_RD,
1937 		    &hpts->sleeping, 0,
1938 		    "What the running pacers is actually sleeping for");
1939 		SYSCTL_ADD_U64(&hpts->hpts_ctx,
1940 		    SYSCTL_CHILDREN(hpts->hpts_root),
1941 		    OID_AUTO, "syscall_cnt", CTLFLAG_RD,
1942 		    &hpts->syscall_cnt, 0,
1943 		    "How many times we had syscalls on this hpts");
1944 
1945 		hpts->p_hpts_sleep_time = hpts_sleep_max;
1946 		hpts->p_num = i;
1947 		hpts->p_curtick = tcp_gethptstick(&tv);
1948 		cts_last_ran[i] = tcp_tv_to_usectick(&tv);
1949 		hpts->p_prev_slot = hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick);
1950 		hpts->p_cpu = 0xffff;
1951 		hpts->p_nxt_slot = hpts_slot(hpts->p_cur_slot, 1);
1952 		callout_init(&hpts->co, 1);
1953 	}
1954 	/* Don't try to bind to NUMA domains if we don't have any */
1955 	if (vm_ndomains == 1 && tcp_bind_threads == 2)
1956 		tcp_bind_threads = 0;
1957 
1958 	/*
1959 	 * Now lets start ithreads to handle the hptss.
1960 	 */
1961 	for (i = 0; i < tcp_pace.rp_num_hptss; i++) {
1962 		hpts = tcp_pace.rp_ent[i];
1963 		hpts->p_cpu = i;
1964 
1965 		error = swi_add(&hpts->ie, "hpts",
1966 		    tcp_hpts_thread, (void *)hpts,
1967 		    SWI_NET, INTR_MPSAFE, &hpts->ie_cookie);
1968 		KASSERT(error == 0,
1969 			("Can't add hpts:%p i:%d err:%d",
1970 			 hpts, i, error));
1971 		created++;
1972 		hpts->p_mysleep.tv_sec = 0;
1973 		hpts->p_mysleep.tv_usec = tcp_min_hptsi_time;
1974 		if (tcp_bind_threads == 1) {
1975 			if (intr_event_bind(hpts->ie, i) == 0)
1976 				bound++;
1977 		} else if (tcp_bind_threads == 2) {
1978 			/* Find the group for this CPU (i) and bind into it */
1979 			for (j = 0; j < tcp_pace.grp_cnt; j++) {
1980 				if (CPU_ISSET(i, &tcp_pace.grps[j]->cg_mask)) {
1981 					if (intr_event_bind_ithread_cpuset(hpts->ie,
1982 						&tcp_pace.grps[j]->cg_mask) == 0) {
1983 						bound++;
1984 						pc = pcpu_find(i);
1985 						domain = pc->pc_domain;
1986 						count = hpts_domains[domain].count;
1987 						hpts_domains[domain].cpu[count] = i;
1988 						hpts_domains[domain].count++;
1989 						break;
1990 					}
1991 				}
1992 			}
1993 		}
1994 		tv.tv_sec = 0;
1995 		tv.tv_usec = hpts->p_hpts_sleep_time * HPTS_TICKS_PER_SLOT;
1996 		hpts->sleeping = tv.tv_usec;
1997 		sb = tvtosbt(tv);
1998 		callout_reset_sbt_on(&hpts->co, sb, 0,
1999 				     hpts_timeout_swi, hpts, hpts->p_cpu,
2000 				     (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision)));
2001 	}
2002 	/*
2003 	 * If we somehow have an empty domain, fall back to choosing
2004 	 * among all htps threads.
2005 	 */
2006 	for (i = 0; i < vm_ndomains; i++) {
2007 		if (hpts_domains[i].count == 0) {
2008 			tcp_bind_threads = 0;
2009 			break;
2010 		}
2011 	}
2012 	printf("TCP Hpts created %d swi interrupt threads and bound %d to %s\n",
2013 	    created, bound,
2014 	    tcp_bind_threads == 2 ? "NUMA domains" : "cpus");
2015 #ifdef INVARIANTS
2016 	printf("HPTS is in INVARIANT mode!!\n");
2017 #endif
2018 }
2019 
2020 SYSINIT(tcphptsi, SI_SUB_SOFTINTR, SI_ORDER_ANY, tcp_init_hptsi, NULL);
2021 MODULE_VERSION(tcphpts, 1);
2022