1 /*- 2 * Copyright (c) 2016-2018 Netflix, Inc. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 1. Redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer. 9 * 2. Redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution. 12 * 13 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 14 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 16 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 17 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 18 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 19 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 20 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 21 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 22 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 23 * SUCH DAMAGE. 24 * 25 */ 26 #include <sys/cdefs.h> 27 #include "opt_inet.h" 28 #include "opt_inet6.h" 29 #include "opt_rss.h" 30 31 /** 32 * Some notes about usage. 33 * 34 * The tcp_hpts system is designed to provide a high precision timer 35 * system for tcp. Its main purpose is to provide a mechanism for 36 * pacing packets out onto the wire. It can be used in two ways 37 * by a given TCP stack (and those two methods can be used simultaneously). 38 * 39 * First, and probably the main thing its used by Rack and BBR, it can 40 * be used to call tcp_output() of a transport stack at some time in the future. 41 * The normal way this is done is that tcp_output() of the stack schedules 42 * itself to be called again by calling tcp_hpts_insert(tcpcb, slot). The 43 * slot is the time from now that the stack wants to be called but it 44 * must be converted to tcp_hpts's notion of slot. This is done with 45 * one of the macros HPTS_MS_TO_SLOTS or HPTS_USEC_TO_SLOTS. So a typical 46 * call from the tcp_output() routine might look like: 47 * 48 * tcp_hpts_insert(tp, HPTS_USEC_TO_SLOTS(550)); 49 * 50 * The above would schedule tcp_ouput() to be called in 550 useconds. 51 * Note that if using this mechanism the stack will want to add near 52 * its top a check to prevent unwanted calls (from user land or the 53 * arrival of incoming ack's). So it would add something like: 54 * 55 * if (tcp_in_hpts(inp)) 56 * return; 57 * 58 * to prevent output processing until the time alotted has gone by. 59 * Of course this is a bare bones example and the stack will probably 60 * have more consideration then just the above. 61 * 62 * In order to run input queued segments from the HPTS context the 63 * tcp stack must define an input function for 64 * tfb_do_queued_segments(). This function understands 65 * how to dequeue a array of packets that were input and 66 * knows how to call the correct processing routine. 67 * 68 * Locking in this is important as well so most likely the 69 * stack will need to define the tfb_do_segment_nounlock() 70 * splitting tfb_do_segment() into two parts. The main processing 71 * part that does not unlock the INP and returns a value of 1 or 0. 72 * It returns 0 if all is well and the lock was not released. It 73 * returns 1 if we had to destroy the TCB (a reset received etc). 74 * The remains of tfb_do_segment() then become just a simple call 75 * to the tfb_do_segment_nounlock() function and check the return 76 * code and possibly unlock. 77 * 78 * The stack must also set the flag on the INP that it supports this 79 * feature i.e. INP_SUPPORTS_MBUFQ. The LRO code recoginizes 80 * this flag as well and will queue packets when it is set. 81 * There are other flags as well INP_MBUF_QUEUE_READY and 82 * INP_DONT_SACK_QUEUE. The first flag tells the LRO code 83 * that we are in the pacer for output so there is no 84 * need to wake up the hpts system to get immediate 85 * input. The second tells the LRO code that its okay 86 * if a SACK arrives you can still defer input and let 87 * the current hpts timer run (this is usually set when 88 * a rack timer is up so we know SACK's are happening 89 * on the connection already and don't want to wakeup yet). 90 * 91 * There is a common functions within the rack_bbr_common code 92 * version i.e. ctf_do_queued_segments(). This function 93 * knows how to take the input queue of packets from tp->t_inqueue 94 * and process them digging out all the arguments, calling any bpf tap and 95 * calling into tfb_do_segment_nounlock(). The common 96 * function (ctf_do_queued_segments()) requires that 97 * you have defined the tfb_do_segment_nounlock() as 98 * described above. 99 */ 100 101 #include <sys/param.h> 102 #include <sys/bus.h> 103 #include <sys/interrupt.h> 104 #include <sys/module.h> 105 #include <sys/kernel.h> 106 #include <sys/hhook.h> 107 #include <sys/malloc.h> 108 #include <sys/mbuf.h> 109 #include <sys/proc.h> /* for proc0 declaration */ 110 #include <sys/socket.h> 111 #include <sys/socketvar.h> 112 #include <sys/sysctl.h> 113 #include <sys/systm.h> 114 #include <sys/refcount.h> 115 #include <sys/sched.h> 116 #include <sys/queue.h> 117 #include <sys/smp.h> 118 #include <sys/counter.h> 119 #include <sys/time.h> 120 #include <sys/kthread.h> 121 #include <sys/kern_prefetch.h> 122 123 #include <vm/uma.h> 124 #include <vm/vm.h> 125 126 #include <net/route.h> 127 #include <net/vnet.h> 128 129 #ifdef RSS 130 #include <net/netisr.h> 131 #include <net/rss_config.h> 132 #endif 133 134 #define TCPSTATES /* for logging */ 135 136 #include <netinet/in.h> 137 #include <netinet/in_kdtrace.h> 138 #include <netinet/in_pcb.h> 139 #include <netinet/ip.h> 140 #include <netinet/ip_icmp.h> /* required for icmp_var.h */ 141 #include <netinet/icmp_var.h> /* for ICMP_BANDLIM */ 142 #include <netinet/ip_var.h> 143 #include <netinet/ip6.h> 144 #include <netinet6/in6_pcb.h> 145 #include <netinet6/ip6_var.h> 146 #include <netinet/tcp.h> 147 #include <netinet/tcp_fsm.h> 148 #include <netinet/tcp_seq.h> 149 #include <netinet/tcp_timer.h> 150 #include <netinet/tcp_var.h> 151 #include <netinet/tcpip.h> 152 #include <netinet/cc/cc.h> 153 #include <netinet/tcp_hpts.h> 154 #include <netinet/tcp_log_buf.h> 155 156 #ifdef tcp_offload 157 #include <netinet/tcp_offload.h> 158 #endif 159 160 /* 161 * The hpts uses a 102400 wheel. The wheel 162 * defines the time in 10 usec increments (102400 x 10). 163 * This gives a range of 10usec - 1024ms to place 164 * an entry within. If the user requests more than 165 * 1.024 second, a remaineder is attached and the hpts 166 * when seeing the remainder will re-insert the 167 * inpcb forward in time from where it is until 168 * the remainder is zero. 169 */ 170 171 #define NUM_OF_HPTSI_SLOTS 102400 172 173 /* Each hpts has its own p_mtx which is used for locking */ 174 #define HPTS_MTX_ASSERT(hpts) mtx_assert(&(hpts)->p_mtx, MA_OWNED) 175 #define HPTS_LOCK(hpts) mtx_lock(&(hpts)->p_mtx) 176 #define HPTS_UNLOCK(hpts) mtx_unlock(&(hpts)->p_mtx) 177 struct tcp_hpts_entry { 178 /* Cache line 0x00 */ 179 struct mtx p_mtx; /* Mutex for hpts */ 180 struct timeval p_mysleep; /* Our min sleep time */ 181 uint64_t syscall_cnt; 182 uint64_t sleeping; /* What the actual sleep was (if sleeping) */ 183 uint16_t p_hpts_active; /* Flag that says hpts is awake */ 184 uint8_t p_wheel_complete; /* have we completed the wheel arc walk? */ 185 uint32_t p_curtick; /* Tick in 10 us the hpts is going to */ 186 uint32_t p_runningslot; /* Current tick we are at if we are running */ 187 uint32_t p_prev_slot; /* Previous slot we were on */ 188 uint32_t p_cur_slot; /* Current slot in wheel hpts is draining */ 189 uint32_t p_nxt_slot; /* The next slot outside the current range of 190 * slots that the hpts is running on. */ 191 int32_t p_on_queue_cnt; /* Count on queue in this hpts */ 192 uint32_t p_lasttick; /* Last tick before the current one */ 193 uint8_t p_direct_wake :1, /* boolean */ 194 p_on_min_sleep:1, /* boolean */ 195 p_hpts_wake_scheduled:1, /* boolean */ 196 p_avail:5; 197 uint8_t p_fill[3]; /* Fill to 32 bits */ 198 /* Cache line 0x40 */ 199 struct hptsh { 200 TAILQ_HEAD(, tcpcb) head; 201 uint32_t count; 202 uint32_t gencnt; 203 } *p_hptss; /* Hptsi wheel */ 204 uint32_t p_hpts_sleep_time; /* Current sleep interval having a max 205 * of 255ms */ 206 uint32_t overidden_sleep; /* what was overrided by min-sleep for logging */ 207 uint32_t saved_lasttick; /* for logging */ 208 uint32_t saved_curtick; /* for logging */ 209 uint32_t saved_curslot; /* for logging */ 210 uint32_t saved_prev_slot; /* for logging */ 211 uint32_t p_delayed_by; /* How much were we delayed by */ 212 /* Cache line 0x80 */ 213 struct sysctl_ctx_list hpts_ctx; 214 struct sysctl_oid *hpts_root; 215 struct intr_event *ie; 216 void *ie_cookie; 217 uint16_t p_num; /* The hpts number one per cpu */ 218 uint16_t p_cpu; /* The hpts CPU */ 219 /* There is extra space in here */ 220 /* Cache line 0x100 */ 221 struct callout co __aligned(CACHE_LINE_SIZE); 222 } __aligned(CACHE_LINE_SIZE); 223 224 static struct tcp_hptsi { 225 struct cpu_group **grps; 226 struct tcp_hpts_entry **rp_ent; /* Array of hptss */ 227 uint32_t *cts_last_ran; 228 uint32_t grp_cnt; 229 uint32_t rp_num_hptss; /* Number of hpts threads */ 230 } tcp_pace; 231 232 MALLOC_DEFINE(M_TCPHPTS, "tcp_hpts", "TCP hpts"); 233 #ifdef RSS 234 static int tcp_bind_threads = 1; 235 #else 236 static int tcp_bind_threads = 2; 237 #endif 238 static int tcp_use_irq_cpu = 0; 239 static uint32_t *cts_last_ran; 240 static int hpts_does_tp_logging = 0; 241 242 static int32_t tcp_hptsi(struct tcp_hpts_entry *hpts, int from_callout); 243 static void tcp_hpts_thread(void *ctx); 244 static void tcp_init_hptsi(void *st); 245 246 int32_t tcp_min_hptsi_time = DEFAULT_MIN_SLEEP; 247 static int conn_cnt_thresh = DEFAULT_CONNECTION_THESHOLD; 248 static int32_t dynamic_min_sleep = DYNAMIC_MIN_SLEEP; 249 static int32_t dynamic_max_sleep = DYNAMIC_MAX_SLEEP; 250 251 252 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, hpts, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 253 "TCP Hpts controls"); 254 SYSCTL_NODE(_net_inet_tcp_hpts, OID_AUTO, stats, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 255 "TCP Hpts statistics"); 256 257 #define timersub(tvp, uvp, vvp) \ 258 do { \ 259 (vvp)->tv_sec = (tvp)->tv_sec - (uvp)->tv_sec; \ 260 (vvp)->tv_usec = (tvp)->tv_usec - (uvp)->tv_usec; \ 261 if ((vvp)->tv_usec < 0) { \ 262 (vvp)->tv_sec--; \ 263 (vvp)->tv_usec += 1000000; \ 264 } \ 265 } while (0) 266 267 static int32_t tcp_hpts_precision = 120; 268 269 static struct hpts_domain_info { 270 int count; 271 int cpu[MAXCPU]; 272 } hpts_domains[MAXMEMDOM]; 273 274 counter_u64_t hpts_hopelessly_behind; 275 276 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, hopeless, CTLFLAG_RD, 277 &hpts_hopelessly_behind, 278 "Number of times hpts could not catch up and was behind hopelessly"); 279 280 counter_u64_t hpts_loops; 281 282 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, loops, CTLFLAG_RD, 283 &hpts_loops, "Number of times hpts had to loop to catch up"); 284 285 counter_u64_t back_tosleep; 286 287 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, no_tcbsfound, CTLFLAG_RD, 288 &back_tosleep, "Number of times hpts found no tcbs"); 289 290 counter_u64_t combined_wheel_wrap; 291 292 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, comb_wheel_wrap, CTLFLAG_RD, 293 &combined_wheel_wrap, "Number of times the wheel lagged enough to have an insert see wrap"); 294 295 counter_u64_t wheel_wrap; 296 297 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, wheel_wrap, CTLFLAG_RD, 298 &wheel_wrap, "Number of times the wheel lagged enough to have an insert see wrap"); 299 300 counter_u64_t hpts_direct_call; 301 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, direct_call, CTLFLAG_RD, 302 &hpts_direct_call, "Number of times hpts was called by syscall/trap or other entry"); 303 304 counter_u64_t hpts_wake_timeout; 305 306 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, timeout_wakeup, CTLFLAG_RD, 307 &hpts_wake_timeout, "Number of times hpts threads woke up via the callout expiring"); 308 309 counter_u64_t hpts_direct_awakening; 310 311 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, direct_awakening, CTLFLAG_RD, 312 &hpts_direct_awakening, "Number of times hpts threads woke up via the callout expiring"); 313 314 counter_u64_t hpts_back_tosleep; 315 316 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, back_tosleep, CTLFLAG_RD, 317 &hpts_back_tosleep, "Number of times hpts threads woke up via the callout expiring and went back to sleep no work"); 318 319 counter_u64_t cpu_uses_flowid; 320 counter_u64_t cpu_uses_random; 321 322 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, cpusel_flowid, CTLFLAG_RD, 323 &cpu_uses_flowid, "Number of times when setting cpuid we used the flowid field"); 324 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, cpusel_random, CTLFLAG_RD, 325 &cpu_uses_random, "Number of times when setting cpuid we used the a random value"); 326 327 TUNABLE_INT("net.inet.tcp.bind_hptss", &tcp_bind_threads); 328 TUNABLE_INT("net.inet.tcp.use_irq", &tcp_use_irq_cpu); 329 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, bind_hptss, CTLFLAG_RD, 330 &tcp_bind_threads, 2, 331 "Thread Binding tunable"); 332 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, use_irq, CTLFLAG_RD, 333 &tcp_use_irq_cpu, 0, 334 "Use of irq CPU tunable"); 335 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, precision, CTLFLAG_RW, 336 &tcp_hpts_precision, 120, 337 "Value for PRE() precision of callout"); 338 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, cnt_thresh, CTLFLAG_RW, 339 &conn_cnt_thresh, 0, 340 "How many connections (below) make us use the callout based mechanism"); 341 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, logging, CTLFLAG_RW, 342 &hpts_does_tp_logging, 0, 343 "Do we add to any tp that has logging on pacer logs"); 344 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, dyn_minsleep, CTLFLAG_RW, 345 &dynamic_min_sleep, 250, 346 "What is the dynamic minsleep value?"); 347 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, dyn_maxsleep, CTLFLAG_RW, 348 &dynamic_max_sleep, 5000, 349 "What is the dynamic maxsleep value?"); 350 351 static int32_t max_pacer_loops = 10; 352 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, loopmax, CTLFLAG_RW, 353 &max_pacer_loops, 10, 354 "What is the maximum number of times the pacer will loop trying to catch up"); 355 356 #define HPTS_MAX_SLEEP_ALLOWED (NUM_OF_HPTSI_SLOTS/2) 357 358 static uint32_t hpts_sleep_max = HPTS_MAX_SLEEP_ALLOWED; 359 360 static int 361 sysctl_net_inet_tcp_hpts_max_sleep(SYSCTL_HANDLER_ARGS) 362 { 363 int error; 364 uint32_t new; 365 366 new = hpts_sleep_max; 367 error = sysctl_handle_int(oidp, &new, 0, req); 368 if (error == 0 && req->newptr) { 369 if ((new < (dynamic_min_sleep/HPTS_TICKS_PER_SLOT)) || 370 (new > HPTS_MAX_SLEEP_ALLOWED)) 371 error = EINVAL; 372 else 373 hpts_sleep_max = new; 374 } 375 return (error); 376 } 377 378 static int 379 sysctl_net_inet_tcp_hpts_min_sleep(SYSCTL_HANDLER_ARGS) 380 { 381 int error; 382 uint32_t new; 383 384 new = tcp_min_hptsi_time; 385 error = sysctl_handle_int(oidp, &new, 0, req); 386 if (error == 0 && req->newptr) { 387 if (new < LOWEST_SLEEP_ALLOWED) 388 error = EINVAL; 389 else 390 tcp_min_hptsi_time = new; 391 } 392 return (error); 393 } 394 395 SYSCTL_PROC(_net_inet_tcp_hpts, OID_AUTO, maxsleep, 396 CTLTYPE_UINT | CTLFLAG_RW, 397 &hpts_sleep_max, 0, 398 &sysctl_net_inet_tcp_hpts_max_sleep, "IU", 399 "Maximum time hpts will sleep in slots"); 400 401 SYSCTL_PROC(_net_inet_tcp_hpts, OID_AUTO, minsleep, 402 CTLTYPE_UINT | CTLFLAG_RW, 403 &tcp_min_hptsi_time, 0, 404 &sysctl_net_inet_tcp_hpts_min_sleep, "IU", 405 "The minimum time the hpts must sleep before processing more slots"); 406 407 static int ticks_indicate_more_sleep = TICKS_INDICATE_MORE_SLEEP; 408 static int ticks_indicate_less_sleep = TICKS_INDICATE_LESS_SLEEP; 409 static int tcp_hpts_no_wake_over_thresh = 1; 410 411 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, more_sleep, CTLFLAG_RW, 412 &ticks_indicate_more_sleep, 0, 413 "If we only process this many or less on a timeout, we need longer sleep on the next callout"); 414 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, less_sleep, CTLFLAG_RW, 415 &ticks_indicate_less_sleep, 0, 416 "If we process this many or more on a timeout, we need less sleep on the next callout"); 417 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, nowake_over_thresh, CTLFLAG_RW, 418 &tcp_hpts_no_wake_over_thresh, 0, 419 "When we are over the threshold on the pacer do we prohibit wakeups?"); 420 421 static uint16_t 422 hpts_random_cpu(void) 423 { 424 uint16_t cpuid; 425 uint32_t ran; 426 427 ran = arc4random(); 428 cpuid = (((ran & 0xffff) % mp_ncpus) % tcp_pace.rp_num_hptss); 429 return (cpuid); 430 } 431 432 static void 433 tcp_hpts_log(struct tcp_hpts_entry *hpts, struct tcpcb *tp, struct timeval *tv, 434 int slots_to_run, int idx, int from_callout) 435 { 436 union tcp_log_stackspecific log; 437 /* 438 * Unused logs are 439 * 64 bit - delRate, rttProp, bw_inuse 440 * 16 bit - cwnd_gain 441 * 8 bit - bbr_state, bbr_substate, inhpts; 442 */ 443 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 444 log.u_bbr.flex1 = hpts->p_nxt_slot; 445 log.u_bbr.flex2 = hpts->p_cur_slot; 446 log.u_bbr.flex3 = hpts->p_prev_slot; 447 log.u_bbr.flex4 = idx; 448 log.u_bbr.flex5 = hpts->p_curtick; 449 log.u_bbr.flex6 = hpts->p_on_queue_cnt; 450 log.u_bbr.flex7 = hpts->p_cpu; 451 log.u_bbr.flex8 = (uint8_t)from_callout; 452 log.u_bbr.inflight = slots_to_run; 453 log.u_bbr.applimited = hpts->overidden_sleep; 454 log.u_bbr.delivered = hpts->saved_curtick; 455 log.u_bbr.timeStamp = tcp_tv_to_usectick(tv); 456 log.u_bbr.epoch = hpts->saved_curslot; 457 log.u_bbr.lt_epoch = hpts->saved_prev_slot; 458 log.u_bbr.pkts_out = hpts->p_delayed_by; 459 log.u_bbr.lost = hpts->p_hpts_sleep_time; 460 log.u_bbr.pacing_gain = hpts->p_cpu; 461 log.u_bbr.pkt_epoch = hpts->p_runningslot; 462 log.u_bbr.use_lt_bw = 1; 463 TCP_LOG_EVENTP(tp, NULL, 464 &tptosocket(tp)->so_rcv, 465 &tptosocket(tp)->so_snd, 466 BBR_LOG_HPTSDIAG, 0, 467 0, &log, false, tv); 468 } 469 470 static void 471 tcp_wakehpts(struct tcp_hpts_entry *hpts) 472 { 473 HPTS_MTX_ASSERT(hpts); 474 475 if (tcp_hpts_no_wake_over_thresh && (hpts->p_on_queue_cnt >= conn_cnt_thresh)) { 476 hpts->p_direct_wake = 0; 477 return; 478 } 479 if (hpts->p_hpts_wake_scheduled == 0) { 480 hpts->p_hpts_wake_scheduled = 1; 481 swi_sched(hpts->ie_cookie, 0); 482 } 483 } 484 485 static void 486 hpts_timeout_swi(void *arg) 487 { 488 struct tcp_hpts_entry *hpts; 489 490 hpts = (struct tcp_hpts_entry *)arg; 491 swi_sched(hpts->ie_cookie, 0); 492 } 493 494 static void 495 tcp_hpts_insert_internal(struct tcpcb *tp, struct tcp_hpts_entry *hpts) 496 { 497 struct inpcb *inp = tptoinpcb(tp); 498 struct hptsh *hptsh; 499 500 INP_WLOCK_ASSERT(inp); 501 HPTS_MTX_ASSERT(hpts); 502 MPASS(hpts->p_cpu == tp->t_hpts_cpu); 503 MPASS(!(inp->inp_flags & INP_DROPPED)); 504 505 hptsh = &hpts->p_hptss[tp->t_hpts_slot]; 506 507 if (tp->t_in_hpts == IHPTS_NONE) { 508 tp->t_in_hpts = IHPTS_ONQUEUE; 509 in_pcbref(inp); 510 } else if (tp->t_in_hpts == IHPTS_MOVING) { 511 tp->t_in_hpts = IHPTS_ONQUEUE; 512 } else 513 MPASS(tp->t_in_hpts == IHPTS_ONQUEUE); 514 tp->t_hpts_gencnt = hptsh->gencnt; 515 516 TAILQ_INSERT_TAIL(&hptsh->head, tp, t_hpts); 517 hptsh->count++; 518 hpts->p_on_queue_cnt++; 519 } 520 521 static struct tcp_hpts_entry * 522 tcp_hpts_lock(struct tcpcb *tp) 523 { 524 struct tcp_hpts_entry *hpts; 525 526 INP_LOCK_ASSERT(tptoinpcb(tp)); 527 528 hpts = tcp_pace.rp_ent[tp->t_hpts_cpu]; 529 HPTS_LOCK(hpts); 530 531 return (hpts); 532 } 533 534 static void 535 tcp_hpts_release(struct tcpcb *tp) 536 { 537 bool released __diagused; 538 539 tp->t_in_hpts = IHPTS_NONE; 540 released = in_pcbrele_wlocked(tptoinpcb(tp)); 541 MPASS(released == false); 542 } 543 544 /* 545 * Initialize tcpcb to get ready for use with HPTS. We will know which CPU 546 * is preferred on the first incoming packet. Before that avoid crowding 547 * a single CPU with newborn connections and use a random one. 548 * This initialization is normally called on a newborn tcpcb, but potentially 549 * can be called once again if stack is switched. In that case we inherit CPU 550 * that the previous stack has set, be it random or not. In extreme cases, 551 * e.g. syzkaller fuzzing, a tcpcb can already be in HPTS in IHPTS_MOVING state 552 * and has never received a first packet. 553 */ 554 void 555 tcp_hpts_init(struct tcpcb *tp) 556 { 557 558 if (__predict_true(tp->t_hpts_cpu == HPTS_CPU_NONE)) { 559 tp->t_hpts_cpu = hpts_random_cpu(); 560 MPASS(!(tp->t_flags2 & TF2_HPTS_CPU_SET)); 561 } 562 } 563 564 /* 565 * Called normally with the INP_LOCKED but it 566 * does not matter, the hpts lock is the key 567 * but the lock order allows us to hold the 568 * INP lock and then get the hpts lock. 569 */ 570 void 571 tcp_hpts_remove(struct tcpcb *tp) 572 { 573 struct tcp_hpts_entry *hpts; 574 struct hptsh *hptsh; 575 576 INP_WLOCK_ASSERT(tptoinpcb(tp)); 577 578 hpts = tcp_hpts_lock(tp); 579 if (tp->t_in_hpts == IHPTS_ONQUEUE) { 580 hptsh = &hpts->p_hptss[tp->t_hpts_slot]; 581 tp->t_hpts_request = 0; 582 if (__predict_true(tp->t_hpts_gencnt == hptsh->gencnt)) { 583 TAILQ_REMOVE(&hptsh->head, tp, t_hpts); 584 MPASS(hptsh->count > 0); 585 hptsh->count--; 586 MPASS(hpts->p_on_queue_cnt > 0); 587 hpts->p_on_queue_cnt--; 588 tcp_hpts_release(tp); 589 } else { 590 /* 591 * tcp_hptsi() now owns the TAILQ head of this inp. 592 * Can't TAILQ_REMOVE, just mark it. 593 */ 594 #ifdef INVARIANTS 595 struct tcpcb *tmp; 596 597 TAILQ_FOREACH(tmp, &hptsh->head, t_hpts) 598 MPASS(tmp != tp); 599 #endif 600 tp->t_in_hpts = IHPTS_MOVING; 601 tp->t_hpts_slot = -1; 602 } 603 } else if (tp->t_in_hpts == IHPTS_MOVING) { 604 /* 605 * Handle a special race condition: 606 * tcp_hptsi() moves inpcb to detached tailq 607 * tcp_hpts_remove() marks as IHPTS_MOVING, slot = -1 608 * tcp_hpts_insert() sets slot to a meaningful value 609 * tcp_hpts_remove() again (we are here!), then in_pcbdrop() 610 * tcp_hptsi() finds pcb with meaningful slot and INP_DROPPED 611 */ 612 tp->t_hpts_slot = -1; 613 } 614 HPTS_UNLOCK(hpts); 615 } 616 617 static inline int 618 hpts_slot(uint32_t wheel_slot, uint32_t plus) 619 { 620 /* 621 * Given a slot on the wheel, what slot 622 * is that plus ticks out? 623 */ 624 KASSERT(wheel_slot < NUM_OF_HPTSI_SLOTS, ("Invalid tick %u not on wheel", wheel_slot)); 625 return ((wheel_slot + plus) % NUM_OF_HPTSI_SLOTS); 626 } 627 628 static inline int 629 tick_to_wheel(uint32_t cts_in_wticks) 630 { 631 /* 632 * Given a timestamp in ticks (so by 633 * default to get it to a real time one 634 * would multiply by 10.. i.e the number 635 * of ticks in a slot) map it to our limited 636 * space wheel. 637 */ 638 return (cts_in_wticks % NUM_OF_HPTSI_SLOTS); 639 } 640 641 static inline int 642 hpts_slots_diff(int prev_slot, int slot_now) 643 { 644 /* 645 * Given two slots that are someplace 646 * on our wheel. How far are they apart? 647 */ 648 if (slot_now > prev_slot) 649 return (slot_now - prev_slot); 650 else if (slot_now == prev_slot) 651 /* 652 * Special case, same means we can go all of our 653 * wheel less one slot. 654 */ 655 return (NUM_OF_HPTSI_SLOTS - 1); 656 else 657 return ((NUM_OF_HPTSI_SLOTS - prev_slot) + slot_now); 658 } 659 660 /* 661 * Given a slot on the wheel that is the current time 662 * mapped to the wheel (wheel_slot), what is the maximum 663 * distance forward that can be obtained without 664 * wrapping past either prev_slot or running_slot 665 * depending on the htps state? Also if passed 666 * a uint32_t *, fill it with the slot location. 667 * 668 * Note if you do not give this function the current 669 * time (that you think it is) mapped to the wheel slot 670 * then the results will not be what you expect and 671 * could lead to invalid inserts. 672 */ 673 static inline int32_t 674 max_slots_available(struct tcp_hpts_entry *hpts, uint32_t wheel_slot, uint32_t *target_slot) 675 { 676 uint32_t dis_to_travel, end_slot, pacer_to_now, avail_on_wheel; 677 678 if ((hpts->p_hpts_active == 1) && 679 (hpts->p_wheel_complete == 0)) { 680 end_slot = hpts->p_runningslot; 681 /* Back up one tick */ 682 if (end_slot == 0) 683 end_slot = NUM_OF_HPTSI_SLOTS - 1; 684 else 685 end_slot--; 686 if (target_slot) 687 *target_slot = end_slot; 688 } else { 689 /* 690 * For the case where we are 691 * not active, or we have 692 * completed the pass over 693 * the wheel, we can use the 694 * prev tick and subtract one from it. This puts us 695 * as far out as possible on the wheel. 696 */ 697 end_slot = hpts->p_prev_slot; 698 if (end_slot == 0) 699 end_slot = NUM_OF_HPTSI_SLOTS - 1; 700 else 701 end_slot--; 702 if (target_slot) 703 *target_slot = end_slot; 704 /* 705 * Now we have close to the full wheel left minus the 706 * time it has been since the pacer went to sleep. Note 707 * that wheel_tick, passed in, should be the current time 708 * from the perspective of the caller, mapped to the wheel. 709 */ 710 if (hpts->p_prev_slot != wheel_slot) 711 dis_to_travel = hpts_slots_diff(hpts->p_prev_slot, wheel_slot); 712 else 713 dis_to_travel = 1; 714 /* 715 * dis_to_travel in this case is the space from when the 716 * pacer stopped (p_prev_slot) and where our wheel_slot 717 * is now. To know how many slots we can put it in we 718 * subtract from the wheel size. We would not want 719 * to place something after p_prev_slot or it will 720 * get ran too soon. 721 */ 722 return (NUM_OF_HPTSI_SLOTS - dis_to_travel); 723 } 724 /* 725 * So how many slots are open between p_runningslot -> p_cur_slot 726 * that is what is currently un-available for insertion. Special 727 * case when we are at the last slot, this gets 1, so that 728 * the answer to how many slots are available is all but 1. 729 */ 730 if (hpts->p_runningslot == hpts->p_cur_slot) 731 dis_to_travel = 1; 732 else 733 dis_to_travel = hpts_slots_diff(hpts->p_runningslot, hpts->p_cur_slot); 734 /* 735 * How long has the pacer been running? 736 */ 737 if (hpts->p_cur_slot != wheel_slot) { 738 /* The pacer is a bit late */ 739 pacer_to_now = hpts_slots_diff(hpts->p_cur_slot, wheel_slot); 740 } else { 741 /* The pacer is right on time, now == pacers start time */ 742 pacer_to_now = 0; 743 } 744 /* 745 * To get the number left we can insert into we simply 746 * subtract the distance the pacer has to run from how 747 * many slots there are. 748 */ 749 avail_on_wheel = NUM_OF_HPTSI_SLOTS - dis_to_travel; 750 /* 751 * Now how many of those we will eat due to the pacer's 752 * time (p_cur_slot) of start being behind the 753 * real time (wheel_slot)? 754 */ 755 if (avail_on_wheel <= pacer_to_now) { 756 /* 757 * Wheel wrap, we can't fit on the wheel, that 758 * is unusual the system must be way overloaded! 759 * Insert into the assured slot, and return special 760 * "0". 761 */ 762 counter_u64_add(combined_wheel_wrap, 1); 763 *target_slot = hpts->p_nxt_slot; 764 return (0); 765 } else { 766 /* 767 * We know how many slots are open 768 * on the wheel (the reverse of what 769 * is left to run. Take away the time 770 * the pacer started to now (wheel_slot) 771 * and that tells you how many slots are 772 * open that can be inserted into that won't 773 * be touched by the pacer until later. 774 */ 775 return (avail_on_wheel - pacer_to_now); 776 } 777 } 778 779 780 #ifdef INVARIANTS 781 static void 782 check_if_slot_would_be_wrong(struct tcp_hpts_entry *hpts, struct tcpcb *tp, 783 uint32_t hptsslot, int line) 784 { 785 /* 786 * Sanity checks for the pacer with invariants 787 * on insert. 788 */ 789 KASSERT(hptsslot < NUM_OF_HPTSI_SLOTS, 790 ("hpts:%p tp:%p slot:%d > max", hpts, tp, hptsslot)); 791 if ((hpts->p_hpts_active) && 792 (hpts->p_wheel_complete == 0)) { 793 /* 794 * If the pacer is processing a arc 795 * of the wheel, we need to make 796 * sure we are not inserting within 797 * that arc. 798 */ 799 int distance, yet_to_run; 800 801 distance = hpts_slots_diff(hpts->p_runningslot, hptsslot); 802 if (hpts->p_runningslot != hpts->p_cur_slot) 803 yet_to_run = hpts_slots_diff(hpts->p_runningslot, hpts->p_cur_slot); 804 else 805 yet_to_run = 0; /* processing last slot */ 806 KASSERT(yet_to_run <= distance, ("hpts:%p tp:%p slot:%d " 807 "distance:%d yet_to_run:%d rs:%d cs:%d", hpts, tp, 808 hptsslot, distance, yet_to_run, hpts->p_runningslot, 809 hpts->p_cur_slot)); 810 } 811 } 812 #endif 813 814 uint32_t 815 tcp_hpts_insert_diag(struct tcpcb *tp, uint32_t slot, int32_t line, struct hpts_diag *diag) 816 { 817 struct tcp_hpts_entry *hpts; 818 struct timeval tv; 819 uint32_t slot_on, wheel_cts, last_slot, need_new_to = 0; 820 int32_t wheel_slot, maxslots; 821 bool need_wakeup = false; 822 823 INP_WLOCK_ASSERT(tptoinpcb(tp)); 824 MPASS(!(tptoinpcb(tp)->inp_flags & INP_DROPPED)); 825 MPASS(!tcp_in_hpts(tp)); 826 827 /* 828 * We now return the next-slot the hpts will be on, beyond its 829 * current run (if up) or where it was when it stopped if it is 830 * sleeping. 831 */ 832 hpts = tcp_hpts_lock(tp); 833 microuptime(&tv); 834 if (diag) { 835 memset(diag, 0, sizeof(struct hpts_diag)); 836 diag->p_hpts_active = hpts->p_hpts_active; 837 diag->p_prev_slot = hpts->p_prev_slot; 838 diag->p_runningslot = hpts->p_runningslot; 839 diag->p_nxt_slot = hpts->p_nxt_slot; 840 diag->p_cur_slot = hpts->p_cur_slot; 841 diag->p_curtick = hpts->p_curtick; 842 diag->p_lasttick = hpts->p_lasttick; 843 diag->slot_req = slot; 844 diag->p_on_min_sleep = hpts->p_on_min_sleep; 845 diag->hpts_sleep_time = hpts->p_hpts_sleep_time; 846 } 847 if (slot == 0) { 848 /* Ok we need to set it on the hpts in the current slot */ 849 tp->t_hpts_request = 0; 850 if ((hpts->p_hpts_active == 0) || (hpts->p_wheel_complete)) { 851 /* 852 * A sleeping hpts we want in next slot to run 853 * note that in this state p_prev_slot == p_cur_slot 854 */ 855 tp->t_hpts_slot = hpts_slot(hpts->p_prev_slot, 1); 856 if ((hpts->p_on_min_sleep == 0) && 857 (hpts->p_hpts_active == 0)) 858 need_wakeup = true; 859 } else 860 tp->t_hpts_slot = hpts->p_runningslot; 861 if (__predict_true(tp->t_in_hpts != IHPTS_MOVING)) 862 tcp_hpts_insert_internal(tp, hpts); 863 if (need_wakeup) { 864 /* 865 * Activate the hpts if it is sleeping and its 866 * timeout is not 1. 867 */ 868 hpts->p_direct_wake = 1; 869 tcp_wakehpts(hpts); 870 } 871 slot_on = hpts->p_nxt_slot; 872 HPTS_UNLOCK(hpts); 873 874 return (slot_on); 875 } 876 /* Get the current time relative to the wheel */ 877 wheel_cts = tcp_tv_to_hptstick(&tv); 878 /* Map it onto the wheel */ 879 wheel_slot = tick_to_wheel(wheel_cts); 880 /* Now what's the max we can place it at? */ 881 maxslots = max_slots_available(hpts, wheel_slot, &last_slot); 882 if (diag) { 883 diag->wheel_slot = wheel_slot; 884 diag->maxslots = maxslots; 885 diag->wheel_cts = wheel_cts; 886 } 887 if (maxslots == 0) { 888 /* The pacer is in a wheel wrap behind, yikes! */ 889 if (slot > 1) { 890 /* 891 * Reduce by 1 to prevent a forever loop in 892 * case something else is wrong. Note this 893 * probably does not hurt because the pacer 894 * if its true is so far behind we will be 895 * > 1second late calling anyway. 896 */ 897 slot--; 898 } 899 tp->t_hpts_slot = last_slot; 900 tp->t_hpts_request = slot; 901 } else if (maxslots >= slot) { 902 /* It all fits on the wheel */ 903 tp->t_hpts_request = 0; 904 tp->t_hpts_slot = hpts_slot(wheel_slot, slot); 905 } else { 906 /* It does not fit */ 907 tp->t_hpts_request = slot - maxslots; 908 tp->t_hpts_slot = last_slot; 909 } 910 if (diag) { 911 diag->slot_remaining = tp->t_hpts_request; 912 diag->inp_hptsslot = tp->t_hpts_slot; 913 } 914 #ifdef INVARIANTS 915 check_if_slot_would_be_wrong(hpts, tp, tp->t_hpts_slot, line); 916 #endif 917 if (__predict_true(tp->t_in_hpts != IHPTS_MOVING)) 918 tcp_hpts_insert_internal(tp, hpts); 919 if ((hpts->p_hpts_active == 0) && 920 (tp->t_hpts_request == 0) && 921 (hpts->p_on_min_sleep == 0)) { 922 /* 923 * The hpts is sleeping and NOT on a minimum 924 * sleep time, we need to figure out where 925 * it will wake up at and if we need to reschedule 926 * its time-out. 927 */ 928 uint32_t have_slept, yet_to_sleep; 929 930 /* Now do we need to restart the hpts's timer? */ 931 have_slept = hpts_slots_diff(hpts->p_prev_slot, wheel_slot); 932 if (have_slept < hpts->p_hpts_sleep_time) 933 yet_to_sleep = hpts->p_hpts_sleep_time - have_slept; 934 else { 935 /* We are over-due */ 936 yet_to_sleep = 0; 937 need_wakeup = 1; 938 } 939 if (diag) { 940 diag->have_slept = have_slept; 941 diag->yet_to_sleep = yet_to_sleep; 942 } 943 if (yet_to_sleep && 944 (yet_to_sleep > slot)) { 945 /* 946 * We need to reschedule the hpts's time-out. 947 */ 948 hpts->p_hpts_sleep_time = slot; 949 need_new_to = slot * HPTS_TICKS_PER_SLOT; 950 } 951 } 952 /* 953 * Now how far is the hpts sleeping to? if active is 1, its 954 * up and ticking we do nothing, otherwise we may need to 955 * reschedule its callout if need_new_to is set from above. 956 */ 957 if (need_wakeup) { 958 hpts->p_direct_wake = 1; 959 tcp_wakehpts(hpts); 960 if (diag) { 961 diag->need_new_to = 0; 962 diag->co_ret = 0xffff0000; 963 } 964 } else if (need_new_to) { 965 int32_t co_ret; 966 struct timeval tv; 967 sbintime_t sb; 968 969 tv.tv_sec = 0; 970 tv.tv_usec = 0; 971 while (need_new_to > HPTS_USEC_IN_SEC) { 972 tv.tv_sec++; 973 need_new_to -= HPTS_USEC_IN_SEC; 974 } 975 tv.tv_usec = need_new_to; 976 sb = tvtosbt(tv); 977 co_ret = callout_reset_sbt_on(&hpts->co, sb, 0, 978 hpts_timeout_swi, hpts, hpts->p_cpu, 979 (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision))); 980 if (diag) { 981 diag->need_new_to = need_new_to; 982 diag->co_ret = co_ret; 983 } 984 } 985 slot_on = hpts->p_nxt_slot; 986 HPTS_UNLOCK(hpts); 987 988 return (slot_on); 989 } 990 991 static uint16_t 992 hpts_cpuid(struct tcpcb *tp, int *failed) 993 { 994 struct inpcb *inp = tptoinpcb(tp); 995 u_int cpuid; 996 #ifdef NUMA 997 struct hpts_domain_info *di; 998 #endif 999 1000 *failed = 0; 1001 if (tp->t_flags2 & TF2_HPTS_CPU_SET) { 1002 return (tp->t_hpts_cpu); 1003 } 1004 /* 1005 * If we are using the irq cpu set by LRO or 1006 * the driver then it overrides all other domains. 1007 */ 1008 if (tcp_use_irq_cpu) { 1009 if (tp->t_lro_cpu == HPTS_CPU_NONE) { 1010 *failed = 1; 1011 return (0); 1012 } 1013 return (tp->t_lro_cpu); 1014 } 1015 /* If one is set the other must be the same */ 1016 #ifdef RSS 1017 cpuid = rss_hash2cpuid(inp->inp_flowid, inp->inp_flowtype); 1018 if (cpuid == NETISR_CPUID_NONE) 1019 return (hpts_random_cpu()); 1020 else 1021 return (cpuid); 1022 #endif 1023 /* 1024 * We don't have a flowid -> cpuid mapping, so cheat and just map 1025 * unknown cpuids to curcpu. Not the best, but apparently better 1026 * than defaulting to swi 0. 1027 */ 1028 if (inp->inp_flowtype == M_HASHTYPE_NONE) { 1029 counter_u64_add(cpu_uses_random, 1); 1030 return (hpts_random_cpu()); 1031 } 1032 /* 1033 * Hash to a thread based on the flowid. If we are using numa, 1034 * then restrict the hash to the numa domain where the inp lives. 1035 */ 1036 1037 #ifdef NUMA 1038 if ((vm_ndomains == 1) || 1039 (inp->inp_numa_domain == M_NODOM)) { 1040 #endif 1041 cpuid = inp->inp_flowid % mp_ncpus; 1042 #ifdef NUMA 1043 } else { 1044 /* Hash into the cpu's that use that domain */ 1045 di = &hpts_domains[inp->inp_numa_domain]; 1046 cpuid = di->cpu[inp->inp_flowid % di->count]; 1047 } 1048 #endif 1049 counter_u64_add(cpu_uses_flowid, 1); 1050 return (cpuid); 1051 } 1052 1053 static void 1054 tcp_hpts_set_max_sleep(struct tcp_hpts_entry *hpts, int wrap_loop_cnt) 1055 { 1056 uint32_t t = 0, i; 1057 1058 if ((hpts->p_on_queue_cnt) && (wrap_loop_cnt < 2)) { 1059 /* 1060 * Find next slot that is occupied and use that to 1061 * be the sleep time. 1062 */ 1063 for (i = 0, t = hpts_slot(hpts->p_cur_slot, 1); i < NUM_OF_HPTSI_SLOTS; i++) { 1064 if (TAILQ_EMPTY(&hpts->p_hptss[t].head) == 0) { 1065 break; 1066 } 1067 t = (t + 1) % NUM_OF_HPTSI_SLOTS; 1068 } 1069 KASSERT((i != NUM_OF_HPTSI_SLOTS), ("Hpts:%p cnt:%d but none found", hpts, hpts->p_on_queue_cnt)); 1070 hpts->p_hpts_sleep_time = min((i + 1), hpts_sleep_max); 1071 } else { 1072 /* No one on the wheel sleep for all but 400 slots or sleep max */ 1073 hpts->p_hpts_sleep_time = hpts_sleep_max; 1074 } 1075 } 1076 1077 static int32_t 1078 tcp_hptsi(struct tcp_hpts_entry *hpts, int from_callout) 1079 { 1080 struct tcpcb *tp; 1081 struct timeval tv; 1082 int32_t slots_to_run, i, error; 1083 int32_t loop_cnt = 0; 1084 int32_t did_prefetch = 0; 1085 int32_t prefetch_tp = 0; 1086 int32_t wrap_loop_cnt = 0; 1087 int32_t slot_pos_of_endpoint = 0; 1088 int32_t orig_exit_slot; 1089 int8_t completed_measure = 0, seen_endpoint = 0; 1090 1091 HPTS_MTX_ASSERT(hpts); 1092 NET_EPOCH_ASSERT(); 1093 /* record previous info for any logging */ 1094 hpts->saved_lasttick = hpts->p_lasttick; 1095 hpts->saved_curtick = hpts->p_curtick; 1096 hpts->saved_curslot = hpts->p_cur_slot; 1097 hpts->saved_prev_slot = hpts->p_prev_slot; 1098 1099 hpts->p_lasttick = hpts->p_curtick; 1100 hpts->p_curtick = tcp_gethptstick(&tv); 1101 cts_last_ran[hpts->p_num] = tcp_tv_to_usectick(&tv); 1102 orig_exit_slot = hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick); 1103 if ((hpts->p_on_queue_cnt == 0) || 1104 (hpts->p_lasttick == hpts->p_curtick)) { 1105 /* 1106 * No time has yet passed, 1107 * or nothing to do. 1108 */ 1109 hpts->p_prev_slot = hpts->p_cur_slot; 1110 hpts->p_lasttick = hpts->p_curtick; 1111 goto no_run; 1112 } 1113 again: 1114 hpts->p_wheel_complete = 0; 1115 HPTS_MTX_ASSERT(hpts); 1116 slots_to_run = hpts_slots_diff(hpts->p_prev_slot, hpts->p_cur_slot); 1117 if (((hpts->p_curtick - hpts->p_lasttick) > 1118 ((NUM_OF_HPTSI_SLOTS-1) * HPTS_TICKS_PER_SLOT)) && 1119 (hpts->p_on_queue_cnt != 0)) { 1120 /* 1121 * Wheel wrap is occuring, basically we 1122 * are behind and the distance between 1123 * run's has spread so much it has exceeded 1124 * the time on the wheel (1.024 seconds). This 1125 * is ugly and should NOT be happening. We 1126 * need to run the entire wheel. We last processed 1127 * p_prev_slot, so that needs to be the last slot 1128 * we run. The next slot after that should be our 1129 * reserved first slot for new, and then starts 1130 * the running position. Now the problem is the 1131 * reserved "not to yet" place does not exist 1132 * and there may be inp's in there that need 1133 * running. We can merge those into the 1134 * first slot at the head. 1135 */ 1136 wrap_loop_cnt++; 1137 hpts->p_nxt_slot = hpts_slot(hpts->p_prev_slot, 1); 1138 hpts->p_runningslot = hpts_slot(hpts->p_prev_slot, 2); 1139 /* 1140 * Adjust p_cur_slot to be where we are starting from 1141 * hopefully we will catch up (fat chance if something 1142 * is broken this bad :( ) 1143 */ 1144 hpts->p_cur_slot = hpts->p_prev_slot; 1145 /* 1146 * The next slot has guys to run too, and that would 1147 * be where we would normally start, lets move them into 1148 * the next slot (p_prev_slot + 2) so that we will 1149 * run them, the extra 10usecs of late (by being 1150 * put behind) does not really matter in this situation. 1151 */ 1152 TAILQ_FOREACH(tp, &hpts->p_hptss[hpts->p_nxt_slot].head, 1153 t_hpts) { 1154 MPASS(tp->t_hpts_slot == hpts->p_nxt_slot); 1155 MPASS(tp->t_hpts_gencnt == 1156 hpts->p_hptss[hpts->p_nxt_slot].gencnt); 1157 MPASS(tp->t_in_hpts == IHPTS_ONQUEUE); 1158 1159 /* 1160 * Update gencnt and nextslot accordingly to match 1161 * the new location. This is safe since it takes both 1162 * the INP lock and the pacer mutex to change the 1163 * t_hptsslot and t_hpts_gencnt. 1164 */ 1165 tp->t_hpts_gencnt = 1166 hpts->p_hptss[hpts->p_runningslot].gencnt; 1167 tp->t_hpts_slot = hpts->p_runningslot; 1168 } 1169 TAILQ_CONCAT(&hpts->p_hptss[hpts->p_runningslot].head, 1170 &hpts->p_hptss[hpts->p_nxt_slot].head, t_hpts); 1171 hpts->p_hptss[hpts->p_runningslot].count += 1172 hpts->p_hptss[hpts->p_nxt_slot].count; 1173 hpts->p_hptss[hpts->p_nxt_slot].count = 0; 1174 hpts->p_hptss[hpts->p_nxt_slot].gencnt++; 1175 slots_to_run = NUM_OF_HPTSI_SLOTS - 1; 1176 counter_u64_add(wheel_wrap, 1); 1177 } else { 1178 /* 1179 * Nxt slot is always one after p_runningslot though 1180 * its not used usually unless we are doing wheel wrap. 1181 */ 1182 hpts->p_nxt_slot = hpts->p_prev_slot; 1183 hpts->p_runningslot = hpts_slot(hpts->p_prev_slot, 1); 1184 } 1185 if (hpts->p_on_queue_cnt == 0) { 1186 goto no_one; 1187 } 1188 for (i = 0; i < slots_to_run; i++) { 1189 struct tcpcb *tp, *ntp; 1190 TAILQ_HEAD(, tcpcb) head = TAILQ_HEAD_INITIALIZER(head); 1191 struct hptsh *hptsh; 1192 uint32_t runningslot; 1193 1194 /* 1195 * Calculate our delay, if there are no extra ticks there 1196 * was not any (i.e. if slots_to_run == 1, no delay). 1197 */ 1198 hpts->p_delayed_by = (slots_to_run - (i + 1)) * 1199 HPTS_TICKS_PER_SLOT; 1200 1201 runningslot = hpts->p_runningslot; 1202 hptsh = &hpts->p_hptss[runningslot]; 1203 TAILQ_SWAP(&head, &hptsh->head, tcpcb, t_hpts); 1204 hpts->p_on_queue_cnt -= hptsh->count; 1205 hptsh->count = 0; 1206 hptsh->gencnt++; 1207 1208 HPTS_UNLOCK(hpts); 1209 1210 TAILQ_FOREACH_SAFE(tp, &head, t_hpts, ntp) { 1211 struct inpcb *inp = tptoinpcb(tp); 1212 bool set_cpu; 1213 1214 if (ntp != NULL) { 1215 /* 1216 * If we have a next tcpcb, see if we can 1217 * prefetch it. Note this may seem 1218 * "risky" since we have no locks (other 1219 * than the previous inp) and there no 1220 * assurance that ntp was not pulled while 1221 * we were processing tp and freed. If this 1222 * occurred it could mean that either: 1223 * 1224 * a) Its NULL (which is fine we won't go 1225 * here) <or> b) Its valid (which is cool we 1226 * will prefetch it) <or> c) The inp got 1227 * freed back to the slab which was 1228 * reallocated. Then the piece of memory was 1229 * re-used and something else (not an 1230 * address) is in inp_ppcb. If that occurs 1231 * we don't crash, but take a TLB shootdown 1232 * performance hit (same as if it was NULL 1233 * and we tried to pre-fetch it). 1234 * 1235 * Considering that the likelyhood of <c> is 1236 * quite rare we will take a risk on doing 1237 * this. If performance drops after testing 1238 * we can always take this out. NB: the 1239 * kern_prefetch on amd64 actually has 1240 * protection against a bad address now via 1241 * the DMAP_() tests. This will prevent the 1242 * TLB hit, and instead if <c> occurs just 1243 * cause us to load cache with a useless 1244 * address (to us). 1245 * 1246 * XXXGL: this comment and the prefetch action 1247 * could be outdated after tp == inp change. 1248 */ 1249 kern_prefetch(ntp, &prefetch_tp); 1250 prefetch_tp = 1; 1251 } 1252 1253 /* For debugging */ 1254 if (seen_endpoint == 0) { 1255 seen_endpoint = 1; 1256 orig_exit_slot = slot_pos_of_endpoint = 1257 runningslot; 1258 } else if (completed_measure == 0) { 1259 /* Record the new position */ 1260 orig_exit_slot = runningslot; 1261 } 1262 1263 INP_WLOCK(inp); 1264 if ((tp->t_flags2 & TF2_HPTS_CPU_SET) == 0) { 1265 set_cpu = true; 1266 } else { 1267 set_cpu = false; 1268 } 1269 1270 if (__predict_false(tp->t_in_hpts == IHPTS_MOVING)) { 1271 if (tp->t_hpts_slot == -1) { 1272 tp->t_in_hpts = IHPTS_NONE; 1273 if (in_pcbrele_wlocked(inp) == false) 1274 INP_WUNLOCK(inp); 1275 } else { 1276 HPTS_LOCK(hpts); 1277 tcp_hpts_insert_internal(tp, hpts); 1278 HPTS_UNLOCK(hpts); 1279 INP_WUNLOCK(inp); 1280 } 1281 continue; 1282 } 1283 1284 MPASS(tp->t_in_hpts == IHPTS_ONQUEUE); 1285 MPASS(!(inp->inp_flags & INP_DROPPED)); 1286 KASSERT(runningslot == tp->t_hpts_slot, 1287 ("Hpts:%p inp:%p slot mis-aligned %u vs %u", 1288 hpts, inp, runningslot, tp->t_hpts_slot)); 1289 1290 if (tp->t_hpts_request) { 1291 /* 1292 * This guy is deferred out further in time 1293 * then our wheel had available on it. 1294 * Push him back on the wheel or run it 1295 * depending. 1296 */ 1297 uint32_t maxslots, last_slot, remaining_slots; 1298 1299 remaining_slots = slots_to_run - (i + 1); 1300 if (tp->t_hpts_request > remaining_slots) { 1301 HPTS_LOCK(hpts); 1302 /* 1303 * How far out can we go? 1304 */ 1305 maxslots = max_slots_available(hpts, 1306 hpts->p_cur_slot, &last_slot); 1307 if (maxslots >= tp->t_hpts_request) { 1308 /* We can place it finally to 1309 * be processed. */ 1310 tp->t_hpts_slot = hpts_slot( 1311 hpts->p_runningslot, 1312 tp->t_hpts_request); 1313 tp->t_hpts_request = 0; 1314 } else { 1315 /* Work off some more time */ 1316 tp->t_hpts_slot = last_slot; 1317 tp->t_hpts_request -= 1318 maxslots; 1319 } 1320 tcp_hpts_insert_internal(tp, hpts); 1321 HPTS_UNLOCK(hpts); 1322 INP_WUNLOCK(inp); 1323 continue; 1324 } 1325 tp->t_hpts_request = 0; 1326 /* Fall through we will so do it now */ 1327 } 1328 1329 tcp_hpts_release(tp); 1330 if (set_cpu) { 1331 /* 1332 * Setup so the next time we will move to 1333 * the right CPU. This should be a rare 1334 * event. It will sometimes happens when we 1335 * are the client side (usually not the 1336 * server). Somehow tcp_output() gets called 1337 * before the tcp_do_segment() sets the 1338 * intial state. This means the r_cpu and 1339 * r_hpts_cpu is 0. We get on the hpts, and 1340 * then tcp_input() gets called setting up 1341 * the r_cpu to the correct value. The hpts 1342 * goes off and sees the mis-match. We 1343 * simply correct it here and the CPU will 1344 * switch to the new hpts nextime the tcb 1345 * gets added to the hpts (not this one) 1346 * :-) 1347 */ 1348 tcp_set_hpts(tp); 1349 } 1350 CURVNET_SET(inp->inp_vnet); 1351 /* Lets do any logging that we might want to */ 1352 if (hpts_does_tp_logging && tcp_bblogging_on(tp)) { 1353 tcp_hpts_log(hpts, tp, &tv, slots_to_run, i, from_callout); 1354 } 1355 1356 if (tp->t_fb_ptr != NULL) { 1357 kern_prefetch(tp->t_fb_ptr, &did_prefetch); 1358 did_prefetch = 1; 1359 } 1360 /* 1361 * We set TF2_HPTS_CALLS before any possible output. 1362 * The contract with the transport is that if it cares 1363 * about hpts calling it should clear the flag. That 1364 * way next time it is called it will know it is hpts. 1365 * 1366 * We also only call tfb_do_queued_segments() <or> 1367 * tcp_output(). It is expected that if segments are 1368 * queued and come in that the final input mbuf will 1369 * cause a call to output if it is needed. 1370 */ 1371 tp->t_flags2 |= TF2_HPTS_CALLS; 1372 if ((tp->t_flags2 & TF2_SUPPORTS_MBUFQ) && 1373 !STAILQ_EMPTY(&tp->t_inqueue)) { 1374 error = (*tp->t_fb->tfb_do_queued_segments)(tp, 0); 1375 if (error) { 1376 /* The input killed the connection */ 1377 goto skip_pacing; 1378 } 1379 } 1380 error = tcp_output(tp); 1381 if (error < 0) 1382 goto skip_pacing; 1383 INP_WUNLOCK(inp); 1384 skip_pacing: 1385 CURVNET_RESTORE(); 1386 } 1387 if (seen_endpoint) { 1388 /* 1389 * We now have a accurate distance between 1390 * slot_pos_of_endpoint <-> orig_exit_slot 1391 * to tell us how late we were, orig_exit_slot 1392 * is where we calculated the end of our cycle to 1393 * be when we first entered. 1394 */ 1395 completed_measure = 1; 1396 } 1397 HPTS_LOCK(hpts); 1398 hpts->p_runningslot++; 1399 if (hpts->p_runningslot >= NUM_OF_HPTSI_SLOTS) { 1400 hpts->p_runningslot = 0; 1401 } 1402 } 1403 no_one: 1404 HPTS_MTX_ASSERT(hpts); 1405 hpts->p_delayed_by = 0; 1406 /* 1407 * Check to see if we took an excess amount of time and need to run 1408 * more ticks (if we did not hit eno-bufs). 1409 */ 1410 hpts->p_prev_slot = hpts->p_cur_slot; 1411 hpts->p_lasttick = hpts->p_curtick; 1412 if ((from_callout == 0) || (loop_cnt > max_pacer_loops)) { 1413 /* 1414 * Something is serious slow we have 1415 * looped through processing the wheel 1416 * and by the time we cleared the 1417 * needs to run max_pacer_loops time 1418 * we still needed to run. That means 1419 * the system is hopelessly behind and 1420 * can never catch up :( 1421 * 1422 * We will just lie to this thread 1423 * and let it thing p_curtick is 1424 * correct. When it next awakens 1425 * it will find itself further behind. 1426 */ 1427 if (from_callout) 1428 counter_u64_add(hpts_hopelessly_behind, 1); 1429 goto no_run; 1430 } 1431 hpts->p_curtick = tcp_gethptstick(&tv); 1432 hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick); 1433 if (seen_endpoint == 0) { 1434 /* We saw no endpoint but we may be looping */ 1435 orig_exit_slot = hpts->p_cur_slot; 1436 } 1437 if ((wrap_loop_cnt < 2) && 1438 (hpts->p_lasttick != hpts->p_curtick)) { 1439 counter_u64_add(hpts_loops, 1); 1440 loop_cnt++; 1441 goto again; 1442 } 1443 no_run: 1444 cts_last_ran[hpts->p_num] = tcp_tv_to_usectick(&tv); 1445 /* 1446 * Set flag to tell that we are done for 1447 * any slot input that happens during 1448 * input. 1449 */ 1450 hpts->p_wheel_complete = 1; 1451 /* 1452 * Now did we spend too long running input and need to run more ticks? 1453 * Note that if wrap_loop_cnt < 2 then we should have the conditions 1454 * in the KASSERT's true. But if the wheel is behind i.e. wrap_loop_cnt 1455 * is greater than 2, then the condtion most likely are *not* true. 1456 * Also if we are called not from the callout, we don't run the wheel 1457 * multiple times so the slots may not align either. 1458 */ 1459 KASSERT(((hpts->p_prev_slot == hpts->p_cur_slot) || 1460 (wrap_loop_cnt >= 2) || (from_callout == 0)), 1461 ("H:%p p_prev_slot:%u not equal to p_cur_slot:%u", hpts, 1462 hpts->p_prev_slot, hpts->p_cur_slot)); 1463 KASSERT(((hpts->p_lasttick == hpts->p_curtick) 1464 || (wrap_loop_cnt >= 2) || (from_callout == 0)), 1465 ("H:%p p_lasttick:%u not equal to p_curtick:%u", hpts, 1466 hpts->p_lasttick, hpts->p_curtick)); 1467 if (from_callout && (hpts->p_lasttick != hpts->p_curtick)) { 1468 hpts->p_curtick = tcp_gethptstick(&tv); 1469 counter_u64_add(hpts_loops, 1); 1470 hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick); 1471 goto again; 1472 } 1473 1474 if (from_callout){ 1475 tcp_hpts_set_max_sleep(hpts, wrap_loop_cnt); 1476 } 1477 if (seen_endpoint) 1478 return(hpts_slots_diff(slot_pos_of_endpoint, orig_exit_slot)); 1479 else 1480 return (0); 1481 } 1482 1483 void 1484 __tcp_set_hpts(struct tcpcb *tp, int32_t line) 1485 { 1486 struct tcp_hpts_entry *hpts; 1487 int failed; 1488 1489 INP_WLOCK_ASSERT(tptoinpcb(tp)); 1490 1491 hpts = tcp_hpts_lock(tp); 1492 if (tp->t_in_hpts == IHPTS_NONE && !(tp->t_flags2 & TF2_HPTS_CPU_SET)) { 1493 tp->t_hpts_cpu = hpts_cpuid(tp, &failed); 1494 if (failed == 0) 1495 tp->t_flags2 |= TF2_HPTS_CPU_SET; 1496 } 1497 mtx_unlock(&hpts->p_mtx); 1498 } 1499 1500 static struct tcp_hpts_entry * 1501 tcp_choose_hpts_to_run(void) 1502 { 1503 int i, oldest_idx, start, end; 1504 uint32_t cts, time_since_ran, calc; 1505 1506 cts = tcp_get_usecs(NULL); 1507 time_since_ran = 0; 1508 /* Default is all one group */ 1509 start = 0; 1510 end = tcp_pace.rp_num_hptss; 1511 /* 1512 * If we have more than one L3 group figure out which one 1513 * this CPU is in. 1514 */ 1515 if (tcp_pace.grp_cnt > 1) { 1516 for (i = 0; i < tcp_pace.grp_cnt; i++) { 1517 if (CPU_ISSET(curcpu, &tcp_pace.grps[i]->cg_mask)) { 1518 start = tcp_pace.grps[i]->cg_first; 1519 end = (tcp_pace.grps[i]->cg_last + 1); 1520 break; 1521 } 1522 } 1523 } 1524 oldest_idx = -1; 1525 for (i = start; i < end; i++) { 1526 if (TSTMP_GT(cts, cts_last_ran[i])) 1527 calc = cts - cts_last_ran[i]; 1528 else 1529 calc = 0; 1530 if (calc > time_since_ran) { 1531 oldest_idx = i; 1532 time_since_ran = calc; 1533 } 1534 } 1535 if (oldest_idx >= 0) 1536 return(tcp_pace.rp_ent[oldest_idx]); 1537 else 1538 return(tcp_pace.rp_ent[(curcpu % tcp_pace.rp_num_hptss)]); 1539 } 1540 1541 static void 1542 __tcp_run_hpts(void) 1543 { 1544 struct epoch_tracker et; 1545 struct tcp_hpts_entry *hpts; 1546 int ticks_ran; 1547 1548 hpts = tcp_choose_hpts_to_run(); 1549 1550 if (hpts->p_hpts_active) { 1551 /* Already active */ 1552 return; 1553 } 1554 if (mtx_trylock(&hpts->p_mtx) == 0) { 1555 /* Someone else got the lock */ 1556 return; 1557 } 1558 NET_EPOCH_ENTER(et); 1559 if (hpts->p_hpts_active) 1560 goto out_with_mtx; 1561 hpts->syscall_cnt++; 1562 counter_u64_add(hpts_direct_call, 1); 1563 hpts->p_hpts_active = 1; 1564 ticks_ran = tcp_hptsi(hpts, 0); 1565 /* We may want to adjust the sleep values here */ 1566 if (hpts->p_on_queue_cnt >= conn_cnt_thresh) { 1567 if (ticks_ran > ticks_indicate_less_sleep) { 1568 struct timeval tv; 1569 sbintime_t sb; 1570 1571 hpts->p_mysleep.tv_usec /= 2; 1572 if (hpts->p_mysleep.tv_usec < dynamic_min_sleep) 1573 hpts->p_mysleep.tv_usec = dynamic_min_sleep; 1574 /* Reschedule with new to value */ 1575 tcp_hpts_set_max_sleep(hpts, 0); 1576 tv.tv_sec = 0; 1577 tv.tv_usec = hpts->p_hpts_sleep_time * HPTS_TICKS_PER_SLOT; 1578 /* Validate its in the right ranges */ 1579 if (tv.tv_usec < hpts->p_mysleep.tv_usec) { 1580 hpts->overidden_sleep = tv.tv_usec; 1581 tv.tv_usec = hpts->p_mysleep.tv_usec; 1582 } else if (tv.tv_usec > dynamic_max_sleep) { 1583 /* Lets not let sleep get above this value */ 1584 hpts->overidden_sleep = tv.tv_usec; 1585 tv.tv_usec = dynamic_max_sleep; 1586 } 1587 /* 1588 * In this mode the timer is a backstop to 1589 * all the userret/lro_flushes so we use 1590 * the dynamic value and set the on_min_sleep 1591 * flag so we will not be awoken. 1592 */ 1593 sb = tvtosbt(tv); 1594 /* Store off to make visible the actual sleep time */ 1595 hpts->sleeping = tv.tv_usec; 1596 callout_reset_sbt_on(&hpts->co, sb, 0, 1597 hpts_timeout_swi, hpts, hpts->p_cpu, 1598 (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision))); 1599 } else if (ticks_ran < ticks_indicate_more_sleep) { 1600 /* For the further sleep, don't reschedule hpts */ 1601 hpts->p_mysleep.tv_usec *= 2; 1602 if (hpts->p_mysleep.tv_usec > dynamic_max_sleep) 1603 hpts->p_mysleep.tv_usec = dynamic_max_sleep; 1604 } 1605 hpts->p_on_min_sleep = 1; 1606 } 1607 hpts->p_hpts_active = 0; 1608 out_with_mtx: 1609 HPTS_MTX_ASSERT(hpts); 1610 mtx_unlock(&hpts->p_mtx); 1611 NET_EPOCH_EXIT(et); 1612 } 1613 1614 static void 1615 tcp_hpts_thread(void *ctx) 1616 { 1617 struct tcp_hpts_entry *hpts; 1618 struct epoch_tracker et; 1619 struct timeval tv; 1620 sbintime_t sb; 1621 int ticks_ran; 1622 1623 hpts = (struct tcp_hpts_entry *)ctx; 1624 mtx_lock(&hpts->p_mtx); 1625 if (hpts->p_direct_wake) { 1626 /* Signaled by input or output with low occupancy count. */ 1627 callout_stop(&hpts->co); 1628 counter_u64_add(hpts_direct_awakening, 1); 1629 } else { 1630 /* Timed out, the normal case. */ 1631 counter_u64_add(hpts_wake_timeout, 1); 1632 if (callout_pending(&hpts->co) || 1633 !callout_active(&hpts->co)) { 1634 mtx_unlock(&hpts->p_mtx); 1635 return; 1636 } 1637 } 1638 callout_deactivate(&hpts->co); 1639 hpts->p_hpts_wake_scheduled = 0; 1640 NET_EPOCH_ENTER(et); 1641 if (hpts->p_hpts_active) { 1642 /* 1643 * We are active already. This means that a syscall 1644 * trap or LRO is running in behalf of hpts. In that case 1645 * we need to double our timeout since there seems to be 1646 * enough activity in the system that we don't need to 1647 * run as often (if we were not directly woken). 1648 */ 1649 if (hpts->p_direct_wake == 0) { 1650 counter_u64_add(hpts_back_tosleep, 1); 1651 if (hpts->p_on_queue_cnt >= conn_cnt_thresh) { 1652 hpts->p_mysleep.tv_usec *= 2; 1653 if (hpts->p_mysleep.tv_usec > dynamic_max_sleep) 1654 hpts->p_mysleep.tv_usec = dynamic_max_sleep; 1655 tv.tv_usec = hpts->p_mysleep.tv_usec; 1656 hpts->p_on_min_sleep = 1; 1657 } else { 1658 /* 1659 * Here we have low count on the wheel, but 1660 * somehow we still collided with one of the 1661 * connections. Lets go back to sleep for a 1662 * min sleep time, but clear the flag so we 1663 * can be awoken by insert. 1664 */ 1665 hpts->p_on_min_sleep = 0; 1666 tv.tv_usec = tcp_min_hptsi_time; 1667 } 1668 } else { 1669 /* 1670 * Directly woken most likely to reset the 1671 * callout time. 1672 */ 1673 tv.tv_sec = 0; 1674 tv.tv_usec = hpts->p_mysleep.tv_usec; 1675 } 1676 goto back_to_sleep; 1677 } 1678 hpts->sleeping = 0; 1679 hpts->p_hpts_active = 1; 1680 ticks_ran = tcp_hptsi(hpts, 1); 1681 tv.tv_sec = 0; 1682 tv.tv_usec = hpts->p_hpts_sleep_time * HPTS_TICKS_PER_SLOT; 1683 if (hpts->p_on_queue_cnt >= conn_cnt_thresh) { 1684 if(hpts->p_direct_wake == 0) { 1685 /* 1686 * Only adjust sleep time if we were 1687 * called from the callout i.e. direct_wake == 0. 1688 */ 1689 if (ticks_ran < ticks_indicate_more_sleep) { 1690 hpts->p_mysleep.tv_usec *= 2; 1691 if (hpts->p_mysleep.tv_usec > dynamic_max_sleep) 1692 hpts->p_mysleep.tv_usec = dynamic_max_sleep; 1693 } else if (ticks_ran > ticks_indicate_less_sleep) { 1694 hpts->p_mysleep.tv_usec /= 2; 1695 if (hpts->p_mysleep.tv_usec < dynamic_min_sleep) 1696 hpts->p_mysleep.tv_usec = dynamic_min_sleep; 1697 } 1698 } 1699 if (tv.tv_usec < hpts->p_mysleep.tv_usec) { 1700 hpts->overidden_sleep = tv.tv_usec; 1701 tv.tv_usec = hpts->p_mysleep.tv_usec; 1702 } else if (tv.tv_usec > dynamic_max_sleep) { 1703 /* Lets not let sleep get above this value */ 1704 hpts->overidden_sleep = tv.tv_usec; 1705 tv.tv_usec = dynamic_max_sleep; 1706 } 1707 /* 1708 * In this mode the timer is a backstop to 1709 * all the userret/lro_flushes so we use 1710 * the dynamic value and set the on_min_sleep 1711 * flag so we will not be awoken. 1712 */ 1713 hpts->p_on_min_sleep = 1; 1714 } else if (hpts->p_on_queue_cnt == 0) { 1715 /* 1716 * No one on the wheel, please wake us up 1717 * if you insert on the wheel. 1718 */ 1719 hpts->p_on_min_sleep = 0; 1720 hpts->overidden_sleep = 0; 1721 } else { 1722 /* 1723 * We hit here when we have a low number of 1724 * clients on the wheel (our else clause). 1725 * We may need to go on min sleep, if we set 1726 * the flag we will not be awoken if someone 1727 * is inserted ahead of us. Clearing the flag 1728 * means we can be awoken. This is "old mode" 1729 * where the timer is what runs hpts mainly. 1730 */ 1731 if (tv.tv_usec < tcp_min_hptsi_time) { 1732 /* 1733 * Yes on min sleep, which means 1734 * we cannot be awoken. 1735 */ 1736 hpts->overidden_sleep = tv.tv_usec; 1737 tv.tv_usec = tcp_min_hptsi_time; 1738 hpts->p_on_min_sleep = 1; 1739 } else { 1740 /* Clear the min sleep flag */ 1741 hpts->overidden_sleep = 0; 1742 hpts->p_on_min_sleep = 0; 1743 } 1744 } 1745 HPTS_MTX_ASSERT(hpts); 1746 hpts->p_hpts_active = 0; 1747 back_to_sleep: 1748 hpts->p_direct_wake = 0; 1749 sb = tvtosbt(tv); 1750 /* Store off to make visible the actual sleep time */ 1751 hpts->sleeping = tv.tv_usec; 1752 callout_reset_sbt_on(&hpts->co, sb, 0, 1753 hpts_timeout_swi, hpts, hpts->p_cpu, 1754 (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision))); 1755 NET_EPOCH_EXIT(et); 1756 mtx_unlock(&hpts->p_mtx); 1757 } 1758 1759 #undef timersub 1760 1761 static int32_t 1762 hpts_count_level(struct cpu_group *cg) 1763 { 1764 int32_t count_l3, i; 1765 1766 count_l3 = 0; 1767 if (cg->cg_level == CG_SHARE_L3) 1768 count_l3++; 1769 /* Walk all the children looking for L3 */ 1770 for (i = 0; i < cg->cg_children; i++) { 1771 count_l3 += hpts_count_level(&cg->cg_child[i]); 1772 } 1773 return (count_l3); 1774 } 1775 1776 static void 1777 hpts_gather_grps(struct cpu_group **grps, int32_t *at, int32_t max, struct cpu_group *cg) 1778 { 1779 int32_t idx, i; 1780 1781 idx = *at; 1782 if (cg->cg_level == CG_SHARE_L3) { 1783 grps[idx] = cg; 1784 idx++; 1785 if (idx == max) { 1786 *at = idx; 1787 return; 1788 } 1789 } 1790 *at = idx; 1791 /* Walk all the children looking for L3 */ 1792 for (i = 0; i < cg->cg_children; i++) { 1793 hpts_gather_grps(grps, at, max, &cg->cg_child[i]); 1794 } 1795 } 1796 1797 static void 1798 tcp_init_hptsi(void *st) 1799 { 1800 struct cpu_group *cpu_top; 1801 int32_t error __diagused; 1802 int32_t i, j, bound = 0, created = 0; 1803 size_t sz, asz; 1804 struct timeval tv; 1805 sbintime_t sb; 1806 struct tcp_hpts_entry *hpts; 1807 struct pcpu *pc; 1808 char unit[16]; 1809 uint32_t ncpus = mp_ncpus ? mp_ncpus : MAXCPU; 1810 int count, domain; 1811 1812 #ifdef SMP 1813 cpu_top = smp_topo(); 1814 #else 1815 cpu_top = NULL; 1816 #endif 1817 tcp_pace.rp_num_hptss = ncpus; 1818 hpts_hopelessly_behind = counter_u64_alloc(M_WAITOK); 1819 hpts_loops = counter_u64_alloc(M_WAITOK); 1820 back_tosleep = counter_u64_alloc(M_WAITOK); 1821 combined_wheel_wrap = counter_u64_alloc(M_WAITOK); 1822 wheel_wrap = counter_u64_alloc(M_WAITOK); 1823 hpts_wake_timeout = counter_u64_alloc(M_WAITOK); 1824 hpts_direct_awakening = counter_u64_alloc(M_WAITOK); 1825 hpts_back_tosleep = counter_u64_alloc(M_WAITOK); 1826 hpts_direct_call = counter_u64_alloc(M_WAITOK); 1827 cpu_uses_flowid = counter_u64_alloc(M_WAITOK); 1828 cpu_uses_random = counter_u64_alloc(M_WAITOK); 1829 1830 sz = (tcp_pace.rp_num_hptss * sizeof(struct tcp_hpts_entry *)); 1831 tcp_pace.rp_ent = malloc(sz, M_TCPHPTS, M_WAITOK | M_ZERO); 1832 sz = (sizeof(uint32_t) * tcp_pace.rp_num_hptss); 1833 cts_last_ran = malloc(sz, M_TCPHPTS, M_WAITOK); 1834 tcp_pace.grp_cnt = 0; 1835 if (cpu_top == NULL) { 1836 tcp_pace.grp_cnt = 1; 1837 } else { 1838 /* Find out how many cache level 3 domains we have */ 1839 count = 0; 1840 tcp_pace.grp_cnt = hpts_count_level(cpu_top); 1841 if (tcp_pace.grp_cnt == 0) { 1842 tcp_pace.grp_cnt = 1; 1843 } 1844 sz = (tcp_pace.grp_cnt * sizeof(struct cpu_group *)); 1845 tcp_pace.grps = malloc(sz, M_TCPHPTS, M_WAITOK); 1846 /* Now populate the groups */ 1847 if (tcp_pace.grp_cnt == 1) { 1848 /* 1849 * All we need is the top level all cpu's are in 1850 * the same cache so when we use grp[0]->cg_mask 1851 * with the cg_first <-> cg_last it will include 1852 * all cpu's in it. The level here is probably 1853 * zero which is ok. 1854 */ 1855 tcp_pace.grps[0] = cpu_top; 1856 } else { 1857 /* 1858 * Here we must find all the level three cache domains 1859 * and setup our pointers to them. 1860 */ 1861 count = 0; 1862 hpts_gather_grps(tcp_pace.grps, &count, tcp_pace.grp_cnt, cpu_top); 1863 } 1864 } 1865 asz = sizeof(struct hptsh) * NUM_OF_HPTSI_SLOTS; 1866 for (i = 0; i < tcp_pace.rp_num_hptss; i++) { 1867 tcp_pace.rp_ent[i] = malloc(sizeof(struct tcp_hpts_entry), 1868 M_TCPHPTS, M_WAITOK | M_ZERO); 1869 tcp_pace.rp_ent[i]->p_hptss = malloc(asz, M_TCPHPTS, M_WAITOK); 1870 hpts = tcp_pace.rp_ent[i]; 1871 /* 1872 * Init all the hpts structures that are not specifically 1873 * zero'd by the allocations. Also lets attach them to the 1874 * appropriate sysctl block as well. 1875 */ 1876 mtx_init(&hpts->p_mtx, "tcp_hpts_lck", 1877 "hpts", MTX_DEF | MTX_DUPOK); 1878 for (j = 0; j < NUM_OF_HPTSI_SLOTS; j++) { 1879 TAILQ_INIT(&hpts->p_hptss[j].head); 1880 hpts->p_hptss[j].count = 0; 1881 hpts->p_hptss[j].gencnt = 0; 1882 } 1883 sysctl_ctx_init(&hpts->hpts_ctx); 1884 sprintf(unit, "%d", i); 1885 hpts->hpts_root = SYSCTL_ADD_NODE(&hpts->hpts_ctx, 1886 SYSCTL_STATIC_CHILDREN(_net_inet_tcp_hpts), 1887 OID_AUTO, 1888 unit, 1889 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 1890 ""); 1891 SYSCTL_ADD_INT(&hpts->hpts_ctx, 1892 SYSCTL_CHILDREN(hpts->hpts_root), 1893 OID_AUTO, "out_qcnt", CTLFLAG_RD, 1894 &hpts->p_on_queue_cnt, 0, 1895 "Count TCB's awaiting output processing"); 1896 SYSCTL_ADD_U16(&hpts->hpts_ctx, 1897 SYSCTL_CHILDREN(hpts->hpts_root), 1898 OID_AUTO, "active", CTLFLAG_RD, 1899 &hpts->p_hpts_active, 0, 1900 "Is the hpts active"); 1901 SYSCTL_ADD_UINT(&hpts->hpts_ctx, 1902 SYSCTL_CHILDREN(hpts->hpts_root), 1903 OID_AUTO, "curslot", CTLFLAG_RD, 1904 &hpts->p_cur_slot, 0, 1905 "What the current running pacers goal"); 1906 SYSCTL_ADD_UINT(&hpts->hpts_ctx, 1907 SYSCTL_CHILDREN(hpts->hpts_root), 1908 OID_AUTO, "runtick", CTLFLAG_RD, 1909 &hpts->p_runningslot, 0, 1910 "What the running pacers current slot is"); 1911 SYSCTL_ADD_UINT(&hpts->hpts_ctx, 1912 SYSCTL_CHILDREN(hpts->hpts_root), 1913 OID_AUTO, "curtick", CTLFLAG_RD, 1914 &hpts->p_curtick, 0, 1915 "What the running pacers last tick mapped to the wheel was"); 1916 SYSCTL_ADD_UINT(&hpts->hpts_ctx, 1917 SYSCTL_CHILDREN(hpts->hpts_root), 1918 OID_AUTO, "lastran", CTLFLAG_RD, 1919 &cts_last_ran[i], 0, 1920 "The last usec tick that this hpts ran"); 1921 SYSCTL_ADD_LONG(&hpts->hpts_ctx, 1922 SYSCTL_CHILDREN(hpts->hpts_root), 1923 OID_AUTO, "cur_min_sleep", CTLFLAG_RD, 1924 &hpts->p_mysleep.tv_usec, 1925 "What the running pacers is using for p_mysleep.tv_usec"); 1926 SYSCTL_ADD_U64(&hpts->hpts_ctx, 1927 SYSCTL_CHILDREN(hpts->hpts_root), 1928 OID_AUTO, "now_sleeping", CTLFLAG_RD, 1929 &hpts->sleeping, 0, 1930 "What the running pacers is actually sleeping for"); 1931 SYSCTL_ADD_U64(&hpts->hpts_ctx, 1932 SYSCTL_CHILDREN(hpts->hpts_root), 1933 OID_AUTO, "syscall_cnt", CTLFLAG_RD, 1934 &hpts->syscall_cnt, 0, 1935 "How many times we had syscalls on this hpts"); 1936 1937 hpts->p_hpts_sleep_time = hpts_sleep_max; 1938 hpts->p_num = i; 1939 hpts->p_curtick = tcp_gethptstick(&tv); 1940 cts_last_ran[i] = tcp_tv_to_usectick(&tv); 1941 hpts->p_prev_slot = hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick); 1942 hpts->p_cpu = 0xffff; 1943 hpts->p_nxt_slot = hpts_slot(hpts->p_cur_slot, 1); 1944 callout_init(&hpts->co, 1); 1945 } 1946 /* Don't try to bind to NUMA domains if we don't have any */ 1947 if (vm_ndomains == 1 && tcp_bind_threads == 2) 1948 tcp_bind_threads = 0; 1949 1950 /* 1951 * Now lets start ithreads to handle the hptss. 1952 */ 1953 for (i = 0; i < tcp_pace.rp_num_hptss; i++) { 1954 hpts = tcp_pace.rp_ent[i]; 1955 hpts->p_cpu = i; 1956 1957 error = swi_add(&hpts->ie, "hpts", 1958 tcp_hpts_thread, (void *)hpts, 1959 SWI_NET, INTR_MPSAFE, &hpts->ie_cookie); 1960 KASSERT(error == 0, 1961 ("Can't add hpts:%p i:%d err:%d", 1962 hpts, i, error)); 1963 created++; 1964 hpts->p_mysleep.tv_sec = 0; 1965 hpts->p_mysleep.tv_usec = tcp_min_hptsi_time; 1966 if (tcp_bind_threads == 1) { 1967 if (intr_event_bind(hpts->ie, i) == 0) 1968 bound++; 1969 } else if (tcp_bind_threads == 2) { 1970 /* Find the group for this CPU (i) and bind into it */ 1971 for (j = 0; j < tcp_pace.grp_cnt; j++) { 1972 if (CPU_ISSET(i, &tcp_pace.grps[j]->cg_mask)) { 1973 if (intr_event_bind_ithread_cpuset(hpts->ie, 1974 &tcp_pace.grps[j]->cg_mask) == 0) { 1975 bound++; 1976 pc = pcpu_find(i); 1977 domain = pc->pc_domain; 1978 count = hpts_domains[domain].count; 1979 hpts_domains[domain].cpu[count] = i; 1980 hpts_domains[domain].count++; 1981 break; 1982 } 1983 } 1984 } 1985 } 1986 tv.tv_sec = 0; 1987 tv.tv_usec = hpts->p_hpts_sleep_time * HPTS_TICKS_PER_SLOT; 1988 hpts->sleeping = tv.tv_usec; 1989 sb = tvtosbt(tv); 1990 callout_reset_sbt_on(&hpts->co, sb, 0, 1991 hpts_timeout_swi, hpts, hpts->p_cpu, 1992 (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision))); 1993 } 1994 /* 1995 * If we somehow have an empty domain, fall back to choosing 1996 * among all htps threads. 1997 */ 1998 for (i = 0; i < vm_ndomains; i++) { 1999 if (hpts_domains[i].count == 0) { 2000 tcp_bind_threads = 0; 2001 break; 2002 } 2003 } 2004 tcp_hpts_softclock = __tcp_run_hpts; 2005 tcp_lro_hpts_init(); 2006 printf("TCP Hpts created %d swi interrupt threads and bound %d to %s\n", 2007 created, bound, 2008 tcp_bind_threads == 2 ? "NUMA domains" : "cpus"); 2009 #ifdef INVARIANTS 2010 printf("HPTS is in INVARIANT mode!!\n"); 2011 #endif 2012 } 2013 2014 SYSINIT(tcphptsi, SI_SUB_SOFTINTR, SI_ORDER_ANY, tcp_init_hptsi, NULL); 2015 MODULE_VERSION(tcphpts, 1); 2016