xref: /freebsd/sys/netinet/tcp_hpts.c (revision 04a036601e10237ae00655e515aeb78762eb5d1a)
1 /*-
2  * Copyright (c) 2016-2018 Netflix, Inc.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  * 1. Redistributions of source code must retain the above copyright
8  *    notice, this list of conditions and the following disclaimer.
9  * 2. Redistributions in binary form must reproduce the above copyright
10  *    notice, this list of conditions and the following disclaimer in the
11  *    documentation and/or other materials provided with the distribution.
12  *
13  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
14  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
17  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23  * SUCH DAMAGE.
24  *
25  */
26 #include <sys/cdefs.h>
27 __FBSDID("$FreeBSD$");
28 
29 #include "opt_inet.h"
30 #include "opt_inet6.h"
31 #include "opt_rss.h"
32 
33 /**
34  * Some notes about usage.
35  *
36  * The tcp_hpts system is designed to provide a high precision timer
37  * system for tcp. Its main purpose is to provide a mechanism for
38  * pacing packets out onto the wire. It can be used in two ways
39  * by a given TCP stack (and those two methods can be used simultaneously).
40  *
41  * First, and probably the main thing its used by Rack and BBR, it can
42  * be used to call tcp_output() of a transport stack at some time in the future.
43  * The normal way this is done is that tcp_output() of the stack schedules
44  * itself to be called again by calling tcp_hpts_insert(tcpcb, slot). The
45  * slot is the time from now that the stack wants to be called but it
46  * must be converted to tcp_hpts's notion of slot. This is done with
47  * one of the macros HPTS_MS_TO_SLOTS or HPTS_USEC_TO_SLOTS. So a typical
48  * call from the tcp_output() routine might look like:
49  *
50  * tcp_hpts_insert(tp, HPTS_USEC_TO_SLOTS(550));
51  *
52  * The above would schedule tcp_ouput() to be called in 550 useconds.
53  * Note that if using this mechanism the stack will want to add near
54  * its top a check to prevent unwanted calls (from user land or the
55  * arrival of incoming ack's). So it would add something like:
56  *
57  * if (tcp_in_hpts(inp))
58  *    return;
59  *
60  * to prevent output processing until the time alotted has gone by.
61  * Of course this is a bare bones example and the stack will probably
62  * have more consideration then just the above.
63  *
64  * In order to run input queued segments from the HPTS context the
65  * tcp stack must define an input function for
66  * tfb_do_queued_segments(). This function understands
67  * how to dequeue a array of packets that were input and
68  * knows how to call the correct processing routine.
69  *
70  * Locking in this is important as well so most likely the
71  * stack will need to define the tfb_do_segment_nounlock()
72  * splitting tfb_do_segment() into two parts. The main processing
73  * part that does not unlock the INP and returns a value of 1 or 0.
74  * It returns 0 if all is well and the lock was not released. It
75  * returns 1 if we had to destroy the TCB (a reset received etc).
76  * The remains of tfb_do_segment() then become just a simple call
77  * to the tfb_do_segment_nounlock() function and check the return
78  * code and possibly unlock.
79  *
80  * The stack must also set the flag on the INP that it supports this
81  * feature i.e. INP_SUPPORTS_MBUFQ. The LRO code recoginizes
82  * this flag as well and will queue packets when it is set.
83  * There are other flags as well INP_MBUF_QUEUE_READY and
84  * INP_DONT_SACK_QUEUE. The first flag tells the LRO code
85  * that we are in the pacer for output so there is no
86  * need to wake up the hpts system to get immediate
87  * input. The second tells the LRO code that its okay
88  * if a SACK arrives you can still defer input and let
89  * the current hpts timer run (this is usually set when
90  * a rack timer is up so we know SACK's are happening
91  * on the connection already and don't want to wakeup yet).
92  *
93  * There is a common functions within the rack_bbr_common code
94  * version i.e. ctf_do_queued_segments(). This function
95  * knows how to take the input queue of packets from tp->t_inqueue
96  * and process them digging out all the arguments, calling any bpf tap and
97  * calling into tfb_do_segment_nounlock(). The common
98  * function (ctf_do_queued_segments())  requires that
99  * you have defined the tfb_do_segment_nounlock() as
100  * described above.
101  */
102 
103 #include <sys/param.h>
104 #include <sys/bus.h>
105 #include <sys/interrupt.h>
106 #include <sys/module.h>
107 #include <sys/kernel.h>
108 #include <sys/hhook.h>
109 #include <sys/malloc.h>
110 #include <sys/mbuf.h>
111 #include <sys/proc.h>		/* for proc0 declaration */
112 #include <sys/socket.h>
113 #include <sys/socketvar.h>
114 #include <sys/sysctl.h>
115 #include <sys/systm.h>
116 #include <sys/refcount.h>
117 #include <sys/sched.h>
118 #include <sys/queue.h>
119 #include <sys/smp.h>
120 #include <sys/counter.h>
121 #include <sys/time.h>
122 #include <sys/kthread.h>
123 #include <sys/kern_prefetch.h>
124 
125 #include <vm/uma.h>
126 #include <vm/vm.h>
127 
128 #include <net/route.h>
129 #include <net/vnet.h>
130 
131 #ifdef RSS
132 #include <net/netisr.h>
133 #include <net/rss_config.h>
134 #endif
135 
136 #define TCPSTATES		/* for logging */
137 
138 #include <netinet/in.h>
139 #include <netinet/in_kdtrace.h>
140 #include <netinet/in_pcb.h>
141 #include <netinet/ip.h>
142 #include <netinet/ip_icmp.h>	/* required for icmp_var.h */
143 #include <netinet/icmp_var.h>	/* for ICMP_BANDLIM */
144 #include <netinet/ip_var.h>
145 #include <netinet/ip6.h>
146 #include <netinet6/in6_pcb.h>
147 #include <netinet6/ip6_var.h>
148 #include <netinet/tcp.h>
149 #include <netinet/tcp_fsm.h>
150 #include <netinet/tcp_seq.h>
151 #include <netinet/tcp_timer.h>
152 #include <netinet/tcp_var.h>
153 #include <netinet/tcpip.h>
154 #include <netinet/cc/cc.h>
155 #include <netinet/tcp_hpts.h>
156 #include <netinet/tcp_log_buf.h>
157 
158 #ifdef tcp_offload
159 #include <netinet/tcp_offload.h>
160 #endif
161 
162 /*
163  * The hpts uses a 102400 wheel. The wheel
164  * defines the time in 10 usec increments (102400 x 10).
165  * This gives a range of 10usec - 1024ms to place
166  * an entry within. If the user requests more than
167  * 1.024 second, a remaineder is attached and the hpts
168  * when seeing the remainder will re-insert the
169  * inpcb forward in time from where it is until
170  * the remainder is zero.
171  */
172 
173 #define NUM_OF_HPTSI_SLOTS 102400
174 
175 /* Each hpts has its own p_mtx which is used for locking */
176 #define	HPTS_MTX_ASSERT(hpts)	mtx_assert(&(hpts)->p_mtx, MA_OWNED)
177 #define	HPTS_LOCK(hpts)		mtx_lock(&(hpts)->p_mtx)
178 #define	HPTS_UNLOCK(hpts)	mtx_unlock(&(hpts)->p_mtx)
179 struct tcp_hpts_entry {
180 	/* Cache line 0x00 */
181 	struct mtx p_mtx;	/* Mutex for hpts */
182 	struct timeval p_mysleep;	/* Our min sleep time */
183 	uint64_t syscall_cnt;
184 	uint64_t sleeping;	/* What the actual sleep was (if sleeping) */
185 	uint16_t p_hpts_active; /* Flag that says hpts is awake  */
186 	uint8_t p_wheel_complete; /* have we completed the wheel arc walk? */
187 	uint32_t p_curtick;	/* Tick in 10 us the hpts is going to */
188 	uint32_t p_runningslot; /* Current tick we are at if we are running */
189 	uint32_t p_prev_slot;	/* Previous slot we were on */
190 	uint32_t p_cur_slot;	/* Current slot in wheel hpts is draining */
191 	uint32_t p_nxt_slot;	/* The next slot outside the current range of
192 				 * slots that the hpts is running on. */
193 	int32_t p_on_queue_cnt;	/* Count on queue in this hpts */
194 	uint32_t p_lasttick;	/* Last tick before the current one */
195 	uint8_t p_direct_wake :1, /* boolean */
196 		p_on_min_sleep:1, /* boolean */
197 		p_hpts_wake_scheduled:1, /* boolean */
198 		p_avail:5;
199 	uint8_t p_fill[3];	  /* Fill to 32 bits */
200 	/* Cache line 0x40 */
201 	struct hptsh {
202 		TAILQ_HEAD(, inpcb)	head;
203 		uint32_t		count;
204 		uint32_t		gencnt;
205 	} *p_hptss;			/* Hptsi wheel */
206 	uint32_t p_hpts_sleep_time;	/* Current sleep interval having a max
207 					 * of 255ms */
208 	uint32_t overidden_sleep;	/* what was overrided by min-sleep for logging */
209 	uint32_t saved_lasttick;	/* for logging */
210 	uint32_t saved_curtick;		/* for logging */
211 	uint32_t saved_curslot;		/* for logging */
212 	uint32_t saved_prev_slot;       /* for logging */
213 	uint32_t p_delayed_by;	/* How much were we delayed by */
214 	/* Cache line 0x80 */
215 	struct sysctl_ctx_list hpts_ctx;
216 	struct sysctl_oid *hpts_root;
217 	struct intr_event *ie;
218 	void *ie_cookie;
219 	uint16_t p_num;		/* The hpts number one per cpu */
220 	uint16_t p_cpu;		/* The hpts CPU */
221 	/* There is extra space in here */
222 	/* Cache line 0x100 */
223 	struct callout co __aligned(CACHE_LINE_SIZE);
224 }               __aligned(CACHE_LINE_SIZE);
225 
226 static struct tcp_hptsi {
227 	struct cpu_group **grps;
228 	struct tcp_hpts_entry **rp_ent;	/* Array of hptss */
229 	uint32_t *cts_last_ran;
230 	uint32_t grp_cnt;
231 	uint32_t rp_num_hptss;	/* Number of hpts threads */
232 } tcp_pace;
233 
234 MALLOC_DEFINE(M_TCPHPTS, "tcp_hpts", "TCP hpts");
235 #ifdef RSS
236 static int tcp_bind_threads = 1;
237 #else
238 static int tcp_bind_threads = 2;
239 #endif
240 static int tcp_use_irq_cpu = 0;
241 static uint32_t *cts_last_ran;
242 static int hpts_does_tp_logging = 0;
243 
244 static int32_t tcp_hptsi(struct tcp_hpts_entry *hpts, int from_callout);
245 static void tcp_hpts_thread(void *ctx);
246 static void tcp_init_hptsi(void *st);
247 
248 int32_t tcp_min_hptsi_time = DEFAULT_MIN_SLEEP;
249 static int conn_cnt_thresh = DEFAULT_CONNECTION_THESHOLD;
250 static int32_t dynamic_min_sleep = DYNAMIC_MIN_SLEEP;
251 static int32_t dynamic_max_sleep = DYNAMIC_MAX_SLEEP;
252 
253 
254 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, hpts, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
255     "TCP Hpts controls");
256 SYSCTL_NODE(_net_inet_tcp_hpts, OID_AUTO, stats, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
257     "TCP Hpts statistics");
258 
259 #define	timersub(tvp, uvp, vvp)						\
260 	do {								\
261 		(vvp)->tv_sec = (tvp)->tv_sec - (uvp)->tv_sec;		\
262 		(vvp)->tv_usec = (tvp)->tv_usec - (uvp)->tv_usec;	\
263 		if ((vvp)->tv_usec < 0) {				\
264 			(vvp)->tv_sec--;				\
265 			(vvp)->tv_usec += 1000000;			\
266 		}							\
267 	} while (0)
268 
269 static int32_t tcp_hpts_precision = 120;
270 
271 static struct hpts_domain_info {
272 	int count;
273 	int cpu[MAXCPU];
274 } hpts_domains[MAXMEMDOM];
275 
276 enum {
277 	IHPTS_NONE = 0,
278 	IHPTS_ONQUEUE,
279 	IHPTS_MOVING,
280 };
281 
282 counter_u64_t hpts_hopelessly_behind;
283 
284 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, hopeless, CTLFLAG_RD,
285     &hpts_hopelessly_behind,
286     "Number of times hpts could not catch up and was behind hopelessly");
287 
288 counter_u64_t hpts_loops;
289 
290 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, loops, CTLFLAG_RD,
291     &hpts_loops, "Number of times hpts had to loop to catch up");
292 
293 counter_u64_t back_tosleep;
294 
295 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, no_tcbsfound, CTLFLAG_RD,
296     &back_tosleep, "Number of times hpts found no tcbs");
297 
298 counter_u64_t combined_wheel_wrap;
299 
300 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, comb_wheel_wrap, CTLFLAG_RD,
301     &combined_wheel_wrap, "Number of times the wheel lagged enough to have an insert see wrap");
302 
303 counter_u64_t wheel_wrap;
304 
305 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, wheel_wrap, CTLFLAG_RD,
306     &wheel_wrap, "Number of times the wheel lagged enough to have an insert see wrap");
307 
308 counter_u64_t hpts_direct_call;
309 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, direct_call, CTLFLAG_RD,
310     &hpts_direct_call, "Number of times hpts was called by syscall/trap or other entry");
311 
312 counter_u64_t hpts_wake_timeout;
313 
314 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, timeout_wakeup, CTLFLAG_RD,
315     &hpts_wake_timeout, "Number of times hpts threads woke up via the callout expiring");
316 
317 counter_u64_t hpts_direct_awakening;
318 
319 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, direct_awakening, CTLFLAG_RD,
320     &hpts_direct_awakening, "Number of times hpts threads woke up via the callout expiring");
321 
322 counter_u64_t hpts_back_tosleep;
323 
324 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, back_tosleep, CTLFLAG_RD,
325     &hpts_back_tosleep, "Number of times hpts threads woke up via the callout expiring and went back to sleep no work");
326 
327 counter_u64_t cpu_uses_flowid;
328 counter_u64_t cpu_uses_random;
329 
330 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, cpusel_flowid, CTLFLAG_RD,
331     &cpu_uses_flowid, "Number of times when setting cpuid we used the flowid field");
332 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, cpusel_random, CTLFLAG_RD,
333     &cpu_uses_random, "Number of times when setting cpuid we used the a random value");
334 
335 TUNABLE_INT("net.inet.tcp.bind_hptss", &tcp_bind_threads);
336 TUNABLE_INT("net.inet.tcp.use_irq", &tcp_use_irq_cpu);
337 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, bind_hptss, CTLFLAG_RD,
338     &tcp_bind_threads, 2,
339     "Thread Binding tunable");
340 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, use_irq, CTLFLAG_RD,
341     &tcp_use_irq_cpu, 0,
342     "Use of irq CPU  tunable");
343 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, precision, CTLFLAG_RW,
344     &tcp_hpts_precision, 120,
345     "Value for PRE() precision of callout");
346 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, cnt_thresh, CTLFLAG_RW,
347     &conn_cnt_thresh, 0,
348     "How many connections (below) make us use the callout based mechanism");
349 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, logging, CTLFLAG_RW,
350     &hpts_does_tp_logging, 0,
351     "Do we add to any tp that has logging on pacer logs");
352 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, dyn_minsleep, CTLFLAG_RW,
353     &dynamic_min_sleep, 250,
354     "What is the dynamic minsleep value?");
355 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, dyn_maxsleep, CTLFLAG_RW,
356     &dynamic_max_sleep, 5000,
357     "What is the dynamic maxsleep value?");
358 
359 static int32_t max_pacer_loops = 10;
360 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, loopmax, CTLFLAG_RW,
361     &max_pacer_loops, 10,
362     "What is the maximum number of times the pacer will loop trying to catch up");
363 
364 #define HPTS_MAX_SLEEP_ALLOWED (NUM_OF_HPTSI_SLOTS/2)
365 
366 static uint32_t hpts_sleep_max = HPTS_MAX_SLEEP_ALLOWED;
367 
368 static int
369 sysctl_net_inet_tcp_hpts_max_sleep(SYSCTL_HANDLER_ARGS)
370 {
371 	int error;
372 	uint32_t new;
373 
374 	new = hpts_sleep_max;
375 	error = sysctl_handle_int(oidp, &new, 0, req);
376 	if (error == 0 && req->newptr) {
377 		if ((new < (dynamic_min_sleep/HPTS_TICKS_PER_SLOT)) ||
378 		     (new > HPTS_MAX_SLEEP_ALLOWED))
379 			error = EINVAL;
380 		else
381 			hpts_sleep_max = new;
382 	}
383 	return (error);
384 }
385 
386 static int
387 sysctl_net_inet_tcp_hpts_min_sleep(SYSCTL_HANDLER_ARGS)
388 {
389 	int error;
390 	uint32_t new;
391 
392 	new = tcp_min_hptsi_time;
393 	error = sysctl_handle_int(oidp, &new, 0, req);
394 	if (error == 0 && req->newptr) {
395 		if (new < LOWEST_SLEEP_ALLOWED)
396 			error = EINVAL;
397 		else
398 			tcp_min_hptsi_time = new;
399 	}
400 	return (error);
401 }
402 
403 SYSCTL_PROC(_net_inet_tcp_hpts, OID_AUTO, maxsleep,
404     CTLTYPE_UINT | CTLFLAG_RW,
405     &hpts_sleep_max, 0,
406     &sysctl_net_inet_tcp_hpts_max_sleep, "IU",
407     "Maximum time hpts will sleep in slots");
408 
409 SYSCTL_PROC(_net_inet_tcp_hpts, OID_AUTO, minsleep,
410     CTLTYPE_UINT | CTLFLAG_RW,
411     &tcp_min_hptsi_time, 0,
412     &sysctl_net_inet_tcp_hpts_min_sleep, "IU",
413     "The minimum time the hpts must sleep before processing more slots");
414 
415 static int ticks_indicate_more_sleep = TICKS_INDICATE_MORE_SLEEP;
416 static int ticks_indicate_less_sleep = TICKS_INDICATE_LESS_SLEEP;
417 static int tcp_hpts_no_wake_over_thresh = 1;
418 
419 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, more_sleep, CTLFLAG_RW,
420     &ticks_indicate_more_sleep, 0,
421     "If we only process this many or less on a timeout, we need longer sleep on the next callout");
422 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, less_sleep, CTLFLAG_RW,
423     &ticks_indicate_less_sleep, 0,
424     "If we process this many or more on a timeout, we need less sleep on the next callout");
425 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, nowake_over_thresh, CTLFLAG_RW,
426     &tcp_hpts_no_wake_over_thresh, 0,
427     "When we are over the threshold on the pacer do we prohibit wakeups?");
428 
429 static void
430 tcp_hpts_log(struct tcp_hpts_entry *hpts, struct tcpcb *tp, struct timeval *tv,
431 	     int slots_to_run, int idx, int from_callout)
432 {
433 	union tcp_log_stackspecific log;
434 	/*
435 	 * Unused logs are
436 	 * 64 bit - delRate, rttProp, bw_inuse
437 	 * 16 bit - cwnd_gain
438 	 *  8 bit - bbr_state, bbr_substate, inhpts;
439 	 */
440 	memset(&log.u_bbr, 0, sizeof(log.u_bbr));
441 	log.u_bbr.flex1 = hpts->p_nxt_slot;
442 	log.u_bbr.flex2 = hpts->p_cur_slot;
443 	log.u_bbr.flex3 = hpts->p_prev_slot;
444 	log.u_bbr.flex4 = idx;
445 	log.u_bbr.flex5 = hpts->p_curtick;
446 	log.u_bbr.flex6 = hpts->p_on_queue_cnt;
447 	log.u_bbr.flex7 = hpts->p_cpu;
448 	log.u_bbr.flex8 = (uint8_t)from_callout;
449 	log.u_bbr.inflight = slots_to_run;
450 	log.u_bbr.applimited = hpts->overidden_sleep;
451 	log.u_bbr.delivered = hpts->saved_curtick;
452 	log.u_bbr.timeStamp = tcp_tv_to_usectick(tv);
453 	log.u_bbr.epoch = hpts->saved_curslot;
454 	log.u_bbr.lt_epoch = hpts->saved_prev_slot;
455 	log.u_bbr.pkts_out = hpts->p_delayed_by;
456 	log.u_bbr.lost = hpts->p_hpts_sleep_time;
457 	log.u_bbr.pacing_gain = hpts->p_cpu;
458 	log.u_bbr.pkt_epoch = hpts->p_runningslot;
459 	log.u_bbr.use_lt_bw = 1;
460 	TCP_LOG_EVENTP(tp, NULL,
461 		       &tptosocket(tp)->so_rcv,
462 		       &tptosocket(tp)->so_snd,
463 		       BBR_LOG_HPTSDIAG, 0,
464 		       0, &log, false, tv);
465 }
466 
467 static void
468 tcp_wakehpts(struct tcp_hpts_entry *hpts)
469 {
470 	HPTS_MTX_ASSERT(hpts);
471 
472 	if (tcp_hpts_no_wake_over_thresh && (hpts->p_on_queue_cnt >= conn_cnt_thresh)) {
473 		hpts->p_direct_wake = 0;
474 		return;
475 	}
476 	if (hpts->p_hpts_wake_scheduled == 0) {
477 		hpts->p_hpts_wake_scheduled = 1;
478 		swi_sched(hpts->ie_cookie, 0);
479 	}
480 }
481 
482 static void
483 hpts_timeout_swi(void *arg)
484 {
485 	struct tcp_hpts_entry *hpts;
486 
487 	hpts = (struct tcp_hpts_entry *)arg;
488 	swi_sched(hpts->ie_cookie, 0);
489 }
490 
491 static void
492 inp_hpts_insert(struct inpcb *inp, struct tcp_hpts_entry *hpts)
493 {
494 	struct hptsh *hptsh;
495 
496 	INP_WLOCK_ASSERT(inp);
497 	HPTS_MTX_ASSERT(hpts);
498 	MPASS(hpts->p_cpu == inp->inp_hpts_cpu);
499 	MPASS(!(inp->inp_flags & INP_DROPPED));
500 
501 	hptsh = &hpts->p_hptss[inp->inp_hptsslot];
502 
503 	if (inp->inp_in_hpts == IHPTS_NONE) {
504 		inp->inp_in_hpts = IHPTS_ONQUEUE;
505 		in_pcbref(inp);
506 	} else if (inp->inp_in_hpts == IHPTS_MOVING) {
507 		inp->inp_in_hpts = IHPTS_ONQUEUE;
508 	} else
509 		MPASS(inp->inp_in_hpts == IHPTS_ONQUEUE);
510 	inp->inp_hpts_gencnt = hptsh->gencnt;
511 
512 	TAILQ_INSERT_TAIL(&hptsh->head, inp, inp_hpts);
513 	hptsh->count++;
514 	hpts->p_on_queue_cnt++;
515 }
516 
517 static struct tcp_hpts_entry *
518 tcp_hpts_lock(struct inpcb *inp)
519 {
520 	struct tcp_hpts_entry *hpts;
521 
522 	INP_LOCK_ASSERT(inp);
523 
524 	hpts = tcp_pace.rp_ent[inp->inp_hpts_cpu];
525 	HPTS_LOCK(hpts);
526 
527 	return (hpts);
528 }
529 
530 static void
531 inp_hpts_release(struct inpcb *inp)
532 {
533 	bool released __diagused;
534 
535 	inp->inp_in_hpts = IHPTS_NONE;
536 	released = in_pcbrele_wlocked(inp);
537 	MPASS(released == false);
538 }
539 
540 /*
541  * Called normally with the INP_LOCKED but it
542  * does not matter, the hpts lock is the key
543  * but the lock order allows us to hold the
544  * INP lock and then get the hpts lock.
545  */
546 void
547 tcp_hpts_remove(struct inpcb *inp)
548 {
549 	struct tcp_hpts_entry *hpts;
550 	struct hptsh *hptsh;
551 
552 	INP_WLOCK_ASSERT(inp);
553 
554 	hpts = tcp_hpts_lock(inp);
555 	if (inp->inp_in_hpts == IHPTS_ONQUEUE) {
556 		hptsh = &hpts->p_hptss[inp->inp_hptsslot];
557 		inp->inp_hpts_request = 0;
558 		if (__predict_true(inp->inp_hpts_gencnt == hptsh->gencnt)) {
559 			TAILQ_REMOVE(&hptsh->head, inp, inp_hpts);
560 			MPASS(hptsh->count > 0);
561 			hptsh->count--;
562 			MPASS(hpts->p_on_queue_cnt > 0);
563 			hpts->p_on_queue_cnt--;
564 			inp_hpts_release(inp);
565 		} else {
566 			/*
567 			 * tcp_hptsi() now owns the TAILQ head of this inp.
568 			 * Can't TAILQ_REMOVE, just mark it.
569 			 */
570 #ifdef INVARIANTS
571 			struct inpcb *tmp;
572 
573 			TAILQ_FOREACH(tmp, &hptsh->head, inp_hpts)
574 				MPASS(tmp != inp);
575 #endif
576 			inp->inp_in_hpts = IHPTS_MOVING;
577 			inp->inp_hptsslot = -1;
578 		}
579 	} else if (inp->inp_in_hpts == IHPTS_MOVING) {
580 		/*
581 		 * Handle a special race condition:
582 		 * tcp_hptsi() moves inpcb to detached tailq
583 		 * tcp_hpts_remove() marks as IHPTS_MOVING, slot = -1
584 		 * tcp_hpts_insert() sets slot to a meaningful value
585 		 * tcp_hpts_remove() again (we are here!), then in_pcbdrop()
586 		 * tcp_hptsi() finds pcb with meaningful slot and INP_DROPPED
587 		 */
588 		inp->inp_hptsslot = -1;
589 	}
590 	HPTS_UNLOCK(hpts);
591 }
592 
593 bool
594 tcp_in_hpts(struct inpcb *inp)
595 {
596 
597 	return (inp->inp_in_hpts == IHPTS_ONQUEUE);
598 }
599 
600 static inline int
601 hpts_slot(uint32_t wheel_slot, uint32_t plus)
602 {
603 	/*
604 	 * Given a slot on the wheel, what slot
605 	 * is that plus ticks out?
606 	 */
607 	KASSERT(wheel_slot < NUM_OF_HPTSI_SLOTS, ("Invalid tick %u not on wheel", wheel_slot));
608 	return ((wheel_slot + plus) % NUM_OF_HPTSI_SLOTS);
609 }
610 
611 static inline int
612 tick_to_wheel(uint32_t cts_in_wticks)
613 {
614 	/*
615 	 * Given a timestamp in ticks (so by
616 	 * default to get it to a real time one
617 	 * would multiply by 10.. i.e the number
618 	 * of ticks in a slot) map it to our limited
619 	 * space wheel.
620 	 */
621 	return (cts_in_wticks % NUM_OF_HPTSI_SLOTS);
622 }
623 
624 static inline int
625 hpts_slots_diff(int prev_slot, int slot_now)
626 {
627 	/*
628 	 * Given two slots that are someplace
629 	 * on our wheel. How far are they apart?
630 	 */
631 	if (slot_now > prev_slot)
632 		return (slot_now - prev_slot);
633 	else if (slot_now == prev_slot)
634 		/*
635 		 * Special case, same means we can go all of our
636 		 * wheel less one slot.
637 		 */
638 		return (NUM_OF_HPTSI_SLOTS - 1);
639 	else
640 		return ((NUM_OF_HPTSI_SLOTS - prev_slot) + slot_now);
641 }
642 
643 /*
644  * Given a slot on the wheel that is the current time
645  * mapped to the wheel (wheel_slot), what is the maximum
646  * distance forward that can be obtained without
647  * wrapping past either prev_slot or running_slot
648  * depending on the htps state? Also if passed
649  * a uint32_t *, fill it with the slot location.
650  *
651  * Note if you do not give this function the current
652  * time (that you think it is) mapped to the wheel slot
653  * then the results will not be what you expect and
654  * could lead to invalid inserts.
655  */
656 static inline int32_t
657 max_slots_available(struct tcp_hpts_entry *hpts, uint32_t wheel_slot, uint32_t *target_slot)
658 {
659 	uint32_t dis_to_travel, end_slot, pacer_to_now, avail_on_wheel;
660 
661 	if ((hpts->p_hpts_active == 1) &&
662 	    (hpts->p_wheel_complete == 0)) {
663 		end_slot = hpts->p_runningslot;
664 		/* Back up one tick */
665 		if (end_slot == 0)
666 			end_slot = NUM_OF_HPTSI_SLOTS - 1;
667 		else
668 			end_slot--;
669 		if (target_slot)
670 			*target_slot = end_slot;
671 	} else {
672 		/*
673 		 * For the case where we are
674 		 * not active, or we have
675 		 * completed the pass over
676 		 * the wheel, we can use the
677 		 * prev tick and subtract one from it. This puts us
678 		 * as far out as possible on the wheel.
679 		 */
680 		end_slot = hpts->p_prev_slot;
681 		if (end_slot == 0)
682 			end_slot = NUM_OF_HPTSI_SLOTS - 1;
683 		else
684 			end_slot--;
685 		if (target_slot)
686 			*target_slot = end_slot;
687 		/*
688 		 * Now we have close to the full wheel left minus the
689 		 * time it has been since the pacer went to sleep. Note
690 		 * that wheel_tick, passed in, should be the current time
691 		 * from the perspective of the caller, mapped to the wheel.
692 		 */
693 		if (hpts->p_prev_slot != wheel_slot)
694 			dis_to_travel = hpts_slots_diff(hpts->p_prev_slot, wheel_slot);
695 		else
696 			dis_to_travel = 1;
697 		/*
698 		 * dis_to_travel in this case is the space from when the
699 		 * pacer stopped (p_prev_slot) and where our wheel_slot
700 		 * is now. To know how many slots we can put it in we
701 		 * subtract from the wheel size. We would not want
702 		 * to place something after p_prev_slot or it will
703 		 * get ran too soon.
704 		 */
705 		return (NUM_OF_HPTSI_SLOTS - dis_to_travel);
706 	}
707 	/*
708 	 * So how many slots are open between p_runningslot -> p_cur_slot
709 	 * that is what is currently un-available for insertion. Special
710 	 * case when we are at the last slot, this gets 1, so that
711 	 * the answer to how many slots are available is all but 1.
712 	 */
713 	if (hpts->p_runningslot == hpts->p_cur_slot)
714 		dis_to_travel = 1;
715 	else
716 		dis_to_travel = hpts_slots_diff(hpts->p_runningslot, hpts->p_cur_slot);
717 	/*
718 	 * How long has the pacer been running?
719 	 */
720 	if (hpts->p_cur_slot != wheel_slot) {
721 		/* The pacer is a bit late */
722 		pacer_to_now = hpts_slots_diff(hpts->p_cur_slot, wheel_slot);
723 	} else {
724 		/* The pacer is right on time, now == pacers start time */
725 		pacer_to_now = 0;
726 	}
727 	/*
728 	 * To get the number left we can insert into we simply
729 	 * subtract the distance the pacer has to run from how
730 	 * many slots there are.
731 	 */
732 	avail_on_wheel = NUM_OF_HPTSI_SLOTS - dis_to_travel;
733 	/*
734 	 * Now how many of those we will eat due to the pacer's
735 	 * time (p_cur_slot) of start being behind the
736 	 * real time (wheel_slot)?
737 	 */
738 	if (avail_on_wheel <= pacer_to_now) {
739 		/*
740 		 * Wheel wrap, we can't fit on the wheel, that
741 		 * is unusual the system must be way overloaded!
742 		 * Insert into the assured slot, and return special
743 		 * "0".
744 		 */
745 		counter_u64_add(combined_wheel_wrap, 1);
746 		*target_slot = hpts->p_nxt_slot;
747 		return (0);
748 	} else {
749 		/*
750 		 * We know how many slots are open
751 		 * on the wheel (the reverse of what
752 		 * is left to run. Take away the time
753 		 * the pacer started to now (wheel_slot)
754 		 * and that tells you how many slots are
755 		 * open that can be inserted into that won't
756 		 * be touched by the pacer until later.
757 		 */
758 		return (avail_on_wheel - pacer_to_now);
759 	}
760 }
761 
762 
763 #ifdef INVARIANTS
764 static void
765 check_if_slot_would_be_wrong(struct tcp_hpts_entry *hpts, struct inpcb *inp, uint32_t inp_hptsslot, int line)
766 {
767 	/*
768 	 * Sanity checks for the pacer with invariants
769 	 * on insert.
770 	 */
771 	KASSERT(inp_hptsslot < NUM_OF_HPTSI_SLOTS,
772 		("hpts:%p inp:%p slot:%d > max",
773 		 hpts, inp, inp_hptsslot));
774 	if ((hpts->p_hpts_active) &&
775 	    (hpts->p_wheel_complete == 0)) {
776 		/*
777 		 * If the pacer is processing a arc
778 		 * of the wheel, we need to make
779 		 * sure we are not inserting within
780 		 * that arc.
781 		 */
782 		int distance, yet_to_run;
783 
784 		distance = hpts_slots_diff(hpts->p_runningslot, inp_hptsslot);
785 		if (hpts->p_runningslot != hpts->p_cur_slot)
786 			yet_to_run = hpts_slots_diff(hpts->p_runningslot, hpts->p_cur_slot);
787 		else
788 			yet_to_run = 0;	/* processing last slot */
789 		KASSERT(yet_to_run <= distance,
790 			("hpts:%p inp:%p slot:%d distance:%d yet_to_run:%d rs:%d cs:%d",
791 			 hpts, inp, inp_hptsslot,
792 			 distance, yet_to_run,
793 			 hpts->p_runningslot, hpts->p_cur_slot));
794 	}
795 }
796 #endif
797 
798 uint32_t
799 tcp_hpts_insert_diag(struct inpcb *inp, uint32_t slot, int32_t line, struct hpts_diag *diag)
800 {
801 	struct tcp_hpts_entry *hpts;
802 	struct timeval tv;
803 	uint32_t slot_on, wheel_cts, last_slot, need_new_to = 0;
804 	int32_t wheel_slot, maxslots;
805 	bool need_wakeup = false;
806 
807 	INP_WLOCK_ASSERT(inp);
808 	MPASS(!tcp_in_hpts(inp));
809 	MPASS(!(inp->inp_flags & INP_DROPPED));
810 
811 	/*
812 	 * We now return the next-slot the hpts will be on, beyond its
813 	 * current run (if up) or where it was when it stopped if it is
814 	 * sleeping.
815 	 */
816 	hpts = tcp_hpts_lock(inp);
817 	microuptime(&tv);
818 	if (diag) {
819 		memset(diag, 0, sizeof(struct hpts_diag));
820 		diag->p_hpts_active = hpts->p_hpts_active;
821 		diag->p_prev_slot = hpts->p_prev_slot;
822 		diag->p_runningslot = hpts->p_runningslot;
823 		diag->p_nxt_slot = hpts->p_nxt_slot;
824 		diag->p_cur_slot = hpts->p_cur_slot;
825 		diag->p_curtick = hpts->p_curtick;
826 		diag->p_lasttick = hpts->p_lasttick;
827 		diag->slot_req = slot;
828 		diag->p_on_min_sleep = hpts->p_on_min_sleep;
829 		diag->hpts_sleep_time = hpts->p_hpts_sleep_time;
830 	}
831 	if (slot == 0) {
832 		/* Ok we need to set it on the hpts in the current slot */
833 		inp->inp_hpts_request = 0;
834 		if ((hpts->p_hpts_active == 0) || (hpts->p_wheel_complete)) {
835 			/*
836 			 * A sleeping hpts we want in next slot to run
837 			 * note that in this state p_prev_slot == p_cur_slot
838 			 */
839 			inp->inp_hptsslot = hpts_slot(hpts->p_prev_slot, 1);
840 			if ((hpts->p_on_min_sleep == 0) &&
841 			    (hpts->p_hpts_active == 0))
842 				need_wakeup = true;
843 		} else
844 			inp->inp_hptsslot = hpts->p_runningslot;
845 		if (__predict_true(inp->inp_in_hpts != IHPTS_MOVING))
846 			inp_hpts_insert(inp, hpts);
847 		if (need_wakeup) {
848 			/*
849 			 * Activate the hpts if it is sleeping and its
850 			 * timeout is not 1.
851 			 */
852 			hpts->p_direct_wake = 1;
853 			tcp_wakehpts(hpts);
854 		}
855 		slot_on = hpts->p_nxt_slot;
856 		HPTS_UNLOCK(hpts);
857 
858 		return (slot_on);
859 	}
860 	/* Get the current time relative to the wheel */
861 	wheel_cts = tcp_tv_to_hptstick(&tv);
862 	/* Map it onto the wheel */
863 	wheel_slot = tick_to_wheel(wheel_cts);
864 	/* Now what's the max we can place it at? */
865 	maxslots = max_slots_available(hpts, wheel_slot, &last_slot);
866 	if (diag) {
867 		diag->wheel_slot = wheel_slot;
868 		diag->maxslots = maxslots;
869 		diag->wheel_cts = wheel_cts;
870 	}
871 	if (maxslots == 0) {
872 		/* The pacer is in a wheel wrap behind, yikes! */
873 		if (slot > 1) {
874 			/*
875 			 * Reduce by 1 to prevent a forever loop in
876 			 * case something else is wrong. Note this
877 			 * probably does not hurt because the pacer
878 			 * if its true is so far behind we will be
879 			 * > 1second late calling anyway.
880 			 */
881 			slot--;
882 		}
883 		inp->inp_hptsslot = last_slot;
884 		inp->inp_hpts_request = slot;
885 	} else 	if (maxslots >= slot) {
886 		/* It all fits on the wheel */
887 		inp->inp_hpts_request = 0;
888 		inp->inp_hptsslot = hpts_slot(wheel_slot, slot);
889 	} else {
890 		/* It does not fit */
891 		inp->inp_hpts_request = slot - maxslots;
892 		inp->inp_hptsslot = last_slot;
893 	}
894 	if (diag) {
895 		diag->slot_remaining = inp->inp_hpts_request;
896 		diag->inp_hptsslot = inp->inp_hptsslot;
897 	}
898 #ifdef INVARIANTS
899 	check_if_slot_would_be_wrong(hpts, inp, inp->inp_hptsslot, line);
900 #endif
901 	if (__predict_true(inp->inp_in_hpts != IHPTS_MOVING))
902 		inp_hpts_insert(inp, hpts);
903 	if ((hpts->p_hpts_active == 0) &&
904 	    (inp->inp_hpts_request == 0) &&
905 	    (hpts->p_on_min_sleep == 0)) {
906 		/*
907 		 * The hpts is sleeping and NOT on a minimum
908 		 * sleep time, we need to figure out where
909 		 * it will wake up at and if we need to reschedule
910 		 * its time-out.
911 		 */
912 		uint32_t have_slept, yet_to_sleep;
913 
914 		/* Now do we need to restart the hpts's timer? */
915 		have_slept = hpts_slots_diff(hpts->p_prev_slot, wheel_slot);
916 		if (have_slept < hpts->p_hpts_sleep_time)
917 			yet_to_sleep = hpts->p_hpts_sleep_time - have_slept;
918 		else {
919 			/* We are over-due */
920 			yet_to_sleep = 0;
921 			need_wakeup = 1;
922 		}
923 		if (diag) {
924 			diag->have_slept = have_slept;
925 			diag->yet_to_sleep = yet_to_sleep;
926 		}
927 		if (yet_to_sleep &&
928 		    (yet_to_sleep > slot)) {
929 			/*
930 			 * We need to reschedule the hpts's time-out.
931 			 */
932 			hpts->p_hpts_sleep_time = slot;
933 			need_new_to = slot * HPTS_TICKS_PER_SLOT;
934 		}
935 	}
936 	/*
937 	 * Now how far is the hpts sleeping to? if active is 1, its
938 	 * up and ticking we do nothing, otherwise we may need to
939 	 * reschedule its callout if need_new_to is set from above.
940 	 */
941 	if (need_wakeup) {
942 		hpts->p_direct_wake = 1;
943 		tcp_wakehpts(hpts);
944 		if (diag) {
945 			diag->need_new_to = 0;
946 			diag->co_ret = 0xffff0000;
947 		}
948 	} else if (need_new_to) {
949 		int32_t co_ret;
950 		struct timeval tv;
951 		sbintime_t sb;
952 
953 		tv.tv_sec = 0;
954 		tv.tv_usec = 0;
955 		while (need_new_to > HPTS_USEC_IN_SEC) {
956 			tv.tv_sec++;
957 			need_new_to -= HPTS_USEC_IN_SEC;
958 		}
959 		tv.tv_usec = need_new_to;
960 		sb = tvtosbt(tv);
961 		co_ret = callout_reset_sbt_on(&hpts->co, sb, 0,
962 					      hpts_timeout_swi, hpts, hpts->p_cpu,
963 					      (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision)));
964 		if (diag) {
965 			diag->need_new_to = need_new_to;
966 			diag->co_ret = co_ret;
967 		}
968 	}
969 	slot_on = hpts->p_nxt_slot;
970 	HPTS_UNLOCK(hpts);
971 
972 	return (slot_on);
973 }
974 
975 uint16_t
976 hpts_random_cpu(struct inpcb *inp){
977 	/*
978 	 * No flow type set distribute the load randomly.
979 	 */
980 	uint16_t cpuid;
981 	uint32_t ran;
982 
983 	/*
984 	 * Shortcut if it is already set. XXXGL: does it happen?
985 	 */
986 	if (inp->inp_hpts_cpu_set) {
987 		return (inp->inp_hpts_cpu);
988 	}
989 	/* Nothing set use a random number */
990 	ran = arc4random();
991 	cpuid = (((ran & 0xffff) % mp_ncpus) % tcp_pace.rp_num_hptss);
992 	return (cpuid);
993 }
994 
995 static uint16_t
996 hpts_cpuid(struct inpcb *inp, int *failed)
997 {
998 	u_int cpuid;
999 #ifdef NUMA
1000 	struct hpts_domain_info *di;
1001 #endif
1002 
1003 	*failed = 0;
1004 	if (inp->inp_hpts_cpu_set) {
1005 		return (inp->inp_hpts_cpu);
1006 	}
1007 	/*
1008 	 * If we are using the irq cpu set by LRO or
1009 	 * the driver then it overrides all other domains.
1010 	 */
1011 	if (tcp_use_irq_cpu) {
1012 		if (inp->inp_irq_cpu_set == 0) {
1013 			*failed = 1;
1014 			return(0);
1015 		}
1016 		return(inp->inp_irq_cpu);
1017 	}
1018 	/* If one is set the other must be the same */
1019 #ifdef RSS
1020 	cpuid = rss_hash2cpuid(inp->inp_flowid, inp->inp_flowtype);
1021 	if (cpuid == NETISR_CPUID_NONE)
1022 		return (hpts_random_cpu(inp));
1023 	else
1024 		return (cpuid);
1025 #endif
1026 	/*
1027 	 * We don't have a flowid -> cpuid mapping, so cheat and just map
1028 	 * unknown cpuids to curcpu.  Not the best, but apparently better
1029 	 * than defaulting to swi 0.
1030 	 */
1031 	if (inp->inp_flowtype == M_HASHTYPE_NONE) {
1032 		counter_u64_add(cpu_uses_random, 1);
1033 		return (hpts_random_cpu(inp));
1034 	}
1035 	/*
1036 	 * Hash to a thread based on the flowid.  If we are using numa,
1037 	 * then restrict the hash to the numa domain where the inp lives.
1038 	 */
1039 
1040 #ifdef NUMA
1041 	if ((vm_ndomains == 1) ||
1042 	    (inp->inp_numa_domain == M_NODOM)) {
1043 #endif
1044 		cpuid = inp->inp_flowid % mp_ncpus;
1045 #ifdef NUMA
1046 	} else {
1047 		/* Hash into the cpu's that use that domain */
1048 		di = &hpts_domains[inp->inp_numa_domain];
1049 		cpuid = di->cpu[inp->inp_flowid % di->count];
1050 	}
1051 #endif
1052 	counter_u64_add(cpu_uses_flowid, 1);
1053 	return (cpuid);
1054 }
1055 
1056 static void
1057 tcp_hpts_set_max_sleep(struct tcp_hpts_entry *hpts, int wrap_loop_cnt)
1058 {
1059 	uint32_t t = 0, i;
1060 
1061 	if ((hpts->p_on_queue_cnt) && (wrap_loop_cnt < 2)) {
1062 		/*
1063 		 * Find next slot that is occupied and use that to
1064 		 * be the sleep time.
1065 		 */
1066 		for (i = 0, t = hpts_slot(hpts->p_cur_slot, 1); i < NUM_OF_HPTSI_SLOTS; i++) {
1067 			if (TAILQ_EMPTY(&hpts->p_hptss[t].head) == 0) {
1068 				break;
1069 			}
1070 			t = (t + 1) % NUM_OF_HPTSI_SLOTS;
1071 		}
1072 		KASSERT((i != NUM_OF_HPTSI_SLOTS), ("Hpts:%p cnt:%d but none found", hpts, hpts->p_on_queue_cnt));
1073 		hpts->p_hpts_sleep_time = min((i + 1), hpts_sleep_max);
1074 	} else {
1075 		/* No one on the wheel sleep for all but 400 slots or sleep max  */
1076 		hpts->p_hpts_sleep_time = hpts_sleep_max;
1077 	}
1078 }
1079 
1080 static int32_t
1081 tcp_hptsi(struct tcp_hpts_entry *hpts, int from_callout)
1082 {
1083 	struct tcpcb *tp;
1084 	struct inpcb *inp;
1085 	struct timeval tv;
1086 	int32_t slots_to_run, i, error;
1087 	int32_t loop_cnt = 0;
1088 	int32_t did_prefetch = 0;
1089 	int32_t prefetch_ninp = 0;
1090 	int32_t prefetch_tp = 0;
1091 	int32_t wrap_loop_cnt = 0;
1092 	int32_t slot_pos_of_endpoint = 0;
1093 	int32_t orig_exit_slot;
1094 	int8_t completed_measure = 0, seen_endpoint = 0;
1095 
1096 	HPTS_MTX_ASSERT(hpts);
1097 	NET_EPOCH_ASSERT();
1098 	/* record previous info for any logging */
1099 	hpts->saved_lasttick = hpts->p_lasttick;
1100 	hpts->saved_curtick = hpts->p_curtick;
1101 	hpts->saved_curslot = hpts->p_cur_slot;
1102 	hpts->saved_prev_slot = hpts->p_prev_slot;
1103 
1104 	hpts->p_lasttick = hpts->p_curtick;
1105 	hpts->p_curtick = tcp_gethptstick(&tv);
1106 	cts_last_ran[hpts->p_num] = tcp_tv_to_usectick(&tv);
1107 	orig_exit_slot = hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick);
1108 	if ((hpts->p_on_queue_cnt == 0) ||
1109 	    (hpts->p_lasttick == hpts->p_curtick)) {
1110 		/*
1111 		 * No time has yet passed,
1112 		 * or nothing to do.
1113 		 */
1114 		hpts->p_prev_slot = hpts->p_cur_slot;
1115 		hpts->p_lasttick = hpts->p_curtick;
1116 		goto no_run;
1117 	}
1118 again:
1119 	hpts->p_wheel_complete = 0;
1120 	HPTS_MTX_ASSERT(hpts);
1121 	slots_to_run = hpts_slots_diff(hpts->p_prev_slot, hpts->p_cur_slot);
1122 	if (((hpts->p_curtick - hpts->p_lasttick) >
1123 	     ((NUM_OF_HPTSI_SLOTS-1) * HPTS_TICKS_PER_SLOT)) &&
1124 	    (hpts->p_on_queue_cnt != 0)) {
1125 		/*
1126 		 * Wheel wrap is occuring, basically we
1127 		 * are behind and the distance between
1128 		 * run's has spread so much it has exceeded
1129 		 * the time on the wheel (1.024 seconds). This
1130 		 * is ugly and should NOT be happening. We
1131 		 * need to run the entire wheel. We last processed
1132 		 * p_prev_slot, so that needs to be the last slot
1133 		 * we run. The next slot after that should be our
1134 		 * reserved first slot for new, and then starts
1135 		 * the running position. Now the problem is the
1136 		 * reserved "not to yet" place does not exist
1137 		 * and there may be inp's in there that need
1138 		 * running. We can merge those into the
1139 		 * first slot at the head.
1140 		 */
1141 		wrap_loop_cnt++;
1142 		hpts->p_nxt_slot = hpts_slot(hpts->p_prev_slot, 1);
1143 		hpts->p_runningslot = hpts_slot(hpts->p_prev_slot, 2);
1144 		/*
1145 		 * Adjust p_cur_slot to be where we are starting from
1146 		 * hopefully we will catch up (fat chance if something
1147 		 * is broken this bad :( )
1148 		 */
1149 		hpts->p_cur_slot = hpts->p_prev_slot;
1150 		/*
1151 		 * The next slot has guys to run too, and that would
1152 		 * be where we would normally start, lets move them into
1153 		 * the next slot (p_prev_slot + 2) so that we will
1154 		 * run them, the extra 10usecs of late (by being
1155 		 * put behind) does not really matter in this situation.
1156 		 */
1157 		TAILQ_FOREACH(inp, &hpts->p_hptss[hpts->p_nxt_slot].head,
1158 		    inp_hpts) {
1159 			MPASS(inp->inp_hptsslot == hpts->p_nxt_slot);
1160 			MPASS(inp->inp_hpts_gencnt ==
1161 			    hpts->p_hptss[hpts->p_nxt_slot].gencnt);
1162 			MPASS(inp->inp_in_hpts == IHPTS_ONQUEUE);
1163 
1164 			/*
1165 			 * Update gencnt and nextslot accordingly to match
1166 			 * the new location. This is safe since it takes both
1167 			 * the INP lock and the pacer mutex to change the
1168 			 * inp_hptsslot and inp_hpts_gencnt.
1169 			 */
1170 			inp->inp_hpts_gencnt =
1171 			    hpts->p_hptss[hpts->p_runningslot].gencnt;
1172 			inp->inp_hptsslot = hpts->p_runningslot;
1173 		}
1174 		TAILQ_CONCAT(&hpts->p_hptss[hpts->p_runningslot].head,
1175 		    &hpts->p_hptss[hpts->p_nxt_slot].head, inp_hpts);
1176 		hpts->p_hptss[hpts->p_runningslot].count +=
1177 		    hpts->p_hptss[hpts->p_nxt_slot].count;
1178 		hpts->p_hptss[hpts->p_nxt_slot].count = 0;
1179 		hpts->p_hptss[hpts->p_nxt_slot].gencnt++;
1180 		slots_to_run = NUM_OF_HPTSI_SLOTS - 1;
1181 		counter_u64_add(wheel_wrap, 1);
1182 	} else {
1183 		/*
1184 		 * Nxt slot is always one after p_runningslot though
1185 		 * its not used usually unless we are doing wheel wrap.
1186 		 */
1187 		hpts->p_nxt_slot = hpts->p_prev_slot;
1188 		hpts->p_runningslot = hpts_slot(hpts->p_prev_slot, 1);
1189 	}
1190 	if (hpts->p_on_queue_cnt == 0) {
1191 		goto no_one;
1192 	}
1193 	for (i = 0; i < slots_to_run; i++) {
1194 		struct inpcb *inp, *ninp;
1195 		TAILQ_HEAD(, inpcb) head = TAILQ_HEAD_INITIALIZER(head);
1196 		struct hptsh *hptsh;
1197 		uint32_t runningslot;
1198 
1199 		/*
1200 		 * Calculate our delay, if there are no extra ticks there
1201 		 * was not any (i.e. if slots_to_run == 1, no delay).
1202 		 */
1203 		hpts->p_delayed_by = (slots_to_run - (i + 1)) *
1204 		    HPTS_TICKS_PER_SLOT;
1205 
1206 		runningslot = hpts->p_runningslot;
1207 		hptsh = &hpts->p_hptss[runningslot];
1208 		TAILQ_SWAP(&head, &hptsh->head, inpcb, inp_hpts);
1209 		hpts->p_on_queue_cnt -= hptsh->count;
1210 		hptsh->count = 0;
1211 		hptsh->gencnt++;
1212 
1213 		HPTS_UNLOCK(hpts);
1214 
1215 		TAILQ_FOREACH_SAFE(inp, &head, inp_hpts, ninp) {
1216 			bool set_cpu;
1217 
1218 			if (ninp != NULL) {
1219 				/* We prefetch the next inp if possible */
1220 				kern_prefetch(ninp, &prefetch_ninp);
1221 				prefetch_ninp = 1;
1222 			}
1223 
1224 			/* For debugging */
1225 			if (seen_endpoint == 0) {
1226 				seen_endpoint = 1;
1227 				orig_exit_slot = slot_pos_of_endpoint =
1228 				    runningslot;
1229 			} else if (completed_measure == 0) {
1230 				/* Record the new position */
1231 				orig_exit_slot = runningslot;
1232 			}
1233 
1234 			INP_WLOCK(inp);
1235 			if (inp->inp_hpts_cpu_set == 0) {
1236 				set_cpu = true;
1237 			} else {
1238 				set_cpu = false;
1239 			}
1240 
1241 			if (__predict_false(inp->inp_in_hpts == IHPTS_MOVING)) {
1242 				if (inp->inp_hptsslot == -1) {
1243 					inp->inp_in_hpts = IHPTS_NONE;
1244 					if (in_pcbrele_wlocked(inp) == false)
1245 						INP_WUNLOCK(inp);
1246 				} else {
1247 					HPTS_LOCK(hpts);
1248 					inp_hpts_insert(inp, hpts);
1249 					HPTS_UNLOCK(hpts);
1250 					INP_WUNLOCK(inp);
1251 				}
1252 				continue;
1253 			}
1254 
1255 			MPASS(inp->inp_in_hpts == IHPTS_ONQUEUE);
1256 			MPASS(!(inp->inp_flags & INP_DROPPED));
1257 			KASSERT(runningslot == inp->inp_hptsslot,
1258 				("Hpts:%p inp:%p slot mis-aligned %u vs %u",
1259 				 hpts, inp, runningslot, inp->inp_hptsslot));
1260 
1261 			if (inp->inp_hpts_request) {
1262 				/*
1263 				 * This guy is deferred out further in time
1264 				 * then our wheel had available on it.
1265 				 * Push him back on the wheel or run it
1266 				 * depending.
1267 				 */
1268 				uint32_t maxslots, last_slot, remaining_slots;
1269 
1270 				remaining_slots = slots_to_run - (i + 1);
1271 				if (inp->inp_hpts_request > remaining_slots) {
1272 					HPTS_LOCK(hpts);
1273 					/*
1274 					 * How far out can we go?
1275 					 */
1276 					maxslots = max_slots_available(hpts,
1277 					    hpts->p_cur_slot, &last_slot);
1278 					if (maxslots >= inp->inp_hpts_request) {
1279 						/* We can place it finally to
1280 						 * be processed.  */
1281 						inp->inp_hptsslot = hpts_slot(
1282 						    hpts->p_runningslot,
1283 						    inp->inp_hpts_request);
1284 						inp->inp_hpts_request = 0;
1285 					} else {
1286 						/* Work off some more time */
1287 						inp->inp_hptsslot = last_slot;
1288 						inp->inp_hpts_request -=
1289 						    maxslots;
1290 					}
1291 					inp_hpts_insert(inp, hpts);
1292 					HPTS_UNLOCK(hpts);
1293 					INP_WUNLOCK(inp);
1294 					continue;
1295 				}
1296 				inp->inp_hpts_request = 0;
1297 				/* Fall through we will so do it now */
1298 			}
1299 
1300 			inp_hpts_release(inp);
1301 			tp = intotcpcb(inp);
1302 			MPASS(tp);
1303 			if (set_cpu) {
1304 				/*
1305 				 * Setup so the next time we will move to
1306 				 * the right CPU. This should be a rare
1307 				 * event. It will sometimes happens when we
1308 				 * are the client side (usually not the
1309 				 * server). Somehow tcp_output() gets called
1310 				 * before the tcp_do_segment() sets the
1311 				 * intial state. This means the r_cpu and
1312 				 * r_hpts_cpu is 0. We get on the hpts, and
1313 				 * then tcp_input() gets called setting up
1314 				 * the r_cpu to the correct value. The hpts
1315 				 * goes off and sees the mis-match. We
1316 				 * simply correct it here and the CPU will
1317 				 * switch to the new hpts nextime the tcb
1318 				 * gets added to the hpts (not this one)
1319 				 * :-)
1320 				 */
1321 				tcp_set_hpts(inp);
1322 			}
1323 			CURVNET_SET(inp->inp_vnet);
1324 			/* Lets do any logging that we might want to */
1325 			if (hpts_does_tp_logging && tcp_bblogging_on(tp)) {
1326 				tcp_hpts_log(hpts, tp, &tv, slots_to_run, i, from_callout);
1327 			}
1328 
1329 			if (tp->t_fb_ptr != NULL) {
1330 				kern_prefetch(tp->t_fb_ptr, &did_prefetch);
1331 				did_prefetch = 1;
1332 			}
1333 			if ((inp->inp_flags2 & INP_SUPPORTS_MBUFQ) &&
1334 			    !STAILQ_EMPTY(&tp->t_inqueue)) {
1335 				error = (*tp->t_fb->tfb_do_queued_segments)(tp, 0);
1336 				if (error) {
1337 					/* The input killed the connection */
1338 					goto skip_pacing;
1339 				}
1340 			}
1341 			inp->inp_hpts_calls = 1;
1342 			error = tcp_output(tp);
1343 			if (error < 0)
1344 				goto skip_pacing;
1345 			inp->inp_hpts_calls = 0;
1346 			if (ninp) {
1347 				/*
1348 				 * If we have a nxt inp, see if we can
1349 				 * prefetch it. Note this may seem
1350 				 * "risky" since we have no locks (other
1351 				 * than the previous inp) and there no
1352 				 * assurance that ninp was not pulled while
1353 				 * we were processing inp and freed. If this
1354 				 * occurred it could mean that either:
1355 				 *
1356 				 * a) Its NULL (which is fine we won't go
1357 				 * here) <or> b) Its valid (which is cool we
1358 				 * will prefetch it) <or> c) The inp got
1359 				 * freed back to the slab which was
1360 				 * reallocated. Then the piece of memory was
1361 				 * re-used and something else (not an
1362 				 * address) is in inp_ppcb. If that occurs
1363 				 * we don't crash, but take a TLB shootdown
1364 				 * performance hit (same as if it was NULL
1365 				 * and we tried to pre-fetch it).
1366 				 *
1367 				 * Considering that the likelyhood of <c> is
1368 				 * quite rare we will take a risk on doing
1369 				 * this. If performance drops after testing
1370 				 * we can always take this out. NB: the
1371 				 * kern_prefetch on amd64 actually has
1372 				 * protection against a bad address now via
1373 				 * the DMAP_() tests. This will prevent the
1374 				 * TLB hit, and instead if <c> occurs just
1375 				 * cause us to load cache with a useless
1376 				 * address (to us).
1377 				 *
1378 				 * XXXGL: with tcpcb == inpcb, I'm unsure this
1379 				 * prefetch is still correct and useful.
1380 				 */
1381 				kern_prefetch(ninp, &prefetch_tp);
1382 				prefetch_tp = 1;
1383 			}
1384 			INP_WUNLOCK(inp);
1385 		skip_pacing:
1386 			CURVNET_RESTORE();
1387 		}
1388 		if (seen_endpoint) {
1389 			/*
1390 			 * We now have a accurate distance between
1391 			 * slot_pos_of_endpoint <-> orig_exit_slot
1392 			 * to tell us how late we were, orig_exit_slot
1393 			 * is where we calculated the end of our cycle to
1394 			 * be when we first entered.
1395 			 */
1396 			completed_measure = 1;
1397 		}
1398 		HPTS_LOCK(hpts);
1399 		hpts->p_runningslot++;
1400 		if (hpts->p_runningslot >= NUM_OF_HPTSI_SLOTS) {
1401 			hpts->p_runningslot = 0;
1402 		}
1403 	}
1404 no_one:
1405 	HPTS_MTX_ASSERT(hpts);
1406 	hpts->p_delayed_by = 0;
1407 	/*
1408 	 * Check to see if we took an excess amount of time and need to run
1409 	 * more ticks (if we did not hit eno-bufs).
1410 	 */
1411 	hpts->p_prev_slot = hpts->p_cur_slot;
1412 	hpts->p_lasttick = hpts->p_curtick;
1413 	if ((from_callout == 0) || (loop_cnt > max_pacer_loops)) {
1414 		/*
1415 		 * Something is serious slow we have
1416 		 * looped through processing the wheel
1417 		 * and by the time we cleared the
1418 		 * needs to run max_pacer_loops time
1419 		 * we still needed to run. That means
1420 		 * the system is hopelessly behind and
1421 		 * can never catch up :(
1422 		 *
1423 		 * We will just lie to this thread
1424 		 * and let it thing p_curtick is
1425 		 * correct. When it next awakens
1426 		 * it will find itself further behind.
1427 		 */
1428 		if (from_callout)
1429 			counter_u64_add(hpts_hopelessly_behind, 1);
1430 		goto no_run;
1431 	}
1432 	hpts->p_curtick = tcp_gethptstick(&tv);
1433 	hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick);
1434 	if (seen_endpoint == 0) {
1435 		/* We saw no endpoint but we may be looping */
1436 		orig_exit_slot = hpts->p_cur_slot;
1437 	}
1438 	if ((wrap_loop_cnt < 2) &&
1439 	    (hpts->p_lasttick != hpts->p_curtick)) {
1440 		counter_u64_add(hpts_loops, 1);
1441 		loop_cnt++;
1442 		goto again;
1443 	}
1444 no_run:
1445 	cts_last_ran[hpts->p_num] = tcp_tv_to_usectick(&tv);
1446 	/*
1447 	 * Set flag to tell that we are done for
1448 	 * any slot input that happens during
1449 	 * input.
1450 	 */
1451 	hpts->p_wheel_complete = 1;
1452 	/*
1453 	 * Now did we spend too long running input and need to run more ticks?
1454 	 * Note that if wrap_loop_cnt < 2 then we should have the conditions
1455 	 * in the KASSERT's true. But if the wheel is behind i.e. wrap_loop_cnt
1456 	 * is greater than 2, then the condtion most likely are *not* true.
1457 	 * Also if we are called not from the callout, we don't run the wheel
1458 	 * multiple times so the slots may not align either.
1459 	 */
1460 	KASSERT(((hpts->p_prev_slot == hpts->p_cur_slot) ||
1461 		 (wrap_loop_cnt >= 2) || (from_callout == 0)),
1462 		("H:%p p_prev_slot:%u not equal to p_cur_slot:%u", hpts,
1463 		 hpts->p_prev_slot, hpts->p_cur_slot));
1464 	KASSERT(((hpts->p_lasttick == hpts->p_curtick)
1465 		 || (wrap_loop_cnt >= 2) || (from_callout == 0)),
1466 		("H:%p p_lasttick:%u not equal to p_curtick:%u", hpts,
1467 		 hpts->p_lasttick, hpts->p_curtick));
1468 	if (from_callout && (hpts->p_lasttick != hpts->p_curtick)) {
1469 		hpts->p_curtick = tcp_gethptstick(&tv);
1470 		counter_u64_add(hpts_loops, 1);
1471 		hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick);
1472 		goto again;
1473 	}
1474 
1475 	if (from_callout){
1476 		tcp_hpts_set_max_sleep(hpts, wrap_loop_cnt);
1477 	}
1478 	if (seen_endpoint)
1479 		return(hpts_slots_diff(slot_pos_of_endpoint, orig_exit_slot));
1480 	else
1481 		return (0);
1482 }
1483 
1484 void
1485 __tcp_set_hpts(struct inpcb *inp, int32_t line)
1486 {
1487 	struct tcp_hpts_entry *hpts;
1488 	int failed;
1489 
1490 	INP_WLOCK_ASSERT(inp);
1491 	hpts = tcp_hpts_lock(inp);
1492 	if ((inp->inp_in_hpts == 0) &&
1493 	    (inp->inp_hpts_cpu_set == 0)) {
1494 		inp->inp_hpts_cpu = hpts_cpuid(inp, &failed);
1495 		if (failed == 0)
1496 			inp->inp_hpts_cpu_set = 1;
1497 	}
1498 	mtx_unlock(&hpts->p_mtx);
1499 }
1500 
1501 static void
1502 __tcp_run_hpts(struct tcp_hpts_entry *hpts)
1503 {
1504 	int ticks_ran;
1505 
1506 	if (hpts->p_hpts_active) {
1507 		/* Already active */
1508 		return;
1509 	}
1510 	if (mtx_trylock(&hpts->p_mtx) == 0) {
1511 		/* Someone else got the lock */
1512 		return;
1513 	}
1514 	if (hpts->p_hpts_active)
1515 		goto out_with_mtx;
1516 	hpts->syscall_cnt++;
1517 	counter_u64_add(hpts_direct_call, 1);
1518 	hpts->p_hpts_active = 1;
1519 	ticks_ran = tcp_hptsi(hpts, 0);
1520 	/* We may want to adjust the sleep values here */
1521 	if (hpts->p_on_queue_cnt >= conn_cnt_thresh) {
1522 		if (ticks_ran > ticks_indicate_less_sleep) {
1523 			struct timeval tv;
1524 			sbintime_t sb;
1525 
1526 			hpts->p_mysleep.tv_usec /= 2;
1527 			if (hpts->p_mysleep.tv_usec < dynamic_min_sleep)
1528 				hpts->p_mysleep.tv_usec = dynamic_min_sleep;
1529 			/* Reschedule with new to value */
1530 			tcp_hpts_set_max_sleep(hpts, 0);
1531 			tv.tv_usec = hpts->p_hpts_sleep_time * HPTS_TICKS_PER_SLOT;
1532 			/* Validate its in the right ranges */
1533 			if (tv.tv_usec < hpts->p_mysleep.tv_usec) {
1534 				hpts->overidden_sleep = tv.tv_usec;
1535 				tv.tv_usec = hpts->p_mysleep.tv_usec;
1536 			} else if (tv.tv_usec > dynamic_max_sleep) {
1537 				/* Lets not let sleep get above this value */
1538 				hpts->overidden_sleep = tv.tv_usec;
1539 				tv.tv_usec = dynamic_max_sleep;
1540 			}
1541 			/*
1542 			 * In this mode the timer is a backstop to
1543 			 * all the userret/lro_flushes so we use
1544 			 * the dynamic value and set the on_min_sleep
1545 			 * flag so we will not be awoken.
1546 			 */
1547 			sb = tvtosbt(tv);
1548 			/* Store off to make visible the actual sleep time */
1549 			hpts->sleeping = tv.tv_usec;
1550 			callout_reset_sbt_on(&hpts->co, sb, 0,
1551 					     hpts_timeout_swi, hpts, hpts->p_cpu,
1552 					     (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision)));
1553 		} else if (ticks_ran < ticks_indicate_more_sleep) {
1554 			/* For the further sleep, don't reschedule  hpts */
1555 			hpts->p_mysleep.tv_usec *= 2;
1556 			if (hpts->p_mysleep.tv_usec > dynamic_max_sleep)
1557 				hpts->p_mysleep.tv_usec = dynamic_max_sleep;
1558 		}
1559 		hpts->p_on_min_sleep = 1;
1560 	}
1561 	hpts->p_hpts_active = 0;
1562 out_with_mtx:
1563 	HPTS_MTX_ASSERT(hpts);
1564 	mtx_unlock(&hpts->p_mtx);
1565 }
1566 
1567 static struct tcp_hpts_entry *
1568 tcp_choose_hpts_to_run(void)
1569 {
1570 	int i, oldest_idx, start, end;
1571 	uint32_t cts, time_since_ran, calc;
1572 
1573 	cts = tcp_get_usecs(NULL);
1574 	time_since_ran = 0;
1575 	/* Default is all one group */
1576 	start = 0;
1577 	end = tcp_pace.rp_num_hptss;
1578 	/*
1579 	 * If we have more than one L3 group figure out which one
1580 	 * this CPU is in.
1581 	 */
1582 	if (tcp_pace.grp_cnt > 1) {
1583 		for (i = 0; i < tcp_pace.grp_cnt; i++) {
1584 			if (CPU_ISSET(curcpu, &tcp_pace.grps[i]->cg_mask)) {
1585 				start = tcp_pace.grps[i]->cg_first;
1586 				end = (tcp_pace.grps[i]->cg_last + 1);
1587 				break;
1588 			}
1589 		}
1590 	}
1591 	oldest_idx = -1;
1592 	for (i = start; i < end; i++) {
1593 		if (TSTMP_GT(cts, cts_last_ran[i]))
1594 			calc = cts - cts_last_ran[i];
1595 		else
1596 			calc = 0;
1597 		if (calc > time_since_ran) {
1598 			oldest_idx = i;
1599 			time_since_ran = calc;
1600 		}
1601 	}
1602 	if (oldest_idx >= 0)
1603 		return(tcp_pace.rp_ent[oldest_idx]);
1604 	else
1605 		return(tcp_pace.rp_ent[(curcpu % tcp_pace.rp_num_hptss)]);
1606 }
1607 
1608 
1609 void
1610 tcp_run_hpts(void)
1611 {
1612 	static struct tcp_hpts_entry *hpts;
1613 	struct epoch_tracker et;
1614 
1615 	NET_EPOCH_ENTER(et);
1616 	hpts = tcp_choose_hpts_to_run();
1617 	__tcp_run_hpts(hpts);
1618 	NET_EPOCH_EXIT(et);
1619 }
1620 
1621 
1622 static void
1623 tcp_hpts_thread(void *ctx)
1624 {
1625 	struct tcp_hpts_entry *hpts;
1626 	struct epoch_tracker et;
1627 	struct timeval tv;
1628 	sbintime_t sb;
1629 	int ticks_ran;
1630 
1631 	hpts = (struct tcp_hpts_entry *)ctx;
1632 	mtx_lock(&hpts->p_mtx);
1633 	if (hpts->p_direct_wake) {
1634 		/* Signaled by input or output with low occupancy count. */
1635 		callout_stop(&hpts->co);
1636 		counter_u64_add(hpts_direct_awakening, 1);
1637 	} else {
1638 		/* Timed out, the normal case. */
1639 		counter_u64_add(hpts_wake_timeout, 1);
1640 		if (callout_pending(&hpts->co) ||
1641 		    !callout_active(&hpts->co)) {
1642 			mtx_unlock(&hpts->p_mtx);
1643 			return;
1644 		}
1645 	}
1646 	callout_deactivate(&hpts->co);
1647 	hpts->p_hpts_wake_scheduled = 0;
1648 	NET_EPOCH_ENTER(et);
1649 	if (hpts->p_hpts_active) {
1650 		/*
1651 		 * We are active already. This means that a syscall
1652 		 * trap or LRO is running in behalf of hpts. In that case
1653 		 * we need to double our timeout since there seems to be
1654 		 * enough activity in the system that we don't need to
1655 		 * run as often (if we were not directly woken).
1656 		 */
1657 		if (hpts->p_direct_wake == 0) {
1658 			counter_u64_add(hpts_back_tosleep, 1);
1659 			if (hpts->p_on_queue_cnt >= conn_cnt_thresh) {
1660 				hpts->p_mysleep.tv_usec *= 2;
1661 				if (hpts->p_mysleep.tv_usec > dynamic_max_sleep)
1662 					hpts->p_mysleep.tv_usec = dynamic_max_sleep;
1663 				tv.tv_usec = hpts->p_mysleep.tv_usec;
1664 				hpts->p_on_min_sleep = 1;
1665 			} else {
1666 				/*
1667 				 * Here we have low count on the wheel, but
1668 				 * somehow we still collided with one of the
1669 				 * connections. Lets go back to sleep for a
1670 				 * min sleep time, but clear the flag so we
1671 				 * can be awoken by insert.
1672 				 */
1673 				hpts->p_on_min_sleep = 0;
1674 				tv.tv_usec = tcp_min_hptsi_time;
1675 			}
1676 		} else {
1677 			/*
1678 			 * Directly woken most likely to reset the
1679 			 * callout time.
1680 			 */
1681 			tv.tv_sec = 0;
1682 			tv.tv_usec = hpts->p_mysleep.tv_usec;
1683 		}
1684 		goto back_to_sleep;
1685 	}
1686 	hpts->sleeping = 0;
1687 	hpts->p_hpts_active = 1;
1688 	ticks_ran = tcp_hptsi(hpts, 1);
1689 	tv.tv_sec = 0;
1690 	tv.tv_usec = hpts->p_hpts_sleep_time * HPTS_TICKS_PER_SLOT;
1691 	if (hpts->p_on_queue_cnt >= conn_cnt_thresh) {
1692 		if(hpts->p_direct_wake == 0) {
1693 			/*
1694 			 * Only adjust sleep time if we were
1695 			 * called from the callout i.e. direct_wake == 0.
1696 			 */
1697 			if (ticks_ran < ticks_indicate_more_sleep) {
1698 				hpts->p_mysleep.tv_usec *= 2;
1699 				if (hpts->p_mysleep.tv_usec > dynamic_max_sleep)
1700 					hpts->p_mysleep.tv_usec = dynamic_max_sleep;
1701 			} else if (ticks_ran > ticks_indicate_less_sleep) {
1702 				hpts->p_mysleep.tv_usec /= 2;
1703 				if (hpts->p_mysleep.tv_usec < dynamic_min_sleep)
1704 					hpts->p_mysleep.tv_usec = dynamic_min_sleep;
1705 			}
1706 		}
1707 		if (tv.tv_usec < hpts->p_mysleep.tv_usec) {
1708 			hpts->overidden_sleep = tv.tv_usec;
1709 			tv.tv_usec = hpts->p_mysleep.tv_usec;
1710 		} else if (tv.tv_usec > dynamic_max_sleep) {
1711 			/* Lets not let sleep get above this value */
1712 			hpts->overidden_sleep = tv.tv_usec;
1713 			tv.tv_usec = dynamic_max_sleep;
1714 		}
1715 		/*
1716 		 * In this mode the timer is a backstop to
1717 		 * all the userret/lro_flushes so we use
1718 		 * the dynamic value and set the on_min_sleep
1719 		 * flag so we will not be awoken.
1720 		 */
1721 		hpts->p_on_min_sleep = 1;
1722 	} else if (hpts->p_on_queue_cnt == 0)  {
1723 		/*
1724 		 * No one on the wheel, please wake us up
1725 		 * if you insert on the wheel.
1726 		 */
1727 		hpts->p_on_min_sleep = 0;
1728 		hpts->overidden_sleep = 0;
1729 	} else {
1730 		/*
1731 		 * We hit here when we have a low number of
1732 		 * clients on the wheel (our else clause).
1733 		 * We may need to go on min sleep, if we set
1734 		 * the flag we will not be awoken if someone
1735 		 * is inserted ahead of us. Clearing the flag
1736 		 * means we can be awoken. This is "old mode"
1737 		 * where the timer is what runs hpts mainly.
1738 		 */
1739 		if (tv.tv_usec < tcp_min_hptsi_time) {
1740 			/*
1741 			 * Yes on min sleep, which means
1742 			 * we cannot be awoken.
1743 			 */
1744 			hpts->overidden_sleep = tv.tv_usec;
1745 			tv.tv_usec = tcp_min_hptsi_time;
1746 			hpts->p_on_min_sleep = 1;
1747 		} else {
1748 			/* Clear the min sleep flag */
1749 			hpts->overidden_sleep = 0;
1750 			hpts->p_on_min_sleep = 0;
1751 		}
1752 	}
1753 	HPTS_MTX_ASSERT(hpts);
1754 	hpts->p_hpts_active = 0;
1755 back_to_sleep:
1756 	hpts->p_direct_wake = 0;
1757 	sb = tvtosbt(tv);
1758 	/* Store off to make visible the actual sleep time */
1759 	hpts->sleeping = tv.tv_usec;
1760 	callout_reset_sbt_on(&hpts->co, sb, 0,
1761 			     hpts_timeout_swi, hpts, hpts->p_cpu,
1762 			     (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision)));
1763 	NET_EPOCH_EXIT(et);
1764 	mtx_unlock(&hpts->p_mtx);
1765 }
1766 
1767 #undef	timersub
1768 
1769 static int32_t
1770 hpts_count_level(struct cpu_group *cg)
1771 {
1772 	int32_t count_l3, i;
1773 
1774 	count_l3 = 0;
1775 	if (cg->cg_level == CG_SHARE_L3)
1776 		count_l3++;
1777 	/* Walk all the children looking for L3 */
1778 	for (i = 0; i < cg->cg_children; i++) {
1779 		count_l3 += hpts_count_level(&cg->cg_child[i]);
1780 	}
1781 	return (count_l3);
1782 }
1783 
1784 static void
1785 hpts_gather_grps(struct cpu_group **grps, int32_t *at, int32_t max, struct cpu_group *cg)
1786 {
1787 	int32_t idx, i;
1788 
1789 	idx = *at;
1790 	if (cg->cg_level == CG_SHARE_L3) {
1791 		grps[idx] = cg;
1792 		idx++;
1793 		if (idx == max) {
1794 			*at = idx;
1795 			return;
1796 		}
1797 	}
1798 	*at = idx;
1799 	/* Walk all the children looking for L3 */
1800 	for (i = 0; i < cg->cg_children; i++) {
1801 		hpts_gather_grps(grps, at, max, &cg->cg_child[i]);
1802 	}
1803 }
1804 
1805 static void
1806 tcp_init_hptsi(void *st)
1807 {
1808 	struct cpu_group *cpu_top;
1809 	int32_t error __diagused;
1810 	int32_t i, j, bound = 0, created = 0;
1811 	size_t sz, asz;
1812 	struct timeval tv;
1813 	sbintime_t sb;
1814 	struct tcp_hpts_entry *hpts;
1815 	struct pcpu *pc;
1816 	char unit[16];
1817 	uint32_t ncpus = mp_ncpus ? mp_ncpus : MAXCPU;
1818 	int count, domain;
1819 
1820 #ifdef SMP
1821 	cpu_top = smp_topo();
1822 #else
1823 	cpu_top = NULL;
1824 #endif
1825 	tcp_pace.rp_num_hptss = ncpus;
1826 	hpts_hopelessly_behind = counter_u64_alloc(M_WAITOK);
1827 	hpts_loops = counter_u64_alloc(M_WAITOK);
1828 	back_tosleep = counter_u64_alloc(M_WAITOK);
1829 	combined_wheel_wrap = counter_u64_alloc(M_WAITOK);
1830 	wheel_wrap = counter_u64_alloc(M_WAITOK);
1831 	hpts_wake_timeout = counter_u64_alloc(M_WAITOK);
1832 	hpts_direct_awakening = counter_u64_alloc(M_WAITOK);
1833 	hpts_back_tosleep = counter_u64_alloc(M_WAITOK);
1834 	hpts_direct_call = counter_u64_alloc(M_WAITOK);
1835 	cpu_uses_flowid = counter_u64_alloc(M_WAITOK);
1836 	cpu_uses_random = counter_u64_alloc(M_WAITOK);
1837 
1838 	sz = (tcp_pace.rp_num_hptss * sizeof(struct tcp_hpts_entry *));
1839 	tcp_pace.rp_ent = malloc(sz, M_TCPHPTS, M_WAITOK | M_ZERO);
1840 	sz = (sizeof(uint32_t) * tcp_pace.rp_num_hptss);
1841 	cts_last_ran = malloc(sz, M_TCPHPTS, M_WAITOK);
1842 	tcp_pace.grp_cnt = 0;
1843 	if (cpu_top == NULL) {
1844 		tcp_pace.grp_cnt = 1;
1845 	} else {
1846 		/* Find out how many cache level 3 domains we have */
1847 		count = 0;
1848 		tcp_pace.grp_cnt = hpts_count_level(cpu_top);
1849 		if (tcp_pace.grp_cnt == 0) {
1850 			tcp_pace.grp_cnt = 1;
1851 		}
1852 		sz = (tcp_pace.grp_cnt * sizeof(struct cpu_group *));
1853 		tcp_pace.grps = malloc(sz, M_TCPHPTS, M_WAITOK);
1854 		/* Now populate the groups */
1855 		if (tcp_pace.grp_cnt == 1) {
1856 			/*
1857 			 * All we need is the top level all cpu's are in
1858 			 * the same cache so when we use grp[0]->cg_mask
1859 			 * with the cg_first <-> cg_last it will include
1860 			 * all cpu's in it. The level here is probably
1861 			 * zero which is ok.
1862 			 */
1863 			tcp_pace.grps[0] = cpu_top;
1864 		} else {
1865 			/*
1866 			 * Here we must find all the level three cache domains
1867 			 * and setup our pointers to them.
1868 			 */
1869 			count = 0;
1870 			hpts_gather_grps(tcp_pace.grps, &count, tcp_pace.grp_cnt, cpu_top);
1871 		}
1872 	}
1873 	asz = sizeof(struct hptsh) * NUM_OF_HPTSI_SLOTS;
1874 	for (i = 0; i < tcp_pace.rp_num_hptss; i++) {
1875 		tcp_pace.rp_ent[i] = malloc(sizeof(struct tcp_hpts_entry),
1876 		    M_TCPHPTS, M_WAITOK | M_ZERO);
1877 		tcp_pace.rp_ent[i]->p_hptss = malloc(asz, M_TCPHPTS, M_WAITOK);
1878 		hpts = tcp_pace.rp_ent[i];
1879 		/*
1880 		 * Init all the hpts structures that are not specifically
1881 		 * zero'd by the allocations. Also lets attach them to the
1882 		 * appropriate sysctl block as well.
1883 		 */
1884 		mtx_init(&hpts->p_mtx, "tcp_hpts_lck",
1885 		    "hpts", MTX_DEF | MTX_DUPOK);
1886 		for (j = 0; j < NUM_OF_HPTSI_SLOTS; j++) {
1887 			TAILQ_INIT(&hpts->p_hptss[j].head);
1888 			hpts->p_hptss[j].count = 0;
1889 			hpts->p_hptss[j].gencnt = 0;
1890 		}
1891 		sysctl_ctx_init(&hpts->hpts_ctx);
1892 		sprintf(unit, "%d", i);
1893 		hpts->hpts_root = SYSCTL_ADD_NODE(&hpts->hpts_ctx,
1894 		    SYSCTL_STATIC_CHILDREN(_net_inet_tcp_hpts),
1895 		    OID_AUTO,
1896 		    unit,
1897 		    CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
1898 		    "");
1899 		SYSCTL_ADD_INT(&hpts->hpts_ctx,
1900 		    SYSCTL_CHILDREN(hpts->hpts_root),
1901 		    OID_AUTO, "out_qcnt", CTLFLAG_RD,
1902 		    &hpts->p_on_queue_cnt, 0,
1903 		    "Count TCB's awaiting output processing");
1904 		SYSCTL_ADD_U16(&hpts->hpts_ctx,
1905 		    SYSCTL_CHILDREN(hpts->hpts_root),
1906 		    OID_AUTO, "active", CTLFLAG_RD,
1907 		    &hpts->p_hpts_active, 0,
1908 		    "Is the hpts active");
1909 		SYSCTL_ADD_UINT(&hpts->hpts_ctx,
1910 		    SYSCTL_CHILDREN(hpts->hpts_root),
1911 		    OID_AUTO, "curslot", CTLFLAG_RD,
1912 		    &hpts->p_cur_slot, 0,
1913 		    "What the current running pacers goal");
1914 		SYSCTL_ADD_UINT(&hpts->hpts_ctx,
1915 		    SYSCTL_CHILDREN(hpts->hpts_root),
1916 		    OID_AUTO, "runtick", CTLFLAG_RD,
1917 		    &hpts->p_runningslot, 0,
1918 		    "What the running pacers current slot is");
1919 		SYSCTL_ADD_UINT(&hpts->hpts_ctx,
1920 		    SYSCTL_CHILDREN(hpts->hpts_root),
1921 		    OID_AUTO, "curtick", CTLFLAG_RD,
1922 		    &hpts->p_curtick, 0,
1923 		    "What the running pacers last tick mapped to the wheel was");
1924 		SYSCTL_ADD_UINT(&hpts->hpts_ctx,
1925 		    SYSCTL_CHILDREN(hpts->hpts_root),
1926 		    OID_AUTO, "lastran", CTLFLAG_RD,
1927 		    &cts_last_ran[i], 0,
1928 		    "The last usec tick that this hpts ran");
1929 		SYSCTL_ADD_LONG(&hpts->hpts_ctx,
1930 		    SYSCTL_CHILDREN(hpts->hpts_root),
1931 		    OID_AUTO, "cur_min_sleep", CTLFLAG_RD,
1932 		    &hpts->p_mysleep.tv_usec,
1933 		    "What the running pacers is using for p_mysleep.tv_usec");
1934 		SYSCTL_ADD_U64(&hpts->hpts_ctx,
1935 		    SYSCTL_CHILDREN(hpts->hpts_root),
1936 		    OID_AUTO, "now_sleeping", CTLFLAG_RD,
1937 		    &hpts->sleeping, 0,
1938 		    "What the running pacers is actually sleeping for");
1939 		SYSCTL_ADD_U64(&hpts->hpts_ctx,
1940 		    SYSCTL_CHILDREN(hpts->hpts_root),
1941 		    OID_AUTO, "syscall_cnt", CTLFLAG_RD,
1942 		    &hpts->syscall_cnt, 0,
1943 		    "How many times we had syscalls on this hpts");
1944 
1945 		hpts->p_hpts_sleep_time = hpts_sleep_max;
1946 		hpts->p_num = i;
1947 		hpts->p_curtick = tcp_gethptstick(&tv);
1948 		cts_last_ran[i] = tcp_tv_to_usectick(&tv);
1949 		hpts->p_prev_slot = hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick);
1950 		hpts->p_cpu = 0xffff;
1951 		hpts->p_nxt_slot = hpts_slot(hpts->p_cur_slot, 1);
1952 		callout_init(&hpts->co, 1);
1953 	}
1954 	/* Don't try to bind to NUMA domains if we don't have any */
1955 	if (vm_ndomains == 1 && tcp_bind_threads == 2)
1956 		tcp_bind_threads = 0;
1957 
1958 	/*
1959 	 * Now lets start ithreads to handle the hptss.
1960 	 */
1961 	for (i = 0; i < tcp_pace.rp_num_hptss; i++) {
1962 		hpts = tcp_pace.rp_ent[i];
1963 		hpts->p_cpu = i;
1964 
1965 		error = swi_add(&hpts->ie, "hpts",
1966 		    tcp_hpts_thread, (void *)hpts,
1967 		    SWI_NET, INTR_MPSAFE, &hpts->ie_cookie);
1968 		KASSERT(error == 0,
1969 			("Can't add hpts:%p i:%d err:%d",
1970 			 hpts, i, error));
1971 		created++;
1972 		hpts->p_mysleep.tv_sec = 0;
1973 		hpts->p_mysleep.tv_usec = tcp_min_hptsi_time;
1974 		if (tcp_bind_threads == 1) {
1975 			if (intr_event_bind(hpts->ie, i) == 0)
1976 				bound++;
1977 		} else if (tcp_bind_threads == 2) {
1978 			/* Find the group for this CPU (i) and bind into it */
1979 			for (j = 0; j < tcp_pace.grp_cnt; j++) {
1980 				if (CPU_ISSET(i, &tcp_pace.grps[j]->cg_mask)) {
1981 					if (intr_event_bind_ithread_cpuset(hpts->ie,
1982 						&tcp_pace.grps[j]->cg_mask) == 0) {
1983 						bound++;
1984 						pc = pcpu_find(i);
1985 						domain = pc->pc_domain;
1986 						count = hpts_domains[domain].count;
1987 						hpts_domains[domain].cpu[count] = i;
1988 						hpts_domains[domain].count++;
1989 						break;
1990 					}
1991 				}
1992 			}
1993 		}
1994 		tv.tv_sec = 0;
1995 		tv.tv_usec = hpts->p_hpts_sleep_time * HPTS_TICKS_PER_SLOT;
1996 		hpts->sleeping = tv.tv_usec;
1997 		sb = tvtosbt(tv);
1998 		callout_reset_sbt_on(&hpts->co, sb, 0,
1999 				     hpts_timeout_swi, hpts, hpts->p_cpu,
2000 				     (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision)));
2001 	}
2002 	/*
2003 	 * If we somehow have an empty domain, fall back to choosing
2004 	 * among all htps threads.
2005 	 */
2006 	for (i = 0; i < vm_ndomains; i++) {
2007 		if (hpts_domains[i].count == 0) {
2008 			tcp_bind_threads = 0;
2009 			break;
2010 		}
2011 	}
2012 	printf("TCP Hpts created %d swi interrupt threads and bound %d to %s\n",
2013 	    created, bound,
2014 	    tcp_bind_threads == 2 ? "NUMA domains" : "cpus");
2015 #ifdef INVARIANTS
2016 	printf("HPTS is in INVARIANT mode!!\n");
2017 #endif
2018 }
2019 
2020 SYSINIT(tcphptsi, SI_SUB_SOFTINTR, SI_ORDER_ANY, tcp_init_hptsi, NULL);
2021 MODULE_VERSION(tcphpts, 1);
2022