1 /*- 2 * Copyright (c) 2016-2018 Netflix, Inc. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 1. Redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer. 9 * 2. Redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution. 12 * 13 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 14 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 16 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 17 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 18 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 19 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 20 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 21 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 22 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 23 * SUCH DAMAGE. 24 * 25 */ 26 #include <sys/cdefs.h> 27 __FBSDID("$FreeBSD$"); 28 29 #include "opt_inet.h" 30 #include "opt_inet6.h" 31 #include "opt_rss.h" 32 33 /** 34 * Some notes about usage. 35 * 36 * The tcp_hpts system is designed to provide a high precision timer 37 * system for tcp. Its main purpose is to provide a mechanism for 38 * pacing packets out onto the wire. It can be used in two ways 39 * by a given TCP stack (and those two methods can be used simultaneously). 40 * 41 * First, and probably the main thing its used by Rack and BBR, it can 42 * be used to call tcp_output() of a transport stack at some time in the future. 43 * The normal way this is done is that tcp_output() of the stack schedules 44 * itself to be called again by calling tcp_hpts_insert(tcpcb, slot). The 45 * slot is the time from now that the stack wants to be called but it 46 * must be converted to tcp_hpts's notion of slot. This is done with 47 * one of the macros HPTS_MS_TO_SLOTS or HPTS_USEC_TO_SLOTS. So a typical 48 * call from the tcp_output() routine might look like: 49 * 50 * tcp_hpts_insert(tp, HPTS_USEC_TO_SLOTS(550)); 51 * 52 * The above would schedule tcp_ouput() to be called in 550 useconds. 53 * Note that if using this mechanism the stack will want to add near 54 * its top a check to prevent unwanted calls (from user land or the 55 * arrival of incoming ack's). So it would add something like: 56 * 57 * if (tcp_in_hpts(inp)) 58 * return; 59 * 60 * to prevent output processing until the time alotted has gone by. 61 * Of course this is a bare bones example and the stack will probably 62 * have more consideration then just the above. 63 * 64 * In order to run input queued segments from the HPTS context the 65 * tcp stack must define an input function for 66 * tfb_do_queued_segments(). This function understands 67 * how to dequeue a array of packets that were input and 68 * knows how to call the correct processing routine. 69 * 70 * Locking in this is important as well so most likely the 71 * stack will need to define the tfb_do_segment_nounlock() 72 * splitting tfb_do_segment() into two parts. The main processing 73 * part that does not unlock the INP and returns a value of 1 or 0. 74 * It returns 0 if all is well and the lock was not released. It 75 * returns 1 if we had to destroy the TCB (a reset received etc). 76 * The remains of tfb_do_segment() then become just a simple call 77 * to the tfb_do_segment_nounlock() function and check the return 78 * code and possibly unlock. 79 * 80 * The stack must also set the flag on the INP that it supports this 81 * feature i.e. INP_SUPPORTS_MBUFQ. The LRO code recoginizes 82 * this flag as well and will queue packets when it is set. 83 * There are other flags as well INP_MBUF_QUEUE_READY and 84 * INP_DONT_SACK_QUEUE. The first flag tells the LRO code 85 * that we are in the pacer for output so there is no 86 * need to wake up the hpts system to get immediate 87 * input. The second tells the LRO code that its okay 88 * if a SACK arrives you can still defer input and let 89 * the current hpts timer run (this is usually set when 90 * a rack timer is up so we know SACK's are happening 91 * on the connection already and don't want to wakeup yet). 92 * 93 * There is a common functions within the rack_bbr_common code 94 * version i.e. ctf_do_queued_segments(). This function 95 * knows how to take the input queue of packets from tp->t_inqueue 96 * and process them digging out all the arguments, calling any bpf tap and 97 * calling into tfb_do_segment_nounlock(). The common 98 * function (ctf_do_queued_segments()) requires that 99 * you have defined the tfb_do_segment_nounlock() as 100 * described above. 101 */ 102 103 #include <sys/param.h> 104 #include <sys/bus.h> 105 #include <sys/interrupt.h> 106 #include <sys/module.h> 107 #include <sys/kernel.h> 108 #include <sys/hhook.h> 109 #include <sys/malloc.h> 110 #include <sys/mbuf.h> 111 #include <sys/proc.h> /* for proc0 declaration */ 112 #include <sys/socket.h> 113 #include <sys/socketvar.h> 114 #include <sys/sysctl.h> 115 #include <sys/systm.h> 116 #include <sys/refcount.h> 117 #include <sys/sched.h> 118 #include <sys/queue.h> 119 #include <sys/smp.h> 120 #include <sys/counter.h> 121 #include <sys/time.h> 122 #include <sys/kthread.h> 123 #include <sys/kern_prefetch.h> 124 125 #include <vm/uma.h> 126 #include <vm/vm.h> 127 128 #include <net/route.h> 129 #include <net/vnet.h> 130 131 #ifdef RSS 132 #include <net/netisr.h> 133 #include <net/rss_config.h> 134 #endif 135 136 #define TCPSTATES /* for logging */ 137 138 #include <netinet/in.h> 139 #include <netinet/in_kdtrace.h> 140 #include <netinet/in_pcb.h> 141 #include <netinet/ip.h> 142 #include <netinet/ip_icmp.h> /* required for icmp_var.h */ 143 #include <netinet/icmp_var.h> /* for ICMP_BANDLIM */ 144 #include <netinet/ip_var.h> 145 #include <netinet/ip6.h> 146 #include <netinet6/in6_pcb.h> 147 #include <netinet6/ip6_var.h> 148 #include <netinet/tcp.h> 149 #include <netinet/tcp_fsm.h> 150 #include <netinet/tcp_seq.h> 151 #include <netinet/tcp_timer.h> 152 #include <netinet/tcp_var.h> 153 #include <netinet/tcpip.h> 154 #include <netinet/cc/cc.h> 155 #include <netinet/tcp_hpts.h> 156 #include <netinet/tcp_log_buf.h> 157 158 #ifdef tcp_offload 159 #include <netinet/tcp_offload.h> 160 #endif 161 162 /* 163 * The hpts uses a 102400 wheel. The wheel 164 * defines the time in 10 usec increments (102400 x 10). 165 * This gives a range of 10usec - 1024ms to place 166 * an entry within. If the user requests more than 167 * 1.024 second, a remaineder is attached and the hpts 168 * when seeing the remainder will re-insert the 169 * inpcb forward in time from where it is until 170 * the remainder is zero. 171 */ 172 173 #define NUM_OF_HPTSI_SLOTS 102400 174 175 /* Each hpts has its own p_mtx which is used for locking */ 176 #define HPTS_MTX_ASSERT(hpts) mtx_assert(&(hpts)->p_mtx, MA_OWNED) 177 #define HPTS_LOCK(hpts) mtx_lock(&(hpts)->p_mtx) 178 #define HPTS_UNLOCK(hpts) mtx_unlock(&(hpts)->p_mtx) 179 struct tcp_hpts_entry { 180 /* Cache line 0x00 */ 181 struct mtx p_mtx; /* Mutex for hpts */ 182 struct timeval p_mysleep; /* Our min sleep time */ 183 uint64_t syscall_cnt; 184 uint64_t sleeping; /* What the actual sleep was (if sleeping) */ 185 uint16_t p_hpts_active; /* Flag that says hpts is awake */ 186 uint8_t p_wheel_complete; /* have we completed the wheel arc walk? */ 187 uint32_t p_curtick; /* Tick in 10 us the hpts is going to */ 188 uint32_t p_runningslot; /* Current tick we are at if we are running */ 189 uint32_t p_prev_slot; /* Previous slot we were on */ 190 uint32_t p_cur_slot; /* Current slot in wheel hpts is draining */ 191 uint32_t p_nxt_slot; /* The next slot outside the current range of 192 * slots that the hpts is running on. */ 193 int32_t p_on_queue_cnt; /* Count on queue in this hpts */ 194 uint32_t p_lasttick; /* Last tick before the current one */ 195 uint8_t p_direct_wake :1, /* boolean */ 196 p_on_min_sleep:1, /* boolean */ 197 p_hpts_wake_scheduled:1, /* boolean */ 198 p_avail:5; 199 uint8_t p_fill[3]; /* Fill to 32 bits */ 200 /* Cache line 0x40 */ 201 struct hptsh { 202 TAILQ_HEAD(, inpcb) head; 203 uint32_t count; 204 uint32_t gencnt; 205 } *p_hptss; /* Hptsi wheel */ 206 uint32_t p_hpts_sleep_time; /* Current sleep interval having a max 207 * of 255ms */ 208 uint32_t overidden_sleep; /* what was overrided by min-sleep for logging */ 209 uint32_t saved_lasttick; /* for logging */ 210 uint32_t saved_curtick; /* for logging */ 211 uint32_t saved_curslot; /* for logging */ 212 uint32_t saved_prev_slot; /* for logging */ 213 uint32_t p_delayed_by; /* How much were we delayed by */ 214 /* Cache line 0x80 */ 215 struct sysctl_ctx_list hpts_ctx; 216 struct sysctl_oid *hpts_root; 217 struct intr_event *ie; 218 void *ie_cookie; 219 uint16_t p_num; /* The hpts number one per cpu */ 220 uint16_t p_cpu; /* The hpts CPU */ 221 /* There is extra space in here */ 222 /* Cache line 0x100 */ 223 struct callout co __aligned(CACHE_LINE_SIZE); 224 } __aligned(CACHE_LINE_SIZE); 225 226 static struct tcp_hptsi { 227 struct cpu_group **grps; 228 struct tcp_hpts_entry **rp_ent; /* Array of hptss */ 229 uint32_t *cts_last_ran; 230 uint32_t grp_cnt; 231 uint32_t rp_num_hptss; /* Number of hpts threads */ 232 } tcp_pace; 233 234 MALLOC_DEFINE(M_TCPHPTS, "tcp_hpts", "TCP hpts"); 235 #ifdef RSS 236 static int tcp_bind_threads = 1; 237 #else 238 static int tcp_bind_threads = 2; 239 #endif 240 static int tcp_use_irq_cpu = 0; 241 static uint32_t *cts_last_ran; 242 static int hpts_does_tp_logging = 0; 243 244 static int32_t tcp_hptsi(struct tcp_hpts_entry *hpts, int from_callout); 245 static void tcp_hpts_thread(void *ctx); 246 static void tcp_init_hptsi(void *st); 247 248 int32_t tcp_min_hptsi_time = DEFAULT_MIN_SLEEP; 249 static int conn_cnt_thresh = DEFAULT_CONNECTION_THESHOLD; 250 static int32_t dynamic_min_sleep = DYNAMIC_MIN_SLEEP; 251 static int32_t dynamic_max_sleep = DYNAMIC_MAX_SLEEP; 252 253 254 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, hpts, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 255 "TCP Hpts controls"); 256 SYSCTL_NODE(_net_inet_tcp_hpts, OID_AUTO, stats, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 257 "TCP Hpts statistics"); 258 259 #define timersub(tvp, uvp, vvp) \ 260 do { \ 261 (vvp)->tv_sec = (tvp)->tv_sec - (uvp)->tv_sec; \ 262 (vvp)->tv_usec = (tvp)->tv_usec - (uvp)->tv_usec; \ 263 if ((vvp)->tv_usec < 0) { \ 264 (vvp)->tv_sec--; \ 265 (vvp)->tv_usec += 1000000; \ 266 } \ 267 } while (0) 268 269 static int32_t tcp_hpts_precision = 120; 270 271 static struct hpts_domain_info { 272 int count; 273 int cpu[MAXCPU]; 274 } hpts_domains[MAXMEMDOM]; 275 276 enum { 277 IHPTS_NONE = 0, 278 IHPTS_ONQUEUE, 279 IHPTS_MOVING, 280 }; 281 282 counter_u64_t hpts_hopelessly_behind; 283 284 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, hopeless, CTLFLAG_RD, 285 &hpts_hopelessly_behind, 286 "Number of times hpts could not catch up and was behind hopelessly"); 287 288 counter_u64_t hpts_loops; 289 290 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, loops, CTLFLAG_RD, 291 &hpts_loops, "Number of times hpts had to loop to catch up"); 292 293 counter_u64_t back_tosleep; 294 295 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, no_tcbsfound, CTLFLAG_RD, 296 &back_tosleep, "Number of times hpts found no tcbs"); 297 298 counter_u64_t combined_wheel_wrap; 299 300 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, comb_wheel_wrap, CTLFLAG_RD, 301 &combined_wheel_wrap, "Number of times the wheel lagged enough to have an insert see wrap"); 302 303 counter_u64_t wheel_wrap; 304 305 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, wheel_wrap, CTLFLAG_RD, 306 &wheel_wrap, "Number of times the wheel lagged enough to have an insert see wrap"); 307 308 counter_u64_t hpts_direct_call; 309 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, direct_call, CTLFLAG_RD, 310 &hpts_direct_call, "Number of times hpts was called by syscall/trap or other entry"); 311 312 counter_u64_t hpts_wake_timeout; 313 314 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, timeout_wakeup, CTLFLAG_RD, 315 &hpts_wake_timeout, "Number of times hpts threads woke up via the callout expiring"); 316 317 counter_u64_t hpts_direct_awakening; 318 319 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, direct_awakening, CTLFLAG_RD, 320 &hpts_direct_awakening, "Number of times hpts threads woke up via the callout expiring"); 321 322 counter_u64_t hpts_back_tosleep; 323 324 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, back_tosleep, CTLFLAG_RD, 325 &hpts_back_tosleep, "Number of times hpts threads woke up via the callout expiring and went back to sleep no work"); 326 327 counter_u64_t cpu_uses_flowid; 328 counter_u64_t cpu_uses_random; 329 330 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, cpusel_flowid, CTLFLAG_RD, 331 &cpu_uses_flowid, "Number of times when setting cpuid we used the flowid field"); 332 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, cpusel_random, CTLFLAG_RD, 333 &cpu_uses_random, "Number of times when setting cpuid we used the a random value"); 334 335 TUNABLE_INT("net.inet.tcp.bind_hptss", &tcp_bind_threads); 336 TUNABLE_INT("net.inet.tcp.use_irq", &tcp_use_irq_cpu); 337 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, bind_hptss, CTLFLAG_RD, 338 &tcp_bind_threads, 2, 339 "Thread Binding tunable"); 340 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, use_irq, CTLFLAG_RD, 341 &tcp_use_irq_cpu, 0, 342 "Use of irq CPU tunable"); 343 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, precision, CTLFLAG_RW, 344 &tcp_hpts_precision, 120, 345 "Value for PRE() precision of callout"); 346 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, cnt_thresh, CTLFLAG_RW, 347 &conn_cnt_thresh, 0, 348 "How many connections (below) make us use the callout based mechanism"); 349 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, logging, CTLFLAG_RW, 350 &hpts_does_tp_logging, 0, 351 "Do we add to any tp that has logging on pacer logs"); 352 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, dyn_minsleep, CTLFLAG_RW, 353 &dynamic_min_sleep, 250, 354 "What is the dynamic minsleep value?"); 355 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, dyn_maxsleep, CTLFLAG_RW, 356 &dynamic_max_sleep, 5000, 357 "What is the dynamic maxsleep value?"); 358 359 static int32_t max_pacer_loops = 10; 360 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, loopmax, CTLFLAG_RW, 361 &max_pacer_loops, 10, 362 "What is the maximum number of times the pacer will loop trying to catch up"); 363 364 #define HPTS_MAX_SLEEP_ALLOWED (NUM_OF_HPTSI_SLOTS/2) 365 366 static uint32_t hpts_sleep_max = HPTS_MAX_SLEEP_ALLOWED; 367 368 static int 369 sysctl_net_inet_tcp_hpts_max_sleep(SYSCTL_HANDLER_ARGS) 370 { 371 int error; 372 uint32_t new; 373 374 new = hpts_sleep_max; 375 error = sysctl_handle_int(oidp, &new, 0, req); 376 if (error == 0 && req->newptr) { 377 if ((new < (dynamic_min_sleep/HPTS_TICKS_PER_SLOT)) || 378 (new > HPTS_MAX_SLEEP_ALLOWED)) 379 error = EINVAL; 380 else 381 hpts_sleep_max = new; 382 } 383 return (error); 384 } 385 386 static int 387 sysctl_net_inet_tcp_hpts_min_sleep(SYSCTL_HANDLER_ARGS) 388 { 389 int error; 390 uint32_t new; 391 392 new = tcp_min_hptsi_time; 393 error = sysctl_handle_int(oidp, &new, 0, req); 394 if (error == 0 && req->newptr) { 395 if (new < LOWEST_SLEEP_ALLOWED) 396 error = EINVAL; 397 else 398 tcp_min_hptsi_time = new; 399 } 400 return (error); 401 } 402 403 SYSCTL_PROC(_net_inet_tcp_hpts, OID_AUTO, maxsleep, 404 CTLTYPE_UINT | CTLFLAG_RW, 405 &hpts_sleep_max, 0, 406 &sysctl_net_inet_tcp_hpts_max_sleep, "IU", 407 "Maximum time hpts will sleep in slots"); 408 409 SYSCTL_PROC(_net_inet_tcp_hpts, OID_AUTO, minsleep, 410 CTLTYPE_UINT | CTLFLAG_RW, 411 &tcp_min_hptsi_time, 0, 412 &sysctl_net_inet_tcp_hpts_min_sleep, "IU", 413 "The minimum time the hpts must sleep before processing more slots"); 414 415 static int ticks_indicate_more_sleep = TICKS_INDICATE_MORE_SLEEP; 416 static int ticks_indicate_less_sleep = TICKS_INDICATE_LESS_SLEEP; 417 static int tcp_hpts_no_wake_over_thresh = 1; 418 419 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, more_sleep, CTLFLAG_RW, 420 &ticks_indicate_more_sleep, 0, 421 "If we only process this many or less on a timeout, we need longer sleep on the next callout"); 422 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, less_sleep, CTLFLAG_RW, 423 &ticks_indicate_less_sleep, 0, 424 "If we process this many or more on a timeout, we need less sleep on the next callout"); 425 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, nowake_over_thresh, CTLFLAG_RW, 426 &tcp_hpts_no_wake_over_thresh, 0, 427 "When we are over the threshold on the pacer do we prohibit wakeups?"); 428 429 static void 430 tcp_hpts_log(struct tcp_hpts_entry *hpts, struct tcpcb *tp, struct timeval *tv, 431 int slots_to_run, int idx, int from_callout) 432 { 433 union tcp_log_stackspecific log; 434 /* 435 * Unused logs are 436 * 64 bit - delRate, rttProp, bw_inuse 437 * 16 bit - cwnd_gain 438 * 8 bit - bbr_state, bbr_substate, inhpts; 439 */ 440 memset(&log.u_bbr, 0, sizeof(log.u_bbr)); 441 log.u_bbr.flex1 = hpts->p_nxt_slot; 442 log.u_bbr.flex2 = hpts->p_cur_slot; 443 log.u_bbr.flex3 = hpts->p_prev_slot; 444 log.u_bbr.flex4 = idx; 445 log.u_bbr.flex5 = hpts->p_curtick; 446 log.u_bbr.flex6 = hpts->p_on_queue_cnt; 447 log.u_bbr.flex7 = hpts->p_cpu; 448 log.u_bbr.flex8 = (uint8_t)from_callout; 449 log.u_bbr.inflight = slots_to_run; 450 log.u_bbr.applimited = hpts->overidden_sleep; 451 log.u_bbr.delivered = hpts->saved_curtick; 452 log.u_bbr.timeStamp = tcp_tv_to_usectick(tv); 453 log.u_bbr.epoch = hpts->saved_curslot; 454 log.u_bbr.lt_epoch = hpts->saved_prev_slot; 455 log.u_bbr.pkts_out = hpts->p_delayed_by; 456 log.u_bbr.lost = hpts->p_hpts_sleep_time; 457 log.u_bbr.pacing_gain = hpts->p_cpu; 458 log.u_bbr.pkt_epoch = hpts->p_runningslot; 459 log.u_bbr.use_lt_bw = 1; 460 TCP_LOG_EVENTP(tp, NULL, 461 &tptosocket(tp)->so_rcv, 462 &tptosocket(tp)->so_snd, 463 BBR_LOG_HPTSDIAG, 0, 464 0, &log, false, tv); 465 } 466 467 static void 468 tcp_wakehpts(struct tcp_hpts_entry *hpts) 469 { 470 HPTS_MTX_ASSERT(hpts); 471 472 if (tcp_hpts_no_wake_over_thresh && (hpts->p_on_queue_cnt >= conn_cnt_thresh)) { 473 hpts->p_direct_wake = 0; 474 return; 475 } 476 if (hpts->p_hpts_wake_scheduled == 0) { 477 hpts->p_hpts_wake_scheduled = 1; 478 swi_sched(hpts->ie_cookie, 0); 479 } 480 } 481 482 static void 483 hpts_timeout_swi(void *arg) 484 { 485 struct tcp_hpts_entry *hpts; 486 487 hpts = (struct tcp_hpts_entry *)arg; 488 swi_sched(hpts->ie_cookie, 0); 489 } 490 491 static void 492 inp_hpts_insert(struct inpcb *inp, struct tcp_hpts_entry *hpts) 493 { 494 struct hptsh *hptsh; 495 496 INP_WLOCK_ASSERT(inp); 497 HPTS_MTX_ASSERT(hpts); 498 MPASS(hpts->p_cpu == inp->inp_hpts_cpu); 499 MPASS(!(inp->inp_flags & INP_DROPPED)); 500 501 hptsh = &hpts->p_hptss[inp->inp_hptsslot]; 502 503 if (inp->inp_in_hpts == IHPTS_NONE) { 504 inp->inp_in_hpts = IHPTS_ONQUEUE; 505 in_pcbref(inp); 506 } else if (inp->inp_in_hpts == IHPTS_MOVING) { 507 inp->inp_in_hpts = IHPTS_ONQUEUE; 508 } else 509 MPASS(inp->inp_in_hpts == IHPTS_ONQUEUE); 510 inp->inp_hpts_gencnt = hptsh->gencnt; 511 512 TAILQ_INSERT_TAIL(&hptsh->head, inp, inp_hpts); 513 hptsh->count++; 514 hpts->p_on_queue_cnt++; 515 } 516 517 static struct tcp_hpts_entry * 518 tcp_hpts_lock(struct inpcb *inp) 519 { 520 struct tcp_hpts_entry *hpts; 521 522 INP_LOCK_ASSERT(inp); 523 524 hpts = tcp_pace.rp_ent[inp->inp_hpts_cpu]; 525 HPTS_LOCK(hpts); 526 527 return (hpts); 528 } 529 530 static void 531 inp_hpts_release(struct inpcb *inp) 532 { 533 bool released __diagused; 534 535 inp->inp_in_hpts = IHPTS_NONE; 536 released = in_pcbrele_wlocked(inp); 537 MPASS(released == false); 538 } 539 540 /* 541 * Called normally with the INP_LOCKED but it 542 * does not matter, the hpts lock is the key 543 * but the lock order allows us to hold the 544 * INP lock and then get the hpts lock. 545 */ 546 void 547 tcp_hpts_remove(struct inpcb *inp) 548 { 549 struct tcp_hpts_entry *hpts; 550 struct hptsh *hptsh; 551 552 INP_WLOCK_ASSERT(inp); 553 554 hpts = tcp_hpts_lock(inp); 555 if (inp->inp_in_hpts == IHPTS_ONQUEUE) { 556 hptsh = &hpts->p_hptss[inp->inp_hptsslot]; 557 inp->inp_hpts_request = 0; 558 if (__predict_true(inp->inp_hpts_gencnt == hptsh->gencnt)) { 559 TAILQ_REMOVE(&hptsh->head, inp, inp_hpts); 560 MPASS(hptsh->count > 0); 561 hptsh->count--; 562 MPASS(hpts->p_on_queue_cnt > 0); 563 hpts->p_on_queue_cnt--; 564 inp_hpts_release(inp); 565 } else { 566 /* 567 * tcp_hptsi() now owns the TAILQ head of this inp. 568 * Can't TAILQ_REMOVE, just mark it. 569 */ 570 #ifdef INVARIANTS 571 struct inpcb *tmp; 572 573 TAILQ_FOREACH(tmp, &hptsh->head, inp_hpts) 574 MPASS(tmp != inp); 575 #endif 576 inp->inp_in_hpts = IHPTS_MOVING; 577 inp->inp_hptsslot = -1; 578 } 579 } else if (inp->inp_in_hpts == IHPTS_MOVING) { 580 /* 581 * Handle a special race condition: 582 * tcp_hptsi() moves inpcb to detached tailq 583 * tcp_hpts_remove() marks as IHPTS_MOVING, slot = -1 584 * tcp_hpts_insert() sets slot to a meaningful value 585 * tcp_hpts_remove() again (we are here!), then in_pcbdrop() 586 * tcp_hptsi() finds pcb with meaningful slot and INP_DROPPED 587 */ 588 inp->inp_hptsslot = -1; 589 } 590 HPTS_UNLOCK(hpts); 591 } 592 593 bool 594 tcp_in_hpts(struct inpcb *inp) 595 { 596 597 return (inp->inp_in_hpts == IHPTS_ONQUEUE); 598 } 599 600 static inline int 601 hpts_slot(uint32_t wheel_slot, uint32_t plus) 602 { 603 /* 604 * Given a slot on the wheel, what slot 605 * is that plus ticks out? 606 */ 607 KASSERT(wheel_slot < NUM_OF_HPTSI_SLOTS, ("Invalid tick %u not on wheel", wheel_slot)); 608 return ((wheel_slot + plus) % NUM_OF_HPTSI_SLOTS); 609 } 610 611 static inline int 612 tick_to_wheel(uint32_t cts_in_wticks) 613 { 614 /* 615 * Given a timestamp in ticks (so by 616 * default to get it to a real time one 617 * would multiply by 10.. i.e the number 618 * of ticks in a slot) map it to our limited 619 * space wheel. 620 */ 621 return (cts_in_wticks % NUM_OF_HPTSI_SLOTS); 622 } 623 624 static inline int 625 hpts_slots_diff(int prev_slot, int slot_now) 626 { 627 /* 628 * Given two slots that are someplace 629 * on our wheel. How far are they apart? 630 */ 631 if (slot_now > prev_slot) 632 return (slot_now - prev_slot); 633 else if (slot_now == prev_slot) 634 /* 635 * Special case, same means we can go all of our 636 * wheel less one slot. 637 */ 638 return (NUM_OF_HPTSI_SLOTS - 1); 639 else 640 return ((NUM_OF_HPTSI_SLOTS - prev_slot) + slot_now); 641 } 642 643 /* 644 * Given a slot on the wheel that is the current time 645 * mapped to the wheel (wheel_slot), what is the maximum 646 * distance forward that can be obtained without 647 * wrapping past either prev_slot or running_slot 648 * depending on the htps state? Also if passed 649 * a uint32_t *, fill it with the slot location. 650 * 651 * Note if you do not give this function the current 652 * time (that you think it is) mapped to the wheel slot 653 * then the results will not be what you expect and 654 * could lead to invalid inserts. 655 */ 656 static inline int32_t 657 max_slots_available(struct tcp_hpts_entry *hpts, uint32_t wheel_slot, uint32_t *target_slot) 658 { 659 uint32_t dis_to_travel, end_slot, pacer_to_now, avail_on_wheel; 660 661 if ((hpts->p_hpts_active == 1) && 662 (hpts->p_wheel_complete == 0)) { 663 end_slot = hpts->p_runningslot; 664 /* Back up one tick */ 665 if (end_slot == 0) 666 end_slot = NUM_OF_HPTSI_SLOTS - 1; 667 else 668 end_slot--; 669 if (target_slot) 670 *target_slot = end_slot; 671 } else { 672 /* 673 * For the case where we are 674 * not active, or we have 675 * completed the pass over 676 * the wheel, we can use the 677 * prev tick and subtract one from it. This puts us 678 * as far out as possible on the wheel. 679 */ 680 end_slot = hpts->p_prev_slot; 681 if (end_slot == 0) 682 end_slot = NUM_OF_HPTSI_SLOTS - 1; 683 else 684 end_slot--; 685 if (target_slot) 686 *target_slot = end_slot; 687 /* 688 * Now we have close to the full wheel left minus the 689 * time it has been since the pacer went to sleep. Note 690 * that wheel_tick, passed in, should be the current time 691 * from the perspective of the caller, mapped to the wheel. 692 */ 693 if (hpts->p_prev_slot != wheel_slot) 694 dis_to_travel = hpts_slots_diff(hpts->p_prev_slot, wheel_slot); 695 else 696 dis_to_travel = 1; 697 /* 698 * dis_to_travel in this case is the space from when the 699 * pacer stopped (p_prev_slot) and where our wheel_slot 700 * is now. To know how many slots we can put it in we 701 * subtract from the wheel size. We would not want 702 * to place something after p_prev_slot or it will 703 * get ran too soon. 704 */ 705 return (NUM_OF_HPTSI_SLOTS - dis_to_travel); 706 } 707 /* 708 * So how many slots are open between p_runningslot -> p_cur_slot 709 * that is what is currently un-available for insertion. Special 710 * case when we are at the last slot, this gets 1, so that 711 * the answer to how many slots are available is all but 1. 712 */ 713 if (hpts->p_runningslot == hpts->p_cur_slot) 714 dis_to_travel = 1; 715 else 716 dis_to_travel = hpts_slots_diff(hpts->p_runningslot, hpts->p_cur_slot); 717 /* 718 * How long has the pacer been running? 719 */ 720 if (hpts->p_cur_slot != wheel_slot) { 721 /* The pacer is a bit late */ 722 pacer_to_now = hpts_slots_diff(hpts->p_cur_slot, wheel_slot); 723 } else { 724 /* The pacer is right on time, now == pacers start time */ 725 pacer_to_now = 0; 726 } 727 /* 728 * To get the number left we can insert into we simply 729 * subtract the distance the pacer has to run from how 730 * many slots there are. 731 */ 732 avail_on_wheel = NUM_OF_HPTSI_SLOTS - dis_to_travel; 733 /* 734 * Now how many of those we will eat due to the pacer's 735 * time (p_cur_slot) of start being behind the 736 * real time (wheel_slot)? 737 */ 738 if (avail_on_wheel <= pacer_to_now) { 739 /* 740 * Wheel wrap, we can't fit on the wheel, that 741 * is unusual the system must be way overloaded! 742 * Insert into the assured slot, and return special 743 * "0". 744 */ 745 counter_u64_add(combined_wheel_wrap, 1); 746 *target_slot = hpts->p_nxt_slot; 747 return (0); 748 } else { 749 /* 750 * We know how many slots are open 751 * on the wheel (the reverse of what 752 * is left to run. Take away the time 753 * the pacer started to now (wheel_slot) 754 * and that tells you how many slots are 755 * open that can be inserted into that won't 756 * be touched by the pacer until later. 757 */ 758 return (avail_on_wheel - pacer_to_now); 759 } 760 } 761 762 763 #ifdef INVARIANTS 764 static void 765 check_if_slot_would_be_wrong(struct tcp_hpts_entry *hpts, struct inpcb *inp, uint32_t inp_hptsslot, int line) 766 { 767 /* 768 * Sanity checks for the pacer with invariants 769 * on insert. 770 */ 771 KASSERT(inp_hptsslot < NUM_OF_HPTSI_SLOTS, 772 ("hpts:%p inp:%p slot:%d > max", 773 hpts, inp, inp_hptsslot)); 774 if ((hpts->p_hpts_active) && 775 (hpts->p_wheel_complete == 0)) { 776 /* 777 * If the pacer is processing a arc 778 * of the wheel, we need to make 779 * sure we are not inserting within 780 * that arc. 781 */ 782 int distance, yet_to_run; 783 784 distance = hpts_slots_diff(hpts->p_runningslot, inp_hptsslot); 785 if (hpts->p_runningslot != hpts->p_cur_slot) 786 yet_to_run = hpts_slots_diff(hpts->p_runningslot, hpts->p_cur_slot); 787 else 788 yet_to_run = 0; /* processing last slot */ 789 KASSERT(yet_to_run <= distance, 790 ("hpts:%p inp:%p slot:%d distance:%d yet_to_run:%d rs:%d cs:%d", 791 hpts, inp, inp_hptsslot, 792 distance, yet_to_run, 793 hpts->p_runningslot, hpts->p_cur_slot)); 794 } 795 } 796 #endif 797 798 uint32_t 799 tcp_hpts_insert_diag(struct inpcb *inp, uint32_t slot, int32_t line, struct hpts_diag *diag) 800 { 801 struct tcp_hpts_entry *hpts; 802 struct timeval tv; 803 uint32_t slot_on, wheel_cts, last_slot, need_new_to = 0; 804 int32_t wheel_slot, maxslots; 805 bool need_wakeup = false; 806 807 INP_WLOCK_ASSERT(inp); 808 MPASS(!tcp_in_hpts(inp)); 809 MPASS(!(inp->inp_flags & INP_DROPPED)); 810 811 /* 812 * We now return the next-slot the hpts will be on, beyond its 813 * current run (if up) or where it was when it stopped if it is 814 * sleeping. 815 */ 816 hpts = tcp_hpts_lock(inp); 817 microuptime(&tv); 818 if (diag) { 819 memset(diag, 0, sizeof(struct hpts_diag)); 820 diag->p_hpts_active = hpts->p_hpts_active; 821 diag->p_prev_slot = hpts->p_prev_slot; 822 diag->p_runningslot = hpts->p_runningslot; 823 diag->p_nxt_slot = hpts->p_nxt_slot; 824 diag->p_cur_slot = hpts->p_cur_slot; 825 diag->p_curtick = hpts->p_curtick; 826 diag->p_lasttick = hpts->p_lasttick; 827 diag->slot_req = slot; 828 diag->p_on_min_sleep = hpts->p_on_min_sleep; 829 diag->hpts_sleep_time = hpts->p_hpts_sleep_time; 830 } 831 if (slot == 0) { 832 /* Ok we need to set it on the hpts in the current slot */ 833 inp->inp_hpts_request = 0; 834 if ((hpts->p_hpts_active == 0) || (hpts->p_wheel_complete)) { 835 /* 836 * A sleeping hpts we want in next slot to run 837 * note that in this state p_prev_slot == p_cur_slot 838 */ 839 inp->inp_hptsslot = hpts_slot(hpts->p_prev_slot, 1); 840 if ((hpts->p_on_min_sleep == 0) && 841 (hpts->p_hpts_active == 0)) 842 need_wakeup = true; 843 } else 844 inp->inp_hptsslot = hpts->p_runningslot; 845 if (__predict_true(inp->inp_in_hpts != IHPTS_MOVING)) 846 inp_hpts_insert(inp, hpts); 847 if (need_wakeup) { 848 /* 849 * Activate the hpts if it is sleeping and its 850 * timeout is not 1. 851 */ 852 hpts->p_direct_wake = 1; 853 tcp_wakehpts(hpts); 854 } 855 slot_on = hpts->p_nxt_slot; 856 HPTS_UNLOCK(hpts); 857 858 return (slot_on); 859 } 860 /* Get the current time relative to the wheel */ 861 wheel_cts = tcp_tv_to_hptstick(&tv); 862 /* Map it onto the wheel */ 863 wheel_slot = tick_to_wheel(wheel_cts); 864 /* Now what's the max we can place it at? */ 865 maxslots = max_slots_available(hpts, wheel_slot, &last_slot); 866 if (diag) { 867 diag->wheel_slot = wheel_slot; 868 diag->maxslots = maxslots; 869 diag->wheel_cts = wheel_cts; 870 } 871 if (maxslots == 0) { 872 /* The pacer is in a wheel wrap behind, yikes! */ 873 if (slot > 1) { 874 /* 875 * Reduce by 1 to prevent a forever loop in 876 * case something else is wrong. Note this 877 * probably does not hurt because the pacer 878 * if its true is so far behind we will be 879 * > 1second late calling anyway. 880 */ 881 slot--; 882 } 883 inp->inp_hptsslot = last_slot; 884 inp->inp_hpts_request = slot; 885 } else if (maxslots >= slot) { 886 /* It all fits on the wheel */ 887 inp->inp_hpts_request = 0; 888 inp->inp_hptsslot = hpts_slot(wheel_slot, slot); 889 } else { 890 /* It does not fit */ 891 inp->inp_hpts_request = slot - maxslots; 892 inp->inp_hptsslot = last_slot; 893 } 894 if (diag) { 895 diag->slot_remaining = inp->inp_hpts_request; 896 diag->inp_hptsslot = inp->inp_hptsslot; 897 } 898 #ifdef INVARIANTS 899 check_if_slot_would_be_wrong(hpts, inp, inp->inp_hptsslot, line); 900 #endif 901 if (__predict_true(inp->inp_in_hpts != IHPTS_MOVING)) 902 inp_hpts_insert(inp, hpts); 903 if ((hpts->p_hpts_active == 0) && 904 (inp->inp_hpts_request == 0) && 905 (hpts->p_on_min_sleep == 0)) { 906 /* 907 * The hpts is sleeping and NOT on a minimum 908 * sleep time, we need to figure out where 909 * it will wake up at and if we need to reschedule 910 * its time-out. 911 */ 912 uint32_t have_slept, yet_to_sleep; 913 914 /* Now do we need to restart the hpts's timer? */ 915 have_slept = hpts_slots_diff(hpts->p_prev_slot, wheel_slot); 916 if (have_slept < hpts->p_hpts_sleep_time) 917 yet_to_sleep = hpts->p_hpts_sleep_time - have_slept; 918 else { 919 /* We are over-due */ 920 yet_to_sleep = 0; 921 need_wakeup = 1; 922 } 923 if (diag) { 924 diag->have_slept = have_slept; 925 diag->yet_to_sleep = yet_to_sleep; 926 } 927 if (yet_to_sleep && 928 (yet_to_sleep > slot)) { 929 /* 930 * We need to reschedule the hpts's time-out. 931 */ 932 hpts->p_hpts_sleep_time = slot; 933 need_new_to = slot * HPTS_TICKS_PER_SLOT; 934 } 935 } 936 /* 937 * Now how far is the hpts sleeping to? if active is 1, its 938 * up and ticking we do nothing, otherwise we may need to 939 * reschedule its callout if need_new_to is set from above. 940 */ 941 if (need_wakeup) { 942 hpts->p_direct_wake = 1; 943 tcp_wakehpts(hpts); 944 if (diag) { 945 diag->need_new_to = 0; 946 diag->co_ret = 0xffff0000; 947 } 948 } else if (need_new_to) { 949 int32_t co_ret; 950 struct timeval tv; 951 sbintime_t sb; 952 953 tv.tv_sec = 0; 954 tv.tv_usec = 0; 955 while (need_new_to > HPTS_USEC_IN_SEC) { 956 tv.tv_sec++; 957 need_new_to -= HPTS_USEC_IN_SEC; 958 } 959 tv.tv_usec = need_new_to; 960 sb = tvtosbt(tv); 961 co_ret = callout_reset_sbt_on(&hpts->co, sb, 0, 962 hpts_timeout_swi, hpts, hpts->p_cpu, 963 (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision))); 964 if (diag) { 965 diag->need_new_to = need_new_to; 966 diag->co_ret = co_ret; 967 } 968 } 969 slot_on = hpts->p_nxt_slot; 970 HPTS_UNLOCK(hpts); 971 972 return (slot_on); 973 } 974 975 uint16_t 976 hpts_random_cpu(struct inpcb *inp){ 977 /* 978 * No flow type set distribute the load randomly. 979 */ 980 uint16_t cpuid; 981 uint32_t ran; 982 983 /* 984 * Shortcut if it is already set. XXXGL: does it happen? 985 */ 986 if (inp->inp_hpts_cpu_set) { 987 return (inp->inp_hpts_cpu); 988 } 989 /* Nothing set use a random number */ 990 ran = arc4random(); 991 cpuid = (((ran & 0xffff) % mp_ncpus) % tcp_pace.rp_num_hptss); 992 return (cpuid); 993 } 994 995 static uint16_t 996 hpts_cpuid(struct inpcb *inp, int *failed) 997 { 998 u_int cpuid; 999 #ifdef NUMA 1000 struct hpts_domain_info *di; 1001 #endif 1002 1003 *failed = 0; 1004 if (inp->inp_hpts_cpu_set) { 1005 return (inp->inp_hpts_cpu); 1006 } 1007 /* 1008 * If we are using the irq cpu set by LRO or 1009 * the driver then it overrides all other domains. 1010 */ 1011 if (tcp_use_irq_cpu) { 1012 if (inp->inp_irq_cpu_set == 0) { 1013 *failed = 1; 1014 return(0); 1015 } 1016 return(inp->inp_irq_cpu); 1017 } 1018 /* If one is set the other must be the same */ 1019 #ifdef RSS 1020 cpuid = rss_hash2cpuid(inp->inp_flowid, inp->inp_flowtype); 1021 if (cpuid == NETISR_CPUID_NONE) 1022 return (hpts_random_cpu(inp)); 1023 else 1024 return (cpuid); 1025 #endif 1026 /* 1027 * We don't have a flowid -> cpuid mapping, so cheat and just map 1028 * unknown cpuids to curcpu. Not the best, but apparently better 1029 * than defaulting to swi 0. 1030 */ 1031 if (inp->inp_flowtype == M_HASHTYPE_NONE) { 1032 counter_u64_add(cpu_uses_random, 1); 1033 return (hpts_random_cpu(inp)); 1034 } 1035 /* 1036 * Hash to a thread based on the flowid. If we are using numa, 1037 * then restrict the hash to the numa domain where the inp lives. 1038 */ 1039 1040 #ifdef NUMA 1041 if ((vm_ndomains == 1) || 1042 (inp->inp_numa_domain == M_NODOM)) { 1043 #endif 1044 cpuid = inp->inp_flowid % mp_ncpus; 1045 #ifdef NUMA 1046 } else { 1047 /* Hash into the cpu's that use that domain */ 1048 di = &hpts_domains[inp->inp_numa_domain]; 1049 cpuid = di->cpu[inp->inp_flowid % di->count]; 1050 } 1051 #endif 1052 counter_u64_add(cpu_uses_flowid, 1); 1053 return (cpuid); 1054 } 1055 1056 static void 1057 tcp_hpts_set_max_sleep(struct tcp_hpts_entry *hpts, int wrap_loop_cnt) 1058 { 1059 uint32_t t = 0, i; 1060 1061 if ((hpts->p_on_queue_cnt) && (wrap_loop_cnt < 2)) { 1062 /* 1063 * Find next slot that is occupied and use that to 1064 * be the sleep time. 1065 */ 1066 for (i = 0, t = hpts_slot(hpts->p_cur_slot, 1); i < NUM_OF_HPTSI_SLOTS; i++) { 1067 if (TAILQ_EMPTY(&hpts->p_hptss[t].head) == 0) { 1068 break; 1069 } 1070 t = (t + 1) % NUM_OF_HPTSI_SLOTS; 1071 } 1072 KASSERT((i != NUM_OF_HPTSI_SLOTS), ("Hpts:%p cnt:%d but none found", hpts, hpts->p_on_queue_cnt)); 1073 hpts->p_hpts_sleep_time = min((i + 1), hpts_sleep_max); 1074 } else { 1075 /* No one on the wheel sleep for all but 400 slots or sleep max */ 1076 hpts->p_hpts_sleep_time = hpts_sleep_max; 1077 } 1078 } 1079 1080 static int32_t 1081 tcp_hptsi(struct tcp_hpts_entry *hpts, int from_callout) 1082 { 1083 struct tcpcb *tp; 1084 struct inpcb *inp; 1085 struct timeval tv; 1086 int32_t slots_to_run, i, error; 1087 int32_t loop_cnt = 0; 1088 int32_t did_prefetch = 0; 1089 int32_t prefetch_ninp = 0; 1090 int32_t prefetch_tp = 0; 1091 int32_t wrap_loop_cnt = 0; 1092 int32_t slot_pos_of_endpoint = 0; 1093 int32_t orig_exit_slot; 1094 int8_t completed_measure = 0, seen_endpoint = 0; 1095 1096 HPTS_MTX_ASSERT(hpts); 1097 NET_EPOCH_ASSERT(); 1098 /* record previous info for any logging */ 1099 hpts->saved_lasttick = hpts->p_lasttick; 1100 hpts->saved_curtick = hpts->p_curtick; 1101 hpts->saved_curslot = hpts->p_cur_slot; 1102 hpts->saved_prev_slot = hpts->p_prev_slot; 1103 1104 hpts->p_lasttick = hpts->p_curtick; 1105 hpts->p_curtick = tcp_gethptstick(&tv); 1106 cts_last_ran[hpts->p_num] = tcp_tv_to_usectick(&tv); 1107 orig_exit_slot = hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick); 1108 if ((hpts->p_on_queue_cnt == 0) || 1109 (hpts->p_lasttick == hpts->p_curtick)) { 1110 /* 1111 * No time has yet passed, 1112 * or nothing to do. 1113 */ 1114 hpts->p_prev_slot = hpts->p_cur_slot; 1115 hpts->p_lasttick = hpts->p_curtick; 1116 goto no_run; 1117 } 1118 again: 1119 hpts->p_wheel_complete = 0; 1120 HPTS_MTX_ASSERT(hpts); 1121 slots_to_run = hpts_slots_diff(hpts->p_prev_slot, hpts->p_cur_slot); 1122 if (((hpts->p_curtick - hpts->p_lasttick) > 1123 ((NUM_OF_HPTSI_SLOTS-1) * HPTS_TICKS_PER_SLOT)) && 1124 (hpts->p_on_queue_cnt != 0)) { 1125 /* 1126 * Wheel wrap is occuring, basically we 1127 * are behind and the distance between 1128 * run's has spread so much it has exceeded 1129 * the time on the wheel (1.024 seconds). This 1130 * is ugly and should NOT be happening. We 1131 * need to run the entire wheel. We last processed 1132 * p_prev_slot, so that needs to be the last slot 1133 * we run. The next slot after that should be our 1134 * reserved first slot for new, and then starts 1135 * the running position. Now the problem is the 1136 * reserved "not to yet" place does not exist 1137 * and there may be inp's in there that need 1138 * running. We can merge those into the 1139 * first slot at the head. 1140 */ 1141 wrap_loop_cnt++; 1142 hpts->p_nxt_slot = hpts_slot(hpts->p_prev_slot, 1); 1143 hpts->p_runningslot = hpts_slot(hpts->p_prev_slot, 2); 1144 /* 1145 * Adjust p_cur_slot to be where we are starting from 1146 * hopefully we will catch up (fat chance if something 1147 * is broken this bad :( ) 1148 */ 1149 hpts->p_cur_slot = hpts->p_prev_slot; 1150 /* 1151 * The next slot has guys to run too, and that would 1152 * be where we would normally start, lets move them into 1153 * the next slot (p_prev_slot + 2) so that we will 1154 * run them, the extra 10usecs of late (by being 1155 * put behind) does not really matter in this situation. 1156 */ 1157 TAILQ_FOREACH(inp, &hpts->p_hptss[hpts->p_nxt_slot].head, 1158 inp_hpts) { 1159 MPASS(inp->inp_hptsslot == hpts->p_nxt_slot); 1160 MPASS(inp->inp_hpts_gencnt == 1161 hpts->p_hptss[hpts->p_nxt_slot].gencnt); 1162 MPASS(inp->inp_in_hpts == IHPTS_ONQUEUE); 1163 1164 /* 1165 * Update gencnt and nextslot accordingly to match 1166 * the new location. This is safe since it takes both 1167 * the INP lock and the pacer mutex to change the 1168 * inp_hptsslot and inp_hpts_gencnt. 1169 */ 1170 inp->inp_hpts_gencnt = 1171 hpts->p_hptss[hpts->p_runningslot].gencnt; 1172 inp->inp_hptsslot = hpts->p_runningslot; 1173 } 1174 TAILQ_CONCAT(&hpts->p_hptss[hpts->p_runningslot].head, 1175 &hpts->p_hptss[hpts->p_nxt_slot].head, inp_hpts); 1176 hpts->p_hptss[hpts->p_runningslot].count += 1177 hpts->p_hptss[hpts->p_nxt_slot].count; 1178 hpts->p_hptss[hpts->p_nxt_slot].count = 0; 1179 hpts->p_hptss[hpts->p_nxt_slot].gencnt++; 1180 slots_to_run = NUM_OF_HPTSI_SLOTS - 1; 1181 counter_u64_add(wheel_wrap, 1); 1182 } else { 1183 /* 1184 * Nxt slot is always one after p_runningslot though 1185 * its not used usually unless we are doing wheel wrap. 1186 */ 1187 hpts->p_nxt_slot = hpts->p_prev_slot; 1188 hpts->p_runningslot = hpts_slot(hpts->p_prev_slot, 1); 1189 } 1190 if (hpts->p_on_queue_cnt == 0) { 1191 goto no_one; 1192 } 1193 for (i = 0; i < slots_to_run; i++) { 1194 struct inpcb *inp, *ninp; 1195 TAILQ_HEAD(, inpcb) head = TAILQ_HEAD_INITIALIZER(head); 1196 struct hptsh *hptsh; 1197 uint32_t runningslot; 1198 1199 /* 1200 * Calculate our delay, if there are no extra ticks there 1201 * was not any (i.e. if slots_to_run == 1, no delay). 1202 */ 1203 hpts->p_delayed_by = (slots_to_run - (i + 1)) * 1204 HPTS_TICKS_PER_SLOT; 1205 1206 runningslot = hpts->p_runningslot; 1207 hptsh = &hpts->p_hptss[runningslot]; 1208 TAILQ_SWAP(&head, &hptsh->head, inpcb, inp_hpts); 1209 hpts->p_on_queue_cnt -= hptsh->count; 1210 hptsh->count = 0; 1211 hptsh->gencnt++; 1212 1213 HPTS_UNLOCK(hpts); 1214 1215 TAILQ_FOREACH_SAFE(inp, &head, inp_hpts, ninp) { 1216 bool set_cpu; 1217 1218 if (ninp != NULL) { 1219 /* We prefetch the next inp if possible */ 1220 kern_prefetch(ninp, &prefetch_ninp); 1221 prefetch_ninp = 1; 1222 } 1223 1224 /* For debugging */ 1225 if (seen_endpoint == 0) { 1226 seen_endpoint = 1; 1227 orig_exit_slot = slot_pos_of_endpoint = 1228 runningslot; 1229 } else if (completed_measure == 0) { 1230 /* Record the new position */ 1231 orig_exit_slot = runningslot; 1232 } 1233 1234 INP_WLOCK(inp); 1235 if (inp->inp_hpts_cpu_set == 0) { 1236 set_cpu = true; 1237 } else { 1238 set_cpu = false; 1239 } 1240 1241 if (__predict_false(inp->inp_in_hpts == IHPTS_MOVING)) { 1242 if (inp->inp_hptsslot == -1) { 1243 inp->inp_in_hpts = IHPTS_NONE; 1244 if (in_pcbrele_wlocked(inp) == false) 1245 INP_WUNLOCK(inp); 1246 } else { 1247 HPTS_LOCK(hpts); 1248 inp_hpts_insert(inp, hpts); 1249 HPTS_UNLOCK(hpts); 1250 INP_WUNLOCK(inp); 1251 } 1252 continue; 1253 } 1254 1255 MPASS(inp->inp_in_hpts == IHPTS_ONQUEUE); 1256 MPASS(!(inp->inp_flags & INP_DROPPED)); 1257 KASSERT(runningslot == inp->inp_hptsslot, 1258 ("Hpts:%p inp:%p slot mis-aligned %u vs %u", 1259 hpts, inp, runningslot, inp->inp_hptsslot)); 1260 1261 if (inp->inp_hpts_request) { 1262 /* 1263 * This guy is deferred out further in time 1264 * then our wheel had available on it. 1265 * Push him back on the wheel or run it 1266 * depending. 1267 */ 1268 uint32_t maxslots, last_slot, remaining_slots; 1269 1270 remaining_slots = slots_to_run - (i + 1); 1271 if (inp->inp_hpts_request > remaining_slots) { 1272 HPTS_LOCK(hpts); 1273 /* 1274 * How far out can we go? 1275 */ 1276 maxslots = max_slots_available(hpts, 1277 hpts->p_cur_slot, &last_slot); 1278 if (maxslots >= inp->inp_hpts_request) { 1279 /* We can place it finally to 1280 * be processed. */ 1281 inp->inp_hptsslot = hpts_slot( 1282 hpts->p_runningslot, 1283 inp->inp_hpts_request); 1284 inp->inp_hpts_request = 0; 1285 } else { 1286 /* Work off some more time */ 1287 inp->inp_hptsslot = last_slot; 1288 inp->inp_hpts_request -= 1289 maxslots; 1290 } 1291 inp_hpts_insert(inp, hpts); 1292 HPTS_UNLOCK(hpts); 1293 INP_WUNLOCK(inp); 1294 continue; 1295 } 1296 inp->inp_hpts_request = 0; 1297 /* Fall through we will so do it now */ 1298 } 1299 1300 inp_hpts_release(inp); 1301 tp = intotcpcb(inp); 1302 MPASS(tp); 1303 if (set_cpu) { 1304 /* 1305 * Setup so the next time we will move to 1306 * the right CPU. This should be a rare 1307 * event. It will sometimes happens when we 1308 * are the client side (usually not the 1309 * server). Somehow tcp_output() gets called 1310 * before the tcp_do_segment() sets the 1311 * intial state. This means the r_cpu and 1312 * r_hpts_cpu is 0. We get on the hpts, and 1313 * then tcp_input() gets called setting up 1314 * the r_cpu to the correct value. The hpts 1315 * goes off and sees the mis-match. We 1316 * simply correct it here and the CPU will 1317 * switch to the new hpts nextime the tcb 1318 * gets added to the hpts (not this one) 1319 * :-) 1320 */ 1321 tcp_set_hpts(inp); 1322 } 1323 CURVNET_SET(inp->inp_vnet); 1324 /* Lets do any logging that we might want to */ 1325 if (hpts_does_tp_logging && tcp_bblogging_on(tp)) { 1326 tcp_hpts_log(hpts, tp, &tv, slots_to_run, i, from_callout); 1327 } 1328 1329 if (tp->t_fb_ptr != NULL) { 1330 kern_prefetch(tp->t_fb_ptr, &did_prefetch); 1331 did_prefetch = 1; 1332 } 1333 /* 1334 * We set inp_hpts_calls to 1 before any possible output. 1335 * The contract with the transport is that if it cares about 1336 * hpts calling it should clear the flag. That way next time 1337 * it is called it will know it is hpts. 1338 * 1339 * We also only call tfb_do_queued_segments() <or> tcp_output() 1340 * it is expected that if segments are queued and come in that 1341 * the final input mbuf will cause a call to output if it is needed. 1342 */ 1343 inp->inp_hpts_calls = 1; 1344 if ((inp->inp_flags2 & INP_SUPPORTS_MBUFQ) && 1345 !STAILQ_EMPTY(&tp->t_inqueue)) { 1346 error = (*tp->t_fb->tfb_do_queued_segments)(tp, 0); 1347 if (error) { 1348 /* The input killed the connection */ 1349 goto skip_pacing; 1350 } 1351 } 1352 error = tcp_output(tp); 1353 if (error < 0) 1354 goto skip_pacing; 1355 if (ninp) { 1356 /* 1357 * If we have a nxt inp, see if we can 1358 * prefetch it. Note this may seem 1359 * "risky" since we have no locks (other 1360 * than the previous inp) and there no 1361 * assurance that ninp was not pulled while 1362 * we were processing inp and freed. If this 1363 * occurred it could mean that either: 1364 * 1365 * a) Its NULL (which is fine we won't go 1366 * here) <or> b) Its valid (which is cool we 1367 * will prefetch it) <or> c) The inp got 1368 * freed back to the slab which was 1369 * reallocated. Then the piece of memory was 1370 * re-used and something else (not an 1371 * address) is in inp_ppcb. If that occurs 1372 * we don't crash, but take a TLB shootdown 1373 * performance hit (same as if it was NULL 1374 * and we tried to pre-fetch it). 1375 * 1376 * Considering that the likelyhood of <c> is 1377 * quite rare we will take a risk on doing 1378 * this. If performance drops after testing 1379 * we can always take this out. NB: the 1380 * kern_prefetch on amd64 actually has 1381 * protection against a bad address now via 1382 * the DMAP_() tests. This will prevent the 1383 * TLB hit, and instead if <c> occurs just 1384 * cause us to load cache with a useless 1385 * address (to us). 1386 * 1387 * XXXGL: with tcpcb == inpcb, I'm unsure this 1388 * prefetch is still correct and useful. 1389 */ 1390 kern_prefetch(ninp, &prefetch_tp); 1391 prefetch_tp = 1; 1392 } 1393 INP_WUNLOCK(inp); 1394 skip_pacing: 1395 CURVNET_RESTORE(); 1396 } 1397 if (seen_endpoint) { 1398 /* 1399 * We now have a accurate distance between 1400 * slot_pos_of_endpoint <-> orig_exit_slot 1401 * to tell us how late we were, orig_exit_slot 1402 * is where we calculated the end of our cycle to 1403 * be when we first entered. 1404 */ 1405 completed_measure = 1; 1406 } 1407 HPTS_LOCK(hpts); 1408 hpts->p_runningslot++; 1409 if (hpts->p_runningslot >= NUM_OF_HPTSI_SLOTS) { 1410 hpts->p_runningslot = 0; 1411 } 1412 } 1413 no_one: 1414 HPTS_MTX_ASSERT(hpts); 1415 hpts->p_delayed_by = 0; 1416 /* 1417 * Check to see if we took an excess amount of time and need to run 1418 * more ticks (if we did not hit eno-bufs). 1419 */ 1420 hpts->p_prev_slot = hpts->p_cur_slot; 1421 hpts->p_lasttick = hpts->p_curtick; 1422 if ((from_callout == 0) || (loop_cnt > max_pacer_loops)) { 1423 /* 1424 * Something is serious slow we have 1425 * looped through processing the wheel 1426 * and by the time we cleared the 1427 * needs to run max_pacer_loops time 1428 * we still needed to run. That means 1429 * the system is hopelessly behind and 1430 * can never catch up :( 1431 * 1432 * We will just lie to this thread 1433 * and let it thing p_curtick is 1434 * correct. When it next awakens 1435 * it will find itself further behind. 1436 */ 1437 if (from_callout) 1438 counter_u64_add(hpts_hopelessly_behind, 1); 1439 goto no_run; 1440 } 1441 hpts->p_curtick = tcp_gethptstick(&tv); 1442 hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick); 1443 if (seen_endpoint == 0) { 1444 /* We saw no endpoint but we may be looping */ 1445 orig_exit_slot = hpts->p_cur_slot; 1446 } 1447 if ((wrap_loop_cnt < 2) && 1448 (hpts->p_lasttick != hpts->p_curtick)) { 1449 counter_u64_add(hpts_loops, 1); 1450 loop_cnt++; 1451 goto again; 1452 } 1453 no_run: 1454 cts_last_ran[hpts->p_num] = tcp_tv_to_usectick(&tv); 1455 /* 1456 * Set flag to tell that we are done for 1457 * any slot input that happens during 1458 * input. 1459 */ 1460 hpts->p_wheel_complete = 1; 1461 /* 1462 * Now did we spend too long running input and need to run more ticks? 1463 * Note that if wrap_loop_cnt < 2 then we should have the conditions 1464 * in the KASSERT's true. But if the wheel is behind i.e. wrap_loop_cnt 1465 * is greater than 2, then the condtion most likely are *not* true. 1466 * Also if we are called not from the callout, we don't run the wheel 1467 * multiple times so the slots may not align either. 1468 */ 1469 KASSERT(((hpts->p_prev_slot == hpts->p_cur_slot) || 1470 (wrap_loop_cnt >= 2) || (from_callout == 0)), 1471 ("H:%p p_prev_slot:%u not equal to p_cur_slot:%u", hpts, 1472 hpts->p_prev_slot, hpts->p_cur_slot)); 1473 KASSERT(((hpts->p_lasttick == hpts->p_curtick) 1474 || (wrap_loop_cnt >= 2) || (from_callout == 0)), 1475 ("H:%p p_lasttick:%u not equal to p_curtick:%u", hpts, 1476 hpts->p_lasttick, hpts->p_curtick)); 1477 if (from_callout && (hpts->p_lasttick != hpts->p_curtick)) { 1478 hpts->p_curtick = tcp_gethptstick(&tv); 1479 counter_u64_add(hpts_loops, 1); 1480 hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick); 1481 goto again; 1482 } 1483 1484 if (from_callout){ 1485 tcp_hpts_set_max_sleep(hpts, wrap_loop_cnt); 1486 } 1487 if (seen_endpoint) 1488 return(hpts_slots_diff(slot_pos_of_endpoint, orig_exit_slot)); 1489 else 1490 return (0); 1491 } 1492 1493 void 1494 __tcp_set_hpts(struct inpcb *inp, int32_t line) 1495 { 1496 struct tcp_hpts_entry *hpts; 1497 int failed; 1498 1499 INP_WLOCK_ASSERT(inp); 1500 hpts = tcp_hpts_lock(inp); 1501 if ((inp->inp_in_hpts == 0) && 1502 (inp->inp_hpts_cpu_set == 0)) { 1503 inp->inp_hpts_cpu = hpts_cpuid(inp, &failed); 1504 if (failed == 0) 1505 inp->inp_hpts_cpu_set = 1; 1506 } 1507 mtx_unlock(&hpts->p_mtx); 1508 } 1509 1510 static void 1511 __tcp_run_hpts(struct tcp_hpts_entry *hpts) 1512 { 1513 int ticks_ran; 1514 1515 if (hpts->p_hpts_active) { 1516 /* Already active */ 1517 return; 1518 } 1519 if (mtx_trylock(&hpts->p_mtx) == 0) { 1520 /* Someone else got the lock */ 1521 return; 1522 } 1523 if (hpts->p_hpts_active) 1524 goto out_with_mtx; 1525 hpts->syscall_cnt++; 1526 counter_u64_add(hpts_direct_call, 1); 1527 hpts->p_hpts_active = 1; 1528 ticks_ran = tcp_hptsi(hpts, 0); 1529 /* We may want to adjust the sleep values here */ 1530 if (hpts->p_on_queue_cnt >= conn_cnt_thresh) { 1531 if (ticks_ran > ticks_indicate_less_sleep) { 1532 struct timeval tv; 1533 sbintime_t sb; 1534 1535 hpts->p_mysleep.tv_usec /= 2; 1536 if (hpts->p_mysleep.tv_usec < dynamic_min_sleep) 1537 hpts->p_mysleep.tv_usec = dynamic_min_sleep; 1538 /* Reschedule with new to value */ 1539 tcp_hpts_set_max_sleep(hpts, 0); 1540 tv.tv_usec = hpts->p_hpts_sleep_time * HPTS_TICKS_PER_SLOT; 1541 /* Validate its in the right ranges */ 1542 if (tv.tv_usec < hpts->p_mysleep.tv_usec) { 1543 hpts->overidden_sleep = tv.tv_usec; 1544 tv.tv_usec = hpts->p_mysleep.tv_usec; 1545 } else if (tv.tv_usec > dynamic_max_sleep) { 1546 /* Lets not let sleep get above this value */ 1547 hpts->overidden_sleep = tv.tv_usec; 1548 tv.tv_usec = dynamic_max_sleep; 1549 } 1550 /* 1551 * In this mode the timer is a backstop to 1552 * all the userret/lro_flushes so we use 1553 * the dynamic value and set the on_min_sleep 1554 * flag so we will not be awoken. 1555 */ 1556 sb = tvtosbt(tv); 1557 /* Store off to make visible the actual sleep time */ 1558 hpts->sleeping = tv.tv_usec; 1559 callout_reset_sbt_on(&hpts->co, sb, 0, 1560 hpts_timeout_swi, hpts, hpts->p_cpu, 1561 (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision))); 1562 } else if (ticks_ran < ticks_indicate_more_sleep) { 1563 /* For the further sleep, don't reschedule hpts */ 1564 hpts->p_mysleep.tv_usec *= 2; 1565 if (hpts->p_mysleep.tv_usec > dynamic_max_sleep) 1566 hpts->p_mysleep.tv_usec = dynamic_max_sleep; 1567 } 1568 hpts->p_on_min_sleep = 1; 1569 } 1570 hpts->p_hpts_active = 0; 1571 out_with_mtx: 1572 HPTS_MTX_ASSERT(hpts); 1573 mtx_unlock(&hpts->p_mtx); 1574 } 1575 1576 static struct tcp_hpts_entry * 1577 tcp_choose_hpts_to_run(void) 1578 { 1579 int i, oldest_idx, start, end; 1580 uint32_t cts, time_since_ran, calc; 1581 1582 cts = tcp_get_usecs(NULL); 1583 time_since_ran = 0; 1584 /* Default is all one group */ 1585 start = 0; 1586 end = tcp_pace.rp_num_hptss; 1587 /* 1588 * If we have more than one L3 group figure out which one 1589 * this CPU is in. 1590 */ 1591 if (tcp_pace.grp_cnt > 1) { 1592 for (i = 0; i < tcp_pace.grp_cnt; i++) { 1593 if (CPU_ISSET(curcpu, &tcp_pace.grps[i]->cg_mask)) { 1594 start = tcp_pace.grps[i]->cg_first; 1595 end = (tcp_pace.grps[i]->cg_last + 1); 1596 break; 1597 } 1598 } 1599 } 1600 oldest_idx = -1; 1601 for (i = start; i < end; i++) { 1602 if (TSTMP_GT(cts, cts_last_ran[i])) 1603 calc = cts - cts_last_ran[i]; 1604 else 1605 calc = 0; 1606 if (calc > time_since_ran) { 1607 oldest_idx = i; 1608 time_since_ran = calc; 1609 } 1610 } 1611 if (oldest_idx >= 0) 1612 return(tcp_pace.rp_ent[oldest_idx]); 1613 else 1614 return(tcp_pace.rp_ent[(curcpu % tcp_pace.rp_num_hptss)]); 1615 } 1616 1617 1618 void 1619 tcp_run_hpts(void) 1620 { 1621 static struct tcp_hpts_entry *hpts; 1622 struct epoch_tracker et; 1623 1624 NET_EPOCH_ENTER(et); 1625 hpts = tcp_choose_hpts_to_run(); 1626 __tcp_run_hpts(hpts); 1627 NET_EPOCH_EXIT(et); 1628 } 1629 1630 1631 static void 1632 tcp_hpts_thread(void *ctx) 1633 { 1634 struct tcp_hpts_entry *hpts; 1635 struct epoch_tracker et; 1636 struct timeval tv; 1637 sbintime_t sb; 1638 int ticks_ran; 1639 1640 hpts = (struct tcp_hpts_entry *)ctx; 1641 mtx_lock(&hpts->p_mtx); 1642 if (hpts->p_direct_wake) { 1643 /* Signaled by input or output with low occupancy count. */ 1644 callout_stop(&hpts->co); 1645 counter_u64_add(hpts_direct_awakening, 1); 1646 } else { 1647 /* Timed out, the normal case. */ 1648 counter_u64_add(hpts_wake_timeout, 1); 1649 if (callout_pending(&hpts->co) || 1650 !callout_active(&hpts->co)) { 1651 mtx_unlock(&hpts->p_mtx); 1652 return; 1653 } 1654 } 1655 callout_deactivate(&hpts->co); 1656 hpts->p_hpts_wake_scheduled = 0; 1657 NET_EPOCH_ENTER(et); 1658 if (hpts->p_hpts_active) { 1659 /* 1660 * We are active already. This means that a syscall 1661 * trap or LRO is running in behalf of hpts. In that case 1662 * we need to double our timeout since there seems to be 1663 * enough activity in the system that we don't need to 1664 * run as often (if we were not directly woken). 1665 */ 1666 if (hpts->p_direct_wake == 0) { 1667 counter_u64_add(hpts_back_tosleep, 1); 1668 if (hpts->p_on_queue_cnt >= conn_cnt_thresh) { 1669 hpts->p_mysleep.tv_usec *= 2; 1670 if (hpts->p_mysleep.tv_usec > dynamic_max_sleep) 1671 hpts->p_mysleep.tv_usec = dynamic_max_sleep; 1672 tv.tv_usec = hpts->p_mysleep.tv_usec; 1673 hpts->p_on_min_sleep = 1; 1674 } else { 1675 /* 1676 * Here we have low count on the wheel, but 1677 * somehow we still collided with one of the 1678 * connections. Lets go back to sleep for a 1679 * min sleep time, but clear the flag so we 1680 * can be awoken by insert. 1681 */ 1682 hpts->p_on_min_sleep = 0; 1683 tv.tv_usec = tcp_min_hptsi_time; 1684 } 1685 } else { 1686 /* 1687 * Directly woken most likely to reset the 1688 * callout time. 1689 */ 1690 tv.tv_sec = 0; 1691 tv.tv_usec = hpts->p_mysleep.tv_usec; 1692 } 1693 goto back_to_sleep; 1694 } 1695 hpts->sleeping = 0; 1696 hpts->p_hpts_active = 1; 1697 ticks_ran = tcp_hptsi(hpts, 1); 1698 tv.tv_sec = 0; 1699 tv.tv_usec = hpts->p_hpts_sleep_time * HPTS_TICKS_PER_SLOT; 1700 if (hpts->p_on_queue_cnt >= conn_cnt_thresh) { 1701 if(hpts->p_direct_wake == 0) { 1702 /* 1703 * Only adjust sleep time if we were 1704 * called from the callout i.e. direct_wake == 0. 1705 */ 1706 if (ticks_ran < ticks_indicate_more_sleep) { 1707 hpts->p_mysleep.tv_usec *= 2; 1708 if (hpts->p_mysleep.tv_usec > dynamic_max_sleep) 1709 hpts->p_mysleep.tv_usec = dynamic_max_sleep; 1710 } else if (ticks_ran > ticks_indicate_less_sleep) { 1711 hpts->p_mysleep.tv_usec /= 2; 1712 if (hpts->p_mysleep.tv_usec < dynamic_min_sleep) 1713 hpts->p_mysleep.tv_usec = dynamic_min_sleep; 1714 } 1715 } 1716 if (tv.tv_usec < hpts->p_mysleep.tv_usec) { 1717 hpts->overidden_sleep = tv.tv_usec; 1718 tv.tv_usec = hpts->p_mysleep.tv_usec; 1719 } else if (tv.tv_usec > dynamic_max_sleep) { 1720 /* Lets not let sleep get above this value */ 1721 hpts->overidden_sleep = tv.tv_usec; 1722 tv.tv_usec = dynamic_max_sleep; 1723 } 1724 /* 1725 * In this mode the timer is a backstop to 1726 * all the userret/lro_flushes so we use 1727 * the dynamic value and set the on_min_sleep 1728 * flag so we will not be awoken. 1729 */ 1730 hpts->p_on_min_sleep = 1; 1731 } else if (hpts->p_on_queue_cnt == 0) { 1732 /* 1733 * No one on the wheel, please wake us up 1734 * if you insert on the wheel. 1735 */ 1736 hpts->p_on_min_sleep = 0; 1737 hpts->overidden_sleep = 0; 1738 } else { 1739 /* 1740 * We hit here when we have a low number of 1741 * clients on the wheel (our else clause). 1742 * We may need to go on min sleep, if we set 1743 * the flag we will not be awoken if someone 1744 * is inserted ahead of us. Clearing the flag 1745 * means we can be awoken. This is "old mode" 1746 * where the timer is what runs hpts mainly. 1747 */ 1748 if (tv.tv_usec < tcp_min_hptsi_time) { 1749 /* 1750 * Yes on min sleep, which means 1751 * we cannot be awoken. 1752 */ 1753 hpts->overidden_sleep = tv.tv_usec; 1754 tv.tv_usec = tcp_min_hptsi_time; 1755 hpts->p_on_min_sleep = 1; 1756 } else { 1757 /* Clear the min sleep flag */ 1758 hpts->overidden_sleep = 0; 1759 hpts->p_on_min_sleep = 0; 1760 } 1761 } 1762 HPTS_MTX_ASSERT(hpts); 1763 hpts->p_hpts_active = 0; 1764 back_to_sleep: 1765 hpts->p_direct_wake = 0; 1766 sb = tvtosbt(tv); 1767 /* Store off to make visible the actual sleep time */ 1768 hpts->sleeping = tv.tv_usec; 1769 callout_reset_sbt_on(&hpts->co, sb, 0, 1770 hpts_timeout_swi, hpts, hpts->p_cpu, 1771 (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision))); 1772 NET_EPOCH_EXIT(et); 1773 mtx_unlock(&hpts->p_mtx); 1774 } 1775 1776 #undef timersub 1777 1778 static int32_t 1779 hpts_count_level(struct cpu_group *cg) 1780 { 1781 int32_t count_l3, i; 1782 1783 count_l3 = 0; 1784 if (cg->cg_level == CG_SHARE_L3) 1785 count_l3++; 1786 /* Walk all the children looking for L3 */ 1787 for (i = 0; i < cg->cg_children; i++) { 1788 count_l3 += hpts_count_level(&cg->cg_child[i]); 1789 } 1790 return (count_l3); 1791 } 1792 1793 static void 1794 hpts_gather_grps(struct cpu_group **grps, int32_t *at, int32_t max, struct cpu_group *cg) 1795 { 1796 int32_t idx, i; 1797 1798 idx = *at; 1799 if (cg->cg_level == CG_SHARE_L3) { 1800 grps[idx] = cg; 1801 idx++; 1802 if (idx == max) { 1803 *at = idx; 1804 return; 1805 } 1806 } 1807 *at = idx; 1808 /* Walk all the children looking for L3 */ 1809 for (i = 0; i < cg->cg_children; i++) { 1810 hpts_gather_grps(grps, at, max, &cg->cg_child[i]); 1811 } 1812 } 1813 1814 static void 1815 tcp_init_hptsi(void *st) 1816 { 1817 struct cpu_group *cpu_top; 1818 int32_t error __diagused; 1819 int32_t i, j, bound = 0, created = 0; 1820 size_t sz, asz; 1821 struct timeval tv; 1822 sbintime_t sb; 1823 struct tcp_hpts_entry *hpts; 1824 struct pcpu *pc; 1825 char unit[16]; 1826 uint32_t ncpus = mp_ncpus ? mp_ncpus : MAXCPU; 1827 int count, domain; 1828 1829 #ifdef SMP 1830 cpu_top = smp_topo(); 1831 #else 1832 cpu_top = NULL; 1833 #endif 1834 tcp_pace.rp_num_hptss = ncpus; 1835 hpts_hopelessly_behind = counter_u64_alloc(M_WAITOK); 1836 hpts_loops = counter_u64_alloc(M_WAITOK); 1837 back_tosleep = counter_u64_alloc(M_WAITOK); 1838 combined_wheel_wrap = counter_u64_alloc(M_WAITOK); 1839 wheel_wrap = counter_u64_alloc(M_WAITOK); 1840 hpts_wake_timeout = counter_u64_alloc(M_WAITOK); 1841 hpts_direct_awakening = counter_u64_alloc(M_WAITOK); 1842 hpts_back_tosleep = counter_u64_alloc(M_WAITOK); 1843 hpts_direct_call = counter_u64_alloc(M_WAITOK); 1844 cpu_uses_flowid = counter_u64_alloc(M_WAITOK); 1845 cpu_uses_random = counter_u64_alloc(M_WAITOK); 1846 1847 sz = (tcp_pace.rp_num_hptss * sizeof(struct tcp_hpts_entry *)); 1848 tcp_pace.rp_ent = malloc(sz, M_TCPHPTS, M_WAITOK | M_ZERO); 1849 sz = (sizeof(uint32_t) * tcp_pace.rp_num_hptss); 1850 cts_last_ran = malloc(sz, M_TCPHPTS, M_WAITOK); 1851 tcp_pace.grp_cnt = 0; 1852 if (cpu_top == NULL) { 1853 tcp_pace.grp_cnt = 1; 1854 } else { 1855 /* Find out how many cache level 3 domains we have */ 1856 count = 0; 1857 tcp_pace.grp_cnt = hpts_count_level(cpu_top); 1858 if (tcp_pace.grp_cnt == 0) { 1859 tcp_pace.grp_cnt = 1; 1860 } 1861 sz = (tcp_pace.grp_cnt * sizeof(struct cpu_group *)); 1862 tcp_pace.grps = malloc(sz, M_TCPHPTS, M_WAITOK); 1863 /* Now populate the groups */ 1864 if (tcp_pace.grp_cnt == 1) { 1865 /* 1866 * All we need is the top level all cpu's are in 1867 * the same cache so when we use grp[0]->cg_mask 1868 * with the cg_first <-> cg_last it will include 1869 * all cpu's in it. The level here is probably 1870 * zero which is ok. 1871 */ 1872 tcp_pace.grps[0] = cpu_top; 1873 } else { 1874 /* 1875 * Here we must find all the level three cache domains 1876 * and setup our pointers to them. 1877 */ 1878 count = 0; 1879 hpts_gather_grps(tcp_pace.grps, &count, tcp_pace.grp_cnt, cpu_top); 1880 } 1881 } 1882 asz = sizeof(struct hptsh) * NUM_OF_HPTSI_SLOTS; 1883 for (i = 0; i < tcp_pace.rp_num_hptss; i++) { 1884 tcp_pace.rp_ent[i] = malloc(sizeof(struct tcp_hpts_entry), 1885 M_TCPHPTS, M_WAITOK | M_ZERO); 1886 tcp_pace.rp_ent[i]->p_hptss = malloc(asz, M_TCPHPTS, M_WAITOK); 1887 hpts = tcp_pace.rp_ent[i]; 1888 /* 1889 * Init all the hpts structures that are not specifically 1890 * zero'd by the allocations. Also lets attach them to the 1891 * appropriate sysctl block as well. 1892 */ 1893 mtx_init(&hpts->p_mtx, "tcp_hpts_lck", 1894 "hpts", MTX_DEF | MTX_DUPOK); 1895 for (j = 0; j < NUM_OF_HPTSI_SLOTS; j++) { 1896 TAILQ_INIT(&hpts->p_hptss[j].head); 1897 hpts->p_hptss[j].count = 0; 1898 hpts->p_hptss[j].gencnt = 0; 1899 } 1900 sysctl_ctx_init(&hpts->hpts_ctx); 1901 sprintf(unit, "%d", i); 1902 hpts->hpts_root = SYSCTL_ADD_NODE(&hpts->hpts_ctx, 1903 SYSCTL_STATIC_CHILDREN(_net_inet_tcp_hpts), 1904 OID_AUTO, 1905 unit, 1906 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 1907 ""); 1908 SYSCTL_ADD_INT(&hpts->hpts_ctx, 1909 SYSCTL_CHILDREN(hpts->hpts_root), 1910 OID_AUTO, "out_qcnt", CTLFLAG_RD, 1911 &hpts->p_on_queue_cnt, 0, 1912 "Count TCB's awaiting output processing"); 1913 SYSCTL_ADD_U16(&hpts->hpts_ctx, 1914 SYSCTL_CHILDREN(hpts->hpts_root), 1915 OID_AUTO, "active", CTLFLAG_RD, 1916 &hpts->p_hpts_active, 0, 1917 "Is the hpts active"); 1918 SYSCTL_ADD_UINT(&hpts->hpts_ctx, 1919 SYSCTL_CHILDREN(hpts->hpts_root), 1920 OID_AUTO, "curslot", CTLFLAG_RD, 1921 &hpts->p_cur_slot, 0, 1922 "What the current running pacers goal"); 1923 SYSCTL_ADD_UINT(&hpts->hpts_ctx, 1924 SYSCTL_CHILDREN(hpts->hpts_root), 1925 OID_AUTO, "runtick", CTLFLAG_RD, 1926 &hpts->p_runningslot, 0, 1927 "What the running pacers current slot is"); 1928 SYSCTL_ADD_UINT(&hpts->hpts_ctx, 1929 SYSCTL_CHILDREN(hpts->hpts_root), 1930 OID_AUTO, "curtick", CTLFLAG_RD, 1931 &hpts->p_curtick, 0, 1932 "What the running pacers last tick mapped to the wheel was"); 1933 SYSCTL_ADD_UINT(&hpts->hpts_ctx, 1934 SYSCTL_CHILDREN(hpts->hpts_root), 1935 OID_AUTO, "lastran", CTLFLAG_RD, 1936 &cts_last_ran[i], 0, 1937 "The last usec tick that this hpts ran"); 1938 SYSCTL_ADD_LONG(&hpts->hpts_ctx, 1939 SYSCTL_CHILDREN(hpts->hpts_root), 1940 OID_AUTO, "cur_min_sleep", CTLFLAG_RD, 1941 &hpts->p_mysleep.tv_usec, 1942 "What the running pacers is using for p_mysleep.tv_usec"); 1943 SYSCTL_ADD_U64(&hpts->hpts_ctx, 1944 SYSCTL_CHILDREN(hpts->hpts_root), 1945 OID_AUTO, "now_sleeping", CTLFLAG_RD, 1946 &hpts->sleeping, 0, 1947 "What the running pacers is actually sleeping for"); 1948 SYSCTL_ADD_U64(&hpts->hpts_ctx, 1949 SYSCTL_CHILDREN(hpts->hpts_root), 1950 OID_AUTO, "syscall_cnt", CTLFLAG_RD, 1951 &hpts->syscall_cnt, 0, 1952 "How many times we had syscalls on this hpts"); 1953 1954 hpts->p_hpts_sleep_time = hpts_sleep_max; 1955 hpts->p_num = i; 1956 hpts->p_curtick = tcp_gethptstick(&tv); 1957 cts_last_ran[i] = tcp_tv_to_usectick(&tv); 1958 hpts->p_prev_slot = hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick); 1959 hpts->p_cpu = 0xffff; 1960 hpts->p_nxt_slot = hpts_slot(hpts->p_cur_slot, 1); 1961 callout_init(&hpts->co, 1); 1962 } 1963 /* Don't try to bind to NUMA domains if we don't have any */ 1964 if (vm_ndomains == 1 && tcp_bind_threads == 2) 1965 tcp_bind_threads = 0; 1966 1967 /* 1968 * Now lets start ithreads to handle the hptss. 1969 */ 1970 for (i = 0; i < tcp_pace.rp_num_hptss; i++) { 1971 hpts = tcp_pace.rp_ent[i]; 1972 hpts->p_cpu = i; 1973 1974 error = swi_add(&hpts->ie, "hpts", 1975 tcp_hpts_thread, (void *)hpts, 1976 SWI_NET, INTR_MPSAFE, &hpts->ie_cookie); 1977 KASSERT(error == 0, 1978 ("Can't add hpts:%p i:%d err:%d", 1979 hpts, i, error)); 1980 created++; 1981 hpts->p_mysleep.tv_sec = 0; 1982 hpts->p_mysleep.tv_usec = tcp_min_hptsi_time; 1983 if (tcp_bind_threads == 1) { 1984 if (intr_event_bind(hpts->ie, i) == 0) 1985 bound++; 1986 } else if (tcp_bind_threads == 2) { 1987 /* Find the group for this CPU (i) and bind into it */ 1988 for (j = 0; j < tcp_pace.grp_cnt; j++) { 1989 if (CPU_ISSET(i, &tcp_pace.grps[j]->cg_mask)) { 1990 if (intr_event_bind_ithread_cpuset(hpts->ie, 1991 &tcp_pace.grps[j]->cg_mask) == 0) { 1992 bound++; 1993 pc = pcpu_find(i); 1994 domain = pc->pc_domain; 1995 count = hpts_domains[domain].count; 1996 hpts_domains[domain].cpu[count] = i; 1997 hpts_domains[domain].count++; 1998 break; 1999 } 2000 } 2001 } 2002 } 2003 tv.tv_sec = 0; 2004 tv.tv_usec = hpts->p_hpts_sleep_time * HPTS_TICKS_PER_SLOT; 2005 hpts->sleeping = tv.tv_usec; 2006 sb = tvtosbt(tv); 2007 callout_reset_sbt_on(&hpts->co, sb, 0, 2008 hpts_timeout_swi, hpts, hpts->p_cpu, 2009 (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision))); 2010 } 2011 /* 2012 * If we somehow have an empty domain, fall back to choosing 2013 * among all htps threads. 2014 */ 2015 for (i = 0; i < vm_ndomains; i++) { 2016 if (hpts_domains[i].count == 0) { 2017 tcp_bind_threads = 0; 2018 break; 2019 } 2020 } 2021 printf("TCP Hpts created %d swi interrupt threads and bound %d to %s\n", 2022 created, bound, 2023 tcp_bind_threads == 2 ? "NUMA domains" : "cpus"); 2024 #ifdef INVARIANTS 2025 printf("HPTS is in INVARIANT mode!!\n"); 2026 #endif 2027 } 2028 2029 SYSINIT(tcphptsi, SI_SUB_SOFTINTR, SI_ORDER_ANY, tcp_init_hptsi, NULL); 2030 MODULE_VERSION(tcphpts, 1); 2031