1 /*-
2 * Copyright (c) 2016-2018 Netflix, Inc.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 * 1. Redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer.
9 * 2. Redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution.
12 *
13 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
14 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
17 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23 * SUCH DAMAGE.
24 *
25 */
26 #include "opt_inet.h"
27 #include "opt_inet6.h"
28 #include "opt_rss.h"
29
30 /**
31 * Some notes about usage.
32 *
33 * The tcp_hpts system is designed to provide a high precision timer
34 * system for tcp. Its main purpose is to provide a mechanism for
35 * pacing packets out onto the wire. It can be used in two ways
36 * by a given TCP stack (and those two methods can be used simultaneously).
37 *
38 * First, and probably the main thing its used by Rack and BBR, it can
39 * be used to call tcp_output() of a transport stack at some time in the future.
40 * The normal way this is done is that tcp_output() of the stack schedules
41 * itself to be called again by calling tcp_hpts_insert(tcpcb, usecs). The
42 * usecs is the time from now that the stack wants to be called and is
43 * passing time directly in microseconds. So a typical
44 * call from the tcp_output() routine might look like:
45 *
46 * tcp_hpts_insert(tp, 550, NULL);
47 *
48 * The above would schedule tcp_output() to be called in 550 microseconds.
49 * Note that if using this mechanism the stack will want to add near
50 * its top a check to prevent unwanted calls (from user land or the
51 * arrival of incoming ack's). So it would add something like:
52 *
53 * if (tcp_in_hpts(inp))
54 * return;
55 *
56 * to prevent output processing until the time alotted has gone by.
57 * Of course this is a bare bones example and the stack will probably
58 * have more consideration then just the above.
59 *
60 * In order to run input queued segments from the HPTS context the
61 * tcp stack must define an input function for
62 * tfb_do_queued_segments(). This function understands
63 * how to dequeue a array of packets that were input and
64 * knows how to call the correct processing routine.
65 *
66 * Locking in this is important as well so most likely the
67 * stack will need to define the tfb_do_segment_nounlock()
68 * splitting tfb_do_segment() into two parts. The main processing
69 * part that does not unlock the INP and returns a value of 1 or 0.
70 * It returns 0 if all is well and the lock was not released. It
71 * returns 1 if we had to destroy the TCB (a reset received etc).
72 * The remains of tfb_do_segment() then become just a simple call
73 * to the tfb_do_segment_nounlock() function and check the return
74 * code and possibly unlock.
75 *
76 * The stack must also set the flag on the INP that it supports this
77 * feature i.e. INP_SUPPORTS_MBUFQ. The LRO code recoginizes
78 * this flag as well and will queue packets when it is set.
79 * There are other flags as well INP_MBUF_QUEUE_READY and
80 * INP_DONT_SACK_QUEUE. The first flag tells the LRO code
81 * that we are in the pacer for output so there is no
82 * need to wake up the hpts system to get immediate
83 * input. The second tells the LRO code that its okay
84 * if a SACK arrives you can still defer input and let
85 * the current hpts timer run (this is usually set when
86 * a rack timer is up so we know SACK's are happening
87 * on the connection already and don't want to wakeup yet).
88 *
89 * There is a common functions within the rack_bbr_common code
90 * version i.e. ctf_do_queued_segments(). This function
91 * knows how to take the input queue of packets from tp->t_inqueue
92 * and process them digging out all the arguments, calling any bpf tap and
93 * calling into tfb_do_segment_nounlock(). The common
94 * function (ctf_do_queued_segments()) requires that
95 * you have defined the tfb_do_segment_nounlock() as
96 * described above.
97 */
98
99 #include <sys/param.h>
100 #include <sys/bus.h>
101 #include <sys/interrupt.h>
102 #include <sys/module.h>
103 #include <sys/kernel.h>
104 #include <sys/hhook.h>
105 #include <sys/malloc.h>
106 #include <sys/mbuf.h>
107 #include <sys/proc.h> /* for proc0 declaration */
108 #include <sys/socket.h>
109 #include <sys/socketvar.h>
110 #include <sys/sysctl.h>
111 #include <sys/systm.h>
112 #include <sys/refcount.h>
113 #include <sys/sched.h>
114 #include <sys/queue.h>
115 #include <sys/smp.h>
116 #include <sys/counter.h>
117 #include <sys/time.h>
118 #include <sys/kthread.h>
119 #include <sys/kern_prefetch.h>
120
121 #include <vm/uma.h>
122 #include <vm/vm.h>
123
124 #include <net/route.h>
125 #include <net/vnet.h>
126
127 #ifdef RSS
128 #include <net/netisr.h>
129 #include <net/rss_config.h>
130 #endif
131
132 #define TCPSTATES /* for logging */
133
134 #include <netinet/in.h>
135 #include <netinet/in_kdtrace.h>
136 #include <netinet/in_pcb.h>
137 #include <netinet/ip.h>
138 #include <netinet/ip_var.h>
139 #include <netinet/ip6.h>
140 #include <netinet6/in6_pcb.h>
141 #include <netinet6/ip6_var.h>
142 #include <netinet/tcp.h>
143 #include <netinet/tcp_fsm.h>
144 #include <netinet/tcp_seq.h>
145 #include <netinet/tcp_timer.h>
146 #include <netinet/tcp_var.h>
147 #include <netinet/tcpip.h>
148 #include <netinet/cc/cc.h>
149 #include <netinet/tcp_hpts.h>
150 #include <netinet/tcp_hpts_internal.h>
151 #include <netinet/tcp_log_buf.h>
152
153 #ifdef tcp_offload
154 #include <netinet/tcp_offload.h>
155 #endif
156
157 /* Global instance for TCP HPTS */
158 struct tcp_hptsi *tcp_hptsi_pace;
159
160 /* Default function table for production use. */
161 const struct tcp_hptsi_funcs tcp_hptsi_default_funcs = {
162 .microuptime = microuptime,
163 .swi_add = swi_add,
164 .swi_remove = swi_remove,
165 .swi_sched = swi_sched,
166 .intr_event_bind = intr_event_bind,
167 .intr_event_bind_ithread_cpuset = intr_event_bind_ithread_cpuset,
168 .callout_init = callout_init,
169 .callout_reset_sbt_on = callout_reset_sbt_on,
170 ._callout_stop_safe = _callout_stop_safe,
171 };
172
173 #ifdef TCP_HPTS_KTEST
174 #define microuptime pace->funcs->microuptime
175 #define swi_add pace->funcs->swi_add
176 #define swi_remove pace->funcs->swi_remove
177 #define swi_sched pace->funcs->swi_sched
178 #define intr_event_bind pace->funcs->intr_event_bind
179 #define intr_event_bind_ithread_cpuset pace->funcs->intr_event_bind_ithread_cpuset
180 #define callout_init pace->funcs->callout_init
181 #define callout_reset_sbt_on pace->funcs->callout_reset_sbt_on
182 #define _callout_stop_safe pace->funcs->_callout_stop_safe
183 #endif
184
185 static MALLOC_DEFINE(M_TCPHPTS, "tcp_hpts", "TCP hpts");
186
187 static void tcp_hpts_thread(void *ctx);
188
189 /*
190 * When using the hpts, a TCP stack must make sure
191 * that once a INP_DROPPED flag is applied to a INP
192 * that it does not expect tcp_output() to ever be
193 * called by the hpts. The hpts will *not* call
194 * any output (or input) functions on a TCB that
195 * is in the DROPPED state.
196 *
197 * This implies final ACK's and RST's that might
198 * be sent when a TCB is still around must be
199 * sent from a routine like tcp_respond().
200 */
201 #define LOWEST_SLEEP_ALLOWED 50
202 #define DEFAULT_MIN_SLEEP 250 /* How many usec's is default for hpts sleep
203 * this determines min granularity of the
204 * hpts. If 1, granularity is 10useconds at
205 * the cost of more CPU (context switching).
206 * Note do not set this to 0.
207 */
208 #define DYNAMIC_MIN_SLEEP DEFAULT_MIN_SLEEP
209 #define DYNAMIC_MAX_SLEEP 5000 /* 5ms */
210
211 /* Thresholds for raising/lowering sleep */
212 #define SLOTS_INDICATE_MORE_SLEEP 100 /* This would be 1ms */
213 #define SLOTS_INDICATE_LESS_SLEEP 1000 /* This would indicate 10ms */
214 /**
215 *
216 * Dynamic adjustment of sleeping times is done in "new" mode
217 * where we are depending on syscall returns and lro returns
218 * to push hpts forward mainly and the timer is only a backstop.
219 *
220 * When we are in the "new" mode i.e. conn_cnt > conn_cnt_thresh
221 * then we do a dynamic adjustment on the time we sleep.
222 * Our threshold is if the lateness of the first client served (in slots) is
223 * greater than or equal too slots_indicate_more_sleep (10ms
224 * or 10000 slots). If we were that late, the actual sleep time
225 * is adjusted down by 50%. If the slots_ran is less than
226 * slots_indicate_more_sleep (100 slots or 1000usecs).
227 *
228 */
229
230 #ifdef RSS
231 int tcp_bind_threads = 1;
232 #else
233 int tcp_bind_threads = 2;
234 #endif
235 static int tcp_use_irq_cpu = 0;
236 static int hpts_does_tp_logging = 0;
237 static int32_t tcp_hpts_precision = 120;
238 int32_t tcp_min_hptsi_time = DEFAULT_MIN_SLEEP;
239 static int conn_cnt_thresh = DEFAULT_CONNECTION_THRESHOLD;
240 static int32_t dynamic_min_sleep = DYNAMIC_MIN_SLEEP;
241 static int32_t dynamic_max_sleep = DYNAMIC_MAX_SLEEP;
242
243 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, hpts, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
244 "TCP Hpts controls");
245 SYSCTL_NODE(_net_inet_tcp_hpts, OID_AUTO, stats, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
246 "TCP Hpts statistics");
247
248 counter_u64_t hpts_hopelessly_behind;
249
250 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, hopeless, CTLFLAG_RD,
251 &hpts_hopelessly_behind,
252 "Number of times hpts could not catch up and was behind hopelessly");
253
254 counter_u64_t hpts_loops;
255
256 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, loops, CTLFLAG_RD,
257 &hpts_loops, "Number of times hpts had to loop to catch up");
258
259 counter_u64_t back_tosleep;
260
261 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, no_tcbsfound, CTLFLAG_RD,
262 &back_tosleep, "Number of times hpts found no tcbs");
263
264 counter_u64_t combined_wheel_wrap;
265
266 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, comb_wheel_wrap, CTLFLAG_RD,
267 &combined_wheel_wrap, "Number of times the wheel lagged enough to have an insert see wrap");
268
269 counter_u64_t wheel_wrap;
270
271 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, wheel_wrap, CTLFLAG_RD,
272 &wheel_wrap, "Number of times the wheel lagged enough to have an insert see wrap");
273
274 counter_u64_t hpts_direct_call;
275 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, direct_call, CTLFLAG_RD,
276 &hpts_direct_call, "Number of times hpts was called by syscall/trap or other entry");
277
278 counter_u64_t hpts_wake_timeout;
279
280 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, timeout_wakeup, CTLFLAG_RD,
281 &hpts_wake_timeout, "Number of times hpts threads woke up via the callout expiring");
282
283 counter_u64_t hpts_direct_awakening;
284
285 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, direct_awakening, CTLFLAG_RD,
286 &hpts_direct_awakening, "Number of times hpts threads woke up via the callout expiring");
287
288 counter_u64_t hpts_back_tosleep;
289
290 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, back_tosleep, CTLFLAG_RD,
291 &hpts_back_tosleep, "Number of times hpts threads woke up via the callout expiring and went back to sleep no work");
292
293 counter_u64_t cpu_uses_flowid;
294 counter_u64_t cpu_uses_random;
295
296 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, cpusel_flowid, CTLFLAG_RD,
297 &cpu_uses_flowid, "Number of times when setting cpuid we used the flowid field");
298 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, cpusel_random, CTLFLAG_RD,
299 &cpu_uses_random, "Number of times when setting cpuid we used the a random value");
300
301 TUNABLE_INT("net.inet.tcp.bind_hptss", &tcp_bind_threads);
302 TUNABLE_INT("net.inet.tcp.use_irq", &tcp_use_irq_cpu);
303 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, bind_hptss, CTLFLAG_RD,
304 &tcp_bind_threads, 2,
305 "Thread Binding tunable");
306 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, use_irq, CTLFLAG_RD,
307 &tcp_use_irq_cpu, 0,
308 "Use of irq CPU tunable");
309 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, precision, CTLFLAG_RW,
310 &tcp_hpts_precision, 120,
311 "Value for PRE() precision of callout");
312 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, cnt_thresh, CTLFLAG_RW,
313 &conn_cnt_thresh, 0,
314 "How many connections (below) make us use the callout based mechanism");
315 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, logging, CTLFLAG_RW,
316 &hpts_does_tp_logging, 0,
317 "Do we add to any tp that has logging on pacer logs");
318 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, dyn_minsleep, CTLFLAG_RW,
319 &dynamic_min_sleep, 250,
320 "What is the dynamic minsleep value?");
321 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, dyn_maxsleep, CTLFLAG_RW,
322 &dynamic_max_sleep, 5000,
323 "What is the dynamic maxsleep value?");
324
325 static int32_t max_pacer_loops = 10;
326 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, loopmax, CTLFLAG_RW,
327 &max_pacer_loops, 10,
328 "What is the maximum number of times the pacer will loop trying to catch up");
329
330 #define HPTS_MAX_SLEEP_ALLOWED (NUM_OF_HPTSI_SLOTS/2)
331
332 static uint32_t hpts_sleep_max = HPTS_MAX_SLEEP_ALLOWED;
333
334 static int
sysctl_net_inet_tcp_hpts_max_sleep(SYSCTL_HANDLER_ARGS)335 sysctl_net_inet_tcp_hpts_max_sleep(SYSCTL_HANDLER_ARGS)
336 {
337 int error;
338 uint32_t new;
339
340 new = hpts_sleep_max;
341 error = sysctl_handle_int(oidp, &new, 0, req);
342 if (error == 0 && req->newptr) {
343 if ((new < (dynamic_min_sleep/HPTS_USECS_PER_SLOT)) ||
344 (new > HPTS_MAX_SLEEP_ALLOWED))
345 error = EINVAL;
346 else
347 hpts_sleep_max = new;
348 }
349 return (error);
350 }
351
352 static int
sysctl_net_inet_tcp_hpts_min_sleep(SYSCTL_HANDLER_ARGS)353 sysctl_net_inet_tcp_hpts_min_sleep(SYSCTL_HANDLER_ARGS)
354 {
355 int error;
356 uint32_t new;
357
358 new = tcp_min_hptsi_time;
359 error = sysctl_handle_int(oidp, &new, 0, req);
360 if (error == 0 && req->newptr) {
361 if (new < LOWEST_SLEEP_ALLOWED)
362 error = EINVAL;
363 else
364 tcp_min_hptsi_time = new;
365 }
366 return (error);
367 }
368
369 SYSCTL_PROC(_net_inet_tcp_hpts, OID_AUTO, maxsleep,
370 CTLTYPE_UINT | CTLFLAG_RW,
371 &hpts_sleep_max, 0,
372 &sysctl_net_inet_tcp_hpts_max_sleep, "IU",
373 "Maximum time hpts will sleep in slots");
374
375 SYSCTL_PROC(_net_inet_tcp_hpts, OID_AUTO, minsleep,
376 CTLTYPE_UINT | CTLFLAG_RW,
377 &tcp_min_hptsi_time, 0,
378 &sysctl_net_inet_tcp_hpts_min_sleep, "IU",
379 "The minimum time the hpts must sleep before processing more slots");
380
381 static int slots_indicate_more_sleep = SLOTS_INDICATE_MORE_SLEEP;
382 static int slots_indicate_less_sleep = SLOTS_INDICATE_LESS_SLEEP;
383 static int tcp_hpts_no_wake_over_thresh = 1;
384
385 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, more_sleep, CTLFLAG_RW,
386 &slots_indicate_more_sleep, 0,
387 "If we only process this many or less on a timeout, we need longer sleep on the next callout");
388 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, less_sleep, CTLFLAG_RW,
389 &slots_indicate_less_sleep, 0,
390 "If we process this many or more on a timeout, we need less sleep on the next callout");
391 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, nowake_over_thresh, CTLFLAG_RW,
392 &tcp_hpts_no_wake_over_thresh, 0,
393 "When we are over the threshold on the pacer do we prohibit wakeups?");
394
395 uint16_t
tcp_hptsi_random_cpu(struct tcp_hptsi * pace)396 tcp_hptsi_random_cpu(struct tcp_hptsi *pace)
397 {
398 uint16_t cpuid;
399 uint32_t ran;
400
401 ran = arc4random();
402 cpuid = (((ran & 0xffff) % mp_ncpus) % pace->rp_num_hptss);
403 return (cpuid);
404 }
405
406 static void
tcp_hpts_log(struct tcp_hpts_entry * hpts,struct tcpcb * tp,struct timeval * tv,int slots_to_run,int idx,bool from_callout)407 tcp_hpts_log(struct tcp_hpts_entry *hpts, struct tcpcb *tp, struct timeval *tv,
408 int slots_to_run, int idx, bool from_callout)
409 {
410 if (hpts_does_tp_logging && tcp_bblogging_on(tp)) {
411 union tcp_log_stackspecific log;
412 /*
413 * Unused logs are
414 * 64 bit - delRate, rttProp, bw_inuse
415 * 16 bit - cwnd_gain
416 * 8 bit - bbr_state, bbr_substate, inhpts;
417 */
418 memset(&log, 0, sizeof(log));
419 log.u_bbr.flex1 = hpts->p_nxt_slot;
420 log.u_bbr.flex2 = hpts->p_cur_slot;
421 log.u_bbr.flex3 = hpts->p_prev_slot;
422 log.u_bbr.flex4 = idx;
423 log.u_bbr.flex6 = hpts->p_on_queue_cnt;
424 log.u_bbr.flex7 = hpts->p_cpu;
425 log.u_bbr.flex8 = (uint8_t)from_callout;
426 log.u_bbr.inflight = slots_to_run;
427 log.u_bbr.applimited = hpts->overidden_sleep;
428 log.u_bbr.timeStamp = tcp_tv_to_usec(tv);
429 log.u_bbr.epoch = hpts->saved_curslot;
430 log.u_bbr.lt_epoch = hpts->saved_prev_slot;
431 log.u_bbr.pkts_out = hpts->p_delayed_by;
432 log.u_bbr.lost = hpts->p_hpts_sleep_time;
433 log.u_bbr.pacing_gain = hpts->p_cpu;
434 log.u_bbr.pkt_epoch = hpts->p_runningslot;
435 log.u_bbr.use_lt_bw = 1;
436 TCP_LOG_EVENTP(tp, NULL,
437 &tptosocket(tp)->so_rcv,
438 &tptosocket(tp)->so_snd,
439 BBR_LOG_HPTSDIAG, 0,
440 0, &log, false, tv);
441 }
442 }
443
444 /*
445 * Timeout handler for the HPTS sleep callout. It immediately schedules the SWI
446 * for the HPTS entry to run.
447 */
448 static void
tcp_hpts_sleep_timeout(void * arg)449 tcp_hpts_sleep_timeout(void *arg)
450 {
451 #ifdef TCP_HPTS_KTEST
452 struct tcp_hptsi *pace;
453 #endif
454 struct tcp_hpts_entry *hpts;
455
456 hpts = (struct tcp_hpts_entry *)arg;
457 #ifdef TCP_HPTS_KTEST
458 pace = hpts->p_hptsi;
459 #endif
460 swi_sched(hpts->ie_cookie, 0);
461 }
462
463 /*
464 * Reset the HPTS callout timer with the provided timeval. Returns the results
465 * of the callout_reset_sbt_on() function.
466 */
467 static int
tcp_hpts_sleep(struct tcp_hpts_entry * hpts,struct timeval * tv)468 tcp_hpts_sleep(struct tcp_hpts_entry *hpts, struct timeval *tv)
469 {
470 #ifdef TCP_HPTS_KTEST
471 struct tcp_hptsi *pace;
472 #endif
473 sbintime_t sb;
474
475 #ifdef TCP_HPTS_KTEST
476 pace = hpts->p_hptsi;
477 #endif
478
479 /* Store off to make visible the actual sleep time */
480 hpts->sleeping = tv->tv_usec;
481
482 sb = tvtosbt(*tv);
483 return (callout_reset_sbt_on(
484 &hpts->co, sb, 0, tcp_hpts_sleep_timeout, hpts, hpts->p_cpu,
485 (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision))));
486 }
487
488 /*
489 * Schedules the SWI for the HTPS entry to run, if not already scheduled or
490 * running.
491 */
492 void
tcp_hpts_wake(struct tcp_hpts_entry * hpts)493 tcp_hpts_wake(struct tcp_hpts_entry *hpts)
494 {
495 #ifdef TCP_HPTS_KTEST
496 struct tcp_hptsi *pace;
497 #endif
498
499 HPTS_MTX_ASSERT(hpts);
500
501 #ifdef TCP_HPTS_KTEST
502 pace = hpts->p_hptsi;
503 #endif
504
505 if (tcp_hpts_no_wake_over_thresh && (hpts->p_on_queue_cnt >= conn_cnt_thresh)) {
506 hpts->p_direct_wake = 0;
507 return;
508 }
509 if (hpts->p_hpts_wake_scheduled == 0) {
510 hpts->p_hpts_wake_scheduled = 1;
511 swi_sched(hpts->ie_cookie, 0);
512 }
513 }
514
515 static void
tcp_hpts_insert_internal(struct tcpcb * tp,struct tcp_hpts_entry * hpts)516 tcp_hpts_insert_internal(struct tcpcb *tp, struct tcp_hpts_entry *hpts)
517 {
518 struct inpcb *inp = tptoinpcb(tp);
519 struct hptsh *hptsh;
520
521 INP_WLOCK_ASSERT(inp);
522 HPTS_MTX_ASSERT(hpts);
523 MPASS(hpts->p_cpu == tp->t_hpts_cpu);
524 MPASS(!(inp->inp_flags & INP_DROPPED));
525
526 hptsh = &hpts->p_hptss[tp->t_hpts_slot];
527
528 if (tp->t_in_hpts == IHPTS_NONE) {
529 tp->t_in_hpts = IHPTS_ONQUEUE;
530 in_pcbref(inp);
531 } else if (tp->t_in_hpts == IHPTS_MOVING) {
532 tp->t_in_hpts = IHPTS_ONQUEUE;
533 } else
534 MPASS(tp->t_in_hpts == IHPTS_ONQUEUE);
535 tp->t_hpts_gencnt = hptsh->gencnt;
536
537 TAILQ_INSERT_TAIL(&hptsh->head, tp, t_hpts);
538 hptsh->count++;
539 hpts->p_on_queue_cnt++;
540 }
541
542 static struct tcp_hpts_entry *
tcp_hpts_lock(struct tcp_hptsi * pace,struct tcpcb * tp)543 tcp_hpts_lock(struct tcp_hptsi *pace, struct tcpcb *tp)
544 {
545 struct tcp_hpts_entry *hpts;
546
547 INP_LOCK_ASSERT(tptoinpcb(tp));
548
549 hpts = pace->rp_ent[tp->t_hpts_cpu];
550 HPTS_LOCK(hpts);
551
552 return (hpts);
553 }
554
555 static void
tcp_hpts_release(struct tcpcb * tp)556 tcp_hpts_release(struct tcpcb *tp)
557 {
558 bool released __diagused;
559
560 tp->t_in_hpts = IHPTS_NONE;
561 released = in_pcbrele_wlocked(tptoinpcb(tp));
562 MPASS(released == false);
563 }
564
565 /*
566 * Initialize tcpcb to get ready for use with HPTS. We will know which CPU
567 * is preferred on the first incoming packet. Before that avoid crowding
568 * a single CPU with newborn connections and use a random one.
569 * This initialization is normally called on a newborn tcpcb, but potentially
570 * can be called once again if stack is switched. In that case we inherit CPU
571 * that the previous stack has set, be it random or not. In extreme cases,
572 * e.g. syzkaller fuzzing, a tcpcb can already be in HPTS in IHPTS_MOVING state
573 * and has never received a first packet.
574 */
575 void
__tcp_hpts_init(struct tcp_hptsi * pace,struct tcpcb * tp)576 __tcp_hpts_init(struct tcp_hptsi *pace, struct tcpcb *tp)
577 {
578 if (__predict_true(tp->t_hpts_cpu == HPTS_CPU_NONE)) {
579 tp->t_hpts_cpu = tcp_hptsi_random_cpu(pace);
580 MPASS(!(tp->t_flags2 & TF2_HPTS_CPU_SET));
581 }
582 }
583
584 /*
585 * Called normally with the INP_LOCKED but it
586 * does not matter, the hpts lock is the key
587 * but the lock order allows us to hold the
588 * INP lock and then get the hpts lock.
589 */
590 void
__tcp_hpts_remove(struct tcp_hptsi * pace,struct tcpcb * tp)591 __tcp_hpts_remove(struct tcp_hptsi *pace, struct tcpcb *tp)
592 {
593 struct tcp_hpts_entry *hpts;
594 struct hptsh *hptsh;
595
596 INP_WLOCK_ASSERT(tptoinpcb(tp));
597
598 hpts = tcp_hpts_lock(pace, tp);
599 if (tp->t_in_hpts == IHPTS_ONQUEUE) {
600 hptsh = &hpts->p_hptss[tp->t_hpts_slot];
601 tp->t_hpts_request = 0;
602 if (__predict_true(tp->t_hpts_gencnt == hptsh->gencnt)) {
603 TAILQ_REMOVE(&hptsh->head, tp, t_hpts);
604 MPASS(hptsh->count > 0);
605 hptsh->count--;
606 MPASS(hpts->p_on_queue_cnt > 0);
607 hpts->p_on_queue_cnt--;
608 tcp_hpts_release(tp);
609 } else {
610 /*
611 * tcp_hptsi() now owns the TAILQ head of this inp.
612 * Can't TAILQ_REMOVE, just mark it.
613 */
614 #ifdef INVARIANTS
615 struct tcpcb *tmp;
616
617 TAILQ_FOREACH(tmp, &hptsh->head, t_hpts)
618 MPASS(tmp != tp);
619 #endif
620 tp->t_in_hpts = IHPTS_MOVING;
621 tp->t_hpts_slot = -1;
622 }
623 } else if (tp->t_in_hpts == IHPTS_MOVING) {
624 /*
625 * Handle a special race condition:
626 * tcp_hptsi() moves inpcb to detached tailq
627 * tcp_hpts_remove() marks as IHPTS_MOVING, slot = -1
628 * tcp_hpts_insert() sets slot to a meaningful value
629 * tcp_hpts_remove() again (we are here!), then in_pcbdrop()
630 * tcp_hptsi() finds pcb with meaningful slot and INP_DROPPED
631 */
632 tp->t_hpts_slot = -1;
633 }
634 HPTS_UNLOCK(hpts);
635 }
636
637 static inline int
hpts_slot(uint32_t wheel_slot,uint32_t plus)638 hpts_slot(uint32_t wheel_slot, uint32_t plus)
639 {
640 /*
641 * Given a slot on the wheel, what slot
642 * is that plus slots out?
643 */
644 KASSERT(wheel_slot < NUM_OF_HPTSI_SLOTS, ("Invalid slot %u not on wheel", wheel_slot));
645 return ((wheel_slot + plus) % NUM_OF_HPTSI_SLOTS);
646 }
647
648 static inline int
cts_to_wheel(uint32_t cts)649 cts_to_wheel(uint32_t cts)
650 {
651 /*
652 * Given a timestamp in useconds map it to our limited space wheel.
653 */
654 return ((cts / HPTS_USECS_PER_SLOT) % NUM_OF_HPTSI_SLOTS);
655 }
656
657 static inline int
hpts_slots_diff(int prev_slot,int slot_now)658 hpts_slots_diff(int prev_slot, int slot_now)
659 {
660 /*
661 * Given two slots that are someplace
662 * on our wheel. How far are they apart?
663 */
664 if (slot_now > prev_slot)
665 return (slot_now - prev_slot);
666 else if (slot_now == prev_slot)
667 /*
668 * Special case, same means we can go all of our
669 * wheel less one slot.
670 */
671 return (NUM_OF_HPTSI_SLOTS - 1);
672 else
673 return ((NUM_OF_HPTSI_SLOTS - prev_slot) + slot_now);
674 }
675
676 /*
677 * Given a slot on the wheel that is the current time
678 * mapped to the wheel (wheel_slot), what is the maximum
679 * distance forward that can be obtained without
680 * wrapping past either prev_slot or running_slot
681 * depending on the htps state? Also if passed
682 * a uint32_t *, fill it with the slot location.
683 *
684 * Note if you do not give this function the current
685 * time (that you think it is) mapped to the wheel slot
686 * then the results will not be what you expect and
687 * could lead to invalid inserts.
688 */
689 static inline int32_t
max_slots_available(struct tcp_hpts_entry * hpts,uint32_t wheel_slot,uint32_t * target_slot)690 max_slots_available(struct tcp_hpts_entry *hpts, uint32_t wheel_slot, uint32_t *target_slot)
691 {
692 uint32_t dis_to_travel, end_slot, pacer_to_now, avail_on_wheel;
693
694 if ((hpts->p_hpts_active == 1) &&
695 (hpts->p_wheel_complete == 0)) {
696 end_slot = hpts->p_runningslot;
697 /* Back up one slot */
698 if (end_slot == 0)
699 end_slot = NUM_OF_HPTSI_SLOTS - 1;
700 else
701 end_slot--;
702 if (target_slot)
703 *target_slot = end_slot;
704 } else {
705 /*
706 * For the case where we are
707 * not active, or we have
708 * completed the pass over
709 * the wheel, we can use the
710 * prev slot and subtract one from it. This puts us
711 * as far out as possible on the wheel.
712 */
713 end_slot = hpts->p_prev_slot;
714 if (end_slot == 0)
715 end_slot = NUM_OF_HPTSI_SLOTS - 1;
716 else
717 end_slot--;
718 if (target_slot)
719 *target_slot = end_slot;
720 /*
721 * Now we have close to the full wheel left minus the
722 * time it has been since the pacer went to sleep. Note
723 * that wheel_slot, passed in, should be the current time
724 * from the perspective of the caller, mapped to the wheel.
725 */
726 if (hpts->p_prev_slot != wheel_slot)
727 dis_to_travel = hpts_slots_diff(hpts->p_prev_slot, wheel_slot);
728 else
729 dis_to_travel = 1;
730 /*
731 * dis_to_travel in this case is the space from when the
732 * pacer stopped (p_prev_slot) and where our wheel_slot
733 * is now. To know how many slots we can put it in we
734 * subtract from the wheel size. We would not want
735 * to place something after p_prev_slot or it will
736 * get ran too soon.
737 */
738 return (NUM_OF_HPTSI_SLOTS - dis_to_travel);
739 }
740 /*
741 * So how many slots are open between p_runningslot -> p_cur_slot
742 * that is what is currently un-available for insertion. Special
743 * case when we are at the last slot, this gets 1, so that
744 * the answer to how many slots are available is all but 1.
745 */
746 if (hpts->p_runningslot == hpts->p_cur_slot)
747 dis_to_travel = 1;
748 else
749 dis_to_travel = hpts_slots_diff(hpts->p_runningslot, hpts->p_cur_slot);
750 /*
751 * How long has the pacer been running?
752 */
753 if (hpts->p_cur_slot != wheel_slot) {
754 /* The pacer is a bit late */
755 pacer_to_now = hpts_slots_diff(hpts->p_cur_slot, wheel_slot);
756 } else {
757 /* The pacer is right on time, now == pacers start time */
758 pacer_to_now = 0;
759 }
760 /*
761 * To get the number left we can insert into we simply
762 * subtract the distance the pacer has to run from how
763 * many slots there are.
764 */
765 avail_on_wheel = NUM_OF_HPTSI_SLOTS - dis_to_travel;
766 /*
767 * Now how many of those we will eat due to the pacer's
768 * time (p_cur_slot) of start being behind the
769 * real time (wheel_slot)?
770 */
771 if (avail_on_wheel <= pacer_to_now) {
772 /*
773 * Wheel wrap, we can't fit on the wheel, that
774 * is unusual the system must be way overloaded!
775 * Insert into the assured slot, and return special
776 * "0".
777 */
778 counter_u64_add(combined_wheel_wrap, 1);
779 if (target_slot)
780 *target_slot = hpts->p_nxt_slot;
781 return (0);
782 } else {
783 /*
784 * We know how many slots are open
785 * on the wheel (the reverse of what
786 * is left to run. Take away the time
787 * the pacer started to now (wheel_slot)
788 * and that tells you how many slots are
789 * open that can be inserted into that won't
790 * be touched by the pacer until later.
791 */
792 return (avail_on_wheel - pacer_to_now);
793 }
794 }
795
796
797 #ifdef INVARIANTS
798 static void
check_if_slot_would_be_wrong(struct tcp_hpts_entry * hpts,struct tcpcb * tp,uint32_t hptsslot)799 check_if_slot_would_be_wrong(struct tcp_hpts_entry *hpts, struct tcpcb *tp,
800 uint32_t hptsslot)
801 {
802 /*
803 * Sanity checks for the pacer with invariants
804 * on insert.
805 */
806 KASSERT(hptsslot < NUM_OF_HPTSI_SLOTS,
807 ("hpts:%p tp:%p slot:%d > max", hpts, tp, hptsslot));
808 if ((hpts->p_hpts_active) &&
809 (hpts->p_wheel_complete == 0)) {
810 /*
811 * If the pacer is processing a arc
812 * of the wheel, we need to make
813 * sure we are not inserting within
814 * that arc.
815 */
816 int distance, yet_to_run;
817
818 distance = hpts_slots_diff(hpts->p_runningslot, hptsslot);
819 if (hpts->p_runningslot != hpts->p_cur_slot)
820 yet_to_run = hpts_slots_diff(hpts->p_runningslot, hpts->p_cur_slot);
821 else
822 yet_to_run = 0; /* processing last slot */
823 KASSERT(yet_to_run <= distance, ("hpts:%p tp:%p slot:%d "
824 "distance:%d yet_to_run:%d rs:%d cs:%d", hpts, tp,
825 hptsslot, distance, yet_to_run, hpts->p_runningslot,
826 hpts->p_cur_slot));
827 }
828 }
829 #endif
830
831 void
__tcp_hpts_insert(struct tcp_hptsi * pace,struct tcpcb * tp,uint32_t usecs,struct hpts_diag * diag)832 __tcp_hpts_insert(struct tcp_hptsi *pace, struct tcpcb *tp, uint32_t usecs,
833 struct hpts_diag *diag)
834 {
835 struct tcp_hpts_entry *hpts;
836 struct timeval tv;
837 uint32_t slot, wheel_cts, last_slot, need_new_to = 0;
838 int32_t wheel_slot, maxslots;
839 bool need_wakeup = false;
840
841 INP_WLOCK_ASSERT(tptoinpcb(tp));
842 MPASS(!(tptoinpcb(tp)->inp_flags & INP_DROPPED));
843 MPASS(!(tp->t_in_hpts == IHPTS_ONQUEUE));
844
845 /*
846 * Convert microseconds to slots for internal use.
847 * We now return the next-slot the hpts will be on, beyond its
848 * current run (if up) or where it was when it stopped if it is
849 * sleeping.
850 */
851 slot = HPTS_USEC_TO_SLOTS(usecs);
852 hpts = tcp_hpts_lock(pace, tp);
853 microuptime(&tv);
854 if (diag) {
855 memset(diag, 0, sizeof(struct hpts_diag));
856 diag->p_hpts_active = hpts->p_hpts_active;
857 diag->p_prev_slot = hpts->p_prev_slot;
858 diag->p_runningslot = hpts->p_runningslot;
859 diag->p_nxt_slot = hpts->p_nxt_slot;
860 diag->p_cur_slot = hpts->p_cur_slot;
861 diag->slot_req = slot;
862 diag->p_on_min_sleep = hpts->p_on_min_sleep;
863 diag->hpts_sleep_time = hpts->p_hpts_sleep_time;
864 }
865 if (slot == 0) {
866 /* Ok we need to set it on the hpts in the current slot */
867 tp->t_hpts_request = 0;
868 if ((hpts->p_hpts_active == 0) || (hpts->p_wheel_complete)) {
869 /*
870 * A sleeping hpts we want in next slot to run
871 * note that in this state p_prev_slot == p_cur_slot
872 */
873 tp->t_hpts_slot = hpts_slot(hpts->p_prev_slot, 1);
874 if ((hpts->p_on_min_sleep == 0) &&
875 (hpts->p_hpts_active == 0))
876 need_wakeup = true;
877 } else
878 tp->t_hpts_slot = hpts->p_runningslot;
879 if (__predict_true(tp->t_in_hpts != IHPTS_MOVING))
880 tcp_hpts_insert_internal(tp, hpts);
881 if (need_wakeup) {
882 /*
883 * Activate the hpts if it is sleeping and its
884 * timeout is not 1.
885 */
886 hpts->p_direct_wake = 1;
887 tcp_hpts_wake(hpts);
888 }
889 HPTS_UNLOCK(hpts);
890
891 return;
892 }
893 /* Get the current time stamp and map it onto the wheel */
894 wheel_cts = tcp_tv_to_usec(&tv);
895 wheel_slot = cts_to_wheel(wheel_cts);
896 /* Now what's the max we can place it at? */
897 maxslots = max_slots_available(hpts, wheel_slot, &last_slot);
898 if (diag) {
899 diag->wheel_slot = wheel_slot;
900 diag->maxslots = maxslots;
901 diag->wheel_cts = wheel_cts;
902 }
903 if (maxslots == 0) {
904 /* The pacer is in a wheel wrap behind, yikes! */
905 if (slot > 1) {
906 /*
907 * Reduce by 1 to prevent a forever loop in
908 * case something else is wrong. Note this
909 * probably does not hurt because the pacer
910 * if its true is so far behind we will be
911 * > 1second late calling anyway.
912 */
913 slot--;
914 }
915 tp->t_hpts_slot = last_slot;
916 tp->t_hpts_request = slot;
917 } else if (maxslots >= slot) {
918 /* It all fits on the wheel */
919 tp->t_hpts_request = 0;
920 tp->t_hpts_slot = hpts_slot(wheel_slot, slot);
921 } else {
922 /* It does not fit */
923 tp->t_hpts_request = slot - maxslots;
924 tp->t_hpts_slot = last_slot;
925 }
926 if (diag) {
927 diag->time_remaining = tp->t_hpts_request;
928 diag->inp_hptsslot = tp->t_hpts_slot;
929 }
930 #ifdef INVARIANTS
931 check_if_slot_would_be_wrong(hpts, tp, tp->t_hpts_slot);
932 #endif
933 if (__predict_true(tp->t_in_hpts != IHPTS_MOVING))
934 tcp_hpts_insert_internal(tp, hpts);
935 if ((hpts->p_hpts_active == 0) &&
936 (tp->t_hpts_request == 0) &&
937 (hpts->p_on_min_sleep == 0)) {
938 /*
939 * The hpts is sleeping and NOT on a minimum
940 * sleep time, we need to figure out where
941 * it will wake up at and if we need to reschedule
942 * its time-out.
943 */
944 uint32_t have_slept, yet_to_sleep;
945
946 /* Now do we need to restart the hpts's timer? */
947 have_slept = hpts_slots_diff(hpts->p_prev_slot, wheel_slot);
948 if (have_slept < hpts->p_hpts_sleep_time)
949 yet_to_sleep = hpts->p_hpts_sleep_time - have_slept;
950 else {
951 /* We are over-due */
952 yet_to_sleep = 0;
953 need_wakeup = 1;
954 }
955 if (diag) {
956 diag->have_slept = have_slept;
957 diag->yet_to_sleep = yet_to_sleep;
958 }
959 if (yet_to_sleep &&
960 (yet_to_sleep > slot)) {
961 /*
962 * We need to reschedule the hpts's time-out.
963 */
964 hpts->p_hpts_sleep_time = slot;
965 need_new_to = slot * HPTS_USECS_PER_SLOT;
966 }
967 }
968 /*
969 * Now how far is the hpts sleeping to? if active is 1, its
970 * up and running we do nothing, otherwise we may need to
971 * reschedule its callout if need_new_to is set from above.
972 */
973 if (need_wakeup) {
974 hpts->p_direct_wake = 1;
975 tcp_hpts_wake(hpts);
976 if (diag) {
977 diag->need_new_to = 0;
978 diag->co_ret = 0xffff0000;
979 }
980 } else if (need_new_to) {
981 int32_t co_ret;
982 struct timeval tv;
983
984 tv.tv_sec = 0;
985 tv.tv_usec = 0;
986 while (need_new_to > HPTS_USEC_IN_SEC) {
987 tv.tv_sec++;
988 need_new_to -= HPTS_USEC_IN_SEC;
989 }
990 tv.tv_usec = need_new_to; /* XXX: Why is this sleeping over the max? */
991 co_ret = tcp_hpts_sleep(hpts, &tv);
992 if (diag) {
993 diag->need_new_to = need_new_to;
994 diag->co_ret = co_ret;
995 }
996 }
997 HPTS_UNLOCK(hpts);
998 }
999
1000 static uint16_t
hpts_cpuid(struct tcp_hptsi * pace,struct tcpcb * tp,int * failed)1001 hpts_cpuid(struct tcp_hptsi *pace, struct tcpcb *tp, int *failed)
1002 {
1003 struct inpcb *inp = tptoinpcb(tp);
1004 u_int cpuid;
1005 #ifdef NUMA
1006 struct hpts_domain_info *di;
1007 #endif
1008
1009 *failed = 0;
1010 if (tp->t_flags2 & TF2_HPTS_CPU_SET) {
1011 return (tp->t_hpts_cpu);
1012 }
1013 /*
1014 * If we are using the irq cpu set by LRO or
1015 * the driver then it overrides all other domains.
1016 */
1017 if (tcp_use_irq_cpu) {
1018 if (tp->t_lro_cpu == HPTS_CPU_NONE) {
1019 *failed = 1;
1020 return (0);
1021 }
1022 return (tp->t_lro_cpu);
1023 }
1024 /* If one is set the other must be the same */
1025 #ifdef RSS
1026 cpuid = rss_hash2cpuid(inp->inp_flowid, inp->inp_flowtype);
1027 if (cpuid == NETISR_CPUID_NONE)
1028 return (tcp_hptsi_random_cpu(pace));
1029 else
1030 return (cpuid);
1031 #endif
1032 /*
1033 * We don't have a flowid -> cpuid mapping, so cheat and just map
1034 * unknown cpuids to curcpu. Not the best, but apparently better
1035 * than defaulting to swi 0.
1036 */
1037 if (inp->inp_flowtype == M_HASHTYPE_NONE) {
1038 counter_u64_add(cpu_uses_random, 1);
1039 return (tcp_hptsi_random_cpu(pace));
1040 }
1041 /*
1042 * Hash to a thread based on the flowid. If we are using numa,
1043 * then restrict the hash to the numa domain where the inp lives.
1044 */
1045
1046 #ifdef NUMA
1047 if ((vm_ndomains == 1) ||
1048 (inp->inp_numa_domain == M_NODOM)) {
1049 #endif
1050 cpuid = inp->inp_flowid % mp_ncpus;
1051 #ifdef NUMA
1052 } else {
1053 /* Hash into the cpu's that use that domain */
1054 di = &pace->domains[inp->inp_numa_domain];
1055 cpuid = di->cpu[inp->inp_flowid % di->count];
1056 }
1057 #endif
1058 counter_u64_add(cpu_uses_flowid, 1);
1059 return (cpuid);
1060 }
1061
1062 static void
tcp_hpts_set_max_sleep(struct tcp_hpts_entry * hpts,int wrap_loop_cnt)1063 tcp_hpts_set_max_sleep(struct tcp_hpts_entry *hpts, int wrap_loop_cnt)
1064 {
1065 uint32_t t = 0, i;
1066
1067 if ((hpts->p_on_queue_cnt) && (wrap_loop_cnt < 2)) {
1068 /*
1069 * Find next slot that is occupied and use that to
1070 * be the sleep time.
1071 */
1072 for (i = 0, t = hpts_slot(hpts->p_cur_slot, 1); i < NUM_OF_HPTSI_SLOTS; i++) {
1073 if (TAILQ_EMPTY(&hpts->p_hptss[t].head) == 0) {
1074 break;
1075 }
1076 t = (t + 1) % NUM_OF_HPTSI_SLOTS;
1077 }
1078 KASSERT((i != NUM_OF_HPTSI_SLOTS), ("Hpts:%p cnt:%d but none found", hpts, hpts->p_on_queue_cnt));
1079 hpts->p_hpts_sleep_time = min((i + 1), hpts_sleep_max);
1080 } else {
1081 /* No one on the wheel sleep for all but 400 slots or sleep max */
1082 hpts->p_hpts_sleep_time = hpts_sleep_max;
1083 }
1084 }
1085
1086 static bool
tcp_hpts_different_slots(uint32_t cts,uint32_t cts_last_run)1087 tcp_hpts_different_slots(uint32_t cts, uint32_t cts_last_run)
1088 {
1089 return ((cts / HPTS_USECS_PER_SLOT) != (cts_last_run / HPTS_USECS_PER_SLOT));
1090 }
1091
1092 int32_t
tcp_hptsi(struct tcp_hpts_entry * hpts,bool from_callout)1093 tcp_hptsi(struct tcp_hpts_entry *hpts, bool from_callout)
1094 {
1095 struct tcp_hptsi *pace;
1096 struct tcpcb *tp;
1097 struct timeval tv;
1098 int32_t slots_to_run, i, error;
1099 int32_t loop_cnt = 0;
1100 int32_t did_prefetch = 0;
1101 int32_t prefetch_tp = 0;
1102 int32_t wrap_loop_cnt = 0;
1103 int32_t slot_pos_of_endpoint = 0;
1104 int32_t orig_exit_slot;
1105 uint32_t cts, cts_last_run;
1106 bool completed_measure, seen_endpoint;
1107
1108 completed_measure = false;
1109 seen_endpoint = false;
1110
1111 HPTS_MTX_ASSERT(hpts);
1112 NET_EPOCH_ASSERT();
1113
1114 pace = hpts->p_hptsi;
1115 MPASS(pace != NULL);
1116
1117 /* record previous info for any logging */
1118 hpts->saved_curslot = hpts->p_cur_slot;
1119 hpts->saved_prev_slot = hpts->p_prev_slot;
1120
1121 microuptime(&tv);
1122 cts_last_run = pace->cts_last_ran[hpts->p_cpu];
1123 pace->cts_last_ran[hpts->p_cpu] = cts = tcp_tv_to_usec(&tv);
1124
1125 orig_exit_slot = hpts->p_cur_slot = cts_to_wheel(cts);
1126 if ((hpts->p_on_queue_cnt == 0) ||
1127 !tcp_hpts_different_slots(cts, cts_last_run)) {
1128 /*
1129 * Not enough time has yet passed or nothing to do.
1130 */
1131 hpts->p_prev_slot = hpts->p_cur_slot;
1132 goto no_run;
1133 }
1134 again:
1135 hpts->p_wheel_complete = 0;
1136 HPTS_MTX_ASSERT(hpts);
1137 slots_to_run = hpts_slots_diff(hpts->p_prev_slot, hpts->p_cur_slot);
1138 if ((hpts->p_on_queue_cnt != 0) &&
1139 ((cts - cts_last_run) >
1140 ((NUM_OF_HPTSI_SLOTS-1) * HPTS_USECS_PER_SLOT))) {
1141 /*
1142 * Wheel wrap is occuring, basically we
1143 * are behind and the distance between
1144 * run's has spread so much it has exceeded
1145 * the time on the wheel (1.024 seconds). This
1146 * is ugly and should NOT be happening. We
1147 * need to run the entire wheel. We last processed
1148 * p_prev_slot, so that needs to be the last slot
1149 * we run. The next slot after that should be our
1150 * reserved first slot for new, and then starts
1151 * the running position. Now the problem is the
1152 * reserved "not to yet" place does not exist
1153 * and there may be inp's in there that need
1154 * running. We can merge those into the
1155 * first slot at the head.
1156 */
1157 wrap_loop_cnt++;
1158 hpts->p_nxt_slot = hpts_slot(hpts->p_prev_slot, 1);
1159 hpts->p_runningslot = hpts_slot(hpts->p_prev_slot, 2);
1160 /*
1161 * Adjust p_cur_slot to be where we are starting from
1162 * hopefully we will catch up (fat chance if something
1163 * is broken this bad :( )
1164 */
1165 hpts->p_cur_slot = hpts->p_prev_slot;
1166 /*
1167 * The next slot has guys to run too, and that would
1168 * be where we would normally start, lets move them into
1169 * the next slot (p_prev_slot + 2) so that we will
1170 * run them, the extra 10usecs of late (by being
1171 * put behind) does not really matter in this situation.
1172 */
1173 TAILQ_FOREACH(tp, &hpts->p_hptss[hpts->p_nxt_slot].head,
1174 t_hpts) {
1175 MPASS(tp->t_hpts_slot == hpts->p_nxt_slot);
1176 MPASS(tp->t_hpts_gencnt ==
1177 hpts->p_hptss[hpts->p_nxt_slot].gencnt);
1178 MPASS(tp->t_in_hpts == IHPTS_ONQUEUE);
1179
1180 /*
1181 * Update gencnt and nextslot accordingly to match
1182 * the new location. This is safe since it takes both
1183 * the INP lock and the pacer mutex to change the
1184 * t_hptsslot and t_hpts_gencnt.
1185 */
1186 tp->t_hpts_gencnt =
1187 hpts->p_hptss[hpts->p_runningslot].gencnt;
1188 tp->t_hpts_slot = hpts->p_runningslot;
1189 }
1190 TAILQ_CONCAT(&hpts->p_hptss[hpts->p_runningslot].head,
1191 &hpts->p_hptss[hpts->p_nxt_slot].head, t_hpts);
1192 hpts->p_hptss[hpts->p_runningslot].count +=
1193 hpts->p_hptss[hpts->p_nxt_slot].count;
1194 hpts->p_hptss[hpts->p_nxt_slot].count = 0;
1195 hpts->p_hptss[hpts->p_nxt_slot].gencnt++;
1196 slots_to_run = NUM_OF_HPTSI_SLOTS - 1;
1197 counter_u64_add(wheel_wrap, 1);
1198 } else {
1199 /*
1200 * Nxt slot is always one after p_runningslot though
1201 * its not used usually unless we are doing wheel wrap.
1202 */
1203 hpts->p_nxt_slot = hpts->p_prev_slot;
1204 hpts->p_runningslot = hpts_slot(hpts->p_prev_slot, 1);
1205 }
1206 if (hpts->p_on_queue_cnt == 0) {
1207 goto no_one;
1208 }
1209 for (i = 0; i < slots_to_run; i++) {
1210 struct tcpcb *tp, *ntp;
1211 TAILQ_HEAD(, tcpcb) head = TAILQ_HEAD_INITIALIZER(head);
1212 struct hptsh *hptsh;
1213 uint32_t runningslot;
1214
1215 /*
1216 * Calculate our delay, if there are no extra slots there
1217 * was not any (i.e. if slots_to_run == 1, no delay).
1218 */
1219 hpts->p_delayed_by = (slots_to_run - (i + 1)) *
1220 HPTS_USECS_PER_SLOT;
1221
1222 runningslot = hpts->p_runningslot;
1223 hptsh = &hpts->p_hptss[runningslot];
1224 TAILQ_SWAP(&head, &hptsh->head, tcpcb, t_hpts);
1225 hpts->p_on_queue_cnt -= hptsh->count;
1226 hptsh->count = 0;
1227 hptsh->gencnt++;
1228
1229 HPTS_UNLOCK(hpts);
1230
1231 TAILQ_FOREACH_SAFE(tp, &head, t_hpts, ntp) {
1232 struct inpcb *inp = tptoinpcb(tp);
1233 bool set_cpu;
1234
1235 if (ntp != NULL) {
1236 /*
1237 * If we have a next tcpcb, see if we can
1238 * prefetch it. Note this may seem
1239 * "risky" since we have no locks (other
1240 * than the previous inp) and there no
1241 * assurance that ntp was not pulled while
1242 * we were processing tp and freed. If this
1243 * occurred it could mean that either:
1244 *
1245 * a) Its NULL (which is fine we won't go
1246 * here) <or> b) Its valid (which is cool we
1247 * will prefetch it) <or> c) The inp got
1248 * freed back to the slab which was
1249 * reallocated. Then the piece of memory was
1250 * re-used and something else (not an
1251 * address) is in inp_ppcb. If that occurs
1252 * we don't crash, but take a TLB shootdown
1253 * performance hit (same as if it was NULL
1254 * and we tried to pre-fetch it).
1255 *
1256 * Considering that the likelyhood of <c> is
1257 * quite rare we will take a risk on doing
1258 * this. If performance drops after testing
1259 * we can always take this out. NB: the
1260 * kern_prefetch on amd64 actually has
1261 * protection against a bad address now via
1262 * the DMAP_() tests. This will prevent the
1263 * TLB hit, and instead if <c> occurs just
1264 * cause us to load cache with a useless
1265 * address (to us).
1266 *
1267 * XXXGL: this comment and the prefetch action
1268 * could be outdated after tp == inp change.
1269 */
1270 kern_prefetch(ntp, &prefetch_tp);
1271 prefetch_tp = 1;
1272 }
1273
1274 /* For debugging */
1275 if (!seen_endpoint) {
1276 seen_endpoint = true;
1277 orig_exit_slot = slot_pos_of_endpoint =
1278 runningslot;
1279 } else if (!completed_measure) {
1280 /* Record the new position */
1281 orig_exit_slot = runningslot;
1282 }
1283
1284 INP_WLOCK(inp);
1285 if ((tp->t_flags2 & TF2_HPTS_CPU_SET) == 0) {
1286 set_cpu = true;
1287 } else {
1288 set_cpu = false;
1289 }
1290
1291 if (__predict_false(tp->t_in_hpts == IHPTS_MOVING)) {
1292 if (tp->t_hpts_slot == -1) {
1293 tp->t_in_hpts = IHPTS_NONE;
1294 if (in_pcbrele_wlocked(inp) == false)
1295 INP_WUNLOCK(inp);
1296 } else {
1297 HPTS_LOCK(hpts);
1298 tcp_hpts_insert_internal(tp, hpts);
1299 HPTS_UNLOCK(hpts);
1300 INP_WUNLOCK(inp);
1301 }
1302 continue;
1303 }
1304
1305 MPASS(tp->t_in_hpts == IHPTS_ONQUEUE);
1306 MPASS(!(inp->inp_flags & INP_DROPPED));
1307 KASSERT(runningslot == tp->t_hpts_slot,
1308 ("Hpts:%p inp:%p slot mis-aligned %u vs %u",
1309 hpts, inp, runningslot, tp->t_hpts_slot));
1310
1311 if (tp->t_hpts_request) {
1312 /*
1313 * This guy is deferred out further in time
1314 * then our wheel had available on it.
1315 * Push him back on the wheel or run it
1316 * depending.
1317 */
1318 uint32_t maxslots, last_slot, remaining_slots;
1319
1320 remaining_slots = slots_to_run - (i + 1);
1321 if (tp->t_hpts_request > remaining_slots) {
1322 HPTS_LOCK(hpts);
1323 /*
1324 * How far out can we go?
1325 */
1326 maxslots = max_slots_available(hpts,
1327 hpts->p_cur_slot, &last_slot);
1328 if (maxslots >= tp->t_hpts_request) {
1329 /* We can place it finally to
1330 * be processed. */
1331 tp->t_hpts_slot = hpts_slot(
1332 hpts->p_runningslot,
1333 tp->t_hpts_request);
1334 tp->t_hpts_request = 0;
1335 } else {
1336 /* Work off some more time */
1337 tp->t_hpts_slot = last_slot;
1338 tp->t_hpts_request -=
1339 maxslots;
1340 }
1341 tcp_hpts_insert_internal(tp, hpts);
1342 HPTS_UNLOCK(hpts);
1343 INP_WUNLOCK(inp);
1344 continue;
1345 }
1346 tp->t_hpts_request = 0;
1347 /* Fall through we will so do it now */
1348 }
1349
1350 tcp_hpts_release(tp);
1351 if (set_cpu) {
1352 /*
1353 * Setup so the next time we will move to
1354 * the right CPU. This should be a rare
1355 * event. It will sometimes happens when we
1356 * are the client side (usually not the
1357 * server). Somehow tcp_output() gets called
1358 * before the tcp_do_segment() sets the
1359 * intial state. This means the r_cpu and
1360 * r_hpts_cpu is 0. We get on the hpts, and
1361 * then tcp_input() gets called setting up
1362 * the r_cpu to the correct value. The hpts
1363 * goes off and sees the mis-match. We
1364 * simply correct it here and the CPU will
1365 * switch to the new hpts nextime the tcb
1366 * gets added to the hpts (not this one)
1367 * :-)
1368 */
1369 __tcp_set_hpts(pace, tp);
1370 }
1371 CURVNET_SET(inp->inp_vnet);
1372 /* Lets do any logging that we might want to */
1373 tcp_hpts_log(hpts, tp, &tv, slots_to_run, i, from_callout);
1374
1375 if (tp->t_fb_ptr != NULL) {
1376 kern_prefetch(tp->t_fb_ptr, &did_prefetch);
1377 did_prefetch = 1;
1378 }
1379 /*
1380 * We set TF2_HPTS_CALLS before any possible output.
1381 * The contract with the transport is that if it cares
1382 * about hpts calling it should clear the flag. That
1383 * way next time it is called it will know it is hpts.
1384 *
1385 * We also only call tfb_do_queued_segments() <or>
1386 * tcp_output(). It is expected that if segments are
1387 * queued and come in that the final input mbuf will
1388 * cause a call to output if it is needed so we do
1389 * not need a second call to tcp_output(). So we do
1390 * one or the other but not both.
1391 *
1392 * XXXGL: some KPI abuse here. tfb_do_queued_segments
1393 * returns unlocked with positive error (always 1) and
1394 * tcp_output returns unlocked with negative error.
1395 */
1396 tp->t_flags2 |= TF2_HPTS_CALLS;
1397 if ((tp->t_flags2 & TF2_SUPPORTS_MBUFQ) &&
1398 !STAILQ_EMPTY(&tp->t_inqueue))
1399 error = -(*tp->t_fb->tfb_do_queued_segments)(tp,
1400 0);
1401 else
1402 error = tcp_output(tp);
1403 if (__predict_true(error >= 0))
1404 INP_WUNLOCK(inp);
1405 CURVNET_RESTORE();
1406 }
1407 if (seen_endpoint) {
1408 /*
1409 * We now have a accurate distance between
1410 * slot_pos_of_endpoint <-> orig_exit_slot
1411 * to tell us how late we were, orig_exit_slot
1412 * is where we calculated the end of our cycle to
1413 * be when we first entered.
1414 */
1415 completed_measure = true;
1416 }
1417 HPTS_LOCK(hpts);
1418 hpts->p_runningslot++;
1419 if (hpts->p_runningslot >= NUM_OF_HPTSI_SLOTS) {
1420 hpts->p_runningslot = 0;
1421 }
1422 }
1423 no_one:
1424 HPTS_MTX_ASSERT(hpts);
1425 hpts->p_delayed_by = 0;
1426 /*
1427 * Check to see if we took an excess amount of time and need to run
1428 * more slots (if we did not hit eno-bufs).
1429 */
1430 hpts->p_prev_slot = hpts->p_cur_slot;
1431 microuptime(&tv);
1432 cts_last_run = cts;
1433 cts = tcp_tv_to_usec(&tv);
1434 if (!from_callout || (loop_cnt > max_pacer_loops)) {
1435 /*
1436 * Something is serious slow we have
1437 * looped through processing the wheel
1438 * and by the time we cleared the
1439 * needs to run max_pacer_loops time
1440 * we still needed to run. That means
1441 * the system is hopelessly behind and
1442 * can never catch up :(
1443 *
1444 * We will just lie to this thread
1445 * and let it think p_curslot is
1446 * correct. When it next awakens
1447 * it will find itself further behind.
1448 */
1449 if (from_callout)
1450 counter_u64_add(hpts_hopelessly_behind, 1);
1451 goto no_run;
1452 }
1453
1454 hpts->p_cur_slot = cts_to_wheel(cts);
1455 if (!seen_endpoint) {
1456 /* We saw no endpoint but we may be looping */
1457 orig_exit_slot = hpts->p_cur_slot;
1458 }
1459 if ((wrap_loop_cnt < 2) && tcp_hpts_different_slots(cts, cts_last_run)) {
1460 counter_u64_add(hpts_loops, 1);
1461 loop_cnt++;
1462 goto again;
1463 }
1464 no_run:
1465 pace->cts_last_ran[hpts->p_cpu] = cts;
1466 /*
1467 * Set flag to tell that we are done for
1468 * any slot input that happens during
1469 * input.
1470 */
1471 hpts->p_wheel_complete = 1;
1472 /*
1473 * If enough time has elapsed that we should be processing the next
1474 * slot(s), then we should have kept running and not marked the wheel as
1475 * complete.
1476 *
1477 * But there are several other conditions where we would have stopped
1478 * processing, so the prev/cur slots and cts variables won't match.
1479 * These conditions are:
1480 *
1481 * - Calls not from callouts don't run multiple times
1482 * - The wheel is empty
1483 * - We've processed more than max_pacer_loops times
1484 * - We've wrapped more than 2 times
1485 *
1486 * This assert catches when the logic above has violated this design.
1487 *
1488 */
1489 KASSERT((!from_callout || (hpts->p_on_queue_cnt == 0) ||
1490 (loop_cnt > max_pacer_loops) || (wrap_loop_cnt >= 2) ||
1491 ((hpts->p_prev_slot == hpts->p_cur_slot) &&
1492 !tcp_hpts_different_slots(cts, cts_last_run))),
1493 ("H:%p Shouldn't be done! prev_slot:%u, cur_slot:%u, "
1494 "cts_last_run:%u, cts:%u, loop_cnt:%d, wrap_loop_cnt:%d",
1495 hpts, hpts->p_prev_slot, hpts->p_cur_slot,
1496 cts_last_run, cts, loop_cnt, wrap_loop_cnt));
1497
1498 if (from_callout && tcp_hpts_different_slots(cts, cts_last_run)) {
1499 microuptime(&tv);
1500 cts = tcp_tv_to_usec(&tv);
1501 hpts->p_cur_slot = cts_to_wheel(cts);
1502 counter_u64_add(hpts_loops, 1);
1503 goto again;
1504 }
1505
1506 if (from_callout) {
1507 tcp_hpts_set_max_sleep(hpts, wrap_loop_cnt);
1508 }
1509 if (seen_endpoint)
1510 return(hpts_slots_diff(slot_pos_of_endpoint, orig_exit_slot));
1511 else
1512 return (0);
1513 }
1514
1515 void
__tcp_set_hpts(struct tcp_hptsi * pace,struct tcpcb * tp)1516 __tcp_set_hpts(struct tcp_hptsi *pace, struct tcpcb *tp)
1517 {
1518 struct tcp_hpts_entry *hpts;
1519 int failed;
1520
1521 INP_WLOCK_ASSERT(tptoinpcb(tp));
1522
1523 hpts = tcp_hpts_lock(pace, tp);
1524 if (tp->t_in_hpts == IHPTS_NONE && !(tp->t_flags2 & TF2_HPTS_CPU_SET)) {
1525 tp->t_hpts_cpu = hpts_cpuid(pace, tp, &failed);
1526 if (failed == 0)
1527 tp->t_flags2 |= TF2_HPTS_CPU_SET;
1528 }
1529 HPTS_UNLOCK(hpts);
1530 }
1531
1532 static struct tcp_hpts_entry *
tcp_choose_hpts_to_run(struct tcp_hptsi * pace)1533 tcp_choose_hpts_to_run(struct tcp_hptsi *pace)
1534 {
1535 struct timeval tv;
1536 int i, oldest_idx, start, end;
1537 uint32_t cts, time_since_ran, calc;
1538
1539 microuptime(&tv);
1540 cts = tcp_tv_to_usec(&tv);
1541 time_since_ran = 0;
1542 /* Default is all one group */
1543 start = 0;
1544 end = pace->rp_num_hptss;
1545 /*
1546 * If we have more than one L3 group figure out which one
1547 * this CPU is in.
1548 */
1549 if (pace->grp_cnt > 1) {
1550 for (i = 0; i < pace->grp_cnt; i++) {
1551 if (CPU_ISSET(curcpu, &pace->grps[i]->cg_mask)) {
1552 start = pace->grps[i]->cg_first;
1553 end = (pace->grps[i]->cg_last + 1);
1554 break;
1555 }
1556 }
1557 }
1558 oldest_idx = -1;
1559 for (i = start; i < end; i++) {
1560 if (TSTMP_GT(cts, pace->cts_last_ran[i]))
1561 calc = cts - pace->cts_last_ran[i];
1562 else
1563 calc = 0;
1564 if (calc > time_since_ran) {
1565 oldest_idx = i;
1566 time_since_ran = calc;
1567 }
1568 }
1569 if (oldest_idx >= 0)
1570 return(pace->rp_ent[oldest_idx]);
1571 else
1572 return(pace->rp_ent[(curcpu % pace->rp_num_hptss)]);
1573 }
1574
1575 static void
__tcp_run_hpts(void)1576 __tcp_run_hpts(void)
1577 {
1578 struct epoch_tracker et;
1579 struct tcp_hpts_entry *hpts;
1580 int slots_ran;
1581
1582 hpts = tcp_choose_hpts_to_run(tcp_hptsi_pace);
1583
1584 if (hpts->p_hpts_active) {
1585 /* Already active */
1586 return;
1587 }
1588 if (!HPTS_TRYLOCK(hpts)) {
1589 /* Someone else got the lock */
1590 return;
1591 }
1592 NET_EPOCH_ENTER(et);
1593 if (hpts->p_hpts_active)
1594 goto out_with_mtx;
1595 hpts->syscall_cnt++;
1596 counter_u64_add(hpts_direct_call, 1);
1597 hpts->p_hpts_active = 1;
1598 slots_ran = tcp_hptsi(hpts, false);
1599 /* We may want to adjust the sleep values here */
1600 if (hpts->p_on_queue_cnt >= conn_cnt_thresh) {
1601 if (slots_ran > slots_indicate_less_sleep) {
1602 struct timeval tv;
1603
1604 hpts->p_mysleep.tv_usec /= 2;
1605 if (hpts->p_mysleep.tv_usec < dynamic_min_sleep)
1606 hpts->p_mysleep.tv_usec = dynamic_min_sleep;
1607 /* Reschedule with new to value */
1608 tcp_hpts_set_max_sleep(hpts, 0);
1609 tv.tv_sec = 0;
1610 tv.tv_usec = hpts->p_hpts_sleep_time * HPTS_USECS_PER_SLOT;
1611 /* Validate its in the right ranges */
1612 if (tv.tv_usec < hpts->p_mysleep.tv_usec) {
1613 hpts->overidden_sleep = tv.tv_usec;
1614 tv.tv_usec = hpts->p_mysleep.tv_usec;
1615 } else if (tv.tv_usec > dynamic_max_sleep) {
1616 /* Lets not let sleep get above this value */
1617 hpts->overidden_sleep = tv.tv_usec;
1618 tv.tv_usec = dynamic_max_sleep;
1619 }
1620 /*
1621 * In this mode the timer is a backstop to
1622 * all the userret/lro_flushes so we use
1623 * the dynamic value and set the on_min_sleep
1624 * flag so we will not be awoken.
1625 */
1626 (void)tcp_hpts_sleep(hpts, &tv);
1627 } else if (slots_ran < slots_indicate_more_sleep) {
1628 /* For the further sleep, don't reschedule hpts */
1629 hpts->p_mysleep.tv_usec *= 2;
1630 if (hpts->p_mysleep.tv_usec > dynamic_max_sleep)
1631 hpts->p_mysleep.tv_usec = dynamic_max_sleep;
1632 }
1633 hpts->p_on_min_sleep = 1;
1634 }
1635 hpts->p_hpts_active = 0;
1636 out_with_mtx:
1637 HPTS_UNLOCK(hpts);
1638 NET_EPOCH_EXIT(et);
1639 }
1640
1641 static void
tcp_hpts_thread(void * ctx)1642 tcp_hpts_thread(void *ctx)
1643 {
1644 #ifdef TCP_HPTS_KTEST
1645 struct tcp_hptsi *pace;
1646 #endif
1647 struct tcp_hpts_entry *hpts;
1648 struct epoch_tracker et;
1649 struct timeval tv;
1650 int slots_ran;
1651
1652 hpts = (struct tcp_hpts_entry *)ctx;
1653 #ifdef TCP_HPTS_KTEST
1654 pace = hpts->p_hptsi;
1655 #endif
1656 HPTS_LOCK(hpts);
1657 if (hpts->p_direct_wake) {
1658 /* Signaled by input or output with low occupancy count. */
1659 _callout_stop_safe(&hpts->co, 0);
1660 counter_u64_add(hpts_direct_awakening, 1);
1661 } else {
1662 /* Timed out, the normal case. */
1663 counter_u64_add(hpts_wake_timeout, 1);
1664 if (callout_pending(&hpts->co) ||
1665 !callout_active(&hpts->co)) {
1666 HPTS_UNLOCK(hpts);
1667 return;
1668 }
1669 }
1670 callout_deactivate(&hpts->co);
1671 hpts->p_hpts_wake_scheduled = 0;
1672 NET_EPOCH_ENTER(et);
1673 if (hpts->p_hpts_active) {
1674 /*
1675 * We are active already. This means that a syscall
1676 * trap or LRO is running in behalf of hpts. In that case
1677 * we need to double our timeout since there seems to be
1678 * enough activity in the system that we don't need to
1679 * run as often (if we were not directly woken).
1680 */
1681 tv.tv_sec = 0;
1682 if (hpts->p_direct_wake == 0) {
1683 counter_u64_add(hpts_back_tosleep, 1);
1684 if (hpts->p_on_queue_cnt >= conn_cnt_thresh) {
1685 hpts->p_mysleep.tv_usec *= 2;
1686 if (hpts->p_mysleep.tv_usec > dynamic_max_sleep)
1687 hpts->p_mysleep.tv_usec = dynamic_max_sleep;
1688 tv.tv_usec = hpts->p_mysleep.tv_usec;
1689 hpts->p_on_min_sleep = 1;
1690 } else {
1691 /*
1692 * Here we have low count on the wheel, but
1693 * somehow we still collided with one of the
1694 * connections. Lets go back to sleep for a
1695 * min sleep time, but clear the flag so we
1696 * can be awoken by insert.
1697 */
1698 hpts->p_on_min_sleep = 0;
1699 tv.tv_usec = tcp_min_hptsi_time;
1700 }
1701 } else {
1702 /*
1703 * Directly woken most likely to reset the
1704 * callout time.
1705 */
1706 tv.tv_usec = hpts->p_mysleep.tv_usec;
1707 }
1708 goto back_to_sleep;
1709 }
1710 hpts->sleeping = 0;
1711 hpts->p_hpts_active = 1;
1712 slots_ran = tcp_hptsi(hpts, true);
1713 tv.tv_sec = 0;
1714 tv.tv_usec = hpts->p_hpts_sleep_time * HPTS_USECS_PER_SLOT;
1715 if ((hpts->p_on_queue_cnt > conn_cnt_thresh) && (hpts->hit_callout_thresh == 0)) {
1716 hpts->hit_callout_thresh = 1;
1717 atomic_add_int(&hpts_that_need_softclock, 1);
1718 } else if ((hpts->p_on_queue_cnt <= conn_cnt_thresh) && (hpts->hit_callout_thresh == 1)) {
1719 hpts->hit_callout_thresh = 0;
1720 atomic_subtract_int(&hpts_that_need_softclock, 1);
1721 }
1722 if (hpts->p_on_queue_cnt >= conn_cnt_thresh) {
1723 if(hpts->p_direct_wake == 0) {
1724 /*
1725 * Only adjust sleep time if we were
1726 * called from the callout i.e. direct_wake == 0.
1727 */
1728 if (slots_ran < slots_indicate_more_sleep) {
1729 hpts->p_mysleep.tv_usec *= 2;
1730 if (hpts->p_mysleep.tv_usec > dynamic_max_sleep)
1731 hpts->p_mysleep.tv_usec = dynamic_max_sleep;
1732 } else if (slots_ran > slots_indicate_less_sleep) {
1733 hpts->p_mysleep.tv_usec /= 2;
1734 if (hpts->p_mysleep.tv_usec < dynamic_min_sleep)
1735 hpts->p_mysleep.tv_usec = dynamic_min_sleep;
1736 }
1737 }
1738 if (tv.tv_usec < hpts->p_mysleep.tv_usec) {
1739 hpts->overidden_sleep = tv.tv_usec;
1740 tv.tv_usec = hpts->p_mysleep.tv_usec;
1741 } else if (tv.tv_usec > dynamic_max_sleep) {
1742 /* Lets not let sleep get above this value */
1743 hpts->overidden_sleep = tv.tv_usec;
1744 tv.tv_usec = dynamic_max_sleep;
1745 }
1746 /*
1747 * In this mode the timer is a backstop to
1748 * all the userret/lro_flushes so we use
1749 * the dynamic value and set the on_min_sleep
1750 * flag so we will not be awoken.
1751 */
1752 hpts->p_on_min_sleep = 1;
1753 } else if (hpts->p_on_queue_cnt == 0) {
1754 /*
1755 * No one on the wheel, please wake us up
1756 * if you insert on the wheel.
1757 */
1758 hpts->p_on_min_sleep = 0;
1759 hpts->overidden_sleep = 0;
1760 } else {
1761 /*
1762 * We hit here when we have a low number of
1763 * clients on the wheel (our else clause).
1764 * We may need to go on min sleep, if we set
1765 * the flag we will not be awoken if someone
1766 * is inserted ahead of us. Clearing the flag
1767 * means we can be awoken. This is "old mode"
1768 * where the timer is what runs hpts mainly.
1769 */
1770 if (tv.tv_usec < tcp_min_hptsi_time) {
1771 /*
1772 * Yes on min sleep, which means
1773 * we cannot be awoken.
1774 */
1775 hpts->overidden_sleep = tv.tv_usec;
1776 tv.tv_usec = tcp_min_hptsi_time;
1777 hpts->p_on_min_sleep = 1;
1778 } else {
1779 /* Clear the min sleep flag */
1780 hpts->overidden_sleep = 0;
1781 hpts->p_on_min_sleep = 0;
1782 }
1783 }
1784 HPTS_MTX_ASSERT(hpts);
1785 hpts->p_hpts_active = 0;
1786 back_to_sleep:
1787 hpts->p_direct_wake = 0;
1788 (void)tcp_hpts_sleep(hpts, &tv);
1789 NET_EPOCH_EXIT(et);
1790 HPTS_UNLOCK(hpts);
1791 }
1792
1793 static int32_t
hpts_count_level(struct cpu_group * cg)1794 hpts_count_level(struct cpu_group *cg)
1795 {
1796 int32_t count_l3, i;
1797
1798 count_l3 = 0;
1799 if (cg->cg_level == CG_SHARE_L3)
1800 count_l3++;
1801 /* Walk all the children looking for L3 */
1802 for (i = 0; i < cg->cg_children; i++) {
1803 count_l3 += hpts_count_level(&cg->cg_child[i]);
1804 }
1805 return (count_l3);
1806 }
1807
1808 static void
hpts_gather_grps(struct cpu_group ** grps,int32_t * at,int32_t max,struct cpu_group * cg)1809 hpts_gather_grps(struct cpu_group **grps, int32_t *at, int32_t max, struct cpu_group *cg)
1810 {
1811 int32_t idx, i;
1812
1813 idx = *at;
1814 if (cg->cg_level == CG_SHARE_L3) {
1815 grps[idx] = cg;
1816 idx++;
1817 if (idx == max) {
1818 *at = idx;
1819 return;
1820 }
1821 }
1822 *at = idx;
1823 /* Walk all the children looking for L3 */
1824 for (i = 0; i < cg->cg_children; i++) {
1825 hpts_gather_grps(grps, at, max, &cg->cg_child[i]);
1826 }
1827 }
1828
1829 /*
1830 * Initialize a tcp_hptsi structure. This performs the core initialization
1831 * without starting threads.
1832 */
1833 struct tcp_hptsi*
tcp_hptsi_create(const struct tcp_hptsi_funcs * funcs,bool enable_sysctl)1834 tcp_hptsi_create(const struct tcp_hptsi_funcs *funcs, bool enable_sysctl)
1835 {
1836 struct tcp_hptsi *pace;
1837 struct cpu_group *cpu_top;
1838 uint32_t i, j, cts;
1839 int32_t count;
1840 size_t sz, asz;
1841 struct timeval tv;
1842 struct tcp_hpts_entry *hpts;
1843 char unit[16];
1844 uint32_t ncpus = mp_ncpus ? mp_ncpus : MAXCPU;
1845
1846 KASSERT(funcs != NULL, ("funcs is NULL"));
1847
1848 /* Allocate the main structure */
1849 pace = malloc(sizeof(struct tcp_hptsi), M_TCPHPTS, M_WAITOK | M_ZERO);
1850 if (pace == NULL)
1851 return (NULL);
1852
1853 memset(pace, 0, sizeof(*pace));
1854 pace->funcs = funcs;
1855
1856 /* Setup CPU topology information */
1857 #ifdef SMP
1858 cpu_top = smp_topo();
1859 #else
1860 cpu_top = NULL;
1861 #endif
1862 pace->rp_num_hptss = ncpus;
1863
1864 /* Allocate hpts entry array */
1865 sz = (pace->rp_num_hptss * sizeof(struct tcp_hpts_entry *));
1866 pace->rp_ent = malloc(sz, M_TCPHPTS, M_WAITOK | M_ZERO);
1867
1868 /* Allocate timestamp tracking array */
1869 sz = (sizeof(uint32_t) * pace->rp_num_hptss);
1870 pace->cts_last_ran = malloc(sz, M_TCPHPTS, M_WAITOK);
1871
1872 /* Setup CPU groups */
1873 if (cpu_top == NULL) {
1874 pace->grp_cnt = 1;
1875 } else {
1876 /* Find out how many cache level 3 domains we have */
1877 count = 0;
1878 pace->grp_cnt = hpts_count_level(cpu_top);
1879 if (pace->grp_cnt == 0) {
1880 pace->grp_cnt = 1;
1881 }
1882 sz = (pace->grp_cnt * sizeof(struct cpu_group *));
1883 pace->grps = malloc(sz, M_TCPHPTS, M_WAITOK);
1884 /* Now populate the groups */
1885 if (pace->grp_cnt == 1) {
1886 /*
1887 * All we need is the top level all cpu's are in
1888 * the same cache so when we use grp[0]->cg_mask
1889 * with the cg_first <-> cg_last it will include
1890 * all cpu's in it. The level here is probably
1891 * zero which is ok.
1892 */
1893 pace->grps[0] = cpu_top;
1894 } else {
1895 /*
1896 * Here we must find all the level three cache domains
1897 * and setup our pointers to them.
1898 */
1899 count = 0;
1900 hpts_gather_grps(pace->grps, &count, pace->grp_cnt, cpu_top);
1901 }
1902 }
1903
1904 /* Cache the current time for initializing the hpts entries */
1905 microuptime(&tv);
1906 cts = tcp_tv_to_usec(&tv);
1907
1908 /* Initialize each hpts entry */
1909 asz = sizeof(struct hptsh) * NUM_OF_HPTSI_SLOTS;
1910 for (i = 0; i < pace->rp_num_hptss; i++) {
1911 pace->rp_ent[i] = malloc(sizeof(struct tcp_hpts_entry),
1912 M_TCPHPTS, M_WAITOK | M_ZERO);
1913 pace->rp_ent[i]->p_hptss = malloc(asz, M_TCPHPTS,
1914 M_WAITOK | M_ZERO);
1915 hpts = pace->rp_ent[i];
1916
1917 /* Basic initialization */
1918 hpts->p_hpts_sleep_time = hpts_sleep_max;
1919 hpts->p_cpu = i;
1920 pace->cts_last_ran[i] = cts;
1921 hpts->p_cur_slot = cts_to_wheel(cts);
1922 hpts->p_prev_slot = hpts->p_cur_slot;
1923 hpts->p_nxt_slot = hpts_slot(hpts->p_cur_slot, 1);
1924 callout_init(&hpts->co, 1);
1925 hpts->p_hptsi = pace;
1926 mtx_init(&hpts->p_mtx, "tcp_hpts_lck", "hpts",
1927 MTX_DEF | MTX_DUPOK);
1928 for (j = 0; j < NUM_OF_HPTSI_SLOTS; j++) {
1929 TAILQ_INIT(&hpts->p_hptss[j].head);
1930 }
1931
1932 /* Setup SYSCTL if requested */
1933 if (enable_sysctl) {
1934 sysctl_ctx_init(&hpts->hpts_ctx);
1935 sprintf(unit, "%d", i);
1936 hpts->hpts_root = SYSCTL_ADD_NODE(&hpts->hpts_ctx,
1937 SYSCTL_STATIC_CHILDREN(_net_inet_tcp_hpts),
1938 OID_AUTO,
1939 unit,
1940 CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
1941 "");
1942 SYSCTL_ADD_INT(&hpts->hpts_ctx,
1943 SYSCTL_CHILDREN(hpts->hpts_root),
1944 OID_AUTO, "out_qcnt", CTLFLAG_RD,
1945 &hpts->p_on_queue_cnt, 0,
1946 "Count TCB's awaiting output processing");
1947 SYSCTL_ADD_U16(&hpts->hpts_ctx,
1948 SYSCTL_CHILDREN(hpts->hpts_root),
1949 OID_AUTO, "active", CTLFLAG_RD,
1950 &hpts->p_hpts_active, 0,
1951 "Is the hpts active");
1952 SYSCTL_ADD_UINT(&hpts->hpts_ctx,
1953 SYSCTL_CHILDREN(hpts->hpts_root),
1954 OID_AUTO, "curslot", CTLFLAG_RD,
1955 &hpts->p_cur_slot, 0,
1956 "What the current running pacers goal");
1957 SYSCTL_ADD_UINT(&hpts->hpts_ctx,
1958 SYSCTL_CHILDREN(hpts->hpts_root),
1959 OID_AUTO, "runslot", CTLFLAG_RD,
1960 &hpts->p_runningslot, 0,
1961 "What the running pacers current slot is");
1962 SYSCTL_ADD_UINT(&hpts->hpts_ctx,
1963 SYSCTL_CHILDREN(hpts->hpts_root),
1964 OID_AUTO, "lastran", CTLFLAG_RD,
1965 &pace->cts_last_ran[i], 0,
1966 "The last usec timestamp that this hpts ran");
1967 SYSCTL_ADD_LONG(&hpts->hpts_ctx,
1968 SYSCTL_CHILDREN(hpts->hpts_root),
1969 OID_AUTO, "cur_min_sleep", CTLFLAG_RD,
1970 &hpts->p_mysleep.tv_usec,
1971 "What the running pacers is using for p_mysleep.tv_usec");
1972 SYSCTL_ADD_U64(&hpts->hpts_ctx,
1973 SYSCTL_CHILDREN(hpts->hpts_root),
1974 OID_AUTO, "now_sleeping", CTLFLAG_RD,
1975 &hpts->sleeping, 0,
1976 "What the running pacers is actually sleeping for");
1977 SYSCTL_ADD_U64(&hpts->hpts_ctx,
1978 SYSCTL_CHILDREN(hpts->hpts_root),
1979 OID_AUTO, "syscall_cnt", CTLFLAG_RD,
1980 &hpts->syscall_cnt, 0,
1981 "How many times we had syscalls on this hpts");
1982 }
1983 }
1984
1985 return (pace);
1986 }
1987
1988 /*
1989 * Create threads for a tcp_hptsi structure and starts timers for the current
1990 * (minimum) sleep interval.
1991 */
1992 void
tcp_hptsi_start(struct tcp_hptsi * pace)1993 tcp_hptsi_start(struct tcp_hptsi *pace)
1994 {
1995 struct tcp_hpts_entry *hpts;
1996 struct pcpu *pc;
1997 struct timeval tv;
1998 uint32_t i, j;
1999 int count, domain;
2000 int error __diagused;
2001
2002 KASSERT(pace != NULL, ("tcp_hptsi_start: pace is NULL"));
2003
2004 /* Start threads for each hpts entry */
2005 for (i = 0; i < pace->rp_num_hptss; i++) {
2006 hpts = pace->rp_ent[i];
2007
2008 KASSERT(hpts->ie_cookie == NULL,
2009 ("tcp_hptsi_start: hpts[%d]->ie_cookie is not NULL", i));
2010
2011 error = swi_add(&hpts->ie, "hpts",
2012 tcp_hpts_thread, (void *)hpts,
2013 SWI_NET, INTR_MPSAFE, &hpts->ie_cookie);
2014 KASSERT(error == 0,
2015 ("Can't add hpts:%p i:%d err:%d", hpts, i, error));
2016
2017 if (tcp_bind_threads == 1) {
2018 (void)intr_event_bind(hpts->ie, i);
2019 } else if (tcp_bind_threads == 2) {
2020 /* Find the group for this CPU (i) and bind into it */
2021 for (j = 0; j < pace->grp_cnt; j++) {
2022 if (CPU_ISSET(i, &pace->grps[j]->cg_mask)) {
2023 if (intr_event_bind_ithread_cpuset(hpts->ie,
2024 &pace->grps[j]->cg_mask) == 0) {
2025 pc = pcpu_find(i);
2026 domain = pc->pc_domain;
2027 count = pace->domains[domain].count;
2028 pace->domains[domain].cpu[count] = i;
2029 pace->domains[domain].count++;
2030 break;
2031 }
2032 }
2033 }
2034 }
2035
2036 hpts->p_mysleep.tv_sec = 0;
2037 hpts->p_mysleep.tv_usec = tcp_min_hptsi_time;
2038 tv.tv_sec = 0;
2039 tv.tv_usec = hpts->p_hpts_sleep_time * HPTS_USECS_PER_SLOT;
2040 (void)tcp_hpts_sleep(hpts, &tv);
2041 }
2042 }
2043
2044 /*
2045 * Stop all callouts/threads for a tcp_hptsi structure.
2046 */
2047 void
tcp_hptsi_stop(struct tcp_hptsi * pace)2048 tcp_hptsi_stop(struct tcp_hptsi *pace)
2049 {
2050 struct tcp_hpts_entry *hpts;
2051 int rv __diagused;
2052 uint32_t i;
2053
2054 KASSERT(pace != NULL, ("tcp_hptsi_stop: pace is NULL"));
2055
2056 for (i = 0; i < pace->rp_num_hptss; i++) {
2057 hpts = pace->rp_ent[i];
2058 KASSERT(hpts != NULL, ("tcp_hptsi_stop: hpts[%d] is NULL", i));
2059 KASSERT(hpts->ie_cookie != NULL,
2060 ("tcp_hptsi_stop: hpts[%d]->ie_cookie is NULL", i));
2061
2062 rv = _callout_stop_safe(&hpts->co, CS_DRAIN);
2063 MPASS(rv != 0);
2064
2065 rv = swi_remove(hpts->ie_cookie);
2066 MPASS(rv == 0);
2067 hpts->ie_cookie = NULL;
2068 }
2069 }
2070
2071 /*
2072 * Destroy a tcp_hptsi structure initialized by tcp_hptsi_create.
2073 */
2074 void
tcp_hptsi_destroy(struct tcp_hptsi * pace)2075 tcp_hptsi_destroy(struct tcp_hptsi *pace)
2076 {
2077 struct tcp_hpts_entry *hpts;
2078 uint32_t i;
2079
2080 KASSERT(pace != NULL, ("tcp_hptsi_destroy: pace is NULL"));
2081 KASSERT(pace->rp_ent != NULL, ("tcp_hptsi_destroy: pace->rp_ent is NULL"));
2082
2083 /* Cleanup each hpts entry */
2084 for (i = 0; i < pace->rp_num_hptss; i++) {
2085 hpts = pace->rp_ent[i];
2086 if (hpts != NULL) {
2087 /* Cleanup SYSCTL if it was initialized */
2088 if (hpts->hpts_root != NULL) {
2089 sysctl_ctx_free(&hpts->hpts_ctx);
2090 }
2091
2092 mtx_destroy(&hpts->p_mtx);
2093 free(hpts->p_hptss, M_TCPHPTS);
2094 free(hpts, M_TCPHPTS);
2095 }
2096 }
2097
2098 /* Cleanup main arrays */
2099 free(pace->rp_ent, M_TCPHPTS);
2100 free(pace->cts_last_ran, M_TCPHPTS);
2101 #ifdef SMP
2102 free(pace->grps, M_TCPHPTS);
2103 #endif
2104
2105 /* Free the main structure */
2106 free(pace, M_TCPHPTS);
2107 }
2108
2109 static int
tcp_hpts_mod_load(void)2110 tcp_hpts_mod_load(void)
2111 {
2112 int i;
2113
2114 /* Don't try to bind to NUMA domains if we don't have any */
2115 if (vm_ndomains == 1 && tcp_bind_threads == 2)
2116 tcp_bind_threads = 0;
2117
2118 /* Create the tcp_hptsi structure */
2119 tcp_hptsi_pace = tcp_hptsi_create(&tcp_hptsi_default_funcs, true);
2120 if (tcp_hptsi_pace == NULL)
2121 return (ENOMEM);
2122
2123 /* Initialize global counters */
2124 hpts_hopelessly_behind = counter_u64_alloc(M_WAITOK);
2125 hpts_loops = counter_u64_alloc(M_WAITOK);
2126 back_tosleep = counter_u64_alloc(M_WAITOK);
2127 combined_wheel_wrap = counter_u64_alloc(M_WAITOK);
2128 wheel_wrap = counter_u64_alloc(M_WAITOK);
2129 hpts_wake_timeout = counter_u64_alloc(M_WAITOK);
2130 hpts_direct_awakening = counter_u64_alloc(M_WAITOK);
2131 hpts_back_tosleep = counter_u64_alloc(M_WAITOK);
2132 hpts_direct_call = counter_u64_alloc(M_WAITOK);
2133 cpu_uses_flowid = counter_u64_alloc(M_WAITOK);
2134 cpu_uses_random = counter_u64_alloc(M_WAITOK);
2135
2136 /* Start the threads */
2137 tcp_hptsi_start(tcp_hptsi_pace);
2138
2139 /* Enable the global HPTS softclock function */
2140 tcp_hpts_softclock = __tcp_run_hpts;
2141
2142 /* Initialize LRO HPTS */
2143 tcp_lro_hpts_init();
2144
2145 /*
2146 * If we somehow have an empty domain, fall back to choosing among all
2147 * HPTS threads.
2148 */
2149 for (i = 0; i < vm_ndomains; i++) {
2150 if (tcp_hptsi_pace->domains[i].count == 0) {
2151 tcp_bind_threads = 0;
2152 break;
2153 }
2154 }
2155
2156 printf("TCP HPTS started %u (%s) swi interrupt threads\n",
2157 tcp_hptsi_pace->rp_num_hptss, (tcp_bind_threads == 0) ?
2158 "(unbounded)" :
2159 (tcp_bind_threads == 1 ? "per-cpu" : "per-NUMA-domain"));
2160
2161 return (0);
2162 }
2163
2164 static void
tcp_hpts_mod_unload(void)2165 tcp_hpts_mod_unload(void)
2166 {
2167 tcp_lro_hpts_uninit();
2168
2169 /* Disable the global HPTS softclock function */
2170 atomic_store_ptr(&tcp_hpts_softclock, NULL);
2171
2172 tcp_hptsi_stop(tcp_hptsi_pace);
2173 tcp_hptsi_destroy(tcp_hptsi_pace);
2174 tcp_hptsi_pace = NULL;
2175
2176 /* Cleanup global counters */
2177 counter_u64_free(hpts_hopelessly_behind);
2178 counter_u64_free(hpts_loops);
2179 counter_u64_free(back_tosleep);
2180 counter_u64_free(combined_wheel_wrap);
2181 counter_u64_free(wheel_wrap);
2182 counter_u64_free(hpts_wake_timeout);
2183 counter_u64_free(hpts_direct_awakening);
2184 counter_u64_free(hpts_back_tosleep);
2185 counter_u64_free(hpts_direct_call);
2186 counter_u64_free(cpu_uses_flowid);
2187 counter_u64_free(cpu_uses_random);
2188 }
2189
2190 static int
tcp_hpts_mod_event(module_t mod,int what,void * arg)2191 tcp_hpts_mod_event(module_t mod, int what, void *arg)
2192 {
2193 switch (what) {
2194 case MOD_LOAD:
2195 return (tcp_hpts_mod_load());
2196 case MOD_QUIESCE:
2197 /*
2198 * Since we are a dependency of TCP stack modules, they should
2199 * already be unloaded, and the HPTS ring is empty. However,
2200 * function pointer manipulations aren't 100% safe. Although,
2201 * tcp_hpts_mod_unload() use atomic(9) the userret() doesn't.
2202 * Thus, allow only forced unload of HPTS.
2203 */
2204 return (EBUSY);
2205 case MOD_UNLOAD:
2206 tcp_hpts_mod_unload();
2207 return (0);
2208 default:
2209 return (EINVAL);
2210 };
2211 }
2212
2213 static moduledata_t tcp_hpts_module = {
2214 .name = "tcphpts",
2215 .evhand = tcp_hpts_mod_event,
2216 };
2217
2218 DECLARE_MODULE(tcphpts, tcp_hpts_module, SI_SUB_SOFTINTR, SI_ORDER_ANY);
2219 MODULE_VERSION(tcphpts, 1);
2220