xref: /freebsd/sys/netinet/siftr.c (revision b4d3dd861511cc58c1d1328511189b8a42a6d091)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2007-2009
5  * 	Swinburne University of Technology, Melbourne, Australia.
6  * Copyright (c) 2009-2010, The FreeBSD Foundation
7  * All rights reserved.
8  *
9  * Portions of this software were developed at the Centre for Advanced
10  * Internet Architectures, Swinburne University of Technology, Melbourne,
11  * Australia by Lawrence Stewart under sponsorship from the FreeBSD Foundation.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 /******************************************************
36  * Statistical Information For TCP Research (SIFTR)
37  *
38  * A FreeBSD kernel module that adds very basic intrumentation to the
39  * TCP stack, allowing internal stats to be recorded to a log file
40  * for experimental, debugging and performance analysis purposes.
41  *
42  * SIFTR was first released in 2007 by James Healy and Lawrence Stewart whilst
43  * working on the NewTCP research project at Swinburne University of
44  * Technology's Centre for Advanced Internet Architectures, Melbourne,
45  * Australia, which was made possible in part by a grant from the Cisco
46  * University Research Program Fund at Community Foundation Silicon Valley.
47  * More details are available at:
48  *   http://caia.swin.edu.au/urp/newtcp/
49  *
50  * Work on SIFTR v1.2.x was sponsored by the FreeBSD Foundation as part of
51  * the "Enhancing the FreeBSD TCP Implementation" project 2008-2009.
52  * More details are available at:
53  *   http://www.freebsdfoundation.org/
54  *   http://caia.swin.edu.au/freebsd/etcp09/
55  *
56  * Lawrence Stewart is the current maintainer, and all contact regarding
57  * SIFTR should be directed to him via email: lastewart@swin.edu.au
58  *
59  * Initial release date: June 2007
60  * Most recent update: September 2010
61  ******************************************************/
62 
63 #include <sys/cdefs.h>
64 __FBSDID("$FreeBSD$");
65 
66 #include <sys/param.h>
67 #include <sys/alq.h>
68 #include <sys/errno.h>
69 #include <sys/eventhandler.h>
70 #include <sys/hash.h>
71 #include <sys/kernel.h>
72 #include <sys/kthread.h>
73 #include <sys/lock.h>
74 #include <sys/mbuf.h>
75 #include <sys/module.h>
76 #include <sys/mutex.h>
77 #include <sys/pcpu.h>
78 #include <sys/proc.h>
79 #include <sys/sbuf.h>
80 #include <sys/sdt.h>
81 #include <sys/smp.h>
82 #include <sys/socket.h>
83 #include <sys/socketvar.h>
84 #include <sys/sysctl.h>
85 #include <sys/unistd.h>
86 
87 #include <net/if.h>
88 #include <net/if_var.h>
89 #include <net/pfil.h>
90 
91 #include <netinet/in.h>
92 #include <netinet/in_kdtrace.h>
93 #include <netinet/in_pcb.h>
94 #include <netinet/in_systm.h>
95 #include <netinet/in_var.h>
96 #include <netinet/ip.h>
97 #include <netinet/ip_var.h>
98 #include <netinet/tcp_var.h>
99 
100 #ifdef SIFTR_IPV6
101 #include <netinet/ip6.h>
102 #include <netinet6/ip6_var.h>
103 #include <netinet6/in6_pcb.h>
104 #endif /* SIFTR_IPV6 */
105 
106 #include <machine/in_cksum.h>
107 
108 /*
109  * Three digit version number refers to X.Y.Z where:
110  * X is the major version number
111  * Y is bumped to mark backwards incompatible changes
112  * Z is bumped to mark backwards compatible changes
113  */
114 #define V_MAJOR		1
115 #define V_BACKBREAK	3
116 #define V_BACKCOMPAT	0
117 #define MODVERSION	__CONCAT(V_MAJOR, __CONCAT(V_BACKBREAK, V_BACKCOMPAT))
118 #define MODVERSION_STR	__XSTRING(V_MAJOR) "." __XSTRING(V_BACKBREAK) "." \
119     __XSTRING(V_BACKCOMPAT)
120 
121 #define HOOK 0
122 #define UNHOOK 1
123 #define SIFTR_EXPECTED_MAX_TCP_FLOWS 65536
124 #define SYS_NAME "FreeBSD"
125 #define PACKET_TAG_SIFTR 100
126 #define PACKET_COOKIE_SIFTR 21749576
127 #define SIFTR_LOG_FILE_MODE 0644
128 #define SIFTR_DISABLE 0
129 #define SIFTR_ENABLE 1
130 
131 /*
132  * Hard upper limit on the length of log messages. Bump this up if you add new
133  * data fields such that the line length could exceed the below value.
134  */
135 #define MAX_LOG_MSG_LEN 300
136 /* XXX: Make this a sysctl tunable. */
137 #define SIFTR_ALQ_BUFLEN (1000*MAX_LOG_MSG_LEN)
138 
139 /*
140  * 1 byte for IP version
141  * IPv4: src/dst IP (4+4) + src/dst port (2+2) = 12 bytes
142  * IPv6: src/dst IP (16+16) + src/dst port (2+2) = 36 bytes
143  */
144 #ifdef SIFTR_IPV6
145 #define FLOW_KEY_LEN 37
146 #else
147 #define FLOW_KEY_LEN 13
148 #endif
149 
150 #ifdef SIFTR_IPV6
151 #define SIFTR_IPMODE 6
152 #else
153 #define SIFTR_IPMODE 4
154 #endif
155 
156 /* useful macros */
157 #define UPPER_SHORT(X)	(((X) & 0xFFFF0000) >> 16)
158 #define LOWER_SHORT(X)	((X) & 0x0000FFFF)
159 
160 #define FIRST_OCTET(X)	(((X) & 0xFF000000) >> 24)
161 #define SECOND_OCTET(X)	(((X) & 0x00FF0000) >> 16)
162 #define THIRD_OCTET(X)	(((X) & 0x0000FF00) >> 8)
163 #define FOURTH_OCTET(X)	((X) & 0x000000FF)
164 
165 static MALLOC_DEFINE(M_SIFTR, "siftr", "dynamic memory used by SIFTR");
166 static MALLOC_DEFINE(M_SIFTR_PKTNODE, "siftr_pktnode",
167     "SIFTR pkt_node struct");
168 static MALLOC_DEFINE(M_SIFTR_HASHNODE, "siftr_hashnode",
169     "SIFTR flow_hash_node struct");
170 
171 /* Used as links in the pkt manager queue. */
172 struct pkt_node {
173 	/* Timestamp of pkt as noted in the pfil hook. */
174 	struct timeval		tval;
175 	/* Direction pkt is travelling. */
176 	enum {
177 		DIR_IN = 0,
178 		DIR_OUT = 1,
179 	}			direction;
180 	/* IP version pkt_node relates to; either INP_IPV4 or INP_IPV6. */
181 	uint8_t			ipver;
182 	/* Hash of the pkt which triggered the log message. */
183 	uint32_t		hash;
184 	/* Local/foreign IP address. */
185 #ifdef SIFTR_IPV6
186 	uint32_t		ip_laddr[4];
187 	uint32_t		ip_faddr[4];
188 #else
189 	uint8_t			ip_laddr[4];
190 	uint8_t			ip_faddr[4];
191 #endif
192 	/* Local TCP port. */
193 	uint16_t		tcp_localport;
194 	/* Foreign TCP port. */
195 	uint16_t		tcp_foreignport;
196 	/* Congestion Window (bytes). */
197 	uint32_t		snd_cwnd;
198 	/* Sending Window (bytes). */
199 	uint32_t		snd_wnd;
200 	/* Receive Window (bytes). */
201 	uint32_t		rcv_wnd;
202 	/* More tcpcb flags storage */
203 	uint32_t		t_flags2;
204 	/* Slow Start Threshold (bytes). */
205 	uint32_t		snd_ssthresh;
206 	/* Current state of the TCP FSM. */
207 	int			conn_state;
208 	/* Max Segment Size (bytes). */
209 	u_int			max_seg_size;
210 	/*
211 	 * Smoothed RTT stored as found in the TCP control block
212 	 * in units of (TCP_RTT_SCALE*hz).
213 	 */
214 	int			smoothed_rtt;
215 	/* Is SACK enabled? */
216 	u_char			sack_enabled;
217 	/* Window scaling for snd window. */
218 	u_char			snd_scale;
219 	/* Window scaling for recv window. */
220 	u_char			rcv_scale;
221 	/* TCP control block flags. */
222 	u_int			flags;
223 	/* Retransmit timeout length. */
224 	int			rxt_length;
225 	/* Size of the TCP send buffer in bytes. */
226 	u_int			snd_buf_hiwater;
227 	/* Current num bytes in the send socket buffer. */
228 	u_int			snd_buf_cc;
229 	/* Size of the TCP receive buffer in bytes. */
230 	u_int			rcv_buf_hiwater;
231 	/* Current num bytes in the receive socket buffer. */
232 	u_int			rcv_buf_cc;
233 	/* Number of bytes inflight that we are waiting on ACKs for. */
234 	u_int			sent_inflight_bytes;
235 	/* Number of segments currently in the reassembly queue. */
236 	int			t_segqlen;
237 	/* Flowid for the connection. */
238 	u_int			flowid;
239 	/* Flow type for the connection. */
240 	u_int			flowtype;
241 	/* Link to next pkt_node in the list. */
242 	STAILQ_ENTRY(pkt_node)	nodes;
243 };
244 
245 struct flow_hash_node
246 {
247 	uint16_t counter;
248 	uint8_t key[FLOW_KEY_LEN];
249 	LIST_ENTRY(flow_hash_node) nodes;
250 };
251 
252 struct siftr_stats
253 {
254 	/* # TCP pkts seen by the SIFTR PFIL hooks, including any skipped. */
255 	uint64_t n_in;
256 	uint64_t n_out;
257 	/* # pkts skipped due to failed malloc calls. */
258 	uint32_t nskip_in_malloc;
259 	uint32_t nskip_out_malloc;
260 	/* # pkts skipped due to failed inpcb lookups. */
261 	uint32_t nskip_in_inpcb;
262 	uint32_t nskip_out_inpcb;
263 	/* # pkts skipped due to failed tcpcb lookups. */
264 	uint32_t nskip_in_tcpcb;
265 	uint32_t nskip_out_tcpcb;
266 	/* # pkts skipped due to stack reinjection. */
267 	uint32_t nskip_in_dejavu;
268 	uint32_t nskip_out_dejavu;
269 };
270 
271 DPCPU_DEFINE_STATIC(struct siftr_stats, ss);
272 
273 static volatile unsigned int siftr_exit_pkt_manager_thread = 0;
274 static unsigned int siftr_enabled = 0;
275 static unsigned int siftr_pkts_per_log = 1;
276 static unsigned int siftr_generate_hashes = 0;
277 static uint16_t     siftr_port_filter = 0;
278 /* static unsigned int siftr_binary_log = 0; */
279 static char siftr_logfile[PATH_MAX] = "/var/log/siftr.log";
280 static char siftr_logfile_shadow[PATH_MAX] = "/var/log/siftr.log";
281 static u_long siftr_hashmask;
282 STAILQ_HEAD(pkthead, pkt_node) pkt_queue = STAILQ_HEAD_INITIALIZER(pkt_queue);
283 LIST_HEAD(listhead, flow_hash_node) *counter_hash;
284 static int wait_for_pkt;
285 static struct alq *siftr_alq = NULL;
286 static struct mtx siftr_pkt_queue_mtx;
287 static struct mtx siftr_pkt_mgr_mtx;
288 static struct thread *siftr_pkt_manager_thr = NULL;
289 static char direction[2] = {'i','o'};
290 
291 /* Required function prototypes. */
292 static int siftr_sysctl_enabled_handler(SYSCTL_HANDLER_ARGS);
293 static int siftr_sysctl_logfile_name_handler(SYSCTL_HANDLER_ARGS);
294 
295 /* Declare the net.inet.siftr sysctl tree and populate it. */
296 
297 SYSCTL_DECL(_net_inet_siftr);
298 
299 SYSCTL_NODE(_net_inet, OID_AUTO, siftr, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
300     "siftr related settings");
301 
302 SYSCTL_PROC(_net_inet_siftr, OID_AUTO, enabled,
303     CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
304     &siftr_enabled, 0, &siftr_sysctl_enabled_handler, "IU",
305     "switch siftr module operations on/off");
306 
307 SYSCTL_PROC(_net_inet_siftr, OID_AUTO, logfile,
308     CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &siftr_logfile_shadow,
309     sizeof(siftr_logfile_shadow), &siftr_sysctl_logfile_name_handler, "A",
310     "file to save siftr log messages to");
311 
312 SYSCTL_UINT(_net_inet_siftr, OID_AUTO, ppl, CTLFLAG_RW,
313     &siftr_pkts_per_log, 1,
314     "number of packets between generating a log message");
315 
316 SYSCTL_UINT(_net_inet_siftr, OID_AUTO, genhashes, CTLFLAG_RW,
317     &siftr_generate_hashes, 0,
318     "enable packet hash generation");
319 
320 SYSCTL_U16(_net_inet_siftr, OID_AUTO, port_filter, CTLFLAG_RW,
321     &siftr_port_filter, 0,
322     "enable packet filter on a TCP port");
323 
324 /* XXX: TODO
325 SYSCTL_UINT(_net_inet_siftr, OID_AUTO, binary, CTLFLAG_RW,
326     &siftr_binary_log, 0,
327     "write log files in binary instead of ascii");
328 */
329 
330 /* Begin functions. */
331 
332 static void
333 siftr_process_pkt(struct pkt_node * pkt_node)
334 {
335 	struct flow_hash_node *hash_node;
336 	struct listhead *counter_list;
337 	struct siftr_stats *ss;
338 	struct ale *log_buf;
339 	uint8_t key[FLOW_KEY_LEN];
340 	uint8_t found_match, key_offset;
341 
342 	hash_node = NULL;
343 	ss = DPCPU_PTR(ss);
344 	found_match = 0;
345 	key_offset = 1;
346 
347 	/*
348 	 * Create the key that will be used to create a hash index
349 	 * into our hash table. Our key consists of:
350 	 * ipversion, localip, localport, foreignip, foreignport
351 	 */
352 	key[0] = pkt_node->ipver;
353 	memcpy(key + key_offset, &pkt_node->ip_laddr,
354 	    sizeof(pkt_node->ip_laddr));
355 	key_offset += sizeof(pkt_node->ip_laddr);
356 	memcpy(key + key_offset, &pkt_node->tcp_localport,
357 	    sizeof(pkt_node->tcp_localport));
358 	key_offset += sizeof(pkt_node->tcp_localport);
359 	memcpy(key + key_offset, &pkt_node->ip_faddr,
360 	    sizeof(pkt_node->ip_faddr));
361 	key_offset += sizeof(pkt_node->ip_faddr);
362 	memcpy(key + key_offset, &pkt_node->tcp_foreignport,
363 	    sizeof(pkt_node->tcp_foreignport));
364 
365 	counter_list = counter_hash +
366 	    (hash32_buf(key, sizeof(key), 0) & siftr_hashmask);
367 
368 	/*
369 	 * If the list is not empty i.e. the hash index has
370 	 * been used by another flow previously.
371 	 */
372 	if (LIST_FIRST(counter_list) != NULL) {
373 		/*
374 		 * Loop through the hash nodes in the list.
375 		 * There should normally only be 1 hash node in the list,
376 		 * except if there have been collisions at the hash index
377 		 * computed by hash32_buf().
378 		 */
379 		LIST_FOREACH(hash_node, counter_list, nodes) {
380 			/*
381 			 * Check if the key for the pkt we are currently
382 			 * processing is the same as the key stored in the
383 			 * hash node we are currently processing.
384 			 * If they are the same, then we've found the
385 			 * hash node that stores the counter for the flow
386 			 * the pkt belongs to.
387 			 */
388 			if (memcmp(hash_node->key, key, sizeof(key)) == 0) {
389 				found_match = 1;
390 				break;
391 			}
392 		}
393 	}
394 
395 	/* If this flow hash hasn't been seen before or we have a collision. */
396 	if (hash_node == NULL || !found_match) {
397 		/* Create a new hash node to store the flow's counter. */
398 		hash_node = malloc(sizeof(struct flow_hash_node),
399 		    M_SIFTR_HASHNODE, M_WAITOK);
400 
401 		if (hash_node != NULL) {
402 			/* Initialise our new hash node list entry. */
403 			hash_node->counter = 0;
404 			memcpy(hash_node->key, key, sizeof(key));
405 			LIST_INSERT_HEAD(counter_list, hash_node, nodes);
406 		} else {
407 			/* Malloc failed. */
408 			if (pkt_node->direction == DIR_IN)
409 				ss->nskip_in_malloc++;
410 			else
411 				ss->nskip_out_malloc++;
412 
413 			return;
414 		}
415 	} else if (siftr_pkts_per_log > 1) {
416 		/*
417 		 * Taking the remainder of the counter divided
418 		 * by the current value of siftr_pkts_per_log
419 		 * and storing that in counter provides a neat
420 		 * way to modulate the frequency of log
421 		 * messages being written to the log file.
422 		 */
423 		hash_node->counter = (hash_node->counter + 1) %
424 		    siftr_pkts_per_log;
425 
426 		/*
427 		 * If we have not seen enough packets since the last time
428 		 * we wrote a log message for this connection, return.
429 		 */
430 		if (hash_node->counter > 0)
431 			return;
432 	}
433 
434 	log_buf = alq_getn(siftr_alq, MAX_LOG_MSG_LEN, ALQ_WAITOK);
435 
436 	if (log_buf == NULL)
437 		return; /* Should only happen if the ALQ is shutting down. */
438 
439 #ifdef SIFTR_IPV6
440 	pkt_node->ip_laddr[3] = ntohl(pkt_node->ip_laddr[3]);
441 	pkt_node->ip_faddr[3] = ntohl(pkt_node->ip_faddr[3]);
442 
443 	if (pkt_node->ipver == INP_IPV6) { /* IPv6 packet */
444 		pkt_node->ip_laddr[0] = ntohl(pkt_node->ip_laddr[0]);
445 		pkt_node->ip_laddr[1] = ntohl(pkt_node->ip_laddr[1]);
446 		pkt_node->ip_laddr[2] = ntohl(pkt_node->ip_laddr[2]);
447 		pkt_node->ip_faddr[0] = ntohl(pkt_node->ip_faddr[0]);
448 		pkt_node->ip_faddr[1] = ntohl(pkt_node->ip_faddr[1]);
449 		pkt_node->ip_faddr[2] = ntohl(pkt_node->ip_faddr[2]);
450 
451 		/* Construct an IPv6 log message. */
452 		log_buf->ae_bytesused = snprintf(log_buf->ae_data,
453 		    MAX_LOG_MSG_LEN,
454 		    "%c,0x%08x,%zd.%06ld,%x:%x:%x:%x:%x:%x:%x:%x,%u,%x:%x:%x:"
455 		    "%x:%x:%x:%x:%x,%u,%u,%u,%u,%u,%u,%u,%u,%u,%u,%u,%u,"
456 		    "%u,%d,%u,%u,%u,%u,%u,%u,%u,%u\n",
457 		    direction[pkt_node->direction],
458 		    pkt_node->hash,
459 		    pkt_node->tval.tv_sec,
460 		    pkt_node->tval.tv_usec,
461 		    UPPER_SHORT(pkt_node->ip_laddr[0]),
462 		    LOWER_SHORT(pkt_node->ip_laddr[0]),
463 		    UPPER_SHORT(pkt_node->ip_laddr[1]),
464 		    LOWER_SHORT(pkt_node->ip_laddr[1]),
465 		    UPPER_SHORT(pkt_node->ip_laddr[2]),
466 		    LOWER_SHORT(pkt_node->ip_laddr[2]),
467 		    UPPER_SHORT(pkt_node->ip_laddr[3]),
468 		    LOWER_SHORT(pkt_node->ip_laddr[3]),
469 		    ntohs(pkt_node->tcp_localport),
470 		    UPPER_SHORT(pkt_node->ip_faddr[0]),
471 		    LOWER_SHORT(pkt_node->ip_faddr[0]),
472 		    UPPER_SHORT(pkt_node->ip_faddr[1]),
473 		    LOWER_SHORT(pkt_node->ip_faddr[1]),
474 		    UPPER_SHORT(pkt_node->ip_faddr[2]),
475 		    LOWER_SHORT(pkt_node->ip_faddr[2]),
476 		    UPPER_SHORT(pkt_node->ip_faddr[3]),
477 		    LOWER_SHORT(pkt_node->ip_faddr[3]),
478 		    ntohs(pkt_node->tcp_foreignport),
479 		    pkt_node->snd_ssthresh,
480 		    pkt_node->snd_cwnd,
481 		    pkt_node->t_flags2,
482 		    pkt_node->snd_wnd,
483 		    pkt_node->rcv_wnd,
484 		    pkt_node->snd_scale,
485 		    pkt_node->rcv_scale,
486 		    pkt_node->conn_state,
487 		    pkt_node->max_seg_size,
488 		    pkt_node->smoothed_rtt,
489 		    pkt_node->sack_enabled,
490 		    pkt_node->flags,
491 		    pkt_node->rxt_length,
492 		    pkt_node->snd_buf_hiwater,
493 		    pkt_node->snd_buf_cc,
494 		    pkt_node->rcv_buf_hiwater,
495 		    pkt_node->rcv_buf_cc,
496 		    pkt_node->sent_inflight_bytes,
497 		    pkt_node->t_segqlen,
498 		    pkt_node->flowid,
499 		    pkt_node->flowtype);
500 	} else { /* IPv4 packet */
501 		pkt_node->ip_laddr[0] = FIRST_OCTET(pkt_node->ip_laddr[3]);
502 		pkt_node->ip_laddr[1] = SECOND_OCTET(pkt_node->ip_laddr[3]);
503 		pkt_node->ip_laddr[2] = THIRD_OCTET(pkt_node->ip_laddr[3]);
504 		pkt_node->ip_laddr[3] = FOURTH_OCTET(pkt_node->ip_laddr[3]);
505 		pkt_node->ip_faddr[0] = FIRST_OCTET(pkt_node->ip_faddr[3]);
506 		pkt_node->ip_faddr[1] = SECOND_OCTET(pkt_node->ip_faddr[3]);
507 		pkt_node->ip_faddr[2] = THIRD_OCTET(pkt_node->ip_faddr[3]);
508 		pkt_node->ip_faddr[3] = FOURTH_OCTET(pkt_node->ip_faddr[3]);
509 #endif /* SIFTR_IPV6 */
510 
511 		/* Construct an IPv4 log message. */
512 		log_buf->ae_bytesused = snprintf(log_buf->ae_data,
513 		    MAX_LOG_MSG_LEN,
514 		    "%c,0x%08x,%jd.%06ld,%u.%u.%u.%u,%u,%u.%u.%u.%u,%u,%u,%u,"
515 		    "%u,%u,%u,%u,%u,%u,%u,%u,%u,%u,%d,%u,%u,%u,%u,%u,%u,%u,%u\n",
516 		    direction[pkt_node->direction],
517 		    pkt_node->hash,
518 		    (intmax_t)pkt_node->tval.tv_sec,
519 		    pkt_node->tval.tv_usec,
520 		    pkt_node->ip_laddr[0],
521 		    pkt_node->ip_laddr[1],
522 		    pkt_node->ip_laddr[2],
523 		    pkt_node->ip_laddr[3],
524 		    ntohs(pkt_node->tcp_localport),
525 		    pkt_node->ip_faddr[0],
526 		    pkt_node->ip_faddr[1],
527 		    pkt_node->ip_faddr[2],
528 		    pkt_node->ip_faddr[3],
529 		    ntohs(pkt_node->tcp_foreignport),
530 		    pkt_node->snd_ssthresh,
531 		    pkt_node->snd_cwnd,
532 		    pkt_node->t_flags2,
533 		    pkt_node->snd_wnd,
534 		    pkt_node->rcv_wnd,
535 		    pkt_node->snd_scale,
536 		    pkt_node->rcv_scale,
537 		    pkt_node->conn_state,
538 		    pkt_node->max_seg_size,
539 		    pkt_node->smoothed_rtt,
540 		    pkt_node->sack_enabled,
541 		    pkt_node->flags,
542 		    pkt_node->rxt_length,
543 		    pkt_node->snd_buf_hiwater,
544 		    pkt_node->snd_buf_cc,
545 		    pkt_node->rcv_buf_hiwater,
546 		    pkt_node->rcv_buf_cc,
547 		    pkt_node->sent_inflight_bytes,
548 		    pkt_node->t_segqlen,
549 		    pkt_node->flowid,
550 		    pkt_node->flowtype);
551 #ifdef SIFTR_IPV6
552 	}
553 #endif
554 
555 	alq_post_flags(siftr_alq, log_buf, 0);
556 }
557 
558 static void
559 siftr_pkt_manager_thread(void *arg)
560 {
561 	STAILQ_HEAD(pkthead, pkt_node) tmp_pkt_queue =
562 	    STAILQ_HEAD_INITIALIZER(tmp_pkt_queue);
563 	struct pkt_node *pkt_node, *pkt_node_temp;
564 	uint8_t draining;
565 
566 	draining = 2;
567 
568 	mtx_lock(&siftr_pkt_mgr_mtx);
569 
570 	/* draining == 0 when queue has been flushed and it's safe to exit. */
571 	while (draining) {
572 		/*
573 		 * Sleep until we are signalled to wake because thread has
574 		 * been told to exit or until 1 tick has passed.
575 		 */
576 		mtx_sleep(&wait_for_pkt, &siftr_pkt_mgr_mtx, PWAIT, "pktwait",
577 		    1);
578 
579 		/* Gain exclusive access to the pkt_node queue. */
580 		mtx_lock(&siftr_pkt_queue_mtx);
581 
582 		/*
583 		 * Move pkt_queue to tmp_pkt_queue, which leaves
584 		 * pkt_queue empty and ready to receive more pkt_nodes.
585 		 */
586 		STAILQ_CONCAT(&tmp_pkt_queue, &pkt_queue);
587 
588 		/*
589 		 * We've finished making changes to the list. Unlock it
590 		 * so the pfil hooks can continue queuing pkt_nodes.
591 		 */
592 		mtx_unlock(&siftr_pkt_queue_mtx);
593 
594 		/*
595 		 * We can't hold a mutex whilst calling siftr_process_pkt
596 		 * because ALQ might sleep waiting for buffer space.
597 		 */
598 		mtx_unlock(&siftr_pkt_mgr_mtx);
599 
600 		/* Flush all pkt_nodes to the log file. */
601 		STAILQ_FOREACH_SAFE(pkt_node, &tmp_pkt_queue, nodes,
602 		    pkt_node_temp) {
603 			siftr_process_pkt(pkt_node);
604 			STAILQ_REMOVE_HEAD(&tmp_pkt_queue, nodes);
605 			free(pkt_node, M_SIFTR_PKTNODE);
606 		}
607 
608 		KASSERT(STAILQ_EMPTY(&tmp_pkt_queue),
609 		    ("SIFTR tmp_pkt_queue not empty after flush"));
610 
611 		mtx_lock(&siftr_pkt_mgr_mtx);
612 
613 		/*
614 		 * If siftr_exit_pkt_manager_thread gets set during the window
615 		 * where we are draining the tmp_pkt_queue above, there might
616 		 * still be pkts in pkt_queue that need to be drained.
617 		 * Allow one further iteration to occur after
618 		 * siftr_exit_pkt_manager_thread has been set to ensure
619 		 * pkt_queue is completely empty before we kill the thread.
620 		 *
621 		 * siftr_exit_pkt_manager_thread is set only after the pfil
622 		 * hooks have been removed, so only 1 extra iteration
623 		 * is needed to drain the queue.
624 		 */
625 		if (siftr_exit_pkt_manager_thread)
626 			draining--;
627 	}
628 
629 	mtx_unlock(&siftr_pkt_mgr_mtx);
630 
631 	/* Calls wakeup on this thread's struct thread ptr. */
632 	kthread_exit();
633 }
634 
635 static uint32_t
636 hash_pkt(struct mbuf *m, uint32_t offset)
637 {
638 	uint32_t hash;
639 
640 	hash = 0;
641 
642 	while (m != NULL && offset > m->m_len) {
643 		/*
644 		 * The IP packet payload does not start in this mbuf, so
645 		 * need to figure out which mbuf it starts in and what offset
646 		 * into the mbuf's data region the payload starts at.
647 		 */
648 		offset -= m->m_len;
649 		m = m->m_next;
650 	}
651 
652 	while (m != NULL) {
653 		/* Ensure there is data in the mbuf */
654 		if ((m->m_len - offset) > 0)
655 			hash = hash32_buf(m->m_data + offset,
656 			    m->m_len - offset, hash);
657 
658 		m = m->m_next;
659 		offset = 0;
660         }
661 
662 	return (hash);
663 }
664 
665 /*
666  * Check if a given mbuf has the SIFTR mbuf tag. If it does, log the fact that
667  * it's a reinjected packet and return. If it doesn't, tag the mbuf and return.
668  * Return value >0 means the caller should skip processing this mbuf.
669  */
670 static inline int
671 siftr_chkreinject(struct mbuf *m, int dir, struct siftr_stats *ss)
672 {
673 	if (m_tag_locate(m, PACKET_COOKIE_SIFTR, PACKET_TAG_SIFTR, NULL)
674 	    != NULL) {
675 		if (dir == PFIL_IN)
676 			ss->nskip_in_dejavu++;
677 		else
678 			ss->nskip_out_dejavu++;
679 
680 		return (1);
681 	} else {
682 		struct m_tag *tag = m_tag_alloc(PACKET_COOKIE_SIFTR,
683 		    PACKET_TAG_SIFTR, 0, M_NOWAIT);
684 		if (tag == NULL) {
685 			if (dir == PFIL_IN)
686 				ss->nskip_in_malloc++;
687 			else
688 				ss->nskip_out_malloc++;
689 
690 			return (1);
691 		}
692 
693 		m_tag_prepend(m, tag);
694 	}
695 
696 	return (0);
697 }
698 
699 /*
700  * Look up an inpcb for a packet. Return the inpcb pointer if found, or NULL
701  * otherwise.
702  */
703 static inline struct inpcb *
704 siftr_findinpcb(int ipver, struct ip *ip, struct mbuf *m, uint16_t sport,
705     uint16_t dport, int dir, struct siftr_stats *ss)
706 {
707 	struct inpcb *inp;
708 
709 	/* We need the tcbinfo lock. */
710 	INP_INFO_WUNLOCK_ASSERT(&V_tcbinfo);
711 
712 	if (dir == PFIL_IN)
713 		inp = (ipver == INP_IPV4 ?
714 		    in_pcblookup(&V_tcbinfo, ip->ip_src, sport, ip->ip_dst,
715 		    dport, INPLOOKUP_RLOCKPCB, m->m_pkthdr.rcvif)
716 		    :
717 #ifdef SIFTR_IPV6
718 		    in6_pcblookup(&V_tcbinfo,
719 		    &((struct ip6_hdr *)ip)->ip6_src, sport,
720 		    &((struct ip6_hdr *)ip)->ip6_dst, dport, INPLOOKUP_RLOCKPCB,
721 		    m->m_pkthdr.rcvif)
722 #else
723 		    NULL
724 #endif
725 		    );
726 
727 	else
728 		inp = (ipver == INP_IPV4 ?
729 		    in_pcblookup(&V_tcbinfo, ip->ip_dst, dport, ip->ip_src,
730 		    sport, INPLOOKUP_RLOCKPCB, m->m_pkthdr.rcvif)
731 		    :
732 #ifdef SIFTR_IPV6
733 		    in6_pcblookup(&V_tcbinfo,
734 		    &((struct ip6_hdr *)ip)->ip6_dst, dport,
735 		    &((struct ip6_hdr *)ip)->ip6_src, sport, INPLOOKUP_RLOCKPCB,
736 		    m->m_pkthdr.rcvif)
737 #else
738 		    NULL
739 #endif
740 		    );
741 
742 	/* If we can't find the inpcb, bail. */
743 	if (inp == NULL) {
744 		if (dir == PFIL_IN)
745 			ss->nskip_in_inpcb++;
746 		else
747 			ss->nskip_out_inpcb++;
748 	}
749 
750 	return (inp);
751 }
752 
753 static inline void
754 siftr_siftdata(struct pkt_node *pn, struct inpcb *inp, struct tcpcb *tp,
755     int ipver, int dir, int inp_locally_locked)
756 {
757 #ifdef SIFTR_IPV6
758 	if (ipver == INP_IPV4) {
759 		pn->ip_laddr[3] = inp->inp_laddr.s_addr;
760 		pn->ip_faddr[3] = inp->inp_faddr.s_addr;
761 #else
762 		*((uint32_t *)pn->ip_laddr) = inp->inp_laddr.s_addr;
763 		*((uint32_t *)pn->ip_faddr) = inp->inp_faddr.s_addr;
764 #endif
765 #ifdef SIFTR_IPV6
766 	} else {
767 		pn->ip_laddr[0] = inp->in6p_laddr.s6_addr32[0];
768 		pn->ip_laddr[1] = inp->in6p_laddr.s6_addr32[1];
769 		pn->ip_laddr[2] = inp->in6p_laddr.s6_addr32[2];
770 		pn->ip_laddr[3] = inp->in6p_laddr.s6_addr32[3];
771 		pn->ip_faddr[0] = inp->in6p_faddr.s6_addr32[0];
772 		pn->ip_faddr[1] = inp->in6p_faddr.s6_addr32[1];
773 		pn->ip_faddr[2] = inp->in6p_faddr.s6_addr32[2];
774 		pn->ip_faddr[3] = inp->in6p_faddr.s6_addr32[3];
775 	}
776 #endif
777 	pn->tcp_localport = inp->inp_lport;
778 	pn->tcp_foreignport = inp->inp_fport;
779 	pn->snd_cwnd = tp->snd_cwnd;
780 	pn->snd_wnd = tp->snd_wnd;
781 	pn->rcv_wnd = tp->rcv_wnd;
782 	pn->t_flags2 = tp->t_flags2;
783 	pn->snd_ssthresh = tp->snd_ssthresh;
784 	pn->snd_scale = tp->snd_scale;
785 	pn->rcv_scale = tp->rcv_scale;
786 	pn->conn_state = tp->t_state;
787 	pn->max_seg_size = tp->t_maxseg;
788 	pn->smoothed_rtt = tp->t_srtt;
789 	pn->sack_enabled = (tp->t_flags & TF_SACK_PERMIT) != 0;
790 	pn->flags = tp->t_flags;
791 	pn->rxt_length = tp->t_rxtcur;
792 	pn->snd_buf_hiwater = inp->inp_socket->so_snd.sb_hiwat;
793 	pn->snd_buf_cc = sbused(&inp->inp_socket->so_snd);
794 	pn->rcv_buf_hiwater = inp->inp_socket->so_rcv.sb_hiwat;
795 	pn->rcv_buf_cc = sbused(&inp->inp_socket->so_rcv);
796 	pn->sent_inflight_bytes = tp->snd_max - tp->snd_una;
797 	pn->t_segqlen = tp->t_segqlen;
798 	pn->flowid = inp->inp_flowid;
799 	pn->flowtype = inp->inp_flowtype;
800 
801 	/* We've finished accessing the tcb so release the lock. */
802 	if (inp_locally_locked)
803 		INP_RUNLOCK(inp);
804 
805 	pn->ipver = ipver;
806 	pn->direction = (dir == PFIL_IN ? DIR_IN : DIR_OUT);
807 
808 	/*
809 	 * Significantly more accurate than using getmicrotime(), but slower!
810 	 * Gives true microsecond resolution at the expense of a hit to
811 	 * maximum pps throughput processing when SIFTR is loaded and enabled.
812 	 */
813 	microtime(&pn->tval);
814 	TCP_PROBE1(siftr, &pn);
815 
816 }
817 
818 /*
819  * pfil hook that is called for each IPv4 packet making its way through the
820  * stack in either direction.
821  * The pfil subsystem holds a non-sleepable mutex somewhere when
822  * calling our hook function, so we can't sleep at all.
823  * It's very important to use the M_NOWAIT flag with all function calls
824  * that support it so that they won't sleep, otherwise you get a panic.
825  */
826 static pfil_return_t
827 siftr_chkpkt(struct mbuf **m, struct ifnet *ifp, int flags,
828     void *ruleset __unused, struct inpcb *inp)
829 {
830 	struct pkt_node *pn;
831 	struct ip *ip;
832 	struct tcphdr *th;
833 	struct tcpcb *tp;
834 	struct siftr_stats *ss;
835 	unsigned int ip_hl;
836 	int inp_locally_locked, dir;
837 
838 	inp_locally_locked = 0;
839 	dir = PFIL_DIR(flags);
840 	ss = DPCPU_PTR(ss);
841 
842 	/*
843 	 * m_pullup is not required here because ip_{input|output}
844 	 * already do the heavy lifting for us.
845 	 */
846 
847 	ip = mtod(*m, struct ip *);
848 
849 	/* Only continue processing if the packet is TCP. */
850 	if (ip->ip_p != IPPROTO_TCP)
851 		goto ret;
852 
853 	/*
854 	 * Create a tcphdr struct starting at the correct offset
855 	 * in the IP packet. ip->ip_hl gives the ip header length
856 	 * in 4-byte words, so multiply it to get the size in bytes.
857 	 */
858 	ip_hl = (ip->ip_hl << 2);
859 	th = (struct tcphdr *)((caddr_t)ip + ip_hl);
860 
861 	/*
862 	 * Only pkts selected by the tcp port filter
863 	 * can be inserted into the pkt_queue
864 	 */
865 	if ((siftr_port_filter != 0) &&
866 	    (siftr_port_filter != ntohs(th->th_sport)) &&
867 	    (siftr_port_filter != ntohs(th->th_dport))) {
868 		goto ret;
869 	}
870 
871 	/*
872 	 * If a kernel subsystem reinjects packets into the stack, our pfil
873 	 * hook will be called multiple times for the same packet.
874 	 * Make sure we only process unique packets.
875 	 */
876 	if (siftr_chkreinject(*m, dir, ss))
877 		goto ret;
878 
879 	if (dir == PFIL_IN)
880 		ss->n_in++;
881 	else
882 		ss->n_out++;
883 
884 	/*
885 	 * If the pfil hooks don't provide a pointer to the
886 	 * inpcb, we need to find it ourselves and lock it.
887 	 */
888 	if (!inp) {
889 		/* Find the corresponding inpcb for this pkt. */
890 		inp = siftr_findinpcb(INP_IPV4, ip, *m, th->th_sport,
891 		    th->th_dport, dir, ss);
892 
893 		if (inp == NULL)
894 			goto ret;
895 		else
896 			inp_locally_locked = 1;
897 	}
898 
899 	INP_LOCK_ASSERT(inp);
900 
901 	/* Find the TCP control block that corresponds with this packet */
902 	tp = intotcpcb(inp);
903 
904 	/*
905 	 * If we can't find the TCP control block (happens occasionaly for a
906 	 * packet sent during the shutdown phase of a TCP connection), bail
907 	 */
908 	if (tp == NULL) {
909 		if (dir == PFIL_IN)
910 			ss->nskip_in_tcpcb++;
911 		else
912 			ss->nskip_out_tcpcb++;
913 
914 		goto inp_unlock;
915 	}
916 
917 
918 	pn = malloc(sizeof(struct pkt_node), M_SIFTR_PKTNODE, M_NOWAIT|M_ZERO);
919 
920 	if (pn == NULL) {
921 		if (dir == PFIL_IN)
922 			ss->nskip_in_malloc++;
923 		else
924 			ss->nskip_out_malloc++;
925 
926 		goto inp_unlock;
927 	}
928 
929 	siftr_siftdata(pn, inp, tp, INP_IPV4, dir, inp_locally_locked);
930 
931 	if (siftr_generate_hashes) {
932 		if ((*m)->m_pkthdr.csum_flags & CSUM_TCP) {
933 			/*
934 			 * For outbound packets, the TCP checksum isn't
935 			 * calculated yet. This is a problem for our packet
936 			 * hashing as the receiver will calc a different hash
937 			 * to ours if we don't include the correct TCP checksum
938 			 * in the bytes being hashed. To work around this
939 			 * problem, we manually calc the TCP checksum here in
940 			 * software. We unset the CSUM_TCP flag so the lower
941 			 * layers don't recalc it.
942 			 */
943 			(*m)->m_pkthdr.csum_flags &= ~CSUM_TCP;
944 
945 			/*
946 			 * Calculate the TCP checksum in software and assign
947 			 * to correct TCP header field, which will follow the
948 			 * packet mbuf down the stack. The trick here is that
949 			 * tcp_output() sets th->th_sum to the checksum of the
950 			 * pseudo header for us already. Because of the nature
951 			 * of the checksumming algorithm, we can sum over the
952 			 * entire IP payload (i.e. TCP header and data), which
953 			 * will include the already calculated pseduo header
954 			 * checksum, thus giving us the complete TCP checksum.
955 			 *
956 			 * To put it in simple terms, if checksum(1,2,3,4)=10,
957 			 * then checksum(1,2,3,4,5) == checksum(10,5).
958 			 * This property is what allows us to "cheat" and
959 			 * checksum only the IP payload which has the TCP
960 			 * th_sum field populated with the pseudo header's
961 			 * checksum, and not need to futz around checksumming
962 			 * pseudo header bytes and TCP header/data in one hit.
963 			 * Refer to RFC 1071 for more info.
964 			 *
965 			 * NB: in_cksum_skip(struct mbuf *m, int len, int skip)
966 			 * in_cksum_skip 2nd argument is NOT the number of
967 			 * bytes to read from the mbuf at "skip" bytes offset
968 			 * from the start of the mbuf (very counter intuitive!).
969 			 * The number of bytes to read is calculated internally
970 			 * by the function as len-skip i.e. to sum over the IP
971 			 * payload (TCP header + data) bytes, it is INCORRECT
972 			 * to call the function like this:
973 			 * in_cksum_skip(at, ip->ip_len - offset, offset)
974 			 * Rather, it should be called like this:
975 			 * in_cksum_skip(at, ip->ip_len, offset)
976 			 * which means read "ip->ip_len - offset" bytes from
977 			 * the mbuf cluster "at" at offset "offset" bytes from
978 			 * the beginning of the "at" mbuf's data pointer.
979 			 */
980 			th->th_sum = in_cksum_skip(*m, ntohs(ip->ip_len),
981 			    ip_hl);
982 		}
983 
984 		/*
985 		 * XXX: Having to calculate the checksum in software and then
986 		 * hash over all bytes is really inefficient. Would be nice to
987 		 * find a way to create the hash and checksum in the same pass
988 		 * over the bytes.
989 		 */
990 		pn->hash = hash_pkt(*m, ip_hl);
991 	}
992 
993 	mtx_lock(&siftr_pkt_queue_mtx);
994 	STAILQ_INSERT_TAIL(&pkt_queue, pn, nodes);
995 	mtx_unlock(&siftr_pkt_queue_mtx);
996 	goto ret;
997 
998 inp_unlock:
999 	if (inp_locally_locked)
1000 		INP_RUNLOCK(inp);
1001 
1002 ret:
1003 	return (PFIL_PASS);
1004 }
1005 
1006 #ifdef SIFTR_IPV6
1007 static pfil_return_t
1008 siftr_chkpkt6(struct mbuf **m, struct ifnet *ifp, int flags,
1009     void *ruleset __unused, struct inpcb *inp)
1010 {
1011 	struct pkt_node *pn;
1012 	struct ip6_hdr *ip6;
1013 	struct tcphdr *th;
1014 	struct tcpcb *tp;
1015 	struct siftr_stats *ss;
1016 	unsigned int ip6_hl;
1017 	int inp_locally_locked, dir;
1018 
1019 	inp_locally_locked = 0;
1020 	dir = PFIL_DIR(flags);
1021 	ss = DPCPU_PTR(ss);
1022 
1023 	/*
1024 	 * m_pullup is not required here because ip6_{input|output}
1025 	 * already do the heavy lifting for us.
1026 	 */
1027 
1028 	ip6 = mtod(*m, struct ip6_hdr *);
1029 
1030 	/*
1031 	 * Only continue processing if the packet is TCP
1032 	 * XXX: We should follow the next header fields
1033 	 * as shown on Pg 6 RFC 2460, but right now we'll
1034 	 * only check pkts that have no extension headers.
1035 	 */
1036 	if (ip6->ip6_nxt != IPPROTO_TCP)
1037 		goto ret6;
1038 
1039 	/*
1040 	 * Create a tcphdr struct starting at the correct offset
1041 	 * in the ipv6 packet.
1042 	 */
1043 	ip6_hl = sizeof(struct ip6_hdr);
1044 	th = (struct tcphdr *)((caddr_t)ip6 + ip6_hl);
1045 
1046 	/*
1047 	 * Only pkts selected by the tcp port filter
1048 	 * can be inserted into the pkt_queue
1049 	 */
1050 	if ((siftr_port_filter != 0) &&
1051 	    (siftr_port_filter != ntohs(th->th_sport)) &&
1052 	    (siftr_port_filter != ntohs(th->th_dport))) {
1053 		goto ret6;
1054 	}
1055 
1056 	/*
1057 	 * If a kernel subsystem reinjects packets into the stack, our pfil
1058 	 * hook will be called multiple times for the same packet.
1059 	 * Make sure we only process unique packets.
1060 	 */
1061 	if (siftr_chkreinject(*m, dir, ss))
1062 		goto ret6;
1063 
1064 	if (dir == PFIL_IN)
1065 		ss->n_in++;
1066 	else
1067 		ss->n_out++;
1068 
1069 	/*
1070 	 * For inbound packets, the pfil hooks don't provide a pointer to the
1071 	 * inpcb, so we need to find it ourselves and lock it.
1072 	 */
1073 	if (!inp) {
1074 		/* Find the corresponding inpcb for this pkt. */
1075 		inp = siftr_findinpcb(INP_IPV6, (struct ip *)ip6, *m,
1076 		    th->th_sport, th->th_dport, dir, ss);
1077 
1078 		if (inp == NULL)
1079 			goto ret6;
1080 		else
1081 			inp_locally_locked = 1;
1082 	}
1083 
1084 	/* Find the TCP control block that corresponds with this packet. */
1085 	tp = intotcpcb(inp);
1086 
1087 	/*
1088 	 * If we can't find the TCP control block (happens occasionaly for a
1089 	 * packet sent during the shutdown phase of a TCP connection), bail
1090 	 */
1091 	if (tp == NULL) {
1092 		if (dir == PFIL_IN)
1093 			ss->nskip_in_tcpcb++;
1094 		else
1095 			ss->nskip_out_tcpcb++;
1096 
1097 		goto inp_unlock6;
1098 	}
1099 
1100 
1101 	pn = malloc(sizeof(struct pkt_node), M_SIFTR_PKTNODE, M_NOWAIT|M_ZERO);
1102 
1103 	if (pn == NULL) {
1104 		if (dir == PFIL_IN)
1105 			ss->nskip_in_malloc++;
1106 		else
1107 			ss->nskip_out_malloc++;
1108 
1109 		goto inp_unlock6;
1110 	}
1111 
1112 	siftr_siftdata(pn, inp, tp, INP_IPV6, dir, inp_locally_locked);
1113 
1114 	/* XXX: Figure out how to generate hashes for IPv6 packets. */
1115 
1116 	mtx_lock(&siftr_pkt_queue_mtx);
1117 	STAILQ_INSERT_TAIL(&pkt_queue, pn, nodes);
1118 	mtx_unlock(&siftr_pkt_queue_mtx);
1119 	goto ret6;
1120 
1121 inp_unlock6:
1122 	if (inp_locally_locked)
1123 		INP_RUNLOCK(inp);
1124 
1125 ret6:
1126 	return (PFIL_PASS);
1127 }
1128 #endif /* #ifdef SIFTR_IPV6 */
1129 
1130 VNET_DEFINE_STATIC(pfil_hook_t, siftr_inet_hook);
1131 #define	V_siftr_inet_hook	VNET(siftr_inet_hook)
1132 #ifdef SIFTR_IPV6
1133 VNET_DEFINE_STATIC(pfil_hook_t, siftr_inet6_hook);
1134 #define	V_siftr_inet6_hook	VNET(siftr_inet6_hook)
1135 #endif
1136 static int
1137 siftr_pfil(int action)
1138 {
1139 	struct pfil_hook_args pha = {
1140 		.pa_version = PFIL_VERSION,
1141 		.pa_flags = PFIL_IN | PFIL_OUT,
1142 		.pa_modname = "siftr",
1143 		.pa_rulname = "default",
1144 	};
1145 	struct pfil_link_args pla = {
1146 		.pa_version = PFIL_VERSION,
1147 		.pa_flags = PFIL_IN | PFIL_OUT | PFIL_HEADPTR | PFIL_HOOKPTR,
1148 	};
1149 
1150 	VNET_ITERATOR_DECL(vnet_iter);
1151 
1152 	VNET_LIST_RLOCK();
1153 	VNET_FOREACH(vnet_iter) {
1154 		CURVNET_SET(vnet_iter);
1155 
1156 		if (action == HOOK) {
1157 			pha.pa_mbuf_chk = siftr_chkpkt;
1158 			pha.pa_type = PFIL_TYPE_IP4;
1159 			V_siftr_inet_hook = pfil_add_hook(&pha);
1160 			pla.pa_hook = V_siftr_inet_hook;
1161 			pla.pa_head = V_inet_pfil_head;
1162 			(void)pfil_link(&pla);
1163 #ifdef SIFTR_IPV6
1164 			pha.pa_mbuf_chk = siftr_chkpkt6;
1165 			pha.pa_type = PFIL_TYPE_IP6;
1166 			V_siftr_inet6_hook = pfil_add_hook(&pha);
1167 			pla.pa_hook = V_siftr_inet6_hook;
1168 			pla.pa_head = V_inet6_pfil_head;
1169 			(void)pfil_link(&pla);
1170 #endif
1171 		} else if (action == UNHOOK) {
1172 			pfil_remove_hook(V_siftr_inet_hook);
1173 #ifdef SIFTR_IPV6
1174 			pfil_remove_hook(V_siftr_inet6_hook);
1175 #endif
1176 		}
1177 		CURVNET_RESTORE();
1178 	}
1179 	VNET_LIST_RUNLOCK();
1180 
1181 	return (0);
1182 }
1183 
1184 static int
1185 siftr_sysctl_logfile_name_handler(SYSCTL_HANDLER_ARGS)
1186 {
1187 	struct alq *new_alq;
1188 	int error;
1189 
1190 	error = sysctl_handle_string(oidp, arg1, arg2, req);
1191 
1192 	/* Check for error or same filename */
1193 	if (error != 0 || req->newptr == NULL ||
1194 	    strncmp(siftr_logfile, arg1, arg2) == 0)
1195 		goto done;
1196 
1197 	/* Filname changed */
1198 	error = alq_open(&new_alq, arg1, curthread->td_ucred,
1199 	    SIFTR_LOG_FILE_MODE, SIFTR_ALQ_BUFLEN, 0);
1200 	if (error != 0)
1201 		goto done;
1202 
1203 	/*
1204 	 * If disabled, siftr_alq == NULL so we simply close
1205 	 * the alq as we've proved it can be opened.
1206 	 * If enabled, close the existing alq and switch the old
1207 	 * for the new.
1208 	 */
1209 	if (siftr_alq == NULL) {
1210 		alq_close(new_alq);
1211 	} else {
1212 		alq_close(siftr_alq);
1213 		siftr_alq = new_alq;
1214 	}
1215 
1216 	/* Update filename upon success */
1217 	strlcpy(siftr_logfile, arg1, arg2);
1218 done:
1219 	return (error);
1220 }
1221 
1222 static int
1223 siftr_manage_ops(uint8_t action)
1224 {
1225 	struct siftr_stats totalss;
1226 	struct timeval tval;
1227 	struct flow_hash_node *counter, *tmp_counter;
1228 	struct sbuf *s;
1229 	int i, key_index, error;
1230 	uint32_t bytes_to_write, total_skipped_pkts;
1231 	uint16_t lport, fport;
1232 	uint8_t *key, ipver __unused;
1233 
1234 #ifdef SIFTR_IPV6
1235 	uint32_t laddr[4];
1236 	uint32_t faddr[4];
1237 #else
1238 	uint8_t laddr[4];
1239 	uint8_t faddr[4];
1240 #endif
1241 
1242 	error = 0;
1243 	total_skipped_pkts = 0;
1244 
1245 	/* Init an autosizing sbuf that initially holds 200 chars. */
1246 	if ((s = sbuf_new(NULL, NULL, 200, SBUF_AUTOEXTEND)) == NULL)
1247 		return (-1);
1248 
1249 	if (action == SIFTR_ENABLE && siftr_pkt_manager_thr == NULL) {
1250 		/*
1251 		 * Create our alq
1252 		 * XXX: We should abort if alq_open fails!
1253 		 */
1254 		alq_open(&siftr_alq, siftr_logfile, curthread->td_ucred,
1255 		    SIFTR_LOG_FILE_MODE, SIFTR_ALQ_BUFLEN, 0);
1256 
1257 		STAILQ_INIT(&pkt_queue);
1258 
1259 		DPCPU_ZERO(ss);
1260 
1261 		siftr_exit_pkt_manager_thread = 0;
1262 
1263 		kthread_add(&siftr_pkt_manager_thread, NULL, NULL,
1264 		    &siftr_pkt_manager_thr, RFNOWAIT, 0,
1265 		    "siftr_pkt_manager_thr");
1266 
1267 		siftr_pfil(HOOK);
1268 
1269 		microtime(&tval);
1270 
1271 		sbuf_printf(s,
1272 		    "enable_time_secs=%jd\tenable_time_usecs=%06ld\t"
1273 		    "siftrver=%s\thz=%u\ttcp_rtt_scale=%u\tsysname=%s\t"
1274 		    "sysver=%u\tipmode=%u\n",
1275 		    (intmax_t)tval.tv_sec, tval.tv_usec, MODVERSION_STR, hz,
1276 		    TCP_RTT_SCALE, SYS_NAME, __FreeBSD_version, SIFTR_IPMODE);
1277 
1278 		sbuf_finish(s);
1279 		alq_writen(siftr_alq, sbuf_data(s), sbuf_len(s), ALQ_WAITOK);
1280 
1281 	} else if (action == SIFTR_DISABLE && siftr_pkt_manager_thr != NULL) {
1282 		/*
1283 		 * Remove the pfil hook functions. All threads currently in
1284 		 * the hook functions are allowed to exit before siftr_pfil()
1285 		 * returns.
1286 		 */
1287 		siftr_pfil(UNHOOK);
1288 
1289 		/* This will block until the pkt manager thread unlocks it. */
1290 		mtx_lock(&siftr_pkt_mgr_mtx);
1291 
1292 		/* Tell the pkt manager thread that it should exit now. */
1293 		siftr_exit_pkt_manager_thread = 1;
1294 
1295 		/*
1296 		 * Wake the pkt_manager thread so it realises that
1297 		 * siftr_exit_pkt_manager_thread == 1 and exits gracefully.
1298 		 * The wakeup won't be delivered until we unlock
1299 		 * siftr_pkt_mgr_mtx so this isn't racy.
1300 		 */
1301 		wakeup(&wait_for_pkt);
1302 
1303 		/* Wait for the pkt_manager thread to exit. */
1304 		mtx_sleep(siftr_pkt_manager_thr, &siftr_pkt_mgr_mtx, PWAIT,
1305 		    "thrwait", 0);
1306 
1307 		siftr_pkt_manager_thr = NULL;
1308 		mtx_unlock(&siftr_pkt_mgr_mtx);
1309 
1310 		totalss.n_in = DPCPU_VARSUM(ss, n_in);
1311 		totalss.n_out = DPCPU_VARSUM(ss, n_out);
1312 		totalss.nskip_in_malloc = DPCPU_VARSUM(ss, nskip_in_malloc);
1313 		totalss.nskip_out_malloc = DPCPU_VARSUM(ss, nskip_out_malloc);
1314 		totalss.nskip_in_tcpcb = DPCPU_VARSUM(ss, nskip_in_tcpcb);
1315 		totalss.nskip_out_tcpcb = DPCPU_VARSUM(ss, nskip_out_tcpcb);
1316 		totalss.nskip_in_inpcb = DPCPU_VARSUM(ss, nskip_in_inpcb);
1317 		totalss.nskip_out_inpcb = DPCPU_VARSUM(ss, nskip_out_inpcb);
1318 
1319 		total_skipped_pkts = totalss.nskip_in_malloc +
1320 		    totalss.nskip_out_malloc + totalss.nskip_in_tcpcb +
1321 		    totalss.nskip_out_tcpcb + totalss.nskip_in_inpcb +
1322 		    totalss.nskip_out_inpcb;
1323 
1324 		microtime(&tval);
1325 
1326 		sbuf_printf(s,
1327 		    "disable_time_secs=%jd\tdisable_time_usecs=%06ld\t"
1328 		    "num_inbound_tcp_pkts=%ju\tnum_outbound_tcp_pkts=%ju\t"
1329 		    "total_tcp_pkts=%ju\tnum_inbound_skipped_pkts_malloc=%u\t"
1330 		    "num_outbound_skipped_pkts_malloc=%u\t"
1331 		    "num_inbound_skipped_pkts_tcpcb=%u\t"
1332 		    "num_outbound_skipped_pkts_tcpcb=%u\t"
1333 		    "num_inbound_skipped_pkts_inpcb=%u\t"
1334 		    "num_outbound_skipped_pkts_inpcb=%u\t"
1335 		    "total_skipped_tcp_pkts=%u\tflow_list=",
1336 		    (intmax_t)tval.tv_sec,
1337 		    tval.tv_usec,
1338 		    (uintmax_t)totalss.n_in,
1339 		    (uintmax_t)totalss.n_out,
1340 		    (uintmax_t)(totalss.n_in + totalss.n_out),
1341 		    totalss.nskip_in_malloc,
1342 		    totalss.nskip_out_malloc,
1343 		    totalss.nskip_in_tcpcb,
1344 		    totalss.nskip_out_tcpcb,
1345 		    totalss.nskip_in_inpcb,
1346 		    totalss.nskip_out_inpcb,
1347 		    total_skipped_pkts);
1348 
1349 		/*
1350 		 * Iterate over the flow hash, printing a summary of each
1351 		 * flow seen and freeing any malloc'd memory.
1352 		 * The hash consists of an array of LISTs (man 3 queue).
1353 		 */
1354 		for (i = 0; i <= siftr_hashmask; i++) {
1355 			LIST_FOREACH_SAFE(counter, counter_hash + i, nodes,
1356 			    tmp_counter) {
1357 				key = counter->key;
1358 				key_index = 1;
1359 
1360 				ipver = key[0];
1361 
1362 				memcpy(laddr, key + key_index, sizeof(laddr));
1363 				key_index += sizeof(laddr);
1364 				memcpy(&lport, key + key_index, sizeof(lport));
1365 				key_index += sizeof(lport);
1366 				memcpy(faddr, key + key_index, sizeof(faddr));
1367 				key_index += sizeof(faddr);
1368 				memcpy(&fport, key + key_index, sizeof(fport));
1369 
1370 #ifdef SIFTR_IPV6
1371 				laddr[3] = ntohl(laddr[3]);
1372 				faddr[3] = ntohl(faddr[3]);
1373 
1374 				if (ipver == INP_IPV6) {
1375 					laddr[0] = ntohl(laddr[0]);
1376 					laddr[1] = ntohl(laddr[1]);
1377 					laddr[2] = ntohl(laddr[2]);
1378 					faddr[0] = ntohl(faddr[0]);
1379 					faddr[1] = ntohl(faddr[1]);
1380 					faddr[2] = ntohl(faddr[2]);
1381 
1382 					sbuf_printf(s,
1383 					    "%x:%x:%x:%x:%x:%x:%x:%x;%u-"
1384 					    "%x:%x:%x:%x:%x:%x:%x:%x;%u,",
1385 					    UPPER_SHORT(laddr[0]),
1386 					    LOWER_SHORT(laddr[0]),
1387 					    UPPER_SHORT(laddr[1]),
1388 					    LOWER_SHORT(laddr[1]),
1389 					    UPPER_SHORT(laddr[2]),
1390 					    LOWER_SHORT(laddr[2]),
1391 					    UPPER_SHORT(laddr[3]),
1392 					    LOWER_SHORT(laddr[3]),
1393 					    ntohs(lport),
1394 					    UPPER_SHORT(faddr[0]),
1395 					    LOWER_SHORT(faddr[0]),
1396 					    UPPER_SHORT(faddr[1]),
1397 					    LOWER_SHORT(faddr[1]),
1398 					    UPPER_SHORT(faddr[2]),
1399 					    LOWER_SHORT(faddr[2]),
1400 					    UPPER_SHORT(faddr[3]),
1401 					    LOWER_SHORT(faddr[3]),
1402 					    ntohs(fport));
1403 				} else {
1404 					laddr[0] = FIRST_OCTET(laddr[3]);
1405 					laddr[1] = SECOND_OCTET(laddr[3]);
1406 					laddr[2] = THIRD_OCTET(laddr[3]);
1407 					laddr[3] = FOURTH_OCTET(laddr[3]);
1408 					faddr[0] = FIRST_OCTET(faddr[3]);
1409 					faddr[1] = SECOND_OCTET(faddr[3]);
1410 					faddr[2] = THIRD_OCTET(faddr[3]);
1411 					faddr[3] = FOURTH_OCTET(faddr[3]);
1412 #endif
1413 					sbuf_printf(s,
1414 					    "%u.%u.%u.%u;%u-%u.%u.%u.%u;%u,",
1415 					    laddr[0],
1416 					    laddr[1],
1417 					    laddr[2],
1418 					    laddr[3],
1419 					    ntohs(lport),
1420 					    faddr[0],
1421 					    faddr[1],
1422 					    faddr[2],
1423 					    faddr[3],
1424 					    ntohs(fport));
1425 #ifdef SIFTR_IPV6
1426 				}
1427 #endif
1428 
1429 				free(counter, M_SIFTR_HASHNODE);
1430 			}
1431 
1432 			LIST_INIT(counter_hash + i);
1433 		}
1434 
1435 		sbuf_printf(s, "\n");
1436 		sbuf_finish(s);
1437 
1438 		i = 0;
1439 		do {
1440 			bytes_to_write = min(SIFTR_ALQ_BUFLEN, sbuf_len(s)-i);
1441 			alq_writen(siftr_alq, sbuf_data(s)+i, bytes_to_write, ALQ_WAITOK);
1442 			i += bytes_to_write;
1443 		} while (i < sbuf_len(s));
1444 
1445 		alq_close(siftr_alq);
1446 		siftr_alq = NULL;
1447 	} else
1448 		error = EINVAL;
1449 
1450 	sbuf_delete(s);
1451 
1452 	/*
1453 	 * XXX: Should be using ret to check if any functions fail
1454 	 * and set error appropriately
1455 	 */
1456 
1457 	return (error);
1458 }
1459 
1460 static int
1461 siftr_sysctl_enabled_handler(SYSCTL_HANDLER_ARGS)
1462 {
1463 	int error;
1464 	uint32_t new;
1465 
1466 	new = siftr_enabled;
1467 	error = sysctl_handle_int(oidp, &new, 0, req);
1468 	if (error == 0 && req->newptr != NULL) {
1469 		if (new > 1)
1470 			return (EINVAL);
1471 		else if (new != siftr_enabled) {
1472 			if ((error = siftr_manage_ops(new)) == 0) {
1473 				siftr_enabled = new;
1474 			} else {
1475 				siftr_manage_ops(SIFTR_DISABLE);
1476 			}
1477 		}
1478 	}
1479 
1480 	return (error);
1481 }
1482 
1483 static void
1484 siftr_shutdown_handler(void *arg)
1485 {
1486 	if (siftr_enabled == 1) {
1487 		siftr_manage_ops(SIFTR_DISABLE);
1488 	}
1489 }
1490 
1491 /*
1492  * Module is being unloaded or machine is shutting down. Take care of cleanup.
1493  */
1494 static int
1495 deinit_siftr(void)
1496 {
1497 	/* Cleanup. */
1498 	siftr_manage_ops(SIFTR_DISABLE);
1499 	hashdestroy(counter_hash, M_SIFTR, siftr_hashmask);
1500 	mtx_destroy(&siftr_pkt_queue_mtx);
1501 	mtx_destroy(&siftr_pkt_mgr_mtx);
1502 
1503 	return (0);
1504 }
1505 
1506 /*
1507  * Module has just been loaded into the kernel.
1508  */
1509 static int
1510 init_siftr(void)
1511 {
1512 	EVENTHANDLER_REGISTER(shutdown_pre_sync, siftr_shutdown_handler, NULL,
1513 	    SHUTDOWN_PRI_FIRST);
1514 
1515 	/* Initialise our flow counter hash table. */
1516 	counter_hash = hashinit(SIFTR_EXPECTED_MAX_TCP_FLOWS, M_SIFTR,
1517 	    &siftr_hashmask);
1518 
1519 	mtx_init(&siftr_pkt_queue_mtx, "siftr_pkt_queue_mtx", NULL, MTX_DEF);
1520 	mtx_init(&siftr_pkt_mgr_mtx, "siftr_pkt_mgr_mtx", NULL, MTX_DEF);
1521 
1522 	/* Print message to the user's current terminal. */
1523 	uprintf("\nStatistical Information For TCP Research (SIFTR) %s\n"
1524 	    "          http://caia.swin.edu.au/urp/newtcp\n\n",
1525 	    MODVERSION_STR);
1526 
1527 	return (0);
1528 }
1529 
1530 /*
1531  * This is the function that is called to load and unload the module.
1532  * When the module is loaded, this function is called once with
1533  * "what" == MOD_LOAD
1534  * When the module is unloaded, this function is called twice with
1535  * "what" = MOD_QUIESCE first, followed by "what" = MOD_UNLOAD second
1536  * When the system is shut down e.g. CTRL-ALT-DEL or using the shutdown command,
1537  * this function is called once with "what" = MOD_SHUTDOWN
1538  * When the system is shut down, the handler isn't called until the very end
1539  * of the shutdown sequence i.e. after the disks have been synced.
1540  */
1541 static int
1542 siftr_load_handler(module_t mod, int what, void *arg)
1543 {
1544 	int ret;
1545 
1546 	switch (what) {
1547 	case MOD_LOAD:
1548 		ret = init_siftr();
1549 		break;
1550 
1551 	case MOD_QUIESCE:
1552 	case MOD_SHUTDOWN:
1553 		ret = deinit_siftr();
1554 		break;
1555 
1556 	case MOD_UNLOAD:
1557 		ret = 0;
1558 		break;
1559 
1560 	default:
1561 		ret = EINVAL;
1562 		break;
1563 	}
1564 
1565 	return (ret);
1566 }
1567 
1568 static moduledata_t siftr_mod = {
1569 	.name = "siftr",
1570 	.evhand = siftr_load_handler,
1571 };
1572 
1573 /*
1574  * Param 1: name of the kernel module
1575  * Param 2: moduledata_t struct containing info about the kernel module
1576  *          and the execution entry point for the module
1577  * Param 3: From sysinit_sub_id enumeration in /usr/include/sys/kernel.h
1578  *          Defines the module initialisation order
1579  * Param 4: From sysinit_elem_order enumeration in /usr/include/sys/kernel.h
1580  *          Defines the initialisation order of this kld relative to others
1581  *          within the same subsystem as defined by param 3
1582  */
1583 DECLARE_MODULE(siftr, siftr_mod, SI_SUB_LAST, SI_ORDER_ANY);
1584 MODULE_DEPEND(siftr, alq, 1, 1, 1);
1585 MODULE_VERSION(siftr, MODVERSION);
1586