1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 2001-2007, by Cisco Systems, Inc. All rights reserved. 5 * Copyright (c) 2008-2012, by Randall Stewart. All rights reserved. 6 * Copyright (c) 2008-2012, by Michael Tuexen. All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions are met: 10 * 11 * a) Redistributions of source code must retain the above copyright notice, 12 * this list of conditions and the following disclaimer. 13 * 14 * b) Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in 16 * the documentation and/or other materials provided with the distribution. 17 * 18 * c) Neither the name of Cisco Systems, Inc. nor the names of its 19 * contributors may be used to endorse or promote products derived 20 * from this software without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 23 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, 24 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 26 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 32 * THE POSSIBILITY OF SUCH DAMAGE. 33 */ 34 35 #include <sys/cdefs.h> 36 __FBSDID("$FreeBSD$"); 37 38 #ifndef _NETINET_SCTP_LOCK_BSD_H_ 39 #define _NETINET_SCTP_LOCK_BSD_H_ 40 41 /* 42 * General locking concepts: The goal of our locking is to of course provide 43 * consistency and yet minimize overhead. We will attempt to use 44 * non-recursive locks which are supposed to be quite inexpensive. Now in 45 * order to do this the goal is that most functions are not aware of locking. 46 * Once we have a TCB we lock it and unlock when we are through. This means 47 * that the TCB lock is kind-of a "global" lock when working on an 48 * association. Caution must be used when asserting a TCB_LOCK since if we 49 * recurse we deadlock. 50 * 51 * Most other locks (INP and INFO) attempt to localize the locking i.e. we try 52 * to contain the lock and unlock within the function that needs to lock it. 53 * This sometimes mean we do extra locks and unlocks and lose a bit of 54 * efficiency, but if the performance statements about non-recursive locks are 55 * true this should not be a problem. One issue that arises with this only 56 * lock when needed is that if an implicit association setup is done we have 57 * a problem. If at the time I lookup an association I have NULL in the tcb 58 * return, by the time I call to create the association some other processor 59 * could have created it. This is what the CREATE lock on the endpoint. 60 * Places where we will be implicitly creating the association OR just 61 * creating an association (the connect call) will assert the CREATE_INP 62 * lock. This will assure us that during all the lookup of INP and INFO if 63 * another creator is also locking/looking up we can gate the two to 64 * synchronize. So the CREATE_INP lock is also another one we must use 65 * extreme caution in locking to make sure we don't hit a re-entrancy issue. 66 * 67 * For non FreeBSD 5.x we provide a bunch of EMPTY lock macros so we can 68 * blatantly put locks everywhere and they reduce to nothing on 69 * NetBSD/OpenBSD and FreeBSD 4.x 70 * 71 */ 72 73 /* 74 * When working with the global SCTP lists we lock and unlock the INP_INFO 75 * lock. So when we go to lookup an association we will want to do a 76 * SCTP_INP_INFO_RLOCK() and then when we want to add a new association to 77 * the SCTP_BASE_INFO() list's we will do a SCTP_INP_INFO_WLOCK(). 78 */ 79 80 extern struct sctp_foo_stuff sctp_logoff[]; 81 extern int sctp_logoff_stuff; 82 83 #define SCTP_IPI_COUNT_INIT() 84 85 #define SCTP_STATLOG_INIT_LOCK() 86 #define SCTP_STATLOG_LOCK() 87 #define SCTP_STATLOG_UNLOCK() 88 #define SCTP_STATLOG_DESTROY() 89 90 #define SCTP_INP_INFO_LOCK_DESTROY() do { \ 91 if(rw_wowned(&SCTP_BASE_INFO(ipi_ep_mtx))) { \ 92 rw_wunlock(&SCTP_BASE_INFO(ipi_ep_mtx)); \ 93 } \ 94 rw_destroy(&SCTP_BASE_INFO(ipi_ep_mtx)); \ 95 } while (0) 96 97 #define SCTP_INP_INFO_LOCK_INIT() \ 98 rw_init(&SCTP_BASE_INFO(ipi_ep_mtx), "sctp-info"); 99 100 101 #define SCTP_INP_INFO_RLOCK() do { \ 102 rw_rlock(&SCTP_BASE_INFO(ipi_ep_mtx)); \ 103 } while (0) 104 105 #define SCTP_MCORE_QLOCK_INIT(cpstr) do { \ 106 mtx_init(&(cpstr)->que_mtx, \ 107 "sctp-mcore_queue","queue_lock", \ 108 MTX_DEF|MTX_DUPOK); \ 109 } while (0) 110 111 #define SCTP_MCORE_QLOCK(cpstr) do { \ 112 mtx_lock(&(cpstr)->que_mtx); \ 113 } while (0) 114 115 #define SCTP_MCORE_QUNLOCK(cpstr) do { \ 116 mtx_unlock(&(cpstr)->que_mtx); \ 117 } while (0) 118 119 #define SCTP_MCORE_QDESTROY(cpstr) do { \ 120 if(mtx_owned(&(cpstr)->core_mtx)) { \ 121 mtx_unlock(&(cpstr)->que_mtx); \ 122 } \ 123 mtx_destroy(&(cpstr)->que_mtx); \ 124 } while (0) 125 126 127 #define SCTP_MCORE_LOCK_INIT(cpstr) do { \ 128 mtx_init(&(cpstr)->core_mtx, \ 129 "sctp-cpulck","cpu_proc_lock", \ 130 MTX_DEF|MTX_DUPOK); \ 131 } while (0) 132 133 #define SCTP_MCORE_LOCK(cpstr) do { \ 134 mtx_lock(&(cpstr)->core_mtx); \ 135 } while (0) 136 137 #define SCTP_MCORE_UNLOCK(cpstr) do { \ 138 mtx_unlock(&(cpstr)->core_mtx); \ 139 } while (0) 140 141 #define SCTP_MCORE_DESTROY(cpstr) do { \ 142 if(mtx_owned(&(cpstr)->core_mtx)) { \ 143 mtx_unlock(&(cpstr)->core_mtx); \ 144 } \ 145 mtx_destroy(&(cpstr)->core_mtx); \ 146 } while (0) 147 148 #define SCTP_INP_INFO_WLOCK() do { \ 149 rw_wlock(&SCTP_BASE_INFO(ipi_ep_mtx)); \ 150 } while (0) 151 152 153 #define SCTP_INP_INFO_RUNLOCK() rw_runlock(&SCTP_BASE_INFO(ipi_ep_mtx)) 154 #define SCTP_INP_INFO_WUNLOCK() rw_wunlock(&SCTP_BASE_INFO(ipi_ep_mtx)) 155 156 157 #define SCTP_IPI_ADDR_INIT() \ 158 rw_init(&SCTP_BASE_INFO(ipi_addr_mtx), "sctp-addr") 159 #define SCTP_IPI_ADDR_DESTROY() do { \ 160 if(rw_wowned(&SCTP_BASE_INFO(ipi_addr_mtx))) { \ 161 rw_wunlock(&SCTP_BASE_INFO(ipi_addr_mtx)); \ 162 } \ 163 rw_destroy(&SCTP_BASE_INFO(ipi_addr_mtx)); \ 164 } while (0) 165 #define SCTP_IPI_ADDR_RLOCK() do { \ 166 rw_rlock(&SCTP_BASE_INFO(ipi_addr_mtx)); \ 167 } while (0) 168 #define SCTP_IPI_ADDR_WLOCK() do { \ 169 rw_wlock(&SCTP_BASE_INFO(ipi_addr_mtx)); \ 170 } while (0) 171 172 #define SCTP_IPI_ADDR_RUNLOCK() rw_runlock(&SCTP_BASE_INFO(ipi_addr_mtx)) 173 #define SCTP_IPI_ADDR_WUNLOCK() rw_wunlock(&SCTP_BASE_INFO(ipi_addr_mtx)) 174 175 176 #define SCTP_IPI_ITERATOR_WQ_INIT() \ 177 mtx_init(&sctp_it_ctl.ipi_iterator_wq_mtx, "sctp-it-wq", "sctp_it_wq", MTX_DEF) 178 179 #define SCTP_IPI_ITERATOR_WQ_DESTROY() \ 180 mtx_destroy(&sctp_it_ctl.ipi_iterator_wq_mtx) 181 182 #define SCTP_IPI_ITERATOR_WQ_LOCK() do { \ 183 mtx_lock(&sctp_it_ctl.ipi_iterator_wq_mtx); \ 184 } while (0) 185 186 #define SCTP_IPI_ITERATOR_WQ_UNLOCK() mtx_unlock(&sctp_it_ctl.ipi_iterator_wq_mtx) 187 188 189 #define SCTP_IP_PKTLOG_INIT() \ 190 mtx_init(&SCTP_BASE_INFO(ipi_pktlog_mtx), "sctp-pktlog", "packetlog", MTX_DEF) 191 192 193 #define SCTP_IP_PKTLOG_LOCK() do { \ 194 mtx_lock(&SCTP_BASE_INFO(ipi_pktlog_mtx)); \ 195 } while (0) 196 197 #define SCTP_IP_PKTLOG_UNLOCK() mtx_unlock(&SCTP_BASE_INFO(ipi_pktlog_mtx)) 198 199 #define SCTP_IP_PKTLOG_DESTROY() \ 200 mtx_destroy(&SCTP_BASE_INFO(ipi_pktlog_mtx)) 201 202 203 204 205 206 /* 207 * The INP locks we will use for locking an SCTP endpoint, so for example if 208 * we want to change something at the endpoint level for example random_store 209 * or cookie secrets we lock the INP level. 210 */ 211 212 #define SCTP_INP_READ_INIT(_inp) \ 213 mtx_init(&(_inp)->inp_rdata_mtx, "sctp-read", "inpr", MTX_DEF | MTX_DUPOK) 214 215 #define SCTP_INP_READ_DESTROY(_inp) \ 216 mtx_destroy(&(_inp)->inp_rdata_mtx) 217 218 #define SCTP_INP_READ_LOCK(_inp) do { \ 219 mtx_lock(&(_inp)->inp_rdata_mtx); \ 220 } while (0) 221 222 223 #define SCTP_INP_READ_UNLOCK(_inp) mtx_unlock(&(_inp)->inp_rdata_mtx) 224 225 226 #define SCTP_INP_LOCK_INIT(_inp) \ 227 mtx_init(&(_inp)->inp_mtx, "sctp-inp", "inp", MTX_DEF | MTX_DUPOK) 228 #define SCTP_ASOC_CREATE_LOCK_INIT(_inp) \ 229 mtx_init(&(_inp)->inp_create_mtx, "sctp-create", "inp_create", \ 230 MTX_DEF | MTX_DUPOK) 231 232 #define SCTP_INP_LOCK_DESTROY(_inp) \ 233 mtx_destroy(&(_inp)->inp_mtx) 234 235 #define SCTP_INP_LOCK_CONTENDED(_inp) ((_inp)->inp_mtx.mtx_lock & MTX_CONTESTED) 236 237 #define SCTP_INP_READ_CONTENDED(_inp) ((_inp)->inp_rdata_mtx.mtx_lock & MTX_CONTESTED) 238 239 #define SCTP_ASOC_CREATE_LOCK_CONTENDED(_inp) ((_inp)->inp_create_mtx.mtx_lock & MTX_CONTESTED) 240 241 242 #define SCTP_ASOC_CREATE_LOCK_DESTROY(_inp) \ 243 mtx_destroy(&(_inp)->inp_create_mtx) 244 245 246 #ifdef SCTP_LOCK_LOGGING 247 #define SCTP_INP_RLOCK(_inp) do { \ 248 if(SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_LOCK_LOGGING_ENABLE) sctp_log_lock(_inp, (struct sctp_tcb *)NULL, SCTP_LOG_LOCK_INP);\ 249 mtx_lock(&(_inp)->inp_mtx); \ 250 } while (0) 251 252 #define SCTP_INP_WLOCK(_inp) do { \ 253 if(SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_LOCK_LOGGING_ENABLE) sctp_log_lock(_inp, (struct sctp_tcb *)NULL, SCTP_LOG_LOCK_INP);\ 254 mtx_lock(&(_inp)->inp_mtx); \ 255 } while (0) 256 257 #else 258 259 #define SCTP_INP_RLOCK(_inp) do { \ 260 mtx_lock(&(_inp)->inp_mtx); \ 261 } while (0) 262 263 #define SCTP_INP_WLOCK(_inp) do { \ 264 mtx_lock(&(_inp)->inp_mtx); \ 265 } while (0) 266 267 #endif 268 269 270 #define SCTP_TCB_SEND_LOCK_INIT(_tcb) \ 271 mtx_init(&(_tcb)->tcb_send_mtx, "sctp-send-tcb", "tcbs", MTX_DEF | MTX_DUPOK) 272 273 #define SCTP_TCB_SEND_LOCK_DESTROY(_tcb) mtx_destroy(&(_tcb)->tcb_send_mtx) 274 275 #define SCTP_TCB_SEND_LOCK(_tcb) do { \ 276 mtx_lock(&(_tcb)->tcb_send_mtx); \ 277 } while (0) 278 279 #define SCTP_TCB_SEND_UNLOCK(_tcb) mtx_unlock(&(_tcb)->tcb_send_mtx) 280 281 #define SCTP_INP_INCR_REF(_inp) atomic_add_int(&((_inp)->refcount), 1) 282 #define SCTP_INP_DECR_REF(_inp) atomic_add_int(&((_inp)->refcount), -1) 283 284 285 #ifdef SCTP_LOCK_LOGGING 286 #define SCTP_ASOC_CREATE_LOCK(_inp) \ 287 do { \ 288 if(SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_LOCK_LOGGING_ENABLE) sctp_log_lock(_inp, (struct sctp_tcb *)NULL, SCTP_LOG_LOCK_CREATE); \ 289 mtx_lock(&(_inp)->inp_create_mtx); \ 290 } while (0) 291 #else 292 293 #define SCTP_ASOC_CREATE_LOCK(_inp) \ 294 do { \ 295 mtx_lock(&(_inp)->inp_create_mtx); \ 296 } while (0) 297 #endif 298 299 #define SCTP_INP_RUNLOCK(_inp) mtx_unlock(&(_inp)->inp_mtx) 300 #define SCTP_INP_WUNLOCK(_inp) mtx_unlock(&(_inp)->inp_mtx) 301 #define SCTP_ASOC_CREATE_UNLOCK(_inp) mtx_unlock(&(_inp)->inp_create_mtx) 302 303 /* 304 * For the majority of things (once we have found the association) we will 305 * lock the actual association mutex. This will protect all the assoiciation 306 * level queues and streams and such. We will need to lock the socket layer 307 * when we stuff data up into the receiving sb_mb. I.e. we will need to do an 308 * extra SOCKBUF_LOCK(&so->so_rcv) even though the association is locked. 309 */ 310 311 #define SCTP_TCB_LOCK_INIT(_tcb) \ 312 mtx_init(&(_tcb)->tcb_mtx, "sctp-tcb", "tcb", MTX_DEF | MTX_DUPOK) 313 314 #define SCTP_TCB_LOCK_DESTROY(_tcb) mtx_destroy(&(_tcb)->tcb_mtx) 315 316 #ifdef SCTP_LOCK_LOGGING 317 #define SCTP_TCB_LOCK(_tcb) do { \ 318 if(SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_LOCK_LOGGING_ENABLE) sctp_log_lock(_tcb->sctp_ep, _tcb, SCTP_LOG_LOCK_TCB); \ 319 mtx_lock(&(_tcb)->tcb_mtx); \ 320 } while (0) 321 322 #else 323 #define SCTP_TCB_LOCK(_tcb) do { \ 324 mtx_lock(&(_tcb)->tcb_mtx); \ 325 } while (0) 326 327 #endif 328 329 330 #define SCTP_TCB_TRYLOCK(_tcb) mtx_trylock(&(_tcb)->tcb_mtx) 331 332 #define SCTP_TCB_UNLOCK(_tcb) mtx_unlock(&(_tcb)->tcb_mtx) 333 334 #define SCTP_TCB_UNLOCK_IFOWNED(_tcb) do { \ 335 if (mtx_owned(&(_tcb)->tcb_mtx)) \ 336 mtx_unlock(&(_tcb)->tcb_mtx); \ 337 } while (0) 338 339 340 341 #ifdef INVARIANTS 342 #define SCTP_TCB_LOCK_ASSERT(_tcb) do { \ 343 if (mtx_owned(&(_tcb)->tcb_mtx) == 0) \ 344 panic("Don't own TCB lock"); \ 345 } while (0) 346 #else 347 #define SCTP_TCB_LOCK_ASSERT(_tcb) 348 #endif 349 350 #define SCTP_ITERATOR_LOCK_INIT() \ 351 mtx_init(&sctp_it_ctl.it_mtx, "sctp-it", "iterator", MTX_DEF) 352 353 #ifdef INVARIANTS 354 #define SCTP_ITERATOR_LOCK() \ 355 do { \ 356 if (mtx_owned(&sctp_it_ctl.it_mtx)) \ 357 panic("Iterator Lock"); \ 358 mtx_lock(&sctp_it_ctl.it_mtx); \ 359 } while (0) 360 #else 361 #define SCTP_ITERATOR_LOCK() \ 362 do { \ 363 mtx_lock(&sctp_it_ctl.it_mtx); \ 364 } while (0) 365 366 #endif 367 368 #define SCTP_ITERATOR_UNLOCK() mtx_unlock(&sctp_it_ctl.it_mtx) 369 #define SCTP_ITERATOR_LOCK_DESTROY() mtx_destroy(&sctp_it_ctl.it_mtx) 370 371 372 #define SCTP_WQ_ADDR_INIT() do { \ 373 mtx_init(&SCTP_BASE_INFO(wq_addr_mtx), "sctp-addr-wq","sctp_addr_wq",MTX_DEF); \ 374 } while (0) 375 376 #define SCTP_WQ_ADDR_DESTROY() do { \ 377 if(mtx_owned(&SCTP_BASE_INFO(wq_addr_mtx))) { \ 378 mtx_unlock(&SCTP_BASE_INFO(wq_addr_mtx)); \ 379 } \ 380 mtx_destroy(&SCTP_BASE_INFO(wq_addr_mtx)); \ 381 } while (0) 382 383 #define SCTP_WQ_ADDR_LOCK() do { \ 384 mtx_lock(&SCTP_BASE_INFO(wq_addr_mtx)); \ 385 } while (0) 386 #define SCTP_WQ_ADDR_UNLOCK() do { \ 387 mtx_unlock(&SCTP_BASE_INFO(wq_addr_mtx)); \ 388 } while (0) 389 390 391 392 #define SCTP_INCR_EP_COUNT() \ 393 do { \ 394 atomic_add_int(&SCTP_BASE_INFO(ipi_count_ep), 1); \ 395 } while (0) 396 397 #define SCTP_DECR_EP_COUNT() \ 398 do { \ 399 atomic_subtract_int(&SCTP_BASE_INFO(ipi_count_ep), 1); \ 400 } while (0) 401 402 #define SCTP_INCR_ASOC_COUNT() \ 403 do { \ 404 atomic_add_int(&SCTP_BASE_INFO(ipi_count_asoc), 1); \ 405 } while (0) 406 407 #define SCTP_DECR_ASOC_COUNT() \ 408 do { \ 409 atomic_subtract_int(&SCTP_BASE_INFO(ipi_count_asoc), 1); \ 410 } while (0) 411 412 #define SCTP_INCR_LADDR_COUNT() \ 413 do { \ 414 atomic_add_int(&SCTP_BASE_INFO(ipi_count_laddr), 1); \ 415 } while (0) 416 417 #define SCTP_DECR_LADDR_COUNT() \ 418 do { \ 419 atomic_subtract_int(&SCTP_BASE_INFO(ipi_count_laddr), 1); \ 420 } while (0) 421 422 #define SCTP_INCR_RADDR_COUNT() \ 423 do { \ 424 atomic_add_int(&SCTP_BASE_INFO(ipi_count_raddr), 1); \ 425 } while (0) 426 427 #define SCTP_DECR_RADDR_COUNT() \ 428 do { \ 429 atomic_subtract_int(&SCTP_BASE_INFO(ipi_count_raddr),1); \ 430 } while (0) 431 432 #define SCTP_INCR_CHK_COUNT() \ 433 do { \ 434 atomic_add_int(&SCTP_BASE_INFO(ipi_count_chunk), 1); \ 435 } while (0) 436 #ifdef INVARIANTS 437 #define SCTP_DECR_CHK_COUNT() \ 438 do { \ 439 if(SCTP_BASE_INFO(ipi_count_chunk) == 0) \ 440 panic("chunk count to 0?"); \ 441 atomic_subtract_int(&SCTP_BASE_INFO(ipi_count_chunk), 1); \ 442 } while (0) 443 #else 444 #define SCTP_DECR_CHK_COUNT() \ 445 do { \ 446 if(SCTP_BASE_INFO(ipi_count_chunk) != 0) \ 447 atomic_subtract_int(&SCTP_BASE_INFO(ipi_count_chunk), 1); \ 448 } while (0) 449 #endif 450 #define SCTP_INCR_READQ_COUNT() \ 451 do { \ 452 atomic_add_int(&SCTP_BASE_INFO(ipi_count_readq),1); \ 453 } while (0) 454 455 #define SCTP_DECR_READQ_COUNT() \ 456 do { \ 457 atomic_subtract_int(&SCTP_BASE_INFO(ipi_count_readq), 1); \ 458 } while (0) 459 460 #define SCTP_INCR_STRMOQ_COUNT() \ 461 do { \ 462 atomic_add_int(&SCTP_BASE_INFO(ipi_count_strmoq), 1); \ 463 } while (0) 464 465 #define SCTP_DECR_STRMOQ_COUNT() \ 466 do { \ 467 atomic_subtract_int(&SCTP_BASE_INFO(ipi_count_strmoq), 1); \ 468 } while (0) 469 470 471 #if defined(SCTP_SO_LOCK_TESTING) 472 #define SCTP_INP_SO(sctpinp) (sctpinp)->ip_inp.inp.inp_socket 473 #define SCTP_SOCKET_LOCK(so, refcnt) 474 #define SCTP_SOCKET_UNLOCK(so, refcnt) 475 #endif 476 477 #endif 478