1 #ifndef __sctp_lock_bsd_h__ 2 #define __sctp_lock_bsd_h__ 3 /*- 4 * Copyright (c) 2001-2007, by Cisco Systems, Inc. All rights reserved. 5 * Copyright (c) 2008-2011, by Randall Stewart. All rights reserved. 6 * Copyright (c) 2008-2011, by Michael Tuexen. All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions are met: 10 * 11 * a) Redistributions of source code must retain the above copyright notice, 12 * this list of conditions and the following disclaimer. 13 * 14 * b) Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in 16 * the documentation and/or other materials provided with the distribution. 17 * 18 * c) Neither the name of Cisco Systems, Inc. nor the names of its 19 * contributors may be used to endorse or promote products derived 20 * from this software without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 23 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, 24 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 26 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 32 * THE POSSIBILITY OF SUCH DAMAGE. 33 */ 34 35 /* 36 * General locking concepts: The goal of our locking is to of course provide 37 * consistency and yet minimize overhead. We will attempt to use 38 * non-recursive locks which are supposed to be quite inexpensive. Now in 39 * order to do this the goal is that most functions are not aware of locking. 40 * Once we have a TCB we lock it and unlock when we are through. This means 41 * that the TCB lock is kind-of a "global" lock when working on an 42 * association. Caution must be used when asserting a TCB_LOCK since if we 43 * recurse we deadlock. 44 * 45 * Most other locks (INP and INFO) attempt to localize the locking i.e. we try 46 * to contain the lock and unlock within the function that needs to lock it. 47 * This sometimes mean we do extra locks and unlocks and lose a bit of 48 * efficency, but if the performance statements about non-recursive locks are 49 * true this should not be a problem. One issue that arises with this only 50 * lock when needed is that if an implicit association setup is done we have 51 * a problem. If at the time I lookup an association I have NULL in the tcb 52 * return, by the time I call to create the association some other processor 53 * could have created it. This is what the CREATE lock on the endpoint. 54 * Places where we will be implicitly creating the association OR just 55 * creating an association (the connect call) will assert the CREATE_INP 56 * lock. This will assure us that during all the lookup of INP and INFO if 57 * another creator is also locking/looking up we can gate the two to 58 * synchronize. So the CREATE_INP lock is also another one we must use 59 * extreme caution in locking to make sure we don't hit a re-entrancy issue. 60 * 61 * For non FreeBSD 5.x we provide a bunch of EMPTY lock macros so we can 62 * blatantly put locks everywhere and they reduce to nothing on 63 * NetBSD/OpenBSD and FreeBSD 4.x 64 * 65 */ 66 67 /* 68 * When working with the global SCTP lists we lock and unlock the INP_INFO 69 * lock. So when we go to lookup an association we will want to do a 70 * SCTP_INP_INFO_RLOCK() and then when we want to add a new association to 71 * the SCTP_BASE_INFO() list's we will do a SCTP_INP_INFO_WLOCK(). 72 */ 73 #include <sys/cdefs.h> 74 __FBSDID("$FreeBSD$"); 75 76 77 extern struct sctp_foo_stuff sctp_logoff[]; 78 extern int sctp_logoff_stuff; 79 80 #define SCTP_IPI_COUNT_INIT() 81 82 #define SCTP_STATLOG_INIT_LOCK() 83 #define SCTP_STATLOG_LOCK() 84 #define SCTP_STATLOG_UNLOCK() 85 #define SCTP_STATLOG_DESTROY() 86 87 #define SCTP_INP_INFO_LOCK_DESTROY() do { \ 88 if(rw_wowned(&SCTP_BASE_INFO(ipi_ep_mtx))) { \ 89 rw_wunlock(&SCTP_BASE_INFO(ipi_ep_mtx)); \ 90 } \ 91 rw_destroy(&SCTP_BASE_INFO(ipi_ep_mtx)); \ 92 } while (0) 93 94 #define SCTP_INP_INFO_LOCK_INIT() \ 95 rw_init(&SCTP_BASE_INFO(ipi_ep_mtx), "sctp-info"); 96 97 98 #define SCTP_INP_INFO_RLOCK() do { \ 99 rw_rlock(&SCTP_BASE_INFO(ipi_ep_mtx)); \ 100 } while (0) 101 102 #define SCTP_MCORE_QLOCK_INIT(cpstr) do { \ 103 mtx_init(&(cpstr)->que_mtx, \ 104 "sctp-mcore_queue","queue_lock", \ 105 MTX_DEF|MTX_DUPOK); \ 106 } while (0) 107 108 #define SCTP_MCORE_QLOCK(cpstr) do { \ 109 mtx_lock(&(cpstr)->que_mtx); \ 110 } while (0) 111 112 #define SCTP_MCORE_QUNLOCK(cpstr) do { \ 113 mtx_unlock(&(cpstr)->que_mtx); \ 114 } while (0) 115 116 #define SCTP_MCORE_QDESTROY(cpstr) do { \ 117 if(mtx_owned(&(cpstr)->core_mtx)) { \ 118 mtx_unlock(&(cpstr)->que_mtx); \ 119 } \ 120 mtx_destroy(&(cpstr)->que_mtx); \ 121 } while (0) 122 123 124 #define SCTP_MCORE_LOCK_INIT(cpstr) do { \ 125 mtx_init(&(cpstr)->core_mtx, \ 126 "sctp-cpulck","cpu_proc_lock", \ 127 MTX_DEF|MTX_DUPOK); \ 128 } while (0) 129 130 #define SCTP_MCORE_LOCK(cpstr) do { \ 131 mtx_lock(&(cpstr)->core_mtx); \ 132 } while (0) 133 134 #define SCTP_MCORE_UNLOCK(cpstr) do { \ 135 mtx_unlock(&(cpstr)->core_mtx); \ 136 } while (0) 137 138 #define SCTP_MCORE_DESTROY(cpstr) do { \ 139 if(mtx_owned(&(cpstr)->core_mtx)) { \ 140 mtx_unlock(&(cpstr)->core_mtx); \ 141 } \ 142 mtx_destroy(&(cpstr)->core_mtx); \ 143 } while (0) 144 145 #define SCTP_INP_INFO_WLOCK() do { \ 146 rw_wlock(&SCTP_BASE_INFO(ipi_ep_mtx)); \ 147 } while (0) 148 149 150 #define SCTP_INP_INFO_RUNLOCK() rw_runlock(&SCTP_BASE_INFO(ipi_ep_mtx)) 151 #define SCTP_INP_INFO_WUNLOCK() rw_wunlock(&SCTP_BASE_INFO(ipi_ep_mtx)) 152 153 154 #define SCTP_IPI_ADDR_INIT() \ 155 rw_init(&SCTP_BASE_INFO(ipi_addr_mtx), "sctp-addr") 156 #define SCTP_IPI_ADDR_DESTROY() do { \ 157 if(rw_wowned(&SCTP_BASE_INFO(ipi_addr_mtx))) { \ 158 rw_wunlock(&SCTP_BASE_INFO(ipi_addr_mtx)); \ 159 } \ 160 rw_destroy(&SCTP_BASE_INFO(ipi_addr_mtx)); \ 161 } while (0) 162 #define SCTP_IPI_ADDR_RLOCK() do { \ 163 rw_rlock(&SCTP_BASE_INFO(ipi_addr_mtx)); \ 164 } while (0) 165 #define SCTP_IPI_ADDR_WLOCK() do { \ 166 rw_wlock(&SCTP_BASE_INFO(ipi_addr_mtx)); \ 167 } while (0) 168 169 #define SCTP_IPI_ADDR_RUNLOCK() rw_runlock(&SCTP_BASE_INFO(ipi_addr_mtx)) 170 #define SCTP_IPI_ADDR_WUNLOCK() rw_wunlock(&SCTP_BASE_INFO(ipi_addr_mtx)) 171 172 173 #define SCTP_IPI_ITERATOR_WQ_INIT() \ 174 mtx_init(&sctp_it_ctl.ipi_iterator_wq_mtx, "sctp-it-wq", "sctp_it_wq", MTX_DEF) 175 176 #define SCTP_IPI_ITERATOR_WQ_DESTROY() \ 177 mtx_destroy(&sctp_it_ctl.ipi_iterator_wq_mtx) 178 179 #define SCTP_IPI_ITERATOR_WQ_LOCK() do { \ 180 mtx_lock(&sctp_it_ctl.ipi_iterator_wq_mtx); \ 181 } while (0) 182 183 #define SCTP_IPI_ITERATOR_WQ_UNLOCK() mtx_unlock(&sctp_it_ctl.ipi_iterator_wq_mtx) 184 185 186 #define SCTP_IP_PKTLOG_INIT() \ 187 mtx_init(&SCTP_BASE_INFO(ipi_pktlog_mtx), "sctp-pktlog", "packetlog", MTX_DEF) 188 189 190 #define SCTP_IP_PKTLOG_LOCK() do { \ 191 mtx_lock(&SCTP_BASE_INFO(ipi_pktlog_mtx)); \ 192 } while (0) 193 194 #define SCTP_IP_PKTLOG_UNLOCK() mtx_unlock(&SCTP_BASE_INFO(ipi_pktlog_mtx)) 195 196 #define SCTP_IP_PKTLOG_DESTROY() \ 197 mtx_destroy(&SCTP_BASE_INFO(ipi_pktlog_mtx)) 198 199 200 201 202 203 /* 204 * The INP locks we will use for locking an SCTP endpoint, so for example if 205 * we want to change something at the endpoint level for example random_store 206 * or cookie secrets we lock the INP level. 207 */ 208 209 #define SCTP_INP_READ_INIT(_inp) \ 210 mtx_init(&(_inp)->inp_rdata_mtx, "sctp-read", "inpr", MTX_DEF | MTX_DUPOK) 211 212 #define SCTP_INP_READ_DESTROY(_inp) \ 213 mtx_destroy(&(_inp)->inp_rdata_mtx) 214 215 #define SCTP_INP_READ_LOCK(_inp) do { \ 216 mtx_lock(&(_inp)->inp_rdata_mtx); \ 217 } while (0) 218 219 220 #define SCTP_INP_READ_UNLOCK(_inp) mtx_unlock(&(_inp)->inp_rdata_mtx) 221 222 223 #define SCTP_INP_LOCK_INIT(_inp) \ 224 mtx_init(&(_inp)->inp_mtx, "sctp-inp", "inp", MTX_DEF | MTX_DUPOK) 225 #define SCTP_ASOC_CREATE_LOCK_INIT(_inp) \ 226 mtx_init(&(_inp)->inp_create_mtx, "sctp-create", "inp_create", \ 227 MTX_DEF | MTX_DUPOK) 228 229 #define SCTP_INP_LOCK_DESTROY(_inp) \ 230 mtx_destroy(&(_inp)->inp_mtx) 231 232 #define SCTP_INP_LOCK_CONTENDED(_inp) ((_inp)->inp_mtx.mtx_lock & MTX_CONTESTED) 233 234 #define SCTP_INP_READ_CONTENDED(_inp) ((_inp)->inp_rdata_mtx.mtx_lock & MTX_CONTESTED) 235 236 #define SCTP_ASOC_CREATE_LOCK_CONTENDED(_inp) ((_inp)->inp_create_mtx.mtx_lock & MTX_CONTESTED) 237 238 239 #define SCTP_ASOC_CREATE_LOCK_DESTROY(_inp) \ 240 mtx_destroy(&(_inp)->inp_create_mtx) 241 242 243 #ifdef SCTP_LOCK_LOGGING 244 #define SCTP_INP_RLOCK(_inp) do { \ 245 if(SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_LOCK_LOGGING_ENABLE) sctp_log_lock(_inp, (struct sctp_tcb *)NULL, SCTP_LOG_LOCK_INP);\ 246 mtx_lock(&(_inp)->inp_mtx); \ 247 } while (0) 248 249 #define SCTP_INP_WLOCK(_inp) do { \ 250 if(SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_LOCK_LOGGING_ENABLE) sctp_log_lock(_inp, (struct sctp_tcb *)NULL, SCTP_LOG_LOCK_INP);\ 251 mtx_lock(&(_inp)->inp_mtx); \ 252 } while (0) 253 254 #else 255 256 #define SCTP_INP_RLOCK(_inp) do { \ 257 mtx_lock(&(_inp)->inp_mtx); \ 258 } while (0) 259 260 #define SCTP_INP_WLOCK(_inp) do { \ 261 mtx_lock(&(_inp)->inp_mtx); \ 262 } while (0) 263 264 #endif 265 266 267 #define SCTP_TCB_SEND_LOCK_INIT(_tcb) \ 268 mtx_init(&(_tcb)->tcb_send_mtx, "sctp-send-tcb", "tcbs", MTX_DEF | MTX_DUPOK) 269 270 #define SCTP_TCB_SEND_LOCK_DESTROY(_tcb) mtx_destroy(&(_tcb)->tcb_send_mtx) 271 272 #define SCTP_TCB_SEND_LOCK(_tcb) do { \ 273 mtx_lock(&(_tcb)->tcb_send_mtx); \ 274 } while (0) 275 276 #define SCTP_TCB_SEND_UNLOCK(_tcb) mtx_unlock(&(_tcb)->tcb_send_mtx) 277 278 #define SCTP_INP_INCR_REF(_inp) atomic_add_int(&((_inp)->refcount), 1) 279 #define SCTP_INP_DECR_REF(_inp) atomic_add_int(&((_inp)->refcount), -1) 280 281 282 #ifdef SCTP_LOCK_LOGGING 283 #define SCTP_ASOC_CREATE_LOCK(_inp) \ 284 do { \ 285 if(SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_LOCK_LOGGING_ENABLE) sctp_log_lock(_inp, (struct sctp_tcb *)NULL, SCTP_LOG_LOCK_CREATE); \ 286 mtx_lock(&(_inp)->inp_create_mtx); \ 287 } while (0) 288 #else 289 290 #define SCTP_ASOC_CREATE_LOCK(_inp) \ 291 do { \ 292 mtx_lock(&(_inp)->inp_create_mtx); \ 293 } while (0) 294 #endif 295 296 #define SCTP_INP_RUNLOCK(_inp) mtx_unlock(&(_inp)->inp_mtx) 297 #define SCTP_INP_WUNLOCK(_inp) mtx_unlock(&(_inp)->inp_mtx) 298 #define SCTP_ASOC_CREATE_UNLOCK(_inp) mtx_unlock(&(_inp)->inp_create_mtx) 299 300 /* 301 * For the majority of things (once we have found the association) we will 302 * lock the actual association mutex. This will protect all the assoiciation 303 * level queues and streams and such. We will need to lock the socket layer 304 * when we stuff data up into the receiving sb_mb. I.e. we will need to do an 305 * extra SOCKBUF_LOCK(&so->so_rcv) even though the association is locked. 306 */ 307 308 #define SCTP_TCB_LOCK_INIT(_tcb) \ 309 mtx_init(&(_tcb)->tcb_mtx, "sctp-tcb", "tcb", MTX_DEF | MTX_DUPOK) 310 311 #define SCTP_TCB_LOCK_DESTROY(_tcb) mtx_destroy(&(_tcb)->tcb_mtx) 312 313 #ifdef SCTP_LOCK_LOGGING 314 #define SCTP_TCB_LOCK(_tcb) do { \ 315 if(SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_LOCK_LOGGING_ENABLE) sctp_log_lock(_tcb->sctp_ep, _tcb, SCTP_LOG_LOCK_TCB); \ 316 mtx_lock(&(_tcb)->tcb_mtx); \ 317 } while (0) 318 319 #else 320 #define SCTP_TCB_LOCK(_tcb) do { \ 321 mtx_lock(&(_tcb)->tcb_mtx); \ 322 } while (0) 323 324 #endif 325 326 327 #define SCTP_TCB_TRYLOCK(_tcb) mtx_trylock(&(_tcb)->tcb_mtx) 328 329 #define SCTP_TCB_UNLOCK(_tcb) mtx_unlock(&(_tcb)->tcb_mtx) 330 331 #define SCTP_TCB_UNLOCK_IFOWNED(_tcb) do { \ 332 if (mtx_owned(&(_tcb)->tcb_mtx)) \ 333 mtx_unlock(&(_tcb)->tcb_mtx); \ 334 } while (0) 335 336 337 338 #ifdef INVARIANTS 339 #define SCTP_TCB_LOCK_ASSERT(_tcb) do { \ 340 if (mtx_owned(&(_tcb)->tcb_mtx) == 0) \ 341 panic("Don't own TCB lock"); \ 342 } while (0) 343 #else 344 #define SCTP_TCB_LOCK_ASSERT(_tcb) 345 #endif 346 347 #define SCTP_ITERATOR_LOCK_INIT() \ 348 mtx_init(&sctp_it_ctl.it_mtx, "sctp-it", "iterator", MTX_DEF) 349 350 #ifdef INVARIANTS 351 #define SCTP_ITERATOR_LOCK() \ 352 do { \ 353 if (mtx_owned(&sctp_it_ctl.it_mtx)) \ 354 panic("Iterator Lock"); \ 355 mtx_lock(&sctp_it_ctl.it_mtx); \ 356 } while (0) 357 #else 358 #define SCTP_ITERATOR_LOCK() \ 359 do { \ 360 mtx_lock(&sctp_it_ctl.it_mtx); \ 361 } while (0) 362 363 #endif 364 365 #define SCTP_ITERATOR_UNLOCK() mtx_unlock(&sctp_it_ctl.it_mtx) 366 #define SCTP_ITERATOR_LOCK_DESTROY() mtx_destroy(&sctp_it_ctl.it_mtx) 367 368 369 #define SCTP_WQ_ADDR_INIT() do { \ 370 mtx_init(&SCTP_BASE_INFO(wq_addr_mtx), "sctp-addr-wq","sctp_addr_wq",MTX_DEF); \ 371 } while (0) 372 373 #define SCTP_WQ_ADDR_DESTROY() do { \ 374 if(mtx_owned(&SCTP_BASE_INFO(wq_addr_mtx))) { \ 375 mtx_unlock(&SCTP_BASE_INFO(wq_addr_mtx)); \ 376 } \ 377 mtx_destroy(&SCTP_BASE_INFO(wq_addr_mtx)); \ 378 } while (0) 379 380 #define SCTP_WQ_ADDR_LOCK() do { \ 381 mtx_lock(&SCTP_BASE_INFO(wq_addr_mtx)); \ 382 } while (0) 383 #define SCTP_WQ_ADDR_UNLOCK() do { \ 384 mtx_unlock(&SCTP_BASE_INFO(wq_addr_mtx)); \ 385 } while (0) 386 387 388 389 #define SCTP_INCR_EP_COUNT() \ 390 do { \ 391 atomic_add_int(&SCTP_BASE_INFO(ipi_count_ep), 1); \ 392 } while (0) 393 394 #define SCTP_DECR_EP_COUNT() \ 395 do { \ 396 atomic_subtract_int(&SCTP_BASE_INFO(ipi_count_ep), 1); \ 397 } while (0) 398 399 #define SCTP_INCR_ASOC_COUNT() \ 400 do { \ 401 atomic_add_int(&SCTP_BASE_INFO(ipi_count_asoc), 1); \ 402 } while (0) 403 404 #define SCTP_DECR_ASOC_COUNT() \ 405 do { \ 406 atomic_subtract_int(&SCTP_BASE_INFO(ipi_count_asoc), 1); \ 407 } while (0) 408 409 #define SCTP_INCR_LADDR_COUNT() \ 410 do { \ 411 atomic_add_int(&SCTP_BASE_INFO(ipi_count_laddr), 1); \ 412 } while (0) 413 414 #define SCTP_DECR_LADDR_COUNT() \ 415 do { \ 416 atomic_subtract_int(&SCTP_BASE_INFO(ipi_count_laddr), 1); \ 417 } while (0) 418 419 #define SCTP_INCR_RADDR_COUNT() \ 420 do { \ 421 atomic_add_int(&SCTP_BASE_INFO(ipi_count_raddr), 1); \ 422 } while (0) 423 424 #define SCTP_DECR_RADDR_COUNT() \ 425 do { \ 426 atomic_subtract_int(&SCTP_BASE_INFO(ipi_count_raddr),1); \ 427 } while (0) 428 429 #define SCTP_INCR_CHK_COUNT() \ 430 do { \ 431 atomic_add_int(&SCTP_BASE_INFO(ipi_count_chunk), 1); \ 432 } while (0) 433 #ifdef INVARIANTS 434 #define SCTP_DECR_CHK_COUNT() \ 435 do { \ 436 if(SCTP_BASE_INFO(ipi_count_chunk) == 0) \ 437 panic("chunk count to 0?"); \ 438 atomic_subtract_int(&SCTP_BASE_INFO(ipi_count_chunk), 1); \ 439 } while (0) 440 #else 441 #define SCTP_DECR_CHK_COUNT() \ 442 do { \ 443 if(SCTP_BASE_INFO(ipi_count_chunk) != 0) \ 444 atomic_subtract_int(&SCTP_BASE_INFO(ipi_count_chunk), 1); \ 445 } while (0) 446 #endif 447 #define SCTP_INCR_READQ_COUNT() \ 448 do { \ 449 atomic_add_int(&SCTP_BASE_INFO(ipi_count_readq),1); \ 450 } while (0) 451 452 #define SCTP_DECR_READQ_COUNT() \ 453 do { \ 454 atomic_subtract_int(&SCTP_BASE_INFO(ipi_count_readq), 1); \ 455 } while (0) 456 457 #define SCTP_INCR_STRMOQ_COUNT() \ 458 do { \ 459 atomic_add_int(&SCTP_BASE_INFO(ipi_count_strmoq), 1); \ 460 } while (0) 461 462 #define SCTP_DECR_STRMOQ_COUNT() \ 463 do { \ 464 atomic_subtract_int(&SCTP_BASE_INFO(ipi_count_strmoq), 1); \ 465 } while (0) 466 467 468 #if defined(SCTP_SO_LOCK_TESTING) 469 #define SCTP_INP_SO(sctpinp) (sctpinp)->ip_inp.inp.inp_socket 470 #define SCTP_SOCKET_LOCK(so, refcnt) 471 #define SCTP_SOCKET_UNLOCK(so, refcnt) 472 #endif 473 474 #endif 475