xref: /freebsd/sys/netinet/sctp_lock_bsd.h (revision 5ac01ce026aa871e24065f931b5b5c36024c96f9)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 2001-2007, by Cisco Systems, Inc. All rights reserved.
5  * Copyright (c) 2008-2012, by Randall Stewart. All rights reserved.
6  * Copyright (c) 2008-2012, by Michael Tuexen. All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions are met:
10  *
11  * a) Redistributions of source code must retain the above copyright notice,
12  *   this list of conditions and the following disclaimer.
13  *
14  * b) Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in
16  *   the documentation and/or other materials provided with the distribution.
17  *
18  * c) Neither the name of Cisco Systems, Inc. nor the names of its
19  *    contributors may be used to endorse or promote products derived
20  *    from this software without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
24  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
26  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32  * THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 #include <sys/cdefs.h>
36 __FBSDID("$FreeBSD$");
37 
38 #ifndef _NETINET_SCTP_LOCK_BSD_H_
39 #define _NETINET_SCTP_LOCK_BSD_H_
40 
41 /*
42  * General locking concepts: The goal of our locking is to of course provide
43  * consistency and yet minimize overhead. We will attempt to use
44  * non-recursive locks which are supposed to be quite inexpensive. Now in
45  * order to do this the goal is that most functions are not aware of locking.
46  * Once we have a TCB we lock it and unlock when we are through. This means
47  * that the TCB lock is kind-of a "global" lock when working on an
48  * association. Caution must be used when asserting a TCB_LOCK since if we
49  * recurse we deadlock.
50  *
51  * Most other locks (INP and INFO) attempt to localize the locking i.e. we try
52  * to contain the lock and unlock within the function that needs to lock it.
53  * This sometimes mean we do extra locks and unlocks and lose a bit of
54  * efficiency, but if the performance statements about non-recursive locks are
55  * true this should not be a problem.  One issue that arises with this only
56  * lock when needed is that if an implicit association setup is done we have
57  * a problem. If at the time I lookup an association I have NULL in the tcb
58  * return, by the time I call to create the association some other processor
59  * could have created it. This is what the CREATE lock on the endpoint.
60  * Places where we will be implicitly creating the association OR just
61  * creating an association (the connect call) will assert the CREATE_INP
62  * lock. This will assure us that during all the lookup of INP and INFO if
63  * another creator is also locking/looking up we can gate the two to
64  * synchronize. So the CREATE_INP lock is also another one we must use
65  * extreme caution in locking to make sure we don't hit a re-entrancy issue.
66  *
67  */
68 
69 /*
70  * When working with the global SCTP lists we lock and unlock the INP_INFO
71  * lock. So when we go to lookup an association we will want to do a
72  * SCTP_INP_INFO_RLOCK() and then when we want to add a new association to
73  * the SCTP_BASE_INFO() list's we will do a SCTP_INP_INFO_WLOCK().
74  */
75 
76 #define SCTP_IPI_COUNT_INIT()
77 
78 #define SCTP_STATLOG_INIT_LOCK()
79 #define SCTP_STATLOG_DESTROY()
80 #define SCTP_STATLOG_LOCK()
81 #define SCTP_STATLOG_UNLOCK()
82 
83 #define SCTP_INP_INFO_LOCK_INIT() do {					\
84 	rw_init(&SCTP_BASE_INFO(ipi_ep_mtx), "sctp-info");		\
85 } while (0)
86 
87 #define SCTP_INP_INFO_LOCK_DESTROY() do { 				\
88 	if (rw_wowned(&SCTP_BASE_INFO(ipi_ep_mtx))) {			\
89 		rw_wunlock(&SCTP_BASE_INFO(ipi_ep_mtx));		\
90 	}								\
91 	rw_destroy(&SCTP_BASE_INFO(ipi_ep_mtx));			\
92 } while (0)
93 
94 #define SCTP_INP_INFO_RLOCK() do { 					\
95 	rw_rlock(&SCTP_BASE_INFO(ipi_ep_mtx));				\
96 } while (0)
97 
98 #define SCTP_INP_INFO_WLOCK() do { 					\
99 	rw_wlock(&SCTP_BASE_INFO(ipi_ep_mtx));				\
100 } while (0)
101 
102 #define SCTP_INP_INFO_RUNLOCK() do {					\
103 	rw_runlock(&SCTP_BASE_INFO(ipi_ep_mtx));			\
104 } while (0)
105 
106 #define SCTP_INP_INFO_WUNLOCK() do {					\
107 	rw_wunlock(&SCTP_BASE_INFO(ipi_ep_mtx));			\
108 } while (0)
109 
110 
111 #define SCTP_MCORE_QLOCK_INIT(cpstr) do {				\
112 	mtx_init(&(cpstr)->que_mtx, "sctp-mcore_queue","queue_lock",	\
113 	         MTX_DEF | MTX_DUPOK);					\
114 } while (0)
115 
116 #define SCTP_MCORE_QDESTROY(cpstr) do {					\
117 	if (mtx_owned(&(cpstr)->core_mtx)) {				\
118 		mtx_unlock(&(cpstr)->que_mtx);				\
119 	}								\
120 	mtx_destroy(&(cpstr)->que_mtx);					\
121 } while (0)
122 
123 #define SCTP_MCORE_QLOCK(cpstr) do {					\
124 	mtx_lock(&(cpstr)->que_mtx);					\
125 } while (0)
126 
127 #define SCTP_MCORE_QUNLOCK(cpstr) do {					\
128 	mtx_unlock(&(cpstr)->que_mtx);					\
129 } while (0)
130 
131 
132 #define SCTP_MCORE_LOCK_INIT(cpstr) do {				\
133 	mtx_init(&(cpstr)->core_mtx, "sctp-cpulck","cpu_proc_lock",	\
134 	         MTX_DEF | MTX_DUPOK);					\
135 } while (0)
136 
137 #define SCTP_MCORE_DESTROY(cpstr) do {					\
138 	if (mtx_owned(&(cpstr)->core_mtx)) {				\
139 		mtx_unlock(&(cpstr)->core_mtx);				\
140 	}								\
141 	mtx_destroy(&(cpstr)->core_mtx);				\
142 } while (0)
143 
144 #define SCTP_MCORE_LOCK(cpstr) do {					\
145 	mtx_lock(&(cpstr)->core_mtx);					\
146 } while (0)
147 
148 #define SCTP_MCORE_UNLOCK(cpstr) do {					\
149 	mtx_unlock(&(cpstr)->core_mtx);					\
150 } while (0)
151 
152 
153 #define SCTP_IPI_ADDR_INIT() do {					\
154 	rw_init(&SCTP_BASE_INFO(ipi_addr_mtx), "sctp-addr");		\
155 } while (0)
156 
157 #define SCTP_IPI_ADDR_DESTROY() do {					\
158 	if (rw_wowned(&SCTP_BASE_INFO(ipi_addr_mtx))) {			\
159 		rw_wunlock(&SCTP_BASE_INFO(ipi_addr_mtx));		\
160 	}								\
161 	rw_destroy(&SCTP_BASE_INFO(ipi_addr_mtx));			\
162 }  while (0)
163 
164 #define SCTP_IPI_ADDR_RLOCK()	do { 					\
165 	rw_rlock(&SCTP_BASE_INFO(ipi_addr_mtx));			\
166 } while (0)
167 
168 #define SCTP_IPI_ADDR_WLOCK()	do { 					\
169 	rw_wlock(&SCTP_BASE_INFO(ipi_addr_mtx));			\
170 } while (0)
171 
172 #define SCTP_IPI_ADDR_RUNLOCK() do {					\
173 	rw_runlock(&SCTP_BASE_INFO(ipi_addr_mtx));			\
174 } while (0)
175 
176 #define SCTP_IPI_ADDR_WUNLOCK() do {					\
177 	rw_wunlock(&SCTP_BASE_INFO(ipi_addr_mtx));			\
178 } while (0)
179 
180 #define SCTP_IPI_ADDR_LOCK_ASSERT() do {				\
181 	rw_assert(&SCTP_BASE_INFO(ipi_addr_mtx), RA_LOCKED);		\
182 } while (0)
183 
184 #define SCTP_IPI_ADDR_WLOCK_ASSERT() do {				\
185 	rw_assert(&SCTP_BASE_INFO(ipi_addr_mtx), RA_WLOCKED);		\
186 } while (0)
187 
188 #define SCTP_IPI_ITERATOR_WQ_INIT() do {				\
189 	mtx_init(&sctp_it_ctl.ipi_iterator_wq_mtx, "sctp-it-wq",	\
190 	         "sctp_it_wq", MTX_DEF);				\
191 } while (0)
192 
193 #define SCTP_IPI_ITERATOR_WQ_DESTROY() do {				\
194 	mtx_destroy(&sctp_it_ctl.ipi_iterator_wq_mtx);			\
195 } while (0)
196 
197 #define SCTP_IPI_ITERATOR_WQ_LOCK() do { 				\
198 	mtx_lock(&sctp_it_ctl.ipi_iterator_wq_mtx);			\
199 } while (0)
200 
201 #define SCTP_IPI_ITERATOR_WQ_UNLOCK() do {				\
202 	mtx_unlock(&sctp_it_ctl.ipi_iterator_wq_mtx);			\
203 } while (0)
204 
205 
206 #define SCTP_IP_PKTLOG_INIT() do {					\
207 	mtx_init(&SCTP_BASE_INFO(ipi_pktlog_mtx), "sctp-pktlog",	\
208 	         "packetlog", MTX_DEF);					\
209 } while (0)
210 
211 #define SCTP_IP_PKTLOG_DESTROY() do {					\
212 	mtx_destroy(&SCTP_BASE_INFO(ipi_pktlog_mtx));			\
213 } while (0)
214 
215 #define SCTP_IP_PKTLOG_LOCK()	do { 					\
216 	mtx_lock(&SCTP_BASE_INFO(ipi_pktlog_mtx));			\
217 } while (0)
218 
219 #define SCTP_IP_PKTLOG_UNLOCK() do {					\
220 	mtx_unlock(&SCTP_BASE_INFO(ipi_pktlog_mtx));			\
221 } while (0)
222 
223 
224 /*
225  * The INP locks we will use for locking an SCTP endpoint, so for example if
226  * we want to change something at the endpoint level for example random_store
227  * or cookie secrets we lock the INP level.
228  */
229 
230 #define SCTP_INP_READ_INIT(_inp) do {					\
231 	mtx_init(&(_inp)->inp_rdata_mtx, "sctp-read", "inpr",		\
232 	         MTX_DEF | MTX_DUPOK);					\
233 } while (0)
234 
235 #define SCTP_INP_READ_DESTROY(_inp) do {				\
236 	mtx_destroy(&(_inp)->inp_rdata_mtx);				\
237 } while (0)
238 
239 #define SCTP_INP_READ_LOCK(_inp) do {					\
240 	mtx_lock(&(_inp)->inp_rdata_mtx);				\
241 } while (0)
242 
243 #define SCTP_INP_READ_UNLOCK(_inp) do {					\
244 	mtx_unlock(&(_inp)->inp_rdata_mtx);				\
245 } while (0)
246 
247 
248 #define SCTP_INP_LOCK_INIT(_inp) do {					\
249 	mtx_init(&(_inp)->inp_mtx, "sctp-inp", "inp",			\
250 	         MTX_DEF | MTX_DUPOK);					\
251 } while (0)
252 
253 #define SCTP_INP_LOCK_DESTROY(_inp) do {				\
254 	mtx_destroy(&(_inp)->inp_mtx);					\
255 } while (0)
256 
257 #define SCTP_INP_LOCK_CONTENDED(_inp)					\
258 	((_inp)->inp_mtx.mtx_lock & MTX_CONTESTED)
259 
260 #define SCTP_INP_READ_CONTENDED(_inp)					\
261 	((_inp)->inp_rdata_mtx.mtx_lock & MTX_CONTESTED)
262 
263 #ifdef SCTP_LOCK_LOGGING
264 #define SCTP_INP_RLOCK(_inp)	do { 					\
265 	if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_LOCK_LOGGING_ENABLE) \
266 		sctp_log_lock(_inp, NULL, SCTP_LOG_LOCK_INP);		\
267 	mtx_lock(&(_inp)->inp_mtx);					\
268 } while (0)
269 
270 #define SCTP_INP_WLOCK(_inp)	do { 					\
271 	if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_LOCK_LOGGING_ENABLE) \
272 		sctp_log_lock(_inp, NULL, SCTP_LOG_LOCK_INP);		\
273 	mtx_lock(&(_inp)->inp_mtx);					\
274 } while (0)
275 #else
276 #define SCTP_INP_RLOCK(_inp) do { 					\
277 	mtx_lock(&(_inp)->inp_mtx);					\
278 } while (0)
279 
280 #define SCTP_INP_WLOCK(_inp) do { 					\
281 	mtx_lock(&(_inp)->inp_mtx);					\
282 } while (0)
283 #endif
284 
285 #define SCTP_INP_RUNLOCK(_inp) do {					\
286 	mtx_unlock(&(_inp)->inp_mtx);					\
287 } while (0)
288 
289 #define SCTP_INP_WUNLOCK(_inp) do {					\
290 	mtx_unlock(&(_inp)->inp_mtx);					\
291 } while (0)
292 
293 #define SCTP_INP_RLOCK_ASSERT(_inp) do {				\
294 	KASSERT(mtx_owned(&(_inp)->inp_mtx),				\
295 	        ("Don't own INP read lock"));				\
296 } while (0)
297 
298 #define SCTP_INP_WLOCK_ASSERT(_inp) do {				\
299 	KASSERT(mtx_owned(&(_inp)->inp_mtx),				\
300 	        ("Don't own INP write lock"));				\
301 } while (0)
302 
303 #define SCTP_INP_INCR_REF(_inp) atomic_add_int(&((_inp)->refcount), 1)
304 #define SCTP_INP_DECR_REF(_inp) atomic_add_int(&((_inp)->refcount), -1)
305 
306 #define SCTP_ASOC_CREATE_LOCK_INIT(_inp) do {				\
307 	mtx_init(&(_inp)->inp_create_mtx, "sctp-create", "inp_create",	\
308 		 MTX_DEF | MTX_DUPOK);					\
309 } while (0)
310 
311 #define SCTP_ASOC_CREATE_LOCK_DESTROY(_inp) do {			\
312 	mtx_destroy(&(_inp)->inp_create_mtx);				\
313 } while (0)
314 
315 #ifdef SCTP_LOCK_LOGGING
316 #define SCTP_ASOC_CREATE_LOCK(_inp) do {				\
317 	if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_LOCK_LOGGING_ENABLE) \
318 		sctp_log_lock(_inp, NULL, SCTP_LOG_LOCK_CREATE);	\
319 	mtx_lock(&(_inp)->inp_create_mtx);				\
320 } while (0)
321 #else
322 #define SCTP_ASOC_CREATE_LOCK(_inp) do {				\
323 	mtx_lock(&(_inp)->inp_create_mtx);				\
324 } while (0)
325 #endif
326 
327 #define SCTP_ASOC_CREATE_UNLOCK(_inp) do {				\
328 	mtx_unlock(&(_inp)->inp_create_mtx);				\
329 } while (0)
330 
331 #define SCTP_ASOC_CREATE_LOCK_CONTENDED(_inp)				\
332 	((_inp)->inp_create_mtx.mtx_lock & MTX_CONTESTED)
333 
334 
335 #define SCTP_TCB_SEND_LOCK_INIT(_tcb) do {				\
336 	mtx_init(&(_tcb)->tcb_send_mtx, "sctp-send-tcb", "tcbs",	\
337 	         MTX_DEF | MTX_DUPOK);					\
338 } while (0)
339 
340 #define SCTP_TCB_SEND_LOCK_DESTROY(_tcb) do {				\
341 	mtx_destroy(&(_tcb)->tcb_send_mtx);				\
342 } while (0)
343 
344 #define SCTP_TCB_SEND_LOCK(_tcb) do {					\
345 	mtx_lock(&(_tcb)->tcb_send_mtx);				\
346 } while (0)
347 
348 #define SCTP_TCB_SEND_UNLOCK(_tcb) do {					\
349 	mtx_unlock(&(_tcb)->tcb_send_mtx);				\
350 } while (0)
351 
352 /*
353  * For the majority of things (once we have found the association) we will
354  * lock the actual association mutex. This will protect all the assoiciation
355  * level queues and streams and such. We will need to lock the socket layer
356  * when we stuff data up into the receiving sb_mb. I.e. we will need to do an
357  * extra SOCKBUF_LOCK(&so->so_rcv) even though the association is locked.
358  */
359 
360 #define SCTP_TCB_LOCK_INIT(_tcb) do {					\
361 	mtx_init(&(_tcb)->tcb_mtx, "sctp-tcb", "tcb",			\
362 	         MTX_DEF | MTX_DUPOK);					\
363 } while (0)
364 
365 #define SCTP_TCB_LOCK_DESTROY(_tcb) do {				\
366 	mtx_destroy(&(_tcb)->tcb_mtx);					\
367 } while (0)
368 
369 #ifdef SCTP_LOCK_LOGGING
370 #define SCTP_TCB_LOCK(_tcb) do {					\
371 	if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_LOCK_LOGGING_ENABLE) \
372 		sctp_log_lock(_tcb->sctp_ep, _tcb, SCTP_LOG_LOCK_TCB);	\
373 	mtx_lock(&(_tcb)->tcb_mtx);					\
374 } while (0)
375 #else
376 #define SCTP_TCB_LOCK(_tcb) do {					\
377 	mtx_lock(&(_tcb)->tcb_mtx);					\
378 } while (0)
379 
380 #endif
381 
382 #define SCTP_TCB_TRYLOCK(_tcb) 						\
383 	mtx_trylock(&(_tcb)->tcb_mtx)
384 
385 #define SCTP_TCB_UNLOCK(_tcb) do {					\
386 	mtx_unlock(&(_tcb)->tcb_mtx);					\
387 } while (0)
388 
389 #define SCTP_TCB_UNLOCK_IFOWNED(_tcb) do {				\
390 	if (mtx_owned(&(_tcb)->tcb_mtx))				\
391 		mtx_unlock(&(_tcb)->tcb_mtx);				\
392 } while (0)
393 
394 #define SCTP_TCB_LOCK_ASSERT(_tcb) do {					\
395 	KASSERT(mtx_owned(&(_tcb)->tcb_mtx),				\
396 	        ("Don't own TCB lock"));				\
397 } while (0)
398 
399 
400 #define SCTP_ITERATOR_LOCK_INIT() do {					\
401 	mtx_init(&sctp_it_ctl.it_mtx, "sctp-it", "iterator", MTX_DEF);	\
402 } while (0)
403 
404 #define SCTP_ITERATOR_LOCK_DESTROY() do {				\
405 	mtx_destroy(&sctp_it_ctl.it_mtx);				\
406 } while (0)
407 
408 #define SCTP_ITERATOR_LOCK() \
409 	do {								\
410 		KASSERT(!mtx_owned(&sctp_it_ctl.it_mtx),		\
411 		        ("Own the iterator lock"));			\
412 		mtx_lock(&sctp_it_ctl.it_mtx);				\
413 	} while (0)
414 
415 #define SCTP_ITERATOR_UNLOCK() do {					\
416 	mtx_unlock(&sctp_it_ctl.it_mtx);				\
417 } while (0)
418 
419 
420 #define SCTP_WQ_ADDR_INIT() do {					\
421 	mtx_init(&SCTP_BASE_INFO(wq_addr_mtx),				\
422 	         "sctp-addr-wq","sctp_addr_wq", MTX_DEF);		\
423 } while (0)
424 
425 #define SCTP_WQ_ADDR_DESTROY() do  {					\
426 	if (mtx_owned(&SCTP_BASE_INFO(wq_addr_mtx))) {			\
427 		mtx_unlock(&SCTP_BASE_INFO(wq_addr_mtx));		\
428 	}								\
429 	mtx_destroy(&SCTP_BASE_INFO(wq_addr_mtx)); \
430 } while (0)
431 
432 #define SCTP_WQ_ADDR_LOCK()	do {					\
433 	mtx_lock(&SCTP_BASE_INFO(wq_addr_mtx));				\
434 } while (0)
435 
436 #define SCTP_WQ_ADDR_UNLOCK() do {					\
437 		mtx_unlock(&SCTP_BASE_INFO(wq_addr_mtx));		\
438 } while (0)
439 
440 #define SCTP_WQ_ADDR_LOCK_ASSERT() do {					\
441 	KASSERT(mtx_owned(&SCTP_BASE_INFO(wq_addr_mtx)),		\
442 	        ("Don't own the ADDR-WQ lock"));			\
443 } while (0)
444 
445 #define SCTP_INCR_EP_COUNT() do {					\
446 	atomic_add_int(&SCTP_BASE_INFO(ipi_count_ep), 1);		\
447 } while (0)
448 
449 #define SCTP_DECR_EP_COUNT() do {					\
450 	atomic_subtract_int(&SCTP_BASE_INFO(ipi_count_ep), 1);		\
451 } while (0)
452 
453 #define SCTP_INCR_ASOC_COUNT() do {					\
454 	atomic_add_int(&SCTP_BASE_INFO(ipi_count_asoc), 1);		\
455 } while (0)
456 
457 #define SCTP_DECR_ASOC_COUNT() do {					\
458 	atomic_subtract_int(&SCTP_BASE_INFO(ipi_count_asoc), 1);	\
459 } while (0)
460 
461 #define SCTP_INCR_LADDR_COUNT() do {					\
462 	atomic_add_int(&SCTP_BASE_INFO(ipi_count_laddr), 1);		\
463 } while (0)
464 
465 #define SCTP_DECR_LADDR_COUNT() do {					\
466 	atomic_subtract_int(&SCTP_BASE_INFO(ipi_count_laddr), 1); 	\
467 } while (0)
468 
469 #define SCTP_INCR_RADDR_COUNT() do {					\
470 	atomic_add_int(&SCTP_BASE_INFO(ipi_count_raddr), 1);		\
471 } while (0)
472 
473 #define SCTP_DECR_RADDR_COUNT() do {					\
474 	atomic_subtract_int(&SCTP_BASE_INFO(ipi_count_raddr),1);	\
475 } while (0)
476 
477 #define SCTP_INCR_CHK_COUNT() do {					\
478 	atomic_add_int(&SCTP_BASE_INFO(ipi_count_chunk), 1);		\
479 } while (0)
480 
481 #define SCTP_DECR_CHK_COUNT() do {					\
482 	KASSERT(SCTP_BASE_INFO(ipi_count_chunk) > 0,			\
483 	        ("ipi_count_chunk would become negative"));		\
484 	if (SCTP_BASE_INFO(ipi_count_chunk) != 0)			\
485 		atomic_subtract_int(&SCTP_BASE_INFO(ipi_count_chunk),	\
486 		                    1);					\
487 } while (0)
488 
489 #define SCTP_INCR_READQ_COUNT() do {					\
490 	atomic_add_int(&SCTP_BASE_INFO(ipi_count_readq), 1);		\
491 } while (0)
492 
493 #define SCTP_DECR_READQ_COUNT() do {					\
494 	atomic_subtract_int(&SCTP_BASE_INFO(ipi_count_readq), 1);	\
495 } while (0)
496 
497 #define SCTP_INCR_STRMOQ_COUNT() do {					\
498 	atomic_add_int(&SCTP_BASE_INFO(ipi_count_strmoq), 1);		\
499 } while (0)
500 
501 #define SCTP_DECR_STRMOQ_COUNT() do {					\
502 	atomic_subtract_int(&SCTP_BASE_INFO(ipi_count_strmoq), 1);	\
503 } while (0)
504 
505 #if defined(SCTP_SO_LOCK_TESTING)
506 #define SCTP_INP_SO(sctpinp)						\
507 	(sctpinp)->ip_inp.inp.inp_socket
508 #define SCTP_SOCKET_LOCK(so, refcnt)
509 #define SCTP_SOCKET_UNLOCK(so, refcnt)
510 #endif
511 
512 #endif
513